This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some applications of the multiplicative tensor product of matrix factorizations

Yves Baudelaire Fomatati
Department of Mathematics and Statistics, University of Ottawa,
Ottawa, Ontario, Canada K1N 6N5.
[email protected].

Abstract

The notion of semi-unital semi-monoidal category was defined a couple of years ago using the so called ”Takahashi tensor product” and so far, the only example of it in the literature is complex. In this paper, we use the recently defined ”multiplicative tensor product of matrix factorizations” to give a simple example of this a notion. In fact, if MF(1)MF(1) denotes the category of matrix factorizations of the constant power series 11, we define the concept of one-step connected category and prove that there is a one-step connected subcategory of (MF(1),~)(MF(1),\widetilde{\otimes}) which is semi-unital semi-monoidal. We also define the concept of right pseudo-monoidal category which generalizes the notion of monoidal category and we prove that (MF(1),~)(MF(1),\widetilde{\otimes}) is an example of this concept.

Keywords. Semi-unital semi-monoidal category, tensor products, matrix factorizations.

Mathematics Subject Classification (2020). 15A23, 15A69, 18A05.

1 Introduction

Eisenbud introduced the concept of matrix factorization (cf. [6]) in 1980. His research results show how to use matrices to factorize all polynomials. For example the irreducible polynomial f(x)=x2+y2f(x)=x^{2}+y^{2} over [x,y]\mathbb{R}[x,y] can be factored as follows:

[xyyx][xyyx]=(x2+y2)[1001]=fI2\begin{bmatrix}x&-y\\ y&x\end{bmatrix}\begin{bmatrix}x&y\\ -y&x\end{bmatrix}=(x^{2}+y^{2})\begin{bmatrix}1&0\\ 0&1\end{bmatrix}=fI_{2}

Thus, we say that ([xyyx],[xyyx])(\begin{bmatrix}x&-y\\ y&x\end{bmatrix},\begin{bmatrix}x&y\\ -y&x\end{bmatrix}) is a 2×22\times 2 matrix factorization of ff.
In a sense, this notion of factorizing polynomials using matrices can be seen as a generalization of the classical notion of polynomial factorization where a polynomial p(x)=q(x)r(x)p(x)=q(x)r(x) can be considered as the product of two 1×11\times 1 matrices.
Matrix factorizations play an important role in many areas of pure mathematics and physics. The notion of matrix factorizations is one of the key tools used in representation theory of hypersurface rings. It is a classical tool in the study of hypersurface singularity algebras (cf. [6]). One of the discoveries of Eisenbud is that matrix factorizations of fK[[x]]f\in K[[x]] are closely related to the homological properties of modules over quotient rings K[[x]]/(f)K[[x]]/(f).
Let KK be a field and K[[x]]K[[x]] be the formal power series ring in the variables x=x1,,xrx=x_{1},\cdots,x_{r} and K[[y]]K[[y]] be the formal power series ring in the variables y=y1,,ysy=y_{1},\cdots,y_{s}. Let fK[[x]]f\in K[[x]] and gK[[y]]g\in K[[y]] be nonzero noninvertible111Yoshino [18] requires an element fK[[x]]f\in K[[x]] to be nonzero noninvertible because if f=0f=0 then K[[x]]/(f)=K[[x]]K[[x]]/(f)=K[[x]] and if ff is a unit, then K[[x]]/(f)=K[[x]]/(f)=K[[x]]/K[[x]]={1}=\{1\}. But in this paper we will not bother about such restrictions because we will not deal with the homological methods used in [18]. elements. In 1998, Yoshino constructed a tensor product denoted ^\widehat{\otimes} which is such that if XX is a matrix factorization of fK[[x]]f\in K[[x]] and YY is a matrix factorization of gK[[y]]g\in K[[y]], then X^YX\widehat{\otimes}Y is a matrix factorization of f+gK[[x,y]]f+g\in K[[x,y]]. In 2002 and 2003, Kapustin and Li in their papers [12] and [11], used matrix factorizations in string theory to study boundary conditions for strings in Landau-Ginzburg models. In 2012, Carqueville and Murfet in their paper [4], briefly presented the construction of the bicategory 𝒢K\mathcal{LG}_{K} of Landau-Ginzburg models whose 11-cells are matrix factorizations. In 2013, the geometry of the category of matrix factorizations was studied in Yu’s Ph.D. dissertation [19]. In 2014, Camacho [3] in her PhD dissertation recalled the notion of graded matrix factorizations with special emphasis on \mathbb{C}-graded matrix factorizations.
In 2016, Crisler and Diveris [5] examined matrix factorizations of polynomials in the ring [x1,,xn]\mathbb{R}[x_{1},\cdots,x_{n}], using only techniques from elementary linear algebra. They focused mostly on factorizations of sums of squares of polynomials. They improved the standard method for factoring polynomials for this class of polynomials. More recently in 2019, the author in his Ph.D. dissertation [8] defined the multiplicative tensor product of matrix factorizations and found a variant of this product [9] in 2020. These were then used to further improve the standard method for factoring a large class of polynomials. In [7], properties of matrix factorizations are used to find a necessary condition to obtain a Morita Context in the bicategory of Landau-Ginzburg models.
In this paper, we use the recently defined multiplicative tensor product of matrix factorizations [8] to give a simple example of a semi-unital semi-monoidal category. This is a notion that was defined recently in [1] using the so called ’Takahashi tensor product’ and it required a complex set-up. We will construct an easy-to-understand example with a relatively small amount of set-up. Moreover, we will also use the multiplicative tensor product of matrix factorization to define and give an example of the concept of right pseudo-monoidal category which generalizes the notion of monoidal category.

Significance of the notion of semi-unit:
We first recall some definitions.
A semi-ring is roughly speaking, a ring not necessarily with subtraction. The first natural example of a semi-ring is the set \mathbb{N} of non-negative integers.
A semi-module is roughly speaking a module not necessarily with subtraction. The category of Abelian groups is nothing but the category of modules over ZZ; similarly, the category of commutative monoids is nothing but the category of semi-modules over \mathbb{N}
Semi-rings were studied by many algebraists beginning with Dedekind. They have significant applications in several areas, for instance Automata Theory and Optimization Theory (see [10] for applications).
The theory of semi-modules over semi-rings was developed by many authors including Takahashi [17]. In 2008, Jawad used the so called Takahashi’s tensor-like product \boxtimes of semi-modules over an associative semi-ring AA [17], to introduce notions of semi-unital semi-rings and semi-counital semi-corings (cf. [1]). However, these could not be realized as monoids (comonoids) in the category SAA{}_{A}S_{A} of (A,A)(A,A)-bisemi-modules. This is mainly due to the fact that the category (ASA,,A)(_{A}S_{A},\boxtimes,A) is not monoidal in general. Motivated by the desire to fix this problem, Jawad [1] introduced and investigated a notion of semi-unital semi-monoidal categories with prototype (ASA,,A)(_{A}S_{A},\boxtimes,A) and investigated semi-monoids (semi-comonoids) in such categories as well as their categories of semi-modules (semi-comodules). He realized that although the base semi-algebra AA is not a unit in SAA{}_{A}S_{A}, AA nevertheless has properties of what he called a semi-unit. This motivated the introduction of a more generalized notion of monads (comonads) in arbitrary categories (for more on this, see [1]).

Example 1.1.

An example of semi-unital semi-monoidal category as given by Jawad in [1] is the category of bisemi-modules over a semi-algebra AA with the Takahashi tensor product (ASA,,A)(_{A}S_{A},\boxtimes,A). That is the only example we found in the literature. unfortunately, it requires a great amount of set-up and so we refer the reader to theorem 5.11 of [1]. As earlier mentioned, a (less involved) example of semi-unital semi-monoidal category will be given in this paper (cf. theorem 4.1) using the recently defined multipicative tensor product of matrix factorizations [8].

In the next section, definitions of special classes of categories are recalled. In section 3, the notion of tensor products of matrix factorizations in also recalled. A comparison of the tensor product of matrix factorizations and its multiplicative counterpart is presented in section 4. The category of matrix factorizations of the constant power series 11 is studied under this section. Moreover, a simple example of a semi-unital semi-monoidal category using the multiplicative tensor product is presented. We wrap up this section with the definition of the notion of right pseudo-monoidal category.

2 Special classes of categories

Here, we recall the definitions of some special types of categories.

Definition 2.1.

[14] A monoidal category 𝒞=<𝒞,,e,α,λ,ρ>\mathcal{C}=<\mathcal{C},\square,e,\alpha,\lambda,\rho> is a category 𝒞\mathcal{C}, a bifunctor :𝒞×𝒞𝒞\square:\mathcal{C}\times\mathcal{C}\rightarrow\mathcal{C}, an object e𝒞e\,\in\,\mathcal{C}, and three natural isomorphisms α,λ,andρ\alpha,\,\lambda,\,and\,\rho;
such that:
\bullet α=αa,b,c:a(bc)(ab)c\alpha=\alpha_{a,b,c}:a\square(b\square c)\cong(a\square b)\square c is natural for all a,b,c𝒞a,b,c\,\in\,\mathcal{C} and the pentagonal diagram

a(b(cd))\textstyle{a\square(b\square(c\square d))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1aα\scriptstyle{1_{a}\square\alpha}α\scriptstyle{\alpha}a((bc)d)\textstyle{a\square((b\square c)\square d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(ab)(cd)\textstyle{(a\square b)\square(c\square d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(a(bc))d\textstyle{(a\square(b\square c))\square d\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α1d\scriptstyle{\alpha\square 1_{d}}((ab)c)d\textstyle{((a\square b)\square c)\square d}

commutes for all a,b,c,d𝒞a,b,c,d\,\in\,\mathcal{C}.
(α\alpha is also called associator (p.11 [4])).
\bullet λ\lambda and ρ\rho are natural. On p.10 of [4], λ\lambda and ρ\rho are also called left and right unit actions (or unitors).
λa:eaa\lambda_{a}:e\square a\cong a, ρa:aea\rho_{a}:a\square e\cong a, for all objects a𝒞a\,\in\mathcal{C}.
Moreover, the triangular diagram

a(eb)\textstyle{a\square(e\square b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}1aλb\scriptstyle{1_{a}\square\lambda_{b}}(ae)b\textstyle{(a\square e)\square b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρa1b\scriptstyle{\rho_{a}\square 1_{b}}ab\textstyle{a\square b}

commutes for all a,b𝒞a,b\,\in\,\mathcal{C} and λe=ρe:eee\lambda_{e}=\rho_{e}:e\square e\rightarrow e.

Definition 2.2.

[14] A symmetric monoidal category is a monoidal category together with a symmetry. A symmetry γ\gamma for a monoidal category 𝒞=<𝒞,,e,α,λ,ρ>\mathcal{C}=<\mathcal{C},\square,e,\alpha,\lambda,\rho> is a natural isomorphism γ=γab:abba\gamma=\gamma_{ab}:a\square b\rightarrow b\square a such that the following three diagrams commute for all a,b,c𝒞a,b,c\,\in\,\mathcal{C}:

ab\textstyle{a\square b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}1\scriptstyle{1}ba\textstyle{b\square a\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γba\scriptstyle{\gamma_{ba}}ab\textstyle{a\square b}
eb\textstyle{e\square b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}λb\scriptstyle{\lambda_{b}}be\textstyle{b\square e\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρb\scriptstyle{\rho_{b}}b\textstyle{b}

a(bc)\textstyle{a\square(b\square c)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1aγ\scriptstyle{1_{a}\square\gamma}α\scriptstyle{\alpha}a(cb)\textstyle{a\square(c\square b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(ab)c\textstyle{(a\square b)\square c\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}(ac)b\textstyle{(a\square c)\square b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ1b\scriptstyle{\gamma\square 1_{b}}c(ab)\textstyle{c\square(a\square b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(ca)b\textstyle{(c\square a)\square b}

An example of a symmetric monoidal category is the category of vector spaces over some fixed field KK, using the ordinary tensor product of vector spaces.

Definition 2.3.

[13] A semi-monoidal category 𝒞=<𝒞,,α>\mathcal{C}=<\mathcal{C},\square,\alpha> is a category 𝒞\mathcal{C}, a bifunctor :𝒞×𝒞𝒞\square:\mathcal{C}\times\mathcal{C}\rightarrow\mathcal{C} and a natural transformation α\alpha, satisfying the following condition:
\bullet α\alpha is a natural isomorphism with components αa,b,c:(ab)ca(bc)\alpha_{a,b,c}:(a\square b)\square c\rightarrow a\square(b\square c) such that the following pentagonal diagram

a(b(cd))\textstyle{a\square(b\square(c\square d))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1aα\scriptstyle{1_{a}\square\alpha}α\scriptstyle{\alpha}a((bc)d)\textstyle{a\square((b\square c)\square d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(ab)(cd)\textstyle{(a\square b)\square(c\square d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(a(bc))d\textstyle{(a\square(b\square c))\square d\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α1d\scriptstyle{\alpha\square 1_{d}}((ab)c)d\textstyle{((a\square b)\square c)\square d}

commutes for all a,b,c,d𝒞a,b,c,d\,\in\,\mathcal{C}. (α\alpha is also called associator (p.11 [4])).

Definition 2.4.

(Defn 3.1 [15]) Given a category 𝒞\mathcal{C} and an object AA of 𝒞\mathcal{C}, an idempotent of 𝒞\mathcal{C} is an endomorphism e:AAe:A\rightarrow A with ee=ee\circ e=e. An idempotent e:AAe:A\rightarrow A is said to split if there is an object BB and morphisms r:ABr:A\rightarrow B, s:BAs:B\rightarrow A such that e=sre=s\circ r and idB=rsid_{B}=r\circ s.

Remark 2.1.

(cf. Remark 3.4 [15]) The splitting of an idempotent is a special case of a categorical limit and colimit. More precisely, if e:AAe:A\rightarrow A is an idempotent, then r:ABr:A\rightarrow B, s:BAs:B\rightarrow A is a splitting of ee if and only if rr is a colimit and ss is a limit of the diagram e:AAe:A\rightarrow A.

Definition 2.5.

[2] An ordinary category is idempotent complete, aka Karoubi complete or Cauchy complete, if every idempotent splits.

The phrase ”ordinary category” as opposed to the phrase ”Higher category” is used here. Higher category theory is the generalization of category theory to a context where there are not only morphisms between objects, but generally nn-morphisms between (n1)(n-1)-morphisms, for all nn\in\mathbb{N}.

Definition 2.6.

[1] Let (𝒞,)(\mathcal{C},\Box) be a semi-monoidal category with natural isomorphism αX,Y,Z:(XY)ZX(YZ)\alpha_{X,Y,Z}:(X\Box Y)\Box Z\rightarrow X\Box(Y\Box Z) for all X,Y,Z𝒞X,Y,Z\in\mathcal{C}. Let 𝕀\mathbb{I} stand for the identity endofunctor on any given category. We say that 𝐈𝒞\mathbf{I}\in\mathcal{C} is a semi-unit if the following conditions hold:

  1. 1.

    There is a natural transformation ω:𝕀(𝐈)\omega:\mathbb{I}\rightarrow(\mathbf{I}\Box-);

  2. 2.

