This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some Notes on Orthogonally Additive Polynomials

C. Schwanke Department of Mathematics, Lyon College, Batesville, AR, USA and Unit for BMI, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa [email protected]
(Date: January 15, 2025)
Abstract.

We provide two new characterizations of bounded orthogonally additive polynomials from a uniformly complete vector lattice into a convex bornological space using separately two polynomial identities of Kusraeva involving the root mean power and the geometric mean. Furthermore, it is shown that a polynomial on a vector lattice is orthogonally additive whenever it is orthogonally additive on the positive cone. These results improve recent characterizations of bounded orthogonally additive polynomials by G. Buskes and the author.

Key words and phrases:
vector lattice, orthogonally additive polynomial, geometric mean, root mean power
2010 Mathematics Subject Classification:
46A40

1. Introduction

The nnth root mean power 𝔖n\mathfrak{S}_{n} and the nnth geometric mean π”Šn\mathfrak{G}_{n} are defined as

𝔖n​(x1,…,xr)=βˆ‘k=1rxknn(x1,…,xrβˆˆβ„)\mathfrak{S}_{n}(x_{1},\dots,x_{r})=\sqrt[n]{\sum_{k=1}^{r}x_{k}^{n}}\quad(x_{1},\dots,x_{r}\in\mathbb{R})

and

π”Šn​(x1,…,xn)=∏k=1n|xk|n(x1,…,xnβˆˆβ„),\mathfrak{G}_{n}(x_{1},\dots,x_{n})=\sqrt[n]{\prod_{k=1}^{n}|x_{k}|}\quad(x_{1},\dots,x_{n}\in\mathbb{R}),

respectively. In [6], Kusraeva uses the Archimedean vector lattice functional calculus, as developed in [2], to define 𝔖n\mathfrak{S}_{n} and π”Šn\mathfrak{G}_{n} in uniformly complete vector lattices. It is proven in [6] that if (i) EE is a uniformly complete vector lattice, (ii) YY a convex bornological space, and (iii) P:Eβ†’YP\colon E\to Y is a bounded orthogonally additive nn-homogeneous polynomial with unique corresponding symmetric nn-linear map PΛ‡\check{P}, then the following hold:

P(𝔖n(f1,…,fr))=βˆ‘k=1rP(fk)(f1,…,fr∈E+,rβˆˆβ„•βˆ–{1})P(\mathfrak{S}_{n}(f_{1},\dots,f_{r}))=\sum_{k=1}^{r}P(f_{k})\quad(f_{1},\dots,f_{r}\in E^{+},r\in\mathbb{N}\setminus\{1\}) (1)

and

P​(π”Šn​(f1,…,fn))=Pˇ​(f1,…,fn)(f1,…,fn∈E+).P(\mathfrak{G}_{n}(f_{1},\dots,f_{n}))=\check{P}(f_{1},\dots,f_{n})\quad(f_{1},\dots,f_{n}\in E^{+}). (2)

The story continues in [4, Theorems 2.3&2.4], where it is shown that the attainment of both (1) and (2) above provides a single characterization of bounded orthogonally additive polynomials P:E→YP\colon E\to Y. The purpose of this paper is to illustrate that attainment of either (1) or (2) alone characterizes bounded orthogonally additive polynomials P:E→YP\colon E\to Y. This in turn proves that (1) and (2) are actually equivalent in this setting and considerably improves the aforementioned [4, Theorems 2.3&2.4].

The novel approach in this paper is that we express 𝔖n\mathfrak{S}_{n} and π”Šn\mathfrak{G}_{n} (for n>1n>1) in terms of convenient explicit formulas rather than relying solely on functional calculus. This is possible using [3, TheoremΒ 3.7], as 𝔖n\mathfrak{S}_{n} is convex on the positive cone, while π”Šn\mathfrak{G}_{n} is concave on the positive cone. Indeed, for a uniformly complete vector lattice EE and n,rβˆˆβ„•βˆ–{1}n,r\in\mathbb{N}\setminus\{1\}, we show in the proof of TheoremΒ 2.2 that

