This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

00footnotetext: ; Institute of Mathematics, University of Rzeszów, Poland

Some exact constants for bilateral approximations in quasi-normed groups

\fnmOleh \surLopushansky
Abstract

We establish inverse and direct theorems on best approximations in quasi-normed Abelian groups in the form of bilateral Bernstein-Jackson inequalities with exact constants. Using integral representations for quasi-norms of functions ff in Lebesgue’s spaces by decreasing rearrangements ff^{*} with the help of approximation EE-functionals, error estimates are found. Examples of numerical calculations, spectral approximations of self-adjoint operators obtained by obtained estimates are given.

keywords:
Bernstein-Jackson inequalities, quasi-normed Abelian groups, exact approximation constants
pacs:
[

MSC Classification]42B35, 41A44, 41A17,46B70

1 Introduction and main results

This article is devoted to the proof of a bilateral version of Bernstein-Jackson inequalities for quasi-normed Abelian groups. The case of similar inequalities on Gaussian Hilbert spaces of random variables was analyzed in the previous publication Lopushansky2023 . In the studied case, we use the approximation scale

τs(𝔄0,𝔄1)=(𝔄0,𝔄1)ϑ,q1/ϑ,s+1=1/ϑ,τ=ϑq\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})=\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q}^{1/\vartheta},\quad s+1=1/\vartheta,\quad\tau=\vartheta q

of compatible couple of quasi-normed Abelian groups (𝔄ı,||ı)(\mathfrak{A}_{\imath},{|\cdot|_{\imath}}) with 0<ϑ<1{0<\vartheta<1} and 0<q{0<q\leq\infty}, defined by the Lions-Peetre method of real interpolation. It should be noted that in partial cases this scale coincides with the known scale of Besov spaces (see (bergh76, , Thm 7.2.4), DeVore1988 ; DeVore1998 ,(Nikolski75, , Thm 2.5.4)).

We also analyze the problem of accurate error estimates in quasi-normed spaces Lμp=Lμp(𝔄)L^{p}_{\mu}=L^{p}_{\mu}(\mathfrak{A}) (0p)(0\leq p\leq\infty) of 𝔄\mathfrak{A}-valued functions f:X𝔄{f\colon X\to\mathfrak{A}} on a measure space (X,μ)(X,\mu). Using the decreasing rearrangement method (see e.g. Burchard ; Grafakos2014 ), we reduce this problem to the simpler case for uniquely defined decreasing functions ff^{*} on (0,)(0,\infty).

The scale of quasi-normed spaces τs(𝔄0,𝔄1)\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1}) endowed with the quasinorm τs{\|\cdot\|_{\mathcal{B}_{\tau}^{s}}} is determined by the best approximation EE-functional

E(t,a;𝔄0,𝔄1)=inf{|aa0|1:|a0|0<t},a𝔄1E(t,a\mathchar 24635\relax\;\mathfrak{A}_{0},\mathfrak{A}_{1})=\inf\left\{|a-a_{0}|_{1}\colon|a_{0}|_{0}<t\right\},\quad a\in{\mathfrak{A}_{1}}

which fully characterizes the accuracy of error estimates (see e.g. bergh76 ; Maligranda1991 ; PeetreSparr1972 ). In Theorem 1 we establish the bilateral version of Bernstein-Jackson inequalities for quasi-normed groups with the exact constants cs,τc_{s,\tau} depend only on basis parameters τs(𝔄0,𝔄1)\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})

tsE(t,a)cs,τ|a|τs21/2|a|0s|a|1,cs,τ=[sτ(s+1)2]1/τ\displaystyle t^{s}E(t,a)\leq{c_{s,\tau}}|a|_{\mathcal{B}_{\tau}^{s}}\leq 2^{1/2}|a|^{s}_{0}|a|_{1},\quad c_{s,\tau}=\bigg{[}\frac{s}{\tau(s+1)^{2}}\bigg{]}^{1/\tau}

for all a𝔄0𝔄1a\in\mathfrak{A}_{0}\bigcap\mathfrak{A}_{1} and t,τ>0t,\tau>0. The left inequality allows the unique extension to the whole approximation spaces τs(𝔄0,𝔄1)\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1}) in form of the Jackson-type inequality

E(t,a)cs,τts|a|τsfor allaτs(𝔄0,𝔄1).E(t,a)\leq{c_{s,\tau}t^{-s}}\,|a|_{\mathcal{B}_{\tau}^{s}}\quad\text{for all}\quad{a\in\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})}.

In Section 3 these results are applied to the quasi-normed Abelian groups Lμp=Lμp(𝔄)L^{p}_{\mu}=L^{p}_{\mu}(\mathfrak{A}) with 0p0\leq p\leq\infty and a positive Radon measure μ\mu on a measure space XX of measurable functions f:X𝔄{f\colon X\to\mathfrak{A}} endowed with the κ\kappa-norm

fp={(|f(x)|pμ(dx))1/pif 0<p<esssupxX|f(x)|if p=μ(suppf)if p=0,\|f\|_{p}=\left\{\begin{array}[]{ll}\displaystyle\Big{(}\int|f(x)|^{p}\,\mu(dx)\Big{)}^{1/p}&\hbox{if }0<p<\infty\\ \mathop{\rm ess\,sup}_{x\in X}|f(x)|&\hbox{if }p=\infty\\[4.30554pt] \mu\left(\operatorname{\operatorname{supp}}f\right)&\hbox{if }p=0,\end{array}\right.

where suppfX\operatorname{\operatorname{supp}}f\subset X is a measurable subset such that fXsuppf=0f\mid_{X\setminus\operatorname{\operatorname{supp}}f}=0 and f0{f\neq 0} almost everywhere on suppf\operatorname{\operatorname{supp}}f with respect to the measure μ\mu. In Theorem 7 the equality

f(t)=E(t,f;Lμ0,Lμ),fLμ,f^{*}(t)=E\big{(}t,f\mathchar 24635\relax\;L_{\mu}^{0},L_{\mu}^{\infty}\big{)},\quad f\in{L_{\mu}^{\infty}},

where ff^{*} is the decreasing rearrangement of 𝔄\mathfrak{A}-valued functions fLμpf\in L^{p}_{\mu} and, as a consequence, the following equalities

fτ/s={(0[tsf(t)]τdtt)1/τif τ<sup0<t<tsf(t)if τ=,\|f\|_{\tau/s}=\left\{\begin{array}[]{ll}\displaystyle\left(\int_{0}^{\infty}\left[t^{s}f^{*}(t)\right]^{\tau}\frac{dt}{t}\right)^{1/\tau}&\hbox{if }\tau<\infty\\[8.61108pt] \sup\limits_{0<t<\infty}t^{s}f^{*}(t)&\hbox{if }\tau=\infty,\end{array}\right.

are established. We also compute exact constants in the Jackson-type inequalities

f(t)ts2(s+1)/2cs,τfτ/sfor allfLμτ/sf^{*}(t)\leq t^{s}2^{(s+1)/2}c_{s,\tau}\|f\|_{\tau/s}\quad\text{for all}\quad{f\in L^{\tau/s}_{\mu}}

that estimate measurable errors for decreasing rearrangements ff^{*}, as well as the bilateral Bernstein-Jackson inequalities

ts2(s+1)/2f(t)cs,τfτ/sf0sffor allfLμ0Lμ.\displaystyle t^{-s}2^{-(s+1)/2}f^{*}(t)\leq c_{s,\tau}\|f\|_{\tau/s}\leq\|f\|^{s}_{0}\|f\|_{\infty}\quad\text{for all}\quad{f\in L^{0}_{\mu}\cap L^{\infty}_{\mu}}.

In particular, the following inequality holds,

f(t)2πt|f|μ(dx)for allfLμ1.f^{*}(t)\leq\frac{2}{\pi t}\,\int|f|\,\mu(dx)\quad\text{for all}\quad f\in L^{1}_{\mu}.

The numerical algorithm resulting from the Theorem 7 was carried out on the example of inverse Gaussian distribution. Examples of applications for accurate estimates of spectral approximations of self-adjoint operators are given in Section 4.

Note that basic notations used in this work can be found in bergh76 ; Triebel78 .

2 Best approximation scales of quasi-normed Abelian groups

In what follows, we study the κ\kappa-normed Abelian groups (𝔄,||)(\mathfrak{A},{|\cdot|}) relative to an operation "+""+", where κ\kappa-norm ||{|\cdot|} with the constant κ1\kappa\geq 1 is determined by the assumptions (see e.g. bergh76 ; Maligranda1991 ):

|0|=0|0|=0 and |a|>0|a|>0 for all nonzero a𝔄a\in\mathfrak{A},
|a|=|a||a|=|-a| for all a𝔄a\in\mathfrak{A},
|a+b|κ(|a|+|b|)|a+b|\leq\kappa(|a|+|b|) with κ\kappa independent on a,b𝔄a,b\in\mathfrak{A}

As is known, each κ\kappa-norm |||\cdot| can be replaced by an equivalent 11-norm |||\cdot|^{\prime} such that ||||ρ2|||\cdot|^{\prime}\leq|\cdot|^{\rho}\leq 2|\cdot|^{\prime} by taking (2κ)ρ=2(2\kappa)^{\rho}=2 with a suitable ρ>0\rho>0 (see e.g. PeetreSparr1972 ). We will not assume the completeness of groups.

Given a compatible couple (𝔄0,𝔄1)(\mathfrak{A}_{0},\mathfrak{A}_{1}) of κı\kappa_{\imath}-normed groups (𝔄ı,||ı)(\mathfrak{A}_{\imath},{|\cdot|_{\imath}}) with ı={0,1}\imath=\{0,1\} and a=a0+a1a=a_{0}+a_{1} in the sum 𝔄0+𝔄1{\mathfrak{A}_{0}+\mathfrak{A}_{1}} such that aı𝔄ıa_{\imath}\in\mathfrak{A}_{\imath} we define the best approximation EE-functional E(t,a;𝔄0,𝔄1)E(t,a\mathchar 24635\relax\;\mathfrak{A}_{0},\mathfrak{A}_{1}) with a𝔄0+𝔄1{a\in\mathfrak{A}_{0}+\mathfrak{A}_{1}} and t>0{t>0} in the form (see (bergh76, , no.7))

E(t,a)=E(t,a;𝔄0,𝔄1)=inf{|aa0|1:|a0|0<t},a𝔄1.E(t,a)=E(t,a\mathchar 24635\relax\;\mathfrak{A}_{0},\mathfrak{A}_{1})=\inf\left\{|a-a_{0}|_{1}\colon|a_{0}|_{0}<t\right\},\quad a\in{\mathfrak{A}_{1}}. (1)
Definition 1.

