This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11footnotetext:   School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China.

Soliton resolution for the Harry Dym equation with weighted Sobolev initial data

Lin Deng1, Zhenyun Qin1  Corresponding author and email address: [email protected]
Abstract

The soliton resolution for the Harry Dym equation is established for initial conditions in weighted Sobolev space H1,1()H^{1,1}(\mathbb{R}). Combining the nonlinear steepest descent method and ¯\bar{\partial}-derivatives condition, we obtain that when yt<ϵ(ϵ>0)\frac{y}{t}<-\epsilon(\epsilon>0) the long time asymptotic expansion of the solution q(x,t)q(x,t) in any fixed cone

C(y1,y2,v1,v2)={(y,t)R2y=y0+vt,y0[y1,y2],v[v1,v2]}C\left(y_{1},y_{2},v_{1},v_{2}\right)=\left\{(y,t)\in R^{2}\mid y=y_{0}+vt,y_{0}\in\left[y_{1},y_{2}\right],v\in\left[v_{1},v_{2}\right]\right\} (0.1)

up to an residual error of order 𝒪(t1)\mathcal{O}(t^{-1}). The expansion shows the long time asymptotic behavior can be described as an N(I)N(I)-soliton on discrete spectrum whose parameters are modulated by a sum of localized soliton-soliton interactions as one moves through the cone and the second term coming from soliton-radiation interactionson on continuous spectrum.

Keywords: The Harry Dym equation; Riemann-Hilbert problem; ¯\bar{\partial} steepest descent method; Soliton resolution.

1 Introduction

The Harry Dym equation was first discovered by H.Dym in 1973-1974, and its first appearance in the literature occurred in a 1975 paper of Kruskal [1] where it was named after its discoverer, then it was rediscovered in more general form in [2] within the classical string problem. In 1978, the Harry Dym equation, the KdV equation, the mKdV equation and the nonlinear Schrödinger equation were used as examples to verify a general model of integrable Hamiltonian equation [3], which gives its bi-Hamiltonian structure. The equation is proved to satisfy the properties: infinite number of conservation laws and infinitely many symmetries [4]. The recursion operators and complete Lie-Bäcklund symmetry of this equation were given by [5].

Direct links were found between the KdV equation and Harry Dym equation [6], or mKdV equation and Harry Dym equation [7, 8]. The Lax pair of the Harry Dym equation is associated with the Sturm-Liouville operator. The Liouville transformation transforms this operator isospectrally into the Schrödinger operator [9]. The Dym equation is an important nonlinear partial differential equation which is integrable and finds applications in several physical systems, which is related to such physical problems as the Hele-Shaw problem [10], the Saffmae-Taylor problem and the chiral dynamics of closed curves on the complex plane [11].

Harry Dym equation, as a completely integrable non-linear evolution equation, admits a cusp solitary wave solution in implicit expression by the inverse scattering transform (IST) in [12]. It has various forms of solutions: the algebraic geometric solution [13], the exact solution [14], the elliptic solution [5] and N-loop solitons are constructed by means of N-cusp soliton solutions of Harry Dym equation [1].

In 1974, Manakov first studied the long time behavior of the nonlinear wave equation solvable by the inverse scattering method [15]. Then Zakharov and Manakov use this method and give the first result of the large time asymptoticity of the NLS equation [16]. The inverse scattering method also apply to KdV, Landau-Lifshitz and the reduced Maxwell-Bloch system [17, 18, 19]. In 1993, Deift and Zhou proposed the nonlinear steepest descent method which can obtain the long-term asymptotic behavior of the solution for the MKdV equation by deforming contours to reduce the original Riemann-Hilbert problem (RHP) to a model one whose solution is calculated in terms of parabolic cylinder functions [20]. Since then, this method has been widely used for focusing NLS equation [21], KdV equation [22], Fokas-Lenells equation [23], derivative NLS equation [24], short pulse equation [25], Camassa-Holm equations [26] and the Harry Dym equation [27].

In recent years, McLaughlin and Miller further presented a ¯\bar{\partial} steepest descent method which combine steepest descent with ¯\bar{\partial}-problem rather than the asymptotic analysis of singular integrals on contours to analyze asymptotic of orthogonal polynomials with non-analytical weights [28]. When it is applied to integrable systems, the ¯\bar{\partial} steepest descent method also has displayed some advantages, such as avoiding delicate estimates involving LpL^{p} estimates of Cauchy projection operators, and leading the non-analyticity in the RHP reductions to a ¯\bar{\partial}-problem in some sectors of the complex plane which can be solved by being recast into an integral equation and by using Neumann series. Dieng and McLaughin use it to study the defocusing NLS equation under essentially minimal regularity assumptions on finite mass initial data [29]. This ¯\bar{\partial} steepest descent method also was successfully applied to prove asymptotic stability of N-soliton solutions to focusing NLS equation [30]. Jenkins studied soliton resolution for the derivative nonlinear NLS equation for generic initial data in a weighted Sobolev space [31]. Their work provided the soliton resolution property for derivative NLS equation, which decomposes the solution into the sum of a finite number of separated solitons and a radiative parts when tt\rightarrow\infty. And the dispersive part contains two components, one coming from the continuous spectrum and another from the interaction of the discrete and continuous spectrum.

In this paper, the main purpose is to study the long time asymptotic behavior for the initial value problem of the Harry Dym equation, we apply ¯\bar{\partial} steepest descent method [30] to study the Cauchy problem for the equation

qt2(11+q)xxx=0q_{t}-2\left(\frac{1}{\sqrt{1+q}}\right)_{xxx}=0 (1.1)

with the initial value

q(x,0)=q0(x)H1,1(),q(x,0)=q_{0}(x)\in H^{1,1}(\mathbb{R}), (1.2)

where

H1,1()={fL2():f,xfL2()}H^{1,1}(\mathbb{R})=\left\{f\in L^{2}(\mathbb{R}):f^{\prime},xf\in L^{2}(\mathbb{R})\right\} (1.3)

and q(x,t)1q(x,t)\geq-1 for xR,t0.x\in R,t\geq 0.

In general, the matrix Riemann-Hilbert problem is defined in the λ\lambda plane and has explicit (x,t)(x,t) dependence, while for the Harry-Dym equation (1.1), we need to construct a new matrix Riemann-Hilbert problem with explicit (y,t)(y,t) dependence, where y(x,t)y(x,t) is a function unknown from the initial value condition. For this purpose, let u=1+qu=\sqrt{1+q}, the problem of Harry Dym equation (1.1) transforms into

(u2)t2(1u)xxx=0,\left(u^{2}\right)_{t}-2\left(\frac{1}{u}\right)_{xxx}=0, (1.4)
u(x,0)=u0(x)=1+q0(x).u(x,0)=u_{0}(x)=\sqrt{1+q_{0}(x)}.

In addition, assume that the initial value q0(x)q_{0}(x) satisfy two conditions:

+q0(x)𝑑x=0,+±xq0(x)𝑑x𝑑x=0,xR.\int_{-\infty}^{+\infty}q_{0}(x)dx=0,\quad\int_{-\infty}^{+\infty}\int_{\pm\infty}^{x}q_{0}\left(x^{\prime}\right)dx^{\prime}dx=0,\quad x\in R. (1.5)

The assumptions in (1.5) imply the following conditions which are needs for the spectral analysis:

+q(x,t)𝑑x=0,+±xq(x,t)𝑑x𝑑x=0,xR,t0.\int_{-\infty}^{+\infty}q(x,t)dx=0,\quad\int_{-\infty}^{+\infty}\int_{\pm\infty}^{x}q\left(x^{\prime},t\right)dx^{\prime}dx=0,x\in R,t\geq 0. (1.6)

Organization of the paper: In section 2, by deformation of Lax pairs, we analyze eigenfunctions at spectral parameter λ\lambda\rightarrow\infty and λ0\lambda\rightarrow 0 with the initial data. In section 3, the solution of (1.1-1.2) can be expressed by associated matrix RHP for M(λ)M(\lambda) dependent on the new parameter (y,t)(y,t) when λ0\lambda\rightarrow 0. In section 4, by introducing a function T(λ)T(\lambda), we get a new RHP for M(1)(λ)M^{(1)}(\lambda), which admits a regular discrete spectrum distribution and two triangular decompositions of the jump matrix near the phase point ±λ0\pm\lambda_{0}. In section 5, we construct a mixed ¯\bar{\partial}-RH problem for M(2)(λ)M^{(2)}(\lambda) by introducing a transformation caused by the function (λ)\mathcal{R}(\lambda), which make continuous extension off the real axis to the jump matrix. In section 6, we decompose M(2)(λ)M^{(2)}(\lambda) into two parts: MRHP(2)(λ)M^{(2)}_{RHP}(\lambda) and a pure ¯\bar{\partial} problem for M(3)(λ)M^{(3)}(\lambda). And MRHP(2)(λ)M^{(2)}_{RHP}(\lambda) can be divided into outer model Mout(2)M^{(2)}_{out} be solved in section 7 and the solvable RH model M(±λ0)M^{(\pm\lambda_{0})} which can be approximated by a solvable model in [27] in section 8. In section 9, we study the small norm problem of E(λ)E(\lambda). In section 10, we analyze the pure ¯\bar{\partial} problem for M(3)M^{(3)}. Finally, based on the series of transformations we have done, we obtain (11.2), which contributes to the soliton resolution and long-time asymptotic behavior for the Harry Dym equation.

2 Spectral analysis

Let

σ1=(0110),σ2=(0ii0),σ3=(1001).\sigma_{1}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix},\quad\sigma_{2}=\begin{pmatrix}0&-i\\ i&0\end{pmatrix},\quad\sigma_{3}=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}.

The Harry Dym equation (1.4) admits the following Lax pair

{ψxx=λ2u2ψ,ψt=2λ2[2uψx(1u)xψ].\left\{\begin{aligned} &\psi_{xx}=-\lambda^{2}u^{2}\psi,\\ &\psi_{t}=2\lambda^{2}\left[\frac{2}{u}\psi_{x}-\left(\frac{1}{u}\right)_{x}\psi\right].\end{aligned}\right. (2.1)

Write φ=(ψψx)\varphi=\left(\begin{array}[]{c}\psi\\ \psi_{x}\end{array}\right), then (2.1) can be written as

{φx=Mφ,φt=Nφ.\left\{\begin{aligned} &\varphi_{x}=M\varphi,\\ &\varphi_{t}=N\varphi.\end{aligned}\right. (2.2)

where

M=(01λ2u20),N=(2λ2(1u)x4λ21u4λ4u2λ2(1u)xx2λ2(1u)x).M=\begin{pmatrix}0&1\\[6.0pt] -\lambda^{2}u^{2}&0\end{pmatrix},\ N=\begin{pmatrix}-2\lambda^{2}\left(\frac{1}{u}\right)_{x}&4\lambda^{2}\frac{1}{u}\\[6.0pt] -4\lambda^{4}u-2\lambda^{2}\left(\frac{1}{u}\right)_{xx}&2\lambda^{2}\left(\frac{1}{u}\right)_{x}\end{pmatrix}.

we analyze the eigenfunctions at spectral parameter λ0\lambda\rightarrow 0 and λ\lambda\rightarrow\infty with the initial data. (1) The case of λ=0\lambda=0

The Harry Dym equation (1.4) has also the compatibility condition of the following Lax pair

{Φx0+iλσ3Φ0=U0Φ0,Φt0+4iλ3σ3Φ0=V0Φ0,\left\{\begin{aligned} &\Phi_{x}^{0}+i\lambda\sigma_{3}\Phi^{0}=U_{0}\Phi^{0},\\ &\Phi_{t}^{0}+4i\lambda^{3}\sigma_{3}\Phi^{0}=V_{0}\Phi^{0},\end{aligned}\right. (2.3)

where

Φ0=Pφ,P1=(11iλiλ),\displaystyle\Phi^{0}=P\varphi,\quad P^{-1}=\begin{pmatrix}1&1\\ -i\lambda&i\lambda\end{pmatrix},
U0(x,t)=λq2(σ2iσ3),\displaystyle U_{0}(x,t)=\frac{\lambda q}{2}(\sigma_{2}-i\sigma_{3}),
V0(x,t,λ)=2λ3[quσ2i(1u+u2)σ3]2λ2(1u)xσ1+(1u)xx(σ2iσ3).\displaystyle V_{0}(x,t,\lambda)=2\lambda^{3}[\frac{q}{u}\sigma_{2}-i(\frac{1}{u}+u-2)\sigma_{3}]-2\lambda^{2}(\frac{1}{u})_{x}\sigma_{1}+(\frac{1}{u})_{xx}(\sigma_{2}-i\sigma_{3}).

Introducing the following transformation

Ψ0=Φ0exp[i(λx+4λ3t)σ3],\Psi^{0}=\Phi^{0}\exp[i(\lambda x+4\lambda^{3}t)\sigma_{3}],

then we get the Lax pair of Ψ0\Psi^{0}

{Ψx0+iλ[σ3,Ψ0]=U0Ψ0,Ψt0+4iλ3[σ3,Ψ0]=V0Ψ0.\left\{\begin{aligned} &\Psi_{x}^{0}+i\lambda[\sigma_{3},\Psi^{0}]=U_{0}\Psi^{0},\\ &\Psi_{t}^{0}+4i\lambda^{3}[\sigma_{3},\Psi^{0}]=V_{0}\Psi^{0}.\end{aligned}\right. (2.4)

As |x|,U00|x|\rightarrow\infty,U_{0}\rightarrow 0. The two eigenfunctions Ψ±0\Psi_{\pm}^{0} of equation (2.4) satisfy the Volterra integral equations

Ψ+0(x,t,λ)=Ixeiλ(xx)σ^3U0(x,t)Ψ+0(x,t,λ)𝑑x,\Psi_{+}^{0}(x,t,\lambda)=I-\int_{x}^{\infty}e^{-i\lambda\left(x-x^{\prime}\right)\hat{\sigma}_{3}}U_{0}\left(x^{\prime},t\right)\Psi_{+}^{0}\left(x^{\prime},t,\lambda\right)dx^{\prime},
Ψ0(x,t,λ)=I+xeiλ(xx)σ^3U0(x,t)Ψ0(x,t,λ)𝑑x.\Psi_{-}^{0}(x,t,\lambda)=I+\int_{-\infty}^{x}e^{-i\lambda\left(x-x^{\prime}\right)\hat{\sigma}_{3}}U_{0}\left(x^{\prime},t\right)\Psi_{-}^{0}\left(x^{\prime},t,\lambda\right)dx^{\prime}.

Denote these vectors with superscripts (i)(i) to indicate the ithi-th column of vectors, then

Ψ±0=(Ψ±0,(1),Ψ±0,(2)).\Psi_{\pm}^{0}=(\Psi_{\pm}^{0,(1)},\Psi_{\pm}^{0,(2)}).

From the above definition, we find that

Ψ+0,(2)(x,t,λ),Ψ0,(1)(x,t,λ) are bounded and analytic for λ+,\Psi_{+}^{0,(2)}(x,t,\lambda),\Psi_{-}^{0,(1)}(x,t,\lambda)\text{ are bounded and analytic for }\lambda\in\mathbb{C}_{+},
Ψ+0,(1)(x,t,λ),Ψ0,(2)(x,t,λ) are bounded and analytic for λ,\Psi_{+}^{0,(1)}(x,t,\lambda),\Psi_{-}^{0,(2)}(x,t,\lambda)\text{ are bounded and analytic for }\lambda\in\mathbb{C}_{-},

where +={λImλ>0},={λImλ<0}.\mathbb{C}_{+}=\{\lambda\in\mathbb{C}\mid\operatorname{Im}\lambda>0\},\mathbb{C}_{-}=\{\lambda\in\mathbb{C}\mid\operatorname{Im}\lambda<0\}.

According to the assumptions in (1.5) and (2.4), Ψ±0(x,t,λ)\Psi_{\pm}^{0}(x,t,\lambda) have the expansions in powers of λ\lambda, for λ=0\lambda=0,

Ψ±0(x,t,λ)=I+λ2A(x,t)(σ2iσ3)λ2A1(x,t)σ1+O(λ3),\Psi_{\pm}^{0}(x,t,\lambda)=I+\frac{\lambda}{2}A(x,t)\left(\sigma_{2}-i\sigma_{3}\right)-\lambda^{2}A_{1}(x,t)\sigma_{1}+O\left(\lambda^{3}\right), (2.5)

where

A(x,t)=±xq(x,t)𝑑x,A1(x,t)=±x±xq(x′′,t)𝑑x′′𝑑x.A(x,t)=\int_{\pm\infty}^{x}q\left(x^{\prime},t\right)dx^{\prime},\quad A_{1}(x,t)=\int_{\pm\infty}^{x}\int_{\pm\infty}^{x^{\prime}}q\left(x^{\prime\prime},t\right)dx^{\prime\prime}dx^{\prime}.

(2) The case of λ=\lambda=\infty

Introducing the gauge transformation

Φ=PDφ,\Phi=\mathrm{PD}\varphi, (2.6)

where

P1=(11iλiλ),D=(u001u).P^{-1}=\begin{pmatrix}1&1\\ -i\lambda&i\lambda\end{pmatrix},\quad D=\begin{pmatrix}\sqrt{u}&0\\ 0&\frac{1}{\sqrt{u}}\end{pmatrix}.

Then we have the Lax pair of φ\varphi (2.2) becomes

{Φx+iλuσ3Φ=UΦ,Φt+i[λ[1u(1u)xx12((1u)x)2]+4λ3]σ3Φ=VΦ.\left\{\begin{aligned} &\Phi_{x}+i\lambda u\sigma_{3}\Phi=U\Phi,\\ &\Phi_{t}+i\left[\lambda\left[\frac{1}{u}\left(\frac{1}{u}\right)_{xx}-\frac{1}{2}\left(\left(\frac{1}{u}\right)_{x}\right)^{2}\right]+4\lambda^{3}\right]\sigma_{3}\Phi=V\Phi.\end{aligned}\right. (2.7)

where

U(x,t)=14qxu2σ1,\displaystyle U(x,t)=\frac{1}{4}\frac{q_{x}}{u^{2}}\sigma_{1},
V(x,t,λ)=2λ2(1u)xσ1+λ[1u(1u)xxσ2i2((1u)x)2σ3]+12u2(1u)xxxσ1.\displaystyle V(x,t,\lambda)=-2\lambda^{2}\left(\frac{1}{u}\right)_{x}\sigma_{1}+\lambda\left[\frac{1}{u}\left(\frac{1}{u}\right)_{xx}\sigma_{2}-\frac{i}{2}\left(\left(\frac{1}{u}\right)_{x}\right)^{2}\sigma_{3}\right]+\frac{1}{2u^{2}}\left(\frac{1}{u}\right)_{xxx}\sigma_{1}.

It is clear that as |x|,U(x,t)0,V(x,t,λ)0|x|\rightarrow\infty,U(x,t)\rightarrow 0,V(x,t,\lambda)\rightarrow 0.

In order to dedicate solutions via integral Volterra equation more conveniently, we make a transformation

Ψ=Φexp[iλp(x,t,λ)σ3],\Psi=\Phi\exp\left[i\lambda p(x,t,\lambda)\sigma_{3}\right], (2.8)

where

p(x,t,λ)=x+x(1u(ξ,t))𝑑ξ+4λ2t.p(x,t,\lambda)=x+\int_{x}^{\infty}(1-u(\xi,t))d\xi+4\lambda^{2}t. (2.9)

From (2.9), we have

px=u(x,t),pt=xut(ξ,t)𝑑ξ+4λ2,p_{x}=u(x,t),\quad p_{t}=-\int_{x}^{\infty}u_{t}(\xi,t)d\xi+4\lambda^{2},

and the conservation law

ut(12((1u)x)2+1u(1u)xx)x=0u_{t}-\left(-\frac{1}{2}\left(\left(\frac{1}{u}\right)_{x}\right)^{2}+\frac{1}{u}\left(\frac{1}{u}\right)_{xx}\right)_{x}=0

implies that

pt=12((1u)x)2+1u(1u)xx+4λ2.p_{t}=-\frac{1}{2}\left(\left(\frac{1}{u}\right)_{x}\right)^{2}+\frac{1}{u}\left(\frac{1}{u}\right)_{xx}+4\lambda^{2}.