𝔖n​(f1,…,fr)=sup{βˆ‘k=1rak​fk:a1,…,ar∈[0,1],βˆ‘k=1rakm=1}\mathfrak{S}_{n}(f_{1},\dots,f_{r})=\sup\left\{\sum_{k=1}^{r}a_{k}f_{k}\ :\ a_{1},\dots,a_{r}\in[0,1],\ \sum_{k=1}^{r}a_{k}^{m}=1\right\}

holds for all f1,…,fr∈E+f_{1},\dots,f_{r}\in E^{+}, where mm is the HΓΆlder conjugate of nn, and 𝔖n​(f1,…,fr)\mathfrak{S}_{n}(f_{1},\dots,f_{r}) is defined via functional calculus. Furthermore, it was proven in [3, CorollaryΒ 3.9] that

π”Šn​(f1,…,fn)=1n​inf{βˆ‘k=1nΞΈk​fk:ΞΈ1,…,ΞΈn∈(0,∞),∏i=1nΞΈi=1}\mathfrak{G}_{n}(f_{1},\dots,f_{n})=\dfrac{1}{n}\inf\left\{\sum_{k=1}^{n}\theta_{k}f_{k}\ :\ \theta_{1},...,\theta_{n}\in(0,\infty),\ \prod_{i=1}^{n}\theta_{i}=1\right\}

holds for all f1,…,fn∈E+f_{1},\dots,f_{n}\in E^{+}, where again functional calculus is used to define π”Šn​(f1,…,fn)\mathfrak{G}_{n}(f_{1},\dots,f_{n}). These explicit formulas greatly aid the obtainment of our results presented in this paper.

We as usual denote the set of strictly positive integers by β„•\mathbb{N} and the ordered field of real numbers by ℝ\mathbb{R}. All vector spaces in this manuscript are real, and all vector lattices are Archimedean. For any unexplained terminology, notation, or basic theory regarding vector lattices, we refer the reader to the standard texts [1, 7, 8].

Let EE be a uniformly complete vector lattice, let VV be a vector space, and put nβˆˆβ„•n\in\mathbb{N}. Recall that a map P:Eβ†’VP\colon E\to V is called an nn-homogeneous polynomial if there exists a (unique) symmetric nn-linear map PΛ‡:Enβ†’V\check{P}\colon E^{n}\to V such that P​(f)=Pˇ​(f,…,f)​(f∈E)P(f)=\check{P}(f,\dots,f)\ (f\in E). (We denote the symmetric nn-linear map associated with an nn-homogeneous polynomial PP by PΛ‡\check{P} throughout.) Given an nn-homogeneous polynomial P:Eβ†’VP\colon E\to V, rβˆˆβ„•r\in\mathbb{N} with r≀nr\leq n, f1,…,fr∈Ef_{1},\dots,f_{r}\in E, and k1,…,kr∈{0,…,n}k_{1},\dots,k_{r}\in\{0,\dots,n\} satisfying βˆ‘i=1rki=n\sum_{i=1}^{r}k_{i}=n we will write

Pˇ​(f1k1​f2k2​⋯​frkr):=Pˇ​(f1,…,f1⏟k1​copies,f2,…,f2⏟k2​copies,…,fr,…,fr⏟kr​copies)\check{P}(f_{1}^{k_{1}}f_{2}^{k_{2}}\cdots f_{r}^{k_{r}}):=\check{P}(\underbrace{f_{1},\dots,f_{1}}_{k_{1}\ \text{copies}},\underbrace{f_{2},\dots,f_{2}}_{k_{2}\ \text{copies}},\dots,\underbrace{f_{r},\dots,f_{r}}_{k_{r}\ \text{copies}})

and will use similar notation with 𝔖n\mathfrak{S}_{n} and π”Šn\mathfrak{G}_{n} as well. Finally, recall that an nn-homogeneous polynomial P:Eβ†’VP\colon E\to V is said to be orthogonally additive if

P​(f+g)=P​(f)+P​(g)P(f+g)=P(f)+P(g)

holds whenever f,g∈Ef,g\in E are disjoint. We will also say that PP is positively orthogonally additive if P​(f+g)=P​(f)+P​(g)P(f+g)=P(f)+P(g) holds whenever f,g∈E+f,g\in E^{+} are disjoint.

