This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass, Bhopal 462066, India.bbinstitutetext: NHETC and Department of physics and Astronomy, Rutgers University, 126 Frelinghuysen Rd., Piscataway NJ 08855, USA

Soft and Collinear Limits in 𝒩=8\mathcal{N}=8 Supergravity using Double Copy Formalism

Nabamita Banerjee a    Tabasum Rahnuma b    and Ranveer Kumar Singh [email protected] [email protected] [email protected]
Abstract

It is known that 𝒩=8\mathcal{N}=8 supergravity is dual to 𝒩=4\mathcal{N}=4 super Yang-Mills (SYM) via the double copy relation. Using the explicit relation between scattering amplitudes in the two theories, we calculate the soft and collinear limits in 𝒩=8\mathcal{N}=8 supergravity from know results in 𝒩=4\mathcal{N}=4 SYM. In our application of double copy, a particular self-duality condition is chosen for scalars that allows us to constrain and determine the R-symmetry indices of the supergravity states in the collinear limit.

1 Introduction

Symmetries in a quantum field theory are their most important features. The difficulty of solving a theory, which means to compute the scattering amplitudes in terms of the correlation functions, is often dictated by the amount of symmetries the theory possesses. This is because symmetries in the theory are reflected in the amplitudes via the Ward identities and one can use these identities to constrain the correlation functions. This is called bootstrapping and has been a very effective tool in conformal field theory RevModPhys.91.015002 ; Poland:2016chs ; BELAVIN1984333 . This also goes in the reverse direction, that is knowledge about the nature of amplitudes can help us discover non-trivial symmetries of the theory. Important examples include soft and collinear limits of amplitudes. Soft limit of an amplitude is defined by taking the momenta of an external particle to be zero.111Of course the particle has to be massless for such a limit to make sense. In soft limit, the amplitude factorises into a universal soft factor which contains the divergence of the amplitude times the amplitude without the soft particle. The soft factor is universal in the sense that it does not depend on the intricate detailes of the theory, but only the helicity of the external particles. This universal factorisation can be extended to subleading order in electromagnetism and to sub-subleading order in gravity Sahoo:2020ryf ; Saha:2019tub ; PhysRev.135.B1049 ; PhysRev.140.B516 ; PhysRev.166.1287 ; PhysRev.168.1623 ; He:2014laa ; Bern:2014vva ; Campiglia:2014yka ; Laddha:2017ygw ; Klose:2015xoa ; Cachazo:2014fwa ; Casali:2014xpa . Soft limits of amplitudes at tree level provided important new insights about the symmetries of certain theories when they were interpreted as Ward identities of certain non-trivial symmetries PhysRevD.97.106019 ; PhysRevLett.120.201601 ; AtulBhatkar:2019vcb ; Campiglia:2019wxe ; Hijano:2020szl . For example, soft gluon theorem in Yang-Mills theory is related to large gauge transformations Catani:2000pi ; Mao:2017tey ; Klose:2015xoa ; Casali:2014xpa ; Strominger:2017zoo and soft graviton theorem in Einstein’s gravity is related to the so called Bondi-Metzner-Sachs (BMS) symmetries Bondi:1962px ; Sachs:1962wk ; Sachs:1962zza ; Strominger:2017zoo . Thus studying soft limits of amplitudes even at tree level teach us more about the symmetries of the theory.

Another important limit in which one can study the amplitudes is the collinear limit, in which the momenta of two external particles is taken to be collinear. Again the amplitude factorises into a collinear factor containing the divergence times the amplitude with the collinear particles replaced by another particle (see Section 3 and Section 5 for precise details). Collinear limits have played important role in flat space holography Taylor:2017sph ; Fan:2019emx . The collinear limit of amplitude turns into an operator product expansion (OPE) of conformal operators of the celestial conformal field theory (CCFT) on the celestial sphere222In CCFT, one describes the four dimensional physics in terms of the conformal correlators of two dimensional CFT on the celestial sphere living at the null infinities of the Minkowski flat spacetime. The map from amplitudes in the bulk to conformal correlators on the boundary is the Mellin transform. on the boundary Schreiber:2017jsr ; Fan:2019emx ; Fan:2022vbz ; Mizera:2022sln ; Pasterski:2021raf ; Pasterski:2021rjz . These OPEs can be used to calculate the non-trivial asymptotic symmetries of the theory. The usual method of calculating asymptotic symmetries is by finding conformal Killing vectors and spinors becomes intractable in the presence of other fields in the theory. That is where CCFT becomes important. A recent proposal of Taylor et. al. asserts that one can calculate the asymptotic symmetries of gravity theories using soft and collinear limit of amplitude in the framework of CCFT. This has been confirmed to give consistent results in the few cases it has been implemented Fotopoulos:2020bqj ; Banerjee:2021uxe ; Fotopoulos:2019vac . Hence the study of soft and collinear limits in gravity theories becomes important from this perspective.

𝒩=4\mathcal{N}=4 supersymmetric Yang-Mills and 𝒩=8\mathcal{N}=8 supergravity are maximally supersymmetric theories and are rich in symmetries. Due to enormous symmetries, one can compute higher and higher loop amplitudes and show that they are finite Bern:2006kd . In fact people argue that these are one of the simplest quantum field theories Arkani-Hamed:2008owk . One can then study the soft and collinear limits of amplitudes in these theories to learn more about their symmetries. The study of soft and collinear limits in 𝒩=4\mathcal{N}=4 SYM has already been done Golden:2012hi ; Bourjaily:2011hi ; Nandan:2012rk and the corresponding CCFT was studied in Jiang:2021xzy . On the other hand, recent investigations into gravity and gauge theory amplitudes have resulted in non-trivial relationships between the two Bern:2002kj . Gravity tree level amplitudes can be expressed in terms of sums of products of gauge theory tree level amplitudes. This can be described by different double copy formalisms Kawai:1985xq ; Bern:2008qj ; Cachazo:2013gna ; Cachazo:2013hca . One can then naturally ask if it is possible to relate the soft and collinear limits in 𝒩=4\mathcal{N}=4 SYM to soft and collinear limits in 𝒩=8\mathcal{N}=8 supergravity. Indeed this can be done Liu:2014vva ; Bianchi:2008pu ; Bern:1998sv ; Bern:1998xc . The relevant double copy formalism are reviewed in Adamo:2022dcm which was originally formulated as a relation between open and closed string amplitudes Kawai:1985xq . The corresponding relation in the low energy effective theory gives a relation between gauge theory and gravity amplitudes. Thus one can explicitly calculate soft and collinear limits of amplitudes in gravity using the corresponding results in gauge theory.