Then the Lax pair (2.7) is changed into a new Lax pair

{Ψx+iλpx[σ3,Ψ]=UΨ,Ψt+iλpt[σ3,Ψ]=VΨ.\left\{\begin{aligned} &\Psi_{x}+i\lambda p_{x}\left[\sigma_{3},\Psi\right]=U\Psi,\\ &\Psi_{t}+i\lambda p_{t}\left[\sigma_{3},\Psi\right]=V\Psi.\end{aligned}\right. (2.10)

Furthermore, we define two eigenfunctions Ψ±\Psi_{\pm} of (2.10) as the solutions of the following two Volterra integral equation in the (x,t)(x,t) plane

Ψ±(x,t,λ)=I+(x,τ)(x,t)eiλ(p(x,t,λ)p(x,τ,λ))σ^3(U(x,τ)Ψ±(x,τ,λ)dx+V(x,τ,λ)Ψ±(x,τ,λ))𝑑τ.\Psi_{\pm}(x,t,\lambda)=I+\int_{\left(x^{*},\tau^{*}\right)}^{(x,t)}e^{-i\lambda\left(p(x,t,\lambda)-p\left(x^{\prime},\tau,\lambda\right)\right)\hat{\sigma}_{3}}\left(U\left(x^{\prime},\tau\right)\Psi_{\pm}\left(x^{\prime},\tau,\lambda\right)dx^{\prime}+V\left(x^{\prime},\tau,\lambda\right)\Psi_{\pm}\left(x^{\prime},\tau,\lambda\right)\right)d\tau. (2.11)

Noting that one-form U(x,τ)Ψ±(x,τ,λ)dx+V(x,τ,λ)Ψ±(x,τ,λ)U\left(x^{\prime},\tau\right)\Psi_{\pm}\left(x^{\prime},\tau,\lambda\right)dx^{\prime}+V\left(x^{\prime},\tau,\lambda\right)\Psi_{\pm}\left(x^{\prime},\tau,\lambda\right) is independent of the path of integration, we choose the particular initial points of integration to be parallel to the xaxisx-axis leads to the integral equations for Ψ+\Psi_{+} and Ψ\Psi_{-}:

Ψ+(x,t,λ)=Ixeiλxxu(ξ,t)𝑑ξσ^3U(x,t)Ψ+(x,t,λ)𝑑x,\displaystyle\Psi_{+}(x,t,\lambda)=I-\int_{x}^{\infty}e^{i\lambda\int_{x}^{x^{\prime}}u(\xi,t)d\xi\hat{\sigma}_{3}}U\left(x^{\prime},t\right)\Psi_{+}\left(x^{\prime},t,\lambda\right)dx^{\prime}, (2.12)
Ψ(x,t,λ)=I+xeiλxxu(ξ,t)𝑑ξσ^3U(x,t)Ψ(x,t,λ)𝑑x.\displaystyle\Psi_{-}(x,t,\lambda)=I+\int_{-\infty}^{x}e^{i\lambda\int_{x}^{x^{\prime}}u(\xi,t)d\xi\hat{\sigma}_{3}}U\left(x^{\prime},t\right)\Psi_{-}\left(x^{\prime},t,\lambda\right)dx^{\prime}.

Denote Ψ±=(Ψ±(1),Ψ±(2)),\Psi_{\pm}=(\Psi_{\pm}^{(1)},\Psi_{\pm}^{(2)}), we find that

Ψ+(2)(x,t,λ),Ψ(1)(x,t,λ) are bounded and analytic for λ+,\Psi_{+}^{(2)}(x,t,\lambda),\Psi_{-}^{(1)}(x,t,\lambda)\text{ are bounded and analytic for }\lambda\in\mathbb{C}_{+},
Ψ+(1)(x,t,λ),Ψ(2)(x,t,λ) are bounded and analytic for λ.\Psi_{+}^{(1)}(x,t,\lambda),\Psi_{-}^{(2)}(x,t,\lambda)\text{ are bounded and analytic for }\lambda\in\mathbb{C}_{-}.

(3) The scattering matrix s(λ)s(\lambda)

Because the eigenfunctions Ψ±\Psi_{\pm} are both the solutions of (2.11), define the spectral function s(λ)s(\lambda) by

Ψ(x,t,λ)=Ψ+(x,t,λ)eiλp(x,t,λ)σ^3s(λ).\Psi_{-}(x,t,\lambda)=\Psi_{+}(x,t,\lambda)e^{-i\lambda p(x,t,\lambda)\hat{\sigma}_{3}}s(\lambda). (2.13)

From (2.10), we can deduce that

det(Ψ±(x,t,λ))=1.det\left(\Psi_{\pm}(x,t,\lambda)\right)=1. (2.14)

According the definition of U(x,t)U(x,t), it is obvious that U(x,t)=σ1U(x,t)σ1,U(x,t)=\sigma_{1}U(x,t)\sigma_{1}, we get the Ψ±(x,t,λ)\Psi_{\pm}(x,t,\lambda) satisfy the symmetry properties

{Ψ±11(x,t,λ)=Ψ±22(x,t,λ¯)¯,Ψ±21(x,t,λ)=Ψ±12(x,t,λ¯)¯,Ψ±11(x,t,λ)=Ψ±22(x,t,λ),Ψ±12(x,t,λ)=Ψ±21(x,t,λ).\left\{\begin{aligned} &\Psi_{\pm 11}(x,t,\lambda)=\overline{\Psi_{\pm 22}(x,t,\bar{\lambda})},\quad\Psi_{\pm 21}(x,t,\lambda)=\overline{\Psi_{\pm 12}(x,t,\bar{\lambda})},\\ &\Psi_{\pm 11}(x,t,-\lambda)=\Psi_{\pm 22}(x,t,\lambda),\quad\Psi_{\pm 12}(x,t,-\lambda)=\Psi_{\pm 21}(x,t,\lambda).\end{aligned}\right. (2.15)

Then the matrix s(λ)s(\lambda) has the form

s(λ)=(a(λ)b(λ¯)¯b(λ)a(λ¯)¯),s(\lambda)=\begin{pmatrix}a(\lambda)&\overline{b(\bar{\lambda})}\\ b(\lambda)&\overline{a(\bar{\lambda})}\end{pmatrix}, (2.16)

where a(λ¯)=a(λ)¯a(-\bar{\lambda})=\overline{a(\lambda)} and b(λ¯)=b(λ)¯b(-\bar{\lambda})=\overline{b(\lambda)}, from (2.14) we get det(s(λ))=1det(s(\lambda))=1, combining (2.13) and (2.14) gives

a(λ)=det(Ψ(1),Ψ+(2)),a(\lambda)=det(\Psi_{-}^{(1)},\Psi_{+}^{(2)}), (2.17)

then we can get a(λ)a(\lambda) and b(λ)b(\lambda) have the following properties:

  • a(λ)a(\lambda) is analytic in +\mathbb{C}_{+} and continuous for λ¯+\lambda\in\overline{\mathbb{C}}_{+}, b(λ)b(\lambda) is continuous for λR.\lambda\in R.

  • a(λ)=1+O(1λ),λa(\lambda)=1+O\left(\frac{1}{\lambda}\right),\lambda\rightarrow\infty; a(λ)=1+O(λ),λ0,a(\lambda)=1+O(\lambda),\lambda\rightarrow 0, for λ+\lambda\in\mathbb{C}_{+}.

  • b(λ)=O(1λ),λb(\lambda)=O\left(\frac{1}{\lambda}\right),\lambda\rightarrow\infty; b(λ)=O(λ),λ0,b(\lambda)=O(\lambda),\lambda\rightarrow 0, for λR.\lambda\in R.

We introduce the reflection coefficient

r(λ)=b(λ)a(λ)r(\lambda)=\frac{b(\lambda)}{a(\lambda)}

with symmetry r(λ¯)=r(λ)¯r(-\bar{\lambda})=\overline{r(\lambda)}. And for a(λ)0a(\lambda)\neq 0 for all λ\lambda such that Imλ0\operatorname{Im}\lambda\geq 0 [27], we assume our initial data satisfy the following assumption.

Assumption 1.

The initial data q0(x)H1,1()q_{0}(x)\in H^{1,1}(\mathbb{R}) and it generates generic scattering data which satisfy that

  • a(λ)a(\lambda) only has NN simple zeros, denote Λ={λn,a(λn)=0 and λ+}n=1N;\Lambda=\{\lambda_{n},a(\lambda_{n})=0\text{ and }\lambda\in\mathbb{C}_{+}\}_{n=1}^{N};

  • a(λ)a(\lambda) and r(λ)r(\lambda) belong H1,1()H^{1,1}(\mathbb{R}).

(4) The relation between Ψ±\Psi_{\pm} and Ψ±0\Psi_{\pm}^{0}

In the following analysis, we formulate a RH problem by defining the matrix function M(x,t,z)M(x,t,z) with eigenfunctions Ψ±\Psi_{\pm}, while the reconstruction formula between the solution q(x,t)q(x,t) and the RH problem can be found from the asymptotic of Ψ±\Psi_{\pm} as λ0\lambda\rightarrow 0. So we need to calculate the relation between Ψ±\Psi_{\pm} and Ψ±0\Psi_{\pm}^{0}.

The eigenfunctions Ψ±\Psi_{\pm} and Ψ±0\Psi_{\pm}^{0} can be related to each other as

Ψ±=G(x,t)Ψ±0ei(λx+4λ3t)σ3C±(λ)eiλp(x,t,λ)σ3,\Psi_{\pm}=G(x,t)\Psi_{\pm}^{0}e^{-i\left(\lambda x+4\lambda^{3}t\right)\sigma_{3}}C_{\pm}(\lambda)e^{i\lambda p(x,t,\lambda)\sigma_{3}}, (2.18)

where C±(λ)C_{\pm}(\lambda) is independent of xx and tt,

G(x,t)=PDP1=12(u+1uu1uu1uu+1u).G(x,t)=\mathrm{PDP}^{-1}=\frac{1}{2}\begin{pmatrix}\sqrt{u}+\frac{1}{\sqrt{u}}&\sqrt{u}-\frac{1}{\sqrt{u}}\\ \sqrt{u}-\frac{1}{\sqrt{u}}&\sqrt{u}+\frac{1}{\sqrt{u}}\end{pmatrix}. (2.19)

Considering (2.18) when x±x\rightarrow\pm\infty, we have C+(λ)=IC_{+}(\lambda)=I and C(λ)=eicλσ3C_{-}(\lambda)=e^{ic\lambda\sigma_{3}}, where
c=(u(ξ,t)1)𝑑ξc=\int_{-\infty}^{\infty}(u(\xi,t)-1)d\xi is a quantity conserved under the dynamics governed by (1.1).

Note that (2.18) can be written as

Ψ+(x,t,λ)=G(x,t)Ψ+0(x,t,λ)eiλF(x,t)σ3,\displaystyle\Psi_{+}(x,t,\lambda)=G(x,t)\Psi_{+}^{0}(x,t,\lambda)e^{-i\lambda F(x,t)\sigma_{3}}, (2.20)
Ψ(x,t,λ)=G(x,t)Ψ0(x,t,λ)eiλx(ρ(ξ,t)1)𝑑ξσ3,\displaystyle\Psi_{-}(x,t,\lambda)=G(x,t)\Psi_{-}^{0}(x,t,\lambda)e^{i\lambda\int_{-\infty}^{x}(\rho(\xi,t)-1)d\xi\sigma_{3}},

where F(x,t)=x(u(ξ,t)1)𝑑ξF(x,t)=\int_{x}^{\infty}(u(\xi,t)-1)d\xi, then we have (2.18) and (2.20) imply that as λ0\lambda\rightarrow 0, coefficients of the expansions for Ψ±(x,t,λ)\Psi_{\pm}(x,t,\lambda) can be expressed by q(x,t)q(x,t). In addition, according to (2.5), (2.17) and (2.20), we find

a(λ)=1+iλc+(iλ)2c22+O(λ3), as λ0.a(\lambda)=1+i\lambda c+(i\lambda)^{2}\frac{c^{2}}{2}+O\left(\lambda^{3}\right),\quad\text{ as }\lambda\rightarrow 0. (2.21)

3 A Riemann-Hilbert problem

Suppose that Λ={λn,n=1,,N}\Lambda=\{\lambda_{n},n=1,\cdots,N\} are simple zeros of a(λ)a(\lambda), which implies that λ¯n\overline{\lambda}_{n}\in\mathbb{C}_{-} are simple zeros of a(λ¯)¯\overline{a(\bar{\lambda})}, denote Λ¯={λ¯n,n=1,,N}\bar{\Lambda}=\{\overline{\lambda}_{n},n=1,\cdots,N\}.

Define a sectionally analytic matrix M(x,t,λ)M(x,t,\lambda)

M(x,t,λ)={(Ψ(1)a(λ),Ψ+(2)),λ+,(Ψ+(1),Ψ(2)a(λ¯)¯),λ.M(x,t,\lambda)=\left\{\begin{aligned} \left(\frac{\Psi_{-}^{(1)}}{a(\lambda)},\Psi_{+}^{(2)}\right),\quad\lambda\in\mathbb{C}^{+},\\ \left(\Psi_{+}^{(1)},\frac{\Psi_{-}^{(2)}}{\overline{a(\bar{\lambda})}}\right),\quad\lambda\in\mathbb{C}^{-}.\end{aligned}\right. (3.1)

we can get the symmetry of M(x,t,λ)M(x,t,\lambda) by (2.15)

M(x,t,λ¯)¯=M(x,t,λ)=σ1M(x,t,λ)σ1.\overline{M(x,t,\bar{\lambda})}=M(x,t,-\lambda)=\sigma_{1}M(x,t,\lambda)\sigma_{1}. (3.2)

The function MM defined by (3.1) satisfies the following Riemann-Hilbert problem.
RHP 1 Find a matrix-valued function M(x,t,λ)M(x,t,\lambda) with the following properties

  1. 1.

    Analyticity: M(x,t,λ)M(x,t,\lambda) is meromorphic in \.\mathbb{C}\backslash\mathbb{R}.

  2. 2.

    Jump condition: The boundary values M±M_{\pm} of MM as λR\lambda\rightarrow R from ±\mathbb{C}_{\pm} are related by

    M+(x,t,λ)=M(x,t,λ)J(x,t,λ),λRM_{+}(x,t,\lambda)=M_{-}(x,t,\lambda)J(x,t,\lambda),\quad\lambda\in R (3.3)

    where

    J(x,t,λ)=(1|r(λ)|2r(λ¯)¯e2iλp(x,t,λ)r(λ)e2iλp(x,t,λ)1).J(x,t,\lambda)=\begin{pmatrix}1-|r(\lambda)|^{2}&-\overline{r(\bar{\lambda})}e^{-2i\lambda p(x,t,\lambda)}\\[6.0pt] r(\lambda)e^{2i\lambda p(x,t,\lambda)}&1\end{pmatrix}. (3.4)
  3. 3.

    Normalization: As λ,M(x,t,λ)I.\lambda\rightarrow\infty,\quad M(x,t,\lambda)\rightarrow I.

  4. 4.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, M(x,t,λ)M(x,t,\lambda) has simple poles and the residues satisfy the conditions

    Resλ=λnM(x,t,λ)=limλλnM(x,t,λ)(00cne2iλnp(λn)0),\displaystyle\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M(x,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M(x,t,\lambda){\begin{pmatrix}0&0\\[6.0pt] c_{n}e^{2i\lambda_{n}p(\lambda_{n})}&0\end{pmatrix}}, (3.5)
    Resλ=λ¯nM(x,t,λ)=limλλ¯nM(x,t,λ)(0c¯ne2iλ¯np(λ¯n)00),\displaystyle\mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M(x,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M(x,t,\lambda)\begin{pmatrix}0&\overline{c}_{n}e^{-2i\overline{\lambda}_{n}p(\overline{\lambda}_{n})}\\[6.0pt] 0&0\end{pmatrix},

    where cn=b(λn)a(λn).c_{n}=\frac{b(\lambda_{n})}{a^{\prime}(\lambda_{n})}.

Considering the asymptotic behavior for M(x,t,λ)M(x,t,\lambda) when λ0\lambda\rightarrow 0, we can solve solution of (1.1)-(1.2) by RHP1. It follows from (2.5), (2.20) and (2.21), for λ0\lambda\rightarrow 0 we have

M(x,t,λ)\displaystyle M(x,t,\lambda) =G(x,t){Iiλ[A(x,t)2(iσ2+σ3)+F(x,t)σ3]\displaystyle=G(x,t)\left\{I-i\lambda\left[\frac{A(x,t)}{2}\left(i\sigma_{2}+\sigma_{3}\right)+F(x,t)\sigma_{3}\right]\right. (3.6)
+(iλ)2[A1(x,t)σ1+A(x,t)F(x,t)2(Iσ1)+F2(x,t)2I]+O(λ3)}.\displaystyle\left.+(i\lambda)^{2}\left[A_{1}(x,t)\sigma_{1}+\frac{A(x,t)F(x,t)}{2}\left(I-\sigma_{1}\right)+\frac{F^{2}(x,t)}{2}I\right]+O\left(\lambda^{3}\right)\right\}.

We introduce a row vector function

(μ1,μ2)(x,t,λ)=(1,1)M(x,t,λ).\left(\mu_{1},\mu_{2}\right)(x,t,\lambda)=(1,1)M(x,t,\lambda). (3.7)

From (3.6), then it follows that as λ0\lambda\rightarrow 0,

μ1(x,t,λ)=ρ{1iλF(x,t)+(iλ)2[A1(x,t)+F2(x,t)2]+O(λ3)},\displaystyle\mu_{1}(x,t,\lambda)=\sqrt{\rho}\left\{1-i\lambda F(x,t)+(i\lambda)^{2}\left[A_{1}(x,t)+\frac{F^{2}(x,t)}{2}\right]+O\left(\lambda^{3}\right)\right\}, (3.8)
μ2(x,t,λ)=ρ{1+iλF(x,t)+(iλ)2[A1(x,t)+F2(x,t)2]+O(λ3)},\displaystyle\mu_{2}(x,t,\lambda)=\sqrt{\rho}\left\{1+i\lambda F(x,t)+(i\lambda)^{2}\left[A_{1}(x,t)+\frac{F^{2}(x,t)}{2}\right]+O\left(\lambda^{3}\right)\right\},

which yield

μ1μ2(x,t,λ)=12iλF(x,t)+O(λ2),\displaystyle\frac{\mu_{1}}{\mu_{2}}(x,t,\lambda)=1-2i\lambda F(x,t)+O\left(\lambda^{2}\right), (3.9)
q(x,t)=(μ1μ2)2(x,t,0)1.\displaystyle q(x,t)=\left(\mu_{1}\mu_{2}\right)^{2}(x,t,0)-1.