2. Main Results

The following lemma is needed in order to obtain the main results in this section.

Lemma 2.1.

Let nβˆˆβ„•βˆ–{1}n\in\mathbb{N}\setminus\{1\}, let EE be a vector lattice, and suppose that VV is a vector space. Assume P:Eβ†’VP\colon E\to V is an nn-homogeneous polynomial. Then PP is orthogonally additive if and only if PP is positively orthogonally additive.

Proof.

We need to prove only the nontrivial implication. For this task, assume PP is positively orthogonally additive. From the binomial theorem we have

P(f+Ξ»g)=P(f)+P(Ξ»g)+βˆ‘k=1nβˆ’1(nk)Ξ»kPΛ‡(fnβˆ’kgk)(f,g∈E,Ξ»βˆˆβ„).P(f+\lambda g)=P(f)+P(\lambda g)+\sum_{k=1}^{n-1}\binom{n}{k}\lambda^{k}\check{P}(f^{n-k}g^{k})\quad(f,g\in E,\lambda\in\mathbb{R}).

Since PP is positively orthogonally additive, it follows that

βˆ‘k=1nβˆ’1(nk)​λk​Pˇ​(fnβˆ’k​gk)=0\sum_{k=1}^{n-1}\binom{n}{k}\lambda^{k}\check{P}(f^{n-k}g^{k})=0

for all f,g∈E+f,g\in E^{+} disjoint and all Ξ»βˆˆβ„+\lambda\in\mathbb{R}^{+}. From [4, LemmaΒ 2.1] we obtain

PΛ‡(fnβˆ’kgk)=0(f,g∈E+withfβŸ‚g,k∈{1,…,nβˆ’1}).\check{P}(f^{n-k}g^{k})=0\quad(f,g\in E^{+}\ \text{with}\ f\perp g,\ k\in\{1,\dots,n-1\}). (3)

Using (3), we show that

P​(f)=P​(f+)+P​(βˆ’fβˆ’)P(f)=P(f^{+})+P(-f^{-})

holds for every f∈Ef\in E. To this end, let f∈Ef\in E. Using again the binomial theorem as well as (3) above, we get

P​(f)\displaystyle P(f) =P​(f+βˆ’fβˆ’)\displaystyle=P(f^{+}-f^{-})
=βˆ‘k=0n(nk)​Pˇ​((f+)nβˆ’k​(βˆ’fβˆ’)k)\displaystyle=\sum_{k=0}^{n}\binom{n}{k}\check{P}\Bigl{(}(f^{+})^{n-k}(-f^{-})^{k}\Bigr{)}
=βˆ‘k=0n(nk)​(βˆ’1)k​Pˇ​((f+)nβˆ’k​(fβˆ’)k)\displaystyle=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\check{P}\Bigl{(}(f^{+})^{n-k}(f^{-})^{k}\Bigr{)}
=P​(f+)+(βˆ’1)n​P​(fβˆ’).\displaystyle=P(f^{+})+(-1)^{n}P(f^{-}).

Furthermore, if nn is even, then PP is even, and so

P​(f+)+(βˆ’1)n​P​(fβˆ’)=P​(f+)+P​(fβˆ’)=P​(f+)+P​(βˆ’fβˆ’).P(f^{+})+(-1)^{n}P(f^{-})=P(f^{+})+P(f^{-})=P(f^{+})+P(-f^{-}).

On the other hand, if nn is odd, then PP is odd, and thus

P​(f+)+(βˆ’1)n​P​(fβˆ’)=P​(f+)βˆ’P​(fβˆ’)=P​(f+)+P​(βˆ’fβˆ’).P(f^{+})+(-1)^{n}P(f^{-})=P(f^{+})-P(f^{-})=P(f^{+})+P(-f^{-}).