In this paper we explicitly calculate the soft and collinear limits of all possible helicity combination in 𝒩=8\mathcal{N}=8 supergravity using the known double copy relation to 𝒩=4\mathcal{N}=4 SYM. General formulas for the double copy of amplitudes exists in literature Bern:1998xc ; Bern:1998sv but to our knowledge, they have not been worked out explicitly. These relations are explicitly derived and stated in this paper.

The paper is organised as follows. In Section 2, we set up the notations that we follow throughout the paper. In Section 3, we briefly review soft and collinear limits in 𝒩=4\mathcal{N}=4 SYM which we use later in the paper. Double copy formalism and the relevant formula relating the amplitudes are reviewed in Section 4. In Section 5 we recall some basic facts about 𝒩=8\mathcal{N}=8 supergravity and state our conventions for its factorisation into a pair of 𝒩=4\mathcal{N}=4 SYM theories. Finally in Sections 6 and 7 we record the explicit soft and collinear limits of supergravity amplitudes. In the main body of the paper we have tabulated the collinear and soft limits of the amplitudes with the appropriate R-symmetry indices and the detailed calculations have been postponed to the appendices for reference. The appendices also include spinor-helicity formalism and a list of computational results.

2 Notations

The Minkowski space can be parameterized using the Bondi coordinates (u,r,z,z¯)(u,r,z,\bar{z}) where (z,z¯)(z,\bar{z}) parameterises the celestial sphere 𝒞𝒮2\mathcal{CS}^{2} at null infinity. The Lorentz group SL(2,)\mathrm{SL}(2,\mathbb{C}) acts on 𝒞𝒮2\mathcal{CS}^{2} as follows:

(z,z¯)(az+bcz+d,a¯z¯+b¯c¯z¯+d¯),(abcd)SL(2,).(z,\bar{z})\longmapsto\left(\frac{az+b}{cz+d},\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\right),\quad\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\mathrm{SL}(2,\mathbb{C}).

A general null momentum vector pμp^{\mu} can be parametrized as

pμ=ωqμ,qμ=12(1+|z|2,z+z¯,i(zz¯),1|z|2),p^{\mu}=\omega q^{\mu},\quad q^{\mu}=\frac{1}{2}\left(1+|z|^{2},z+\bar{z},-i(z-\bar{z}),1-|z|^{2}\right),

where qμq^{\mu} is a null vector, ω\omega is identified with the light cone energy and all the particles momenta are taken to be outgoing. Under the Lorentz group the four momentum transforms as a Lorentz vector pμΛνμpνp^{\mu}\mapsto\Lambda^{\mu}_{\leavevmode\nobreak\ \nu}p^{\nu}. This induces the following transformation of ω\omega and qμq^{\mu} as

ω(cz+d)(c¯z¯+d¯)ω,qμqμ=(cz+d)1(c¯z¯+d¯)1Λνμqν.\omega\mapsto(cz+d)(\bar{c}\bar{z}+\bar{d})\omega,\quad q^{\mu}\mapsto q^{\prime\mu}=(cz+d)^{-1}(\bar{c}\bar{z}+\bar{d})^{-1}\Lambda_{\leavevmode\nobreak\ \nu}^{\mu}q^{\nu}.

It is useful to introduce the bispinor notation at this stage. We can write the basic null momentum vector qμq^{\mu} as

qαα˙=σμαα˙qμ=(1z¯zzz¯)=(1z)(1z¯)q^{\alpha\dot{\alpha}}=\sigma_{\mu}^{\alpha\dot{\alpha}}q^{\mu}=\left(\begin{array}[]{cc}1&\;\bar{z}\\ z&\;z\bar{z}\end{array}\right)=\left(\begin{array}[]{l}1\\ z\end{array}\right)\left(\begin{array}[]{ll}1&\bar{z}\end{array}\right) (1)

Here σμαα˙=(1,σx,σy,σz)\sigma_{\mu}^{\alpha\dot{\alpha}}=(1,\sigma_{x},\sigma_{y},\sigma_{z}).We can thus introduce the familiar angle and square bracket spinor notation (see Appendix A for a brief review of spinor-helicity formalism) for the left and right-handed momentum spinors:

hαp|α=ω(1z)=ωq|α,h~α˙|p]α˙=ω(1z¯)=ω|q]α˙,h^{\alpha}\equiv\langle p|^{\alpha}=\sqrt{\omega}\left(\begin{array}[]{l}1\\ z\end{array}\right)=\sqrt{\omega}\langle q|^{\alpha},\quad\tilde{h}^{\dot{\alpha}}\equiv|p]^{\dot{\alpha}}=\sqrt{\omega}\left(\begin{array}[]{l}1\\ \bar{z}\end{array}\right)=\sqrt{\omega}|q]^{\dot{\alpha}}, (2)

where we write

q|α=(1z),|q]α˙=(1z¯).\langle q|^{\alpha}=\left(\begin{array}[]{l}1\\ z\end{array}\right),\quad|q]^{\dot{\alpha}}=\left(\begin{array}[]{c}1\\ \bar{z}\end{array}\right). (3)

To shorten the notation, we denote the spinors for momenta pip_{i} by i|α\langle i|^{\alpha} and |i]α˙|i]^{\dot{\alpha}} respectively. The inner product of momentas pip_{i} and pjp_{j} can then be written in terms of the angle and square brackets of the corresponding spinors which are now given by

ij=ωiωjzij,[ij]=ωiωjz¯ij.\langle ij\rangle=-\sqrt{\omega_{i}\omega_{j}}z_{ij},\quad[ij]=\sqrt{\omega_{i}\omega_{j}}\bar{z}_{ij}. (4)

where zij=zizjz_{ij}=z_{i}-z_{j} and similarly z¯ij=z¯iz¯j\bar{z}_{ij}=\bar{z}_{i}-\bar{z}_{j}.