Equations (3.9) show that we can reconstruct the solution of the initial value problem of (1.1)-(1.2) by the matrix-valued function M(x,t,λ)M(x,t,\lambda). However, due to the jump matrix JJ are determined by q0(x)q_{0}(x), e2iλp(x,t,λ)e^{-2i\lambda p(x,t,\lambda)}, while p(x,t,λ)p(x,t,\lambda) cannot be given by initial data q0(x)q_{0}(x). Thus, we introduce the new scale

y(x,t)=xx(u(ξ,t)1)𝑑ξ=xF(x,t),y(x,t)=x-\int_{x}^{\infty}(u(\xi,t)-1)d\xi=x-F(x,t), (3.10)

which makes the jump matrix JJ explicitly dependent on the parameters (y,t)(y,t):

J(x,t,λ)=J^(y,t,λ)=(1|r(λ)|2r(λ¯)¯e2i(λy+4λ3t)r(λ)e2i(λy+4λ3t)1),λR.J(x,t,\lambda)=\hat{J}(y,t,\lambda)=\begin{pmatrix}1-|r(\lambda)|^{2}&-\overline{r(\bar{\lambda})}e^{-2i\left(\lambda y+4\lambda^{3}t\right)}\\[6.0pt] r(\lambda)e^{2i\left(\lambda y+4\lambda^{3}t\right)}&1\end{pmatrix},\quad\lambda\in R. (3.11)

By the definition of the new sacle y(x,t)y(x,t), then we can transform this RH problem into a new RH problem parametrized by (y,t)(y,t). Define

M^(y,t,λ)=M(x(y,t),t,λ),(μ^1,μ^2)(y,t,λ)=(1,1)M^(y,t,λ).\begin{array}[]{l}\hat{M}(y,t,\lambda)=M(x(y,t),t,\lambda),\\[6.0pt] (\hat{\mu}_{1},\hat{\mu}_{2})(y,t,\lambda)=(1,1)\hat{M}(y,t,\lambda).\end{array} (3.12)

It follows from (3.13) that M^(y,t,λ)\hat{M}(y,t,\lambda) has the symmetry property

M^(y,t,λ¯)¯=M^(y,t,λ)=σ1M^(y,t,λ)σ1.\overline{\hat{M}(y,t,\bar{\lambda})}=\hat{M}(y,t,-\lambda)=\sigma_{1}\hat{M}(y,t,\lambda)\sigma_{1}. (3.13)

We construct the row function M^(y,t,λ)\hat{M}(y,t,\lambda) as a solution of the following 2×22\times 2 matrix Riemann-Hilbert problem.
RHP 2 Find a matrix function M^(y,t,λ)\hat{M}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: M^(y,t,λ)\hat{M}(y,t,\lambda) is meromorphic in \.\mathbb{C}\backslash\mathbb{R}.

  2. 2.

    Jump condition:

    M^+(y,t,λ)=M^(y,t,λ)J^(y,t,λ),λR,\hat{M}_{+}(y,t,\lambda)=\hat{M}_{-}(y,t,\lambda)\hat{J}(y,t,\lambda),\quad\lambda\in R, (3.14)

    where J^(y,t,λ)\hat{J}(y,t,\lambda) is defined by (3.11).

  3. 3.

    Normalization: M^(y,t,λ)I\hat{M}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

  4. 4.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, M^(y,t,λ)\hat{M}(y,t,\lambda) has simple poles and the residues satisfy the conditions

    Resλ=λnM^(y,t,λ)=limλλnM^(y,t,λ)(00cne2i(λny+4λn3t)0),\displaystyle\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}\hat{M}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}\hat{M}(y,t,\lambda){\begin{pmatrix}0&0\\[6.0pt] c_{n}e^{2i(\lambda_{n}y+4\lambda_{n}^{3}t)}&0\end{pmatrix}}, (3.15)
    Resλ=λ¯nM^(y,t,λ)=limλλ¯nM^(y,t,λ)(0c¯ne2i(λ¯ny+4λ¯n3t)00).\displaystyle\mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}\hat{M}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}\hat{M}(y,t,\lambda)\begin{pmatrix}0&\overline{c}_{n}e^{-2i(\bar{\lambda}_{n}y+4\bar{\lambda}_{n}^{3}t)}\\[6.0pt] 0&0\end{pmatrix}.

Then, we have

  • The solution M^(y,t,λ)\hat{M}(y,t,\lambda) exists and is unique.

  • The solution of the initial value problem of (1.1)-(1.2) can be expressed in parametric form of (y,t)(y,t) in terms of the solution M^(y,t,λ)\hat{M}(y,t,\lambda) of above RHP 2 as follows,

    q(x,t)=q^(y,t),q(x,t)=\hat{q}(y,t), (3.16)

    where

    q^(y,t)=(μ^1μ^2)2(y,t,0)1,\displaystyle\hat{q}(y,t)=\left(\hat{\mu}_{1}\hat{\mu}_{2}\right)^{2}(y,t,0)-1, (3.17)
    x(y,t)=ylimλ012iλ(μ^1μ^2(y,t,λ)1),\displaystyle x(y,t)=y-\lim\limits_{\lambda\rightarrow 0}\frac{1}{2i\lambda}\left(\frac{\hat{\mu}_{1}}{\hat{\mu}_{2}}(y,t,\lambda)-1\right),

    and the μ^1,μ^2\hat{\mu}_{1},\hat{\mu}_{2} defined by (3.12).

4 Conjugation

In this section, we introduce a new transform M^(λ)M(1)(λ)\hat{M}(\lambda)\rightarrow M^{(1)}(\lambda), from which we make that the M(1)M^{(1)} is well behaved as |t||t|\rightarrow\infty along any characteristic line. Note that the jump matrix J(1)(y,t,λ)J^{(1)}(y,t,\lambda) (see (3.11)) for the RHP of the the Harry Dym equation involves the exponentials, which is the main factor affecting the jump matrix and the residue conditions. We denote the oscillatory term as

e2i(λy+4λ3t)=e2iθ(λ),θ(y,t,λ)=λyt+4λ3.e^{-2i(\lambda y+4\lambda^{3}t)}=e^{2i\theta(\lambda)},\quad\theta(y,t,\lambda)=\lambda\frac{y}{t}+4\lambda^{3}. (4.1)

Our aim is to study the long time asymptotic behavior of solution q(x,t)q(x,t), the case yt>ε(ε>0)\frac{y}{t}>\varepsilon(\varepsilon>0) has be discussed by [27]. We considering the case of yt<ε(ε>0)\frac{y}{t}<-\varepsilon(\varepsilon>0), which get the stationary phase ±λ0\pm\lambda_{0}, where λ0=y12t.\lambda_{0}=\sqrt{-\frac{y}{12t}}\in\mathbb{R}. Then we calculate the new form of θ(λ)\theta(\lambda)

θ(λ)=4λ312λλ02,\theta(\lambda)=4\lambda^{3}-12\lambda\lambda_{0}^{2}, (4.2)

from which we have

Re(2iθ(λ))=8Imλ((Imλ)2+3(λ02(Reλ)2)).\operatorname{Re}(2i\theta(\lambda))=8\operatorname{Im}\lambda((\operatorname{Im}\lambda)^{2}+3(\lambda_{0}^{2}-(\operatorname{Re}\lambda)^{2})). (4.3)

Then we can get the regions of growth and decay of exponential factor which follows signature table for the function Re(2iθ)\operatorname{Re}(2i\theta), see Figure 1.

Refer to caption|e2itθ||e^{2it\theta}|\rightarrow\infty|e2itθ|0|e^{2it\theta}|\rightarrow 0|e2itθ||e^{2it\theta}|\rightarrow\infty|e2itθ|0|e^{2it\theta}|\rightarrow 0|e2itθ||e^{2it\theta}|\rightarrow\infty|e2itθ|0|e^{2it\theta}|\rightarrow 0OOλ0-\lambda_{0}λ0\lambda_{0}t+t\rightarrow+\infty
Refer to caption|e2itθ|0|e^{2it\theta}|\rightarrow 0|e2itθ||e^{2it\theta}|\rightarrow\infty|e2itθ|0|e^{2it\theta}|\rightarrow 0|e2itθ||e^{2it\theta}|\rightarrow\infty|e2itθ|0|e^{2it\theta}|\rightarrow 0|e2itθ||e^{2it\theta}|\rightarrow\inftyOOλ0-\lambda_{0}λ0\lambda_{0}tt\rightarrow-\infty
Figure 1: The regions of growth and decay of |e2itθ||e^{2it\theta}| for large |t||t|.

In our analysis, we mainly discuss the case of t+t\rightarrow+\infty, and the case tt\rightarrow-\infty can be analyzed in a similarly way. The first step is a conjugation to well-condition the problem for the large-time analysis, we introduce the partition as follow:

Δλ0+={n{1,,N}||λn|>λ0},Δλ0={n{1,,N}||λn|<λ0},\Delta_{\lambda_{0}}^{+}=\{n\in\{1,\cdots,N\}||\lambda_{n}|>\lambda_{0}\},\quad\Delta_{\lambda_{0}}^{-}=\{n\in\{1,\cdots,N\}||\lambda_{n}|<\lambda_{0}\},

the intervals on the real-axis are divided as

I+=(,λ0)(λ0,+),I=[λ0,λ0].I_{+}=(-\infty,-\lambda_{0})\cup(\lambda_{0},+\infty),\quad I_{-}=\left[-\lambda_{0},\lambda_{0}\right].

In order to arrive at a problem which is well normalized, we define the following function

T(λ)=T(λ,λ0)=nΔλ0λλ¯nλλnδ(λ),T(\lambda)=T(\lambda,\lambda_{0})=\prod_{n\in\Delta_{\lambda_{0}}^{-}}\frac{\lambda-\bar{\lambda}_{n}}{\lambda-\lambda_{n}}\delta(\lambda), (4.4)

where δ(λ)\delta(\lambda) has been solved in [27]

δ(λ)=(λλ0λ+λ0)iνexp(iλ0λ0η(s)sλ𝑑s),\delta(\lambda)=\left(\frac{\lambda-\lambda_{0}}{\lambda+\lambda_{0}}\right)^{i\nu}\exp{\left(i\int_{-\lambda_{0}}^{\lambda_{0}}\frac{\eta(s)}{s-\lambda}ds\right)}, (4.5)
ν=12πlog(1|r(λ0)|2)>0,η(s)=12πlog(1|r(s)|21|r(λ0)|2).\nu=-\frac{1}{2\pi}\log\left(1-\left|r\left(\lambda_{0}\right)\right|^{2}\right)>0,\quad\eta(s)=-\frac{1}{2\pi}\log\left(\frac{1-|r(s)|^{2}}{1-\left|r\left(\lambda_{0}\right)\right|^{2}}\right). (4.6)
Proposition 4.1.

The function T(λ)T(\lambda) defined by (4.4) satisfies following properties:

  1. 1.

    TT is meromorphic in \I,\mathbb{C}\backslash I_{-}, for each nΔz0n\in\Delta_{z_{0}}^{-}, T(λ)T(\lambda) has a simple pole at λn\lambda_{n} and a simple zero at λ¯n\bar{\lambda}_{n}.

  2. 2.

    For λ\I,\lambda\in\mathbb{C}\backslash I_{-}, T(λ)T(λ¯)¯=1.T(\lambda)\overline{T(\bar{\lambda})}=1.

  3. 3.

    The boundary values T±T_{\pm} satisfy

    T+(λ)=T(λ),λI+,T+(λ)=T(λ)(1|r(z)|2),λI.\begin{array}[]{l}T_{+}(\lambda)=T_{-}(\lambda),\quad\lambda\in I_{+},\\[6.0pt] T_{+}(\lambda)=T_{-}(\lambda)\left(1-|r(z)|^{2}\right),\quad\lambda\in I_{-}.\end{array} (4.7)
  4. 4.

    T(λ)T(\lambda) is continuous at λ=0\lambda=0 and it admits

    T(λ)=T(0)(1+λT1)+𝒪(λ2),T(\lambda)=T(0)\left(1+\lambda T_{1}\right)+\mathcal{O}\left(\lambda^{2}\right), (4.8)

    where

    T1=2nΔλ0Im(λn)λnλ0λ0η(s)s2𝑑s.T_{1}=2\sum_{n\in\Delta_{\lambda_{0}}^{-}}\frac{\operatorname{Im}\left(\lambda_{n}\right)}{\lambda_{n}}-\int_{-\lambda_{0}}^{\lambda_{0}}\frac{\eta(s)}{s^{2}}ds. (4.9)
  5. 5.

    As |λ||\lambda|\rightarrow\infty with |arg(λ)|c<π|arg(\lambda)|\leq c<\pi,

    T(λ)=1+iλ[2nΔλ0Im(λn)λ0λ0η(s)𝑑s2νλ0]+𝒪(λ2).T(\lambda)=1+\frac{i}{\lambda}\left[2\sum_{n\in\Delta_{\lambda_{0}}^{-}}\operatorname{Im}\left(\lambda_{n}\right)-\int_{-\lambda_{0}}^{\lambda_{0}}\eta(s)ds-2\nu\lambda_{0}\right]+\mathcal{O}\left(\lambda^{-2}\right). (4.10)
  6. 6.

    As λ±λ0\lambda\rightarrow\pm\lambda_{0} along any ray λ=±λ0+eiω+\lambda=\pm\lambda_{0}+e^{i\omega}\mathbb{R}{+} with |ω|c<π|\omega|\leq c<\pi,

    |T(λ,λ0)T0(±λ0)(λλ0)iη(±λ0)|C|λλ0|1/2,\left|T\left(\lambda,\lambda_{0}\right)-T_{0}\left(\pm\lambda_{0}\right)\left(\lambda\mp\lambda_{0}\right)^{i\eta\left(\pm\lambda_{0}\right)}\right|\leq C\left|\lambda\mp\lambda_{0}\right|^{1/2}, (4.11)

    where

    T0(±λ0)=T(±λ0,λ0)=nΔλ0±λ0λ¯n±λ0λneiβ±(λ0,±λ0),T_{0}\left(\pm\lambda_{0}\right)=T\left(\pm\lambda_{0},\lambda_{0}\right)=\prod_{n\in\Delta_{\lambda_{0}}^{-}}\frac{\pm\lambda_{0}-\bar{\lambda}_{n}}{\pm\lambda_{0}-\lambda_{n}}e^{i\beta^{\pm}\left(\lambda_{0},\pm\lambda_{0}\right)}, (4.12)
    β±(λ,λ0)=η(±λ0)log((λλ0+1))+Iη(s)χ±(s)η(±λ0)sλ𝑑s.\beta^{\pm}\left(\lambda,\lambda_{0}\right)=-\eta\left(\pm\lambda_{0}\right)\log\left(\left(\lambda\mp\lambda_{0}+1\right)\right)+\int_{I_{-}}\frac{\eta(s)-\chi_{\pm}(s)\eta\left(\pm\lambda_{0}\right)}{s-\lambda}ds. (4.13)

    Here χ±(s)\chi_{\pm}(s) are the characteristic functions of the interval s(λ01,λ0)s\in\left(\lambda_{0}-1,\lambda_{0}\right) and s(λ0,λ0+1)s\in\left(-\lambda_{0},-\lambda_{0}+1\right) respectively.

Proof.

The proof of above properties can be proved by similar calculation in [32]. ∎

Now, we introduce the transformation

M(1)=M^Tσ3,M^{(1)}=\hat{M}T^{-\sigma_{3}}, (4.14)

it is obvious that M(1)M^{(1)} keeps same symmetry with M^\hat{M}

M(1)(y,t,λ¯)¯=M(1)(y,t,λ)=σ1M(1)(y,t,λ)σ1.\overline{M^{(1)}(y,t,\bar{\lambda})}=M^{(1)}(y,t,-\lambda)=\sigma_{1}M^{(1)}(y,t,\lambda)\sigma_{1}.

Using the factorization of J^\hat{J} in this form

J^(y,t,λ)={(1r(λ¯)¯e2itθ01)(10r(λ)e2itθ1),|λ|>λ0,(10r(λ)1|r(λ)|2e2itθ1)(1|r(λ)|20011|r(λ)|2)(1r(λ¯)¯1|r(λ)|2e2itθ01),λ|<λ0.\hat{J}(y,t,\lambda)=\left\{\begin{aligned} &\begin{pmatrix}1&-\overline{r(\bar{\lambda})}e^{-2it\theta}\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ r(\lambda)e^{2it\theta}&1\end{pmatrix},|\lambda|>\lambda_{0},\\ &\begin{pmatrix}1&0\\ \frac{r(\lambda)}{1-|r(\lambda)|^{2}}e^{2it\theta}&1\end{pmatrix}\begin{pmatrix}1-|r(\lambda)|^{2}&0\\ 0&\frac{1}{1-|r(\lambda)|^{2}}\end{pmatrix}\begin{pmatrix}1&-\frac{\overline{r(\bar{\lambda})}}{1-|r(\lambda)|^{2}}e^{-2it\theta}\\ 0&1\end{pmatrix},\lambda|<\lambda_{0}.\end{aligned}\right.

According to J(1)(y,t,λ)=(T)σ3J^(y,t,λ)(T+)σ3J^{(1)}(y,t,\lambda)=(T_{-})^{\sigma_{3}}\hat{J}(y,t,\lambda)(T_{+})^{-\sigma_{3}}, we can calculate the jump matrix J(1)J^{(1)} for M(1)M^{(1)}

J(1)(y,t,λ)={(1r(λ¯)¯T2e2itθ(λ)01)(10r(λ)T2e2itθ(λ)1),|λ|>λ0,(10r(λ)1|r(λ)|2T2e2itθ(λ)1)(1r(λ¯)¯1|r(λ)|2T+2e2itθ(λ)01),|λ|<λ0.J^{(1)}(y,t,\lambda)=\left\{\begin{array}[]{ll}\begin{pmatrix}1&-\overline{r(\bar{\lambda})}T^{2}e^{-2it\theta(\lambda)}\\[6.0pt] 0&1\end{pmatrix}\begin{pmatrix}1&0\\[6.0pt] r(\lambda)T^{-2}e^{2it\theta(\lambda)}&1\end{pmatrix},\quad|\lambda|>\lambda_{0},\\[12.0pt] \begin{pmatrix}1&0\\[6.0pt] \frac{r(\lambda)}{1-|r(\lambda)|^{2}}T_{-}^{-2}e^{2it\theta(\lambda)}&1\end{pmatrix}\begin{pmatrix}1&-\frac{\overline{r(\bar{\lambda})}}{1-|r(\lambda)|^{2}}T_{+}^{2}e^{-2it\theta(\lambda)}\\[6.0pt] 0&1\end{pmatrix},\quad|\lambda|<\lambda_{0}.\end{array}\right. (4.15)

Correspondingly, when μ(1)(y,t,λ)=(11)M(1)(y,t,λ)\mu^{(1)}(y,t,\lambda)=(1\quad 1)M^{(1)}(y,t,\lambda), we have μ(1)(y,t,λ)=μ^(y,t,λ)Tσ3\mu^{(1)}(y,t,\lambda)=\hat{\mu}(y,t,\lambda)T^{-\sigma_{3}}. Thus the transformation (4.14) can be expressed as

(μ^1,μ^2)(y,t,λ)Tσ3(λ)=(1,1)M(1)(y,t,λ).\left(\hat{\mu}_{1},\hat{\mu}_{2}\right)(y,t,\lambda)T^{-\sigma_{3}}(\lambda)=(1,1)M^{(1)}(y,t,\lambda).

In order to solve (3.17), we calculate that

(μ^1μ^2)(y,t,0)T2(0)=(M11(1)+M21(1))(M12(1)+M22(1))(y,t,0),\left(\hat{\mu}_{1}\hat{\mu}_{2}\right)(y,t,0)T^{-2}(0)=\left(M_{11}^{(1)}+M_{21}^{(1)}\right)\left(M_{12}^{(1)}+M_{22}^{(1)}\right)(y,t,0), (4.16)

where M11(1)(y,t,0),M21(1)(y,t,0),M12(1)(y,t,0),M22(1)(y,t,0)M_{11}^{(1)}(y,t,0),M_{21}^{(1)}(y,t,0),M_{12}^{(1)}(y,t,0),M_{22}^{(1)}(y,t,0) represent the 11,21,12,22 element of M(1)(y,t,0)M^{(1)}(y,t,0) respectively. The function defined by (4.14) satisfies the following Riemann-Hilbert problem.
RHP 3 Find a matrix function M(1)(y,t,λ)M^{(1)}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: M(1)(y,t,λ)M^{(1)}(y,t,\lambda) is meromorphic in \.\mathbb{C}\backslash\mathbb{R}.

  2. 2.

    Jump condition:

    M+(1)(y,t,λ)=M(1)(y,t,λ)J(1)(y,t,λ),λR,M^{(1)}_{+}(y,t,\lambda)=M^{(1)}_{-}(y,t,\lambda)J^{(1)}(y,t,\lambda),\quad\lambda\in R, (4.17)

    where J(1)(y,t,λ)J^{(1)}(y,t,\lambda) is defined by (4.15).

  3. 3.