    There exists an isomorphism of functors 𝐈𝐈\mathbf{I}\Box-\cong-\Box\mathbf{I}, i.e., there is a natural isomorphism lX:𝐈XX𝐈l_{X}:\mathbf{I}\Box X\cong X\Box\mathbf{I} in 𝒞\mathcal{C} with inverse qXq_{X}, for each object XX of 𝒞\mathcal{C}, such that l𝐈=q𝐈l_{\mathbf{I}}=q_{\mathbf{I}} and the following diagrams are commutative for all X,Y𝒞X,Y\in\mathcal{C}:

    (𝐈a)b\textstyle{(\mathbf{I}\Box a)\Box b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α𝐈,a,b\scriptstyle{\alpha_{\mathbf{I},a,b}}lab\scriptstyle{l_{a}\Box b}𝐈(ab)\textstyle{\mathbf{I}\Box(a\Box b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}lab\scriptstyle{l_{a\Box b}}(ab)𝐈\textstyle{(a\Box b)\Box\mathbf{I}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,b,𝐈(1)\scriptstyle{\alpha_{a,b,\mathbf{I}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)}(a𝐈)b\textstyle{(a\Box\mathbf{I})\Box b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,𝐈,b\scriptstyle{\alpha_{a,\mathbf{I},b}}a(𝐈b)\textstyle{a\Box(\mathbf{I}\Box b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}alb\scriptstyle{a\Box l_{b}}a(b𝐈)\textstyle{a\Box(b\Box\mathbf{I})}
    ab\textstyle{a\Box b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ωab\scriptstyle{\omega_{a}\Box b}ωab\scriptstyle{\omega_{a\Box b}}(𝐈a)b\textstyle{(\mathbf{I}\Box a)\Box b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(2)\scriptstyle{\cong\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}𝐈(ab)\textstyle{\mathbf{I}\Box(a\Box b)}
    ab\textstyle{a\Box b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}aωb\scriptstyle{a\Box\omega_{b}}ωab\scriptstyle{\omega_{a\Box b}}a(𝐈b)\textstyle{a\Box(\mathbf{I}\Box b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(3)\scriptstyle{\cong\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)}𝐈(ab)\textstyle{\mathbf{I}\Box(a\Box b)}

A semi-unital semi-monoidal category is a semi-monoidal category with a semi-unit.

Remark 2.2.

[1] If X𝐈X(X𝐈)X\cong\mathbf{I}\Box X(\cong X\Box\mathbf{I}), then we say that XX is firm and set λX:=ωX1:𝐈XX\lambda_{X}:=\omega_{X}^{-1}:\mathbf{I}\Box X\rightarrow X.
If 𝐈\mathbf{I} is firm (also called a pseudo-idempotent) and ω𝐈1𝐈=𝐈ω𝐈1\omega_{\mathbf{I}}^{-1}\Box\mathbf{I}=\mathbf{I}\Box\omega_{\mathbf{I}}^{-1}, then 𝐈\mathbf{I} is an idempotent.
A semi-monoidal category becomes a monoidal category if it has a unit, i.e., 𝐈\mathbf{I} is such that λ𝐈=κ𝐈\lambda_{\mathbf{I}}=\kappa_{\mathbf{I}}, λXY=λXY\lambda_{X\Box Y}=\lambda_{X}\Box Y and κXY=XκY\kappa_{X\Box Y}=X\Box\kappa_{Y} for all X,Y𝒞X,Y\in\mathcal{C}, where κX=ωX1qX:X𝐈𝐈XX\kappa_{X}=\omega_{X}^{-1}\circ q_{X}:X\Box\mathbf{I}\cong\mathbf{I}\Box X\rightarrow X.

Remark 2.3.

(cf. remark 3.3 of [1], [13]) Kock in [13] called an object II a Saavedra unit or reduced unit just in case it is pseudo-idempotent and cancellable in the sense that the endofunctors II\Box- and I-\Box I are full and faithful (equivalently, II is idempotent and the endofunctors II\Box- and I-\Box I are equivalences of categories). Kock also showed that II is a unit if and only if it is a Saavedra unit.
Since every unit is a semi-unit, the notion of semi-unital semi-monoidal categories generalizes the classical notion of monoidal categories.

There is also a notion of skew-monoidal category ([16]) defined as follows:

Definition 2.7.

(cf. [16]) A right-monoidal category (,,e,α,γ,ρ)(\mathcal{M},\ast,e,\alpha,\gamma,\rho) consists of a category \mathcal{M}, a functor ()():×(-)\ast(-):\mathcal{M}\times\mathcal{M}\rightarrow\mathcal{M}, an object ee of \mathcal{M} and natural transformations
αL,M,N:L(MN)(LM)N\alpha_{L,M,N}:L\ast(M\ast N)\rightarrow(L\ast M)\ast N
γM:MeM\gamma_{M}:M\rightarrow e\ast M
ρM:MeM\rho_{M}:M\ast e\rightarrow M

subject to the following axioms: For all objects K,L,M,NK,L,M,N

  1. 1.

    (αK,L,MN)αK,LM,N(KαL,M,N)=αKL,M,NαK,L,MN(\alpha_{K,L,M}\ast N)\circ\alpha_{K,L\ast M,N}\circ(K\ast\alpha_{L,M,N})=\alpha_{K\ast L,M,N}\circ\alpha_{K,L,M\ast N}

  2. 2.

    αe,M,NγMN=γMN\alpha_{e,M,N}\circ\gamma_{M\ast N}=\gamma_{M}\ast N

  3. 3.

    ρMNαM,N,e=MρN\rho_{M\ast N}\circ\alpha_{M,N,e}=M\ast\rho_{N}

  4. 4.

    (ρMN)αM,e,N(MγN)=idMN(\rho_{M}\ast N)\circ\alpha_{M,e,N}\circ(M\ast\gamma_{N})=id_{M\ast N}

  5. 5.

    ρeγe=ide\rho_{e}\circ\gamma_{e}=id_{e}.

Remark 2.4.

(cf. [16]) If \mathcal{M} is replaced with op\mathcal{M}^{op}, we obtain what is called a left-monoidal category.
If α\alpha, γ\gamma and ρ\rho are isomorphisms, we recover the notion of monoidal category. So a right-monoidal category is a generalization of a monoidal category.

3 Tensor products of matrix factorizations

In this section, we recall the definitions of the Yoshino tensor product of matrix factorizations denoted ^\widehat{\otimes}. Next, we recall the definition of multiplicative tensor product of matrix factorizations denoted ~\widetilde{\otimes}.
Under this section, unless otherwise stated, R=K[[x]]R=K[[x]] and S=K[[y]]S=K[[y]] where x=x1,,xrx=x_{1},...,x_{r} and y=y1,,ysy=y_{1},...,y_{s}.

3.1 Yoshino’s tensor product of matrix factorization

Recall the following:

Definition 3.1.

[18]
An n×nn\times n matrix factorization of a power series fRf\in\;R is a pair of nn ×\times nn matrices (ϕ,ψ)(\phi,\psi) such that ϕψ=ψϕ=fIn\phi\psi=\psi\phi=fI_{n}, where InI_{n} is the n×nn\times n identity matrix and the coefficients of ϕ\phi and of ψ\psi are taken from RR.

Also recall (§1\S 1 of [18]) the definition of the category of matrix factorizations of a power series fR=K[[x]]:=K[[x1,,xn]]f\in R=K[[x]]:=K[[x_{1},\cdots,x_{n}]] denoted by MF(R,f)MF(R,f) or MFR(f)MF_{R}(f), (or even MF(f)MF(f) when there is no risk of confusion):
\bullet The objects are the matrix factorizations of ff.
\bullet Given two matrix factorizations of ff; (ϕ1,ψ1)(\phi_{1},\psi_{1}) and (ϕ2,ψ2)(\phi_{2},\psi_{2}) respectively of sizes n1n_{1} and n2n_{2}, a morphism from (ϕ1,ψ1)(\phi_{1},\psi_{1}) to (ϕ2,ψ2)(\phi_{2},\psi_{2}) is a pair of matrices (α,β)(\alpha,\beta) each of size n2×n1n_{2}\times n_{1} which makes the following diagram commute [18]:

K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ1\scriptstyle{\psi_{1}}α\scriptstyle{\alpha}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}ϕ1\scriptstyle{\phi_{1}}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}K[[x]]n2\textstyle{K[[x]]^{n_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ2\scriptstyle{\psi_{2}}K[[x]]n2\textstyle{K[[x]]^{n_{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ2\scriptstyle{\phi_{2}}K[[x]]n2\textstyle{K[[x]]^{n_{2}}}

That is,

{αϕ1=ϕ2βψ2α=βψ1\begin{cases}\alpha\phi_{1}=\phi_{2}\beta\\ \psi_{2}\alpha=\beta\psi_{1}\end{cases}

More details on this category are found in chapter 2 of [8].

Definition 3.2.

[18] Let X=(ϕ,ψ)X=(\phi,\psi) be an n×nn\times n matrix factorization of fRf\in R and X=(ϕ,ψ)X^{\prime}=(\phi^{\prime},\psi^{\prime}) an m×mm\times m matrix factorization of gSg\in S. These matrices can be considered as matrices over L=K[[x,y]]L=K[[x,y]] and the tensor product X^XX\widehat{\otimes}X^{\prime} is given by
([ϕ1m1nϕ1nψψ1m],[ψ1m1nϕ1nψϕ1m]\begin{bmatrix}\phi\otimes 1_{m}&1_{n}\otimes\phi^{\prime}\\ -1_{n}\otimes\psi^{\prime}&\psi\otimes 1_{m}\end{bmatrix},\begin{bmatrix}\psi\otimes 1_{m}&-1_{n}\otimes\phi^{\prime}\\ 1_{n}\otimes\psi^{\prime}&\phi\otimes 1_{m}\end{bmatrix})
where each component is an endomorphism on LnLmL^{n}\otimes L^{m}.

It is easy to verify that X^XX\widehat{\otimes}X^{\prime} is in fact an object of MFL(f+g)MF_{L}(f+g) of size 2nm2nm.

Remark 3.1.

When n=1n=1, we get a 11 ×\times 11 matrix factorization of ff, i.e., f=[g][h]f=[g][h] which is simply a factorization of ff in the classical sense. But in case ff is not reducible, this is not interesting, that’s why we will mostly consider n>1n>1.

Variants of Yoshino’s tensor product of matrix factorizations were constructed in [9].

3.2 Multiplicative tensor product of matrix factorization

In this subsection, we recall the definition of the multiplicative tensor product of matrix factorizations.
First it is well known that if AA (resp. BB) is an m×nm\times n (resp. p×qp\times q) matrix, then their direct sum AB=[A00B]A\oplus B=\begin{bmatrix}A&0\\ 0&B\end{bmatrix}, where the 0 in the first line is a p×qp\times q matrix and the one in the second line is an m×nm\times n matrix.
Finally, recall that if AA (resp. BB) is an m×nm\times n (resp. p×qp\times q) matrix, then their tensor product ABA\otimes B is the matrix obtained by replacing each entry aija_{ij} of AA with the matrix aijBa_{ij}B. So, ABA\otimes B is a mp×nqmp\times nq matrix.

Definition 3.3.

[8] Let X=(ϕ,ψ)X=(\phi,\psi) be a matrix factorization of fK[[x]]f\in K[[x]] of size nn and let X=(ϕ,ψ)X^{\prime}=(\phi^{\prime},\psi^{\prime}) be a matrix factorization of gK[[y]]g\in K[[y]] of size mm. Thus, ϕ,ψ,ϕandψ\phi,\psi,\phi^{\prime}\,and\,\psi^{\prime} can be considered as matrices over L=K[[x,y]]L=K[[x,y]] and the multiplicative tensor product X~XX\widetilde{\otimes}X^{\prime} is given by

((ϕϕ)(ϕϕ),(ψψ)(ψψ))=([ϕϕ00ϕϕ],[ψψ00ψψ])((\phi\otimes\phi^{\prime})\oplus(\phi\otimes\phi^{\prime}),(\psi\otimes\psi^{\prime})\oplus(\psi\otimes\psi^{\prime}))=(\begin{bmatrix}\phi\otimes\phi^{\prime}&0\\ 0&\phi\otimes\phi^{\prime}\end{bmatrix},\begin{bmatrix}\psi\otimes\psi^{\prime}&0\\ 0&\psi\otimes\psi^{\prime}\end{bmatrix})


where each component is an endomorphism on LnLLmL^{n}\otimes_{L}L^{m}.

Remark 3.2.

One of the reasons for the ”doubling” in the definition of the multiplicative tensor product of matrix factorizations is found in the proof of theorem 4.1. Observe that, in this proof, had we defined X~XX\widetilde{\otimes}X^{\prime} as

((ϕϕ),(ψψ)),((\phi\otimes\phi^{\prime}),(\psi\otimes\psi^{\prime})),

we would have had only one object in the category 𝒯\mathcal{T}. Consequently, we would not have been able to construct another example of semi-unital semi-monoidal category.

Definition 3.4.

[8] For a morphism ζ=(α,β):X1=(ϕ1,ψ1)X2=(ϕ2,ψ2)\zeta=(\alpha,\beta):X_{1}=(\phi_{1},\psi_{1})\rightarrow X_{2}=(\phi_{2},\psi_{2}) in MF(K[[x]],f)MF(K[[x]],f) and for any m×mm\times m matrix factorization X=(ϕ,ψ)X^{\prime}=(\phi^{\prime},\psi^{\prime}) in MF(K[[y]],g)MF(K[[y]],g), we define ζ~X\zeta\widetilde{\otimes}X^{\prime} by

([α1m00α1m],[β1m00β1m])(\begin{bmatrix}\alpha\otimes 1_{m}&0\\ 0&\alpha\otimes 1_{m}\end{bmatrix},\begin{bmatrix}\beta\otimes 1_{m}&0\\ 0&\beta\otimes 1_{m}\end{bmatrix})
Definition 3.5.

[8] For a morphism ζ=(α,β):X1=(ϕ1,ψ1)X2=(ϕ2,ψ2)\zeta^{\prime}=(\alpha^{\prime},\beta^{\prime}):X_{1}^{\prime}=(\phi_{1}^{\prime},\psi_{1}^{\prime})\rightarrow X_{2}^{\prime}=(\phi_{2}^{\prime},\psi_{2}^{\prime}) in MF(K[[y]],g)MF(K[[y]],g) and for any n×nn\times n matrix factorization X=(ϕ,ψ)X=(\phi,\psi) in MF(K[[x]],f)MF(K[[x]],f), we define X~ζX\widetilde{\otimes}\zeta^{\prime} by

([1nα001nα],[1nβ001nβ])(\begin{bmatrix}1_{n}\otimes\alpha^{\prime}&0\\ 0&1_{n}\otimes\alpha^{\prime}\end{bmatrix},\begin{bmatrix}1_{n}\otimes\beta^{\prime}&0\\ 0&1_{n}\otimes\beta^{\prime}\end{bmatrix})

We now recall the definition of the multiplicative tensor product of two maps.
Let Xf=(ϕ,ψ)X_{f}=(\phi,\psi), Xf=(ϕ,ψ)X_{f}^{\prime}=(\phi^{\prime},\psi^{\prime}) and Xf"=(ϕ",ψ")X_{f}"=(\phi",\psi") be objects of MF(K[[x]],f)MF(K[[x]],f) respectively of sizes n,nn,n^{\prime} and n"n". Let Xg=(σ,ρ)X_{g}=(\sigma,\rho), Xg=(σ,ρ)X_{g}^{\prime}=(\sigma^{\prime},\rho^{\prime}) and Xg"=(σ",ρ")X_{g}"=(\sigma",\rho") be objects of MF(K[[y]],g)MF(K[[y]],g) respectively of sizes m,mm,m^{\prime} and m"m".

Definition 3.6.