3 Soft and Collinear Limits in 𝒩=4\mathcal{N}=4 SYM

As detailed in the introduction, in this paper we shall be studying the interesting limits of supergravity amplitudes using double copy relations. For this purpose we use 𝒩=4\mathcal{N}=4 SYM as a machinary to find our desired results for gravity. Let us briefly recall some of the prime properties of 𝒩=4\mathcal{N}=4 SYM. There are 16 different fields in 𝒩=4\mathcal{N}=4 SYM, all of which can be packaged in a single superfield. Let {ηa}a=14\{\eta_{a}\}_{a=1}^{4} be the Grassmann odd coordinates on the superspace. Then the superfield for 𝒩=4\mathcal{N}=4 SYM can be written as

Ψ(p,η)=\displaystyle\Psi(p,\eta)= G+(p)+ηaΓ+a(p)+12!ηaηbΦab(p)\displaystyle G^{+}(p)+\eta_{a}\Gamma^{a}_{+}(p)+\frac{1}{2!}\eta_{a}\eta_{b}\Phi^{ab}(p) (5)
+13!ϵabcdηaηbηcΓd(p)+14!ϵabcdηaηbηcηdG(p)\displaystyle+\frac{1}{3!}\epsilon^{abcd}\eta_{a}\eta_{b}\eta_{c}\Gamma_{d}^{-}(p)+\frac{1}{4!}\epsilon^{abcd}\eta_{a}\eta_{b}\eta_{c}\eta_{d}G^{-}(p)

where G±(p)G^{\pm}(p) denote positive and negative helicity gluons, Γ+a,Γa\Gamma^{a}_{+},\Gamma_{a}^{-} denote positive and negative helicity gluinos respectively and Φab\Phi^{ab} denotes the scalars. The superamplitude of nn such superfields is then given by the nn-point correlation function

𝒜n({p1,η1},{pn,ηn})Ψ1(p1,η1)Ψn(pn,ηn).\mathcal{A}_{n}(\{p_{1},\eta^{1}\},\dots\{p_{n},\eta^{n}\})\equiv\langle\Psi_{1}(p_{1},\eta^{1})\dots\Psi_{n}(p_{n},\eta^{n})\rangle. (6)

We sometimes suppress the momenta pip_{i} and superspace Grassmann coordinates ηi\eta^{i} and simply write 𝒜n(1,2,,n)\mathcal{A}_{n}(1,2,\dots,n). Expanding both sides in η\eta and comparing, one gets the scattering amplitude of all the component fields. Next we find the soft and collinear limits of the superamplitude. We begin with the soft theorem following He:2014bga :

𝒜n(,a,s,b,)ps0SoftSYM(a,s,b)𝒜n1(,a,b,),\mathcal{A}_{n}\left(\cdots,a,s,b,\cdots\right)\stackrel{{\scriptstyle p_{s}\rightarrow 0}}{{\longrightarrow}}\operatorname{Soft}^{\text{SYM}}\left(a,s,b\right)\mathcal{A}_{n-1}(\cdots,a,b,\cdots), (7)

where psp_{s} is the momenta of the soft superfield and a,ba,b are the adjacent superfields. The soft factor SoftSYM(a,s,b)\operatorname{Soft}^{\text{SYM}}\left(a,s,b\right) is given by Liu:2014vva

SoftholSYM(a,s,b)=1ε2Soft(0)holSYM(a,s,b)+1εSoft(1)holSYM(a,s,b).\text{Soft}_{\mathrm{hol}}^{\mathrm{SYM}}(a,s,b)=\frac{1}{\varepsilon^{2}}\text{Soft(0)}_{\mathrm{hol}}^{\mathrm{SYM}}(a,s,b)+\frac{1}{\varepsilon}\text{Soft(1)}_{\mathrm{hol}}^{\mathrm{SYM}}(a,s,b). (8)

where (0)(0) and (1)(1) indicate the leading and subleading terms. Let us explain the above notation. We associate a pair of spinors (hs,h~s)\left(h_{s},\tilde{h}_{s}\right) with every soft momenta psp_{s}. The limit (hs,h~s,ηs)(εhs,h~s,ηs)\left(h_{s},\tilde{h}_{s},\eta^{s}\right)\rightarrow\left(\varepsilon h_{s},\tilde{h}_{s},\eta^{s}\right) with ε0\varepsilon\to 0 and hsh_{s} some fixed spinor (namely hs0h_{s}\rightarrow 0) is known as the holomorphic soft limit. The holomorphic soft factor is then given by Liu:2014vva

Soft(k)holSYM(a,s,b)=1k!abassb[saba(h~sα˙h~bα˙+(ηs)c(ηb)c)+sbab(h~sα˙h~aα˙+(ηs)c(ηa)c)]k.\begin{split}\text{Soft($k$)}_{\mathrm{hol}}^{\mathrm{SYM}}(a,s,b)=\frac{1}{k!}\frac{\langle ab\rangle}{\langle as\rangle\langle sb\rangle}\bigg{[}\frac{\langle sa\rangle}{\langle ba\rangle}\bigg{(}\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{b}^{\dot{\alpha}}}&+(\eta^{s})_{c}\frac{\partial}{\partial(\eta^{b})_{c}}\bigg{)}\\ &+\frac{\langle sb\rangle}{\langle ab\rangle}\left(\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{a}^{\dot{\alpha}}}+(\eta^{s})_{c}\frac{\partial}{\partial(\eta^{a})_{c}}\right)\bigg{]}^{k}.\end{split} (9)

Similarly the limit (hs,h~s,ηs)(hs,εh~s,ηs)\left(h_{s},\tilde{h}_{s},\eta^{s}\right)\rightarrow\left(h_{s},\varepsilon\tilde{h}_{s},\eta^{s}\right) with h~s\tilde{h}_{s} a fixed spinor (namely h~s0\tilde{h}_{s}\rightarrow 0) is known as the anti-holomorphic soft limit. The anti-holomorphic soft factor is given by

Soft(k)anti-hol SYM(a,s,b)=1k![ab][as][sb]δ4(ηs+[as][ab]ηb+[sb][ab]ηa)[[sb][ab]hsαhaα+[as][ab]hsαhbα]k\text{Soft($k$)}_{\text{anti-hol }}^{\mathrm{SYM}}(a,s,b)=\frac{1}{k!}\frac{[ab]}{[as][sb]}\delta^{4}\left(\eta^{s}+\frac{[as]}{[ab]}\eta^{b}+\frac{[sb]}{[ab]}\eta^{a}\right)\left[\frac{[sb]}{[ab]}h_{s}^{\alpha}\frac{\partial}{\partial h_{a}^{\alpha}}+\frac{[as]}{[ab]}h_{s}^{\alpha}\frac{\partial}{\partial h_{b}^{\alpha}}\right]^{k} (10)

The physical soft limit ps0p_{s}\rightarrow 0 is equivalent to considering both hs,h~s0h_{s},\tilde{h}_{s}\rightarrow 0 simultaneously. Thus in the physical soft lomit, the soft factor splits as the sum of holomorphic as well as the anti-holomorphic soft factors. We use these results in Section 7 to compute soft limits in supergravity.

