This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Solution Operator for Non-Autonomous Perturbation of Gibbs Semigroup

Abstract

The paper is devoted to a linear dynamics for non-autonomous perturbation of the Gibbs semigroup on a separable Hilbert space. It is shown that evolution family {U(t,s)}0st\{U(t,s)\}_{0\leq s\leq t} solving the non-autonomous Cauchy problem can be approximated in the trace-norm topology by product formulae. The rate of convergence of product formulae approximants {Un(t,s)}{0st,n1}\{U_{n}(t,s)\}_{\{0\leq s\leq t,n\geq 1\}} to the solution operator {U(t,s)}{0st}\{U(t,s)\}_{\{0\leq s\leq t\}} is also established.

To the memory of Hagen Neidhardt

Valentin A. Zagrebnov

Aix-Marseille Université, CNRS, Centrale Marseille, I2M

Institut de Mathématiques de Marseille (UMR 7373)

CMI - Technopôle Château-Gombert

39 rue F. Joliot Curie, 13453 Marseille, France

1 Introduction and main result

The aim of the paper is two-fold. Firstly, we study a linear dynamics, which is a non-autonomous perturbation of Gibbs semigroup. Secondly, we prove product formulae approximations of the corresponding to this dynamics solution operator {U(t,s)}{0st}\{U(t,s)\}_{\{0\leq s\leq t\}}, known also as evolution family, fundamental solution, or propagator, see EngNag2000 Ch.VI, Sec.9.

To this end we consider on separable Hilbert space {\mathfrak{H}} a linear non-autonomous dynamics given by evolution equation of the type:

u(t)t=C(t)u(t),u(s)=us,s[0,T)0+,C(t):=A+B(t),us,t:=[0,T],\begin{split}\frac{\partial u(t)}{\partial t}=&-C(t)u(t),\quad u(s)=u_{s},\quad s\in[0,T)\subset{\mathbb{R}}_{0}^{+},\\ C(t):=&\,A+B(t),\quad u_{s}\in{\mathfrak{H}},\end{split}\qquad t\in{\mathcal{I}}:=[0,T], (1.1)

where 0+={0}+{\mathbb{R}}_{0}^{+}=\{0\}\cup{\mathbb{R}}^{+} and linear operator AA is generator of a Gibbs semigroup. Note that for the autonomous Cauchy problem (ACP) (1.1), when B(t)=BB(t)=B, the outlined programme corresponds to the Trotter product formula approximation of the Gibbs semigroup generated by a closure of operator A+BA+B, Zag2019 Ch.5.

The main result of the present paper concerns the non-autonomous Cauchy problem (nACP) (1.1) under the following

Assumptions:

(A1) The operator A𝟙A\geq\mathds{1} in a separable Hilbert space {\mathfrak{H}} is self-adjoint. The family {B(t)}t\{B(t)\}_{t\in{\mathcal{I}}} of non-negative self-adjoint operators in {\mathfrak{H}} is such that the bounded operator-valued function (𝟙+B())1:()(\mathds{1}+B(\cdot))^{-1}:{\mathcal{I}}\longrightarrow{\mathcal{L}}({\mathfrak{H}}) is strongly measurable.

(A2) There exists α[0,1){\alpha}\in[0,1) such that inclusion: dom(Aα)dom(B(t))\mathrm{dom}(A^{\alpha})\subseteq\mathrm{dom}(B(t)), holds for a.e. tt\in{\mathcal{I}}. Moreover, the function B()Aα:()B(\cdot)A^{-{\alpha}}:{\mathcal{I}}\longrightarrow{\mathcal{L}}({\mathfrak{H}}) is strongly measurable and essentially bounded in the operator norm:

Cα:=esssuptB(t)Aα<.C_{\alpha}:=\operatorname*{ess\,sup}_{t\in{\mathcal{I}}}\|B(t)A^{-{\alpha}}\|<\infty. (1.2)

(A3) The map AαB()Aα:()A^{-{\alpha}}B(\cdot)A^{-{\alpha}}:{\mathcal{I}}\longrightarrow{\mathcal{L}}({\mathfrak{H}}) is Hölder continuous in the operator norm: for some β(0,1]{\beta}\in(0,1] there is a constant Lα,β>0L_{{\alpha},{\beta}}>0 such that one has estimate

Aα(B(t)B(s))AαLα,β|ts|β,(t,s)×.\|A^{-{\alpha}}(B(t)-B(s))A^{-{\alpha}}\|\leq L_{{\alpha},{\beta}}|t-s|^{\beta},\quad(t,s)\in{\mathcal{I}}\times{\mathcal{I}}. (1.3)

(A4) The operator AA is generator of the Gibbs semigroup {G(t)=etA}t0\{G(t)=e^{-tA}\}_{t\geq 0}, that is, a strongly continuous semigroup such that G(t)|t>0𝒞1()G(t)|_{t>0}\in\mathcal{C}_{1}(\mathfrak{H}). Here 𝒞1()\mathcal{C}_{1}(\mathfrak{H}) denotes the \ast-ideal of trace-class operators in CC^{*}-algebra ()\mathcal{L}(\mathfrak{H}) of bounded operators on \mathfrak{H}.

Remark 1.1

Assumptions (A1)-(A3) are introduced in IT1998 to prove the operator-norm convergence of product formula approximants {Un(t,s)}0st\{U_{n}(t,s)\}_{0\leq s\leq t} to solution operator {U(t,s)}0st\{U(t,s)\}_{0\leq s\leq t}. Then they were widely used for product formula approximations in NSZ2017 -Nickel2000 in the context of the evolution semigroup approach to the nACP, see MR2000 -Nei1981 .