    Normalization: M(1)(y,t,λ)IM^{(1)}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

  4. 4.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, M(1)(y,t,λ)M^{(1)}(y,t,\lambda) has simple poles and the residues satisfy the conditions
    For nΔλ0+n\in\Delta_{\lambda_{0}}^{+},

    Resλ=λnM(1)(y,t,λ)=limλλnM(1)(y,t,λ)(00cnT2(λn)e2iθnt0),\displaystyle\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M^{(1)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M^{(1)}(y,t,\lambda){\begin{pmatrix}0&0\\[6.0pt] c_{n}T^{-2}(\lambda_{n})e^{2i\theta_{n}t}&0\end{pmatrix}}, (4.18)
    Resλ=λ¯nM(1)(y,t,λ)=limλλ¯nM(1)(y,t,λ)(0c¯nT2(λ¯n)e2iθ¯nt00).\displaystyle\mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M^{(1)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M^{(1)}(y,t,\lambda)\begin{pmatrix}0&\overline{c}_{n}T^{2}(\bar{\lambda}_{n})e^{-2i\bar{\theta}_{n}t}\\[6.0pt] 0&0\end{pmatrix}.

    For nΔλ0n\in\Delta_{\lambda_{0}}^{-},

    Resλ=λnM(1)(y,t,λ)=limλλnM(1)(y,t,λ)(0cn1(1/T)(λn)2e2iθnt00),Resλ=λ¯nM(1)(y,t,λ)=limλλ¯nM(1)(y,t,λ)(00(c¯n)1T(λ¯n)2e2iθ¯nt0),\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M^{(1)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M^{(1)}(y,t,\lambda){\begin{pmatrix}0&c_{n}^{-1}(1/T)^{\prime}\left(\lambda_{n}\right)^{-2}e^{-2i\theta_{n}t}\\[6.0pt] 0&0\end{pmatrix}},\\[15.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M^{(1)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M^{(1)}(y,t,\lambda)\begin{pmatrix}0&0\\[6.0pt] (\overline{c}_{n})^{-1}T^{\prime}\left(\bar{\lambda}_{n}\right)^{-2}e^{2i\bar{\theta}_{n}t}&0\end{pmatrix},\end{array} (4.19)

    where θn=θ(y,t,λn).\theta_{n}=\theta(y,t,\lambda_{n}).

Proof.

Note that the properties 131-3 of M(1)(y,t,λ)M^{(1)}(y,t,\lambda) follow (4.14) and RHP 2, we only prove the residue conditions. Denote M(1)=(M1(1),M2(1))M^{(1)}=(M^{(1)}_{1},M^{(1)}_{2}), then (4.14) becomes

M(1)=(M^1T1,M^2T).M^{(1)}=(\hat{M}_{1}T^{-1},\hat{M}_{2}T). (4.20)

For nΔλ0+n\in\Delta_{\lambda_{0}}^{+}, TT and T1T^{-1} is analytic at each λn\lambda_{n} and λ¯n\bar{\lambda}_{n}, combine (3.15) and (4.20), we can get (6.3) immediately.

For nΔλ0n\in\Delta_{\lambda_{0}}^{-}, λn\lambda_{n} is a pole for TT and T1(λn)=0T^{-1}(\lambda_{n})=0, we have

Resλ=λnM1(1)=0,Resλ=λnM2(1)=M^2(λn)[(1/T)(λn)]1.\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M_{1}^{(1)}=0,\\[8.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M_{2}^{(1)}=\hat{M}_{2}\left(\lambda_{n}\right)\left[(1/T)^{\prime}\left(\lambda_{n}\right)\right]^{-1}.\end{array} (4.21)

And it follows (4.14) that

M1(1)(λn)=limλλnM^1T=Resλ=λnM^1(1/T)(λn).M_{1}^{(1)}\left(\lambda_{n}\right)=\lim_{\lambda\rightarrow\lambda_{n}}\hat{M}_{1}T=\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}\hat{M}_{1}(1/T)^{\prime}\left(\lambda_{n}\right). (4.22)

According to (3.15),(4.21) and (4.22), the residues of M(1)(y,t,λ)M^{(1)}(y,t,\lambda) at λn\lambda_{n} can be expressed as (6.4). And the residues of M(1)(y,t,λ)M^{(1)}(y,t,\lambda) at λ¯n\bar{\lambda}_{n} can be calculated in a similarly way. ∎

5 A mixed ¯\bar{\partial} -RH problem

In this section, we introduce a transformation M(1)(λ)M(2)(λ)M^{(1)}(\lambda)\rightarrow M^{(2)}(\lambda) which make continuous extensions off the real axis to the jump matrix. Define new contours

Σk={λ0+hkλ0e(2k1)πi4,hk(0,+)},k=1,4,\displaystyle\Sigma_{k}=\left\{\lambda_{0}+h_{k}\lambda_{0}e^{\frac{(2k-1)\pi i}{4}},h_{k}\in(0,+\infty)\right\},\quad k=1,4, (5.1)
Σk={λ0+hkλ0e(2k1)πi4,hk(0,2)},k=2,3,\displaystyle\Sigma_{k}=\left\{\lambda_{0}+h_{k}\lambda_{0}e^{\frac{(2k-1)\pi i}{4}},h_{k}\in(0,\sqrt{2})\right\},\quad k=2,3,
Σk={λ0+hkλ0e(2k1)πi4,hk(0,+)},k=6,7,\displaystyle\Sigma_{k}=\left\{-\lambda_{0}+h_{k}\lambda_{0}e^{\frac{(2k-1)\pi i}{4}},h_{k}\in(0,+\infty)\right\},\quad k=6,7,
Σk={λ0+hkλ0e(2k1)πi4,hk(0,2)},k=5,8,\displaystyle\Sigma_{k}=\left\{-\lambda_{0}+h_{k}\lambda_{0}e^{\frac{(2k-1)\pi i}{4}},h_{k}\in(0,\sqrt{2})\right\},\quad k=5,8,
Σ(2)=k=18Σk.\displaystyle\Sigma^{(2)}=\bigcup_{k=1}^{8}\Sigma_{k}.

Thus the complex plane \mathbb{C} is divided into eight open sectors, we apply ¯\bar{\partial} steepest descent method to continuously extend the scattering data in the jump matrix to eight regions and there are no more jumps on the real axis. Denote these regions in counterclockwise order by Ωk,k=1,,8\Omega_{k},k=1,\ldots,8 respectively, see Figure 2.

Ω7\Omega_{7}Ω8\Omega_{8}Ω1\Omega_{1}Ω6\Omega_{6}Ω3\Omega_{3}Ω4\Omega_{4}Ω2\Omega_{2}Ω5\Omega_{5}Σ6\Sigma_{6}Σ7\Sigma_{7}Σ1\Sigma_{1}Σ4\Sigma_{4}Σ2\Sigma_{2}Σ3\Sigma_{3}Σ5\Sigma_{5}Σ8\Sigma_{8}
Figure 2: The contours of Σ(2)\Sigma^{(2)} and regions.

.

Let

d=12minαβΛΛ¯|αβ|.d=\frac{1}{2}\min_{\alpha\neq\beta\in\Lambda\cup\overline{\Lambda}}|\alpha-\beta|. (5.2)

For λn=xn+iynΛ\forall\lambda_{n}=x_{n}+iy_{n}\in\Lambda, since the poles are conjugated and not on the real axis, we have λ¯n=xn+iynΛ¯\bar{\lambda}_{n}=x_{n}+iy_{n}\in\overline{\Lambda}, then dist(Λ,)d\operatorname{dist}(\Lambda,\mathbb{R})\geq d. Next we introduce the characteristic function near the discrete spectrum

XΛ(λ)={1,dist(λ,ΛΛ¯)<d/3,0,dist(λ,ΛΛ¯)>2d/3.X_{\Lambda}(\lambda)=\left\{\begin{array}[]{ll}1,&\operatorname{dist}\left(\lambda,\Lambda\cup\overline{\Lambda}\right)<d/3,\\[6.0pt] 0,&\operatorname{dist}\left(\lambda,\Lambda\cup\overline{\Lambda}\right)>2d/3.\end{array}\right. (5.3)

For our purpose of continuous extension to the scattering data in the jump matrix, we introduce a transformation

M(2)(λ)=M(1)(λ)(2)(λ),M^{(2)}(\lambda)=M^{(1)}(\lambda)\mathcal{R}^{(2)}(\lambda), (5.4)

Correspondingly, we define (μ1(2)μ2(2))(y,t,λ)=(11)M(2)(y,t,λ)(\mu^{(2)}_{1}\quad\mu^{(2)}_{2})(y,t,\lambda)=(1\quad 1)M^{(2)}(y,t,\lambda), and R(2)R^{(2)} is chosen to satisfy the following properties:

  • M(2)(λ)M^{(2)}(\lambda) has no jump on the real axis;

  • The norm of M(2)(λ)M^{(2)}(\lambda) is well be controlled;

  • The transformation keep the residue conditions unchanged.

In order to meet the above properties, we can choose the boundary values of (2)(λ)\mathcal{R}^{(2)}(\lambda) by matching the transformed RH problem to a well known model RH problem, then the following proposition holds.

Proposition 5.1.

It is possible to define functions Rj:Ω¯jC,j=1,3,4,6,7,8R_{j}:\bar{\Omega}_{j}\rightarrow C,j=1,3,4,6,7,8 which satisfy the boundary conditions

R1(λ)={r(λ)T(λ)2,λ(λ0,+),r(λ0)T0(λ0)2(λλ0)2iη(λ0)(1XΛ(λ)),λΣ1,\displaystyle R_{1}(\lambda)=\left\{\begin{aligned} &r(\lambda)T(\lambda)^{-2},&\lambda\in\left(\lambda_{0},+\infty\right),\\ &r\left(\lambda_{0}\right)T_{0}\left(\lambda_{0}\right)^{-2}\left(\lambda-\lambda_{0}\right)^{-2i\eta\left(\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\qquad\qquad\qquad\lambda\in\Sigma_{1},\end{aligned}\right.
R3(λ)={r(λ)T(λ)2,λ(,λ0),r(λ0)T0(λ0)2(λ+λ0)2iη(λ0)(1XΛ(λ)),λΣ6,\displaystyle R_{3}(\lambda)=\left\{\begin{aligned} &r(\lambda)T(\lambda)^{-2},&\lambda\in\left(-\infty,-\lambda_{0}\right),\\ &r\left(-\lambda_{0}\right)T_{0}\left(-\lambda_{0}\right)^{-2}\left(\lambda+\lambda_{0}\right)^{-2i\eta\left(-\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{6},\end{aligned}\right.
R4(λ)={r(λ¯)¯T(λ)2,λ(,λ0),r(λ0)¯T0(λ0)2(λ+λ0)2iη(λ0)(1XΛ(λ)),λΣ7,\displaystyle R_{4}(\lambda)=\left\{\begin{aligned} &\overline{r(\bar{\lambda})}T(\lambda)^{2},&\qquad\lambda\in\left(-\infty,-\lambda_{0}\right),\\ &\overline{r\left(-\lambda_{0}\right)}T_{0}\left(-\lambda_{0}\right)^{2}\left(\lambda+\lambda_{0}\right)^{2i\eta\left(-\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{7},\end{aligned}\right.
R6(λ)={r(λ¯)¯T(λ)2,λ(λ0,+),r(λ0)¯T0(λ0)2(λλ0)2iη(λ0)(1XΛ(λ)),λΣ4,\displaystyle R_{6}(\lambda)=\left\{\begin{aligned} &\overline{r(\bar{\lambda})}T(\lambda)^{2},&\qquad\quad\qquad\lambda\in\left(\lambda_{0},+\infty\right),\\ &\overline{r\left(\lambda_{0}\right)}T_{0}\left(\lambda_{0}\right)^{2}\left(\lambda-\lambda_{0}\right)^{2i\eta\left(\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{4},\end{aligned}\right.
R7(λ)={r(λ¯)¯1|r(λ)|2T+(λ)2,λ(λ0,λ0),γ(λ0)¯1|r(λ0)|2T0(λ0)2(λλ0)2iη(λ0)(1XΛ(λ)),λΣ2,γ(λ0)¯1|r(λ0)|2T0(λ0)2(λ+λ0)2iη(λ0)(1XΛ(λ)),λΣ5,\displaystyle R_{7}(\lambda)=\left\{\begin{aligned} &\frac{\overline{r(\bar{\lambda})}}{1-|r(\lambda)|^{2}}T_{+}(\lambda)^{2},&\lambda\in\left(-\lambda_{0},\lambda_{0}\right),\\ &\frac{\overline{\gamma\left(\lambda_{0}\right)}}{1-\left|r\left(\lambda_{0}\right)\right|^{2}}T_{0}\left(\lambda_{0}\right)^{2}\left(\lambda-\lambda_{0}\right)^{2i\eta\left(\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{2},\\ &\frac{\overline{\gamma\left(-\lambda_{0}\right)}}{1-\left|r\left(-\lambda_{0}\right)\right|^{2}}T_{0}\left(-\lambda_{0}\right)^{2}\left(\lambda+\lambda_{0}\right)^{2i\eta\left(-\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{5},\end{aligned}\right.
R8(λ)={r(λ)1|r(λ)|2T(λ)2,λ(λ0,λ0),r(λ0)1|r(λ0)|2T0(λ0)2(λλ0)2iη(λ0)(1XΛ(λ)),λΣ3,r(λ0)1|r(λ0)|2T0(λ0)2(λ+λ0)2iη(λ0)(1XΛ(λ)),λΣ8.\displaystyle R_{8}(\lambda)=\left\{\begin{aligned} &\frac{r(\lambda)}{1-|r(\lambda)|^{2}}T_{-}(\lambda)^{-2},&\lambda\in\left(-\lambda_{0},\lambda_{0}\right),\\ &\frac{r\left(\lambda_{0}\right)}{1-|r(\lambda_{0})|^{2}}T_{0}\left(\lambda_{0}\right)^{-2}\left(\lambda-\lambda_{0}\right)^{-2i\eta\left(\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{3},\\ &\frac{r\left(-\lambda_{0}\right)}{1-\left|r\left(-\lambda_{0}\right)\right|^{2}}T_{0}\left(-\lambda_{0}\right)^{-2}\left(\lambda+\lambda_{0}\right)^{-2i\eta\left(-\lambda_{0}\right)}\left(1-X_{\Lambda}(\lambda)\right),&\lambda\in\Sigma_{8}.\end{aligned}\right.

And we have the norm estimation
for j=1,6,7,8,j=1,6,7,8,

|Rj(λ)|sin2(arg(λλ0))+Re(λ)1/2,|¯Rj(λ)||¯XΛ(λ)|+|sj(Reλ)|+|λλ0|1/2,\begin{array}[]{l}\left|R_{j}(\lambda)\right|\lesssim\sin^{2}\left(\arg\left(\lambda-\lambda_{0}\right)\right)+\langle\operatorname{Re}(\lambda)\rangle^{-1/2},\\[6.0pt] \left|\overline{\partial}R_{j}(\lambda)\right|\lesssim\left|\bar{\partial}X_{\Lambda}(\lambda)\right|+\left|s_{j}^{\prime}(\operatorname{Re\lambda})\right|+\left|\lambda-\lambda_{0}\right|^{-1/2},\end{array} (5.5)

for j=3,4,7,8,j=3,4,7,8,

|Rj(λ)|sin2(arg(λ+λ0))+Re(λ)1/2,|¯Rj(λ)||¯XΛ(λ)|+|sj(Reλ)|+|λ+λ0|1/2,\begin{array}[]{l}\left|R_{j}(\lambda)\right|\lesssim\sin^{2}\left(\arg\left(\lambda+\lambda_{0}\right)\right)+\langle\operatorname{Re}(\lambda)\rangle^{-1/2},\\[6.0pt] \left|\overline{\partial}R_{j}(\lambda)\right|\lesssim\left|\bar{\partial}X_{\Lambda}(\lambda)\right|+\left|s_{j}^{\prime}(\operatorname{Re\lambda})\right|+\left|\lambda+\lambda_{0}\right|^{-1/2},\end{array} (5.6)

where

:=1+()2,\langle\cdot\rangle:=\sqrt{1+(\cdot)^{2}},
s1=s3=r(λ),s4=s6=r(λ¯)¯,s_{1}=s_{3}=r(\lambda),\quad s_{4}=s_{6}=\overline{r(\bar{\lambda})},
s7=r(λ¯)¯1|r(λ)|2,s8=r(λ)1|r(λ)|2.s_{7}=\frac{\overline{r(\bar{\lambda})}}{1-|r(\lambda)|^{2}},\quad s_{8}=\frac{r(\lambda)}{1-|r(\lambda)|^{2}}.

And

¯Rj(λ)=0, if λΩ2Ω5 or dist(λ,ΛΛ¯)<d/3.\bar{\partial}R_{j}(\lambda)=0,\quad\text{ if }\lambda\in\Omega_{2}\cup\Omega_{5}\text{ or }\operatorname{dist}(\lambda,\Lambda\cup\overline{\Lambda})<d/3. (5.7)
Proof.

The proof is similar to that in [32]. ∎

Then we can define (2)\mathcal{R}^{(2)} as

(2)(λ)={(10Rj(λ)e2itθ1),λΩj,j=1,3,(1Rj(λ)e2itθ01),λΩj,j=4,6,(1R7(λ)e2itθ01),λΩ7,(10R8(λ)e2itθ1),λΩ8,I,λΩ2Ω5.\mathcal{R}^{(2)}(\lambda)=\left\{\begin{aligned} &\begin{pmatrix}1&0\\[6.0pt] -R_{j}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Omega_{j},j=1,3,\\[6.0pt] &\begin{pmatrix}1&-R_{j}(\lambda)e^{-2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Omega_{j},j=4,6,\\[6.0pt] &\begin{pmatrix}1&R_{7}(\lambda)e^{-2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Omega_{7},\\[6.0pt] &\begin{pmatrix}1&0\\[6.0pt] R_{8}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Omega_{8},\\[6.0pt] &\quad I,&\lambda\in\Omega_{2}\cup\Omega_{5}.\end{aligned}\right. (5.8)

According to the above definition of (2)(λ)\mathcal{R}^{(2)}(\lambda) and (5.4), we get the M(2)M^{(2)} which domain is \(Σ(2)ΛΛ¯)\mathbb{C}\backslash\left(\Sigma^{(2)}\cup\Lambda\cup\overline{\Lambda}\right) satisfy the following ¯RH\bar{\partial}-\mathrm{RH} problem.
RHP 4 Find a matrix function M(2)(y,t,λ)M^{(2)}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: M(2)(y,t,λ)M^{(2)}(y,t,\lambda) is meromorphic in \Σ(2).\mathbb{C}\backslash\Sigma^{(2)}.

  2. 2.

    Jump condition:

    M+(2)(y,t,λ)=M(2)(y,t,λ)J(2)(y,t,λ),λΣ(2),M^{(2)}_{+}(y,t,\lambda)=M^{(2)}_{-}(y,t,\lambda)J^{(2)}(y,t,\lambda),\quad\lambda\in\Sigma^{(2)}, (5.9)

    where J(2)(y,t,λ)J^{(2)}(y,t,\lambda) is defined as

    J(2)(y,t,λ)={(10R1(λ)e2itθ1),λΣ1,(1R7(λ)e2itθ01),λΣ2Σ5,(10R8(λ)e2itθ1),λΣ3Σ8,(1R6(λ)e2itθ01),λΣ4,(10R3(λ)e2itθ1),λΣ6,(1R4(λ)e2itθ01),λΣ7.J^{(2)}(y,t,\lambda)=\left\{\begin{array}[]{ll}\begin{pmatrix}1&0\\[6.0pt] R_{1}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Sigma_{1},\\[15.0pt] \begin{pmatrix}1&-R_{7}(\lambda)e^{-2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Sigma_{2}\cup\Sigma_{5},\\[15.0pt] \begin{pmatrix}1&0\\[6.0pt] R_{8}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Sigma_{3}\cup\Sigma_{8},\\[15.0pt] \begin{pmatrix}1&-R_{6}(\lambda)e^{-2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Sigma_{4},\\[15.0pt] \begin{pmatrix}1&0\\[6.0pt] R_{3}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Sigma_{6},\\[15.0pt] \begin{pmatrix}1&-R_{4}\left(\lambda\right)e^{2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Sigma_{7}.\end{array}\right. (5.10)
  3. 3.

    Normalization: M(2)(y,t,λ)IM^{(2)}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

  4. 4.

