This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some new curious congruences involving multiple harmonic sums

Rong Ma
School of Mathematics and Statistics,
Northwestern Polytechnical University
Xi’an, Shaanxi, 710072,
People’s Republic of China
E-mail: [email protected]
   Li Ni
School of Mathematics and Statistics,
Northwestern Polytechnical University
Xi’an, Shaanxi, 710072,
People’s Republic of China
E-mail: [email protected]
Abstract

It is significant to study congruences involving multiple harmonic sums. Let pp be an odd prime, in recent years, the following curious congruence

i+j+k=pi,j,k>01ijk2Bp3(modp)\sum_{\begin{subarray}{c}i+j+k=p\\ i,j,k>0\end{subarray}}\frac{1}{ijk}\equiv-2B_{p-3}\pmod{p}

has been generalized along different directions, where BnB_{n} denote the nnth Bernoulli number. In this paper, we obtain several new generalizations of the above congruence by applying congruences involving multiple harmonic sums. For example, we have

k1+k2++kn=pki>0,1in(1)k1(k13)k1kn(n1)!n2n1+136n1Bpn(13)(modp),\sum_{\begin{subarray}{c}k_{1}+k_{2}+\cdots+k_{n}=p\\ k_{i}>0,1\leq i\leq n\end{subarray}}\dfrac{(-1)^{k_{1}}\left(\dfrac{k_{1}}{3}\right)}{k_{1}\cdots k_{n}}\equiv\dfrac{(n-1)!}{n}\dfrac{2^{n-1}+1}{3\cdot 6^{n-1}}B_{p-n}\left(\dfrac{1}{3}\right)\pmod{p},

where nn is even, Bn(x)B_{n}(x) denote the Bernoulli polynomials.

2020 Mathematics Subject Classification: Primary 11A07; Secondary 11B68.Key words and phrases: congruences, multiple harmonic sums, Bernoulli polynomials, Bernoulli numbers.

1 Introduction

Let \mathbb{N} be the set of positive integers. For any nn, NN\in\mathbb{N} and s =(s1,,sn)n=(s_{1},\cdots,s_{n})\in\mathbb{N}^{n}, we define the multiple harmonic sums (MHS) by

HN(s):=0<k1<<knN1k1s1knsn.H_{N}(\textbf{s}):=\sum\limits_{0<k_{1}<\cdots<k_{n}\leq N}\frac{1}{k_{1}^{s_{1}}\cdots k_{n}^{s_{n}}}.

Since the middle of 1980s, multiple harmonic sums have played an important role in the study of mathematics and theoretical physics. From 2008 onwards, JianQiang Zhao in [14, 15] and Hoffman in [4] independently obtained many congruences modulo prime and prime powers for MHS. Subsequently, Roberto Tauraso in [11] began to consider congruence properties of alternating multiple harmonic sums which are defined as follows. Let nn be any positive integer and (r1,,rn)()n(r_{1},\cdots,r_{n})\in(\mathbb{Z^{*}})^{n}. For any NnN\geq n, we define the alternating multiple harmonic sums as

H(r1,r2,,rn;N):=0<k1<<knNi=1nsgnki(ri)kiri.H(r_{1},r_{2},\cdots,r_{n};N):=\sum\limits_{0<k_{1}<\cdots<k_{n}\leq N}\prod_{i=1}^{n}\frac{\text{sgn}^{k_{i}}(r_{i})}{k_{i}^{\mid r_{i}\mid}}.

Besides, many number theorists also investigated congruences of MHS with coefficients involving invariant sequences (see [9]). For example, in 2010, LiLu Zhao and ZhiWei Sun (see [16, Theorem 1.1]) showed that for any positive odd integer nn, prime pp such that p>n+1p>n+1

(1.1) 0<k1<<kn<p(1)k1(k13)k1kn0(modp).\sum\limits_{0<k_{1}<\cdots<k_{n}<p}\frac{(-1)^{k_{1}}\left(\dfrac{k_{1}}{3}\right)}{k_{1}\cdots k_{n}}\equiv 0\pmod{p}.

Sandro Mattarei and Tauraso (see [6, Theorem 4.1]) proved that for any positive integer nn and prime pp with p>max(n+1,3)p>\max(n+1,3)

(1.2) 0<k1<<kn<p(pkn3)(1)knk1kn{2n+1+26n+1pBpn1(1/3)(modp2), if n is odd ,2n+1+4n6nBpn(1/3)(modp), if n is even ,\sum_{0<k_{1}<\cdots<k_{n}<p}\left(\frac{p-k_{n}}{3}\right)\frac{(-1)^{k_{n}}}{k_{1}\cdots k_{n}}\equiv\begin{cases}-\dfrac{2^{n+1}+2}{6^{n+1}}pB_{p-n-1}(1/3)\pmod{p^{2}},\text{ if }n\text{ is odd },\\ -\dfrac{2^{n+1}+4}{n6^{n}}B_{p-n}(1/3)\pmod{p},\quad\text{ if }n\text{ is even },\end{cases}

where Bn(x)B_{n}(x) denote the Bernoulli polynomials defined by

zexzez1=n=0Bn(x)n!zn(z<2π).\dfrac{ze^{xz}}{e^{z}-1}=\sum\limits_{n=0}^{\infty}\dfrac{B_{n}(x)}{n!}z^{n}\left(\mid z\mid<2\pi\right).