Remark 1.2

The following main facts were established (see, e.g., IT1998 ; NN2002 ; VWZ2009 ; Yagi1989 ) about the nACP for perturbed evolution equation of the type (1.1):
(a) By assumptions (A1)-(A2) the operators {C(t)=A+B(t)}t\{C(t)=A+B(t)\}_{t\in{\mathcal{I}}} have a common dom(C(t))=dom(A)\mathrm{dom}(C(t))=\mathrm{dom}(A) and they are generators of contraction holomorphic semigroups. Hence, the nACP (1.1) is of parabolic type Kato1961 ; Sob1961 .
(b) Since domains dom(C(t))=dom(A)\mathrm{dom}(C(t))=\mathrm{dom}(A), t0t\geq 0, are dense, the nACP is well-posed with time-independent regularity subspace dom(A)\mathrm{dom}(A).
(c) Assumptions (A1)-(A3) provide the existence of evolution family solving nACP (1.1) which we call the solution operator. It is a strongly continuous, uniformly bounded family of operators {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}}, Δ:={(t,s)×:0stT}{\Delta}~{}:=~{}\{(t,s)\in{\mathcal{I}}\times{\mathcal{I}}:0\leq s\leq t\leq T\}, such that the conditions

U(t,t)= 1fort,U(t,r)U(r,s)=U(t,s),for,t,r,sforsrt,\begin{split}U(t,t)=&\ \mathds{1}\quad\mbox{for}\quad t\in{\mathcal{I}},\\ U(t,r)U(r,s)=&\ U(t,s),\quad\mbox{for},\quad t,r,s\in{\mathcal{I}}\quad\mbox{for}\quad s\leq r\leq t,\end{split} (1.4)

are satisfied and u(t)=U(t,s)usu(t)=U(t,s)\,u_{s} for any ussu_{s}\in\mathfrak{H}_{s} is in a certain sense (e.g., classical, strict, mild) solution of the nACP (1.1).
(d) Here s\mathfrak{H}_{s}\subseteq\mathfrak{H} is an appropriate regularity subspace of initial data. Assumptions (A1)-(A3) provide s=dom(A)\mathfrak{H}_{s}=\mathrm{dom}(A) and U(t,s)dom(A)U(t,s)\mathfrak{H}\subseteq\mathrm{dom}(A) for t>st>s.

In the present paper we essentially focus on convergence of the product approximants {Un(t,s)}(t,s)Δ,n1\{U_{n}(t,s)\}_{(t,s)\in{\Delta},n\geq 1} to solution operator {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}}. Let

s=t1<t2<<tn1<tn<t,tk:=s+(k1)tsn,s=t_{1}<t_{2}<\ldots<t_{n-1}<t_{n}<t,\quad t_{k}:=s+(k-1)\tfrac{t-s}{n}, (1.5)

for k{1,2,,n}k\in\{1,2,\ldots,n\}, nn\in{\mathbb{N}}, be partition of the interval [s,t][s,t]. Then corresponding approximants may be defined as follows:

Wk(n)(t,s):=etsnAetsnB(tk),k=1,2,,n,Un(t,s):=Wn(n)(t,s)Wn1(n)(t,s)××W2(n)(t,s)W1(n)(t,s).\begin{split}W_{k}^{(n)}(t,s):=&e^{-\tfrac{t-s}{n}A}e^{-\tfrac{t-s}{n}B(t_{k})},\quad k=1,2,\ldots,n,\\ U_{n}(t,s):=&W_{n}^{(n)}(t,s)W_{n-1}^{(n)}(t,s)\times\cdots\times W_{2}^{(n)}(t,s)W_{1}^{(n)}(t,s).\\ \end{split} (1.6)

It turns out that if the assumptions (A1)-(A3), adapted to a Banach space 𝔛\mathfrak{X}, are satisfied for α(0,1)\alpha\in(0,1), β(0,1)\beta\in(0,1) and in addition the condition α<β\alpha<\beta holds, then solution operator {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}} admits the operator-norm approximation

esssup(t,s)ΔUn(t,s)U(t,s)Rβ,αnβα,n,\operatorname*{ess\,sup}_{(t,s)\in{\Delta}}\|U_{n}(t,s)-U(t,s)\|\leq\frac{R_{\beta,\alpha}}{n^{\beta-\alpha}},\quad n\in{\mathbb{N}}, (1.7)

for some constant Rβ,α>0R_{\beta,\alpha}>0. This result shows that convergence of the approximants {Un(t,s)}(t,s)Δ,n1\{U_{n}(t,s)\}_{(t,s)\in{\Delta},n\geq 1} is determined by the smoothness of the perturbation B()B(\cdot) in (A3) and by the parameter of inclusion in (A2), see NSZ2020 .

The Lipschitz case β=1\beta=1 was considered for 𝔛\mathfrak{X} in NSZ2017 . There it was shown that if α(1/2,1)\alpha\in(1/2,1), then one gets estimate

esssuptUn(t,s)U(t,s)R1,αn1α,n=2,3,.\operatorname*{ess\,sup}_{t\in{\mathcal{I}}}\|U_{n}(t,s)-U(t,s)\|\leq\frac{R_{1,\alpha}}{n^{1-\alpha}}\ ,\quad n=2,3,\ldots\,. (1.8)

For the Lipschitz case in a Hilbert space \mathfrak{H} the assumptions (A1)-(A3) yield a stronger result IT1998 :

esssup(t,s)ΔUn(t,s)U(t,s)Rlog(n)n,n=2,3,.\operatorname*{ess\,sup}_{(t,s)\in{\Delta}}\|U_{n}(t,s)-U(t,s)\|\leq R\ {{\frac{\log(n)}{n}}},\quad n=2,3,\ldots\,. (1.9)

Note that actually it is the best of known estimates for operator-norm rates of convergence under conditions (A1)-(A3).