For any τ=qϑ\tau=q\vartheta and s+1=1/ϑs+1=1/\vartheta with 0<ϑ<1{0<\vartheta<1} and 0<q{0<q\leq\infty} the κ\kappa-normed best approximation scales of Abelian groups are defined to be

τs(𝔄0,𝔄1)={a𝔄0+𝔄1:|a|τs<},|a|τs={(0[tsE(t,a)]τdtt)1/τif τ<sup0<t<tsE(t,a)if τ=,\begin{split}\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})&=\left\{a\in\mathfrak{A}_{0}+\mathfrak{A}_{1}\colon|a|_{\mathcal{B}_{\tau}^{s}}<\infty\right\},\\ |a|_{\mathcal{B}_{\tau}^{s}}&=\left\{\begin{array}[]{ll}\displaystyle\left(\int_{0}^{\infty}\left[t^{s}E(t,a)\right]^{\tau}\frac{dt}{t}\right)^{1/\tau}&\!\!\!\!\!\!\hbox{if }\tau<\infty\\[8.61108pt] \sup\limits_{0<t<\infty}t^{s}E(t,a)&\!\!\!\!\!\!\hbox{if }\tau=\infty,\end{array}\right.\end{split} (2)

where (by (bergh76, , Lemma 7.1.6)) κ=2κ1max(κ0s,κ1s)max(1,21/q)max(1,2s1)\kappa=2\kappa_{1}\max(\kappa_{0}^{s},\kappa_{1}^{s})\max(1,2^{-1/q^{\prime}})\max(1,2^{s-1}), (1/q=11/q).(1/q^{\prime}=1-1/q).

Given a compatible couple (𝔄0,𝔄1)(\mathfrak{A}_{0},\mathfrak{A}_{1}), we also define the quadratic functional of Lions-Peetre’s type (see e.g. McLean2000 ; PeetreSparr1972 )

K2(t,a)=K2(t,a;𝔄0,𝔄1)=infa=a0+a1(|a0|02+t2|a1|12)1/2,t>0.K_{2}(t,a)=K_{2}(t,a\mathchar 24635\relax\;\mathfrak{A}_{0},\mathfrak{A}_{1})=\inf\limits_{a=a_{0}+a_{1}}\left(|a_{0}|_{0}^{2}+t^{2}|a_{1}|_{1}^{2}\right)^{1/2},\quad t>0.

We will use the quadratically modified real interpolation method. Define the interpolation Abelian group of Lions-Peetre’s type (𝔄0,𝔄1)ϑ,q\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q} endowed with the quasinorm (𝔄0,𝔄1)ϑ,q{\|\cdot\|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}},

Kθ,q(𝔄0,𝔄1)\displaystyle K_{\theta,q}\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right) =(𝔄0,𝔄1)ϑ,q={a𝔄0+𝔄1},\displaystyle=\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q}=\big{\{}a\in\mathfrak{A}_{0}+\mathfrak{A}_{1}\big{\}},
|a|(𝔄0,𝔄1)ϑ,q\displaystyle|a|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}} ={(0[tϑK2(t,a)]qdtt)1/qif q<sup0<t<tϑK2(t,a)if q=.\displaystyle=\left\{\begin{array}[]{ll}\displaystyle{\bigg{(}\int_{0}^{\infty}\left[t^{-\vartheta}K_{2}(t,a)\right]^{q}\frac{dt}{t}\bigg{)}^{1/q}}&\!\!\!\!\hbox{if }q<\infty\\[8.61108pt] \sup\limits_{0<t<\infty}t^{-\vartheta}K_{2}(t,a)&\!\!\!\!\hbox{if }q=\infty.\end{array}\right.

Following DL19 ; Lopushansky2023 , we extend the use of approximation constants cs,τc_{s,\tau} to the case of arbitrary quasi-normed Abelian groups τs(𝔄0,𝔄1)\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1}) described in the classic works PeetreSparr1972 ; pietsch1981 , where

cs,τ:={[sτ(s+1)2]1/τif τ<1if τ=c_{s,\tau}:=\left\{\begin{array}[]{cl}\displaystyle\left[\frac{s}{\tau(s+1)^{2}}\right]^{1/\tau}&\hbox{if }\tau<\infty\\ \displaystyle 1&\hbox{if }\tau=\infty\end{array}\right. (3)

is determined by the normalization factor Nϑ,qN_{\vartheta,q} from (bergh76, , Thm 3.4.1) to be

cs,τ=Nϑ,q1/q(ϑq2)1/qϑ,Nϑ,q:=[qϑ(1ϑ)]1/q.c_{s,\tau}=N^{1/q}_{\vartheta,q}\left(\vartheta q^{2}\right)^{-1/q\vartheta},\quad N_{\vartheta,q}:=[q\vartheta(1-\vartheta)]^{1/q}. (4)

The following theorem establishes the bilateral form of approximation inequalities with exact constants for the case of quasi-normed Abelian groups.

Theorem 1.

The bilateral Bernstein-Jackson inequalities with the exact constant cs,τ{c}_{s,\tau}

tsE(t,a)\displaystyle t^{s}E(t,a) cs,τ|a|τs21/2|a|0s|a|1for alla𝔄0𝔄1\displaystyle\leq{c}_{s,\tau}|a|_{\mathcal{B}_{\tau}^{s}}\leq 2^{1/2}|a|^{s}_{0}|a|_{1}\quad\text{for all}\quad a\in\mathfrak{A}_{0}\cap\mathfrak{A}_{1} (5)

hold. There is a unique extension of Jackson’s inequality on the whole approximation scale

E(t,a)\displaystyle E(t,a) tscs,τ|a|τsfor allaτs(𝔄0,𝔄1),r>0.\displaystyle\leq t^{-s}{c}_{s,\tau}|a|_{\mathcal{B}_{\tau}^{s}}\quad\text{for all}\quad{a\in\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})},\ \ r>0. (6)

Proof: Let 0<q<{0<q<\infty} and α=|a|𝔄1/|a|𝔄0\alpha=|a|_{\mathfrak{A}_{1}}/|a|_{\mathfrak{A}_{0}} with a nonzero a𝔄0𝔄1a\in\mathfrak{A}_{0}\cap\mathfrak{A}_{1}. Since

K2(t,a)2\displaystyle K_{2}(t,a)^{2} =infa=a0+a1(|a0|02+t2|a1|12)|a|02min(1,α2t2)=min(|a|02,t2|a|12)\displaystyle=\inf\limits_{a=a_{0}+a_{1}}\left(|a_{0}|_{0}^{2}+t^{2}|a_{1}|_{1}^{2}\right)\leq|a|^{2}_{0}\min(1,\alpha^{2}t^{2})={\min\left(|a|^{2}_{0},t^{2}|a|^{2}_{1}\right)}

or otherwise K2(t,a)|a|0min(1,αt)=min(|a|0,t|a|1),K_{2}(t,a)\leq{|a|_{0}\min(1,\alpha t)}={\min\left(|a|_{0},t|a|_{1}\right)}, we get the inequality

|a|(𝔄0,𝔄1)ϑ,qq|a|1q0αt1+q(1ϑ)𝑑t+|a|0qαt1ϑq𝑑t.|a|^{q}_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}\leq|a|_{1}^{q}\int_{0}^{\alpha}t^{-1+q(1-\vartheta)}dt+|a|^{q}_{0}\int_{\alpha}^{\infty}t^{-1-\vartheta q}dt.

Calculating the integrals and using that α=|a|1/|a|0\alpha=|a|_{1}/|a|_{0}, we obtain

|a|(𝔄0,𝔄1)ϑ,qq\displaystyle|a|^{q}_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}} αq(1ϑ)q(1ϑ)|a|1q+αϑqϑq|a|0q=1qϑ(1ϑ)(|a|01ϑ|a|1ϑ)q.\displaystyle\leq\frac{\alpha^{q(1-\vartheta)}}{q(1-\vartheta)}|a|_{1}^{q}+\frac{\alpha^{-\vartheta q}}{\vartheta q}|a|^{q}_{0}=\frac{1}{q\vartheta(1-\vartheta)}\left(|a|^{1-\vartheta}_{0}|a|_{1}^{\vartheta}\right)^{q}.

Let it be now q=q=\infty. Then the inequality

tϑK2(t,a)min(tϑ|a|0,t1ϑ|a|1)t^{-\vartheta}K_{2}(t,a)\leq{\min\left(t^{-\vartheta}|a|_{0},t^{1-\vartheta}|a|_{1}\right)}

holds. Taking in this case t=|a|0/|a|1t=|a|_{0}/|a|_{1}, we obtain that tϑK2(t,a)|a|01ϑ|a|1ϑ.t^{-\vartheta}K_{2}(t,a)\leq|a|^{1-\vartheta}_{0}|a|_{1}^{\vartheta}. Combining previous inequalities and taking into account (4), we have

a(𝔄0,𝔄1)ϑ,q{Nϑ,q1|a|01ϑ|a|1ϑif q<|a|01ϑ|a|1ϑif q=,a𝔄0𝔄1.\begin{split}\|a\|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}&\leq\left\{\begin{array}[]{ll}N_{\vartheta,q}^{-1}|a|^{1-\vartheta}_{0}|a|_{1}^{\vartheta}&\hbox{if }q<\infty\\[6.45831pt] |a|^{1-\vartheta}_{0}|a|_{1}^{\vartheta}&\hbox{if }q=\infty\end{array}\right.,\quad a\in\mathfrak{A}_{0}\cap\mathfrak{A}_{1}.\end{split} (7)

For further considerations, we need the functional

K(v,a):=infa=a0+a1max(|a0|𝔄0,v|a1|𝔄1).K_{\infty}(v,a):=\inf\limits_{a=a_{0}+a_{1}}\max\big{(}|a_{0}|_{\mathfrak{A}_{0}},v|a_{1}|_{\mathfrak{A}_{1}}\big{)}.