As an application of multiple harmonic sums’ congruent properties, Zhao (see [14, Corollary 4.2]) first proved the following curious congruence

(1.3) i+j+k=pi,j,k>01ijk2Bp3(modp)\sum_{\begin{subarray}{c}i+j+k=p\\ i,j,k>0\end{subarray}}\frac{1}{ijk}\equiv-2B_{p-3}\pmod{p}

for any prime p3p\geq 3, where BnB_{n} denotes the nnth Bernoulli number given by B0=1B_{0}=1 and Bn=j=0nBj(nj)(n2)B_{n}=\sum\limits_{j=0}^{n}B_{j}\left(\begin{array}[]{c}n\\ j\end{array}\right)\left(n\geq 2\right). Later on, this congruence has been generalized along different directions. For example, Zhou and Cai (see [17]) generalized (1.3) by increasing the number of indices. Wang, Cai (see [13]) and Cai, Shen, Jia (see [1]) generalized the bound from pp to pp-powers, and a product of two odd prime powers, respectively. In addtion, some scholars established and generalized congruences for alternating version of (1.3) (see [7], [2]).

In view of congruences (1.1) and (1.2). In this paper, we shall prove the following theorems.

Theorem 1.1.

Let nn be a positive integer and pp a prime with p>max(n+1,3)p>\max(n+1,3), then

(1.1) 0<k1<<knp1(1)(pkn)(pkn3)k1kn2{2n+13(n+1)6nBpn1(13)(modp)if 2n,r=0p1n(pnr)(2n+r+1+4)BrBpnr(1/3)n(n+r)6n+r(p3)Bpn1(modp)if 2n.\begin{aligned} &\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\dfrac{(-1)^{(p-k_{n})}\left(\dfrac{p-k_{n}}{3}\right)}{k_{1}\cdots k_{n}^{2}}\\ &\equiv\begin{cases}-\dfrac{2^{n}+1}{3(n+1)6^{n}}B_{p-n-1}\left(\dfrac{1}{3}\right)\pmod{p}&\text{if $2\nmid n$},\\ \sum\limits_{r=0}^{p-1-n}\left(\begin{array}[]{c}{p-n}\\ r\end{array}\right)\dfrac{(2^{n+r+1}+4)B_{r}B_{p-n-r}(1/3)}{n(n+r)6^{n+r}}-\left(\dfrac{p}{3}\right)B_{p-n-1}\pmod{p}&\text{if $2\mid n$}.\end{cases}\end{aligned}
Theorem 1.2.

Let n2n\geq 2 be a positive integer and pp a prime with p>n+1p>n+1, then

(1.2) k1+k2++kn=pki>0,1in(1)k1(k13)k1kn{(n1)!n2n1+136n1Bpn(13)(modp)if 2n,(n2)!r=0pn(pn+1r)(2n+r+4)BrBpnr+1(1/3)(n+r1)6n+r1+(n1)!(p3)Bp1n(modp)if 2n.\begin{aligned} &\sum_{\begin{subarray}{c}k_{1}+k_{2}+\cdots+k_{n}=p\\ k_{i}>0,1\leq i\leq n\end{subarray}}\dfrac{(-1)^{k_{1}}\left(\dfrac{k_{1}}{3}\right)}{k_{1}\cdots k_{n}}\\ &\equiv\begin{cases}\dfrac{(n-1)!}{n}\dfrac{2^{n-1}+1}{3\cdot 6^{n-1}}B_{p-n}\left(\dfrac{1}{3}\right)\pmod{p}&\text{if $2\mid n$},\\ -(n-2)!\sum\limits_{r=0}^{p-n}\left(\begin{array}[]{c}{p-n+1}\\ r\end{array}\right)\dfrac{(2^{n+r}+4)B_{r}B_{p-n-r+1}(1/3)}{(n+r-1)6^{n+r-1}}\\ \quad{}+(n-1)!\left(\dfrac{p}{3}\right)B_{p-1-n}\pmod{p}&\text{if $2\nmid n$}.\end{cases}\end{aligned}
Theorem 1.3.

Let n2n\geq 2 be a positive integer and pp a prime with p>n+1p>{n+1}, then

(1.3) k1+k2++kn=pki>0,1in(1)k1((k1+13)(k113))k1kn{(n2)!r=0pn(pn+1r)(3n+r21)(2n+r21)BrBpnr+1(n+r1)6n+r2if 2n,(n1)!(1(3n11)(2n11)2n6n1)Bpnif 2n.(modp)\begin{aligned} &\sum_{\begin{subarray}{c}k_{1}+k_{2}+\cdots+k_{n}=p\\ k_{i}>0,1\leq i\leq n\end{subarray}}\dfrac{(-1)^{k_{1}}\left(\left(\dfrac{k_{1}+1}{3}\right)-\left(\dfrac{k_{1}-1}{3}\right)\right)}{k_{1}\cdots k_{n}}\\ &\equiv\begin{cases}-(n-2)!\sum\limits_{r=0}^{p-n}\left(\begin{array}[]{c}{p-n+1}\\ r\end{array}\right)\dfrac{(3^{n+r-2}-1)(2^{n+r-2}-1)B_{r}B_{p-n-r+1}}{(n+r-1)6^{n+r-2}}&\text{if $2\mid n$},\\ -(n-1)!\left(1-\dfrac{(3^{n-1}-1)(2^{n-1}-1)}{2n6^{n-1}}\right)B_{p-n}&\text{if $2\nmid n$}.\end{cases}\pmod{p}\end{aligned}

2 Basic lemmas

In this section, we introduce the following lemmas that will be used later to prove the theorems.

Lemma 2.1 (See [10]).

Suppose that kk, pp\in\mathbb{N} with p>1p>1. If xx, ypy\in\mathbb{Z}_{p}, then pBk(x)ppB_{k}(x)\in\mathbb{Z}_{p} and (Bk(x)\left(B_{k}(x)-\right. Bk(y))/kp\left.B_{k}(y)\right)/k\in\mathbb{Z}_{p}. If pp is an odd prime such that p1kp-1\nmid k, then Bk(x)/kpB_{k}(x)/k\in\mathbb{Z}_{p}.