    ¯\bar{\partial}-Derivative: For λ\(Σ(2)ΛΛ¯)\lambda\in\mathbb{C}\backslash\left(\Sigma^{(2)}\cup\Lambda\cup\overline{\Lambda}\right) we have

    ¯M(2)=M(2)¯(2),\bar{\partial}M^{(2)}=M^{(2)}\bar{\partial}\mathcal{R}^{(2)}, (5.11)

    where

    ¯(2)(λ)={(00¯Rj(λ)e2itθ0),λΩj,j=1,3,(0¯Rj(λ)e2itθ00),λΩj,j=4,6,(0¯R7(λ)e2itθ00),λΩ7,(00¯R8(λ)e2itθ0),λΩ8,0,λΩ2Ω5.\bar{\partial}\mathcal{R}^{(2)}(\lambda)=\left\{\begin{array}[]{ll}\begin{pmatrix}0&0\\[6.0pt] -\bar{\partial}R_{j}(\lambda)e^{2it\theta}&0\end{pmatrix},&\lambda\in\Omega_{j},j=1,3,\\[15.0pt] \begin{pmatrix}0&-\bar{\partial}R_{j}(\lambda)e^{-2it\theta}\\[6.0pt] 0&0\end{pmatrix},&\lambda\in\Omega_{j},j=4,6,\\[15.0pt] \begin{pmatrix}0&\bar{\partial}R_{7}(\lambda)e^{-2it\theta}\\[6.0pt] 0&0\end{pmatrix},&\lambda\in\Omega_{7},\\[15.0pt] \begin{pmatrix}0&0\\[6.0pt] \bar{\partial}R_{8}(\lambda)e^{2it\theta}&0\end{pmatrix},&\lambda\in\Omega_{8},\\[15.0pt] \quad 0,&\lambda\in\Omega_{2}\cup\Omega_{5}.\end{array}\right. (5.12)
  5. 5.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, M(2)(y,t,λ)M^{(2)}(y,t,\lambda) has simple poles and the residues satisfy the conditions
    For nΔλ0+n\in\Delta_{\lambda_{0}}^{+},

    Resλ=λnM(2)(y,t,λ)=limλλnM(2)(y,t,λ)(00cnT2(λn)e2iθnt0),Resλ=λ¯nM(2)(y,t,λ)=limλλ¯nM(2)(y,t,λ)(0c¯nT2(λ¯n)e2iθ¯nt00).\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M^{(2)}(y,t,\lambda){\begin{pmatrix}0&0\\[6.0pt] c_{n}T^{-2}(\lambda_{n})e^{2i\theta_{n}t}&0\end{pmatrix}},\\[15.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M^{(2)}(y,t,\lambda)\begin{pmatrix}0&\overline{c}_{n}T^{2}(\bar{\lambda}_{n})e^{-2i\bar{\theta}_{n}t}\\[6.0pt] 0&0\end{pmatrix}.\end{array} (5.13)

    For nΔλ0n\in\Delta_{\lambda_{0}}^{-},

    Resλ=λnM(2)(y,t,λ)=limλλnM(2)(y,t,λ)(0cn1(1/T)(λn)2e2iθnt00),Resλ=λ¯nM(2)(y,t,λ)=limλλ¯nM(2)(y,t,λ)(00(c¯n)1T(λ¯n)2e2iθ¯nt0).\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M^{(2)}(y,t,\lambda){\begin{pmatrix}0&c_{n}^{-1}(1/T)^{\prime}\left(\lambda_{n}\right)^{-2}e^{-2i\theta_{n}t}\\[6.0pt] 0&0\end{pmatrix}},\\[15.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M^{(2)}(y,t,\lambda)\begin{pmatrix}0&0\\[6.0pt] (\overline{c}_{n})^{-1}T^{\prime}\left(\bar{\lambda}_{n}\right)^{-2}e^{2i\bar{\theta}_{n}t}&0\end{pmatrix}.\end{array} (5.14)

6 Decomposition of the mixed ¯\bar{\partial} -RH problem

In this section, our goal is to decompose this mixed ¯\bar{\partial} -RH problem into two parts according to whether the ¯(2)\bar{\partial}\mathcal{R}^{(2)} is equal to zero and then solve them separately. The decomposition can be expressed as

M(2)(y,t,λ)={MRHP(2)(y,t,λ),¯(2)=0,M(3)(y,t,λ)MRHP(2)(y,t,λ),¯(2)0,M^{(2)}(y,t,\lambda)=\left\{\begin{aligned} &M_{RHP}^{(2)}(y,t,\lambda),&\bar{\partial}\mathcal{R}^{(2)}=0,\\ &M^{(3)}(y,t,\lambda)M_{RHP}^{(2)}(y,t,\lambda),&\bar{\partial}\mathcal{R}^{(2)}\neq 0,\end{aligned}\right. (6.1)

where MRHP(2)M_{RHP}^{(2)} indicates the pure RH part in the mixed ¯\bar{\partial} -RH problem, which implies MRHP(2)M_{RHP}^{(2)} satisfies the same jump condition and residues.

For the first step, considering the case of ¯(2)=0\bar{\partial}\mathcal{R}^{(2)}=0, we establish a RH problem for MRHP(2)M_{RHP}^{(2)} as follows.
RHP 5 Find a matrix function MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda) is meromorphic in \Σ(2).\mathbb{C}\backslash\Sigma^{(2)}.

  2. 2.

    Jump condition:

    MRHP+(2)=MRHP(2)J(2)(y,t,λ),λΣ(2),M_{RHP+}^{(2)}=M_{RHP-}^{(2)}J^{(2)}(y,t,\lambda),\quad\lambda\in\Sigma^{(2)}, (6.2)

    where J(2)(y,t,λ)J^{(2)}(y,t,\lambda) is defined as (5.10).

  3. 3.

    Normalization: MRHP(2)(y,t,λ)IM_{RHP}^{(2)}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

  4. 4.

    ¯\bar{\partial}-Derivative: For λ,¯(2)=0.\lambda\in\mathbb{C},\quad\bar{\partial}\mathcal{R}^{(2)}=0.

  5. 5.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda) has simple poles and the residues satisfy the conditions
    For nΔλ0+n\in\Delta_{\lambda_{0}}^{+},

    Resλ=λnMRHP(2)(y,t,λ)=limλλnMRHP(2)(y,t,λ)(00cnT2(λn)e2iθnt0),Resλ=λ¯nMRHP(2)(y,t,λ)=limλλ¯nMRHP(2)(y,t,λ)(0c¯nT2(λ¯n)e2iθ¯nt00).\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M_{RHP}^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M_{RHP}^{(2)}(y,t,\lambda){\begin{pmatrix}0&0\\[6.0pt] c_{n}T^{-2}(\lambda_{n})e^{2i\theta_{n}t}&0\end{pmatrix}},\\[15.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M_{RHP}^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M_{RHP}^{(2)}(y,t,\lambda)\begin{pmatrix}0&\overline{c}_{n}T^{2}(\bar{\lambda}_{n})e^{-2i\bar{\theta}_{n}t}\\[6.0pt] 0&0\end{pmatrix}.\end{array} (6.3)

    For nΔλ0n\in\Delta_{\lambda_{0}}^{-},

    Resλ=λnMRHP(2)(y,t,λ)=limλλnMRHP(2)(y,t,λ)(0cn1(1/T)(λn)2e2iθnt00),Resλ=λ¯nMRHP(2)(y,t,λ)=limλλ¯nMRHP(2)(y,t,λ)(00(c¯n)1T(λ¯n)2e2iθ¯nt0).\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M_{RHP}^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\lambda_{n}}M_{RHP}^{(2)}(y,t,\lambda){\begin{pmatrix}0&c_{n}^{-1}(1/T)^{\prime}\left(\lambda_{n}\right)^{-2}e^{-2i\theta_{n}t}\\[6.0pt] 0&0\end{pmatrix}},\\[15.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M_{RHP}^{(2)}(y,t,\lambda)=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M_{RHP}^{(2)}(y,t,\lambda)\begin{pmatrix}0&0\\[6.0pt] (\overline{c}_{n})^{-1}T^{\prime}\left(\bar{\lambda}_{n}\right)^{-2}e^{2i\bar{\theta}_{n}t}&0\end{pmatrix}.\end{array} (6.4)

The existence and asymptotic of MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda) will be shown in Section 8. To solve MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda), introducing the neighborhoods of ±λ0\pm\lambda_{0}

U±λ0={λ:|λλ0|min{λ02,d/3}ε}.U_{\pm\lambda_{0}}=\left\{\lambda:\left|\lambda\mp\lambda_{0}\right|\leq\min\left\{\frac{\lambda_{0}}{2},d/3\right\}\triangleq\varepsilon\right\}. (6.5)

From the above definition and dist(Λ,)d\operatorname{dist}(\Lambda,\mathbb{R})\geq d we immediately know that μRHP(2)\mu_{RHP}^{(2)} and μλ0(2)\mu_{\lambda_{0}}^{(2)} have no poles in the neighborhoods. And the jump matrix admits the following proposition.

Proposition 6.1.

The jump matrix J(2)(y,t,λ)J^{(2)}(y,t,\lambda) defined by (5.10) satisfies the estimation

J(2)IL(Σ+(2)\Uλ0)=𝒪(e16|t|(|p|λ0)|q|(2λ0+|p|)),\displaystyle\left\|J^{(2)}-I\right\|_{L^{\infty}\left(\Sigma_{+}^{(2)}\backslash U_{\lambda_{0}}\right)}=\mathcal{O}\left(e^{-16|t|\left(|p|-\lambda_{0}\right)|q|\left(2\lambda_{0}+|p|\right)}\right), (6.6)
J(2)IL(Σ(2)\Uλ0)=𝒪(e16|t|(|p|+λ0)|q|(2λ0+|p|)).\displaystyle\left\|J^{(2)}-I\right\|_{L^{\infty}\left(\Sigma_{-}^{(2)}\backslash U_{-\lambda_{0}}\right)}=\mathcal{O}\left(e^{-16|t|\left(|p|+\lambda_{0}\right)|q|\left(2\lambda_{0}+|p|\right)}\right).

where λ=p+iq,p,q,\lambda=p+iq,\quad p,q\in\mathbb{R}, and

Σ+(2)=k=14Σk,Σ(2)=k=58Σk.\Sigma_{+}^{(2)}=\bigcup_{k=1}^{4}\Sigma_{k},\quad\Sigma_{-}^{(2)}=\bigcup_{k=5}^{8}\Sigma_{k}.

The above proposition means that the jump matrix tends to II when λΣ±(2)\U±λ0.\lambda\in\Sigma_{\pm}^{(2)}\backslash U_{\pm\lambda_{0}}. Thus, as λ\U±λ0,\lambda\in\mathbb{C}\backslash U_{\pm\lambda_{0}}, there is only exponential infinitesimal error while we completely ignoring the jump condition of MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda). Furthermore, we break MRHP(2)(y,t,λ)M_{RHP}^{(2)}(y,t,\lambda) into three parts

μRHP(2)(y,t,λ)={E(λ)Mout(2)(λ),λU±λ0,E(λ)M(λ0)(λ),λUλ0,E(λ)M(λ0)(λ),λUλ0.\mu_{RHP}^{(2)}(y,t,\lambda)=\left\{\begin{aligned} &E(\lambda)M_{out}^{(2)}(\lambda),&\lambda\notin U_{\pm\lambda_{0}},\\ &E(\lambda)M^{(\lambda_{0})}(\lambda),&\lambda\in U_{\lambda_{0}},\\ &E(\lambda)M^{(-\lambda_{0})}(\lambda),&\lambda\in U_{-\lambda_{0}}.\end{aligned}\right. (6.7)

Obviously, Mout(2)M_{out}^{(2)} can be solved by a model RHP obtained by ignoring the jump conditions of RHP5, see Section 7. For M(±λ0)M^{(\pm\lambda_{0})}, matching it to a parabolic cylinder model in U±λ0U_{\pm\lambda_{0}}, then we can get the approximate parabolic cylinder function solution, the details see Section 8. And E(λ)E(\lambda) is a error function, which is a solution of a small-norm RH problem, which will be solved in Section 9.

Next step, considering the case of ¯(2)0,\bar{\partial}\mathcal{R}^{(2)}\neq 0, we introduce a transformation

M(3)(y,t,λ)=M(2)(y,t,λ)(MRHP(2))1.M^{(3)}(y,t,\lambda)=M^{(2)}(y,t,\lambda)(M_{RHP}^{(2)})^{-1}. (6.8)

Thus the jump disappeared and M(3)(y,t,λ)M^{(3)}(y,t,\lambda) is continuous in \(Σ(2)ΛΛ¯)\mathbb{C}\backslash(\Sigma^{(2)}\cup\Lambda\cup\bar{\Lambda}), we get a pure ¯\bar{\partial} problem.
RHP 6 Find a matrix function M(3)(y,t,λ)M^{(3)}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: M(3)(y,t,λ)M^{(3)}(y,t,\lambda) is continuous in \(Σ(2)ΛΛ¯).\mathbb{C}\backslash(\Sigma^{(2)}\cup\Lambda\cup\bar{\Lambda}).

  2. 2.

    Normalization: M(3)(y,t,λ)IM^{(3)}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

  3. 3.

    ¯\bar{\partial}-Derivative: For λ\(Σ(2)ΛΛ¯)\lambda\in\mathbb{C}\backslash(\Sigma^{(2)}\cup\Lambda\cup\bar{\Lambda}), ¯M(3)(λ)=M(3)(λ)W(3)(λ)\bar{\partial}M^{(3)}(\lambda)=M^{(3)}(\lambda)W^{(3)}(\lambda), where

    W(3)(λ)=MRHP(2)(λ)¯(2)(MRHP(2)(λ))1.W^{(3)}(\lambda)=M_{RHP}^{(2)}(\lambda)\bar{\partial}\mathcal{R}^{(2)}(M_{RHP}^{(2)}(\lambda))^{-1}. (6.9)
Proof.

The analyticity and normalization of M(3)(λ)M^{(3)}(\lambda) can be directly derived from properties of the M(2)(λ)M^{(2)}(\lambda) and MRHP(2)(λ)M_{RHP}^{(2)}(\lambda). Notice that M(2)(λ)M^{(2)}(\lambda) and MRHP(2)(λ)M_{RHP}^{(2)}(\lambda) satisfy same jump condition, we have

M(3)(λ)1M+(3)(λ)\displaystyle M_{-}^{(3)}(\lambda)^{-1}M_{+}^{(3)}(\lambda) =MRHP(2)(λ)M(2)(λ)1M+(2)(λ)MRHP+(2)(λ)1\displaystyle=M_{RHP-}^{(2)}(\lambda)M_{-}^{(2)}(\lambda)^{-1}M_{+}^{(2)}(\lambda)M_{RHP+}^{(2)}(\lambda)^{-1} (6.10)
=MRHP(2)(λ)J(2)(λ)1MRHP+(2)(λ)1=I,\displaystyle=M_{RHP-}^{(2)}(\lambda)J^{(2)}(\lambda)^{-1}M_{RHP+}^{(2)}(\lambda)^{-1}=I,

which means M(3)(λ)M^{(3)}(\lambda) has no jump. Additionally, we can prove that M(3)(λ)M^{(3)}(\lambda) has removable singularities for λΛΛ¯,\lambda\in\Lambda\cup\bar{\Lambda}, the method is similar as it in [33]. Then combine (5.11) we have

¯M(3)\displaystyle\bar{\partial}M^{(3)} =¯M(2)(μRHP(2))1=M(2)¯(2)(MRHP(2))1\displaystyle=\bar{\partial}M^{(2)}(\mu_{RHP}^{(2)})^{-1}=M^{(2)}\bar{\partial}\mathcal{R}^{(2)}(M_{RHP}^{(2)})^{-1} (6.11)
=M(3)[MRHP(2)¯(2)(MRHP(2))1].\displaystyle=M^{(3)}[M_{RHP}^{(2)}\bar{\partial}\mathcal{R}^{(2)}(M_{RHP}^{(2)})^{-1}].

The pure ¯\bar{\partial} problem will be analyzed in Section 10.

7 The solution Mout(2)(λ)M_{out}^{(2)}(\lambda) of outer model RHP

In this section, our aim is to establish a outer model RHP to solve Mout(2)(λ)M_{out}^{(2)}(\lambda) and analyze the long-time behavior of soliton solutions of the initial value problem, (3.17) indicates that we need to study the property of Mout(2)(λ)M_{out}^{(2)}(\lambda) as λ0\lambda\rightarrow 0. According to Proposition 6.1, we can ignore the jump at Σ(2)\Sigma^{(2)} when λU±λ0\lambda\notin U_{\pm\lambda_{0}}. Thus we build the following outer model problem.
RHP 7 Find a matrix function Mout(2)(y,t,λ)M_{out}^{(2)}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: Mout(2)(y,t,λ)M_{out}^{(2)}(y,t,\lambda) is analytic in \(Σ(2)ΛΛ¯).\mathbb{C}\backslash(\Sigma^{(2)}\cup\Lambda\cup\bar{\Lambda}).

  2. 2.

    Normalization: Mout(2)(y,t,λ)IM_{out}^{(2)}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

  3. 3.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, Mout(2)(y,t,λ)M_{out}^{(2)}(y,t,\lambda) has simple poles and satisfy the same residue conditions(6.3)-(6.4) with MRHP(2)M_{RHP}^{(2)}.

Now we need to prove the existence and uniqueness of solution of the above RHP7, the idea is to discuss the reflectionless case of the RHP1 at first, and then achieve our target by replacing the scattering data. Here is the reflectionless RH problem degenerated from RHP2.
RHP 8 Let σd={(λn,cn)}n=1N\sigma_{d}=\left\{\left(\lambda_{n},c_{n}\right)\right\}_{n=1}^{N} represent the discrete data. Find a matrix function m(λ;y,t|σd)m(\lambda;y,t|\sigma_{d}) with the following properties

  1. 1.

    Analyticity: m(λ;y,t|σd)m(\lambda;y,t|\sigma_{d}) is analytic in \(ΛΛ¯).\mathbb{C}\backslash(\Lambda\cup\bar{\Lambda}).

  2. 2.

    Normalization: m(λ;y,t|σd)Im(\lambda;y,t|\sigma_{d})\rightarrow I, as λ\lambda\rightarrow\infty.

  3. 3.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, m(λ;y,t|σd)m(\lambda;y,t|\sigma_{d}) has simple poles and the residues satisfy the conditions

    Resλ=λnm(λ;y,t|σd)=limλλnm(λ;y,t|σd)Kn,Resλ=λ¯nm(λ;y,t|σd)=limλλ¯nm(λ;y,t|σd)(σ2Kn¯σ2).\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}m(\lambda;y,t|\sigma_{d})=\lim\limits_{\lambda\rightarrow\lambda_{n}}m(\lambda;y,t|\sigma_{d})K_{n},\\[12.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}m(\lambda;y,t|\sigma_{d})=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}m(\lambda;y,t|\sigma_{d})(-\sigma_{2}\overline{K_{n}}\sigma_{2}).\end{array} (7.1)

    where Kn=(00κn0),κn=cne2iθ(λn)K_{n}=\begin{pmatrix}0&0\\[6.0pt] \kappa_{n}&0\end{pmatrix},\kappa_{n}=c_{n}e^{2i\theta(\lambda_{n})}.

Proposition 7.1.

The RHP8 exists an unique solution.

Proof.