Now we will use the known properties of the considered functionals that

vθK(v,f)0as v0 or v\displaystyle v^{-\theta}K_{\infty}(v,f)\to 0\quad\text{as \ }{v\to 0}\text{ or }{v\to\infty}
t1+1/θE(t,f)0as v0 or v\displaystyle{t^{-1+1/\theta}E(t,f)\to 0}\quad\text{as \ }{v\to 0}\text{ or }{v\to\infty}

(see (bergh76, , Thm 7.1.7)). As a result, we get

0(vϑK(v,a))qdvv\displaystyle\int_{0}^{\infty}\left(v^{-\vartheta}K_{\infty}(v,a)\right)^{q}\frac{dv}{v} =1ϑq0K(v,a)q𝑑vϑq=1ϑq0vϑq𝑑K(v,a)q.\displaystyle=-\frac{1}{\vartheta q}\int_{0}^{\infty}K_{\infty}(v,a)^{q}dv^{-\vartheta q}=\frac{1}{\vartheta q}\int_{0}^{\infty}v^{-\vartheta q}dK_{\infty}(v,a)^{q}.

On the other hand, integrating by parts with the change v=t/E(t,a)v=t/E(t,a), we get for s+1=1/ϑs+1=1/\vartheta that

0(vϑK(v,a))qdvv\displaystyle\int_{0}^{\infty}\left(v^{-\vartheta}K_{\infty}(v,a)\right)^{q}\frac{dv}{v} =1ϑq0(t/E(t,a))ϑq𝑑tq=1ϑq20(tsE(t,a))ϑqdtt.\displaystyle=\frac{1}{\vartheta q}\int_{0}^{\infty}\left(t/E(t,a)\right)^{-\vartheta q}dt^{q}=\frac{1}{\vartheta q^{2}}\int_{0}^{\infty}\left(t^{s}E(t,a)\right)^{\vartheta q}\frac{dt}{t}.

From the definition KK_{\infty} and K2K_{2}, it follows that

K(t,a)K2(t,a)21/2K(t,a)K_{\infty}(t,a)\leq K_{2}(t,a)\leq 2^{1/2}K_{\infty}(t,a) (8)

(see (PeetreSparr1972, , Remark 3.1)). Now, taking into account that

1ϑq2aτsϑq=1ϑq20(tsE(t,a))ϑqdtt=0(vϑK(v,a))qdvv,\frac{1}{\vartheta q^{2}}\|a\|^{\vartheta q}_{\mathcal{B}_{\tau}^{s}}=\frac{1}{\vartheta q^{2}}\int_{0}^{\infty}\left(t^{s}E(t,a)\right)^{\vartheta q}\frac{dt}{t}=\int_{0}^{\infty}\left(v^{-\vartheta}K_{\infty}(v,a)\right)^{q}\frac{dv}{v},

according to the left inequality from (8), we obtain

1ϑq2|a|τsϑq0(vϑK2(v,a))qdvv=|a|(𝔄0,𝔄1)ϑ,qq.\frac{1}{\vartheta q^{2}}|a|^{\vartheta q}_{\mathcal{B}_{\tau}^{s}}\leq\int_{0}^{\infty}\left(v^{-\vartheta}K_{2}(v,a)\right)^{q}\frac{dv}{v}=|a|^{q}_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}. (9)

By using the right inequality from (8), we have

|a|(𝔄0,𝔄1)ϑ,qq=0(vϑK2(v,a))qdvv2q/20(vϑK(v,a))qdvv\displaystyle|a|^{q}_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}=\int_{0}^{\infty}\left(v^{-\vartheta}K_{2}(v,a)\right)^{q}\frac{dv}{v}\leq 2^{q/2}\int_{0}^{\infty}\left(v^{-\vartheta}K_{\infty}(v,a)\right)^{q}\frac{dv}{v}
=2q/2ϑq20(tsE(t,a))ϑqdtt=2q/2ϑq2|a|τsϑq.\displaystyle=\frac{2^{q/2}}{\vartheta q^{2}}\int_{0}^{\infty}\left(t^{s}E(t,a)\right)^{\vartheta q}\frac{dt}{t}=\frac{2^{q/2}}{\vartheta q^{2}}|a|^{\vartheta q}_{\mathcal{B}_{\tau}^{s}}.

As a result, by virtue of (9) we have the inequalities

|a|(𝔄0,𝔄1)ϑ,qq2q/2ϑq2|a|τsϑq2q/2|a|(𝔄0,𝔄1)ϑ,qqwithτ=ϑq.|a|^{q}_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}\leq\frac{2^{q/2}}{\vartheta q^{2}}|a|^{\vartheta q}_{\mathcal{B}_{\tau}^{s}}\leq 2^{q/2}|a|^{q}_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}\quad\text{with}\quad\tau=\vartheta q. (10)

That gives the following isomorphism with equivalent quasinorms

τs(𝔄0,𝔄1)=(𝔄0,𝔄1)ϑ,q1/ϑ.\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})=\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q}^{1/\vartheta}. (11)

By (bergh76, , Lemma 7.1.2 and Thm 7.1.1) for each v>0{v>0} there is t>0{t>0} such that

(tsE(t,a))ϑvϑK(v,a)(tsE(t0,a))ϑ.(t^{s}E(t,a))^{\vartheta}\leq v^{-\vartheta}K_{\infty}(v,a)\leq\left(t^{s}E(t-0,a)\right)^{\vartheta}. (12)

Since |a|sϑ|a|(𝔄0,𝔄1)ϑ,q|a|^{\vartheta}_{\mathcal{B}_{\infty}^{s}}\leq|a|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}} for q=q=\infty, the inequalities (12) for any v>0{v>0} yield

vϑK2(v,a)\displaystyle v^{-\vartheta}K_{2}(v,a) vϑ21/2K(v,a)21/2(tsE(t0,a))ϑ\displaystyle\leq v^{-\vartheta}2^{1/2}K_{\infty}(v,a)\leq 2^{1/2}\big{(}t^{s}E(t-0,a)\big{)}^{\vartheta}
21/2(supt>0tsE(t,a))ϑ=21/2|a|sϑ.\displaystyle\leq 2^{1/2}\Big{(}\sup_{t>0}\,t^{s}E(t,a)\Big{)}^{\vartheta}=2^{1/2}|a|^{\vartheta}_{\mathcal{B}_{\infty}^{s}}.

As a result, |a|(𝔄0,𝔄1)ϑ,q21/2|a|sϑ|a|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}\leq 2^{1/2}|a|^{\vartheta}_{\mathcal{B}_{\infty}^{s}} and the isomorphism (11) holds for q=q=\infty.

Prove the Bernstein inequality (5). Combining (7) and (9), we obtain

|a|τsϑ{[q1ϑ]1/q|a|01ϑ|a|1ϑif q<|a|01ϑ|a|1ϑif q=.|a|^{\vartheta}_{\mathcal{B}_{\tau}^{s}}\leq\left\{\begin{array}[]{ll}\displaystyle\left[\frac{q}{1-\vartheta}\right]^{1/q}|a|^{1-\vartheta}_{0}|a|_{1}^{\vartheta}&\hbox{if }q<\infty\\[8.61108pt] |a|^{1-\vartheta}_{0}|a|_{1}^{\vartheta}&\hbox{if }q=\infty.\end{array}\right. (13)

Thus, the second inequality (5) we get by setting s+1=1/ϑs+1=1/\vartheta and τ=ϑq\tau=\vartheta q.

Prove the inequality (6). Integrating min(1,v/t)K2(t,a)K2(v,a){\min(1,v/t)K_{2}(t,a)\leq{K}_{2}(v,a)}, we obtain

0(vϑmin(1,v/t))qdvvK2(t,a)q0(vϑK2(v,a))qdvv=|a|(𝔄0,𝔄1)ϑ,qq.\int_{0}^{\infty}\left(v^{-\vartheta}\min(1,v/t)\right)^{q}\frac{dv}{v}K_{2}(t,a)^{q}\leq\int_{0}^{\infty}\left(v^{-\vartheta}K_{2}(v,a)\right)^{q}\frac{dv}{v}=|a|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}^{q}.

Since the left integral can be rewritten as the following sum

0(vϑmin(1,v/t))qdvv=0tv(1ϑ)q1tq𝑑v+tvϑq1𝑑v=1tϑNϑ,q1/q,\begin{split}\int_{0}^{\infty}\left(v^{-\vartheta}\min(1,v/t)\right)^{q}\frac{dv}{v}&=\int_{0}^{t}v^{(1-\vartheta)q-1}t^{-q}dv+\int_{t}^{\infty}v^{-\vartheta q-1}dv=\frac{1}{t^{\vartheta}N_{\vartheta,q}^{1/q}},\end{split}

we obtain the inequality

(0tv(1ϑ)q1tq𝑑v+tvϑq1𝑑v)1/qK2(t,a)=K2(t,a)tϑNϑ,q|x|(𝔄0,𝔄1)ϑ,q.\begin{split}\bigg{(}\int_{0}^{t}\frac{v^{(1-\vartheta)q-1}}{t^{q}}dv+\int_{t}^{\infty}v^{-\vartheta q-1}dv\bigg{)}^{1/q}K_{2}(t,a)&=\frac{K_{2}(t,a)}{t^{\vartheta}N_{\vartheta,q}}\leq|x|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}.\end{split}

As a result, K2(t,a)tϑNϑ,q|a|(𝔄0,𝔄1)ϑ,qK_{2}(t,a)\leq t^{\vartheta}N_{\vartheta,q}|a|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}. Hence, taking into account (8) and (12), we get

v1ϑE(v,a)ϑtϑK(t,a)Nϑ,q|a|(𝔄0,𝔄1)ϑ,q.v^{1-\vartheta}E(v,a)^{\vartheta}\leq t^{-\vartheta}K_{\infty}(t,a)\leq N_{\vartheta,q}|a|_{(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}}.