The estimate (1.7) was improved in NSZ2019 for α(1/2,1)\alpha\in(1/2,1) in a Hilbert space using the evolution semigroup approach Ev1976 ; How1974 ; Nei1981 . This approach is quite different from technique used for (1.9) in IT1998 , but it is the same as that employed in NSZ2017 .

Proposition 1.3

NSZ2019 Let assumptions (A1)-(A3) be satisfied for β(0,1)\beta\in(0,1). If β>2α1>0{\beta}>2{\alpha}-1>0, then estimate

esssup(t,s)ΔUn(t,s)U(t,s)Rβnβ,\operatorname*{ess\,sup}_{(t,s)\in{\Delta}}\|U_{n}(t,s)-U(t,s)\|\leq\frac{R_{\beta}}{n^{\beta}}\,, (1.10)

holds for nn\in{\mathbb{N}} and for some constant Rβ>0R_{\beta}>0.

Note that the condition β>2α1{\beta}>2{\alpha}-1 is weaker than β>α{\beta}>{\alpha} (1.7), but it does not cover the Lipschitz case (1.8) because of condition β<1\beta<1.

The main result of the present paper is the lifting of any known operator-norm bounds (1.7)-(1.10) (we denote them by Rα,βεα,β(n)R_{\alpha,\beta}\varepsilon_{\alpha,\beta}(n)) to estimate in the trace-norm topology 1\|\cdot\|_{1}. This is a subtle matter even for ACP, see Zag2019 Ch.5.4.
- The first step is the construction for nACP (1.1) a trace-norm continuous solution operator {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}}, see Theorem 2.2 and Corollary 2.3.
- Then in Section 3 for assumptions (A1)-(A4) we prove (Theorem 1.4) the corresponding trace-norm estimate Rα,β(t,s)εα,β(n)R_{\alpha,\beta}(t,s)\varepsilon_{\alpha,\beta}(n) for difference Un(t,s)U(t,s)1\|U_{n}(t,s)-U(t,s)\|_{1}.

Theorem 1.4

Let assumptions (A1)-(A4) be satisfied. Then the estimate

Un(t,s)U(t,s)1Rα,β(t,s)εα,β(n),\|U_{n}(t,s)-U(t,s)\|_{1}\leq R_{\alpha,\beta}(t,s)\varepsilon_{\alpha,\beta}(n)\,, (1.11)

holds for nn\in{\mathbb{N}} and 0s<tT0\leq s<t\leq T for some Rα,β(t,s)>0R_{\alpha,\beta}(t,s)>0.

2 Preliminaries

Besides Remark 1.2(a)-(d) we also recall the following assertion, see, e.g., Sob1961 , Theorem 1, Tanabe1979 , Theorem 5.2.1.

Proposition 2.1

Let assumptions (A1)-(A3) be satisfied.
(a) Then solution operator {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}} is strongly continuously differentiable for 0s<tT0\leq s<t\leq T and

tU(t,s)=(A+B(t))U(t,s).\partial_{t}U(t,s)=-(A+B(t))U(t,s). (2.1)

(b) Moreover, the unique function tu(t)=U(t,s)ust\mapsto u(t)=U(t,s)\,u_{s} is a classical solution of (1.1) for initial data s=dom(A)\mathfrak{H}_{s}=\mathrm{dom}(A).

Note that solution of (1.1) is called classical if u(t)C([0,T],)C1([0,T],)u(t)\in C([0,T],\mathfrak{H})\cap C^{1}([0,T],\mathfrak{H}), u(t)dom(C(t))u(t)\in\mathrm{dom}(C(t)), u(s)=usu(s)=u_{s}, and C(t)u(t)C([0,T],)C(t)u(t)\in C([0,T],\mathfrak{H}) for all tst\geq s, with convention that (tu)(s)(\partial_{t}u)(s) is the right-derivative, see, e.g., Sob1961 , Theorem 1, or EngNag2000 , Ch.VI.9.

Since the involved into (A1), (A2) operators are non-negative and self-adjoint, equation (2.1) implies that the solution operator consists of contractions:

tU(t,s)u2=2(C(t)U(t,s)u,U(t,s)u)0,foru.\partial_{t}\|U(t,s)u\|^{2}=-2(C(t)U(t,s)u,U(t,s)u)\leq 0,\ \ {\rm{for}}\ \ u\in\mathfrak{H}. (2.2)

By (A1) G(t)=etA:dom(A)G(t)=e^{-tA}:\mathfrak{H}\rightarrow\mathrm{dom}(A). Applying to (2.1) the variation of constants argument we obtain for U(t,s)U(t,s) the integral equation :

U(t,s)=G(ts)st𝑑τG(tτ)B(τ)U(τ,s),U(s,s)=𝟙.U(t,s)=G(t-s)-\int_{s}^{t}d\tau\ G(t-\tau)\,B(\tau)\,U(\tau,s),\quad U(s,s)=\mathds{1}\ . (2.3)

Hence evolution family {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}}, which is defined by equation (2.3), can be considered as a mild solution of nACP (2.1) for 0stT0\leq s\leq t\leq T in the Banach space ()\mathcal{L}(\mathfrak{H}) of bounded operators, cf. EngNag2000 , Ch.VI.7.