Lemma 2.2 (See [10]).

Let p,mp,m\in\mathbb{N} and k,rk,r\in\mathbb{Z} with k0k\geqslant 0. Then

x=0xr(modm)p1xk=mkk+1(Bk+1(pm+{rpm})Bk+1({rm})).\sum_{\begin{subarray}{c}x=0\\ x\equiv r(\bmod m)\end{subarray}}^{p-1}x^{k}=\frac{m^{k}}{k+1}\left(B_{k+1}\left(\frac{p}{m}+\left\{\frac{r-p}{m}\right\}\right)-B_{k+1}\left(\left\{\frac{r}{m}\right\}\right)\right).
Lemma 2.3 (See [5]).

Let nn\in\mathbb{N}, then

B2n(12)=(21n1)B2n,B2n(14)=B2n(34)=222n42nB2n,B_{2n}\left(\frac{1}{2}\right)=\left(2^{1-n}-1\right)B_{2n},\quad B_{2n}\left(\frac{1}{4}\right)=B_{2n}\left(\frac{3}{4}\right)=\frac{2-2^{2n}}{4^{2n}}B_{2n},

and

B2n(13)=B2n(23)=332n232nB2n,B_{2n}\left(\frac{1}{3}\right)=B_{2n}\left(\frac{2}{3}\right)=\frac{3-3^{2n}}{2\cdot 3^{2n}}B_{2n},
B2n(16)=B2n(56)=(222n)(332n)262nB2n.\quad B_{2n}\left(\frac{1}{6}\right)=B_{2n}\left(\frac{5}{6}\right)=\frac{\left(2-2^{2n}\right)\left(3-3^{2n}\right)}{2\cdot 6^{2n}}B_{2n}.

Moreover, through the formulas Bn(1x)=(1)nBn(x)B_{n}(1-x)=(-1)^{n}B_{n}(x) and Bn(ax)=am1k=0a1Bn(x+ka)B_{n}(ax)=a^{m-1}\sum\limits_{k=0}^{a-1}B_{n}\left(x+\dfrac{k}{a}\right) for mm, a>0a>0, we have

B2n+1(12)=0,B2n+1(23)=B2n+1(13),\displaystyle B_{2n+1}\left(\frac{1}{2}\right)=0,\quad B_{2n+1}\left(\frac{2}{3}\right)=-B_{2n+1}\left(\frac{1}{3}\right),
B2n+1(16)=B2n+1(56)=(1+21(2n+1))B2n+1(13).\displaystyle B_{2n+1}\left(\frac{1}{6}\right)=-B_{2n+1}\left(\frac{5}{6}\right)=\left(1+2^{1-(2n+1)}\right)B_{2n+1}\left(\frac{1}{3}\right).
Lemma 2.4 (See [6]).

Let nn be a positive integer and let pp be a prime with p>n+1p>n+1. Then we have the polynomial congruence

0<k1<<knp1xknk1kn(1)n1k=1p1(1x)kkn(modp).\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{x^{k_{n}}}{k_{1}\cdots k_{n}}\equiv(-1)^{n-1}\sum_{k=1}^{p-1}\frac{(1-x)^{k}}{k^{n}}\left(\bmod p\right).
Lemma 2.5 (See [12]).

Let aa, bb\in\mathbb{N} and a prime pa+b+2p\geq a+b+2. If a+ba+b is odd then we have

0<k1k2p11k1ak2bH(a,b;p1)(1)ba+b(a+ba)Bpab(modp).\sum\limits_{0<k_{1}\leq k_{2}\leq p-1}\frac{1}{k_{1}^{a}k_{2}^{b}}\equiv H(a,b;p-1)\equiv\frac{(-1)^{b}}{a+b}\left(\begin{array}[]{c}a+b\\ a\end{array}\right)B_{p-a-b}\pmod{p}.

If a+ba+b is even then we have

0<k1k2p11k1ak2bH(a,b;p1)0(modp).\sum\limits_{0<k_{1}\leq k_{2}\leq p-1}\frac{1}{k_{1}^{a}k_{2}^{b}}\equiv H(a,b;p-1)\equiv 0\pmod{p}.
Lemma 2.6.

Let nn be a positive integer and p>n+1p>n+1 a prime, then we get

(2.1) 0<k1<<knp1xknk1kn2{0<i1i2p1(1x)i1i1i2n(modp)if 2n,0<i1i2p1(1x)i1i1i2n+Bp1n(modp)if 2n.\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{x^{k_{n}}}{k_{1}\cdots k_{n}^{2}}\equiv\begin{cases}\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(1-x)^{i_{1}}}{i_{1}i_{2}^{n}}\pmod{p}&\text{if $2\nmid n$},\\ -\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(1-x)^{i_{1}}}{i_{1}i_{2}^{n}}+B_{p-1-n}\pmod{p}&\text{if $2\mid n$}.\end{cases}
Proof.

Taking the derivative of the left-hand side above and applying Lemma 2.4, we have

xddx(0<k1<<knp1xknk1kn2)\displaystyle x\frac{d}{dx}\left(\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{x^{k_{n}}}{k_{1}\cdots k_{n}^{2}}\right)
=0<k1<<knp1xknk1kn(1)n1k=1p1(1x)kkn(modp).\displaystyle=\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{x^{k_{n}}}{k_{1}\cdots k_{n}}\equiv(-1)^{n-1}\sum_{k=1}^{p-1}\frac{(1-x)^{k}}{k^{n}}\pmod{p}.