Applying (10), we obtain

v1ϑE(v,a)ϑ21/2Nϑ,q|a|τsϑ.v^{1-\vartheta}E(v,a)^{\vartheta}\leq{2^{1/2}}N_{\vartheta,q}|a|^{\vartheta}_{\mathcal{B}_{\tau}^{s}}.

Taking into account that ϑ=1/(s+1)=q/τ,\vartheta=1/(s+1)=q/\tau, we obtain the inequality (6) for all 0<q<{0<q<\infty}.

In the case q=q=\infty, we have

tsE(t,a)supt>0tsE(t,a)=|a|st^{s}E(t,a)\leq\sup_{t>0}\,t^{s}E(t,a)=|a|_{\mathcal{B}_{\infty}^{s}}

for all as{a\in\mathcal{B}_{\infty}^{s}}. Thus, the inequality (6) holds for both cases.

Finally note that Bernstein-Jackson inequalities are achieved at τ=\tau=\infty, so they are sharp.

Corollary 2.

If the quasi-normed Abelian groups 𝔄0\mathfrak{A}_{0}, 𝔄1\mathfrak{A}_{1} are compatible then the following isomorphism with equivalent quasi-norms holds,

τs(𝔄0,𝔄1)=(𝔄0,𝔄1)ϑ,q1/ϑ,s+1=1/ϑ,τ=ϑq.\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})=\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q}^{1/\vartheta},\quad s+1=1/\vartheta,\quad\tau=\vartheta q. (14)

If compatible groups 𝔄0\mathfrak{A}_{0} and 𝔄1\mathfrak{A}_{1} are complete, the approximation group τs(𝔄0,𝔄1)\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1}) is complete.

Proof: The isomorphism (14) immediately follows from (11) and Theorem 1. Note that if both compatible groups 𝔄0\mathfrak{A}_{0} and 𝔄1\mathfrak{A}_{1} are complete, the interpolation group (𝔄0,𝔄1)ϑ,q\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q} is complete (bergh76, , Thm 3.4.2 & Lemma 3.10.2). By Theorem 1 τs(𝔄0,𝔄1)\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1}) is complete.

Corollary 3.

Let (𝔄0,𝔄1)(\mathfrak{A}_{0},\mathfrak{A}_{1}), (𝔄0,𝔄1)(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1}) be compatible. If T:𝔄ı𝔄ıT\colon\mathfrak{A}_{\imath}\to\mathfrak{A}^{\prime}_{\imath} (ı=0,1)(\imath=0,1) are quasi-Abelian mappings, i.e. T(a0+a1)=b0+b1{T(a_{0}+a_{1})}={b_{0}+b_{1}} and |Taı|𝔄ıκı|bı|𝔄ı|Ta_{\imath}|_{\mathfrak{A}_{\imath}}\leq\kappa_{\imath}|b_{\imath}|_{\mathfrak{A}^{\prime}_{\imath}} with constants κı\kappa_{\imath} (bergh76, , p.81), then there exists a constant C>0C>0 such that

T:τs(𝔄0,𝔄1)τs(𝔄0,𝔄1)and|Ta|τs(𝔄0,𝔄1)C|a|τs(𝔄0,𝔄1).T\colon\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})\to\mathcal{B}_{\tau}^{s}(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1})\quad\text{and}\quad|Ta|_{\mathcal{B}_{\tau}^{s}(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1})}\leq C|a|_{\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})}.

Proof: It follows from (10), (11) and the boundness of

T:(𝔄0,𝔄1)ϑ,q(𝔄0,𝔄1)ϑ,q,T\colon(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}\to(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1})_{\vartheta,q},

where C41/ϑ(ϑq2)1/ϑqκ0sκ1C\leq 4^{1/\vartheta}(\vartheta q^{2})^{-1/\vartheta q}\kappa_{0}^{s}\,\kappa_{1} that gives the required inequality.

Corollary 4.

Let 0ϑ0<ϑ110\leq\vartheta_{0}<\vartheta_{1}\leq 1, 0<q{0<q\leq\infty} and ϑ=(1η)ϑ0+ηϑ1\vartheta=(1-\eta)\vartheta_{0}+\eta\vartheta_{1} (0<η<1){(0<\eta<1)}. If the quasi-normed Abelian groups (𝔄0,𝔄1)(\mathfrak{A}_{0},\mathfrak{A}_{1}), (𝔄0,𝔄1)(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1}) are compatible and the inclusions

(𝔄0,𝔄1)ϑı,q𝔄ı(𝔄0,𝔄1)ϑı,,(ı=0,1)(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta_{\imath},q}\subset\mathfrak{A}^{\prime}_{\imath}\subset(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta_{\imath},\infty},\quad(\imath=0,1)

are valid, the following isomorphism with equivalent quasinorms holds,

ϑq(1ϑ)/ϑ(𝔄0,𝔄1)=ηq(1ϑ)/ϑ(𝔄0,𝔄1).\mathcal{B}_{\vartheta q}^{(1-\vartheta)/\vartheta}(\mathfrak{A}_{0},\mathfrak{A}_{1})=\mathcal{B}_{\eta q}^{(1-\vartheta)/\vartheta}(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1}). (15)

Proof: Using (11) and the known equality (𝔄0,𝔄1)ϑ,q=(𝔄0,𝔄1)η,q\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q}=\left(\mathfrak{A}^{\prime}_{0},\mathfrak{A}^{\prime}_{1}\right)_{\eta,q} PeetreSparr1972 , (Komatsu1981, , Theorem 3) in the case r=1{r=1}, we get the reiteration identity (15) with accuracy to quasinorm equivalency.

Corollary 5.

The following continuous embedding hold

ϑq(1ϑ)/ϑ(𝔄0,𝔄1)ϑp(1ϑ)/ϑ(𝔄0,𝔄1)withq<p.\mathcal{B}_{\vartheta q}^{(1-\vartheta)/\vartheta}(\mathfrak{A}_{0},\mathfrak{A}_{1})\looparrowright\mathcal{B}_{\vartheta p}^{(1-\vartheta)/\vartheta}(\mathfrak{A}_{0},\mathfrak{A}_{1})\quad\text{with}\quad q<p.

Proof: It follows from (11), since for arbitrary q<pq<p the following continuous embedding (𝔄0,𝔄1)ϑ,q(𝔄0,𝔄1)ϑ,p(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,q}\looparrowright(\mathfrak{A}_{0},\mathfrak{A}_{1})_{\vartheta,p} is true by virtue of (Komatsu1981, , Lemma p. 385).

Corollary 6.

If ϑ0<ϑ1\vartheta_{0}<\vartheta_{1} then the embedding 𝔄1𝔄0\mathfrak{A}_{1}\subset\mathfrak{A}_{0} yields

ϑ1q(1ϑ1)/ϑ1(𝔄0,𝔄1)ϑ0q(1ϑ0)/ϑ0(𝔄0,𝔄1).\mathcal{B}_{\vartheta_{1}q}^{(1-\vartheta_{1})/\vartheta_{1}}(\mathfrak{A}_{0},\mathfrak{A}_{1})\subset\mathcal{B}_{\vartheta_{0}q}^{(1-\vartheta_{0})/\vartheta_{0}}(\mathfrak{A}_{0},\mathfrak{A}_{1}).

Proof: It follows from Corollary 4 and (bergh76, , Theorem 3.4.1(d)).

3 Exact constants in bilateral error estimates

Let (𝔄,||){(\mathfrak{A},|\cdot|)} be a κ\kappa-normed Abelian group. Consider a quasi-normed space Lμp=Lμp(𝔄)L^{p}_{\mu}=L^{p}_{\mu}(\mathfrak{A}) with a positive Radon measure μ\mu on a measure space (X,μ)(X,\mu) of measurable functions f:X𝔄{f\colon X\to\mathfrak{A}} endowed with the κ\kappa-norm

fp={(|f(x)|pμ(dx))1/pif 0<p<esssupxX|f(x)|if p=μ(suppf)if p=0,\|f\|_{p}=\left\{\begin{array}[]{ll}\displaystyle\Big{(}\int|f(x)|^{p}\,\mu(dx)\Big{)}^{1/p}&\hbox{if }0<p<\infty\\ \mathop{\rm ess\,sup}_{x\in X}|f(x)|&\hbox{if }p=\infty\\[4.30554pt] \mu\left(\operatorname{\operatorname{supp}}f\right)&\hbox{if }p=0,\end{array}\right.

where suppfX\operatorname{\operatorname{supp}}f\subset X is a measurable subset such that fXsuppf=0f\mid_{X\setminus\operatorname{\operatorname{supp}}f}=0 and f0{f\neq 0} almost everywhere on suppf\operatorname{\operatorname{supp}}f with respect to the measure μ\mu.

For a μ\mu-measurable function f:X𝔄{f\colon X\to\mathfrak{A}}, we define the distribution function

m(σ,f)=μ{xX:|f(x)|>σ}.m(\sigma,f)=\mu\left\{x\in X\colon{|f(x)|>\sigma}\right\}.

Denote by ff^{*} the decreasing rearrangement of ff, where

f(t):=inf{σ>0:m(σ,fσ)t}f^{*}(t):=\inf\left\{\sigma>0\colon m(\sigma,f_{\sigma})\leq t\right\}

with fσ(x)=f(x)f_{\sigma}(x)=f(x) if |f(x)|>σ|f(x)|>\sigma and fσ(x)=0f_{\sigma}(x)=0 otherwise (for details see (bergh76, , no ​1.3)). The decreasing rearrangement ff^{*} is nonnegative nonincreasing continuous on the right function of σ\sigma on (0,)(0,\infty) which is equimeasurable with ff in the sense that

m(σ,f)=m(σ,f)for allσ0.m(\sigma,f)=m(\sigma,f^{*})\quad\text{for all}\quad\sigma\geq 0.

In other words, the decreasing rearrangement of a function ff is a generalized inverse of its distribution function in the sense that if m(σ,f)m(\sigma,f) is one-to-one then ff^{*} is simply the inverse of m(σ,f)m(\sigma,f).