Note that assumptions (A1)-(A4) yield for 0s<tT0\leq s<t\leq T, τ(s,t)\tau\in(s,t) and for the closure AαB(τ)¯\overline{A^{-\alpha}B(\tau)}:

G(ts)Aα1Mα(tτ)αandAαB(τ)¯Cα.\|G(t-s)A^{\alpha}\|_{1}\leq\frac{M_{\alpha}}{(t-\tau)^{\alpha}}\ \ \ {\rm{and}}\ \ \ \|\overline{A^{-\alpha}B(\tau)}\|\leq C_{\alpha}\ . (2.4)

Then (2.2), (2.4) give the trace-norm estimate

st𝑑τG(tτ)B(τ)U(τ,s)1MαCα1α(ts)1α,\left\|\int_{s}^{t}d\tau\ G(t-\tau)\,B(\tau)\,U(\tau,s)\right\|_{1}\leq\frac{{M_{\alpha}}C_{\alpha}}{1-\alpha}{(t-s)^{1-\alpha}}\ , (2.5)

and by (2.3) we ascertain that {U(t,s)}(t,s)Δ𝒞1()\{U(t,s)\}_{(t,s)\in{\Delta}}\in\mathcal{C}_{1}(\mathfrak{H}) for t>st>s.

Therefore, we can construct solution operator {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}} as a trace-norm convergent Dyson-Phillips series n=0Sn(t,s)\sum_{n=0}^{\infty}S_{n}(t,s) by iteration of the integral formula (2.3) for t>st>s. To this aim we define the recurrence relation

S0(t,s)=UA(ts),Sn(t,s)=stdsG(tτ)B(τ)Sn1(τ,s),n1.\begin{split}&S_{0}(t,s)=U_{A}(t-s),\\ &S_{n}(t,s)=-\int_{s}^{t}\!\mathrm{d}s\,G(t-\tau)\,B(\tau)\,S_{n-1}(\tau,s),\quad n\geq 1.\end{split} (2.6)

Since in (2.6) the operators Sn1(t,s)S_{n\geq 1}(t,s) are the nn-fold trace-norm convergent Bochner integrals

Sn(t,s)=stdτ1sτ1dτ2sτn1dτnG(tτ1)(B(τ1))G(τ1τ2)G(τn1τn)(B(τn))G(τns),S_{n}(t,s)=\int_{s}^{t}\!\mathrm{d}\tau_{1}\int_{s}^{\tau_{1}}\!\mathrm{d}\tau_{2}\ldots\int_{s}^{\tau_{n-1}}\!\mathrm{d}\tau_{n}\\ G(t-\tau_{1})(-B(\tau_{1}))G(\tau_{1}-\tau_{2})\cdots G(\tau_{n-1}-\tau_{n})(-B(\tau_{n}))G(\tau_{n}-s), (2.7)

by contraction property (2.2) and by estimate (2.5) there exit 0st0\leq s\leq t such that MαCα(ts)1α/(1α)=:ξ<1{{M_{\alpha}}C_{\alpha}}{(t-s)^{1-\alpha}}/{(1-\alpha)}=:\xi<1 and

Sn(t,s)1ξn,n1.\|S_{n}(t,s)\|_{1}\leq\xi^{n}\ ,\quad n\geq 1. (2.8)

Consequently n=0Sn(t,s)\sum_{n=0}^{\infty}S_{n}(t,s) converges for t>st>s in the trace-norm and satisfies the integral equation (2.3). Thus we get for solution operator of nACP the representation

U(t,s)=n=0Sn(t,s).U(t,s)=\sum_{n=0}^{\infty}S_{n}(t,s)\,. (2.9)

This result can be extended to any 0s<tT0\leq s<t\leq T using (1.4).

We note that for sts\leq t the above arguments yield the proof of assertions in the next Theorem 2.2 and Corollary 2.3, but only in the strong (Yagi1989 Proposition 3.1, main Theorem in VWZ2009 ) and in the operator-norm topology, IT1998 Lemma 2.1. While for t>st>s these arguments prove a generalisation of Theorem 2.2 and Corollary 2.3 to the trace-norm topology in Banach space 𝒞1()\mathcal{C}_{1}(\mathfrak{H}):

Theorem 2.2

Let assumptions (A1)-(A4) be satisfied. Then evolution family {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}} (2.9) gives for t>st>s a mild trace-norm continuous solution of nACP (2.1) in Banach space 𝒞1()\mathcal{C}_{1}(\mathfrak{H}).

Corollary 2.3

For t>st>s the evolution family {U(t,s)}(t,s)Δ\{U(t,s)\}_{(t,s)\in{\Delta}} (2.9) is a strict solution of the nACP :

tU(t,s)=C(t)U(t,s),t(s,T)andU(s,s)=𝟙,C(t):=A+B(t),(s,T)[0,T],\begin{split}\partial_{t}U(t,s)=&-C(t)U(t,s),\ \ t\in(s,T)\quad{\rm{and}}\quad U(s,s)=\mathds{1},\\ C(t):=&\,A+B(t),\end{split}\quad(s,T)\subset[0,T], (2.10)

in Banach space 𝒞1()\mathcal{C}_{1}(\mathfrak{H}).