Observe that

(1)n1k=1p1(1x)kkn\displaystyle(-1)^{n-1}\sum_{k=1}^{p-1}\frac{(1-x)^{k}}{k^{n}} =(1)n1k=1p11knr=0k(x)k(kr)\displaystyle=(-1)^{n-1}\sum_{k=1}^{p-1}\frac{1}{k^{n}}\sum\limits_{r=0}^{k}(-x)^{k}\left(\begin{array}[]{c}k\\ r\end{array}\right)
=(1)n1k=1p11kn+(1)n1k=1p11knr=1k(x)r(kr)\displaystyle=(-1)^{n-1}\sum_{k=1}^{p-1}\frac{1}{k^{n}}+(-1)^{n-1}\sum_{k=1}^{p-1}\frac{1}{k^{n}}\sum\limits_{r=1}^{k}(-x)^{r}\left(\begin{array}[]{c}k\\ r\end{array}\right)
(1)n1k=1p11knr=1k(x)r(kr)(modp),\displaystyle\equiv(-1)^{n-1}\sum_{k=1}^{p-1}\frac{1}{k^{n}}\sum\limits_{r=1}^{k}(-x)^{r}\left(\begin{array}[]{c}k\\ r\end{array}\right)\pmod{p},

where we use the congruence k=1p11kn0(modp)\sum\limits_{k=1}^{p-1}\dfrac{1}{k^{n}}\equiv 0\pmod{p} (see [8]). Hence we can easily get

xddx(0<k1<<knp1xknk1kn2(1)n1k=1p11knr=1k(x)rr(kr))0(modp).x\frac{d}{dx}\left(\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{x^{k_{n}}}{k_{1}\cdots k_{n}^{2}}-(-1)^{n-1}\sum_{k=1}^{p-1}\frac{1}{k^{n}}\sum\limits_{r=1}^{k}\frac{(-x)^{r}}{r}\left(\begin{array}[]{c}k\\ r\end{array}\right)\right)\equiv 0\pmod{p}.

Thus 0<k1<<knp1xknk1kn2(1)n1k=1p11knr=1k(x)rr(kr)c(modp)\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\dfrac{x^{k_{n}}}{k_{1}\cdots k_{n}^{2}}-(-1)^{n-1}\sum\limits_{k=1}^{p-1}\dfrac{1}{k^{n}}\sum\limits_{r=1}^{k}\dfrac{(-x)^{r}}{r}\left(\begin{array}[]{c}k\\ r\end{array}\right)\equiv c\pmod{p} for some constant cc. Replacing xx with 0 we obtain

(2.2) 0<k1<<knp1xknk1kn2(1)n1k=1p11knr=1k(x)rr(kr)(modp).\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{x^{k_{n}}}{k_{1}\cdots k_{n}^{2}}\equiv(-1)^{n-1}\sum_{k=1}^{p-1}\frac{1}{k^{n}}\sum\limits_{r=1}^{k}\frac{(-x)^{r}}{r}\left(\begin{array}[]{c}k\\ r\end{array}\right)\pmod{p}.

Since 01ur1𝑑u=1r\int_{0}^{1}u^{r-1}du=\dfrac{1}{r}, taking v=1xuv=1-xu we see that

r=1k(x)rr(kr)\displaystyle\sum_{r=1}^{k}\frac{(-x)^{r}}{r}\left(\begin{array}[]{l}k\\ r\end{array}\right) =01r=1k(x)r(kr)ur1du=01(1xu)k1u𝑑u\displaystyle=\int_{0}^{1}\sum_{r=1}^{k}(-x)^{r}\left(\begin{array}[]{l}k\\ r\end{array}\right)u^{r-1}du=\int_{0}^{1}\frac{(1-xu)^{k}-1}{u}du
=11xi=1kvi1dv=i=1k(1x)i1i.\displaystyle=\int_{1}^{1-x}\sum_{i=1}^{k}v^{i-1}dv=\sum_{i=1}^{k}\frac{(1-x)^{i}-1}{i}.

Combining the identity above with (2.1) and Lemma 2.5, we complete the proof of Lemma 2.6. ∎

Remark.

If we set n=1,x=2n=1,x=2 in Lemma 2.6, we can easily get

0<ijp1(1)iijH(1,1;p1)qp2(2)(modp)\sum\limits_{0<i\leq j\leq p-1}\dfrac{(-1)^{i}}{ij}\equiv H(-1,1;p-1)\equiv-{{q_{p}}^{2}(2)}\pmod{p}

by using the congruence k=1p12kk2qp2(2)(modp)\sum\limits_{k=1}^{p-1}\dfrac{2^{k}}{k^{2}}\equiv-{{q_{p}}^{2}(2)}\pmod{p} (see [3]), where qp(2){q_{p}(2)} is Euler’s quotient of 2 with base pp.

Lemma 2.7.

Let nn be a positive integer and pp be a prime with p>max(n+1,3)p>\max(n+1,3), then we have

i=1p1(1)(p+i)(p+i3)in{2n+1+4n6nBpn(1/3)(modp)if 2n,0(modp)if 2n.\sum\limits_{i=1}^{p-1}\frac{(-1)^{(p+i)}\left(\frac{p+i}{3}\right)}{i^{n}}\equiv\begin{cases}-\dfrac{2^{n+1}+4}{n6^{n}}B_{p-n}(1/3)\pmod{p}&\text{if $2\mid n$},\\ 0\pmod{p}&\text{if $2\nmid n$}.\end{cases}
Proof.