Since ff is rearrangeable, {σ>0:m(σ,fσ)t}\left\{\sigma>0\colon m(\sigma,f_{\sigma})\leq t\right\} is nonempty for t>0t>0 thus ff^{*} is finite on its domain.

In the case where μ(X)<\mu(X)<\infty, we consider ff^{*} as a function on (0,μ(X))(0,\mu(X)), since f(t)=0f^{*}(t)=0 for all t>μ(X)t>\mu(X). The set {σ>0:m(σ,fσ)=0}\left\{\sigma>0\colon m(\sigma,f_{\sigma})=0\right\} can be empty. If ff is bounded then fff^{*}\to\|f\|_{\infty} as t0+t\to 0_{+}, otherwise, ff^{*} is unbounded at the origin.

As is also know (see e.g. ONeilWeiss1963 ) for fLμpf\in L^{p}_{\mu} with p1p\geq 1 that

|f|pμ(dx)=p0σp1m(σ,f)𝑑σ,fpp=0f(t)p𝑑t.\int|f|^{p}\,\mu(dx)=p\int_{0}^{\infty}\sigma^{p-1}m(\sigma,f)\,d\sigma,\quad\|f\|_{p}^{p}=\int_{0}^{\infty}f^{*}(t)^{p}\,dt.

The couple (Lμ0,Lμ)\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)} is compatible in the interpolation theory sense (see e.g. (bergh76, , Lemma 3.10.3) or (Komatsu1981, , no ​1)). Given elements f=f0+ff={f_{0}+f_{\infty}} in the algebraic sum Lμ0+Lμ{L^{0}_{\mu}+L^{\infty}_{\mu}}, we define the best approximation EE-functional E(t,f;Lμ0,Lμ)E\left(t,f\mathchar 24635\relax\;L^{0}_{\mu},L^{\infty}_{\mu}\right) with t>0{t>0} as (see e.g. (bergh76, , no ​7))

E(t,f)\displaystyle E(t,f) =E(t,f;Lμ0,Lμ)=inf{ff0:f00<t},fLμ.\displaystyle=E\big{(}t,f\mathchar 24635\relax\;L^{0}_{\mu},L^{\infty}_{\mu}\big{)}=\inf\left\{\|f-f_{0}\|_{\infty}\colon\|f_{0}\|_{0}<t\right\},\quad f\in{L^{\infty}_{\mu}}.

In what follows, we use the equivalent parameters 0<ϑ<1, 0<q{0<\vartheta<1},\ {0<q\leq\infty}, where s+1=1/ϑs+1=1/\vartheta and τ=ϑq\tau=\vartheta q. Following Lopushansky2023 , the appropriate system of exact constants Cθ,qC_{\theta,q} is defined by the normalization factor

Nθ,q=(0|tθ𝒩(t)|qdtt)1/qwith𝒩(t)=t1+t2N_{\theta,q}=\left(\int_{0}^{\infty}|t^{-\theta}\mathcal{N}(t)|^{q}\frac{dt}{t}\right)^{-1/q}\quad\text{with}\quad\mathcal{N}(t)=\frac{t}{\sqrt{1+t^{2}}}

in the known interpolation Lions-Peetre method to be

Cθ,q={21/2θ(q2θ)1/qθNθ,q1/θif q<,(sinπθπθ)1/2θif q=2,21/2θif q=.\begin{split}C_{\theta,q}&=\left\{\begin{array}[]{cl}\displaystyle\frac{2^{1/2\theta}}{(q^{2}\theta)^{1/q\theta}}N_{\theta,q}^{1/\theta}&\hbox{if }q<\infty,\\[8.61108pt] \displaystyle\left(\frac{\sin\pi\theta}{\pi\theta}\right)^{1/2\theta}&\hbox{if }q=2,\\[8.61108pt] \displaystyle 2^{1/2\theta}&\hbox{if }q=\infty.\end{array}\right.\end{split} (16)
Remark 1.

For this equivalent parameter system the sharp constant cs,τc_{s,\tau} takes an equivalent form

21/2θCθ,q={cs,τif τ<1if τ=,2^{-1/2\theta}C_{\theta,q}=\left\{\begin{array}[]{cl}c_{s,\tau}&\hbox{if }\tau<\infty\\ 1&\hbox{if }\tau=\infty\end{array}\right.,

where the following dependencies between indexes are performed,

21/2θCθ,q=[(1θ)/q]1/qθ=(θq2)1/qθNθ,q1/ϑ.2^{-1/2\theta}C_{\theta,q}=\left[(1-\theta)/q\right]^{1/q\theta}=(\theta q^{2})^{-1/q\theta}N_{\theta,q}^{1/\vartheta}.

A graphical image of the normalized sharp constant cs,τc_{s,\tau} in variables s,τs,\tau shown on Fig. ​1.

Refer to caption
Refer to caption
Figure 1: 3D-graph of cs,τ=(s/τ)1/τ(s+1)2/τc_{s,\tau}=(s/\tau)^{1/\tau}(s+1)^{-2/\tau} for s,τ>0{s,\tau>0}
Theorem 7.

(a) For any 0<ϑ<1{0<\vartheta<1} and 0<q{0<q\leq\infty} the equality

f(t)=E(t,f;Lμ0,Lμ),fLμf^{*}(t)=E\big{(}t,f\mathchar 24635\relax\;L^{0}_{\mu},L^{\infty}_{\mu}\big{)},\quad f\in{L^{\infty}_{\mu}} (17)

and, as a consequence, the following equalities hold,

fqθ2/(1θ)={(0[t1+1/θf(t)]qθdtt)1/qθif q<sup0<t<t1+1/θf(t)if q=.\|f\|_{q\theta^{2}/(1-\theta)}=\left\{\begin{array}[]{ll}\displaystyle\left(\int_{0}^{\infty}\left[t^{-1+1/\theta}f^{*}(t)\right]^{q\theta}\frac{dt}{t}\right)^{1/q\theta}&\hbox{if }q<\infty\\[8.61108pt] \sup\limits_{0<t<\infty}t^{-1+1/\theta}f^{*}(t)&\hbox{if }q=\infty.\end{array}\right. (18)

(b) The Jackson-type inequality

f(t)t11/θCθ,qfqθ2/(1θ)for allfLμqθ2/(1θ),f^{*}(t)\leq t^{1-1/\theta}C_{\theta,q}\|f\|_{q\theta^{2}/(1-\theta)}\quad\text{for all}\quad{f\in L_{\mu}^{q\theta^{2}/(1-\theta)}}, (19)

as well as, the following bilateral Bernstein-Jackson-type inequalities are valid,

t1+1/θf(t)\displaystyle t^{-1+1/\theta}f^{*}(t) Cθ,qfqϑ2/(1θ)21/2θf01+1/θf for all fLμ0.\displaystyle\leq{C}_{\theta,q}\|f\|_{q\vartheta^{2}/(1-\theta)}\leq 2^{1/2\theta}\|f\|^{-1+1/\theta}_{0}\|f\|_{\infty}\text{ for all }f\in L^{0}_{\mu}. (20)

Proof: (a) By definition, the functional E(t,f)E(t,f) is the infimum of ff0\|f-f_{0}\|_{\infty} such that μ(suppf0)t{\mu(\operatorname{\operatorname{supp}}f_{0})\leq t}. The next reasoning extends (bergh76, , Lemma 7.2.1) on the case of 𝔄\mathfrak{A}-valued functions.

Put g0(x)=f(x)g_{0}(x)=f(x) on the subset suppf\operatorname{\operatorname{supp}}f and let g0(x)=0g_{0}(x)=0 outside suppf\operatorname{\operatorname{supp}}f. Then we obtain fg0fg{\|f-g_{0}\|_{\infty}}\leq{\|f-g\|_{\infty}}.

In a similar way, let gσ(x)=f(x)g_{\sigma}(x)=f(x) if |f(x)|>σ|f(x)|>\sigma and gσ(x)=0{g_{\sigma}(x)=0} otherwise. Then for the number τ=sup{|f(x)|:xsuppf}\tau={\sup\big{\{}|f(x)|\colon x\neq\operatorname{\operatorname{supp}}f\big{\}}} we get suppfτsuppf\operatorname{\operatorname{supp}}f_{\tau}\subset\operatorname{\operatorname{supp}}f. It follows μ(suppgτ)t{\mu(\operatorname{\operatorname{supp}}g_{\tau})\leq t}. Since fgττ\|f-g_{\tau}\|_{\infty}\leq\tau and fg0=τ\|f-g_{0}\|_{\infty}=\tau, we obtain

E(t,f;Lμ0,Lμ)=infσ{fgσ:μ(suppgσ)t},E\big{(}t,f\mathchar 24635\relax\;L^{0}_{\mu},L^{\infty}_{\mu}\big{)}={\inf}_{\sigma}\left\{\|f-g_{\sigma}\|_{\infty}\colon\mu\left(\operatorname{\operatorname{supp}}g_{\sigma}\right)\leq t\right\},

where the rigth hand side is equal to ff^{*}. As a result, the equality (17) holds.

Using the best approximation EE-functional, we define the quasi-normed space

Eθ,q(Lμ0,Lμ)\displaystyle E_{\theta,q}\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)} ={fLμ0+Lμ:fEθ,q<},\displaystyle=\left\{f\in{L^{0}_{\mu}+L^{\infty}_{\mu}}\colon\|f\|_{E_{\theta,q}}<\infty\right\}, (21)
fEθ,q\displaystyle\|f\|_{E_{\theta,q}} ={(0[t1+1/θE(t,f)]qθdtt)1/qθif q<,sup0<t<t1+1/θE(t,f)if q=.\displaystyle=\left\{\begin{array}[]{ll}\displaystyle\left(\int_{0}^{\infty}\left[t^{-1+1/\theta}E(t,f)\right]^{q\theta}\frac{dt}{t}\right)^{1/q\theta}&\hbox{if }q<\infty,\\[8.61108pt] \sup\limits_{0<t<\infty}t^{-1+1/\theta}E(t,f)&\hbox{if }q=\infty.\end{array}\right. (24)

By the known approximation theorem (see (bergh76, , Thm 7.2.2)) the isometric isomorphism

Eθ,q(Lμ0,Lμ)=Lμqθ2/(1θ),fEθ,q=fϑ2q/(1θ)E_{\theta,q}\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)}=L_{\mu}^{q\theta^{2}/(1-\theta)},\quad\|f\|_{E_{\theta,q}}=\|f\|_{\vartheta^{2}q/(1-\theta)} (25)

holds for all fLμ.{f\in L_{\mu}^{\infty}}. Combining equalities (17), (21) and (25), we get (18).