[8] For morphisms ζf=(αf,βf):Xf=(ϕ,ψ)Xf=(ϕ,ψ)\zeta_{f}=(\alpha_{f},\beta_{f}):X_{f}=(\phi,\psi)\rightarrow X_{f}^{\prime}=(\phi^{\prime},\psi^{\prime}) and ζg=(αg,βg):Xg=(σ,ρ)Xg=(σ,ρ)\zeta_{g}=(\alpha_{g},\beta_{g}):X_{g}=(\sigma,\rho)\rightarrow X_{g}^{\prime}=(\sigma^{\prime},\rho^{\prime}) respectively in MF(K[[x]],f)MF(K[[x]],f) and MF(K[[y]],g)MF(K[[y]],g), we define ζf~ζg:Xf~Xg=(ϕ,ψ)~(σ,ρ)Xf~Xg=(ϕ,ψ)~(σ,ρ)\zeta_{f}\widetilde{\otimes}\zeta_{g}:X_{f}\widetilde{\otimes}X_{g}=(\phi,\psi)\widetilde{\otimes}(\sigma,\rho)\rightarrow X_{f}^{\prime}\widetilde{\otimes}X_{g}^{\prime}=(\phi^{\prime},\psi^{\prime})\widetilde{\otimes}(\sigma^{\prime},\rho^{\prime}) by

([αfαg00αfαg],[βfβg00βfβg])(\begin{bmatrix}\alpha_{f}\otimes\alpha_{g}&0\\ 0&\alpha_{f}\otimes\alpha_{g}\end{bmatrix},\begin{bmatrix}\beta_{f}\otimes\beta_{g}&0\\ 0&\beta_{f}\otimes\beta_{g}\end{bmatrix})
Theorem 3.1.

[8] ~\widetilde{\otimes} is a bifunctor.

A variant of ~\widetilde{\otimes} was found in [9].

4 A comparison of ^\widehat{\otimes} and ~\widetilde{\otimes}, and a study of the category (MF(1),~)(MF(1),\widetilde{\otimes})

In this section, we compare ^\widehat{\otimes} and ~\widetilde{\otimes} and study the category (MF(1),~)(MF(1),\widetilde{\otimes}).
The Syzygy property (cf. subsection 4.1 below) will help to find some differences between these two operations. Moreover, we will observe that the multiplicative tensor product of two objects of MF(1)MF(1) is still an object of MF(1)MF(1) whereas the tensor product ^\widehat{\otimes} of any two matrix factorizations of a power series ff is not a matrix factorization of ff (not even for f=1f=1). This will motivate the study of (MF(1),~)(MF(1),\widetilde{\otimes}). Is it a monoidal category? or a generalization of this notion?
We will define the concept of one-step connected category and prove that there is a one-step connected subcategory (𝒯,~)(\mathcal{T},\widetilde{\otimes}) of (MF(1),~)(MF(1),\widetilde{\otimes}) which is a semi-unital semi-monoidal category. This is particularly interesting because the concept of semi-unital semi-monoidal category was recently conceived in [1] and the example provided in that paper (cf. theorem 5.11 of [1]) required a considerable amount of set-up. But in this section, the example (cf. theorem 4.1) we give requires a smaller amount of set-up.
Furthermore, we will define the concept of right pseudo-monoidal category and prove that the category (MF(1),~)(MF(1),\widetilde{\otimes}) is an example of this concept.
First, recall [8] that a (1,0)(1,0)-matrix is a matrix whose entries belong to the set {0,1}\{0,1\}. We chose the terminology (1,0)(1,0)-matrix instead of (0,1)(0,1)-matrix because some authors use the terminology (0,1)(0,1)-matrix to refer to what we call here (1,0)(1,0)-matrix with some additional conditions.

Definition 4.1.

A category is said to be a one-step connected category if for every two objects of the category, there exists a nonzero morphism between them.

4.1 A comparison of ^\widehat{\otimes} and ~\widetilde{\otimes}

^\widehat{\otimes} and ~\widetilde{\otimes} are different at several levels. First of all, the Syzygy Ω\Omega helps in pointing out some differences between these two operations.
First recall the definition of the Syzygy222We use this word because that is the name (cf. [18]) given to the operator Ω\Omega we are going to use in Prop. 4.1. Ω((ϕ,ψ)):=(ψ,ϕ)\Omega((\phi,\psi)):=(\psi,\phi) where (ψ,ϕ)(\psi,\phi) is a matrix factorization of a power series ff.
We now want to state a Syzygy property for ~\widetilde{\otimes}. In [18], a Syzygy property was proved for ^\widehat{\otimes}, the tensor product of matrix factorization (cf. subsection 3.1). It was proved that X^X=Ω(X)^Ω(X)X\widehat{\otimes}X^{\prime}=\Omega(X)\widehat{\otimes}\Omega(X^{\prime}) and X^Ω(X)Ω(X^X)Ω(X)^XX\widehat{\otimes}\Omega(X^{\prime})\cong\Omega(X\widehat{\otimes}X^{\prime})\cong\Omega(X)\widehat{\otimes}X^{\prime}. But the Syzygy property that holds for ~\widetilde{\otimes} is totally different. It shows that the functor Ω\Omega is ”linear” with respect to the operation ~\widetilde{\otimes}.

Proposition 4.1.

[8] (Syzygy property)
There is an identity Ω(X~X)=Ω(X)~Ω(X)\Omega(X\widetilde{\otimes}X^{\prime})=\Omega(X)\widetilde{\otimes}\Omega(X^{\prime}).

For instance, observe that in general, unlike with ^\widehat{\otimes}; Ω(X)~XX~Ω(X)\Omega(X)\widetilde{\otimes}X^{\prime}\ncong X\widetilde{\otimes}\Omega(X^{\prime}) as can be easily checked computationally.
It is easy to verify that in general, Ω(X)~XX~Ω(X)\Omega(X)\widetilde{\otimes}X^{\prime}\ncong X\widetilde{\otimes}\Omega(X^{\prime}). It is also easy to verify that unlike with ^\widehat{\otimes}, X~XΩ(X)~Ω(X)X\widetilde{\otimes}X^{\prime}\neq\Omega(X)\widetilde{\otimes}\Omega(X^{\prime}).
Moreover, from the definitions of ^\widehat{\otimes} (cf. subsection 3.1) and ~\widetilde{\otimes} (cf. definition 3.3), we immediately see some similarities and differences. For example, given two matrix factorizations XfX_{f} of fK[[x]]f\in K[[x]] of size nn and XgX_{g} of gK[[y]]g\in K[[y]] of size mm, though Xf^XgX_{f}\widehat{\otimes}X_{g} and Xf~XgX_{f}\widetilde{\otimes}X_{g} are both of size 2nm2nm, they are objects of two different categories namely MF(f+g)MF(f+g) and MF(fg)MF(fg). Even if we consider two objects of the same category, say XfX_{f} and YfY_{f} of a nonzero power series fK[[x]]f\in K[[x]], Xf^YfX_{f}\widehat{\otimes}Y_{f} (respectively Xf~YfX_{f}\widetilde{\otimes}Y_{f}) will be an object not in MF(f)MF(f) but instead of a different category namely MF(f+f)MF(f+f) (respectively MF(ff)=MF(f2)MF(f\cdot f)=MF(f^{2})). Now, there is a striking difference between the two tensor products when f=1f=1. In fact, if f=1f=1, then Xf^YfMF(1+1)MF(1)X_{f}\widehat{\otimes}Y_{f}\in MF(1+1)\neq MF(1) but Xf~YfMF(11)=MF(1)X_{f}\widetilde{\otimes}Y_{f}\in MF(1\cdot 1)=MF(1). That is, the multiplicative tensor product of two objects of MF(1)MF(1) is still an object of MF(1)MF(1). This motivates the study of (MF(1),~)(MF(1),\widetilde{\otimes}) to know whether it is a monoidal category or a generalization of this notion.

4.2 An application of ~\widetilde{\otimes}: A semi-unital semi-monoidal subcategory of MF(1)MF(1)

We prove that MF(1)MF(1) has a one-step connected subcategory which is a semi-unital semi-monoidal category.
Objects of MF(1)MF(1) are of the form (Mn,Mn1)(M_{n},M_{n}^{-1}) where MnM_{n} is an n×nn\times n matrix, n{0}n\in\mathbb{N}-\{0\}. Morphisms are pairs of matrices such that a certain diagram commutes (cf. subsection 3.1).

Theorem 4.1.

There is a one-step connected subcategory of MF(1)MF(1) which is a semi-unital semi-monoidal category.

Proof.

We extract a one-step connected subcategory of MF(1)MF(1) which is a semi-unital semi-monoidal category. We will call it 𝒯\mathcal{T}.
\bullet Objects of 𝒯\mathcal{T} are of the form ene^{n} where n{0}n\in\mathbb{N}-\{0\}. We characterize these objects.
e1=e=(1,1)e^{1}=e=(1,1), e2=e~e=((110011),(110011))=(I2,I2)e^{2}=e\widetilde{\otimes}e=\left(\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right),\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right)\right)=(I_{2},I_{2})

e3=e~e2=(1,1)~((110011),(110011))e^{3}=e\widetilde{\otimes}e^{2}=(1,1)\widetilde{\otimes}\left(\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right),\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right)\right)
=(1(110011)001(110011)),(1(110011)001(110011))=(I4,I4)=\left(\begin{matrix}1\otimes\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right)&0\\ 0&1\otimes\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right)\end{matrix}\right),\left(\begin{matrix}1\otimes\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right)&0\\ 0&1\otimes\left(\begin{matrix}1\otimes 1&0\\ 0&1\otimes 1\\ \end{matrix}\right)\end{matrix}\right)=(I_{4},I_{4})

It is easy to see that in general, en=(I2n1,I2n1)e^{n}=(I_{2^{n-1}},I_{2^{n-1}}).
We give a notation before defining morphisms between two objects of 𝒯\mathcal{T}.

Notations 4.1.

We will denote by 0n,m0_{n,m} the zero matrix of size n×mn\times m whenever there would be a risk of confusion on the size of the zero matrix in the context under consideration. Otherwise, we will simply write 0.

\bullet Morphisms of 𝒯\mathcal{T} are defined as in MF(1)MF(1) (cf. subsection 3.1), but with some restrictions. We now define what a morphism is in 𝒯\mathcal{T}.
Discussion \sharp:
First recall that a permutation matrix is a square matrix obtained from the same size identity matrix by a permutation of rows.
For m,p{0}m,p\in\mathbb{N}-\{0\}, recall that a morphism emepe^{m}\rightarrow e^{p} in MF(1)MF(1) is a pair of matrices (δ,β)(\delta,\beta) such that the following diagram commutes:

K[[x]]2m1\textstyle{K[[x]]^{2^{m-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2m1\scriptstyle{I_{2^{m-1}}}δ\scriptstyle{\delta}K[[x]]2m1\textstyle{K[[x]]^{2^{m-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}I2m1\scriptstyle{I_{2^{m-1}}}K[[x]]2m1\textstyle{K[[x]]^{2^{m-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ(")\scriptstyle{\delta\;\;\;\;\;\;\;\;\;\;(\bigstar")}K[[x]]2p1\textstyle{K[[x]]^{2^{p-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2p1\scriptstyle{I_{2^{p-1}}}K[[x]]2p1\textstyle{K[[x]]^{2^{p-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2p1\scriptstyle{I_{2^{p-1}}}K[[x]]2p1\textstyle{K[[x]]^{2^{p-1}}}

That is,

(S){δI2m1=I2p1βI2p1δ=βI2m1(S)\begin{cases}\delta I_{2^{m-1}}=I_{2^{p-1}}\beta\\ I_{2^{p-1}}\delta=\beta I_{2^{m-1}}\end{cases}

It follows from (S)(S), that a morphism emepe^{m}\rightarrow e^{p} in MF(1)MF(1) is a pair of matrices (δ,β)(\delta,\beta) with δ=β\delta=\beta. This does not impose any restrictions on the entries of δ\delta or β\beta, the entries could be anything provided we have the equality δ=β\delta=\beta.

But, we define a morphism emepe^{m}\rightarrow e^{p} in 𝒯\mathcal{T} to be a pair of matrices (δ,β)(\delta,\beta) such that δ=β\delta=\beta is a (1,0)(1,0)-matrix of size 2p1×2m12^{p-1}\times 2^{m-1} with at most one nonzero entry in each row and each column. This restriction will ensure that the composition of two morphisms in 𝒯\mathcal{T} is again a morphism in 𝒯\mathcal{T}.
Thus, for example we could have the following values of δ\delta and β\beta for the pair (δ,β)(\delta,\beta) to be a morphism in 𝒯\mathcal{T}:

δ=β={(I2p1,02p1,2m12p1),ifm>p(I2m102p12m1,2m1),ifm<pZifm=pwhereZisa 2m1×2m1permutationmatrix\delta=\beta=\begin{cases}(I_{2^{p-1}},0_{2^{p-1},2^{m-1}-2^{p-1}}),\,if\,m>p\\ \begin{pmatrix}I_{2^{m-1}}\\ 0_{2^{p-1}-2^{m-1},2^{m-1}}\end{pmatrix},\,if\,m<p\\ Z\,if\,m=p\,where\,Z\,is\,a\,2^{m-1}\times 2^{m-1}\,permutation\,matrix\end{cases}
From the twin square diagram "\bigstar", it is clear that δ\delta and β\beta should both be of size 2p1×2m12^{p-1}\times 2^{m-1}. The fact that we actually have a morphism from eme^{m} to epe^{p} for the above values of δ=β\delta=\beta is obvious from diagram "\bigstar".
Discussion \sharp actually gives us a sufficient condition on a pair (δ,β)(\delta,\beta) to be a nonzero morphism in 𝒯\mathcal{T}.

It is not difficult to see that 𝒯\mathcal{T} is a subcategory of MF(1)MF(1).
In fact, for every pair of morphisms ζ\zeta and ζ\zeta^{\prime} in hom(𝒯)hom(\mathcal{T}), the composite ζζ\zeta\circ\zeta^{\prime} is in hom(𝒯)hom(\mathcal{T}) whenever it is defined. In fact, ζ\zeta and ζ\zeta^{\prime} by definition are pairs of (1,0)(1,0)-matrices such that in each matrix; each column and each row has at most one nonzero entry. It then follows that the composition of such matrices will yield another (1,0)(1,0)-matrix in which each column and each row would have at most one nonzero entry, whence we will still have a morphism of 𝒯\mathcal{T}.

Moreover, 𝒯\mathcal{T} is a one-step connected category because between any two objects of 𝒯\mathcal{T} say eme^{m} and epe^{p}, there exists a nonzero morphism as can be seen from discussion \sharp.