Next we discuss the collinear limits. In collinear limit, we take the momenta of two adjacent superfields p1p_{1} and p2p_{2} to be collinear. Under this limit, the two supefields can fuse to give another supefield with momentum p12=p1+p2p_{12}=p_{1}+p_{2}. We parametrize the momenta of the collinear superfields as

p1=zp12,p2=(1z)p12,p_{1}=zp_{12},\quad p_{2}=(1-z)p_{12}, (11)

where zz corresponds to the combined momentum p12p_{12} on the celestial sphere 𝒞𝒮2\mathcal{CS}^{2}. Since p1+p2=p12p_{1}+p_{2}=p_{12}, we see that, for massless fields, the collinear limit p1||p2p_{1}||p_{2} implies p1p2p12=0p_{1}\cdot p_{2}\propto p_{1}^{2}=0 which is equivalent to the condition p1220p_{12}^{2}\to 0. Now the collinear limit in 𝒩=4\mathcal{N}=4 SYM is given by Jiang:2021xzy ; Ferro:2020lgp

𝒜n(1,2,3,,n)p1220l=12d4ηp12Split1l(1,2,p12)𝒜n1(p12,3,,n).\mathcal{A}_{n}(1,2,3,\cdots,n)\stackrel{{\scriptstyle p_{12}^{2}\rightarrow 0}}{{\longrightarrow}}\sum_{l=1}^{2}\int d^{4}\eta^{p_{12}}\operatorname{Split}_{1-l}\left(1,2,p_{12}\right)\mathcal{A}_{n-1}\left(p_{12},3,\cdots,n\right). (12)

The l=1,2l=1,2 terms in the collinear limits are called the helicity-preserving and helicity-decreasing processes. The collinear singularity is contained in the split factors. The split factor of helicity preserving process is given by Ferro:2020lgp

Split0(z;η1,η2,ηp12)=1z(1z)112a=14(ηap12zηa11zηa2).\operatorname{Split}_{0}\left(z;\eta^{1},\eta^{2},\eta^{p_{12}}\right)=\frac{1}{\sqrt{z(1-z)}}\frac{1}{\langle 12\rangle}\prod_{a=1}^{4}\left(\eta^{p_{12}}_{a}-\sqrt{z}\eta^{1}_{a}-\sqrt{1-z}\eta^{2}_{a}\right). (13)

Whereas for helicity-decreasing process, the split factor is given by Ferro:2020lgp

Split1(z;η1,η2,ηp12)=1z(1z)1[12]a=14(ηa1ηa21zηa1ηap12+zηa2ηap12).\text{Split}_{-1}\left(z;\eta^{1},\eta^{2},\eta^{p_{12}}\right)=\frac{1}{\sqrt{z(1-z)}}\frac{1}{[12]}\prod_{a=1}^{4}\left(\eta^{1}_{a}\eta^{2}_{a}-\sqrt{1-z}\eta^{1}_{a}\eta^{p_{12}}_{a}+\sqrt{z}\eta^{2}_{a}\eta^{p_{12}}_{a}\right). (14)

The integral over ηp12\eta^{p_{12}} can be performed using general results of Grassmann integration.333As an example for any function f(η)f(\eta) we have Jiang:2021xzy d4ηpδ(4)(ηpη)f(ηp)=d4ηpa=14(ηapηa)f(ηp)=f(η).\int d^{4}\eta^{p}\;\delta^{(4)}\left(\eta^{p}-\eta\right)f\left(\eta^{p}\right)=\int d^{4}\eta^{p}\prod_{a=1}^{4}\left(\eta^{p}_{a}-\eta_{a}\right)f\left(\eta^{p}\right)=f(\eta). where, δ(4)(ηpη)=a=14(ηapηa).\delta^{(4)}(\eta^{p}-\eta)=\prod_{a=1}^{4}\left(\eta^{p}_{a}-\eta_{a}\right). Here

dηap12a=14(ηa1ηa21zηa1ηap12+zηa2ηap12)f(ηap12)=δ(4)(1zηa1zηa2)f(ηa21z),\begin{split}\int d\eta^{p_{12}}_{a}\prod_{a=1}^{4}\big{(}\eta^{1}_{a}\eta^{2}_{a}-\sqrt{1-z}\eta^{1}_{a}\eta^{p_{12}}_{a}&+\sqrt{z}\eta^{2}_{a}\eta^{p_{12}}_{a}\big{)}f\left(\eta^{p_{12}}_{a}\right)\\ &=\delta^{(4)}\left(\sqrt{1-z}\eta^{1}_{a}-\sqrt{z}\eta^{2}_{a}\right)f\left(\frac{\eta^{2}_{a}}{\sqrt{1-z}}\right),\end{split} (15)

Using these, we express the collinear limit (12) as

𝒜n(1,2,3,,n)p12201z(1z)1[12]δ(4)(1zηa1zηa2)𝒜n1({p12,ηa21z},3,,n)+1z(1z)112𝒜n1({p12,zηa1+1zηa2},3,,n).\begin{split}\mathcal{A}_{n}(1,2,3,\cdots,n)&\stackrel{{\scriptstyle p_{12}^{2}\rightarrow 0}}{{\longrightarrow}}\frac{1}{\sqrt{z(1-z)}}\frac{1}{[12]}\delta^{(4)}\left(\sqrt{1-z}\eta^{1}_{a}-\sqrt{z}\eta^{2}_{a}\right)\mathcal{A}_{n-1}\left(\{p_{12},\frac{\eta^{2}_{a}}{\sqrt{1-z}}\},3,\cdots,n\right)\\ &+\frac{1}{\sqrt{z(1-z)}}\frac{1}{\langle 12\rangle}\mathcal{A}_{n-1}(\{p_{12},\sqrt{z}\eta^{1}_{a}+\sqrt{1-z}\eta^{2}_{a}\},3,\cdots,n).\end{split} (16)