The existence can be proved in a similar way with [33], and the uniqueness of solution follows from the Liouville’s theorem. ∎

The transmission coefficient satisfies trace formula

a(λ)=n=1Nλλnλλ¯na(\lambda)=\prod_{n=1}^{N}\frac{\lambda-\lambda_{n}}{\lambda-\bar{\lambda}_{n}}

under the reflectionless condition. Let {1,2,,N}\triangle\subseteq\{1,2,\ldots,N\} and ={1,2,,N}\\bigtriangledown=\{1,2,\cdots,N\}\backslash\triangle. Define

a(λ)=nλλnλλ¯n,a(λ)=a(λ)a(λ)=nλλnλλ¯n.a_{\triangle}(\lambda)=\prod_{n\in\triangle}\frac{\lambda-\lambda_{n}}{\lambda-\bar{\lambda}_{n}},\quad a_{\bigtriangledown}(\lambda)=\frac{a(\lambda)}{a_{\triangle}(\lambda)}=\prod_{n\in\bigtriangledown}\frac{\lambda-\lambda_{n}}{\lambda-\bar{\lambda}_{n}}. (7.2)

For M^(y,t,λ)\hat{M}(y,t,\lambda) defined by (3.12), introduce a transformation

M(λ;y,t|σ)=M^(λ;y,t|σd)a(λ)σ3.M^{\triangle}(\lambda;y,t|\sigma^{\triangle})=\hat{M}(\lambda;y,t|\sigma_{d})a_{\triangle}(\lambda)^{\sigma_{3}}. (7.3)

Correspondingly, we define

μ(λ;y,t|σ)=(1,1)M(λ;y,t|σ).\mu^{\triangle}(\lambda;y,t|\sigma^{\triangle})=(1,1)M^{\triangle}(\lambda;y,t|\sigma^{\triangle}). (7.4)

It can be directly calculated that

σ={(λn,cn),λnΛ}n=1N,cn={cn1a(λn)2,n,cna(λn)2,n.\sigma^{\triangle}=\left\{\left(\lambda_{n},c^{\prime}_{n}\right),\lambda_{n}\in\Lambda\right\}_{n=1}^{N},\quad c^{\prime}_{n}=\left\{\begin{array}[]{l}c_{n}^{-1}a_{\triangle}^{\prime}\left(\lambda_{n}\right)^{-2},\quad n\in\triangle,\\[6.0pt] c_{n}a_{\triangle}\left(\lambda_{n}\right)^{2},\quad n\in\bigtriangledown.\end{array}\right. (7.5)

and M(λ;y,t|σ)M^{\triangle}(\lambda;y,t|\sigma^{\triangle}) satisfies the modified RH problem.
RHP 9 Given the discrete data shown as (7.5). Find a matrix function M(λ;y,t|σ)M^{\triangle}(\lambda;y,t|\sigma^{\triangle}) with the following properties

  1. 1.

    Analyticity: M(λ;y,t|σ)M^{\triangle}(\lambda;y,t|\sigma^{\triangle}) is analytic in \(ΛΛ¯).\mathbb{C}\backslash(\Lambda\cup\bar{\Lambda}).

  2. 2.

    Normalization: M(λ;y,t|σ)IM^{\triangle}(\lambda;y,t|\sigma^{\triangle})\rightarrow I, as λ\lambda\rightarrow\infty.

  3. 3.

    Residues: At λ=λn\lambda=\lambda_{n} and λ=λ¯n\lambda=\overline{\lambda}_{n}, M(λ;y,t|σ)M^{\triangle}(\lambda;y,t|\sigma^{\triangle}) has simple poles and the residues satisfy the conditions

    Resλ=λnM(λ;y,t|σ)=limλλnM(λ;y,t|σ)Kn,Resλ=λ¯nM(λ;y,t|σ)=limλλ¯nM(λ;y,t|σ)(σ2Kn¯σ2).\begin{array}[]{l}\mathop{\operatorname{Res}}\limits_{\lambda=\lambda_{n}}M^{\triangle}(\lambda;y,t|\sigma^{\triangle})=\lim\limits_{\lambda\rightarrow\lambda_{n}}M^{\triangle}(\lambda;y,t|\sigma^{\triangle})K_{n}^{\triangle},\\[12.0pt] \mathop{\operatorname{Res}}\limits_{\lambda=\overline{\lambda}_{n}}M^{\triangle}(\lambda;y,t|\sigma^{\triangle})=\lim\limits_{\lambda\rightarrow\overline{\lambda}_{n}}M^{\triangle}(\lambda;y,t|\sigma^{\triangle})(-\sigma_{2}\overline{K_{n}^{\triangle}}\sigma_{2}).\end{array} (7.6)

    where

    Kn={(0κn00),n,(00κn0),n,κn={cn1a(λn)2e2itθ(λn),n,cna(λn)2e2itθ(λn),n.K_{n}^{\triangle}=\left\{\begin{array}[]{ll}\begin{pmatrix}0&\kappa_{n}^{\triangle}\\[6.0pt] 0&0\end{pmatrix},&n\in\triangle,\\[15.0pt] \begin{pmatrix}0&0\\[6.0pt] \kappa_{n}^{\triangle}&0\end{pmatrix},&n\in\bigtriangledown,\end{array}\right.\quad\kappa_{n}^{\triangle}=\left\{\begin{array}[]{ll}c_{n}^{-1}a_{\triangle}^{\prime}\left(\lambda_{n}\right)^{-2}e^{-2it\theta\left(\lambda_{n}\right)},&n\in\triangle,\\[6.0pt] c_{n}a_{\triangle}\left(\lambda_{n}\right)^{2}e^{2it\theta\left(\lambda_{n}\right)},&n\in\bigtriangledown.\end{array}\right. (7.7)

It is easy to get the existence and uniqueness of the solution of RHP 9 which inherited from Proposition 7.1.

Let =Δλ0\triangle=\Delta_{\lambda_{0}}^{-} and replace the discrete data σ\sigma^{\triangle} with

σout={(λn,c~n),λnΛ}n=1N,c~n={cnδ(λn)2,nΔλ0,cnδ(λn)2,nΔλ0+.\sigma^{\triangle}_{out}=\left\{\left(\lambda_{n},\tilde{c}_{n}\right),\lambda_{n}\in\Lambda\right\}_{n=1}^{N},\quad\tilde{c}_{n}=\left\{\begin{array}[]{ll}c^{\prime}_{n}\delta(\lambda_{n})^{2},&n\in\Delta_{\lambda_{0}}^{-},\\[6.0pt] c^{\prime}_{n}\delta(\lambda_{n})^{-2},&n\in\Delta_{\lambda_{0}}^{+}.\end{array}\right. (7.8)

Then we have the following proposition holds.

Proposition 7.2.

There exists an unique solution for RHP 7 and

Mout(2)(y,t,λ)=MΔλ0(λ;y,t|σout).M_{out}^{(2)}(y,t,\lambda)=M^{\Delta_{\lambda_{0}}^{-}}(\lambda;y,t|\sigma^{\triangle}_{out}). (7.9)

Moreover,

q(x,t;σout)=q^sol(y,t;σout)=((μout(2))1(μout(2))2)2(y,t,0)1,q(x,t;\sigma^{\triangle}_{out})=\hat{q}_{sol}(y,t;\sigma^{\triangle}_{out})=\left((\mu_{out}^{(2)})_{1}(\mu_{out}^{(2)})_{2}\right)^{2}(y,t,0)-1, (7.10)

where

((μout(2))1,(μout(2))2)(y,t,λ)=(1,1)Mout(2)(y,t,λ),((\mu^{(2)}_{out})_{1},(\mu^{(2)}_{out})_{2})(y,t,\lambda)=(1,1)M^{(2)}_{out}(y,t,\lambda), (7.11)

and q(x,t;σout)q(x,t;\sigma^{\triangle}_{out}) represents the NN-soliton solution of (1.1) with the discrete data σout\sigma^{\triangle}_{out}.

Thus, for each {1,2,,N}\triangle\subseteq\{1,2,\ldots,N\}, there exists a solution q(x,t;σout)q(x,t;\sigma^{\triangle}_{out}) of (1.1). For the purpose of studying the asymptotic behavior of the solution, we need to choose appropriate \triangle which are well controlled as |t||t|\rightarrow\infty.

Considering the long-time behavior of MΔλ0(y,t,λ|σ)M^{\Delta_{\lambda_{0}}^{-}}(y,t,\lambda|\sigma^{\triangle}), First, we know that the one-soliton solution of (1.1) which has an implicit expression [12]

q(x,t)=tanh4(κx4κ3t+κx0+ε+)1,ε+=1κ[1+tanh(κx4κ3t+κx0+ε+)],\begin{array}[]{c}q(x,t)=\tanh^{-4}\left(\kappa x-4\kappa^{3}t+\kappa x_{0}+\varepsilon_{+}\right)-1,\\[6.0pt] \varepsilon_{+}=\frac{1}{\kappa}\left[1+\tanh\left(\kappa x-4\kappa^{3}t+\kappa x_{0}+\varepsilon_{+}\right)\right],\end{array} (7.12)

where κ<0\kappa<0. Then define the following functions and notation which will be used later

I={λ:v14<|λ|2<v24},v1v2+,\displaystyle I=\left\{\lambda:\frac{v_{1}}{4}<|\lambda|^{2}<\frac{v_{2}}{4}\right\},\quad v_{1}\leq v_{2}\in\mathbb{R}^{+}, (7.13)
Λ(I)={λnΛ:λnI},N(I)=|Λ(I)|,\displaystyle\Lambda(I)=\left\{\lambda_{n}\in\Lambda:\lambda_{n}\in I\right\},\quad N(I)=|\Lambda(I)|,
Λ(I)={λnΛ:|λn|2>v14},Λ+(I)={λnΛ:|λn|2<v24},\displaystyle\Lambda^{-}(I)=\left\{\lambda_{n}\in\Lambda:|\lambda_{n}|^{2}>\frac{v_{1}}{4}\right\},\quad\Lambda^{+}(I)=\left\{\lambda_{n}\in\Lambda:|\lambda_{n}|^{2}<\frac{v_{2}}{4}\right\},
cn(I)=cnReλkI\I(λnλkλnλ¯k)2exp[1πiIη(s)sλ𝑑s].\displaystyle c_{n}(I)=c_{n}\mathop{\prod}\limits_{\operatorname{Re}\lambda_{k}\in I_{-}\backslash I}\left(\frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}-\bar{\lambda}_{k}}\right)^{2}\exp\left[-\frac{1}{\pi i}\int_{I_{-}}\frac{\eta(s)}{s-\lambda}ds\right].

And give pair points y1y2,y_{1}\leq y_{2}\in\mathbb{R}, v1,v2v_{1},v_{2} represent velocities, we introduce a cone

C(y1,y2,v1,v2)={(y,t)R2y=y0+vt,y0[y1,y2],v[v1,v2]}.C\left(y_{1},y_{2},v_{1},v_{2}\right)=\left\{(y,t)\in R^{2}\mid y=y_{0}+vt,y_{0}\in\left[y_{1},y_{2}\right],v\in\left[v_{1},v_{2}\right]\right\}. (7.14)

Then we give two figures to show the discrete spectrum distribution and the space-time cone, see Figure 4, 4.

λ1\lambda_{1}λ¯1\bar{\lambda}_{1}λ2\lambda_{2}λ¯2\bar{\lambda}_{2}λ3\lambda_{3}λ¯3\bar{\lambda}_{3}λ4\lambda_{4}λ¯4\bar{\lambda}_{4}λ5\lambda_{5}λ¯5\bar{\lambda}_{5}ReλRe\lambdav1/2\sqrt{v_{1}}/2v2/2\sqrt{v_{2}}/2II
Figure 3: Five pairs of discrete spectrum and Λ(I)={λ1,λ3}\Lambda(I)=\left\{\lambda_{1},\lambda_{3}\right\}.
y=y1+v2ty=y_{1}+v_{2}ty=y1+v1ty=y_{1}+v_{1}ty=y2+v1ty=y_{2}+v_{1}ty=y2+v2ty=y_{2}+v_{2}tyyy1y_{1}y2y_{2}CC
Figure 4: The cone C(y1,y2,v1,v2)C\left(y_{1},y_{2},v_{1},v_{2}\right).

Our idea is to use the soliton solution corresponding to the discrete spectrum falling in the cone to approximate the solution MΔλ0(λ;y,t|σ)M^{\Delta_{\lambda_{0}}^{-}}(\lambda;y,t|\sigma^{\triangle}). It yields the following proposition.

Proposition 7.3.

Given discrete scattering data σ={(λn,cn),λnΛ}n=1N\sigma^{\triangle}=\left\{\left(\lambda_{n},c^{\prime}_{n}\right),\lambda_{n}\in\Lambda\right\}_{n=1}^{N}, and σI={(λn,cn),λnΛ(I)}\sigma^{\triangle}_{I}=\left\{\left(\lambda_{n},c^{\prime}_{n}\right),\lambda_{n}\in\Lambda(I)\right\}. For (y,t)C(y1,y2,v1,v2)(y,t)\in C\left(y_{1},y_{2},v_{1},v_{2}\right), as |t||t|\rightarrow\infty,

MΔλ0(λ;y,t|σ)=(I+𝒪(e2ε(I)|t|))MΔλ0(λ;y,t|σI),M^{\Delta_{\lambda_{0}}^{-}}(\lambda;y,t|\sigma^{\triangle})=\left(I+\mathcal{O}\left(e^{-2\varepsilon(I)|t|}\right)\right)M^{\Delta_{\lambda_{0}}^{-}}(\lambda;y,t|\sigma^{\triangle}_{I}), (7.15)

where

ε(I)=minλnΛ\Λ(I){Im(λn)v1|λ|2(|λ|+v22)dist(λn,I)}.\varepsilon(I)=\min_{\lambda_{n}\in\Lambda\backslash\Lambda(I)}\left\{\operatorname{Im}\left(\lambda_{n}\right)\frac{v_{1}}{|\lambda|^{2}}\left(|\lambda|+\frac{\sqrt{v_{2}}}{2}\right)\operatorname{dist}\left(\lambda_{n},I\right)\right\}.
Proof.

It can be proved in a similar way [33]. ∎

Then we can approximate the unique solution Mout(2)(y,t,λ)M_{out}^{(2)}(y,t,\lambda) of RHP 7. The conclusion holds as follows.

Proposition 7.4.

The RHP 7 exists an unique solution Mout(2)(y,t,λ)M_{out}^{(2)}(y,t,\lambda) and define

([μout(2)]1,[μout(2)]2)(y,t,λ)=(1,1)Mout(2)(y,t,λ),\left([\mu_{out}^{(2)}]_{1},[\mu_{out}^{(2)}]_{2}\right)(y,t,\lambda)=(1,1)M_{out}^{(2)}(y,t,\lambda), (7.16)

which satisfy

Mout(2)(y,t,λ)\displaystyle M_{out}^{(2)}(y,t,\lambda) =MΔλ0(λ;y,t|σout)\displaystyle=M^{\Delta_{\lambda_{0}}^{-}}(\lambda;y,t|\sigma^{\triangle}_{out}) (7.17)
=MΔλ0(λ;y,t|σI)ReλkI\I(λλnλλ¯n)2δσ3+𝒪(eε(I)|t|),\displaystyle=M^{\Delta_{\lambda_{0}}^{-}}(\lambda;y,t|\sigma^{\triangle}_{I})\mathop{\prod}\limits_{\operatorname{Re}\lambda_{k}\in I_{-}\backslash I}\left(\frac{\lambda-\lambda_{n}}{\lambda-\bar{\lambda}_{n}}\right)^{2}\delta^{-\sigma_{3}}+\mathcal{O}\left(e^{-\varepsilon(I)|t|}\right), (7.18)

where σout={λn,c~n(λ0)}n=1N\sigma^{\triangle}_{out}=\left\{\lambda_{n},\tilde{c}_{n}(\lambda_{0})\right\}_{n=1}^{N} with

c~n(λ)=cnexp[1πiIη(s)sλ𝑑s].\tilde{c}_{n}(\lambda)=c_{n}\exp\left[-\frac{1}{\pi i}\int_{I_{-}}\frac{\eta(s)}{s-\lambda}ds\right].

Moreover, we have

q(x,t;σout)=q^sol(y,t;σout)\displaystyle q(x,t;\sigma^{\triangle}_{out})=\hat{q}_{sol}(y,t;\sigma^{\triangle}_{out}) =((μout(2))1(μout(2))2)2(y,t,0)1\displaystyle=\left((\mu_{out}^{(2)})_{1}(\mu_{out}^{(2)})_{2}\right)^{2}(y,t,0)-1 (7.19)
=q(x,t;σI)+𝒪(eε(I)|t|),\displaystyle=q(x,t;\sigma^{\triangle}_{I})+\mathcal{O}\left(e^{-\varepsilon(I)|t|}\right), (7.20)

where q(x,t;σout)q(x,t;\sigma^{\triangle}_{out}) represents the NN-soliton solution of (1.1) corresponding to the discrete scattering data σout\sigma^{\triangle}_{out}.

8 The solvable RH model near phase points

Recall that proposition 6.1 indicates the jump matrix tends to II when λΣ±(2)\U±λ0.\lambda\in\Sigma_{\pm}^{(2)}\backslash U_{\pm\lambda_{0}}. As λU±λ0,\lambda\in U_{\pm\lambda_{0}}, we consider to build a local model for function E(λ)E(\lambda) with a uniformly small jump.

There is no discrete spectrum in U±λ0U_{\pm\lambda_{0}}, thus we replace T(λ)T(\lambda) with δ(λ)\delta(\lambda) in (4.14). Denote the expression after replacing T0(±λ0)T_{0}(\pm\lambda_{0}) in the expression of Rj(j=1,3,4,6,7,8)R_{j}(j=1,3,4,6,7,8) with δ(±λ0)\delta(\pm\lambda_{0}) as R~j(j=1,3,4,6,7,8)\tilde{R}_{j}(j=1,3,4,6,7,8), the jump matrix of RHP5 becomes

J(2)(y,t,λ)={(10R~1(λ)e2itθ1),λΣ1,(1R~7(λ)e2itθ01),λΣ2Σ5,(10R~8(λ)e2itθ1),λΣ3Σ8,(1R~6(λ)e2itθ01),λΣ4,(10R~3(λ)e2itθ1),λΣ6,(1R~4(λ)e2itθ01),λΣ7.J^{(2)}(y,t,\lambda)=\left\{\begin{array}[]{ll}\begin{pmatrix}1&0\\[6.0pt] \tilde{R}_{1}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Sigma_{1},\\[15.0pt] \begin{pmatrix}1&-\tilde{R}_{7}(\lambda)e^{-2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Sigma_{2}\cup\Sigma_{5},\\[15.0pt] \begin{pmatrix}1&0\\[6.0pt] \tilde{R}_{8}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Sigma_{3}\cup\Sigma_{8},\\[15.0pt] \begin{pmatrix}1&-\tilde{R}_{6}(\lambda)e^{-2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Sigma_{4},\\[15.0pt] \begin{pmatrix}1&0\\[6.0pt] \tilde{R}_{3}(\lambda)e^{2it\theta}&1\end{pmatrix},&\lambda\in\Sigma_{6},\\[15.0pt] \begin{pmatrix}1&-\tilde{R}_{4}\left(\lambda\right)e^{2it\theta}\\[6.0pt] 0&1\end{pmatrix},&\lambda\in\Sigma_{7}.\end{array}\right. (8.1)

According to [27], The RHP 5 can be transformed to the following solvable model.
RHP 10 Find a matrix function M(y,t,λ)M^{*}(y,t,\lambda) with the following properties

  1. 1.

    Analyticity: M(y,t,λ)M^{*}(y,t,\lambda) is meromorphic in \Σ(2).\mathbb{C}\backslash\Sigma^{(2)}.

  2. 2.

    Jump condition:

    M+=MJ(2)(y,t,λ),λΣ(2),M^{*}_{+}=M^{*}_{-}J^{(2)}(y,t,\lambda),\quad\lambda\in\Sigma^{(2)}, (8.2)

    where J(2)(y,t,λ)J^{(2)}(y,t,\lambda) is defined as (8.1).

  3. 3.

    Normalization: M(y,t,λ)IM^{*}(y,t,\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

According to proposition 6.1, we get the above RH problem, which shows that jump contours can be changed from Σ(2)\Sigma^{(2)} to Σ(3)\Sigma^{(3)} by ignoring the jump condition on Σ(2)\U±λ0\Sigma^{(2)}\backslash U_{\pm\lambda_{0}}. The contour Σ(3)\Sigma^{(3)} consisting of two crosses centered at λ=±λ0\lambda=\pm\lambda_{0}, which finally leads to the asymptotics in the modulated decaying oscillations, is shown as figure 5.