We now proceed to prove that 𝒯\mathcal{T} is a semi-unital semi-monoidal category.
\bullet We first prove that (𝒯,~)(\mathcal{T},\widetilde{\otimes}) is a semi-monoidal category (cf. definition 2.3):
- The fact that ~:MF(1)×MF(1)MF(1)\widetilde{\otimes}:MF(1)\times MF(1)\rightarrow MF(1) is a bifunctor follows from theorem 3.1 [8] by replacing ff and gg by the constant power series 11 and by letting x=yx=y.
- There is a natural isomorphism α\alpha from the functor (()~())~():MF(1)×MF(1)×MF(1)(MF(1)×MF(1))×MF(1)((-)\widetilde{\otimes}(-))\widetilde{\otimes}(-):MF(1)\times MF(1)\times MF(1)\rightarrow(MF(1)\times MF(1))\times MF(1) to the functor ()~(()~()):MF(1)×MF(1)×MF(1)MF(1)×(MF(1)×MF(1))(-)\widetilde{\otimes}((-)\widetilde{\otimes}(-)):MF(1)\times MF(1)\times MF(1)\rightarrow MF(1)\times(MF(1)\times MF(1)) with components αa,b,c:(a~b)~ca~(b~c)\alpha_{a,b,c}:(a\widetilde{\otimes}b)\widetilde{\otimes}c\rightarrow a\widetilde{\otimes}(b\widetilde{\otimes}c), where a,bandca,b\,and\,c are matrix factorizations of 11 in 𝒯\mathcal{T}.
Let a,bc,a,b,andca,b\,c,a^{\prime},b^{\prime},and\,c^{\prime} be objects of 𝒯\mathcal{T}. Let f:aaf:a\rightarrow a^{\prime}, g:bbg:b\rightarrow b^{\prime} and h:cch:c\rightarrow c^{\prime} be maps in 𝒯\mathcal{T}. We show that the following diagram commutes:

(a~b)~c\textstyle{(a\widetilde{\otimes}b)\widetilde{\otimes}c\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,b,c\scriptstyle{\alpha_{a,b,c}}(f~g)~h\scriptstyle{(f\widetilde{\otimes}g)\widetilde{\otimes}h}a~(b~c)\textstyle{a\widetilde{\otimes}(b\widetilde{\otimes}c)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~(g~h)\scriptstyle{f\widetilde{\otimes}(g\widetilde{\otimes}h)}(a~b)~c\textstyle{(a^{\prime}\widetilde{\otimes}b^{\prime})\widetilde{\otimes}c^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,b,c\scriptstyle{\alpha_{a^{\prime},b^{\prime},c^{\prime}}}a~(b~c)\textstyle{a^{\prime}\widetilde{\otimes}(b^{\prime}\widetilde{\otimes}c^{\prime})}

i.e., f~(g~h)αa,b,c=αa,b,c(f~g)~hf\widetilde{\otimes}(g\widetilde{\otimes}h)\circ\alpha_{a,b,c}=\alpha_{a^{\prime},b^{\prime},c^{\prime}}\circ(f\widetilde{\otimes}g)\widetilde{\otimes}h (E)\cdots(E^{\prime})
In fact, the matrices representing αa,b,c\alpha_{a,b,c} and αa,b,c\alpha_{a^{\prime},b^{\prime},c^{\prime}} are identity matrices. Besides, the tensor product of maps is associative. Thus, (E)(E^{\prime}) holds. That is α\alpha is a natural transformation. Moreover, for all a,ba,b and cc; αa,b,c\alpha_{a,b,c} is an equality and so, it is an isomorphism. Hence, α\alpha is a natural isomorphism.
Next, let us show that the pentagonal diagram of definition 2.3 commutes for all a,b,c,dMF(1)a,b,c,d\,\in\,MF(1)
a~(b~(c~d))\textstyle{a\widetilde{\otimes}(b\widetilde{\otimes}(c\widetilde{\otimes}d))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1a~α\scriptstyle{1_{a}\widetilde{\otimes}\alpha}α\scriptstyle{\alpha}a~((b~c)~d)\textstyle{a\widetilde{\otimes}((b\widetilde{\otimes}c)\widetilde{\otimes}d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(a~b)~(c~d)\textstyle{(a\widetilde{\otimes}b)\widetilde{\otimes}(c\widetilde{\otimes}d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(a~(b~c))~d\textstyle{(a\widetilde{\otimes}(b\widetilde{\otimes}c))\widetilde{\otimes}d\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α~1d\scriptstyle{\alpha\widetilde{\otimes}1_{d}}((a~b)~c)~d\textstyle{((a\widetilde{\otimes}b)\widetilde{\otimes}c)\widetilde{\otimes}d}

Since all the maps linking the vertices of the pentagon are identity maps, this diagram must commute. In fact, we know that α\alpha (the associator) is an identity map. Moreover, since the pair of matrices making up α\alpha are identity matrices, it follows from the definition 3.6 (of the multiplicative tensor product of two maps) that 1a~α1_{a}\widetilde{\otimes}\alpha and α~1d\alpha\widetilde{\otimes}1_{d} are also identity maps.

Therefore, 𝒯\mathcal{T} is a semi-monoidal category.

\bullet Next, we prove that 𝒯\mathcal{T} is a semi-unital semi-monoidal category. To that end, we need to find a semi-unit in the semi-monoidal category 𝒯\mathcal{T}.
Claim: e=(1,1)e=(1,1) is a semi-unit in 𝒯\mathcal{T}.
From the definition of a semi-unit (cf. definition 2.6), we need to find a natural transformation γ:()=GF=e~()\gamma:(-)=G\rightarrow F=e\widetilde{\otimes}(-), where G is the identity endofunctor on 𝒯\mathcal{T} and FF is an endofunctor on 𝒯\mathcal{T}, such that F(a)=e~aF(a)=e\widetilde{\otimes}a. Components of γ\gamma are:
γa:ae~a\gamma_{a}:a\rightarrow e\widetilde{\otimes}a, where a=ep=(ϕ,ψ)a=e^{p}=(\phi,\psi) is an object of 𝒯\mathcal{T} of size n1n_{1}, that is ϕ=I2p1=ψ\phi=I_{2^{p-1}}=\psi with n1=2p1n_{1}=2^{p-1}. We have: e~a=([I2p100I2p1],[I2p100I2p1])=(I2p,I2p)e\widetilde{\otimes}a=\left(\begin{bmatrix}I_{2^{p-1}}&0\\ 0&I_{2^{p-1}}\end{bmatrix},\begin{bmatrix}I_{2^{p-1}}&0\\ 0&I_{2^{p-1}}\end{bmatrix}\right)=(I_{2^{p}},I_{2^{p}}) is of size 2p=2n12^{p}=2n_{1}.
The family of morphisms γ\gamma should satisfy the following two requirements:

  1. 1.

    For each aOb(𝒯)a\in\,Ob(\mathcal{T}), γa\gamma_{a} should be a morphism in 𝒯\mathcal{T}.
    Since aa and e~ae\widetilde{\otimes}a are objects of 𝒯\mathcal{T} which is a one-step connected category, we let γa\gamma_{a} be the nonzero morphism between aa and e~ae\widetilde{\otimes}a such that: γa=(δ,β)=(δ,δ)=((In1,0)t,(In1,0)t)\gamma_{a}=(\delta^{\prime},\beta^{\prime})=(\delta^{\prime},\delta^{\prime})=((I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}), where tt is the operation of taking the transpose, 0 is the zero n1×n1n_{1}\times n_{1} matrix. γa\gamma_{a} is clearly a morphism in 𝒯\mathcal{T} as discussed under discussion \sharp.

  2. 2.

    Naturality of γ\gamma:
    Let b=(ϕ,ψ)b=(\phi^{\prime},\psi^{\prime}) be a matrix factorization in 𝒯\mathcal{T} of size n2n_{2} and let μ=(αμ,βμ):ab\mu=(\alpha_{\mu},\beta_{\mu}):a\rightarrow b be a map of matrix factorizations. It is easy to see that αμ\alpha_{\mu} and βμ\beta_{\mu} are each of size n2×n1n_{2}\times n_{1}. The following diagram should commute:

    a\textstyle{a\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γa\scriptstyle{\gamma_{a}}μ\scriptstyle{\mu}e~a\textstyle{e\widetilde{\otimes}a\ignorespaces\ignorespaces\ignorespaces\ignorespaces}e~μ\scriptstyle{e\widetilde{\otimes}\mu}b\textstyle{b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γb\scriptstyle{\gamma_{b}}e~b\textstyle{e\widetilde{\otimes}b}

    i.e., e~μγa=γbμe\widetilde{\otimes}\mu\circ\gamma_{a}=\gamma_{b}\circ\mu (E′′)\cdots(E^{\prime\prime})
    We know that e~ae\widetilde{\otimes}a is of size 2n12n_{1} since aa is of size n1n_{1}. We also know that γb=[(In2,0)t,(In2,0)t]\gamma_{b}=[(I_{n_{2}},0)^{t},(I_{n_{2}},0)^{t}]. Now, by definition of composition of two morphisms in 𝒯\mathcal{T}, the right hand side of equality (E′′)(E^{\prime\prime}) becomes:
    γbμ=[(In2,0)t,(In2,0)t](αμ,βμ)=[(In2,0)tαμ,(In2,0)tβμ]=[(αμ,0)t,(βμ,0)t]\gamma_{b}\circ\mu=[(I_{n_{2}},0)^{t},(I_{n_{2}},0)^{t}]\circ(\alpha_{\mu},\beta_{\mu})=[(I_{n_{2}},0)^{t}\alpha_{\mu},(I_{n_{2}},0)^{t}\beta_{\mu}]=[(\alpha_{\mu},0)^{t},(\beta_{\mu},0)^{t}]\cdots\natural^{\prime}
    0 in [(αμ,0)t,(βμ,0)t][(\alpha_{\mu},0)^{t},(\beta_{\mu},0)^{t}] is the n2×n1n_{2}\times n_{1} zero matrix.
    As for the left hand side of (E′′)(E^{\prime\prime}), first recall that γa=[(In1,0)t,(In1,0)t]\gamma_{a}=[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}], (where 0 is the zero n1×n1n_{1}\times n_{1} matrix) and by definition 3.5 of the multiplicative tensor product, we know that e~μ=(1,1)~(αμ,βμ)=([1αμ001αμ],[1βμ001βμ])=([αμ00αμ],[βμ00βμ])e\widetilde{\otimes}\mu=(1,1)\widetilde{\otimes}(\alpha_{\mu},\beta_{\mu})=(\begin{bmatrix}1\otimes\alpha_{\mu}&0\\ 0&1\otimes\alpha_{\mu}\end{bmatrix},\begin{bmatrix}1\otimes\beta_{\mu}&0\\ 0&1\otimes\beta_{\mu}\end{bmatrix})=(\begin{bmatrix}\alpha_{\mu}&0\\ 0&\alpha_{\mu}\end{bmatrix},\begin{bmatrix}\beta_{\mu}&0\\ 0&\beta_{\mu}\end{bmatrix})
    So, e~μγa=([αμ00αμ],[βμ00βμ])[(In1,0)t,(In1,0)t]=([αμ00αμ](In1,0)t,[βμ00βμ](In1,0)t)=[(αμ,0)t,(βμ,0)t]e\widetilde{\otimes}\mu\circ\gamma_{a}=(\begin{bmatrix}\alpha_{\mu}&0\\ 0&\alpha_{\mu}\end{bmatrix},\begin{bmatrix}\beta_{\mu}&0\\ 0&\beta_{\mu}\end{bmatrix})\circ[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}]\\ =(\begin{bmatrix}\alpha_{\mu}&0\\ 0&\alpha_{\mu}\end{bmatrix}(I_{n_{1}},0)^{t},\begin{bmatrix}\beta_{\mu}&0\\ 0&\beta_{\mu}\end{bmatrix}(I_{n_{1}},0)^{t})=[(\alpha_{\mu},0)^{t},(\beta_{\mu},0)^{t}]\cdots\natural\natural^{\prime}.
    From \natural^{\prime} and \natural\natural^{\prime}, we see that equality (E′′)(E^{\prime\prime}) holds.

Hence γ\gamma is a natural transformation.

The next step towards proving that 𝒯\mathcal{T} is a semi-unital semi-monoidal category is to prove that there is an isomorphism of functors e~()()~ee\widetilde{\otimes}(-)\cong(-)\widetilde{\otimes}e, i.e., there is a natural isomorphism la:e~(a)(a)~el_{a}:e\widetilde{\otimes}(a)\cong(a)\widetilde{\otimes}e with inverse qaq_{a}, for each object aa of 𝒯\mathcal{T} such that le=qel_{e}=q_{e} and the following diagrams are commutative for all objects aa and bb of 𝒯\mathcal{T}.

(e~a)~b\textstyle{(e\widetilde{\otimes}a)\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αe,a,b\scriptstyle{\alpha_{e,a,b}}la~b\scriptstyle{l_{a}\widetilde{\otimes}b}e~(a~b)\textstyle{e\widetilde{\otimes}(a\widetilde{\otimes}b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}la~b\scriptstyle{l_{a\widetilde{\otimes}b}}(a~b)~e\textstyle{(a\widetilde{\otimes}b)\widetilde{\otimes}e\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,b,e(1)\scriptstyle{\alpha_{a,b,e}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)}(a~e)~b\textstyle{(a\widetilde{\otimes}e)\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,e,b\scriptstyle{\alpha_{a,e,b}}a~(e~b)\textstyle{a\widetilde{\otimes}(e\widetilde{\otimes}b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}a~lb\scriptstyle{a\widetilde{\otimes}l_{b}}a~(b~e)\textstyle{a\widetilde{\otimes}(b\widetilde{\otimes}e)}
a~b\textstyle{a\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γa~b\scriptstyle{\gamma_{a}\widetilde{\otimes}b}γa~b\scriptstyle{\gamma_{a\widetilde{\otimes}b}}(e~a)~b\textstyle{(e\widetilde{\otimes}a)\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(2)\scriptstyle{\cong\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}e~(a~b)\textstyle{e\widetilde{\otimes}(a\widetilde{\otimes}b)}
a~b\textstyle{a\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}a~γb\scriptstyle{a\widetilde{\otimes}\gamma_{b}}γa~b\scriptstyle{\gamma_{a\widetilde{\otimes}b}}a~(e~b)\textstyle{a\widetilde{\otimes}(e\widetilde{\otimes}b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(3)\scriptstyle{\cong\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)}e~(a~b)\textstyle{e\widetilde{\otimes}(a\widetilde{\otimes}b)}

Before we define lal_{a}, observe that e~(a)=(a)~ee\widetilde{\otimes}(a)=(a)\widetilde{\otimes}e.
\clubsuit We define la:e~(a)(a)~el_{a}:e\widetilde{\otimes}(a)\rightarrow(a)\widetilde{\otimes}e to be the pair of matrices (I2n1,I2n1)=(I2p,I2p)(I_{2n_{1}},I_{2n_{1}})=(I_{2^{p}},I_{2^{p}}) where a=epa=e^{p} is of size n1n_{1}. From discussion \sharp, it follows that lal_{a} is a morphism in 𝒯\mathcal{T}.
\clubsuit Naturality of ll:

Let b=(ϕ,ψ)b=(\phi^{\prime},\psi^{\prime}) be a matrix factorization of size n2n_{2} and let μ=(αμ,βμ):ab\mu^{\prime}=(\alpha_{\mu^{\prime}},\beta_{\mu^{\prime}}):a\rightarrow b be a map of matrix factorizations. It is easy333By drawing the twin diagram that has to commute with (αμ,βμ)(\alpha_{\mu^{\prime}},\beta_{\mu^{\prime}}), we see the sizes of αμ\alpha_{\mu^{\prime}} and βμ\beta_{\mu^{\prime}}. to see that αμ\alpha_{\mu^{\prime}} and βμ\beta_{\mu^{\prime}} are each of size n2×n1n_{2}\times n_{1}. The following diagram should commute:

e~a\textstyle{e\widetilde{\otimes}a\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}la\scriptstyle{l_{a}}e~μ\scriptstyle{e\widetilde{\otimes}\mu^{\prime}}a~e\textstyle{a\widetilde{\otimes}e\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ~e\scriptstyle{\mu^{\prime}\widetilde{\otimes}e}e~b\textstyle{e\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}lb\scriptstyle{l_{b}}b~e\textstyle{b\widetilde{\otimes}e}

i.e., μ~ela=lbe~μ\mu^{\prime}\widetilde{\otimes}e\circ l_{a}=l_{b}\circ e\widetilde{\otimes}\mu^{\prime} (E′′′)\cdots(E^{\prime\prime\prime})
Since lal_{a} and lbl_{b} are just pairs of identity matrices, it suffices to show that μ~e=e~μ\mu^{\prime}\widetilde{\otimes}e=e\widetilde{\otimes}\mu^{\prime}.
By definition 3.5 of the multiplicative tensor product, we know that e~μ=(1,1)~(αμ,βμ)=([1αμ001αμ],[1βμ001βμ])=([αμ00αμ],[βμ00βμ])e\widetilde{\otimes}\mu^{\prime}=(1,1)\widetilde{\otimes}(\alpha_{\mu^{\prime}},\beta_{\mu^{\prime}})=(\begin{bmatrix}1\otimes\alpha_{\mu^{\prime}}&0\\ 0&1\otimes\alpha_{\mu^{\prime}}\end{bmatrix},\begin{bmatrix}1\otimes\beta_{\mu^{\prime}}&0\\ 0&1\otimes\beta_{\mu^{\prime}}\end{bmatrix})=(\begin{bmatrix}\alpha_{\mu^{\prime}}&0\\ 0&\alpha_{\mu^{\prime}}\end{bmatrix},\begin{bmatrix}\beta_{\mu^{\prime}}&0\\ 0&\beta_{\mu^{\prime}}\end{bmatrix})
And we also have by definition 3.4 of the multiplicative tensor product, that
μ~e=(αμ,βμ)~(1,1)=([αμ100αμ1],[βμ100βμ1])=([αμ00αμ],[βμ00βμ]).\mu^{\prime}\widetilde{\otimes}e=(\alpha_{\mu^{\prime}},\beta_{\mu^{\prime}})\widetilde{\otimes}(1,1)=(\begin{bmatrix}\alpha_{\mu^{\prime}}\otimes 1&0\\ 0&\alpha_{\mu^{\prime}}\otimes 1\end{bmatrix},\begin{bmatrix}\beta_{\mu^{\prime}}\otimes 1&0\\ 0&\beta_{\mu^{\prime}}\otimes 1\end{bmatrix})=(\begin{bmatrix}\alpha_{\mu^{\prime}}&0\\ 0&\alpha_{\mu^{\prime}}\end{bmatrix},\begin{bmatrix}\beta_{\mu^{\prime}}&0\\ 0&\beta_{\mu^{\prime}}\end{bmatrix}).
Thus e~μ=μ~ee\widetilde{\otimes}\mu^{\prime}=\mu^{\prime}\widetilde{\otimes}e, so ll is a natural transformation.
\clubsuit la:e~(a)(a)~el_{a}:e\widetilde{\otimes}(a)\cong(a)\widetilde{\otimes}e is a natural isomorphism. In fact, l:e~(a)=(a)~el:e\widetilde{\otimes}(a)=(a)\widetilde{\otimes}e and its inverse q:(a)~e=e~(a)q:(a)\widetilde{\otimes}e=e\widetilde{\otimes}(a) is clearly such that le=qel_{e}=q_{e}.

Commutativity of diagrams (1),(2)and(3)(1),(2)\,and\,(3):
For diagram (1)(1), it would commute if αa,b,ela~bαe,a,b=a~lbαa,e,bla~b()\alpha_{a,b,e}\circ l_{a\widetilde{\otimes}b}\circ\alpha_{e,a,b}=a\widetilde{\otimes}l_{b}\circ\alpha_{a,e,b}\circ l_{a}\widetilde{\otimes}b\,\,\,\,\,\,\,\,\,\,\,\,\cdots(\flat).
We show that all the maps involved in equality ()(\flat) are identities. For all objects x,y,zinOb(𝒯)x,y,z\,in\,Ob(\mathcal{T}), we clearly have by the definitions of αx,y,z\alpha_{x,y,z} and lxl_{x} that they are identity maps. We now show that the other maps involved in diagram (1)(1) are identity maps.
Since aa is of size n1n_{1}, we have la=(I2n1,I2n1)l_{a}=(I_{2n_{1}},I_{2n_{1}}). Let b=(ϕ,ψ)b=(\phi^{\prime},\psi^{\prime}) be of size n2n_{2}. By definition 3.4, la~b=(I2n1,I2n1)~(ϕ,ψ)=([I2n1In200I2n1In2],[I2n1In200I2n1In2])=([I2n1n200I2n1n2],[I2n1n200I2n1n2])=(I4n1n2,I4n1n2)l_{a}\widetilde{\otimes}b=(I_{2n_{1}},I_{2n_{1}})\widetilde{\otimes}(\phi^{\prime},\psi^{\prime})=(\begin{bmatrix}I_{2n_{1}}\otimes I_{n_{2}}&0\\ 0&I_{2n_{1}}\otimes I_{n_{2}}\end{bmatrix},\begin{bmatrix}I_{2n_{1}}\otimes I_{n_{2}}&0\\ 0&I_{2n_{1}}\otimes I_{n_{2}}\end{bmatrix})=(\begin{bmatrix}I_{2n_{1}n_{2}}&0\\ 0&I_{2n_{1}n_{2}}\end{bmatrix},\begin{bmatrix}I_{2n_{1}n_{2}}&0\\ 0&I_{2n_{1}n_{2}}\end{bmatrix})=(I_{4n_{1}n_{2}},I_{4n_{1}n_{2}})\cdots{\ddagger}
Hence la~bl_{a}\widetilde{\otimes}b is an identity map as expected.

Similarly using definition 3.5, we prove that a~lba\widetilde{\otimes}l_{b} is an identity map. Let a=(ϕ,ψ)a=(\phi,\psi) be of size n1n_{1} and bb be as above. Then, a~lb=(ϕ,ψ)~(I2n2,I2n2)=([In1I2n200In1I2n2],[In1I2n200In1I2n2])=([I2n1n200I2n1n2],[I2n1n200I2n1n2])=(I4n1n2,I4n1n2)a\widetilde{\otimes}l_{b}=(\phi,\psi)\widetilde{\otimes}(I_{2n_{2}},I_{2n_{2}})\\ =(\begin{bmatrix}I_{n_{1}}\otimes I_{2n_{2}}&0\\ 0&I_{n_{1}}\otimes I_{2n_{2}}\end{bmatrix},\begin{bmatrix}I_{n_{1}}\otimes I_{2n_{2}}&0\\ 0&I_{n_{1}}\otimes I_{2n_{2}}\end{bmatrix})=(\begin{bmatrix}I_{2n_{1}n_{2}}&0\\ 0&I_{2n_{1}n_{2}}\end{bmatrix},\begin{bmatrix}I_{2n_{1}n_{2}}&0\\ 0&I_{2n_{1}n_{2}}\end{bmatrix})=(I_{4n_{1}n_{2}},I_{4n_{1}n_{2}})\cdots{\ddagger}^{\prime}

{\ddagger} and {\ddagger}^{\prime} show that a~lb=la~ba\widetilde{\otimes}l_{b}=l_{a}\widetilde{\otimes}b.
It is easy to see that all the other maps involved in diagram (1)(1) are equal to (I4n1n2,I4n1n2)(I_{4n_{1}n_{2}},I_{4n_{1}n_{2}}).
So diagram (1)(1) is commutative.

Next, we show that diagram (2)(2) commutes. To this end, we need to find an isomorphism ζ:(e~a)~be~(a~b)\zeta:(e\widetilde{\otimes}a)\widetilde{\otimes}b\rightarrow e\widetilde{\otimes}(a\widetilde{\otimes}b), such that ζγa~b=γa~b\zeta\circ\gamma_{a}\widetilde{\otimes}b=\gamma_{a\widetilde{\otimes}b}.
Now, we know that γa=[(In1,0)t,(In1,0)t]\gamma_{a}=[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}], where 0 is the n1×n1n_{1}\times n_{1} zero matrix and b=(ϕ,ψ)b=(\phi^{\prime},\psi^{\prime}) is of size n2n_{2}. Hence by definition 3.4 γa~b=[(In1,0)t,(In1,0)t]~(ϕ,ψ)=([(In1,0n1,n1)tIn202n1n2,n1n202n1n2,n1n2(In1,0n1,n1)tIn2],[(In1,0n1,n1)tIn202n1n2,n1n202n1n2,n1n2(In1,0n1,n1)tIn2])=([(In1n2,0n1n2)t02n1n2,n1n202n1n2,n1n2(In1n2,0n1n2)t],[(In1n2,0n1n2)t02n1n2,n1n202n1n2,n1n2(In1n2,0n1n2)t]).\gamma_{a}\widetilde{\otimes}b=[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}]\widetilde{\otimes}(\phi^{\prime},\psi^{\prime})=(\begin{bmatrix}(I_{n_{1}},0_{n_{1},n_{1}})^{t}\otimes I_{n_{2}}&0_{2n_{1}n_{2},n_{1}n_{2}}\\ 0_{2n_{1}n_{2},n_{1}n_{2}}&(I_{n_{1}},0_{n_{1},n_{1}})^{t}\otimes I_{n_{2}}\end{bmatrix},\begin{bmatrix}(I_{n_{1}},0_{n_{1},n_{1}})^{t}\otimes I_{n_{2}}&0_{2n_{1}n_{2},n_{1}n_{2}}\\ 0_{2n_{1}n_{2},n_{1}n_{2}}&(I_{n_{1}},0_{n_{1},n_{1}})^{t}\otimes I_{n_{2}}\end{bmatrix})=\\ (\begin{bmatrix}(I_{n_{1}n_{2}},0_{n_{1}n_{2}})^{t}&0_{2n_{1}n_{2},n_{1}n_{2}}\\ 0_{2n_{1}n_{2},n_{1}n_{2}}&(I_{n_{1}n_{2}},0_{n_{1}n_{2}})^{t}\end{bmatrix},\begin{bmatrix}(I_{n_{1}n_{2}},0_{n_{1}n_{2}})^{t}&0_{2n_{1}n_{2},n_{1}n_{2}}\\ 0_{2n_{1}n_{2},n_{1}n_{2}}&(I_{n_{1}n_{2}},0_{n_{1}n_{2}})^{t}\end{bmatrix}). \cdots{\dagger}
Next, since a~ba\widetilde{\otimes}b is an object of size 2n1n22n_{1}n_{2}, we obtain from the way γ\gamma is defined that γa~b=((I2n1n2,02n1n2)t,(I2n1n2,02n1n2)t\gamma_{a\widetilde{\otimes}b}=((I_{2n_{1}n_{2}},0_{2n_{1}n_{2}})^{t},(I_{2n_{1}n_{2}},0_{2n_{1}n_{2}})^{t}) \cdots{\dagger}^{\prime}
From {\dagger} and {\dagger}^{\prime}, we see that γa~b\gamma_{a\widetilde{\otimes}b} and γa~b\gamma_{a}\widetilde{\otimes}b are both (1,0)(1,0)-matrices with the same number of rows and columns. Moreover, they have the same number of 11s and each of these 11s is the only nonzero entry in its row and in its column. Simply put, the matrix from γa~b\gamma_{a\widetilde{\otimes}b} is (row-)permutation equivalent to the matrix in γa~b\gamma_{a}\widetilde{\otimes}b. That is the rows have simply been interchanged.
Hence, there exists a 4n1n2×4n1n24n_{1}n_{2}\times 4n_{1}n_{2} permutation matrix PP such that P[(In1n2,0n1n2)t02n1n2,n1n202n1n2,n1n2(In1n2,0n1n2)t]=(I2n1n2,02n1n2)tP\begin{bmatrix}(I_{n_{1}n_{2}},0_{n_{1}n_{2}})^{t}&0_{2n_{1}n_{2},n_{1}n_{2}}\\ 0_{2n_{1}n_{2},n_{1}n_{2}}&(I_{n_{1}n_{2}},0_{n_{1}n_{2}})^{t}\end{bmatrix}=(I_{2n_{1}n_{2}},0_{2n_{1}n_{2}})^{t}.
PP being a permutation matrix is invertible and its inverse is PtP^{t}.
Now that we know PP exists and is invertible, we need to check if the pair of matrices (P,P)(P,P) is a map from (e~a)~b(e\widetilde{\otimes}a)\widetilde{\otimes}b to e~(a~b)e\widetilde{\otimes}(a\widetilde{\otimes}b) in 𝒯\mathcal{T} and if the pair of matrices (P1,P1)(P^{-1},P^{-1}) is a map from e~(a~b)e\widetilde{\otimes}(a\widetilde{\otimes}b) to (e~a)~b(e\widetilde{\otimes}a)\widetilde{\otimes}b.
We do it for (P,P)(P,P), the case of (P1,P1)(P^{-1},P^{-1}) is completely similar.
Once more, aa and bb are objects of 𝒯\mathcal{T}. So, we can let a=epa=e^{p} and b=emb=e^{m}. Observe that e~(a~b)=(e~a)~b=(e~ep)~em=e1+p+m=(I21+p+m1,I21+p+m1)=(I2p+m,I2p+m)e\widetilde{\otimes}(a\widetilde{\otimes}b)=(e\widetilde{\otimes}a)\widetilde{\otimes}b=(e\widetilde{\otimes}e^{p})\widetilde{\otimes}e^{m}=e^{1+p+m}=(I_{2^{1+p+m-1}},I_{2^{1+p+m-1}})=(I_{2^{p+m}},I_{2^{p+m}}). Let r=2p+m.r=2^{p+m}.
All we need check now to conclude that (P,P)(P,P) is a map in 𝒯\mathcal{T} is that the following diagram commutes:

K[[x]]r\textstyle{K[[x]]^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ir\scriptstyle{I_{r}}P\scriptstyle{P}K[[x]]r\textstyle{K[[x]]^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P\scriptstyle{P}Ir\scriptstyle{I_{r}}K[[x]]r\textstyle{K[[x]]^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P()\scriptstyle{P\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\star\star)}K[[x]]r\textstyle{K[[x]]^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ir\scriptstyle{I_{r}}K[[x]]r\textstyle{K[[x]]^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ir\scriptstyle{I_{r}}K[[x]]r\textstyle{K[[x]]^{r}}

Now, this diagram clearly commutes, so we can take ζ:=(P,P)\zeta:=(P,P) and ζ1:=(P1,P1)=(Pt,Pt)\zeta^{-1}:=(P^{-1},P^{-1})=(P^{t},P^{t}).
Therefore there exists an isomorphism namely ζ\zeta such that diagram (2)(2) commutes.
A small remark: The foregoing proof for the commutativity of diagram (2)(2) helps understand the motivation behind the choice of the objects of 𝒯\mathcal{T}.
In fact, if objects were chosen arbitrarily say pairs of matrices (M,M1)(M,M^{-1}), as we showed in remark 4.1, the twin diagram ()(\star\star) above will commute only if PM=MPPM=MP. But as explained in remark 4.1, this is not possible as on the left side of the equality, the rows of MM are permuted and on the right side the columns are permuted, since PP is a permutation matrix.
Moreover, though diagram ()(\star\star) commutes even if PP is replaced with any matrix, what we need is a matrix that will make diagram (2)(2) commute and that matrix should also be invertible because we need an isomorphism in diagram (2)(2).