(b) In what follows, we use the classic integral of the real interpolation method

fθ,q=(0|tθf(x)|qdtt)1/q,0<θ<1, 0<q<.\|f\|_{\theta,q}=\left(\int_{0}^{\infty}\left|t^{-\theta}f(x)\right|^{q}\frac{dt}{t}\right)^{1/q},\quad{0<\theta<1},\ 0<q<\infty. (26)

Let us consider the quadratic K2K_{2}-functional (see e.g. (McLean2000, , App. B)) for the interpolation couple of quasi-normed groups (L0,L)\big{(}L^{0},L^{\infty}\big{)},

K2(t,f)\displaystyle K_{2}(t,f) =K2(t,f;Lμ0,Lμ)\displaystyle={K}_{2}\big{(}t,f\mathchar 24635\relax\;L^{0}_{\mu},L^{\infty}_{\mu}\big{)}
=inff=f0+f{(f002+t2f2)1/2:f0Lμ0,fLμ},\displaystyle=\inf_{f=f_{0}+f_{\infty}}\left\{\left(\|f_{0}\|_{0}^{2}+t^{2}\|f_{\infty}\|_{\infty}^{2}\right)^{1/2}\colon f_{0}\in L^{0}_{\mu},\ f_{\infty}\in L^{\infty}_{\mu}\right\},

determining the real interpolation quasi-normed Abelian group

(Lμ0,Lμ)θ,q:=Kθ,q(Lμ0,Lμ)={f=f0+f:K2(,f)θ,q<}\displaystyle\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)}_{\theta,q}:=K_{\theta,q}\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)}=\left\{f=f_{0}+f_{\infty}\colon\|K_{2}(\cdot,f)\|_{\theta,q}<\infty\right\}

which is endowed with the norm

fKθ,q\displaystyle\|f\|_{K_{\theta,q}} ={Nθ,qK2(,f)θ,qif q<supt(0,)tθK2(t,f)if q=.\displaystyle=\left\{\begin{array}[]{ll}N_{\theta,q}\|K_{2}(\cdot,f)\|_{\theta,q}&\hbox{if }q<\infty\\[6.45831pt] \sup\limits_{t\in(0,\infty)}t^{-\theta}K_{2}(t,f)&\hbox{if }q=\infty.\end{array}\right.

Note that for any 0<ϑ<1{0<\vartheta<1} and q=2{q=2} the following equalities hold,

Nθ,2=𝒩θ,21=K2(,1)θ,21=(2sinπθπ)1/2.\displaystyle N_{\theta,2}=\|\mathcal{N}\|_{\theta,2}^{-1}=\|K_{2}(\cdot,1)\|_{\theta,2}^{-1}=\left(\frac{2\sin\pi\theta}{\pi}\right)^{1/2}.

In fact, the relationship between the weight function 𝒩(t)2=t2/(1+t2)\mathcal{N}(t)^{2}=t^{2}/(1+t^{2}) and the quadratic K2K_{2}-functional is explained by the formula

Nθ,2=𝒩θ,21=K2(,1)θ,21N_{\theta,2}=\|\mathcal{N}\|_{\theta,2}^{-1}=\|K_{2}(\cdot,1)\|_{\theta,2}^{-1}

(see e.g. (McLean2000, , Ex. B.4)). It follows from

minz=z0+z1(α0|z0|2+α1|z1|2)=α0α1|z|2α0+α1\min_{z=z_{0}+z_{1}}\left(\alpha_{0}|z_{0}|^{2}+\alpha_{1}|z_{1}|^{2}\right)={\alpha_{0}\alpha_{1}|z|^{2}}{\alpha_{0}+\alpha_{1}}

for a fixed α0,α1>0\alpha_{0},\alpha_{1}>0 and a complex zz. This minimum is achieved when

α0z0=α1z1=α0α1z(α0+α1).\alpha_{0}z_{0}=\alpha_{1}z_{1}=\frac{\alpha_{0}\alpha_{1}z}{(\alpha_{0}+\alpha_{1})}.

Thus, K2(t,1)K_{2}(t,1) is minimized when f0f_{0}, f1f_{1} are such that

f0=t2f1=t21+t2.f_{0}=t^{2}f_{1}=\frac{t^{2}}{1+t^{2}}.

By integrating the above functions (see e.g. (McLean2000, , Ex. B.5, Thm B.7)) it follows that the normalization factor Nθ,2N_{\theta,2} is equal to Nθ,2=(2sinπθ/π)1/2.N_{\theta,2}=\left({2\sin\pi\theta}/{\pi}\right)^{1/2}.

In particular, the equalities (17),

f(t)\displaystyle f^{*}(t) =inf{σ:m(σ,fσ)t}\displaystyle=\inf\big{\{}\sigma\colon m(\sigma,f_{\sigma})\leq t\big{\}}
=inf{ff0:f00<t}=E(t,f;Lμ0,Lμ),fLμ,\displaystyle=\inf\left\{\|f-f_{0}\|_{\infty}\colon\|f_{0}\|_{0}<t\right\}=E\big{(}t,f\mathchar 24635\relax\;L^{0}_{\mu},L^{\infty}_{\mu}\big{)},\quad f\in{L_{\mu}^{\infty}},

as well as, the isometric isomorphism (25),

Eθ,q(Lμ0,Lμ)=Lμqθ2/(1θ),fEθ,q=fϑ2q/(1θ)\displaystyle E_{\theta,q}\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)}=L_{\mu}^{q\theta^{2}/(1-\theta)},\quad\|f\|_{E_{\theta,q}}=\|f\|_{\vartheta^{2}q/(1-\theta)}

allows calculating the exact form of best constants (16). Now, applying Theorem 1 to (Lμ0,Lμ)\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)}, we obtain inequalities (19) and (20).

Corollary 8.

The decreasing rearrangement for q=2q=2 has the estimation

f(t)\displaystyle f^{*}(t) t11/θ(sinπθπθ)1/2θf2θ2/(1θ)for allfLμqθ2/(1θ)\displaystyle\leq t^{1-1/\theta}\left(\frac{\sin\pi\theta}{\pi\theta}\right)^{1/2\theta}\!\|f\|_{2\theta^{2}/(1-\theta)}\quad\text{for all}\quad{f\in L_{\mu}^{q\theta^{2}/(1-\theta)}} (27)

which for θ=1/2\theta=1/2 can be written as follows

f(t)\displaystyle f^{*}(t) 2πt|f|μ(dx)for allfLμ1.\displaystyle\leq\frac{2}{\pi t}\,\int|f|\,\mu(dx)\quad\text{for all}\quad f\in L^{1}_{\mu}. (28)

Note that if θ1\theta\to 1 then sinπθ0\sin\pi\theta\to 0 thus above inequalities disappear. One has a sense only for the quasi-normed group Lμ2θ2/(1θ)L_{\mu}^{2\theta^{2}/(1-\theta)} with 0<θ<10<\theta<1.

Corollary 9.

The equality (18) with s+1=1/ϑs+1=1/\vartheta and τ=ϑq\tau=\vartheta q takes the form

fτ/s={(0[tsf(t)]τdtt)1/τif τ<sup0<t<tsf(t)if τ=\|f\|_{\tau/s}=\left\{\begin{array}[]{ll}\displaystyle\left(\int_{0}^{\infty}\left[t^{s}f^{*}(t)\right]^{\tau}\frac{dt}{t}\right)^{1/\tau}&\hbox{if }\tau<\infty\\[8.61108pt] \sup\limits_{0<t<\infty}t^{s}f^{*}(t)&\hbox{if }\tau=\infty\end{array}\right.

for any fLμτ/sf\in L^{\tau/s}_{\mu}. Then the Jackson-type inequality takes the form

f(t)ts2(s+1)/2cs,τfτ/sfor allfLμτ/sf^{*}(t)\leq t^{-s}2^{(s+1)/2}\,c_{s,\tau}\|f\|_{\tau/s}\quad\text{for all}\quad{f\in L^{\tau/s}_{\mu}} (29)

and bilateral Bernstein-Jackson-type inequalities take the form

ts2(s+1)/2f(t)\displaystyle t^{s}2^{-(s+1)/2}f^{*}(t) cs,τfτ/sf0sffor allfLμ0Lμ.\displaystyle\leq c_{s,\tau}\|f\|_{\tau/s}\leq\|f\|^{s}_{0}\|f\|_{\infty}\quad\text{for all}\quad{f\in L^{0}_{\mu}\cap L^{\infty}_{\mu}}. (30)

It instantly follows from the relations

Cθ,q={2(s+1)/2cs,τif τ<2(s+1)/2if τ=,whereϑ=1s+1,21/2θ=2(s+1)/2.C_{\theta,q}=\left\{\begin{array}[]{cl}2^{(s+1)/2}\,c_{s,\tau}&\hbox{if }\tau<\infty\\ 2^{(s+1)/2}&\hbox{if }\tau=\infty\end{array}\right.,\quad\text{where}\quad\vartheta=\frac{1}{s+1},\quad 2^{1/2\theta}=2^{(s+1)/2}.
Remark 2.

The inequalities (5) is an extension on the case measurable functions the known best approximation Bernstein-Jackson inequalities. Whereas the inequality (6) is an extension of the approximation Jackson inequality. The scale of approximation quasi-normed Abelian groups is often denoted as

τs(Lμ0,Lμ):=Eθ,q(Lμ0,Lμ),\mathcal{B}_{\tau}^{s}(L^{0}_{\mu},L^{\infty}_{\mu}):=E_{\theta,q}(L^{0}_{\mu},L^{\infty}_{\mu}),

where the space τs\mathcal{B}_{\tau}^{s} coincides with a suitable extension of the Besov type quasi-normed groups (see e.g. (bergh76, , Thm 7.2.4), (Triebel78, , Def. ​4.2.1/1)). The scale of quasi-normed Besov Abelian groups for another approximation couples is described in DL19 ; Feichtinger2016 ; Pesenson2024 .