Thus P​(f)=P​(f+)+P​(βˆ’fβˆ’)P(f)=P(f^{+})+P(-f^{-}) holds for all f∈Ef\in E, as claimed. Exploiting this fact, we prove that PP is orthogonally additive. To this end, let f,g∈Ef,g\in E be disjoint. If nn is even, we have

P​(f+g)\displaystyle P(f+g) =P​((f+g)+)+P​(βˆ’(f+g)βˆ’)\displaystyle=P\Bigl{(}(f+g)^{+}\Bigr{)}+P\Bigl{(}-(f+g)^{-}\Bigr{)}
=P​((f+g)+)+P​((f+g)βˆ’)\displaystyle=P\Bigl{(}(f+g)^{+}\Bigr{)}+P\Bigl{(}(f+g)^{-}\Bigr{)}
=P​(f++g+)+P​(fβˆ’+gβˆ’)\displaystyle=P(f^{+}+g^{+})+P(f^{-}+g^{-})
=P​(f+)+P​(fβˆ’)+P​(g+)+P​(gβˆ’)\displaystyle=P(f^{+})+P(f^{-})+P(g^{+})+P(g^{-})
=P​(f+)+P​(βˆ’fβˆ’)+P​(g+)+P​(βˆ’gβˆ’)\displaystyle=P(f^{+})+P(-f^{-})+P(g^{+})+P(-g^{-})
=P​(f)+P​(g).\displaystyle=P(f)+P(g).

A similar argument handles the case that nn is odd. Therefore, PP is orthogonally additive. ∎

We proceed to our main results.

Theorem 2.2.

Let n,rβˆˆβ„•βˆ–{1}n,r\in\mathbb{N}\setminus\{1\}. Suppose EE is a uniformly complete vector lattice, VV is a vector space, and P:Eβ†’VP\colon E\to V is an nn-homogeneous polynomial.

  • (i)

    If P​(𝔖n​(f1,…,fr))=βˆ‘k=1rP​(fk)P(\mathfrak{S}_{n}(f_{1},\dots,f_{r}))=\sum_{k=1}^{r}P(f_{k}) holds for every f1,…,fr∈E+f_{1},\dots,f_{r}\in E^{+}, then PP is orthogonally additive.

  • (ii)

    If P​(π”Šn​(f1,…,fn))=Pˇ​(f1,…,fn)P(\mathfrak{G}_{n}(f_{1},\dots,f_{n}))=\check{P}(f_{1},\dots,f_{n}), holds for all f1,…,fn∈E+f_{1},\dots,f_{n}\in E^{+}, then PP is orthogonally additive.

Proof.

We claim that

𝔖n​(f1,…,fr)=sup{βˆ‘k=1rak​fk: 0≀a1,…,ar≀1,βˆ‘k=1rakm=1}\mathfrak{S}_{n}(f_{1},\dots,f_{r})=\sup\left\{\sum_{k=1}^{r}a_{k}f_{k}\ :\ 0\leq a_{1},\dots,a_{r}\leq 1,\ \sum_{k=1}^{r}a_{k}^{m}=1\right\}

holds for all f1,…,fr∈E+f_{1},\dots,f_{r}\in E^{+}, where mm is the HΓΆlder conjugate of nn; i.e. mβˆ’1+nβˆ’1=1m^{-1}+n^{-1}=1. To this end, let f1,…,fr∈E+f_{1},\dots,f_{r}\in E^{+}. Below 𝔖n​(f1,…,fr)\mathfrak{S}_{n}(f_{1},\dots,f_{r}) is defined via the Archimedean vector lattice functional calculus. However, for c1,…,crβˆˆβ„c_{1},\dots,c_{r}\in\mathbb{R}, the nnth root mean power is defined classically:

𝔖n​(c1,…,cr)=βˆ‘k=1rcknn.\mathfrak{S}_{n}(c_{1},\dots,c_{r})=\sqrt[n]{\sum_{k=1}^{r}c_{k}^{n}}.