Expanding both sides in η1\eta^{1} and η2\eta^{2}, we can get collinear limits of the component fields. For collinear limit of component fields, we use the following notation:

An(1h1,2h2,,n)1||2hSplithSYM(z,1h1,2h2)An1(ph,,n),A_{n}(1^{h_{1}},2^{h_{2}},\dots,n)\stackrel{{\scriptstyle 1||2}}{{\longrightarrow}}\sum_{h}\text{Split}_{-h}^{\text{SYM}}(z,1^{h_{1}},2^{h_{2}})A_{n-1}(p^{h},\dots,n), (17)

where AnA_{n} is the amplitude of nn different fields in the theory and the sum is over all helicities in the theory. Note that the split factor is trivial for helicities hh which does not have corresponding interaction with h1h_{1} and h2h_{2}. The split also satisfies the conjugation relation Ferro:2020lgp

Splith(z;ah1,bh2)=Split+h(z;ah1,bh2)|[ab]ab\begin{split}\text{Split}_{-h}\left(z;a^{h_{1}},b^{h_{2}}\right)=\text{Split}_{+h}\left(z;a^{-h_{1}},b^{-h_{2}}\right)|_{[ab]\leftrightarrow\langle ab\rangle}\end{split} (18)

The split factor of component fields in SYM has two parts, the kinematic part and the index structure part. Kinematic part only depends on the momenta of the collinear particles while the index structure consists of the SU(4)\mathrm{SU}(4) R-symmetry indices of the component fields. As indicated earlier, one can compute the kinematic part of the split factors for various combinations of helicities by expanding both sides of (16) in η1,η2\eta^{1},\eta^{2} and then comparing the coefficients. This has been done using mathematica. The non-trivial split factor for collinear gluons are:

Split+1SYM(z,a+1,b+1)=0,Split1SYM(z,a+1,b+1)=1z(1z)1ab,Split+1SYM(z,a1,b+1)=z31z1ab,Split+1SYM(z,a+1,b1)=(1z)2z(1z)1ab.\begin{split}&\text{Split}_{+1}^{\text{SYM}}\left(z,a^{+1},b^{+1}\right)=0,\qquad\text{Split}_{-1}^{\text{SYM}}\left(z,a^{+1},b^{+1}\right)=\frac{1}{\sqrt{z(1-z)}}\frac{1}{\langle ab\rangle},\\ &\text{Split}_{+1}^{\text{SYM}}\left(z,a^{-1},b^{+1}\right)=\sqrt{\frac{z^{3}}{1-z}}\frac{1}{\langle ab\rangle},\qquad\text{Split}_{+1}^{\text{SYM}}\left(z,a^{+1},b^{-1}\right)=\frac{(1-z)^{2}}{\sqrt{z(1-z)}}\frac{1}{\langle ab\rangle}.\end{split} (19)

The split factor for collinear gluinos and scalars are:

Split0SYM(z,a+12,b+12)=1ab,Split+1SYM(z,a+12,b12)=(1z)ab,Split+1SYM(z,a12,b+12)=zab,Split1SYM(z,a0,b0)=z(1z)1ab.\begin{split}&\text{Split}_{0}^{\text{SYM}}\left(z,a^{+\frac{1}{2}},b^{+\frac{1}{2}}\right)=\frac{1}{\langle ab\rangle},\qquad\text{Split}_{+1}^{\text{SYM}}\left(z,a^{+\frac{1}{2}},b^{-\frac{1}{2}}\right)=\frac{(1-z)}{\langle ab\rangle},\\ &\text{Split}_{+1}^{\text{SYM}}\left(z,a^{-\frac{1}{2}},b^{+\frac{1}{2}}\right)=\frac{z}{\langle ab\rangle},\qquad\text{Split}_{1}^{\text{SYM}}\left(z,a^{0},b^{0}\right)=\sqrt{z(1-z)}\frac{1}{\langle ab\rangle}.\end{split} (20)

Finally the split factor for mixed helicities are

Split+12SYM(z,a12,b+1)=z(1z)1ab,Split+12SYM(z,a+1,b12)=1zz1ab,Split12SYM(z,a+12,b+1)=1(1z)1ab,Split12SYM(z,a+1,b+12)=1z1ab,Split0SYM(z,a0,b+1)=z1z1ab,Split0SYM(z,a+1,b0)=1zz1ab,Split12SYM(z,a0,b+12)=z1ab,Split12SYM(z,a+12,b0)=(1z)1ab.\begin{split}&\text{Split}_{+\frac{1}{2}}^{\text{SYM}}\left(z,a^{-\frac{1}{2}},b^{+1}\right)=\frac{z}{\sqrt{(1-z)}}\frac{1}{\langle ab\rangle},\quad\text{Split}_{+\frac{1}{2}}^{\text{SYM}}\left(z,a^{+1},b^{-\frac{1}{2}}\right)=\frac{1-z}{\sqrt{z}}\frac{1}{\langle ab\rangle},\\ &\text{Split}_{-\frac{1}{2}}^{\text{SYM}}\left(z,a^{+\frac{1}{2}},b^{+1}\right)=\frac{1}{\sqrt{(1-z)}}\frac{1}{\langle ab\rangle},\quad\text{Split}_{-\frac{1}{2}}^{\text{SYM}}\left(z,a^{+1},b^{+\frac{1}{2}}\right)=\frac{1}{\sqrt{z}}\frac{1}{\langle ab\rangle},\\ &\text{Split}_{0}^{\text{SYM}}\left(z,a^{0},b^{+1}\right)=\sqrt{\frac{z}{1-z}}\frac{1}{\langle ab\rangle},\quad\text{Split}_{0}^{\text{SYM}}\left(z,a^{+1},b^{0}\right)=\sqrt{\frac{1-z}{z}}\frac{1}{\langle ab\rangle},\\ &\text{Split}_{\frac{1}{2}}^{\text{SYM}}\left(z,a^{0},b^{+\frac{1}{2}}\right)=\sqrt{z}\frac{1}{\langle ab\rangle},\quad\text{Split}_{\frac{1}{2}}^{\text{SYM}}\left(z,a^{+\frac{1}{2}},b^{0}\right)=\sqrt{(1-z)}\frac{1}{\langle ab\rangle}.\end{split} (21)

All the other split factors can easily be obtained from Eq. (18). We now list the index structure part of the split factors for various component fields. We obtain it by expanding both sides of (16) in η1\eta^{1} and η2\eta^{2} and comparing the coefficients. Some of the index structures have been worked out in Jiang:2021xzy . We complete the list here. Note the index structure in the collinear limit of a gluon with any other component field is trivially determined, hence we omit them from Table 1.