Proof

Since by Remark 1.2(c),(d) the function tU(t,s)t\mapsto U(t,s) for tst\geq s is strongly continuous and since U(t,s)𝒞1()U(t,s)\in\mathcal{C}_{1}(\mathfrak{H}) for t>st>s, the product U(t+δ,t)U(t,s)U(t+\delta,t)U(t,s) is continuous in the trace-norm topology for |δ|<ts|\delta|<t-s . Moreover, since {u(t)}stT\{u(t)\}_{s\leq t\leq T} is a classical solution of nACP (1.1), equation (2.1) implies that U(t,s)U(t,s) has strong derivative for any t>st>s. Then again by Remark 1.2(d) the trace-norm continuity of δU(t+δ,t)U(t,s)\delta\mapsto U(t+\delta,t)U(t,s) and by inclusion of ranges: ran(U(t,s))dom(A){\rm{ran}}(U(t,s))\subseteq\mathrm{dom}(A) for t>st>s, the trace-norm derivative tU(t,s)\partial_{t}U(t,s) at t(>s)t(>s) exists and belongs to 𝒞1()\mathcal{C}_{1}(\mathfrak{H}).

Therefore, U(t,s)C((s,T],𝒞1())C1((s,T],𝒞1())U(t,s)\in C((s,T],\mathcal{C}_{1}(\mathfrak{H}))\cap C^{1}((s,T],\mathcal{C}_{1}(\mathfrak{H})) with U(s,s)=𝟙U(s,s)=\mathds{1} and U(t,s)𝒞1()U(t,s)\in\mathcal{C}_{1}(\mathfrak{H}), C(t)U(t,s)𝒞1()C(t)U(t,s)\in\mathcal{C}_{1}(\mathfrak{H}) for t>st>s, which means that solution U(t,s)U(t,s) of (2.10) is strict, cf. Yagi1989 Definition 1.1. \Box

We note that these results for ACP in Banach space 𝒞1()\mathcal{C}_{1}(\mathfrak{H}) are well-known for Gibbs semigroups, see Zag2019 , Chapter 4.

Now, to proceed with the proof of Theorem 1.4 about trace-norm convergence of the solution operator approximants (1.6) we need the following preparatory lemma.

Lemma 2.4

Let self-adjoint positive operator AA be such that etA𝒞1()e^{-tA}\in{\cal C}_{1}({\mathfrak{H}}) for t>0t>0, and let V1,V2,,VnV_{1},V_{2},\ldots,V_{n} be bounded operators ()\mathcal{L}(\mathfrak{H}). Then

j=1nVjetjA1j=1nVje(t1+t2++tn)A/41,\Bigl{\|}\prod_{j=1}^{n}V_{j}e^{-t_{j}A}\Bigr{\|}_{1}\leq\prod_{j=1}^{n}\|V_{j}\|\|e^{-(t_{1}+t_{2}+\ldots+t_{n})A/4}\|_{1}\ , (2.11)

for any set {t1,t2,,tn}\{t_{1},t_{2},\ldots,t_{n}\} of positive numbers.

Proof

At first we prove this assertion for compact operators: Vj𝒞()V_{j}\in{\cal C}_{\infty}({\mathfrak{H}}), j=1,2,,nj=1,2,\ldots,n. Let tm:=min{tj}j=1n>0t_{m}:=\min\{t_{j}\}_{j=1}^{n}>0 and T:=j=1ntj>0T:=\sum_{j=1}^{n}t_{j}>0. For any 1jn1\leq j\leq n, we define an integer j\ell_{j}\in\mathds{N} by

2jtmtj2j+1tm.2^{\ell_{j}}t_{m}\leq t_{j}\leq 2^{\ell_{j}+1}t_{m}.

Then we get j=1n2jtm>T/2\sum_{j=1}^{n}2^{\ell_{j}}t_{m}>T/2 and

j=1nVjetjA=j=1nVje(tj2jtm)A(etmA)j.\prod_{j=1}^{n}V_{j}e^{-t_{j}A}=\prod_{j=1}^{n}V_{j}e^{-(t_{j}-2^{\ell_{j}}t_{m})A}(e^{-t_{m}A})^{\ell_{j}}. (2.12)

By the definition of the 1\|\cdot\|_{1}-norm and by inequalities for singular values {sk()}k1\{s_{k}(\cdot)\}_{k\geq 1} of compact operators

j=1nVjetjA1\displaystyle\Bigl{\|}\prod_{j=1}^{n}V_{j}e^{-t_{j}A}\Bigr{\|}_{1} =k=1sk(j=1nVje(tj2jtm)A(etmA)2j)\displaystyle=\sum_{k=1}^{\infty}s_{k}\bigl{(}\prod_{j=1}^{n}V_{j}e^{-(t_{j}-2^{\ell_{j}}t_{m})A}(e^{-t_{m}A})^{2^{\ell_{j}}}\bigr{)}
k=1j=1nsk(e(tj2jtm)A)[sk(etma)]2jsk(Vj)\displaystyle\leq\sum_{k=1}^{\infty}\prod_{j=1}^{n}s_{k}\left(e^{-(t_{j}-2^{\ell_{j}}t_{m})A}\right)\left[s_{k}(e^{-t_{m}a})\right]^{2^{\ell_{j}}}s_{k}(V_{j})
k=1sk(etmA)j=1n2jj=1nVj.\displaystyle\leq\sum_{k=1}^{\infty}s_{k}(e^{-t_{m}A})^{\sum_{j=1}^{n}2^{\ell_{j}}}\prod_{j=1}^{n}\|V_{j}\|\,. (2.13)