(This type of notation is standard when using the Archimedean vector lattice functional calculus.) It follows from [3, TheoremΒ 3.7(1)] that

𝔖n​(f1,…,fr)\displaystyle\mathfrak{S}_{n}(f_{1},\dots,f_{r}) =sup{βˆ‘k=1rβˆ‚π”–nβˆ‚xk​(c1,…,cr)​fk:c1,…,crβˆˆβ„+,βˆ‘k=1rck2=1}\displaystyle=\sup\left\{\sum_{k=1}^{r}\dfrac{\partial\mathfrak{S}_{n}}{\partial x_{k}}(c_{1},\dots,c_{r})f_{k}\ :\ c_{1},\dots,c_{r}\in\mathbb{R}^{+},\ \sum_{k=1}^{r}c_{k}^{2}=1\right\}
=sup{βˆ‘k=1rcknβˆ’1(βˆ‘i=1rcin)1/m​fk:c1,…,crβˆˆβ„+,βˆ‘k=1rck2=1}\displaystyle=\sup\left\{\sum_{k=1}^{r}\dfrac{c_{k}^{n-1}}{\left(\sum_{i=1}^{r}c_{i}^{n}\right)^{1/m}}f_{k}\ :\ c_{1},\dots,c_{r}\in\mathbb{R}^{+},\ \sum_{k=1}^{r}c_{k}^{2}=1\right\}
=sup{βˆ‘k=1rak​fk:a1,…,ar∈[0,1],βˆ‘k=1rakm=1}.\displaystyle=\sup\left\{\sum_{k=1}^{r}a_{k}f_{k}\ :\ a_{1},\dots,a_{r}\in[0,1],\ \sum_{k=1}^{r}a_{k}^{m}=1\right\}.

Next let f,g∈E+f,g\in E^{+} with ff and gg disjoint. We illustrate that

f+g=𝔖n​(f​g​0rβˆ’2).f+g=\mathfrak{S}_{n}(fg0^{r-2}).

Indeed, using that ff and gg are disjoint and positive, we have

f+g\displaystyle f+g =f∨g\displaystyle=f\vee g
≀sup{a1​f+a2​g:a1,a2∈[0,1],a1m+a2m=1}\displaystyle\leq\sup\left\{a_{1}f+a_{2}g\ :\ a_{1},a_{2}\in[0,1],\ a_{1}^{m}+a_{2}^{m}=1\right\}
≀f+g.\displaystyle\leq f+g.

However,

𝔖n​(f​g​0rβˆ’2)=sup{a1​f+a2​g:a1,a2∈[0,1],a1m+a2m=1}\mathfrak{S}_{n}(fg0^{r-2})=\sup\left\{a_{1}f+a_{2}g\ :\ a_{1},a_{2}\in[0,1],\ a_{1}^{m}+a_{2}^{m}=1\right\}

holds from the explicit formula for 𝔖n\mathfrak{S}_{n} given above. Thus f+g=𝔖n​(f​g​0rβˆ’2)f+g=\mathfrak{S}_{n}(fg0^{r-2}), as claimed. Next let P:Eβ†’VP\colon E\to V be an nn-homogeneous polynomial satisfying

P​(𝔖n​(f1,…,fr))=βˆ‘k=1rP​(fk)(f1,…,fr∈E+).P(\mathfrak{S}_{n}(f_{1},\dots,f_{r}))=\sum_{k=1}^{r}P(f_{k})\quad(f_{1},\dots,f_{r}\in E^{+}).

It follows from our argument above that

P​(f+g)\displaystyle P(f+g) =P​(𝔖n​(f​g​0rβˆ’2))=P​(f)+P​(g).\displaystyle=P(\mathfrak{S}_{n}(fg0^{r-2}))=P(f)+P(g).

Hence PP is positively orthogonally additive. By LemmaΒ 2.1, we have that PP is orthogonally additive. This completes the proof of (i).

To prove (ii), let f,g∈E+f,g\in E^{+} be disjoint, and put k∈{1,…,nβˆ’1}k\in\{1,\dots,n-1\}. By [3, CorollaryΒ 3.9], we have

π”Šn​(fnβˆ’k​gk)=1n​inf{βˆ‘i=1nβˆ’kΞΈi​f+βˆ‘i=nβˆ’k+1nΞΈi​g:ΞΈ1,…,ΞΈn∈(0,∞),∏i=1nΞΈi=1}.\mathfrak{G}_{n}(f^{n-k}g^{k})=\dfrac{1}{n}\inf\left\{\sum_{i=1}^{n-k}\theta_{i}f+\sum_{i=n-k+1}^{n}\theta_{i}g\ :\ \theta_{1},\dots,\theta_{n}\in(0,\infty),\ \prod_{i=1}^{n}\theta_{i}=1\right\}.