For prime p>max(n+1,3),p>\max(n+1,3), according to Euler’s theorem and Lemma 2.2 we have

i=1ir(mod6)p11ini=1ir(mod6)p1ipn11n6n(Bpn(p6+{rp6})Bpn({r6}))(modp),,\begin{aligned} \sum_{\begin{subarray}{c}i=1\\ i\equiv r(\bmod 6)\end{subarray}}^{p-1}\frac{1}{i^{n}}\equiv&\sum_{\begin{subarray}{c}i=1\\ i\equiv r(\bmod 6)\end{subarray}}^{p-1}i^{p-n-1}\\ \equiv&-\frac{1}{n6^{n}}\left(B_{p-n}\left(\frac{p}{6}+\left\{\frac{r-p}{6}\right\}\right)-B_{p-n}\left(\left\{\frac{r}{6}\right\}\right)\right)\pmod{p},\end{aligned},

where {x}\{x\} is the decimal part of xx. By using the following formula for Bernoulli polynomials

Bn(x+y)=r=0n(nr)Bnr(y)xrB_{n}(x+y)=\sum_{r=0}^{n}\left(\begin{array}[]{l}n\\ r\end{array}\right)B_{n-r}(y)x^{r}

and Lemma 2.1, we have

(2.3) i=1ir(mod6)p11in1n6n(Bpn({r6})Bpn({rp6}))(modp).\sum_{\begin{subarray}{c}i=1\\ i\equiv r(\bmod 6)\end{subarray}}^{p-1}\frac{1}{i^{n}}\equiv\frac{1}{n6^{n}}\left(B_{p-n}\left(\left\{\frac{r}{6}\right\}\right)-B_{p-n}\left(\left\{\frac{r-p}{6}\right\}\right)\right)\pmod{p}.

On the other hand, (1)(p+i)(p+i3)(-1)^{(p+i)}(\dfrac{p+i}{3}) takes the values 0,1,1,0,1,10,-1,-1,0,1,1 according as p+i0,1,2,3,4,5(mod6).p+i\equiv 0,1,2,3,4,5\pmod{6}. When nn is even, p1(mod6)p\equiv 1\pmod{6}, we have

i=1p1(1)(p+i)(p+i3)in=i=1i0(mod6)p11ini=1i1(mod6)p11in+i=1i3(mod6)p11in+i=1i4(mod6)p11in.\sum\limits_{i=1}^{p-1}\frac{(-1)^{(p+i)}\left(\frac{p+i}{3}\right)}{i^{n}}=-\sum_{\begin{subarray}{c}i=1\\ i\equiv 0\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}-\sum_{\begin{subarray}{c}i=1\\ i\equiv 1\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}+\sum_{\begin{subarray}{c}i=1\\ i\equiv 3\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}+\sum_{\begin{subarray}{c}i=1\\ i\equiv 4\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}.

Combining the above identity, (2.2) and Lemma 2.3, we obtain

i=1p1(1)(p+i)(p+i3)in2n+1+4n6nBpn(1/3)(modp).\sum\limits_{i=1}^{p-1}\frac{(-1)^{(p+i)}\left(\frac{p+i}{3}\right)}{i^{n}}\equiv-\dfrac{2^{n+1}+4}{n6^{n}}B_{p-n}(1/3)\pmod{p}.

Similarly, when p1(mod6)p\equiv-1\pmod{6}, we have

i=1p1(1)(p+i)(p+i3)in=i=1i2(mod6)p11ini=1i3(mod6)p11in+i=1i5(mod6)p11in+i=1i0(mod6)p11in.\sum\limits_{i=1}^{p-1}\frac{(-1)^{(p+i)}\left(\frac{p+i}{3}\right)}{i^{n}}=-\sum_{\begin{subarray}{c}i=1\\ i\equiv 2\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}-\sum_{\begin{subarray}{c}i=1\\ i\equiv 3\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}+\sum_{\begin{subarray}{c}i=1\\ i\equiv 5\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}+\sum_{\begin{subarray}{c}i=1\\ i\equiv 0\pmod{6}\end{subarray}}^{p-1}\frac{1}{i^{n}}.

Applying (2.2) and Lemma 2.3 again, we obtain the same congruence as the case of p1(mod6)p\equiv 1\pmod{6}. Thus we prove the case where nn is even.

When nn is odd, pnp-n is even, we can prove the second congruence of Lemma 2.7 in the similar way . ∎

3 Proofs of the theorems

Proof of Theorem 1.1 Let ω\omega be a complex primitive cubic root of unity. For any integer ii, we note that (i3)=(ωiωi)/(ωω1)\left(\dfrac{i}{3}\right)=(\omega^{i}-\omega^{-i})/\left(\omega-\omega^{-1}\right) and 1(ω)1=ω1-(-\omega)^{-1}=-\omega. Hence, applying Lemma 2.6 and Lemma 2.5 we have

(3.1) 0<k1<<knp1(1)(pkn)(pkn3)k1kn2\displaystyle\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{(-1)^{(p-k_{n})}\left(\frac{p-k_{n}}{3}\right)}{k_{1}\cdots k_{n}^{2}}
=1ωω1((ω)p0<k1<<knp1(ω)knk1kn2(ω)p0<k1<<knp1(ω)knk1kn2)\displaystyle=\frac{1}{\omega-\omega^{-1}}\left((-\omega)^{p}\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{(-\omega)^{-k_{n}}}{k_{1}\cdots k_{n}^{2}}-(-\omega)^{-p}\sum\limits_{0<k_{1}<\cdots<k_{n}\leq p-1}\frac{(-\omega)^{k_{n}}}{k_{1}\cdots k_{n}^{2}}\right)
(1)n1ωω1((ω)p0<i1i2p1(ω)i11i1i2n(ω)p0<i1i2p1(ω)i11i1i2n)\displaystyle\equiv\frac{(-1)^{n-1}}{\omega-\omega^{-1}}\left((-\omega)^{p}\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\frac{(-\omega)^{i_{1}}-1}{i_{1}i_{2}^{n}}-(-\omega)^{-p}\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\frac{(-\omega)^{-i_{1}}-1}{i_{1}i_{2}^{n}}\right)
(1)n1(0<i1i2p1(1)(p+i1)(p+i13)i1i2n+(p3)0<i1i2p11i1i2n)\displaystyle\equiv(-1)^{n-1}\left(\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\frac{(-1)^{(p+i_{1})}\left(\frac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}+\left(\frac{p}{3}\right)\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\frac{1}{i_{1}i_{2}^{n}}\right)
{0<i1i2p1(1)(p+i1)(p+i13)i1i2n(modp)if 2n,0<i1i2p1(1)(p+i1)(p+i13)i1i2n(p3)Bp1n(modp)if 2n.\displaystyle\equiv\begin{cases}\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}\pmod{p}&\text{if $2\nmid n$},\\ -\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}-\left(\dfrac{p}{3}\right)B_{p-1-n}\pmod{p}&\text{if $2\mid n$}.\end{cases}