Collinear fields Resulting index structure
Γ+a,Γ+b\Gamma^{a}_{+},\Gamma^{b}_{+} Φab\Phi^{ab}
Γa,Γb\Gamma_{a}^{-},\Gamma_{b}^{-} 12!ϵabcdΦcd\frac{1}{2!}\epsilon_{abcd}\Phi^{cd}
Γ+a,Γb\Gamma^{a}_{+},\Gamma_{b}^{-} δbaG±\delta^{a}_{b}G^{\pm}
Γ+a,Φbc\Gamma^{a}_{+},\Phi^{bc} ϵabcdΓd\epsilon^{abcd}\Gamma_{d}^{-}
Γa,Φbc\Gamma_{a}^{-},\Phi^{bc} 2!δa[bΓ+c]\delta^{[b}_{a}\Gamma^{c]}_{+}
Φab,Φcd\Phi^{ab},\Phi^{cd} ϵabcdG±\epsilon^{abcd}G^{\pm}
Table 1: Index structure in collinear limit in 𝒩=4\mathcal{N}=4 SYM

4 Double Copy : a brief review

Let us briefly review double copy (DC) technique that plays a crucial role in our analysis. It is a multiplicative bilinear operation to compute the amplitudes in one theory using amplitudes from other simpler theories. This is a method to express gravity tree level amplitudes in terms of sums of products of gauge theory tree level amplitudes. There are three different double copy formalisms for tree level amplitudes: KLT (named after Kawai, Lewellen, and Tye) Kawai:1985xq , BCJ (named after Bern, Carrasco, and Johansson) Bern:2008qj and CHY (named after Cachazo, He, and Yuan) Cachazo:2013gna ; Cachazo:2013hca formalism. We refer to Adamo:2022dcm for detailed review of these formalisms. Here we restrict our discussion to the application of double copy to soft and collinear limit of gravity amplitudes in terms of soft and collinear limits of gauge theory amplitudes.

4.1 Double copy and collinear limit

The KLT double copy was originally discovered in string theory as a relation between open and closed string amplitudes. Once the large string tension limit (also called the field theory limit) is taken, the KLT relation turns into a relation between gravity and gauge theory tree level amplitudes Bern:1998sv . The general KLT relation for a general gravity tree level amplitude Mntree(1,2,,n)M_{n}^{\text{tree}}(1,2,\dots,n) with nn external legs (we have assumed nn to be even below but the odd case can also be written in a similar way with appropriate modifications) with color-ordered gauge theory tree level amplitude Antree(1,2,,n)A_{n}^{\text{tree}}(1,2,\dots,n) is given by Bern:1998sv .

Mntree (1,2,,n)=i(1)n+1Antree (1,2,,n)×σSn/21τSn/22f(σ(1),,σ(n/21))f¯(τ(n/2+1),,τ(n2))×Antree (σ(1),,σ(n/21),1,n1,τ(n/2+1),,τ(n2),n)+Permutations of (2,,n2).\begin{split}M_{n}^{\text{tree }}(1,2,\ldots,n)&=i(-1)^{n+1}A_{n}^{\text{tree }}(1,2,\ldots,n)\\ &\times\sum_{\begin{subarray}{c}\sigma\in S_{n/2-1}\\ \tau\in S_{n/2-2}\end{subarray}}f\left(\sigma(1),\ldots,\sigma(n/2-1)\right)\bar{f}\left(\tau(n/2+1),\ldots,\tau(n-2)\right)\\ &\times A_{n}^{\text{tree }}\left(\sigma(1),\ldots,\sigma(n/2-1),1,n-1,\tau(n/2+1),\ldots,\tau(n-2),n\right)\\ &+\text{Permutations of $(2,\ldots,n-2)$}.\end{split} (22)

The functions ff and f¯\bar{f} are defined as

f(i1,,ij)=s(1,ij)m=1j1(s(1,im)+k=m+1jg(im,ik))\displaystyle f\left(i_{1},\ldots,i_{j}\right)=s\left(1,i_{j}\right)\prod_{m=1}^{j-1}\left(s\left(1,i_{m}\right)+\sum_{k=m+1}^{j}g\left(i_{m},i_{k}\right)\right) (23)
f¯(l1,,lj)=s(l1,n1)m=2j(s(lm,n1)+k=1m1g(lk,lm))\displaystyle\bar{f}\left(l_{1},\ldots,l_{j^{\prime}}\right)=s\left(l_{1},n-1\right)\prod_{m=2}^{j^{\prime}}\left(s\left(l_{m},n-1\right)+\sum_{k=1}^{m-1}g\left(l_{k},l_{m}\right)\right)

where

g(i,j)={s(i,j):=sij:=ij[ji],i>j0,otherwise.g(i,j)=\begin{cases}s(i,j):=s_{ij}:=\langle ij\rangle[ji],&i>j\\ 0,&\text{otherwise}.\end{cases} (24)

Thus every gravity state jj on the LHS can be interpreted as the tensor product of the two gauge theory state on the RHS. For example, 𝒩=8\mathcal{N}=8 supergravity amplitude can be related to the amplitudes in 𝒩=4\mathcal{N}=4 super Yang-Mills in this way and this leads to the relation

𝒩=8Supergravity(𝒩=4Super Yang-Mills)(𝒩=4Super Yang-Mills).\mathcal{N}=8\leavevmode\nobreak\ \leavevmode\nobreak\ \text{Supergravity}\sim(\mathcal{N}=4\leavevmode\nobreak\ \leavevmode\nobreak\ \text{Super Yang-Mills})\leavevmode\nobreak\ \otimes\leavevmode\nobreak\ (\mathcal{N}=4\leavevmode\nobreak\ \leavevmode\nobreak\ \text{Super Yang-Mills}).