Clearly, π”Šn​(fnβˆ’k​gk)β‰₯0\mathfrak{G}_{n}(f^{n-k}g^{k})\geq 0. Suppose that

lβ‰€βˆ‘i=1nβˆ’kΞΈi​f+βˆ‘i=nβˆ’k+1nΞΈi​gl\leq\sum_{i=1}^{n-k}\theta_{i}f+\sum_{i=n-k+1}^{n}\theta_{i}g

holds for all ΞΈ1,…,ΞΈn∈(0,∞)\theta_{1},\dots,\theta_{n}\in(0,\infty) for which ∏i=1nΞΈi=1\prod_{i=1}^{n}\theta_{i}=1. Then l=l1+l2∈IfβŠ•Igl=l_{1}+l_{2}\in I_{f}\oplus I_{g}, where IfI_{f} and IgI_{g} are the principal ideals generated by ff and gg, respectively. Then

l1β‰€βˆ‘i=1nβˆ’kΞΈi​fandl2β‰€βˆ‘i=nβˆ’k+1nΞΈi​gl_{1}\leq\sum_{i=1}^{n-k}\theta_{i}f\quad\ \text{and}\quad l_{2}\leq\sum_{i=n-k+1}^{n}\theta_{i}g

both hold for all ΞΈ1,…,ΞΈn∈(0,∞)\theta_{1},\dots,\theta_{n}\in(0,\infty) such that ∏i=1nΞΈi=1\prod_{i=1}^{n}\theta_{i}=1. We conclude that l≀0l\leq 0 and thus π”Šn​(fnβˆ’k​gk)=0\mathfrak{G}_{n}(f^{n-k}g^{k})=0 holds for all k∈{1,…,nβˆ’1}k\in\{1,\dots,n-1\}. Next let P:Eβ†’VP\colon E\to V be an nn-homogeneous polynomial satisfying

P​(π”Šn​(f1,…,fn))=Pˇ​(f1,…,fn)(f1,…,fn∈E+).P(\mathfrak{G}_{n}(f_{1},\dots,f_{n}))=\check{P}(f_{1},\dots,f_{n})\quad(f_{1},\dots,f_{n}\in E^{+}).

Utilizing the fact that π”Šn​(fnβˆ’k​gk)=0\mathfrak{G}_{n}(f^{n-k}g^{k})=0 for each k∈{1,…,nβˆ’1}k\in\{1,\dots,n-1\}, we have

P​(f+g)\displaystyle P(f+g) =P​(f)+P​(g)+βˆ‘k=1nβˆ’1(nk)​Pˇ​(fnβˆ’k​gk)\displaystyle=P(f)+P(g)+\sum_{k=1}^{n-1}\binom{n}{k}\check{P}(f^{n-k}g^{k})
=P​(f)+P​(g)+βˆ‘k=1nβˆ’1(nk)​P​(π”Šn​(fnβˆ’k​gk))\displaystyle=P(f)+P(g)+\sum_{k=1}^{n-1}\binom{n}{k}P\Bigl{(}\mathfrak{G}_{n}(f^{n-k}g_{k})\Bigr{)}
=P​(f)+P​(g).\displaystyle=P(f)+P(g).

Thus PP is positively orthogonally additive. The orthogonal additivity of PP now follows from Lemma 2.1. The proof is now complete. ∎

Given nβˆˆβ„•βˆ–{1}n\in\mathbb{N}\setminus\{1\}, a vector lattice EE, and a vector space VV, we remind the reader that an nn-linear map T:Enβ†’VT\colon E^{n}\to V is termed orthosymmetric if T​(f1,…,fn)=0T(f_{1},\dots,f_{n})=0 whenever f1,…,fn∈Ef_{1},\dots,f_{n}\in E and there exist i,j∈{1,…,n}i,j\in\{1,\dots,n\} such that fiβŸ‚fjf_{i}\perp f_{j}. A straightforward application of the binomial theorem shows that every nn-homogeneous polynomial P:Eβ†’VP\colon E\to V with PΛ‡\check{P} orthosymmetric is orthogonally additive. Thus combining LemmaΒ 2.1 and TheoremΒ 2.2 above with the main result of [6], [5, Lemma 4], and [4, TheoremsΒ 2.3Β andΒ 2.4], we obtain the following characterizations of bounded orthogonally additive polynomials from a uniformly complete vector lattice to a convex bornological space. TheoremΒ 2.3 below improves [4, TheoremsΒ 2.3Β andΒ 2.4] considerably. For more information on complex vector lattices and the complexification of symmetric multilinear maps, we refer the reader to [4, Section 1].