When nn is odd. Under substitutions i1pi2i_{1}\rightarrow p-i_{2} and i2pi1i_{2}\rightarrow p-i_{1}, we obtain

0<i1i2p1(1)(p+i1)(p+i13)i1i2n\displaystyle\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}} 0<i1i2p1(1)(2pi2)(2pi23)i1ni2\displaystyle\equiv\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(2p-i_{2})}\left(\dfrac{2p-i_{2}}{3}\right)}{i_{1}^{n}i_{2}}
0<i1i2p1(1)(p+i2)(p+i23)i1ni2(modp).\displaystyle\equiv\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{2})}\left(\dfrac{p+i_{2}}{3}\right)}{i_{1}^{n}i_{2}}\pmod{p}.

Thus, by k=1p11kn0(modp)(n<p1)\sum\limits_{k=1}^{p-1}\dfrac{1}{k^{n}}\equiv 0\pmod{p}(n<p-1) and Lemma 2.7, we have

0<i1i2p1(1)(p+i1)(p+i13)i1i2n\displaystyle\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}
12(0<i1,i2p1(1)(p+i1)(p+i13)i1i2n+i=1p1(1)(p+i)(p+i3)in+1)\displaystyle\equiv\frac{1}{2}\left(\sum\limits_{0<i_{1},i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}+\sum\limits_{i=1}^{p-1}\dfrac{(-1)^{(p+i)}\left(\dfrac{p+i}{3}\right)}{i^{n+1}}\right)
12i=1p1(1)(p+i)(p+i3)in+1\displaystyle\equiv\frac{1}{2}\sum\limits_{i=1}^{p-1}\dfrac{(-1)^{(p+i)}\left(\dfrac{p+i}{3}\right)}{i^{n+1}}
2n+13(n+1)6nBpn1(13)(modp).\displaystyle\equiv-\frac{2^{n}+1}{3(n+1)6^{n}}B_{p-n-1}\left(\frac{1}{3}\right)\pmod{p}.

Now using (3.1), we complete the proof of the first case of theorem 1.1.

When nn is even. Note that

(3.2) 0<i1i2p1(1)(p+i1)(p+i13)i1i2n\displaystyle\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}
=0<i1,i2p1(1)(p+i1)(p+i13)i1i2n0<i2<i1p1(1)(p+i1)(p+i13)i1i2n\displaystyle=\sum\limits_{0<i_{1},i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}-\sum\limits_{0<i_{2}<i_{1}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}
0<j<ip1(1)(p+i)(p+i3)ijn\displaystyle\equiv-\sum\limits_{0<j<i\leq p-1}\dfrac{(-1)^{(p+i)}\left(\dfrac{p+i}{3}\right)}{ij^{n}}
0<ip1(1)(p+i)(p+i3)i0<ji11jn(modp).\displaystyle\equiv-\sum\limits_{0<i\leq p-1}\dfrac{(-1)^{(p+i)}\left(\dfrac{p+i}{3}\right)}{i}\sum\limits_{0<j\leq i-1}\dfrac{1}{j^{n}}\pmod{p}.

From the difference equation of Bernoulli polynomials Bn(x+1)Bn(x)=nxn1(n1)B_{n}(x+1)-B_{n}(x)=nx^{n-1}\left(n\geq 1\right), we can obtain the following well-known identity

x=1n1xk=r=0k(k+1r)Brk+1nk+1r,n,k1.\sum_{x=1}^{n-1}x^{k}=\sum_{r=0}^{k}\left(\begin{array}[]{c}k+1\\ r\end{array}\right)\frac{B_{r}}{k+1}n^{k+1-r},\quad\forall n,k\geq 1.

Applying Euler’s theorem and the above identity to the last congruence of (3.2), we get

0<i1i2p1(1)(p+i1)(p+i13)i1i2n\displaystyle\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\dfrac{p+i_{1}}{3}\right)}{i_{1}i_{2}^{n}}
r=0p1n(pnr)Brpn0<ip1(1)(p+i)(p+i3)in+r(modp).\displaystyle\equiv-\sum_{r=0}^{p-1-n}\left(\begin{array}[]{c}{p-n}\\ r\end{array}\right)\frac{B_{r}}{{p-n}}\sum\limits_{0<i\leq p-1}\dfrac{(-1)^{(p+i)}\left(\dfrac{p+i}{3}\right)}{i^{n+r}}\pmod{p}.