Σ6\Sigma_{6}Σ7\Sigma_{7}Σ1\Sigma_{1}Σ4\Sigma_{4}Σ2\Sigma_{2}Σ3\Sigma_{3}Σ5\Sigma_{5}Σ8\Sigma_{8}λ0\lambda_{0}λ0-\lambda_{0}Σλ0\Sigma_{-\lambda_{0}}Σλ0\Sigma_{\lambda_{0}}
Figure 5: The jump contour Σ(3)\Sigma^{(3)} is composed of Σλ0\Sigma_{-\lambda_{0}} and Σλ0\Sigma_{\lambda_{0}}.

We denote ΣA\Sigma_{A} and ΣB\Sigma_{B} as the contours {λ~=λ0he±iπ/4:<h<}\left\{\tilde{\lambda}=\lambda_{0}he^{\pm i\pi/4}:-\infty<h<\infty\right\}, and extend the crosses Σλ0\Sigma_{-\lambda_{0}} and Σλ0\Sigma_{\lambda_{0}} to ΣA\Sigma_{A} and ΣB\Sigma_{B} by zero extension. We solve the RHP10 in two parts: Mλ0M^{\lambda_{0}} and Mλ0M^{-\lambda_{0}}, which corresponds to the 2×22\times 2 matrix MAM^{A} and MBM^{B} respectively. Introducing the scaled operator

(NAf)(λ)=f(λ0+λ~48tλ0).\left(N_{A}f\right)(\lambda)=f\left(-\lambda_{0}+\frac{\tilde{\lambda}}{\sqrt{48t\lambda_{0}}}\right). (8.3)

The factor δ(λ)eitθ(λ)\delta(\lambda)e^{-it\theta(\lambda)} can be scaled as

NAδ(λ)eitθ(λ)=δA0δA1(λ~),N_{A}\delta(\lambda)e^{-it\theta(\lambda)}=\delta_{A}^{0}\delta_{A}^{1}(\tilde{\lambda}), (8.4)

where

δA0(λ~)\displaystyle\delta_{A}^{0}(\tilde{\lambda}) =(192tλ03)iν/2e8itλ03eη~(λ0),\displaystyle=\left(192t\lambda_{0}^{3}\right)^{i\nu/2}e^{-8it\lambda_{0}^{3}}e^{\tilde{\eta}\left(-\lambda_{0}\right)}, (8.5)
δA1(λ~)\displaystyle\delta_{A}^{1}(\tilde{\lambda}) =(λ~)iν(2λ0λ~/48tλ02λ0)iνei(λ~2/4)(1λ~(432tλ03)1/2)e(η~([λ~/48tλ0]λ0)η~(λ0)).\displaystyle=(-\tilde{\lambda})^{-i\nu}\left(\frac{-2\lambda_{0}}{\tilde{\lambda}/\sqrt{48t\lambda_{0}}-2\lambda_{0}}\right)^{-i\nu}e^{i\left(\tilde{\lambda}^{2}/4\right)\left(1-\tilde{\lambda}\left(432t\lambda_{0}^{3}\right)^{-1/2}\right)}e^{\left(\tilde{\eta}\left(\left[\tilde{\lambda}/\sqrt{48t\lambda_{0}}\right]-\lambda_{0}\right)-\tilde{\eta}\left(-\lambda_{0}\right)\right)}.

and η~(λ0)=12πiλ0λ0log|λ0s|dlog(1|r(s)|2).\tilde{\eta}\left(\lambda_{0}\right)=-\frac{1}{2\pi i}\int_{-\lambda_{0}}^{\lambda_{0}}\log\left|\lambda_{0}-s\right|d\log\left(1-|r(s)|^{2}\right). Then the jump matrix Jλ0J^{\lambda_{0}} becomes JAJ^{A}. We can decompose the new jump matrix

JA(λ~)=(IwA)1(I+w+A).J^{A}(\tilde{\lambda})=\left(I-w_{-}^{A}\right)^{-1}\left(I+w_{+}^{A}\right). (8.6)

Then the solution of the RH model centered at λ0-\lambda_{0} is given by

MA(λ~)=I+12πiΣA((1A)1I)(ζ)wA(ζ)ζλ~𝑑ζ,M^{A}(\tilde{\lambda})=I+\frac{1}{2\pi i}\int_{\Sigma_{A}}\frac{\left(\left(1-A\right)^{-1}I\right)(\zeta)w^{A}(\zeta)}{\zeta-\tilde{\lambda}}d\zeta, (8.7)

where wA=wA+w+A.w^{A}=w_{-}^{A}+w_{+}^{A}. Particularly, the large λ~\tilde{\lambda} behavior of MA(λ~)M^{A}(\tilde{\lambda}) can be expressed as

MA(λ~)=IM1Aλ~+O(1λ~2).M^{A}(\tilde{\lambda})=I-\frac{M_{1}^{A}}{\tilde{\lambda}}+O\left(\frac{1}{\tilde{\lambda}^{2}}\right). (8.8)

Similarly, for Σλ0\Sigma_{-\lambda_{0}}, the scaled operator is introduced as

(NBf)(λ)=f(λ0+λ~48tλ0),\left(N_{B}f\right)(\lambda)=f\left(\lambda_{0}+\frac{\tilde{\lambda}}{\sqrt{48t\lambda_{0}}}\right), (8.9)

and

NBδ(λ)eitθ(λ)=δB0δB1(λ~),N_{B}\delta(\lambda)e^{-it\theta(\lambda)}=\delta_{B}^{0}\delta_{B}^{1}(\tilde{\lambda}), (8.10)

where

δB0(λ~)\displaystyle\delta_{B}^{0}(\tilde{\lambda}) =(192tλ03)iν/2e8itλ03eη~(λ0),\displaystyle=\left(192t\lambda_{0}^{3}\right)^{-i\nu/2}e^{8it\lambda_{0}^{3}}e^{\tilde{\eta}\left(\lambda_{0}\right)}, (8.11)
δB1(λ~)\displaystyle\delta_{B}^{1}(\tilde{\lambda}) =λ~iν(2λ0λ~/48tλ0+2λ0)iνei(λ~2/4)(1+λ~(432tλ03)1/2)e(η~([λ~/48tλ0]+λ0)η~(λ0)).\displaystyle=\tilde{\lambda}^{i\nu}\left(\frac{2\lambda_{0}}{\tilde{\lambda}/\sqrt{48t\lambda_{0}}+2\lambda_{0}}\right)^{i\nu}e^{-i\left(\tilde{\lambda}^{2}/4\right)\left(1+\tilde{\lambda}\left(432t\lambda_{0}^{3}\right)^{-1/2}\right)}e^{\left(\tilde{\eta}\left(\left[\tilde{\lambda}/\sqrt{48t\lambda_{0}}\right]+\lambda_{0}\right)-\tilde{\eta}\left(\lambda_{0}\right)\right)}.

Particularly, the large λ~\tilde{\lambda} behavior of MB(λ~)M^{B}(\tilde{\lambda}) is given by

MB(λ~)=IM1Bλ~+O(1λ~2),M^{B}(\tilde{\lambda})=I-\frac{M_{1}^{B}}{\tilde{\lambda}}+O\left(\frac{1}{\tilde{\lambda}^{2}}\right), (8.12)

where

(M1B)21=iβ21,(M1B)12=iβ21¯.\left(M_{1}^{B}\right)_{21}=-i\beta_{21},\quad\left(M_{1}^{B}\right)_{12}=i\overline{\beta_{21}}. (8.13)

with

β21=r(λ0)Γ(iν)ν2πeiπ/4eπν/2,\beta_{21}=\frac{r\left(\lambda_{0}\right)\Gamma(-i\nu)\nu}{\sqrt{2\pi}e^{i\pi/4}e^{-\pi\nu/2}}, (8.14)

which is obtained from [27]. With aid of symmetry (3.13), we have M1A=M1B¯.M_{1}^{A}=-\overline{M_{1}^{B}}.

As Mout(2)M^{(2)}_{out} is an analytic and bounded function in U±λ0U_{\pm\lambda_{0}} and use RHP5, we define two local model M±λ0M^{\pm\lambda_{0}} in (6.7) by

M±λ0(λ)=Mout(2)(λ)M(λ),λU±λ0,M^{\pm\lambda_{0}}(\lambda)=M^{(2)}_{out}(\lambda)M^{*}(\lambda),\quad\lambda\in U_{\pm\lambda_{0}}, (8.15)

which also satisfies the jump condition of MRHP(2)M^{(2)}_{RHP}.

9 The small norm RH problem for E(λ)E(\lambda)

In this section, we study the small norm RH problem of E(λ)E(\lambda). From (6.7) and (8.15) we have

E(λ)={MRHP(2)(λ)M(out)(2)(λ)1,λ\U±λ0,MRHP(2)(λ)M(λ)1M(out)(2)(λ)1,λU±λ0.E(\lambda)=\left\{\begin{aligned} &M_{RHP}^{(2)}(\lambda)M_{(out)}^{(2)}(\lambda)^{-1},&\lambda\in\mathbb{C}\backslash U_{\pm\lambda_{0}},\\ &M_{RHP}^{(2)}(\lambda)M^{*}(\lambda)^{-1}M_{(out)}^{(2)}(\lambda)^{-1},&\lambda\in U_{\pm\lambda_{0}}.\end{aligned}\right. (9.1)

It is easy to get the jump contour of E(λ)E(\lambda) is

Σ(E)=U±λ0(Σ(2)\U±λ0),\Sigma^{(E)}=\partial U_{\pm\lambda_{0}}\cup(\Sigma^{(2)}\backslash U_{\pm\lambda_{0}}), (9.2)

which is shown in figure 6.

λ0\lambda_{0}λ0-\lambda_{0}
Figure 6: The jump contour Σ(E)ofE(λ)\Sigma^{(E)}ofE(\lambda).

By the definition (9.1) of E(λ)E(\lambda), we can calculate the jump matrix J(E)J^{(E)} for E(λ)E(\lambda)

J(E)(λ)={M(out)(2)(λ)J(2)(λ)M(out)(2)(λ)1,λΣ(2)\U±λ0,M(out)(2)(λ)M(λ)M(out)(2)(λ)1,λU±λ0.J^{(E)}(\lambda)=\left\{\begin{aligned} &M_{(out)}^{(2)}(\lambda)J^{(2)}(\lambda)M_{(out)}^{(2)}(\lambda)^{-1},&\lambda\in\Sigma^{(2)}\backslash U_{\pm\lambda_{0}},\\ &M_{(out)}^{(2)}(\lambda)M^{*}(\lambda)M_{(out)}^{(2)}(\lambda)^{-1},&\lambda\in\partial U_{\pm\lambda_{0}}.\end{aligned}\right. (9.3)

Then, we establish a RH problem for E(λ)E(\lambda) as follows:
RHP 11 Find a matrix-valued function E(λ)E(\lambda) with the following properties

  1. 1.

    Analyticity: E(λ)E(\lambda) is meromorphic in \Σ(E).\mathbb{C}\backslash\Sigma^{(E)}.

  2. 2.

    Jump condition:

    E+(λ)=E(λ)J(E)(λ),λΣ(E),E_{+}(\lambda)=E_{-}(\lambda)J^{(E)}(\lambda),\quad\lambda\in\Sigma^{(E)}, (9.4)

    where J(±λ0))(y,t,λ)J^{(\pm\lambda_{0}))}(y,t,\lambda) is defined as (9.3).

  3. 3.

    Normalization: E(λ)IE(\lambda)\rightarrow I, as λ\lambda\rightarrow\infty.

Next, we will show that for large time the function E(λ)E(\lambda) solves a small norm RH problem. As M(out)(2)(λ)M_{(out)}^{(2)}(\lambda) is bounded in \mathbb{C}, by applying proposition 6.1 and (8.12) , we get that as t+t\rightarrow+\infty, the jump matrix J(E)(λ)J^{(E)}(\lambda) admits

|J(E)(λ)I|={𝒪(e16|t|(|p|λ0)|q|(2λ0+|p|)),λΣ±(2)\U±λ0,𝒪(|t|1/2),λU±λ0.\left|J^{(E)}(\lambda)-I\right|=\left\{\begin{array}[]{ll}\mathcal{O}\left(e^{-16|t|\left(|p|\mp\lambda_{0}\right)|q|\left(2\lambda_{0}+|p|\right)}\right),&\lambda\in\Sigma_{\pm}^{(2)}\backslash U_{\pm\lambda_{0}},\\[6.0pt] \mathcal{O}\left(|t|^{-1/2}\right),&\lambda\in\partial U_{\pm\lambda_{0}}.\end{array}\right. (9.5)

Therefore, we can prove the existence and uniqueness of the RHP11 by using a small-norm RH problem, and according to Beal-Cofiman theorem, we construct the solution of RHP11. Firstly, we do a trivial decompose of J(E)J^{(E)}

J(E)=(b)1b+,b=I,b+=J(E).J^{(E)}=\left(b_{-}\right)^{-1}b_{+},\quad b_{-}=I,\quad b_{+}=J^{(E)}. (9.6)

Then we have

CE(f)(z)=C(f(J(E)I)),C_{E}(f)(z)=C_{-}\left(f\left(J^{(E)}-I\right)\right), (9.7)

where CC_{-} is the usual Cauchy projection operator on Σ(E)\Sigma^{(E)}

Cf(z)=limλλΣ(E)12πiΣ(E)f(s)sλ𝑑s.C_{-}f(z)=\lim_{\lambda^{\prime}\rightarrow\lambda\in\Sigma^{(E)}}\frac{1}{2\pi i}\int_{\Sigma^{(E)}}\frac{f(s)}{s-\lambda^{\prime}}ds. (9.8)

Thus, the solution of RHP11 can be expressed as

E(λ)=I+12πiΣ(E)(I+ρ(s))(J(E)I)sλ𝑑s,E(\lambda)=I+\frac{1}{2\pi i}\int_{\Sigma^{(E)}}\frac{(I+\rho(s))\left(J^{(E)}-I\right)}{s-\lambda}ds, (9.9)

where ρL2(Σ(E))\rho\in L^{2}\left(\Sigma^{(E)}\right) is the unique solution of the following equation

(1CE)ρ=CE(I).\left(1-C_{E}\right)\rho=C_{E}(I). (9.10)

From (9.5) and (9.7), we get

CEL2(Σ(E))CL2(Σ(E))J(E)IL(Σ(E))𝒪(|t|1/2),\left\|C_{E}\right\|_{L^{2}\left(\Sigma^{(E)}\right)}\lesssim\left\|C_{-}\right\|_{L^{2}\left(\Sigma^{(E)}\right)}\left\|J^{(E)}-I\right\|_{L^{\infty}\left(\Sigma^{(E)}\right)}\lesssim\mathcal{O}\left(|t|^{-1/2}\right), (9.11)

which means operator (1CE)1(1-C_{E})^{-1} exists, it follows that the existence of ρ\rho and E(λ)E(\lambda), the uniqueness is obvious. In addition, we have

ρL2(Σ(E))CE1CE|t|1/2,\|\rho\|_{L^{2}\left(\Sigma^{(E)}\right)}\lesssim\frac{\left\|C_{E}\right\|}{1-\left\|C_{E}\right\|}\lesssim|t|^{-1/2}, (9.12)

which indicates the boundedness of E(λ)E(\lambda).

Moreover, we consider the asymptotic behavior of E(λ)E(\lambda) as λ0\lambda\rightarrow 0 and the long-time asymptotic behavior of E(0)E(0) to solve the initial value problem (1.1) and study the soliton resolution. As (9.5) and (9.9) indicates E(λ)E(\lambda) tends to zero in Σ(E)\U±λ0\Sigma^{(E)}\backslash\partial U_{\pm\lambda_{0}} when tt\rightarrow\infty, so we only need to consider its long time asymptotic behavior on U±λ0\partial U_{\pm\lambda_{0}}.

As λ0\lambda\rightarrow 0, E(λ)E(\lambda) has expansion

E(λ)=E(0)+E1λ+𝒪(λ2),E(\lambda)=E(0)+E_{1}\lambda+\mathcal{O}\left(\lambda^{2}\right), (9.13)

where

E(0)=I+12πiΣ(E)(I+ρ(s))(J(E)I)s𝑑s,E(0)=I+\frac{1}{2\pi i}\int_{\Sigma^{(E)}}\frac{(I+\rho(s))\left(J^{(E)}-I\right)}{s}ds, (9.14)
E1=12πiΣ(E)(I+ρ(s))(J(E)I)s2𝑑s.E_{1}=-\frac{1}{2\pi i}\int_{\Sigma^{(E)}}\frac{(I+\rho(s))\left(J^{(E)}-I\right)}{s^{2}}ds. (9.15)

And the long time asymptotic behavior can be calculated as follows,

E(0)=I+E(1)|t|1/2+𝒪(|t|1),E(0)=I+E^{(1)}|t|^{-1/2}+\mathcal{O}\left(|t|^{-1}\right), (9.16)
E1=E(2)|t|1/2+𝒪(|t|1),E_{1}=E^{(2)}|t|^{-1/2}+\mathcal{O}\left(|t|^{-1}\right), (9.17)

where

E(1)\displaystyle E^{(1)} =12πiU±λ0M(out)(2)(s)1M1B(±λ0)M(out)(2)(s)s(sλ0)48λ0𝑑s\displaystyle=\frac{1}{2\pi i}\int_{\partial U_{\pm\lambda_{0}}}\frac{M_{(out)}^{(2)}(s)^{-1}M^{B}_{1}(\pm\lambda_{0})M_{(out)}^{(2)}(s)}{s\left(s\mp\lambda_{0}\right)\sqrt{48\lambda_{0}}}ds (9.18)
=148λ03M(out)(2)(λ0)1M1B(λ0)M(out)(2)(λ0)\displaystyle=-\frac{1}{\sqrt{48\lambda_{0}^{3}}}M_{(out)}^{(2)}(-\lambda_{0})^{-1}M^{B}_{1}(-\lambda_{0})M_{(out)}^{(2)}(-\lambda_{0})
+148λ03M(out)(2)(λ0)1M1B(λ0)M(out)(2)(λ0),\displaystyle+\frac{1}{\sqrt{48\lambda_{0}^{3}}}M_{(out)}^{(2)}(\lambda_{0})^{-1}M^{B}_{1}(\lambda_{0})M_{(out)}^{(2)}(\lambda_{0}),

and

E(2)\displaystyle E^{(2)} =12πiU±λ0M(out)(2)(s)1M1B(±λ0)M(out)(2)(s)s2(sλ0)48λ0𝑑s\displaystyle=\frac{1}{2\pi i}\int_{\partial U_{\pm\lambda_{0}}}\frac{M_{(out)}^{(2)}(s)^{-1}M^{B}_{1}(\pm\lambda_{0})M_{(out)}^{(2)}(s)}{s^{2}\left(s\mp\lambda_{0}\right)\sqrt{48\lambda_{0}}}ds (9.19)
=148λ05M(out)(2)(λ0)1M1B(λ0)M(out)(2)(λ0)\displaystyle=\frac{1}{\sqrt{48\lambda_{0}^{5}}}M_{(out)}^{(2)}(-\lambda_{0})^{-1}M^{B}_{1}(-\lambda_{0})M_{(out)}^{(2)}(-\lambda_{0})
148λ05M(out)(2)(λ0)1M1B(λ0)M(out)(2)(λ0).\displaystyle-\frac{1}{\sqrt{48\lambda_{0}^{5}}}M_{(out)}^{(2)}(\lambda_{0})^{-1}M^{B}_{1}(\lambda_{0})M_{(out)}^{(2)}(\lambda_{0}).

Moreover, we have

E(0)1=I+𝒪(|t|1/2).E(0)^{-1}=I+\mathcal{O}\left(|t|^{-1/2}\right). (9.20)

10 The pure ¯\bar{\partial}-problem

In this section, we study the long time asymptotics behavior of pure ¯\bar{\partial}-problem RHP6. The solution of RHP6 can be given by

M(3)(λ)=I1πM(3)W(3)sλ𝑑m(s),M^{(3)}(\lambda)=I-\frac{1}{\pi}\int_{\mathbb{C}}\frac{M^{(3)}W^{(3)}}{s-\lambda}dm(s), (10.1)

where m(s)m(s) is the Lebegue measure on the \mathbb{C}, in fact, (10.1) is equivalent to the following expression

M(3)(λ)=I(IC¯)1,M^{(3)}(\lambda)=I(I-C_{\bar{\partial}})^{-1}, (10.2)

where C¯C_{\bar{\partial}} is the Cauchy integral operator

C¯[f](λ)=1πf(s)W(s)sλ𝑑m(s).C_{\bar{\partial}}[f](\lambda)=-\frac{1}{\pi}\int_{\mathbb{C}}\frac{f(s)W(s)}{s-\lambda}dm(s). (10.3)

First we prove the existence of operator C¯C_{\bar{\partial}}. Thus we just need to prove the following proposition.