Note that the doubling of supersymmetry in this double copy relation can be understood by counting the degrees of freedom on the two sides. Indeed 𝒩=8\mathcal{N}=8 supergravity has 264 states which is twice the 128 states in 𝒩=4\mathcal{N}=4 SYM. One can take collinear limit on both sides of the KLT relation (22) to obtain a relation between the split factor for collinear states in gravity to the split factors in gauge theory. We describe this relation below. The collinear limit in gravity is written as Bern:1998xc

Mntree (1h1,2h2,,n)12h=± Split hgravity (z,1h1,2h2)×Mn1tree (Ph,3,,n).M_{n}^{\text{tree }}(1^{h_{1}},2^{h_{2}},\dots,n)\stackrel{{\scriptstyle 1\|2}}{{\longrightarrow}}\sum_{h=\pm}\text{ Split }_{-h}^{\text{gravity }}(z,1^{h_{1}},2^{h_{2}})\times M_{n-1}^{\text{tree }}\left(P^{h},3,\ldots,n\right). (25)

Using the KLT relation, the gravity split factor can be related to the “square” of gauge split factors as Bern:1998sv ,

 Split (h+h~)gravity (z,1h1+h~1,2h2+h~2)=s12× Split hgauge(z,1h1,2h2)× Split h~gauge(z,2h~2,1h~1).\begin{split}\text{ Split }_{-(h+\tilde{h})}^{\text{gravity }}\left(z,1^{h_{1}+\tilde{h}_{1}},2^{h_{2}+\tilde{h}_{2}}\right)&=-s_{12}\times\text{ Split }_{-h}^{\text{gauge}}\left(z,1^{h_{1}},2^{h_{2}}\right)\\ &\hskip 64.58313pt\times\text{ Split }_{-\tilde{h}}^{\text{gauge}}\left(z,2^{\tilde{h}_{2}},1^{\tilde{h}_{1}}\right).\end{split} (26)

Here a state h+h~h+\tilde{h} in gravity theory is written as product of states h,h~h,\tilde{h} in the two gauge theories and s12=12[21]s_{12}=\left<12\right>[21]. We will explain the explicit factorisation of states for the case of 𝒩=8\mathcal{N}=8 supergravity into 𝒩=4\mathcal{N}=4 super Yang-Mills states in Section 5.

4.2 Double copy and soft limit

Similarly, one can take the soft limit of the double copy relation to relate the soft factors in gravity and gauge theories. Let us start with the universal soft behaviour of the tree level nn-gluon amplitude. The soft factor when the ii-th particle is taken to be soft, for either helicities, is given by,

𝒜ntree(,a,εi±,b,)ε0(1ε2𝒮Gauge(0)(i,a,b)+1ε𝒮Gauge(1)(i,a,b)+𝒪(1))×𝒜n1tree (,a,b,)\begin{split}\mathcal{A}_{n}^{\text{tree}}\left(\ldots,a,\varepsilon i^{\pm},b,\ldots\right)\stackrel{{\scriptstyle\varepsilon\rightarrow 0}}{{\longrightarrow}}\Bigg{(}\frac{1}{\varepsilon^{2}}\mathcal{S}_{\mathrm{Gauge}}^{(0)}(i,a,b)+\frac{1}{\varepsilon}\mathcal{S}_{\mathrm{Gauge}}^{(1)}(i,a,b)+\mathcal{O}\left(1\right)\Bigg{)}\\ \times\mathcal{A}_{n-1}^{\text{tree }}(\ldots,a,b,\ldots)\end{split} (27)

Here the soft limit is parameterized by a factor ε0\varepsilon\to 0, as described in the last section. The factors 𝒮Gauge(0)\mathcal{S}_{\mathrm{Gauge}}^{(0)} and 𝒮Gauge(1)\mathcal{S}_{\mathrm{Gauge}}^{(1)} contains the soft divergences to leading and subleading order in the gauge theory. Similarly, the gravity amplitude also has this universal soft behaviour with ii-th particle going soft and is given by,

ntree (,a,εi±,b,)ε0(1ε3𝒮Gravity(0)(i,a,b)+1ε2𝒮Gravity(1)(i,a,b)+1ε𝒮Gravity(2)(i,a,b)+𝒪(1))n1tree(,a,b,)\begin{split}\mathcal{M}_{n}^{\text{tree }}\left(\ldots,a,\varepsilon i^{\pm},b,\ldots\right)\stackrel{{\scriptstyle\varepsilon\rightarrow 0}}{{\longrightarrow}}\Bigg{(}\frac{1}{\varepsilon^{3}}\mathcal{S}^{(0)}_{\mathrm{Gravity}}(i,a,b)+\frac{1}{\varepsilon^{2}}\mathcal{S}^{(1)}_{\mathrm{Gravity}}(i,a,b)\\ +\frac{1}{\varepsilon}\mathcal{S}_{\mathrm{Gravity}}^{(2)}(i,a,b)+\mathcal{O}\left(1\right)\Bigg{)}\mathcal{M}_{n-1}^{\text{tree}}(\ldots,a,b,\ldots)\end{split} (28)

where 𝒮Gravity(0)\mathcal{S}^{(0)}_{\mathrm{Gravity}}, 𝒮Gravity(1)\mathcal{S}^{(1)}_{\mathrm{Gravity}} and 𝒮Gravity(2)\mathcal{S}^{(2)}_{\mathrm{Gravity}} are leading, subleading and subsubleading soft factors in the gravity theory. Double copy relates these soft factors as follows He:2014bga ; Bern:2008qj

1ε3𝒮Gravity(0)(s,n,1)+1ε2𝒮Gravity(1)(s,n,1)+1ε𝒮Gravity(2)(s,n,1)=j=1nKsj2(1ε2𝒮Gauge(0)(j,s,n)+12ε𝒮Gauge(1)(j,s,n))2\begin{split}\frac{1}{\varepsilon^{3}}\mathcal{S}_{\mathrm{Gravity}}^{(0)}(s,n,1)+\frac{1}{\varepsilon^{2}}\mathcal{S}_{\mathrm{Gravity}}^{(1)}(s,n,1)+\frac{1}{\varepsilon}\mathcal{S}_{\mathrm{Gravity}}^{(2)}(s,n,1)\\ =\sum_{j=1}^{n}K_{sj}^{2}\left(\frac{1}{\varepsilon^{2}}\mathcal{S}_{\mathrm{Gauge}}^{(0)}(j,s,n)+\frac{1}{2\varepsilon}\mathcal{S}_{\mathrm{Gauge}}^{(1)}(j,s,n)\right)^{2}\end{split} (29)

where Ksj2=εsj[sj]K_{sj}^{2}=\varepsilon\langle sj\rangle[sj].