4 Examples of bilateral estimates with exact constants

Taking into account the previous statements, we can give typical examples of Bernstein-Jackson inequalities with explicit constants for different types of best approximations.

Example 1 (Applications to classic Besov scales).

Let 𝔄0=Lp(n){\mathfrak{A}_{0}=L^{p}(\mathbb{R}^{n})} with (1<p<){(1<p<\infty)}. As is known (see e.g. Nikolski75 ) each real-valued function aLp(n){a\in L^{p}(\mathbb{R}^{n})} can be approximated by entire analytic functions gpt(n)g\in\mathcal{E}_{p}^{t}(\mathbb{C}^{n}), where pt(n)\mathcal{E}_{p}^{t}(\mathbb{C}^{n}) means the space of entire analytic functions on n\mathbb{C}^{n} of an exponential type t>0{t>0} with restrictions to n\mathbb{R}^{n} belonging to Lp(n)L^{p}(\mathbb{R}^{n}). The best approximations can be characterized by the best approximation functional

E(t,a;p,Lp(n))=inft>0{agLp(n):gpt(n)},E\left(t,a\mathchar 24635\relax\;\mathcal{E}_{p},L^{p}(\mathbb{R}^{n})\right)=\inf_{t>0}\left\{\|a-g\|_{L^{p}(\mathbb{R}^{n})}\colon g\in\mathcal{E}_{p}^{t}(\mathbb{C}^{n})\right\},

where the subspace 𝔄1=p{\mathfrak{A}_{1}=\mathcal{E}_{p}} with p=t>0pt(n)\mathcal{E}_{p}={\bigcup}_{t>0}\mathcal{E}_{p}^{t}(\mathbb{C}^{n}) is endowed with the quasinorm

|g|p=gLp(n)+{sup|ζ|:ζsuppg^},gp|g|_{\mathcal{E}_{p}}=\|g\|_{L^{p}(\mathbb{R}^{n})}+\left\{\sup{|\zeta|\colon\zeta\in\operatorname{\operatorname{supp}}\hat{g}}\right\},\quad g\in\mathcal{E}_{p}

defined using the support suppg^\operatorname{\operatorname{supp}}\hat{g} of the Fourier-image g^\hat{g}. Then according to Theorem 1 the corresponding approximation inequalities take the form

tsE(t,a;p,Lp(n))\displaystyle t^{s}E\left(t,a\mathchar 24635\relax\;\mathcal{E}_{p},L^{p}(\mathbb{R}^{n})\right) cs,τfBp,τs(n)21/2|a|psaLp,apLp(n),\displaystyle\leq c_{s,\tau}\|f\|_{B_{p,\tau}^{s}(\mathbb{R}^{n})}\leq 2^{1/2}|a|^{s}_{\mathcal{E}_{p}}\|a\|_{L^{p}},\ {a\in\mathcal{E}_{p}\cap L^{p}(\mathbb{R}^{n})},
E(t,a;p,Lp(n))\displaystyle E\left(t,a\mathchar 24635\relax\;\mathcal{E}_{p},L^{p}(\mathbb{R}^{n})\right) tscs,τaBp,τs(n),aBp,τs(n),\displaystyle\leq{t^{-s}c_{s,\tau}}\,\|a\|_{B_{p,\tau}^{s}(\mathbb{R}^{n})},\quad{a\in{B_{p,\tau}^{s}(\mathbb{R}^{n})}},

In this case the approximation scale

τs(p,Lp(n))=(p,Lp(n))ϑ,q1/ϑ\mathcal{B}_{\tau}^{s}\big{(}\mathcal{E}_{p},L^{p}(\mathbb{R}^{n})\big{)}=\left(\mathcal{E}_{p},L^{p}(\mathbb{R}^{n})\right)_{\vartheta,q}^{1/\vartheta}

exactly coincides with the classic Besov scale denoted by Bp,τs(n)B_{p,\tau}^{s}(\mathbb{R}^{n}) (see (Triebel78, , p.197)).

Example 2 (Applications to scales of periodic functions).

Following e.g. (bergh76, , no 1.5), Prestin we can write Bernstein-Jackson inequalities in a more general form. Let X=𝕋X=\mathbb{T} be the 11-dimensional torus and the Hilbert space 𝔄1=L2(𝕋)\mathfrak{A}_{1}=L^{2}(\mathbb{T}) has the orthonormal basis {𝔢k=e2πikt:k,t𝕋}\left\{\mathfrak{e}_{k}=e^{2\pi\mathrm{i}kt}\colon k\in\mathbb{Z},\,t\in\mathbb{T}\right\}. Let 𝔄0={trigonometric polynomials a0}\mathfrak{A}_{0}=\{\text{trigonometric polynomials \ }a_{0}\} with the quasi-norm |a0|0=dega0|a_{0}|_{0}=\operatorname{\operatorname{deg}}a_{0}, and 𝔄1={2π-periodic functions a}\mathfrak{A}_{1}=\{\text{$2\pi$-periodic functions \ }a\} with the norm |a|1=aL2(𝕋)|a|_{1}=\|a\|_{L^{2}(\mathbb{T})}, as well as, E(n,a;𝔄0,𝔄1)=inf{aa0L2(𝕋):dega0<n}E(n,a\mathchar 24635\relax\;\mathfrak{A}_{0},\mathfrak{A}_{1})=\inf\left\{\|a-a_{0}\|_{L^{2}(\mathbb{T})}\colon\operatorname{\operatorname{deg}}a_{0}<n\right\} for all aL2(𝕋){a\in L^{2}(\mathbb{T})}. Let cj,τ:={[jτ(j+1)2]1/τif τ<1if τ=c_{j,\tau}:=\left\{\begin{array}[]{cl}\displaystyle\left[\frac{j}{\tau(j+1)^{2}}\right]^{1/\tau}&\hbox{if }\tau<\infty\\ \displaystyle 1&\hbox{if }\tau=\infty\end{array}\right. with jj\in\mathbb{N}. Then Bernstein-Jackson inequalities have the form

njE(n,a)\displaystyle n^{j}E(n,a) cj,τ|a|τj21/2|a|0j|a|1for alla𝔄0𝔄1,\displaystyle\leq{c}_{j,\tau}|a|_{\mathcal{B}_{\tau}^{j}}\leq 2^{1/2}|a|^{j}_{0}|a|_{1}\quad\text{for all}\quad a\in\mathfrak{A}_{0}\cap\mathfrak{A}_{1},
E(n,a)\displaystyle E(n,a) njcj,τ|a|τjfor allaτj(𝔄0,𝔄1),\displaystyle\leq n^{-j}{c}_{j,\tau}|a|_{\mathcal{B}_{\tau}^{j}}\quad\text{for all}\quad{a\in\mathcal{B}_{\tau}^{j}(\mathfrak{A}_{0},\mathfrak{A}_{1})},

where τs(𝔄0,𝔄1)=(𝔄0,𝔄1)ϑ,q1/ϑ\mathcal{B}_{\tau}^{s}(\mathfrak{A}_{0},\mathfrak{A}_{1})=\left(\mathfrak{A}_{0},\mathfrak{A}_{1}\right)_{\vartheta,q}^{1/\vartheta} with j+1=1/ϑj+1=1/\vartheta\in\mathbb{N}, τ=ϑq\tau=\vartheta q.

For 𝔄1=L(𝕋)\mathfrak{A}_{1}=L^{\infty}(\mathbb{T}) with |a|1=aL(𝕋)|a|_{1}=\|a\|_{L^{\infty}(\mathbb{T})} and 𝔄0=L0(𝕋)\mathfrak{A}_{0}=L^{0}(\mathbb{T}) with |a0|0=dega0|a_{0}|_{0}=\operatorname{\operatorname{deg}}a_{0}, we consider the Banach space L(𝕋)L^{\infty}(\mathbb{T})-valued functions f:XL(𝕋){f\colon X\to L^{\infty}(\mathbb{T})}. Then bilateral Bernstein-Jackson inequalities have the form

nj2(j+1)/2f(n)\displaystyle n^{-j}2^{-(j+1)/2}f^{*}(n) cj,τfτ/jf0jf,fL0L,\displaystyle\leq c_{j,\tau}\|f\|_{\tau/j}\leq\|f\|^{j}_{0}\|f\|_{\infty},\quad{f\in L^{0}\cap L^{\infty}},
f(n)\displaystyle f^{*}(n) nj2(j+1)/2cj,τfτ/j,fLτ/j,\displaystyle\leq n^{j}2^{(j+1)/2}c_{j,\tau}\|f\|_{\tau/j},\quad{f\in L^{\tau/j}},

where f(n)=E(n,f;L0,L)=inf{σ:m(σ,fσ)t}f^{*}(n)=E\big{(}n,f\mathchar 24635\relax\;L^{0},L^{\infty}\big{)}=\inf\big{\{}\sigma\colon m(\sigma,f_{\sigma})\leq t\big{\}} for all fLf\in{L^{\infty}}.

Example 3 (Applications to operator spectral approximations).

Consider the example commonly used in foundations of quantum systems for describing quantum states (see e.g. (Hall2013, , no ​3.4)). Similar estimates of spectral approximations were early analyzed in the paper DL19 . In what follows, we consider the spaces Lp=Lp(;)L^{p}=L^{p}(\mathbb{R}\mathchar 24635\relax\;\mathbb{R}) of real-valued functions.