Then we can prove the second congruence of Theorem 1.1 by using Lemma 2.7 and (3.1), hence Theorem 1.1 is proved. ∎

Proof of Theorem 1.2 Let l=k2++knl=k_{2}+\cdots+k_{n}. It’s easy to see that

(3.3) k1+k2++kn=pki>0,1in(1)k1(k13)k1kn=k2++kn=l<p0<ki,2in(1)(pl)(pl3)(pl)k2knk2++kn=l<p0<ki,2in(1)pl(pl3)lk2kn(modp)=(n1)k2++kn1=l1<l<p0<ki,2in1(1)pl(pl3)l2k2kn1=(n1)(n2)k2++kn2=l2<l1<l<p0<ki,2in2(1)pl(pl3)l2l1k2kn2==(n1)!0<ln2<<l1<l<p(1)pl(pl3)l2l1ln2.\begin{aligned} \sum_{\begin{subarray}{c}k_{1}+k_{2}+\cdots+k_{n}=p\\ k_{i}>0,1\leq i\leq n\end{subarray}}\dfrac{(-1)^{k_{1}}\left(\dfrac{k_{1}}{3}\right)}{k_{1}\cdots k_{n}}&=\sum_{\begin{subarray}{c}k_{2}+\cdots+k_{n}=l<p\\ 0<k_{i},2\leq i\leq n\end{subarray}}\dfrac{(-1)^{(p-l)}\left(\dfrac{p-l}{3}\right)}{(p-l)k_{2}\cdots k_{n}}\\ &\equiv-\sum_{\begin{subarray}{c}k_{2}+\cdots+k_{n}=l<p\\ 0<k_{i},2\leq i\leq n\end{subarray}}\dfrac{(-1)^{p-l}\left(\dfrac{p-l}{3}\right)}{lk_{2}\cdots k_{n}}\pmod{p}\\ &=-(n-1)\sum_{\begin{subarray}{c}k_{2}+\cdots+k_{n-1}=l_{1}<l<p\\ 0<k_{i},2\leq i\leq{n-1}\end{subarray}}\dfrac{(-1)^{p-l}\left(\dfrac{p-l}{3}\right)}{l^{2}k_{2}\cdots k_{n-1}}\\ &=-(n-1)(n-2)\sum_{\begin{subarray}{c}k_{2}+\cdots+k_{n-2}=l_{2}<l_{1}<l<p\\ 0<k_{i},2\leq i\leq_{n}-2\end{subarray}}\dfrac{(-1)^{p-l}\left(\dfrac{p-l}{3}\right)}{l^{2}l_{1}k_{2}\cdots k_{n-2}}\\ &=\cdots=-(n-1)!\sum_{\begin{subarray}{c}0\end{subarray}<l_{n-2}<\cdots<l_{1}<l<p}\dfrac{(-1)^{p-l}\left(\dfrac{p-l}{3}\right)}{l^{2}l_{1}\cdots l_{n-2}}.\end{aligned}

Then we can immediately obtain Theorem 1.2 by applying Theorem 1.1 .∎

Proof of Theorem 1.3 Similar to Theorem 1.2, for positive integer n2n\geq 2 and prime p>n+1p>n+1, we have

(3.4) k1+k2++kn=pki>0,1in(1)k1((k1+13)(k113))k1kn(n1)!0<ln2<<l1<l<p(1)pl((pl+13)(pl13))l2l1ln2(modp).\begin{aligned} &\sum_{\begin{subarray}{c}k_{1}+k_{2}+\cdots+k_{n}=p\\ k_{i}>0,1\leq i\leq n\end{subarray}}\dfrac{(-1)^{k_{1}}\left(\left(\dfrac{k_{1}+1}{3}\right)-\left(\dfrac{k_{1}-1}{3}\right)\right)}{k_{1}\cdots k_{n}}\\ &\equiv-(n-1)!\sum_{\begin{subarray}{c}0\end{subarray}<l_{n-2}<\cdots<l_{1}<l<p}\dfrac{(-1)^{p-l}\left(\left(\dfrac{p-l+1}{3}\right)-\left(\dfrac{p-l-1}{3}\right)\right)}{l^{2}l_{1}\cdots l_{n-2}}\pmod{p}.\end{aligned}

Let ω\omega be a complex primitive cubic root of unity. we observe that (i+13)(i13)=ωi+ωi\left(\dfrac{i+1}{3}\right)-\left(\dfrac{i-1}{3}\right)={\omega}^{i}+{\omega}^{-i} for any integer ii. Using the same method as (3.1) and the fact that (p+13)(p13)=1\left(\dfrac{p+1}{3}\right)-\left(\dfrac{p-1}{3}\right)=-1 for prime p>3p>3, we obtain

(3.5) 0<ln2<<l1<l<p(1)pl((pl+13)(pl13))l2l1ln2{0<i1i2p1(1)(p+i1)((p+i1+13)(p+i113))i1i2n1(modp)if 2n,0<i1i2p1(1)(p+i1)((p+i1+13)(p+i113))i1i2n1+Bpn(modp)if 2n.\begin{aligned} &\sum_{\begin{subarray}{c}0\end{subarray}<l_{n-2}<\cdots<l_{1}<l<p}\dfrac{(-1)^{p-l}\left(\left(\dfrac{p-l+1}{3}\right)-\left(\dfrac{p-l-1}{3}\right)\right)}{l^{2}l_{1}\cdots l_{n-2}}\\ &\equiv\begin{cases}\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\left(\dfrac{p+i_{1}+1}{3}\right)-\left(\dfrac{p+i_{1}-1}{3}\right)\right)}{i_{1}i_{2}^{n-1}}\pmod{p}&\text{if $2\mid n$},\\ -\sum\limits_{0<i_{1}\leq i_{2}\leq p-1}\dfrac{(-1)^{(p+i_{1})}\left(\left(\dfrac{p+i_{1}+1}{3}\right)-\left(\dfrac{p+i_{1}-1}{3}\right)\right)}{i_{1}i_{2}^{n-1}}\\ \quad{}+B_{p-n}\pmod{p}&\text{if $2\nmid n$}.\end{cases}\end{aligned}