Here we used that sk(e(tj2jtm)A)e(tj2jtm)A1s_{k}(e^{-(t_{j}-2^{\ell_{j}}t_{m})A})\leq\|e^{-(t_{j}-2^{\ell_{j}}t_{m})A}\|\leq 1 and that sk(Vj)Vjs_{k}(V_{j})\leq\|V_{j}\|. Let N:=j=1n2jN:=\sum_{j=1}^{n}2^{\ell_{j}} and Tm:=Ntm>T/2T_{m}:=Nt_{m}>T/2. Since

k=1sk(etA/q)q=(etA/qq)q,\sum_{k=1}^{\infty}s_{k}(e^{-tA/q})^{q}=(\|e^{-tA/q}\|_{q})^{q}\ ,

the inequality (2.13) yields for q=Nq=N:

j=1nVjetjA1(eTmA/NN)Nj=1nVj.\Bigl{\|}\prod_{j=1}^{n}V_{j}e^{-t_{j}A}\Bigr{\|}_{1}\leq\Bigl{(}\bigl{\|}e^{-T_{m}A/N}\bigr{\|}_{N}\Bigr{)}^{N}\prod_{j=1}^{n}\|V_{j}\|. (2.14)

Now we consider an integer pp\in\mathds{N} such that 2pN<2p+12^{p}\leq N<2^{p+1}. It then follows that T/4<Tm/2<2pTm/NT/4<T_{m}/2<2^{p}T_{m}/N, and hence we obtain

(eTmA/Nq=N)N=k=1skN(eTmA/N)\displaystyle\Bigl{(}\bigl{\|}e^{-T_{m}A/N}\bigr{\|}_{q=N}\Bigr{)}^{N}=\sum_{k=1}^{\infty}s_{k}^{N}(e^{-T_{m}A/N}) (2.15)
k=1sk2p(e2pTmA/2pN)k=1sk2p(eTA/2p+2)=eTA/221,\displaystyle\leq\sum_{k=1}^{\infty}s_{k}^{2^{p}}(e^{-2^{p}T_{m}A/2^{p}N})\leq\sum_{k=1}^{\infty}s_{k}^{2^{p}}(e^{-TA/2^{p+2}})=\|e^{-TA/2^{2}}\|_{1}\ ,

where we used that sk(eTmA/N)=sk(e2pTmA/2pN)eTmA/N1s_{k}(e^{-T_{m}A/N})=s_{k}(e^{-2^{p}T_{m}A/2^{p}N})\leq\|e^{-T_{m}A/N}\|\leq 1, and that sk(e(t+τ)A)etAsk(eτA)sk(eτA)s_{k}(e^{-(t+\tau)A})\leq\|e^{-tA}\|s_{k}(e^{-\tau A})\leq s_{k}(e^{-\tau A}) for any t,τ>0t,\tau>0. Therefore, the estimates (2.14), (2.15) give the bound (2.11).

Now, let Vj()V_{j}\in{\cal L}({\mathfrak{H}}), j=1,2,,nj=1,2,\ldots,n, and set V~j:=VjeεA\tilde{V}_{j}:=V_{j}e^{-\varepsilon A} for 0<ε<tm0<\varepsilon<t_{m}. Hence, V~j𝒞1()𝒞()\tilde{V}_{j}\in{\cal C}_{1}({\mathfrak{H}})\subset\mathcal{C}_{\infty}(\mathfrak{H}) and sk(V~j)V~jVjs_{k}(\tilde{V}_{j})\leq\|\tilde{V}_{j}\|\leq\|V_{j}\|. If we set t~j:=tjε\tilde{t}_{j}:=t_{j}-\varepsilon, then

j=1nVjetjA1j=1nVje(t~1+t~2++t~n)A/41.\Big{\|}\prod_{j=1}^{n}V_{j}e^{-t_{j}A}\Big{\|}_{1}\leq\prod_{j=1}^{n}\|V_{j}\|\|e^{-(\tilde{t}_{1}+\tilde{t}_{2}+\cdots+\tilde{t}_{n})A/4}\|_{1}. (2.16)

Since the semigroup {etA}t0\{e^{-tA}\}_{t\geq 0} is 1\|\cdot\|_{1}-continuous for t>0t>0, we can take in (2.16) the limit ε0\varepsilon\downarrow 0. This gives the result (2.11) in general case. \Box

3 Proof of Theorem 1.4

We follow the line of reasoning of the lifting lemma developed in Zag2019 , Ch.5.4.1.

1. By virtue of (1.4) and (1.6) we obtain for difference in (1.11) formula:

Un(t,s)U(t,s)=k=n1Wk(n)(t,s)l=n1U(tl+1,tl).U_{n}(t,s)-U(t,s)=\prod_{k=n}^{1}W_{k}^{(n)}(t,s)-\prod_{l=n}^{1}U(t_{l+1},t_{l}). (3.1)

Let integer kn(1,n)k_{n}\in(1,n). Then (3.1) yields the representation:

Un(t,s)U(t,s)=(k=nkn+1Wk(n)(t,s)l=nkn+1U(tl+1,tl))k=kn1Wk(n)(t,s)\displaystyle{{U_{n}(t,s)-U(t,s)=}}\left(\prod_{k=n}^{k_{n}+1}W_{k}^{(n)}(t,s)-\prod_{l=n}^{k_{n}+1}U(t_{l+1},t_{l})\right)\prod_{k=k_{n}}^{1}W_{k}^{(n)}(t,s)
+l=nkn+1U(tl+1,tl)(k=kn1Wk(n)(t,s)l=kn1U(tl+1,tl)),\displaystyle+\prod_{l=n}^{k_{n}+1}U(t_{l+1},t_{l})\left(\prod_{k=k_{n}}^{1}W_{k}^{(n)}(t,s)-\prod_{l=k_{n}}^{1}U(t_{l+1},t_{l})\right),