Theorem 2.3.

Let EE be a uniformly complete vector lattice, let YY be a convex bornological space, put n,rβˆˆβ„•βˆ–{1}n,r\in\mathbb{N}\setminus\{1\}, and let P:Eβ†’YP\colon E\to Y be a bounded nn-homogeneous polynomial. The following are equivalent.

  • (i)

    PP is orthogonally additive.

  • (ii)

    PP is positively orthogonally additive.

  • (iii)

    Pˇ\check{P} is orthosymmetric.

  • (iv)

    Pˇ​(fnβˆ’k​gk)=0\check{P}(f^{n-k}g^{k})=0 for every k∈{1,…,nβˆ’1}k\in\{1,\dots,n-1\} whenever fβŸ‚gf\perp g.

  • (v)

    P​(𝔖n​(f1,…,fr))=βˆ‘k=1rP​(fk)P\bigl{(}\mathfrak{S}_{n}(f_{1},\dots,f_{r})\bigr{)}=\sum_{k=1}^{r}P(f_{k}) holds for all f1,…,fr∈E+f_{1},\dots,f_{r}\in E^{+}.

  • (vi)

    P​(π”Šn​(f1,…,fn))=Pˇ​(f1,…,fn)P\bigl{(}\mathfrak{G}_{n}(f_{1},\dots,f_{n})\bigr{)}=\check{P}(f_{1},\dots,f_{n}) holds for all f1,…,fn∈E+f_{1},\dots,f_{n}\in E^{+}.

  • (vii)

    P​(|z|)=Pˇℂ​(zn2​(zΒ―)n2)P(|z|)=\check{P}_{\mathbb{C}}(z^{\frac{n}{2}}(\bar{z})^{\frac{n}{2}}) holds for all z∈Eβ„‚z\in E_{\mathbb{C}} if nn is even, while if nn is odd, then P​(|z|)=Pˇℂ​(znβˆ’12​(zΒ―)nβˆ’12​|z|)P(|z|)=\check{P}_{\mathbb{C}}(z^{\frac{n-1}{2}}(\bar{z})^{\frac{n-1}{2}}|z|) holds for every z∈Eβ„‚z\in E_{\mathbb{C}}.

References

  • [1] C.D. Aliprantis and O.Β Burkinshaw, Positive Operators, Academic Press, Orlando, 1985.
  • [2] G.Β Buskes, B.Β deΒ Pagter, and A.Β van Rooij, Functional calculus on Riesz spaces, Indag. Math. (N.S.) 2 (1991), no.Β 4, 423–436.
  • [3] G.Β Buskes and C.Β Schwanke, Functional completions of Archimedean vector lattices, Algebra Universalis 76 (2016), no.Β 1, 53–69.
  • [4] by same author, Characterizing bounded orthogonally additive polynomials on vector lattices, Arch. Math. (Basel) 112 (2019), no.Β 2, 181–190.
  • [5] Z.Β A. Kusraeva, On the representation of orthogonally additive polynomials, Sibirsk. Mat. Zh. 52 (2011), no.Β 2, 315–325.
  • [6] by same author, Homogeneous polynomials, power means and geometric means in vector lattices, Vladikavkaz. Mat. Zh. 16 (2014), no.Β 4, 49–53.
  • [7] W.Β A.Β J. Luxemburg and A.Β C. Zaanen, Riesz Spaces Vol. I, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971.
  • [8] A.C. Zaanen, Riesz Spaces II, North-Holland Mathematical Library, vol.Β 30, North-Holland Publishing Co., Amsterdam, 1983.