On the other hand, (1)(p+i)((p+i+13)(p+i13))(-1)^{(p+i)}\left(\left(\dfrac{p+i+1}{3}\right)-\left(\dfrac{p+i-1}{3}\right)\right) takes the values 22, 11, 1-1, 2-2, 1-1, 11 as p+i0,1,2,3,4,5(mod6).p+i\equiv 0,1,2,3,4,5\pmod{6}. Referring to the proof of Lemma 2.7, we can get

(3.6) i=1p1(1)(p+i)((p+i+13)(p+i13))in{(3n11)(2n11)n6n1Bpn(modp)if 2n,0(modp)if 2n.\begin{aligned} &\sum\limits_{i=1}^{p-1}\frac{(-1)^{(p+i)}\left(\left(\dfrac{p+i+1}{3}\right)-\left(\dfrac{p+i-1}{3}\right)\right)}{i^{n}}\\ \qquad{}&\equiv\begin{cases}\dfrac{(3^{n-1}-1)(2^{n-1}-1)}{n6^{n-1}}B_{p-n}\pmod{p}&\text{if $2\nmid n$},\\ 0\pmod{p}&\text{if $2\mid n$}.\end{cases}\end{aligned}

Applying (3.6) and (3.5) , we can obtain the following congruences in a way similar to Theorem 1.1,

(3.7) 0<ln2<<l1<l<p(1)pl((pl+13)(pl13))l2l1ln2{r=0pn(pn+1r)(3n+r21)(2n+r21)BrBpnr+1(n1)(n+r1)6n+r2(modp)if 2n,(1(3n11)(2n11)2n6n1)Bpn(modp)if 2n.\begin{aligned} &\sum_{\begin{subarray}{c}0\end{subarray}<l_{n-2}<\cdots<l_{1}<l<p}\dfrac{(-1)^{p-l}\left(\left(\dfrac{p-l+1}{3}\right)-\left(\dfrac{p-l-1}{3}\right)\right)}{l^{2}l_{1}\cdots l_{n-2}}\\ &\equiv\begin{cases}\sum\limits_{r=0}^{p-n}\left(\begin{array}[]{c}{p-n+1}\\ r\end{array}\right)\dfrac{(3^{n+r-2}-1)(2^{n+r-2}-1)B_{r}B_{p-n-r+1}}{(n-1)(n+r-1)6^{n+r-2}}\pmod{p}&\text{if $2\mid n$},\\ \left(1-\dfrac{(3^{n-1}-1)(2^{n-1}-1)}{2n6^{n-1}}\right)B_{p-n}\pmod{p}&\text{if $2\nmid n$}.\end{cases}\end{aligned}

Combining (3.7) and (3.4), we comgplete the proof of Theorem 1.3.∎

References

  • [1] T. X. Cai, Z. Y. Shen, and L. R. Jia. A congruence involving harmonic sums modulo p alpha q beta. International journal of number theory, 13(5):1083–1094, 2017.
  • [2] K. Chen, R. Hong, J. Qu, D. Wang, and J. Q. Zhao. Some families of super congruences involving alternating multiple harmonic sums. Acta Arithmetica, 185(3):201–210, 2018.
  • [3] A. Granville. The square of the fermat quotient. Integers:Electron. J. Combin. Number Theory, 4, 2004.
  • [4] M. E. Hoffman. Quasi-symmetric functions and mod p multiple harmonic sums. Kyushu journal of mathematics, 69(2):345–366, 2015.
  • [5] W. Magnus, F. Oberhettinger, and R. P. Soni. Formulas and theorems for the special functions of mathematical physics. Springer-Verlag, New York, pages 25–32, 1966.
  • [6] S. Mattarei and R. Tauraso. Congruences of multiple sums involving sequences invariant under the binomial transform. Journal of Integer Sequences, 2010.
  • [7] Z. Y. Shen and T. X. Cai. Congruences for alternating triple harmonic sums. Acta Math. Sinica (Chin. Ser.), 55:737–748, 2012.
  • [8] Z. H. Sun. Congruences concerning bernoulli numbers and bernoulli polynomials. Discrete Mathematics, 105:193–223, 2000.
  • [9] Z. H. Sun. Invariant sequences under binomial transformation. Fibonacci Quarterly, 39(4):324–333, 2001.
  • [10] Z. H. Sun. Congruences involving Bernoulli and Euler numbers. Journal of Number Theory, 128(2):280–312, 2008.
  • [11] R. Tauraso. Congruences involving alternating multiple harmonic sum. arXiv:math/0905.3327.
  • [12] R. Tauraso and J. Q. Zhao. Congruences of alternating multiple harmonic sums. J. Comb. and Number Theory, 2(2), 2010.
  • [13] L. Q. Wang and T. X. Cai. A curious congruence modulo prime powers. Journal of Number Theory, 144:15–24, 2014.
  • [14] J. Q. Zhao. Bernoulli numbers, wolstenholme’s theorem, and p(5) variations of lucas’ theorem. Journal of Number Theory, 123(1):18–26, 2007.
  • [15] J. Q. Zhao. Wolstenholme type theorem for multiple harmonic sums. International Journal of Number Theory, 4(1):73–106, 2008.
  • [16] L. L. Zhao and Z. W. Sun. Some curious congruences modulo primes. Journal of Number Theory, 130(4):930–935, 2010.
  • [17] X. Zhou and T. X. Cai. A generalization of a curious congruence on harmonic sums. Proceedings of the American Mathematical Society, 135(5):1329–1333, 2007.