which implies the trace-norm estimate

Un(t,s)U(t,s)1k=nkn+1Wk(n)(t,s)l=nkn+1U(tl+1,tl)k=kn1Wk(n)(t,s)1\displaystyle\|U_{n}(t,s)-U(t,s)\|_{1}\leq\left\|\prod_{k=n}^{k_{n}+1}W_{k}^{(n)}(t,s)-\prod_{l=n}^{k_{n}+1}U(t_{l+1},t_{l})\right\|\left\|\prod_{k=k_{n}}^{1}W_{k}^{(n)}(t,s)\right\|_{1}
+l=nkn+1U(tl+1,tl)1k=kn1Wk(n)(t,s)l=kn1U(tl+1,tl).\displaystyle+\left\|\prod_{l=n}^{k_{n}+1}U(t_{l+1},t_{l})\right\|_{1}\left\|\prod_{k=k_{n}}^{1}W_{k}^{(n)}(t,s)-\prod_{l=k_{n}}^{1}U(t_{l+1},t_{l})\right\|. (3.2)

2. Now we assume that limnkn/n=1/2\lim_{n\rightarrow\infty}k_{n}/n=1/2. Then (1.5) yields limntkn=(t+s)/2\lim_{n\rightarrow\infty}t_{k_{n}}=(t+s)/2, limntn=t\lim_{n\rightarrow\infty}t_{{n}}=t and uniform estimates (1.7)-(1.10) with the bound Rα,βεα,β(n)R_{\alpha,\beta}\varepsilon_{\alpha,\beta}(n) imply

esssup(t,s)Δk=nkn+1Wk(n)(t,s)U(t,(t+s)/2)Rα,β(1)εα,β(n),\displaystyle\operatorname*{ess\,sup}_{(t,s)\in{\Delta}}\left\|\prod_{k=n}^{k_{n}+1}W_{k}^{(n)}(t,s)-U(t,(t+s)/2)\right\|\leq R^{(1)}_{\alpha,\beta}\varepsilon_{\alpha,\beta}(n), (3.4)
esssup(t,s)Δk=kn1Wk(n)(t,s)U((t+s)/2,s)Rα,β(2)εα,β(n),\displaystyle\operatorname*{ess\,sup}_{(t,s)\in{\Delta}}\left\|\prod_{k=k_{n}}^{1}W_{k}^{(n)}(t,s)-U((t+s)/2,s)\right\|\leq R^{(2)}_{\alpha,\beta}\varepsilon_{\alpha,\beta}(n),

for nn\in{\mathbb{N}} and for some constants Rα,β(1,2)>0R^{(1,2)}_{\alpha,\beta}>0.

3. Since limnkn/n=1/2\lim_{n\rightarrow\infty}k_{n}/n=1/2 and t>st>s, by definition (1.6) and by Lemma 2.4 for contractions {Vk=etsnB(tk)}k=1n\{V_{k}=e^{-\tfrac{t-s}{n}B(t_{k})}\}_{k=1}^{n} there exists a1>0a_{1}>0 such that

k=kn1Wk(n)(t,s)1=k=kn1etsnAetsnB(tk)1a1ets2A1.\left\|\prod_{k=k_{n}}^{1}W_{k}^{(n)}(t,s)\right\|_{1}=\left\|\prod_{k=k_{n}}^{1}e^{-\tfrac{t-s}{n}A}e^{-\tfrac{t-s}{n}B(t_{k})}\right\|_{1}\leq a_{1}\ \|e^{-\tfrac{t-s}{2}A}\|_{1}\ . (3.5)

Similarly there is a2>0a_{2}>0 such that

l=nkn+1U(tl+1,tl)1a2ets2A1.\left\|\prod_{l=n}^{k_{n}+1}U(t_{l+1},t_{l})\right\|_{1}\leq a_{2}\ \|e^{-\tfrac{t-s}{2}A}\|_{1}\ . (3.6)

4. Since for t>st>s the trace-norm c(ts):=ets2A1<c(t-s):=\|e^{-\tfrac{t-s}{2}A}\|_{1}<\infty, by (3.2)-(3.6) we obtain the proof of the estimate (1.11) for

Rα,β(t,s):=(a1Rα,β(1)+a2Rα,β(2))c(ts),R_{\alpha,\beta}(t,s):=(a_{1}R^{(1)}_{\alpha,\beta}+a_{2}R^{(2)}_{\alpha,\beta})\,c(t-s)\ , (3.7)

and 0s<tT0\leq s<t\leq T. \Box

Corollary 3.1

By virtue of Lemma 2.4 the proof of Theorem 1.4 can be carried over almost verbatim for approximants {U^n(t,s)}(t,s)Δ,n1\{\widehat{U}_{n}(t,s)\}_{(t,s)\in{\Delta},n\geq 1} :

W^k(n)(t,s):=etsnB(tk)etsnA,k=1,2,,n,U^n(t,s):=W^n(n)(t,s)W^n1(n)(t,s)××W^2(n)(t,s)W^1(n)(t,s),\begin{split}\widehat{W}_{k}^{(n)}(t,s):=&e^{-\tfrac{t-s}{n}B(t_{k})}e^{-\tfrac{t-s}{n}A},\quad k=1,2,\ldots,n,\\ \widehat{U}_{n}(t,s):=&\widehat{W}_{n}^{(n)}(t,s)\widehat{W}_{n-1}^{(n)}(t,s)\times\cdots\times\widehat{W}_{2}^{(n)}(t,s)\widehat{W}_{1}^{(n)}(t,s),\\ \end{split} (3.8)

as well as for self-adjoint approximants {U~n(t,s)}(t,s)Δ,n1\{\widetilde{U}_{n}(t,s)\}_{(t,s)\in{\Delta},n\geq 1} :