The commutativity of diagram (3)(3) is proved in a manner similar to the proof given for the commutativity of diagram (2)(2).
So ee is a semi-unit in (𝒯,~)(\mathcal{T},\widetilde{\otimes}).
Conclusion: (𝒯,~)(\mathcal{T},\widetilde{\otimes}) is a one-step connected semi-unital semi-monoidal subcategory of MF(1)MF(1). ∎

The above proof works well for 𝒯\mathcal{T} because the objects of 𝒯\mathcal{T} are judiciously chosen so that the pair of matrices that make an object in 𝒯\mathcal{T} is not any kind of matrix and its inverse (in order for the product to yield 11 times the identity matrix of the right size), but they are identity matrices thanks to which diagrams will be commutative. In fact, diagrams (2)(2) and (3)(3) in definition 2.6, commute when aa and bb are objects in 𝒯\mathcal{T}, i.e., of the form ene^{n} for some n{0}n\in\mathbb{N}-\{0\}. But we will see in remark 4.1, that for arbitrary values of aa and bb, diagrams (2)(2) and (3)(3) are not always commutative. This implies that (MF(1),~)(MF(1),\widetilde{\otimes}) is not a semi-unital semi-monoidal category.

Remark 4.1.

We now explain why (MF(1),~)(MF(1),\widetilde{\otimes}) is not a semi-unital semi-monoidal category.

  1. 1.

    We explain that for aOb(MF(1))a\,\in\,Ob(MF(1)) of size n1n_{1}, the only reasonable (nonzero) possible choice for γa:ae~a\gamma_{a}:a\rightarrow e\widetilde{\otimes}a is what we made for the subcategory 𝒯\mathcal{T}, namely γa=(δ,β)=((In1,0)t,(In1,0)t)\gamma_{a}=(\delta^{\prime},\beta^{\prime})=((I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}).
    First of all, observe that considering the definition of morphisms in 𝒯\mathcal{T} (i.e., pairs of (1,0)(1,0)-matrices s.t. each column and each row has at most one nonzero entry), the only possible choice for γa\gamma_{a} in 𝒯\mathcal{T} is the one we made above (cf. theorem 4.1), i.e., γa=((In1,0)t,(In1,0)t)\gamma_{a}=((I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}).
    It is clear that the only candidate to be a semi-unit in 𝒯\mathcal{T} was e=(1,1)e=(1,1). Hence, it is also the only candidate for (MF(1),~)(MF(1),\widetilde{\otimes}) to be semi-unital. This entails that for aa in Ob(MF(1))Ob(MF(1)), the only possible way to define γa\gamma_{a} is γa=((In1,0)t,(In1,0)t)\gamma_{a}=((I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}). Otherwise, e=(1,1)e=(1,1) would no more be a semi-unit in 𝒯\mathcal{T}.

  2. 2.

    Next, we prove that with this choice of γa=((In1,0)t,(In1,0)t)\gamma_{a}=((I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}), the diagram (2)(2) above does not commute in general (i.e., for arbitrary values of aa and bb in Ob(MF(1))Ob(MF(1))). That is,

    a~b\textstyle{a\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γa~b\scriptstyle{\gamma_{a}\widetilde{\otimes}b}γa~b\scriptstyle{\gamma_{a\widetilde{\otimes}b}}(e~a)~b\textstyle{(e\widetilde{\otimes}a)\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(2)\scriptstyle{\cong\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}e~(a~b)\textstyle{e\widetilde{\otimes}(a\widetilde{\otimes}b)}

    does not commute. In fact, we showed in the proof of theorem 4.1 that with γ=((In1,0)t,(In1,0)t)\gamma=((I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}), the matrix constituting the map γa~b\gamma_{a\widetilde{\otimes}b} is permutation equivalent to the matrix constituting the map γa~b\gamma_{a}\widetilde{\otimes}b. Hence, in order to find the desired isomorphism of diagram (2)(2), all we need do is to find a permutation matrix as explained in the proof of theorem 4.1. Now, the catch is that we need to verify that this permutation matrix is actually the matrix of a map e~(a~b)(e~a)~be\widetilde{\otimes}(a\widetilde{\otimes}b)\rightarrow(e\widetilde{\otimes}a)\widetilde{\otimes}b in MF(1)MF(1). It turns out that it is not.
    Suppose we have already found the permutation matrix that enables us to move from the matrix of γa~b\gamma_{a\widetilde{\otimes}b} to the matrix of γa~b\gamma_{a}\widetilde{\otimes}b, call it PP^{\prime}. Now by definition of ~\widetilde{\otimes}, we have e~(a~b)=(e~a)~be\widetilde{\otimes}(a\widetilde{\otimes}b)=(e\widetilde{\otimes}a)\widetilde{\otimes}b which is an object of MF(1)MF(1), so there is a matrix MM such that e~(a~b)=(e~a)~b=(M,M1)e\widetilde{\otimes}(a\widetilde{\otimes}b)=(e\widetilde{\otimes}a)\widetilde{\otimes}b=(M,M^{-1}). Our aim is to show that (P,P):e~(a~b)(e~a)~b(P^{\prime},P^{\prime}):e\widetilde{\otimes}(a\widetilde{\otimes}b)\rightarrow(e\widetilde{\otimes}a)\widetilde{\otimes}b is not a map in MF(1)MF(1) for arbitrary values of aa and bb, because the following diagram cannot commute:

    K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M1\scriptstyle{M^{-1}}P\scriptstyle{P^{\prime}}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P\scriptstyle{P^{\prime}}M\scriptstyle{M}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P\scriptstyle{P^{\prime}}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M1\scriptstyle{M^{-1}}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M\scriptstyle{M}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}}

    For this diagram to commute, we need to have (from the second square) PM=MPP^{\prime}M=MP^{\prime}. Now, we know that PMP^{\prime}M is the matrix obtained from MM by permuting the rows according to the permutation PP^{\prime} and MPMP^{\prime} is the matrix obtained from MM by permuting the columns according to the permutation PP^{\prime}. So, PM=MPP^{\prime}M=MP^{\prime} will be true just in case MM is the identity matrix. Now, MM is not necessarily the identity matrix, for instance if we take a=([4311],[1314])a=(\begin{bmatrix}4&3\\ 1&1\end{bmatrix},\begin{bmatrix}1&-3\\ -1&4\end{bmatrix}) and b=([1001],[1001])b=(\begin{bmatrix}1&0\\ 0&1\end{bmatrix},\begin{bmatrix}1&0\\ 0&1\end{bmatrix})

then M=(1~[4311])~[1001]M=(1\widetilde{\otimes}\begin{bmatrix}4&3\\ 1&1\end{bmatrix})\widetilde{\otimes}\begin{bmatrix}1&0\\ 0&1\end{bmatrix} is clearly not equal to the identity matrix.

Remark 4.2.

(𝒯,~)(\mathcal{T},\widetilde{\otimes}) is not a monoidal category because it has no unit. In fact, the only candidate to be a unit is ee. Now, in order to be a unit, ee needs to first of all be a pseudo-idempotent (cf. remark 2.3). But e=(1,1)e=(1,1) is not even a pseudo-idempotent. We have e2=(1,1)~(1,1)=(I2,I2)e^{2}=(1,1)\widetilde{\otimes}(1,1)=(I_{2},I_{2}).
Let ζ1=(δ1,β1):ee2\zeta_{1}=(\delta_{1},\beta_{1}):e\rightarrow e^{2} and ζ2=(δ2,β2):e2e\zeta_{2}=(\delta_{2},\beta_{2}):e^{2}\rightarrow e. Consider the following situation:

K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}δ1\scriptstyle{\delta_{1}}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β1\scriptstyle{\beta_{1}}1\scriptstyle{1}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ1\scriptstyle{\delta_{1}}K[[x]]2\textstyle{K[[x]]^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2\scriptstyle{I_{2}}K[[x]]2\textstyle{K[[x]]^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2\scriptstyle{I_{2}}K[[x]]2\textstyle{K[[x]]^{2}}
δ2\scriptstyle{\delta_{2}}β2\scriptstyle{\beta_{2}}δ2\scriptstyle{\delta_{2}}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}K[[x]]\textstyle{K[[x]]}

From the discussion we had about the choice of matrices constituting γa\gamma_{a} in remark 4.1, we have only one (nonzero) choice for ζ1\zeta_{1}; namely ζ1=((1,0)t,(1,0)t)\zeta_{1}=((1,0)^{t},(1,0)^{t}) and similarly we have only one way of defining ζ2\zeta_{2}; ζ2=((1,0),(1,0)):e2e\zeta_{2}=((1,0),(1,0)):e^{2}\rightarrow e. Hence, we clearly obtain ζ2ζ1=((1,0)(1,0)t,(1,0)(1,0)t)=(1,1)=ide\zeta_{2}\circ\zeta_{1}=((1,0)(1,0)^{t},(1,0)(1,0)^{t})=(1,1)=id_{e}. Hence, ζ2ζ1=ide\zeta_{2}\circ\zeta_{1}=id_{e}.
But, we do not obtain ζ1ζ2=ide2\zeta_{1}\circ\zeta_{2}=id_{e^{2}}.
In fact, ζ1ζ2=((1,0)t(1,0),(1,0)t(1,0))=([1000][1000])([1001][1001])=ide2\zeta_{1}\circ\zeta_{2}=((1,0)^{t}(1,0),(1,0)^{t}(1,0))=(\begin{bmatrix}1&0\\ 0&0\end{bmatrix}\begin{bmatrix}1&0\\ 0&0\end{bmatrix})\neq(\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\begin{bmatrix}1&0\\ 0&1\end{bmatrix})=id_{e^{2}}

Therefore, there is no isomorphism between ee and e2e^{2}. A consequence of remark 4.2 is that (MF(1),~)(MF(1),\widetilde{\otimes}) is not a monoidal category since the only candidate to be a unit, namely ee is not even a pseudo-idempotent.

Remark 4.3.

Moreover, (𝒯,~)(\mathcal{T},\widetilde{\otimes}) is not a right-monoidal category (cf. definition 2.7) because when trying to verify if the axioms of definition 2.7 hold for 𝒯\mathcal{T}, instead of equalities we obtain maps which are not equal but whose representing matrices are row-permutation equivalent. Let us for example illustrate what we mean with the second axiom (cf. definition 2.7):

αe,a,bγa~b=γa~b(Ax.2)\alpha_{e,a,b}\circ\gamma_{a\widetilde{\otimes}b}=\gamma_{a}\widetilde{\otimes}b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cdots\,\,\,\,\,\,\,\,\,(Ax.2)

where a,ba,b are in Ob(𝒯)Ob(\mathcal{T}), α\alpha is the associator and γ\gamma is the natural transformation defined in the proof of theorem 4.1. If aa and bb are respectively of sizes mm and nn, then by definition of γ\gamma, γa~b=((I2mn,0)t,(I2mn,0)t)\gamma_{a\widetilde{\otimes}b}=((I_{2mn},0)^{t},(I_{2mn},0)^{t}) and since (e~a)~b=e~(a~b)(e\widetilde{\otimes}a)\widetilde{\otimes}b=e\widetilde{\otimes}(a\widetilde{\otimes}b), αe,a,b=(I4mn,I4mn)\alpha_{e,a,b}=(I_{4mn},I_{4mn}) and so the left hand side of (Ax.2)(Ax.2) becomes αe,a,bγa~b=(I4mn(I2mn,0)t,I4mn(I2mn,0)t)=((I2mn,0)t,(I2mn,0)t)(i)\alpha_{e,a,b}\circ\gamma_{a\widetilde{\otimes}b}=(I_{4mn}(I_{2mn},0)^{t},I_{4mn}(I_{2mn},0)^{t})=((I_{2mn},0)^{t},(I_{2mn},0)^{t})\,\,\,\,\,\,\,\,\cdots(i).
Next, by definition 3.4, we compute the right hand side of (Ax.2)(Ax.2) as follows: γa~b=((Im,0)t,(Im,0)t)~b=([(Im,0)tIn00(Im,0)tIn][(Im,0)tIn00(Im,0)tIn])\gamma_{a}\widetilde{\otimes}b=((I_{m},0)^{t},(I_{m},0)^{t})\widetilde{\otimes}b=(\begin{bmatrix}(I_{m},0)^{t}\otimes I_{n}&0\\ 0&(I_{m},0)^{t}\otimes I_{n}\end{bmatrix}\begin{bmatrix}(I_{m},0)^{t}\otimes I_{n}&0\\ 0&(I_{m},0)^{t}\otimes I_{n}\end{bmatrix})
=([(Imn,0)t00(Imn,0)t][(Imn,0)t00(Imn,0)t])(ii)=(\begin{bmatrix}(I_{mn},0)^{t}&0\\ 0&(I_{mn},0)^{t}\end{bmatrix}\begin{bmatrix}(I_{mn},0)^{t}&0\\ 0&(I_{mn},0)^{t}\end{bmatrix})\,\,\,\,\,\,\,\cdots(ii)

The matrices we obtained in (i)(i) and (ii)(ii) are row-permutation equivalent but not equal. This proves that (Ax.2)(Ax.2) does not hold in (𝒯,~)(\mathcal{T},\widetilde{\otimes}), so it is not a right-monoidal category. A direct consequence of this result is that (MF(1),~)(MF(1),\widetilde{\otimes}) is not also a right-monoidal category.

Nevertheless, (MF(1),~)(MF(1),\widetilde{\otimes}) is still a category which is close to being a monoidal category as we shall see (cf. subsection 4.3).

4.3 Another application of ~\widetilde{\otimes}: The category (MF(1),~)(MF(1),\widetilde{\otimes}) is a right pseudo-monoidal category

In this section, we first define what a right pseudo-monoidal category is. We observe that this notion is a generalization of the notion of monoidal category. We exploit the results obtained in the previous sections of this paper to show that the category MF(1)MF(1) is a right pseudo-monoidal category.

First recall that a semi-monoidal category definition 2.3 is one endowed with a bifunctor and a natural isomorphism (called the associator [4]) such that the pentagon diagram (cf. definition 2.3) commutes.

Definition 4.2.

A right pseudo-monoidal category 𝒞=<𝒞,,e,α,λ,ρ>\mathcal{C}=<\mathcal{C},\square,e,\alpha,\lambda,\rho> is a category 𝒞\mathcal{C} which possesses a distinguished element ee, a natural isomorphism α\alpha and two natural retractions λandρ\lambda\,and\,\rho s.t. the following hold:
\bullet There exists a morphism ζ:e2e\zeta:e^{2}\rightarrow e s.t. ζ\zeta has a right inverse.
\bullet α\alpha is a natural isomorphism with components αa,b,c:(ab)ca(bc)\alpha_{a,b,c}:(a\otimes b)\otimes c\rightarrow a\otimes(b\otimes c) such that the following pentagonal diagram

a(b(cd))\textstyle{a\square(b\square(c\square d))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1aα\scriptstyle{1_{a}\square\alpha}α\scriptstyle{\alpha}a((bc)d)\textstyle{a\square((b\square c)\square d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(ab)(cd)\textstyle{(a\square b)\square(c\square d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}(a(bc))d\textstyle{(a\square(b\square c))\square d\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α1d\scriptstyle{\alpha\square 1_{d}}((ab)c)d\textstyle{((a\square b)\square c)\square d}

commutes for all a,b,c,d𝒞a,b,c,d\,\in\,\mathcal{C}.
\bullet λ:e()()\lambda:e\square(-)\rightarrow(-), ρ:()e()\rho:(-)\square e\rightarrow(-) are natural444On p.10 of [4], λ\lambda and ρ\rho are also called left and right unit actions (or unitors). The difference here is that in the definition of a right pseudo-monoidal category, we do not require these unitors to be natural isomorphisms but it is enough for them to have right inverses. transformations.
\bullet For all objects a𝒞a\,\in\mathcal{C}, λa:eaa\lambda_{a}:e\square a\rightarrow a, ρa:aea\rho_{a}:a\square e\rightarrow a have right inverses but do not necessarily have left inverses.
\bullet λe=ρe:eee\lambda_{e}=\rho_{e}:e\square e\rightarrow e.
\bullet For a=ea=e and for any object b𝒞b\,\in\,\mathcal{C}, the triangular diagram

a(eb)\textstyle{a\square(e\square b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}1aλ\scriptstyle{1_{a}\square\lambda}(ae)b\textstyle{(a\square e)\square b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ1b\scriptstyle{\rho\square 1_{b}}ab\textstyle{a\square b}

commutes.