Let HH be a Hilbert complex space with the norm H=1/2\|\cdot\|_{H}={\langle\cdot\mid\cdot\rangle^{1/2}} and a self-adjoint unbounded linear operator TT with the dense domain 𝒟(T)H\mathcal{D}(T)\subset H is given. By spectral theorem the measurable function f{f} from TT can be well defined using the following spectral expansions (see e.g. Hall2013 )

T=σ(T)λμ(dλ),f(T)=σ(T)f(λ)μ(dλ),T=\int_{\sigma(T)}\lambda\,\mu(d\lambda),\quad{f}(T)=\int_{\sigma(T)}{f}(\lambda)\,\mu(d\lambda),

where μ\mu is a unique projection-valued measure determined on its spectrum σ(T)\sigma(T)\subset\mathbb{R} with values in the Banach space of bounded linear operators (H)\mathcal{L}(H), which can be extended on σ(A)\mathbb{R}\setminus\sigma(A) as zero.

At beginning, we consider the case when for any Borel set Σ\varSigma\subset\mathbb{R} and any ψ𝒟(A)\psi\in\mathcal{D}(A) the (H)\mathcal{L}(H)-valued measurable function

Σf(Σ)=Σf(λ)μψ(dλ)\varSigma\longmapsto f(\varSigma)=\int_{\varSigma}{f}(\lambda)\,\mu_{\psi}(d\lambda)

belongs to LL^{\infty} with respect to the positive measure μψ(dλ):=μ(dλ)ψψ\mu_{\psi}(d\lambda):=\big{\langle}\mu(d\lambda)\psi\mid\psi\big{\rangle}, where ψH=1\|\psi\|_{H}=1.

Consider the corresponding quadratic forms fψ(Σ)=f(Σ)ψψf_{\psi}(\varSigma)=\big{\langle}f(\varSigma)\psi\mid\psi\big{\rangle} as measurable functions from L2L^{2} and let fψf^{*}_{\psi} be the suitable decreasing rearrangement. By Theorem 11 the inequalities (6) and (5) in this case take the form

fψ(t)\displaystyle f_{\psi}^{*}(t) t11/θCθ,qfψqθ2/(1θ),fψLμqθ2/(1θ),\displaystyle\leq t^{1-1/\theta}C_{\theta,q}\|f_{\psi}\|_{q\theta^{2}/(1-\theta)},\quad{f_{\psi}\in L_{\mu}^{q\theta^{2}/(1-\theta)}}, (31)
t1+1/θfψ(t)\displaystyle t^{-1+1/\theta}f_{\psi}^{*}(t) Cθ,qfψqϑ2/(1θ)21/2θfψ01+1/θfψ\displaystyle\leq{C}_{\theta,q}\|f_{\psi}\|_{q\vartheta^{2}/(1-\theta)}\leq 2^{1/2\theta}\|f_{\psi}\|^{-1+1/\theta}_{0}\|f_{\psi}\|_{\infty} (32)

for all fψLμ0Lμf_{\psi}\in L^{0}_{\mu}\cap L^{\infty}_{\mu}, where fψ=supΣ|fψ(Σ)|\|f_{\psi}\|_{\infty}=\sup_{\varSigma\subset\mathbb{R}}|f_{\psi}(\varSigma)| and fψ0=μψ(suppfψ)\|f_{\psi}\|_{0}=\mu_{\psi}\left(\operatorname{\operatorname{supp}}f_{\psi}\right). Applying the estimation (28) from Corollary 8, we obtain

fψ(t)\displaystyle f_{\psi}^{*}(t) 2πt|f(λ)|μ(dλ)for allfψLμ1.\displaystyle\leq\frac{2}{\pi t}\,\int|f(\lambda)|\,\mu(d\lambda)\quad\text{for all}\quad f_{\psi}\in L^{1}_{\mu}. (33)

The inequality (31), (33) give error estimations (in quadratic forms terms) of spectral approximations fψ(T)=f(T)ψψf_{\psi}(T)={\langle f(T)\psi\mid\psi\rangle} by fψ(Σ)f_{\psi}(\varSigma) with μ(Σ)t\mu\left(\varSigma\right)\leq t. The inequalities (20) characterise the approximation accuracy.

In another case, using the (H)\mathcal{L}(H)-valued measurable uniformly bounded functions

f~:ΣΣf(λ)μ(dλ),fLμ1\tilde{f}\colon\varSigma\longmapsto\int_{\varSigma}f(\lambda)\,\mu(d\lambda),\quad f\in L^{1}_{\mu}

belonging to Lμ1(,(H))L^{1}_{\mu}(\mathbb{R},\mathcal{L}(H)), we same as above obtain the inequality

f~(t)\displaystyle\tilde{f}^{*}(t) 2πtf(λ)μ(dλ)(H).\displaystyle\leq\frac{2}{\pi t}\Big{\|}\int f(\lambda)\,\mu(d\lambda)\Big{\|}_{\mathcal{L}(H)}.
Example 4 (Samples of numerical calculations).

The inequality (6) together with the exact value of the normalized constant cs,τ{c}_{s,\tau} are suitable for direct numerical calculations. Illustrate this on several graphs, taking as an example the inverse Gaussian distribution function.

Consider in LμL_{\mu}^{\infty} with the Gaussian measure μ(dτ)=(2π)1/2eτ2/2\mu(d\tau)=(2\pi)^{-1/2}e^{-\tau^{2}/2} (τ)(\tau\in\mathbb{R}) two-parameter inverse Gaussian distribution with support on (0,)(0,\infty) that is given by

f(t)=Cl2πt3exp(l(tm)22m2t),C,t>0f(t)=C\sqrt{\frac{l}{2\pi t^{3}}}\exp\left(-\frac{l(t-m)^{2}}{2m^{2}t}\right),\quad C,t>0

with the mean m>0m>0 and the shape parameter l>0l>0. By Theorem 11

f(u)=E(u,f)\displaystyle f^{*}(u)=E(u,f) =inf{ffσ:m(σ,fσ)u},\displaystyle=\inf\left\{\|f-f_{\sigma}\|_{\infty}\colon m(\sigma,f_{\sigma})\leq u\right\},
m(σ,fσ)\displaystyle m(\sigma,f_{\sigma}) =μ{u(0,):|fσ(u)|>σ}\displaystyle=\mu\left\{u\in(0,\infty)\colon{|f_{\sigma}(u)|>\sigma}\right\}

coincides with the non-increasing rearrangement of ff on (0,)(0,\infty). As a result, we obtain

f(u)=E(u,f)\displaystyle f^{*}(u)=E(u,f) cs,τusfτ/sfor allfLμτ/s,\displaystyle\leq{c}_{s,\tau}u^{-s}\,\|f\|_{\tau/s}\quad\text{for all}\quad{f\in L_{\mu}^{\tau/s}},

where Lμτ/s=τs(Lμ0,Lμ)L_{\mu}^{\tau/s}=\mathcal{B}_{\tau}^{s}\big{(}L^{0}_{\mu},L^{\infty}_{\mu}\big{)} in accordance with Remark 2 and the equality (18).

The obtained results of numerical calculations are illustrated on Fig. ​2,3.

Refer to caption
Figure 2: Graphs of the function f(t)=102πt3e(t2)22tf(t)=10\sqrt{\frac{2}{\pi t^{3}}}e^{-\frac{(t-2)^{2}}{2t}} (dots) and its non-increasing rearrangement f(t)f^{*}(t) (polygon), (0<t<10{0<t<10})
Refer to caption
Figure 3: Graphs of approximation E(u,f)E(u,f) via uscs,τfτsu^{-s}c_{s,\tau}\|f\|_{\mathcal{B}_{\tau}^{s}} (0<u<11{0<u<11}, s=τ=2{s=\tau=2}) using Jackson’s inequality

Statements and Declarations: There are no conflicts and potential competing of interest to disclose.

References

  • (1) Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin-Göttingen-Heidelbergm (1976)
  • (2) Bernd, C.: Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces. Ann. Inst. Fourier (Grenoble). 35(3) 79–118 (1985)
  • (3) Burchard, A., Hajaiejb, H.: Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233. 561–582 (2006).
  • (4) Grafakos, L.: Classical Fourier analysis, vol. 249/250 Springer (2014)
  • (5) DeVore, R.A., Popov, V.: Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305, 397–414 (1988)
  • (6) DeVore, R.A.: Nonlinear approximation. Acta Numer. 7(1), 51–150 (1998)
  • (7) Dmytryshyn, M., Lopushansky, O.: On spectral approximations of unbounded operators. Complex Anal. Oper. Theory. 13(8), 3659–3673 (2019)
  • (8) Feichtinger, H. G., Fuhr, H., Pesenson, I. Z.: Geometric space-frequency analysis on manifolds, J. Fourier Anal. Appl., 22, 1294–1355 (2016)
  • (9) Komatsu, N.: A general interpolation theorem of Marcinkiewicz type. Tôhoku Math. Journ., 33, 383–393 (1981)
  • (10) Hall, B. C.: Quantum Theory for Mathematicians. Springer (2013)
  • (11) Lopushansky, O.: Bernstein–Jackson Inequalities on Gaussian Hilbert Spaces. J. Fourier Anal. Appl., 29, 57–78 (2023)
  • (12) Maligranda, L., Persson, L.E.: The E-functional for some pairs groups. Results Math. 20(1/2), , 538-553 (1991)
  • (13) McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press (2000)
  • (14) O’Neil, R., Weiss, O.: The Hilbert transform and rearraangement of functions, Stud. Math., 23, 190–197 (1963)
  • (15) Nikolskii, S.: Approximation of functions of several variables and imbedding theorems. Springer, Berlin-Göttingen-Heidelberg (1975)
  • (16) Peetre, J., Sparr, G.: Interpolation of normed Abelian groups. Ann. Mat. Pura Appl. 92(1), 217–262 (1972)
  • (17) Pesenson I.Z.: Analysis in Function Spaces Associated with the Group ax+bax+b. Results Math. 79, 214 (2024)
  • (18) Pietsch, A.: Approximation spaces. J. Approx. Theory 32(2), 115–134 (1981)
  • (19) Prestin, J., Savchuk, V.V., Shidlich, A.L.: Direct and inverse theorems on the approximation of 2- periodic functions by Taylor Abel Poisson operators, Ukr. Math. J. 69(5), 766–781 (2017)
  • (20) Triebel, H.: Interpolation Theory. Function Spaces. Differential Operators. North-Holland Publ. (1978)