W~k(n)(t,s):=etsnA/2etsnB(tk)etsnA/2,k=1,2,,n,U~n(t,s):=W~n(n)(t,s)W~n1(n)(t,s)××W~2(n)(t,s)W~1(n)(t,s).\begin{split}\widetilde{W}_{k}^{(n)}(t,s):=&e^{-\tfrac{t-s}{n}A/2}e^{-\tfrac{t-s}{n}B(t_{k})}e^{-\tfrac{t-s}{n}A/2},\quad k=1,2,\ldots,n,\\ \widetilde{U}_{n}(t,s):=&\widetilde{W}_{n}^{(n)}(t,s)\widetilde{W}_{n-1}^{(n)}(t,s)\times\cdots\times\widetilde{W}_{2}^{(n)}(t,s)\widetilde{W}_{1}^{(n)}(t,s).\\ \end{split} (3.9)

For the both case the rate of convergence εα,β(n)\varepsilon_{\alpha,\beta}(n) for approximants (3.8),(3.9) is the same as in (1.11).

Note that extension of Theorem 1.4 to Gibbs semigroups generated by a family of non-negative self-adjoint operators {A(t)}t\{A(t)\}_{t\in{\mathcal{I}}} can be done along the arguments outlined in Section 2 of VWZ2009 . To this end one needs to add more conditions to (A1)-(A4) that allow to control the family {A(t)}t\{A(t)\}_{t\in{\mathcal{I}}}.

Here we also comment that a general scheme of the lifting due to Lemma 2.4 and Theorem 1.4 can be applied to any symmetrically-normed ideal 𝒞ϕ()\mathcal{C}_{\phi}(\mathfrak{H}) of compact operators 𝒞()\mathcal{C}_{\infty}(\mathfrak{H}), Zag2019 Ch.6. We return to this point elsewhere.

Acknowledgments

This paper was motivated by my lecture at the Conference ”Operator Theory and Krein Spaces” (Technische Universitäte Wien, 19-22 December 2019), dedicated to the memory of Hagen Neidhardt.

I am thankful to organisers: Jussi Behrndt, Aleksey Kostenko, Raphael Pruckner, Harald Woracek, for invitation and hospitality.

References

  • [1] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations. Springer-Verlag, New York, 2000.
  • [2] D. E. Evans. Time dependent perturbations and scattering of strongly continuous groups on Banach spaces. Math. Ann., 221(3):275–290, 1976.
  • [3] J. S. Howland. Stationary scattering theory for time-dependent Hamiltonians. Math. Ann., 207:315–335, 1974.
  • [4] T. Ichinose and H. Tamura. Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations. Osaka J. Math., 35(4):751–770, 1998.
  • [5] T. Kato. Abstract evolution equation of parabolic type in Banach and Hilbert spaces. Nagoya Math. J., 19:93–125, 1961.
  • [6] S. Monniaux and A. Rhandi. Semigroup method to solve non-autonomous evolution equations. Semigroup Forum, 60:122–134, 2000
  • [7] R. Nagel and G. Nickel. Well-poseness of nonautonomous abstract Cauchy problems. Progr. Nonlinear Diff.Eqn. and Their Appl., vol.50:279–293, 2002
  • [8] H. Neidhardt. Integration of Evolutionsgleichungen mit Hilfe von Evolutionshalbgruppen. Dissertation, AdW der DDR. Berlin 1979.
  • [9] H. Neidhardt. On abstract linear evolution equations. I. Math. Nachr., 103:283–298, 1981.
  • [10] H. Neidhardt, A. Stephan, and V.A. Zagrebnov. On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations. Nanosyst., Phys. Chem. Math., 8(2):202–215, 2017.
  • [11] H. Neidhardt, A. Stephan, and V. A. Zagrebnov. Remarks on the operator-norm convergence of the Trotter product formula. Int.Eqn.Oper.Theory, 90:1–15, 2018.
  • [12] H. Neidhardt, A. Stephan, and V. A. Zagrebnov. Trotter Product Formula and Linear Evolution Equations on Hilbert Spaces. Analysis and Operator Theory. Dedicated in Memory of Tosio Kato’s 100th Birthday, Springer vol.146, Berlin 2019, pp. 271–299.
  • [13] H. Neidhardt, A. Stephan, and V. A. Zagrebnov. Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems. Publ.RIMS Kyoto Univ., 56:1–53, 2020.
  • [14] H. Neidhardt and V. A. Zagrebnov. Linear non-autonomous Cauchy problems and evolution semigroups. Adv. Differential Equations, 14(3-4):289–340, 2009.
  • [15] G. Nickel. Evolution semigroups and product formulas for nonautonomous Cauchy problems. Math.Nachr, 212:101–116, 2000.
  • [16] P. E. Sobolevskii. Parabolic equations in a Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition. Dokl. Akad. Nauk USSR, 138(1): 59–62, 1961.
  • [17] H. Tanabe. Equations of evolution. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
  • [18] P.-A. Vuillermot, W. F. Wreszinski, and V. A. Zagrebnov. A general Trotter–Kato formula for a class of evolution operators. Journal of Functional Analysis, 257(7): 2246-2290, 2009.
  • [19] A. Yagi. Parabolic evolution equation in which the coefficients are the generators of infinitly differentiable semigroups, I. Funkcialaj Ekvacioj, 32:107–124, 1989.
  • [20] V. A. Zagrebnov, Gibbs Semigroups, Operator Theory Series: Advances and Applications, Vol. 273, Bikhäuser - Springer, Basel 2019.