Remark 4.4.

It is easy to see that every monoidal category (cf. definition 2.1) is a right pseudo-monoidal category. In fact, in the foregoing definition, if the triangular diagram commutes for all a𝒞a\in\mathcal{C}; and the maps λ\lambda and ρ\rho are invertible, then we will recover the definition of a monoidal category. This shows that this notion is a generalization of the classical notion of monoidal category.

Theorem 4.2.

The category (MF(1),~)(MF(1),\widetilde{\otimes}) is a right pseudo-monoidal category.

Proof.

Following definition 4.2, we need to first of all show that (MF(1),~)(MF(1),\widetilde{\otimes}) is semi-monoidal (cf. definition 2.3). Thus we need to show that ~\widetilde{\otimes} is a bifunctor, and the associator ”α\alpha” in (MF(1),~)(MF(1),\widetilde{\otimes}) is a natural isomorphism such that the pentagon (cf. definition 4.2) diagram commutes.
Recall that an object of MF(1)MF(1) is of the form (M,N)(M,N) where M=N1M=N^{-1}.
In the entire proof; a,bandca,b\,and\,c stand for arbitrary objects of MF(1)MF(1), say a=ep=(ϕ,ψ)a=e^{p}=(\phi,\psi), b=em=(ϕ,ψ)b=e^{m}=(\phi^{\prime},\psi^{\prime}) and c=er=(ϕ′′,ψ′′)c=e^{r}=(\phi^{\prime\prime},\psi^{\prime\prime}).
\bullet We know that ~\widetilde{\otimes} is a bifunctor (cf. theorem 3.1).
\bullet It is easy to see that α=αa,b,c:a~(b~c)=(a~b)~c\alpha=\alpha_{a,b,c}:a\widetilde{\otimes}(b\widetilde{\otimes}c)\xrightarrow[]{=}(a\widetilde{\otimes}b)\widetilde{\otimes}c is an identity map and hence it is an isomorphism. It is also easy to see that α\alpha is natural for all a,b,cMF(1)a,b,c\,\in\,MF(1) and that the above pentagonal diagram commutes, in fact; we actually already proved it above when proving that 𝒯\mathcal{T} was a semi-monoidal category (cf. theorem 4.1) .

This shows that (MF(1),~)(MF(1),\widetilde{\otimes}) is a semi-monoidal category.

Next, we find the distinguished object ”ee” and the morphism ζ:e2e\zeta:e^{2}\rightarrow e s.t. ζ\zeta has a right inverse.
\bullet Take e=(1,1)e=(1,1), the pair of 1×11\times 1 matrix factorization. We have e2=(1,1)~(1,1)=(I2,I2)e^{2}=(1,1)\widetilde{\otimes}(1,1)=(I_{2},I_{2}). Consider the following situation:

K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}δ1\scriptstyle{\delta_{1}}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β1\scriptstyle{\beta_{1}}1\scriptstyle{1}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ1\scriptstyle{\delta_{1}}K[[x]]2\textstyle{K[[x]]^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2\scriptstyle{I_{2}}K[[x]]2\textstyle{K[[x]]^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I2\scriptstyle{I_{2}}K[[x]]2\textstyle{K[[x]]^{2}}
δ2\scriptstyle{\delta_{2}}β2\scriptstyle{\beta_{2}}δ2\scriptstyle{\delta_{2}}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}K[[x]]\textstyle{K[[x]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}K[[x]]\textstyle{K[[x]]}

In order to find the map ζ\zeta and its right inverse, it suffices to take: ζ=(δ2=(1,0),β2=(1,0)):e2e\zeta=(\delta_{2}=(1,0),\beta_{2}=(1,0)):e^{2}\rightarrow e, let ζ=(δ1=(1,0)t,β1=(1,0)t):ee2\zeta^{\prime}=(\delta_{1}=(1,0)^{t},\beta_{1}=(1,0)^{t}):e\rightarrow e^{2}. Thus, ζζ:ee\zeta\circ\zeta^{\prime}:e\rightarrow e. Hence, we clearly obtain ζζ=((1,0)(1,0)t,(1,0)(1,0)t)=(1,1)=ide\zeta\circ\zeta^{\prime}=((1,0)(1,0)^{t},(1,0)(1,0)^{t})=(1,1)=id_{e} which proves that ζ\zeta^{\prime} is a right inverse to ζ\zeta.
\bullet We now show that the maps λ\lambda and ρ\rho should be natural retractions satisfying λe=ρe\lambda_{e}=\rho_{e}. That is, for each ainOb(MF(1))a\,in\,Ob(MF(1)), λa\lambda_{a} and ρa\rho_{a} have right inverses and λe=ρe\lambda_{e}=\rho_{e}.
λ\lambda is a natural transformation:
λ:F=e~()()=G\lambda:F=e\widetilde{\otimes}(-)\rightarrow(-)=G where G is the identity endofunctor on MF(1)MF(1) and FF is an endofunctor555It is easy to verify that FF is a functor. on MF(1)MF(1), such that F(a)=e~aF(a)=e\widetilde{\otimes}a.
The family of morphisms λ\lambda should satisfy the following two requirements:

  1. 1.

    For each ainOb(MF(1))a\,in\,Ob(MF(1)), λa\lambda_{a} should be a morphism between objects in MF(1)MF(1). Before we proceed, observe that, for any a=(ϕ,ψ)a=(\phi,\psi) of size n1n_{1} in MF(1)MF(1),

    (1,1)~(ϕ,ψ)=([1ϕ001ϕ],[1ψ001ψ])=([ϕ00ϕ],[ψ00ψ])(1,1)\widetilde{\otimes}(\phi,\psi)=(\begin{bmatrix}1\otimes\phi&0\\ 0&1\otimes\phi\end{bmatrix},\begin{bmatrix}1\otimes\psi&0\\ 0&1\otimes\psi\end{bmatrix})=(\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix},\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix})

    To show that λa:e~aa\lambda_{a}:e\widetilde{\otimes}a\rightarrow a is a morphism, we need to find a pair of matrices (δ,β)(\delta,\beta) such that the following diagram commutes:

    K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[ψ00ψ]\scriptstyle{\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix}}δ\scriptstyle{\delta}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}[ϕ00ϕ]\scriptstyle{\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix}}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\star^{\prime}}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}K[[x]]n1\textstyle{K[[x]]^{n_{1}}}

    That is,

    {δ[ϕ00ϕ]=ϕβψδ=β[ψ00ψ]\ast\begin{cases}\delta\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix}=\phi\beta\\ \psi\delta=\beta\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix}\end{cases}

    For δ=β=(In1,0)\delta=\beta=(I_{n_{1}},0), where 0 is the zero n1×n1n_{1}\times n_{1} matrix, the equational system \ast becomes

    {(In1,0)[ϕ00ϕ]=ϕ(In1,0)ψ(In1,0)=(In1,0)[ψ00ψ]\begin{cases}(I_{n_{1}},0)\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix}=\phi(I_{n_{1}},0)\\ \psi(I_{n_{1}},0)=(I_{n_{1}},0)\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix}\end{cases}

    That is;

    {(ϕ,0)=(ϕ,0)(ψ,0)=(ψ,0)\begin{cases}(\phi,0)=(\phi,0)\\ (\psi,0)=(\psi,0)\end{cases}

    and this is clearly true. Therefore, we have found a pair of matrices (δ,β)(\delta,\beta) such that diagram \star^{\prime} commutes, and this means that λa\lambda_{a} is a map of matrix factorizations.

  2. 2.

    Naturality of λ\lambda:
    Let b=(ϕ,ψ)b=(\phi^{\prime},\psi^{\prime}) be a matrix factorization of size n2n_{2} and let ν=(αν,βν):ab\nu=(\alpha_{\nu},\beta_{\nu}):a\rightarrow b be a map of matrix factorizations. It is easy666By drawing the twin diagram that has to commute with (αν,βν)(\alpha_{\nu},\beta_{\nu}), we see the sizes of αν\alpha_{\nu} and βν\beta_{\nu}. to see that αν\alpha_{\nu} and βν\beta_{\nu} are each of size n2×n1n_{2}\times n_{1}. The following diagram should commute:

    e~a\textstyle{e\widetilde{\otimes}a\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λa\scriptstyle{\lambda_{a}}e~ν\scriptstyle{e\widetilde{\otimes}\nu}a\textstyle{a\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν\scriptstyle{\nu}e~b\textstyle{e\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λb\scriptstyle{\lambda_{b}}b\textstyle{b}

    i.e., νλa=λbe~ν\nu\circ\lambda_{a}=\lambda_{b}\circ e\widetilde{\otimes}\nu (E)\cdots(E)
    We know that e~ae\widetilde{\otimes}a is of size 2n12n_{1} since aa is of size n1n_{1}. We also know that λa=[(In1,0),(In1,0)]\lambda_{a}=[(I_{n_{1}},0),(I_{n_{1}},0)]. Now by definition of composition of two morphisms in MF(1)MF(1), the left hand side of equality (E)(E) becomes:
    νλa=(αν,βν)[(In1,0),(In1,0)]=[αν(In1,0),βν(In1,0)]=[(αν,0),(βν,0)]\nu\circ\lambda_{a}=(\alpha_{\nu},\beta_{\nu})\circ[(I_{n_{1}},0),(I_{n_{1}},0)]=[\alpha_{\nu}(I_{n_{1}},0),\beta_{\nu}(I_{n_{1}},0)]=[(\alpha_{\nu},0),(\beta_{\nu},0)]\cdots\natural
    0 in [(αν,0),(βν,0)][(\alpha_{\nu},0),(\beta_{\nu},0)] is the n2×n1n_{2}\times n_{1} zero matrix.
    As for the right hand side of (E)(E), first recall that λb=[(In2,0),(In2,0)]\lambda_{b}=[(I_{n_{2}},0),(I_{n_{2}},0)], (where 0 is the zero n2×n2n_{2}\times n_{2} matrix) and by definition 3.5 of the multiplicative tensor product, we know that e~ν=(1,1)~(αν,βν)=([1αν001αν],[1βν001βν])=([αν00αν],[βν00βν])e\widetilde{\otimes}\nu=(1,1)\widetilde{\otimes}(\alpha_{\nu},\beta_{\nu})=(\begin{bmatrix}1\otimes\alpha_{\nu}&0\\ 0&1\otimes\alpha_{\nu}\end{bmatrix},\begin{bmatrix}1\otimes\beta_{\nu}&0\\ 0&1\otimes\beta_{\nu}\end{bmatrix})=(\begin{bmatrix}\alpha_{\nu}&0\\ 0&\alpha_{\nu}\end{bmatrix},\begin{bmatrix}\beta_{\nu}&0\\ 0&\beta_{\nu}\end{bmatrix})
    So, λbe~ν=[(In2,0),(In2,0)]([αν00αν],[βν00βν])=((In2,0)[αν00αν],(In2,0)[βν00βν])=[(αν,0),(βν,0)]\lambda_{b}\circ e\widetilde{\otimes}\nu=[(I_{n_{2}},0),(I_{n_{2}},0)]\circ(\begin{bmatrix}\alpha_{\nu}&0\\ 0&\alpha_{\nu}\end{bmatrix},\begin{bmatrix}\beta_{\nu}&0\\ 0&\beta_{\nu}\end{bmatrix})\\ =((I_{n_{2}},0)\begin{bmatrix}\alpha_{\nu}&0\\ 0&\alpha_{\nu}\end{bmatrix},(I_{n_{2}},0)\begin{bmatrix}\beta_{\nu}&0\\ 0&\beta_{\nu}\end{bmatrix})=[(\alpha_{\nu},0),(\beta_{\nu},0)]\cdots\natural\natural.
    From \natural and \natural\natural, we see that equality (E)(E) holds. That is λ\lambda is a natural transformation.

\bullet We find the right inverse of λa\lambda_{a}, for any a=(ϕ,ψ)a=(\phi,\psi) of size n1n_{1} in MF(1)MF(1). we denote it γa:ae~a\gamma_{a}:a\rightarrow e\widetilde{\otimes}a. γa\gamma_{a} should be a member of the family of morphisms of a natural transformation γ:()=GF=e~()\gamma:(-)=G\rightarrow F=e\widetilde{\otimes}(-), where G is the identity endofunctor on MF(1)MF(1) and FF is an endofunctor777this was discussed above when dealing with λ\lambda on MF(1)MF(1), such that F(a)=e~aF(a)=e\widetilde{\otimes}a.
The family of morphisms γ\gamma should satisfy the following two requirements:

  1. 1.

    For each ainOb(MF(1))a\,in\,Ob(MF(1)), γa\gamma_{a} should be a morphism in MF(1)MF(1).
    γa\gamma_{a} should be a pair of matrices (δ,β)(\delta^{\prime},\beta^{\prime}) such that the following diagram commutes:

    K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}δ\scriptstyle{\delta^{\prime}}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta^{\prime}}ϕ\scriptstyle{\phi}K[[x]]n1\textstyle{K[[x]]^{n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ"\scriptstyle{\delta^{\prime}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\star"}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[ψ00ψ]\scriptstyle{\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix}}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[ϕ00ϕ]\scriptstyle{\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix}}K[[x]]2n1\textstyle{K[[x]]^{2n_{1}}}

    That is,

    {δϕ=[ϕ00ϕ]β[ψ00ψ]δ=βψ\ast^{\prime}\begin{cases}\delta^{\prime}\phi=\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix}\beta^{\prime}\\ \begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix}\delta^{\prime}=\beta^{\prime}\psi\end{cases}

    For δ=β=(In1,0)t\delta^{\prime}=\beta^{\prime}=(I_{n_{1}},0)^{t}, where tt is the operation of taking the transpose, 0 is the zero n1×n1n_{1}\times n_{1} matrix, the equational system \ast^{\prime} becomes

    {(In1,0)tϕ=[ϕ00ϕ](In1,0)t[ψ00ψ](In1,0)t=(In1,0)tψ\begin{cases}(I_{n_{1}},0)^{t}\phi=\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix}(I_{n_{1}},0)^{t}\\ \begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix}(I_{n_{1}},0)^{t}=(I_{n_{1}},0)^{t}\psi\end{cases}

    That is;

    {(ϕ,0)t=(ϕ,0)t(ψ,0)t=(ψ,0)t\begin{cases}(\phi,0)^{t}=(\phi,0)^{t}\\ (\psi,0)^{t}=(\psi,0)^{t}\end{cases}

    and this is clearly true. Therefore, we have found a pair of matrices (δ,β)(\delta^{\prime},\beta^{\prime}) such that diagram "\star" commutes, and this means that γa\gamma_{a} is a map of matrix factorizations.

  2. 2.