Proposition 10.1.

For tt\rightarrow\infty, the norm of operator C¯C_{\bar{\partial}} tends to zero, and it follows that

C¯LLct1/6.\|C_{\bar{\partial}}\|_{L^{\infty}\rightarrow L^{\infty}}\leqslant ct^{-1/6}. (10.4)
Proof.

Assume fL(Ω1)f\in L^{\infty}(\Omega_{1}), s=u+ivs=u+iv, then we get

Re(2itθ)=8v3t+24(λ02u2)vt.Re(2it\theta)=8v^{3}t+24(\lambda_{0}^{2}-u^{2})vt.

From (5.5) and (5.6) we have

C¯(f)L\displaystyle\left\|C_{\bar{\partial}}(f)\right\|_{L^{\infty}} 1πfLΩ1|W(3)(s)||sλ|𝑑m(s)\displaystyle\leq\frac{1}{\pi}\|f\|_{L^{\infty}}\int_{\Omega_{1}}\frac{\left|W^{(3)}(s)\right|}{|s-\lambda|}dm(s) (10.5)
1πfLMRHP(2)L(MRHP(2))1LΩ1|¯(2)(s)||sλ|𝑑m(s)\displaystyle\leq\frac{1}{\pi}\|f\|_{L^{\infty}}\left\|M_{RHP}^{(2)}\right\|_{L^{\infty}}\left\|(M_{RHP}^{(2)})^{-1}\right\|_{L^{\infty}}\int_{\Omega_{1}}\frac{\left|\bar{\partial}\mathcal{R}^{(2)}(s)\right|}{|s-\lambda|}dm(s)
1πfLΩ1|¯R1|e8v3t+24(λ02u2)vt|sλ|𝑑m(s)\displaystyle\leq\frac{1}{\pi}\|f\|_{L^{\infty}}\int_{\Omega_{1}}\frac{\left|\bar{\partial}R_{1}\right|e^{8v^{3}t+24(\lambda_{0}^{2}-u^{2})vt}}{|s-\lambda|}dm(s)
c(I1+I2+I3),\displaystyle\leq c\left(I_{1}+I_{2}+I_{3}\right),

where

I1=0+λ0+v+|¯XΛ(s)|e8v3t+24(λ02u2)vt|sλ|𝑑u𝑑v,\displaystyle I_{1}=\int_{0}^{+\infty}\int_{\lambda_{0}+v}^{+\infty}\frac{\left|\bar{\partial}X_{\Lambda}(s)\right|e^{8v^{3}t+24(\lambda_{0}^{2}-u^{2})vt}}{|s-\lambda|}dudv, (10.6)
I2=0+λ0+v+|s1(u)|e8v3t+24(λ02u2)vt|sλ|𝑑u𝑑v,\displaystyle I_{2}=\int_{0}^{+\infty}\int_{\lambda_{0}+v}^{+\infty}\frac{\left|s_{1}^{\prime}(u)\right|e^{8v^{3}t+24(\lambda_{0}^{2}-u^{2})vt}}{|s-\lambda|}dudv,
I3=0+λ0+v+|sλ0|12e8v3t+24(λ02u2)vt|sλ|𝑑u𝑑v.\displaystyle I_{3}=\int_{0}^{+\infty}\int_{\lambda_{0}+v}^{+\infty}\frac{|s-\lambda_{0}|^{-\frac{1}{2}}e^{8v^{3}t+24(\lambda_{0}^{2}-u^{2})vt}}{|s-\lambda|}dudv.

To obtain (10.4), we only need to prove

Ijcjt1/6,j=1,2,3,I_{j}\leq c_{j}t^{-1/6},\quad j=1,2,3, (10.7)

where cjc_{j} are different constants, the estimation is similar to [33]. Hence (10.4) holds on Ω1\Omega_{1}. On other areas, the results can be similarly calculated. ∎

Next, for our purpose of studying the long time asymptotic behaviors of the solution of (1.1), we consider the asymptotic behavior of M(3)(0)M^{(3)}(0) and M1(3)M^{(3)}_{1} as λ0\lambda\rightarrow 0, M(3)(0)M^{(3)}(0) and M1(3)M^{(3)}_{1} are the different power coefficient of the following expansion

M(3)(λ)=M(3)(0)+M1(3)λ+𝒪(λ2),λ0.M^{(3)}(\lambda)=M^{(3)}(0)+M_{1}^{(3)}\lambda+\mathcal{O}\left(\lambda^{2}\right),\quad\lambda\rightarrow 0. (10.8)

The expression of M(3)(0)M^{(3)}(0) and M1(3)M^{(3)}_{1} can be easily obtained by (10.1), we have

M(3)(λ)=I1πM(3)W(3)s𝑑m(s),M^{(3)}(\lambda)=I-\frac{1}{\pi}\int_{\mathbb{C}}\frac{M^{(3)}W^{(3)}}{s}dm(s), (10.9)
M(3)(λ)=1πM(3)W(3)s2𝑑m(s).M^{(3)}(\lambda)=\frac{1}{\pi}\int_{\mathbb{C}}\frac{M^{(3)}W^{(3)}}{s^{2}}dm(s). (10.10)

Moreover, M1(3)M^{(3)}_{1} admits the following proposition.

Proposition 10.2.

There exists constant cc such that

|M1(3)(y,t)|ct1,\left|M_{1}^{(3)}(y,t)\right|\leq ct^{-1}, (10.11)
M(3)(0)Ict1.\left\|M^{(3)}(0)-I\right\|\leq ct^{-1}. (10.12)
Proof.

The proposition can be proved in a similar way to [33]. ∎

11 Soliton resolution for the Harry Dym equation

In this section, we are ready to analyze the long time asymptotic behaviors of the soliton which solve the Harry Dym equation (1.1). According to the series of transformations we have done before, we have

M(x,t,λ)=M^(y,t,λ)=M(3)(λ)E(λ)Mout(2)(λ)(2)(λ)1T(λ)σ3,λ\U±λ0.M(x,t,\lambda)=\hat{M}(y,t,\lambda)=M^{(3)}(\lambda)E(\lambda)M^{(2)}_{out}(\lambda)\mathcal{R}^{(2)}(\lambda)^{-1}T(\lambda)^{\sigma_{3}},\quad\lambda\in\mathbb{C}\backslash U_{\pm\lambda_{0}}. (11.1)

Our purpose is to reconstruct the solution q^(y,t)\hat{q}(y,t) by (3.17), which require us to consider the situation of λ0\lambda\rightarrow 0. For convenience, taking λ0\lambda\rightarrow 0 along the imaginary axis which implies (2)(λ)=I\mathcal{R}^{(2)}(\lambda)=I we have

M^(y,t,λ)=M(3)(λ)E(λ)Mout(2)(λ)T(λ)σ3,\hat{M}(y,t,\lambda)=M^{(3)}(\lambda)E(\lambda)M^{(2)}_{out}(\lambda)T(\lambda)^{\sigma_{3}}, (11.2)

and then

M^\displaystyle\hat{M} =(M(3)(0)+M1(3)λ+)(E(0)+E1λ+)(Mout(2))(T(0)(1+λT1)+)σ3\displaystyle=\left(M^{(3)}(0)+M_{1}^{(3)}\lambda+\cdots\right)\left(E(0)+E_{1}\lambda+\cdots\right)(M^{(2)}_{out})\left(T(0)\left(1+\lambda T_{1}\right)+\cdots\right)^{\sigma_{3}} (11.3)
=Mout(2)(0)T(0)σ3+Mout(2)(λ)T(0)σ3T1σ3λ+T(0)σ3E(2)Mout(2)(λ)λt12+𝒪(t1).\displaystyle=M^{(2)}_{out}(0)T(0)^{\sigma_{3}}+M^{(2)}_{out}(\lambda)T(0)^{\sigma_{3}}T_{1}^{\sigma_{3}}\lambda+T(0)^{\sigma_{3}}E^{(2)}M^{(2)}_{out}(\lambda)\lambda t^{-\frac{1}{2}}+\mathcal{O}(t^{-1}).

Reviewing the reconstruction formula (3.17) of the solution q^(y,t)\hat{q}(y,t), we get

q^(y,t)\displaystyle\hat{q}(y,t) =(μ^1μ^2)2(y,t,0)1\displaystyle=\left(\hat{\mu}_{1}\hat{\mu}_{2}\right)^{2}(y,t,0)-1 (11.4)
=limλ0(M^11+M^21)2(M^12+M^22)2(y,t,λ)1.\displaystyle=\lim_{\lambda\rightarrow 0}(\hat{M}_{11}+\hat{M}_{21})^{2}(\hat{M}_{12}+\hat{M}_{22})^{2}(y,t,\lambda)-1.

Based on the above analysis, we summarize the long time asymptotic behavior of the solution as the following theorem.

Theorem 1.

Suppose that the initial values q0(x)H1,1()q_{0}(x)\in H^{1,1}(\mathbb{R}) satisfy the Assumption 1, whose corresponding scattering data is recorded as σd={(λn,cn)}n=1N\sigma_{d}=\left\{\left(\lambda_{n},c_{n}\right)\right\}_{n=1}^{N}. Denote q(x,t)q(x,t) as the solution for the initial-value problem (1.1)-(1.2). For the fixed y1,y2,v1,v2y_{1},y_{2},v_{1},v_{2}\in\mathbb{R} with y1y2y_{1}\leq y_{2} and v1v2v_{1}\leq v_{2}, define

I={λ:v14<|λ|2<v24},Λ(I)={λnΛ:λnI},I=\left\{\lambda:\frac{v_{1}}{4}<|\lambda|^{2}<\frac{v_{2}}{4}\right\},\quad\Lambda(I)=\left\{\lambda_{n}\in\Lambda:\lambda_{n}\in I\right\}, (11.5)

which correspond to the solution q(x,t;σI)q(x,t;\sigma_{I}). The corresponding scattering data are

σI={(λn,cn(I)),λnΛ(I)},\displaystyle\sigma_{I}=\left\{\left(\lambda_{n},c_{n}(I)\right),\lambda_{n}\in\Lambda(I)\right\}, (11.6)
cn(I)=cnReλkI\I(λnλkλnλ¯k)2exp[1πiIη(s)sλ𝑑s].\displaystyle c_{n}(I)=c_{n}\prod_{\operatorname{Re}\lambda_{k}\in I_{-}\backslash I}\left(\frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}-\bar{\lambda}_{k}}\right)^{2}\exp\left[-\frac{1}{\pi i}\int_{I_{-}}\frac{\eta(s)}{s-\lambda}ds\right].

Then for (y,t)C(y1,y2,v1,v2)(y,t)\in C(y_{1},y_{2},v_{1},v_{2}) and tt\rightarrow\infty, we have

q(x,t)=q^(y,t)=q^sol(y,t;σI)+m12m221,\displaystyle q(x,t)=\hat{q}(y,t)=\hat{q}_{sol}(y,t;\sigma_{I})+m_{1}^{2}m_{2}^{2}-1, (11.7)
y=x(y,t)+12i(m3m4m5m61)+𝒪(t1),\displaystyle y=x(y,t)+\frac{1}{2i}(\frac{m_{3}-m_{4}}{m_{5}-m_{6}}-1)+\mathcal{O}(t^{-1}),

where C(y1,y2,v1,v2)C(y_{1},y_{2},v_{1},v_{2}) defined by (7.14) and

m1=[Mout(2)(0)]11T(0)[Mout(2)(0)]21T(0),\displaystyle m_{1}=[M^{(2)}_{out}(0)]_{11}T(0)-[M^{(2)}_{out}(0)]_{21}T(0), (11.8)
m2=[Mout(2)(0)]12T(0)[Mout(2)(0)]22T(0),\displaystyle m_{2}=[M^{(2)}_{out}(0)]_{12}T(0)-[M^{(2)}_{out}(0)]_{22}T(0),
m3=[Mout(2)(0)]11T(0)T1+[E(2)Mout(2)(0)]11T(0)t12,\displaystyle m_{3}=[M^{(2)}_{out}(0)]_{11}T(0)T_{1}+[E^{(2)}M^{(2)}_{out}(0)]_{11}T(0)t^{-\frac{1}{2}},
m4=[Mout(2)(0)]21T(0)T1+[E(2)Mout(2)(0)]21T(0)t12,\displaystyle m_{4}=[M^{(2)}_{out}(0)]_{21}T(0)T_{1}+[E^{(2)}M^{(2)}_{out}(0)]_{21}T(0)t^{-\frac{1}{2}},
m5=[Mout(2)(0)]12T(0)T1+[E(2)Mout(2)(0)]12T(0)t12,\displaystyle m_{5}=[M^{(2)}_{out}(0)]_{12}T(0)T_{1}+[E^{(2)}M^{(2)}_{out}(0)]_{12}T(0)t^{-\frac{1}{2}},
m6=[Mout(2)(0)]22T(0)T1+[E(2)Mout(2)(0)]22T(0)t12.\displaystyle m_{6}=[M^{(2)}_{out}(0)]_{22}T(0)T_{1}+[E^{(2)}M^{(2)}_{out}(0)]_{22}T(0)t^{-\frac{1}{2}}.

So far, the long time asymptotic expansion (11.7) shows the soliton resolution of for the initial value problem of the Harry Dym equation which contains the soliton term by N(I)N(I)-soliton whose parameters are modulated by a sum of localized soliton-soliton interactions as one moves through the cone and the second term coming from soliton-radiation interactions on continuous spectrum up to an residual error of order 𝒪(t1)\mathcal{O}(t^{-1}) from the ¯\bar{\partial} equation.

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (No. 11571079), Shanghai Pujiang Program (No. 14PJD007) and the Natural Science Foundation of Shanghai (No. 14ZR1403500), and the Young Teachers Foundation (No. 1411018) of Fudan university.

References

  • [1] M. D. Kruskal and J. Moser. Dynamical systems, theory and applications. Lecturer Notes Physics, Springer, Berlin, Germany, page 313, 1975.
  • [2] P. C. Sabatier. On some spectral problems and isospectral evolutions connected with the classical string problem. Lettere al Nuovo Cimento, 26(15):477–482, 1979.
  • [3] Franco Magri. A simple model of the integrable hamiltonian equation. Journal of Mathematical Physics, 19(5):1156–1162, 1978.
  • [4] M. Leo, R. A. Leo, G. Soliani, L. Solombrino, and L. Martina. Lie-bäcklund symmetries for the harry-dym equation. Phys. Rev. D, 27:1406–1408, Mar 1983.
  • [5] A Roy Chowdhury and Rebecca Mukherjee. Elliptic solutions, recursion operators and complete lie-bäcklund symmetry for the harry-dym equation. Physica Scripta, 29(4):293–295, apr 1984.
  • [6] C Rogers and M C Nucci. On reciprocal bäcklund transformations and the korteweg-devries hierarchy. Physica Scripta, 33(4):289–292, APR 1986.
  • [7] Shunji Kawamoto. An exact transformation from the harry dym equation to the modified kdv equation. Journal of the Physical Society of Japan, 54(5):2055–2056, 1985.
  • [8] L A Dmitrieva. N-loop solitons and their link with the complex harry dym equation. Journal of Physics A: Mathematical and General, 27(24):8197–8205, dec 1994.
  • [9] F. Gesztesy and K. Unterkofler. Isospectral deformations for strum-liouville and dirac-type operators and associated nonlinear evolution equations. Reports on Mathematical Physics, 31(2):113–137, 1992.
  • [10] S. D. Howison. Complex variable methods in hele–shaw moving boundary problems. European Journal of Applied Mathematics, 3(3):209–224, 1992.
  • [11] Leo P. Kadanoff. Exact solutions for the saffman-taylor problem with surface tension. Phys. Rev. Lett., 65:2986–2988, Dec 1990.
  • [12] Miki Wadati, Yoshi H. Ichikawa, and Toru Shimizu. Cusp Soliton of a New Integrable Nonlinear Evolution Equation. Progress of Theoretical Physics, 64(6):1959–1967, 12 1980.
  • [13] D. P. Novikov. Algebraic-geometric solutions of the harry dym equation. Siberian Mathematical Journal, 40(1):136–140, 1999.
  • [14] Reza Mokhtari. Exact solutions of the harry dym equation. Communications in Theoretical Physics, 55(2):204–208, feb 2011.
  • [15] S V Manakov. Nonlinear fraunhofer diffraction. Sov. Phys. JETP, 65(4):1392–1398, 1974.
  • [16] V E Zakharov and S V Manakov. Asymptotic behavior of nonlinear wave systems inte- grated by the inverse scattering method. Sov. Phys. JETP, 71(7):203–215, 1976.
  • [17] P C Schuur. Asymptotic analysis of soliton products. Springer, One New York Plaza, Suite 4600, New York, Ny, United States, 1232:1–178, 1986.
  • [18] A S Fokas and A R Its. Soliton generation for initial-boundary-value problems. Physical Review Letters, 68(21):3117–3120, 1992.
  • [19] R. F. Bikbaev. Asymptotic behavior as tt\rightarrow\infty of the solution to the cauchy problem for the landau-lifshitz equation. Theoretical and Mathematical Physics, 77(2):1117–1123, 1988.
  • [20] P. Deift and X. Zhou. A steepest descent method for oscillatory riemann-hilbert problems. Annals of Mathematics, 137(2):295, 1993.
  • [21] P. Deift and X. Zhou. Long-time behavior of the non-focusing nonlinear schrödinger equation–a case study. Lectures in Mathematical Sciences, Graduate School of Mathematical Sciences, University of Tokyo, 1994.
  • [22] Katrin Grunert and Gerald Teschl. Long-time asymptotics for the korteweg–de vries equation via nonlinear steepest descent. Mathematical Physics, Analysis and Geometry, 12(3):287–324, 2009.
  • [23] Jian Xu and Engui Fan. Long-time asymptotics for the fokas–lenells equation with decaying initial value problem: Without solitons. Journal of Differential Equations, 259(3):1098–1148, 2015.
  • [24] Jian Xu, Engui Fan, and Yong Chen. Long-time asymptotic for the derivative nonlinear schrödinger equation with step-like initial value. Mathematical Physics, Analysis and Geometry, 16(3):253–288, 2013.
  • [25] Jian Xu. Long-time asymptotics for the short pulse equation. Journal of Differential Equations, 265(8):3494–3532, 2018.
  • [26] Anne Boutet De Monvel, Aleksey Kostenko, Dmitry Shepelsky, and Gerald Teschl. Long-time asymptotics for the camassa–holm equation. SIAM Journal on Mathematical Analysis, 41(4):1559–1588, 2009.
  • [27] Yu Xiao and Engui Fan. Long time behavior and soliton solution for the harry dym equation. Journal of Mathematical Analysis and Applications, 480(1):123248, 2019.
  • [28] K T R Mclaughlin and P D Miller. The steepest descent method for orthogonal polynomials on the real line with varying weights. International Mathematics Research Notices, 2008, 2008.
  • [29] M. Dieng and K. D. T. R. McLaughlin. Long-time asymptotics for the nls equation via dbar methods, 2008.
  • [30] Michael Borghese, Robert Jenkins, and Kenneth D.T.-R. Mclaughlin. Long time asymptotic behavior of the focusing nonlinear schrödinger equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 35(4):887–920, 2018.
  • [31] Robert Jenkins, Jiaqi Liu, Peter Perry, and Catherine Sulem. Soliton resolution for the derivative nonlinear schrödinger equation. Communications in Mathematical Physics, 363(3):1003–1049, 2018.
  • [32] Yiling Yang and Engui Fan. Long-time asymptotic behavior of the modified schrödinger equation via dbar-steepest descent method, 2019.
  • [33] Y. Yang and E. Fan. Soliton resolution for the short-pluse equation, 2020.