    Naturality of γ\gamma:
    Let b=(ϕ,ψ)b=(\phi^{\prime},\psi^{\prime}) be a matrix factorization of size n2n_{2} and let μ=(αμ,βμ):ab\mu=(\alpha_{\mu},\beta_{\mu}):a\rightarrow b be a map of matrix factorizations. It is easy888By drawing the twin diagram that has to commute with (αμ,βμ)(\alpha_{\mu},\beta_{\mu}), we see the sizes of αμ\alpha_{\mu} and βμ\beta_{\mu}. to see that αμ\alpha_{\mu} and βμ\beta_{\mu} are each of size n2×n1n_{2}\times n_{1}. The following diagram should commute:

    a\textstyle{a\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γa\scriptstyle{\gamma_{a}}μ\scriptstyle{\mu}e~a\textstyle{e\widetilde{\otimes}a\ignorespaces\ignorespaces\ignorespaces\ignorespaces}e~μ\scriptstyle{e\widetilde{\otimes}\mu}b\textstyle{b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γb\scriptstyle{\gamma_{b}}e~b\textstyle{e\widetilde{\otimes}b}

    i.e., e~μγa=γbμe\widetilde{\otimes}\mu\circ\gamma_{a}=\gamma_{b}\circ\mu (E)\cdots(E^{\prime})
    We know that e~ae\widetilde{\otimes}a is of size 2n12n_{1} since aa is of size n1n_{1}. We also know that γb=[(In2,0)t,(In2,0)t]\gamma_{b}=[(I_{n_{2}},0)^{t},(I_{n_{2}},0)^{t}]. Now by definition of composition of two morphisms in MF(1)MF(1), the right hand side of equality (E)(E^{\prime}) becomes:
    γbμ=[(In2,0)t,(In2,0)t](αμ,βμ)=[(In2,0)tαμ,(In2,0)tβμ]=[(αμ,0)t,(βμ,0)t]\gamma_{b}\circ\mu=[(I_{n_{2}},0)^{t},(I_{n_{2}},0)^{t}]\circ(\alpha_{\mu},\beta_{\mu})=[(I_{n_{2}},0)^{t}\alpha_{\mu},(I_{n_{2}},0)^{t}\beta_{\mu}]=[(\alpha_{\mu},0)^{t},(\beta_{\mu},0)^{t}]\cdots\natural^{\prime}
    0 in [(αμ,0)t,(βμ,0)t][(\alpha_{\mu},0)^{t},(\beta_{\mu},0)^{t}] is the n2×n1n_{2}\times n_{1} zero matrix.
    As for the left hand side of (E)(E^{\prime}), first recall that γa=[(In1,0)t,(In1,0)t]\gamma_{a}=[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}], (where 0 is the zero n1×n1n_{1}\times n_{1} matrix) and by definition 3.5 of the multiplicative tensor product, we know that e~μ=(1,1)~(αμ,βμ)=([1αμ001αμ],[1βμ001βμ])=([αμ00αμ],[βμ00βμ])e\widetilde{\otimes}\mu=(1,1)\widetilde{\otimes}(\alpha_{\mu},\beta_{\mu})=(\begin{bmatrix}1\otimes\alpha_{\mu}&0\\ 0&1\otimes\alpha_{\mu}\end{bmatrix},\begin{bmatrix}1\otimes\beta_{\mu}&0\\ 0&1\otimes\beta_{\mu}\end{bmatrix})=(\begin{bmatrix}\alpha_{\mu}&0\\ 0&\alpha_{\mu}\end{bmatrix},\begin{bmatrix}\beta_{\mu}&0\\ 0&\beta_{\mu}\end{bmatrix})
    So, e~μγa=([αμ00αμ],[βμ00βμ])[(In1,0)t,(In1,0)t]=([αμ00αμ](In1,0)t,[βμ00βμ](In1,0)t)=[(αμ,0)t,(βμ,0)t]e\widetilde{\otimes}\mu\circ\gamma_{a}=(\begin{bmatrix}\alpha_{\mu}&0\\ 0&\alpha_{\mu}\end{bmatrix},\begin{bmatrix}\beta_{\mu}&0\\ 0&\beta_{\mu}\end{bmatrix})\circ[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}]\\ =(\begin{bmatrix}\alpha_{\mu}&0\\ 0&\alpha_{\mu}\end{bmatrix}(I_{n_{1}},0)^{t},\begin{bmatrix}\beta_{\mu}&0\\ 0&\beta_{\mu}\end{bmatrix}(I_{n_{1}},0)^{t})=[(\alpha_{\mu},0)^{t},(\beta_{\mu},0)^{t}]\cdots\natural\natural^{\prime}.
    From \natural^{\prime} and \natural\natural^{\prime}, we see that equality (E)(E^{\prime}) holds. That is γ\gamma is a natural transformation.

Next, we show that γa\gamma_{a} is the right inverse of λa\lambda_{a} by computing the following: λaγa=[(In1,0),(In1,0)][(In1,0)t,(In1,0)t]=(In1,In1)=ida\lambda_{a}\circ\gamma_{a}=[(I_{n_{1}},0),(I_{n_{1}},0)]\circ[(I_{n_{1}},0)^{t},(I_{n_{1}},0)^{t}]=(I_{n_{1}},I_{n_{1}})=id_{a}. So γa\gamma_{a} is the right inverse of λa\lambda_{a}.

\bullet To see that ρ\rho is a natural transformation and that for any objet aa in MF(1)MF(1), ρa\rho_{a} has a right inverse, it suffices to observe that both λa\lambda_{a} and ρa\rho_{a} have the same domain and codomain since for any a=(ϕ,ψ)a=(\phi,\psi) in MF(1)MF(1), we have:

(ϕ,ψ)~(1,1)=([ϕ100ϕ1],[ψ100ψ1])=([ϕ00ϕ],[ψ00ψ])(\phi,\psi)\widetilde{\otimes}(1,1)=(\begin{bmatrix}\phi\otimes 1&0\\ 0&\phi\otimes 1\end{bmatrix},\begin{bmatrix}\psi\otimes 1&0\\ 0&\psi\otimes 1\end{bmatrix})=(\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix},\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix})

Similarly,

(1,1)~(ϕ,ψ)=([1ϕ001ϕ],[1ψ001ψ])=([ϕ00ϕ],[ψ00ψ])(1,1)\widetilde{\otimes}(\phi,\psi)=(\begin{bmatrix}1\otimes\phi&0\\ 0&1\otimes\phi\end{bmatrix},\begin{bmatrix}1\otimes\psi&0\\ 0&1\otimes\psi\end{bmatrix})=(\begin{bmatrix}\phi&0\\ 0&\phi\end{bmatrix},\begin{bmatrix}\psi&0\\ 0&\psi\end{bmatrix})

So, we define ρa=λa\rho_{a}=\lambda_{a} for any aa in MF(1)MF(1).

We also clearly have ρe=λe\rho_{e}=\lambda_{e}.

\bullet Finally, for any object bMF(1)b\,\in\,MF(1) and for a=ea=e, we prove that the following triangular diagram commutes:

a~(e~b)\textstyle{a\widetilde{\otimes}(e\widetilde{\otimes}b)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}a,e,b\scriptstyle{a,e,b}1a~λb\scriptstyle{1_{a}\widetilde{\otimes}\lambda_{b}}(a~e)~b\textstyle{(a\widetilde{\otimes}e)\widetilde{\otimes}b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρa~1b(′′′)\scriptstyle{\rho_{a}\widetilde{\otimes}1_{b}\,\,\,\,\,\,\,\,\,\,\,\,\,(\star^{\prime\prime\prime})}a~b\textstyle{a\widetilde{\otimes}b}

Our goal here is to show that the diagram (′′′)(\star^{\prime\prime\prime}) commutes i.e., ρa~1bαa,e,b=1a~λb\rho_{a}\widetilde{\otimes}1_{b}\circ\alpha_{a,e,b}=1_{a}\widetilde{\otimes}\lambda_{b} i.e., ρa~1b=1a~λb\rho_{a}\widetilde{\otimes}1_{b}=1_{a}\widetilde{\otimes}\lambda_{b} since the associator α\alpha is the identity.
We use definition 3.6 to verify that this equality holds.

ρa~1b=([(In1,0)In200(In1,0)In2],[(In1,0)In200(In1,0)In2])=([(1,0)In200(1,0)In2],[(1,0)In200(1,0)In2])sincen1=1asa=e=([(In2,0)00(In2,0)],[(In2,0)00(In2,0)])\rho_{a}\widetilde{\otimes}1_{b}=(\begin{bmatrix}(I_{n_{1}},0)\otimes I_{n_{2}}&0\\ 0&(I_{n_{1}},0)\otimes I_{n_{2}}\end{bmatrix},\begin{bmatrix}(I_{n_{1}},0)\otimes I_{n_{2}}&0\\ 0&(I_{n_{1}},0)\otimes I_{n_{2}}\end{bmatrix})\\ =(\begin{bmatrix}(1,0)\otimes I_{n_{2}}&0\\ 0&(1,0)\otimes I_{n_{2}}\end{bmatrix},\begin{bmatrix}(1,0)\otimes I_{n_{2}}&0\\ 0&(1,0)\otimes I_{n_{2}}\end{bmatrix})\,since\,n_{1}=1\,as\,a=e\\ =(\begin{bmatrix}(I_{n_{2}},0)&0\\ 0&(I_{n_{2}},0)\end{bmatrix},\begin{bmatrix}(I_{n_{2}},0)&0\\ 0&(I_{n_{2}},0)\end{bmatrix})              \cdots\flat

1a~λb=([In1(In2,0)00In1(In2,0)],[In1(In2,0)00In1(In2,0)])=([1(In2,0)001(In2,0)],[1(In2,0)001(In2,0)])sincen1=1asa=e=([(In2,0)00(In2,0)],[(In2,0)00(In2,0)])1_{a}\widetilde{\otimes}\lambda_{b}=(\begin{bmatrix}I_{n_{1}}\otimes(I_{n_{2}},0)&0\\ 0&I_{n_{1}}\otimes(I_{n_{2}},0)\end{bmatrix},\begin{bmatrix}I_{n_{1}}\otimes(I_{n_{2}},0)&0\\ 0&I_{n_{1}}\otimes(I_{n_{2}},0)\end{bmatrix})\\ =(\begin{bmatrix}1\otimes(I_{n_{2}},0)&0\\ 0&1\otimes(I_{n_{2}},0)\end{bmatrix},\begin{bmatrix}1\otimes(I_{n_{2}},0)&0\\ 0&1\otimes(I_{n_{2}},0)\end{bmatrix})\,since\,n_{1}=1\,as\,a=e\\ =(\begin{bmatrix}(I_{n_{2}},0)&0\\ 0&(I_{n_{2}},0)\end{bmatrix},\begin{bmatrix}(I_{n_{2}},0)&0\\ 0&(I_{n_{2}},0)\end{bmatrix})              \cdots\flat^{\prime}

From \flat and \flat^{\prime}, it is clear that ρa~1b=1a~λb\rho_{a}\widetilde{\otimes}1_{b}=1_{a}\widetilde{\otimes}\lambda_{b}.
Therefore (MF(1),~)(MF(1),\widetilde{\otimes}) is a right pseudo-monoidal category. QED

Remark 4.5.

When proving the commutativity of the triangular diagram in the foregoing proof, we kept writing aa instead of directly writing ee because we wanted to point out the fact that this diagram is simply the triangular diagram one has in the definition of a monoidal category, except that here, the diagram commutes only for a=ea=e. It is easy to see that if aea\neq e (meaning n11n_{1}\neq 1), then ρa~1b1a~λb\rho_{a}\widetilde{\otimes}1_{b}\neq 1_{a}\widetilde{\otimes}\lambda_{b}. In fact, the pair of matrices representing these two maps ρa~1band 1a~λb\rho_{a}\widetilde{\otimes}1_{b}\,and\,1_{a}\widetilde{\otimes}\lambda_{b} will be permutation similar but not equal. So, (MF(1),~)(MF(1),\widetilde{\otimes}) resembles a monoidal category in many respects without being one. That is one of the motivations behind the appellation right pseudo-monoidal category.

Acknowledgments

This work was carried out while doing my Ph.D. at the University of Ottawa in Canada. I would like to thank Prof. Dr. Richard Blute who was my Ph.D. supervisor for the fruitful interactions. This research was supported in part by the Bank of Montreal financial group award I.

References

  • Abuhlail, [2013] Abuhlail, J. (2013). Semiunital semimonoidal categories (applications to semirings and semicorings). Theory and Applications of Categories, 28(4):123–149.
  • Borceux and Dejean, [1986] Borceux, F. and Dejean, D. (1986). Cauchy completion in category theory. Cahiers de topologie et géométrie différentielle catégoriques, 27(2):133–146.
  • Camacho, [2015] Camacho, A. R. (2015). Matrix factorizations and the landau-ginzburg/conformal field theory correspondence. arXiv preprint arXiv:1507.06494.
  • Carqueville and Murfet, [2016] Carqueville, N. and Murfet, D. (2016). Adjunctions and defects in landau–ginzburg models. Advances in Mathematics, 289:480–566.
  • Crisler and Diveris, [2016] Crisler, D. and Diveris, K. (2016). Matrix factorizations of sums of squares polynomials. Diakses pada: http://pages. stolaf. edu/diveris/files/2017/01/MFE1. pdf.
  • Eisenbud, [1980] Eisenbud, D. (1980). Homological algebra on a complete intersection, with an application to group representations. Transactions of the American Mathematical Society, 260(1):35–64.
  • [7] Fomatati, Y. (2021a). Necessary conditions for the existence of morita contexts in the bicategory of landau-ginzburg models. arXiv preprint arXiv:2106.10490.
  • Fomatati, [2019] Fomatati, Y. B. (2019). Multiplicative Tensor Product of Matrix Factorizations and Some Applications. PhD thesis, Université d’Ottawa/University of Ottawa.
  • [9] Fomatati, Y. B. (2021b). On tensor products of matrix factorizations. arXiv preprint arXiv:2105.10811.
  • Golan, [1999] Golan, J. (1999). Semirings and their applications.— kluwer acad. Publ., Dordrecht.
  • Kapustin and Li, [2004] Kapustin, A. and Li, Y. (2004). D-branes in landau-ginzburg models and algebraic geometry. Journal of High Energy Physics, 2003(12):005.
  • Kapustin et al., [2003] Kapustin, A., Li, Y., et al. (2003). Topological correlators in landau-ginzburg models with boundaries. Advances in Theoretical and Mathematical Physics, 7(4):727–749.
  • Kock, [2008] Kock, J. (2008). Elementary remarks on units in monoidal categories. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 144, pages 53–76. Cambridge University Press.
  • Mac Lane, [2013] Mac Lane, S. (2013). Categories for the working mathematician, volume 5. Springer Science & Business Media.
  • Selinger, [2008] Selinger, P. (2008). Idempotents in dagger categories. Electronic Notes in Theoretical Computer Science, 210:107–122.
  • Szlachányi, [2012] Szlachányi, K. (2012). Skew-monoidal categories and bialgebroids. Advances in Mathematics, 231(3-4):1694–1730.
  • Takahashi, [1982] Takahashi, M. (1982). On the bordism categories iii. In Mathematics seminar notes, volume 10, pages 211–236.
  • Yoshino, [1998] Yoshino, Y. (1998). Tensor products of matrix factorizations. Nagoya Mathematical Journal, 152:39–56.
  • Yu, [2013] Yu, X. (2013). Geometric study of the category of matrix factorizations.