This completes a brief review of double copy relations that we shall be using in the present work.

5 𝒩\mathcal{N}=8 Supergravity

In this section, we briefly review the field contents and basic properties of the theory and also establish notations that we follow in the remainder of the paper.

Let {ηA}A=18\{\eta_{A}\}_{A=1}^{8} be the Grassmann coordinates on the 𝒩=8\mathcal{N}=8 superspace. The degrees of 𝒩=8\mathcal{N}=8 supergravity for an on-shell superfield is defined as

Ψ(p,η)=H+(p)+ηAψ+A(p)+ηABG+AB(p)+ηABCχ+ABC(p)+ηABCDΦABCD(p)+η~ABCχABC(p)+η~ABGAB(p)+η~AψA(p)+η~H(p),\begin{split}\Psi(p,\eta)&=H^{+}(p)+\eta_{A}\psi^{A}_{+}(p)+\eta_{AB}G^{AB}_{+}(p)+\eta_{ABC}\chi^{ABC}_{+}(p)\\ &+\eta_{ABCD}\Phi^{ABCD}(p)+\tilde{\eta}^{ABC}\chi_{ABC}^{-}(p)+\tilde{\eta}^{AB}G_{AB}^{-}(p)+\tilde{\eta}^{A}\psi_{A}^{-}(p)+\tilde{\eta}H^{-}(p),\end{split} (30)

where we have introduced the notation

ηA1An1n!ηA1ηA2η~A1AnϵA1AnB1B8nηB1B8nη~A=18ηA.\begin{split}&\eta_{A_{1}\ldots A_{n}}\equiv\frac{1}{n!}\eta_{A_{1}}\ldots\eta_{A_{2}}\\ &\tilde{\eta}^{A_{1}\ldots A_{n}}\equiv\epsilon^{A_{1}\ldots A_{n}B_{1}\ldots B_{8-n}}\eta_{B^{1}\ldots B^{8-n}}\\ &\tilde{\eta}\equiv\prod_{A=1}^{8}\eta_{A}.\end{split} (31)

The fields H±H^{\pm} represent graviton, G+ABG^{AB}_{+} and GABG_{AB}^{-} represent gluons, ψ+A\psi^{A}_{+} and ψA\psi_{A}^{-} represent gravitinos, χ+ABC\chi^{ABC}_{+} and χABC\chi_{ABC}^{-} represent gluinos and finally ΦABCD\Phi^{ABCD} represent the real scalars. The (sub)super scripts ±{\pm} denote positive and negative helicity of various fields. The superamplitude is then defined by

n({p1,η1},{pn,ηn})=Ψ1(p1,η1)Ψn(pn,ηn).\mathcal{M}_{n}(\{p_{1},\eta^{1}\},\dots\{p_{n},\eta^{n}\})=\langle\Psi_{1}(p_{1},\eta^{1})\dots\Psi_{n}(p_{n},\eta^{n})\rangle. (32)

We now explain the factorisation of states in supergravity into tensor product of states in super Yang-Mills. We begin by counting the degrees of freedom in the two theories. It is summarised in Table 2 below.

𝒩=8\mathcal{N}=8 Supergravity (𝒩=4\mathcal{N}=4 SYM) \otimes (𝒩=4\mathcal{N}=4 SYM)
70 Scalars 36(00);1(1+1);1(+11);16(+1212);16(12+12)36(0\otimes 0);1(-1\otimes+1);1(+1\otimes-1);16(+\frac{1}{2}\otimes-\frac{1}{2});16(-\frac{1}{2}\otimes+\frac{1}{2})
112 Gravi-photinos (±\pm) 48(±120);48(0±12);8(±121);8(±112)48(\pm\frac{1}{2}\otimes 0);48(0\otimes\pm\frac{1}{2});8(\pm\frac{1}{2}\otimes\mp 1);8(\pm 1\otimes\mp\frac{1}{2})
56 Graviphotons (±)(\pm) 12(±10);16(+12+12);16(1212)12(\pm 1\otimes 0);16(+\frac{1}{2}\otimes+\frac{1}{2});16(-\frac{1}{2}\otimes-\frac{1}{2})
16 Gravitinos (±)(\pm) 8(±12±1);8(±1±12)8(\pm\frac{1}{2}\otimes\pm 1);8(\pm 1\otimes\pm\frac{1}{2})
2 Gravitons (±)(\pm) 2(±1±1)2(\pm 1\otimes\pm 1)
Table 2: Factorisation of 𝒩=8\mathcal{N}=8 supergravity states into 𝒩=4\mathcal{N}=4 super Yang-Mills states

The precise factorisation of fields and operators are given in Bianchi:2008pu . We summarise the factorisation in Table 3 below. The second factor of 𝒩=4\mathcal{N}=4 SYM is written with a tilde to emphasize that the factors of the two gauge theories are not identical. The following notation is used in the table below and in the rest of the paper: uppercase indices A,B,C,D,{1,,8}A,B,C,D,...\in\{1,\dots,8\} will denote indices in 𝒩=8\mathcal{N}=8 supergravity, lower case indices a,b,c,d{1,2,3,4}a,b,c,d\in\{1,2,3,4\} correspond to first SYM factor and r,s,t,u{5,6,7,8}r,s,t,u\in\{5,6,7,8\} correspond to second SYM factor. In particular, in equations where both upper and lower case indices have been used, we will assume A=aA=a and A=rA=r and so on when 1A41\leq A\leq 4 and 5A85\leq A\leq 8 respectively.

H+=G+G~+H^{+}=G^{+}\tilde{G}^{+} H=GG~H^{-}=G^{-}\tilde{G}^{-}
S+a=Γ+aG~+S_{+}^{a}=\Gamma_{+}^{a}\tilde{G}^{+} fa=ΓaG~f_{a}^{-}=\Gamma_{a}^{-}\tilde{G}^{-}
S+r=G+Γ~+rS_{+}^{r}=G^{+}\tilde{\Gamma}_{+}^{r} fr=GΓ~rf_{r}^{-}=G^{-}\tilde{\Gamma}_{r}^{-}
Gab+=ΦabG~+G^{+}_{ab}=\Phi^{ab}\tilde{G}^{+} Gab=ΦabG~G_{ab}^{-}=\Phi_{ab}\tilde{G}^{-}
Gar+=Γ+aΓ~+rG^{+}_{ar}=\Gamma_{+}^{a}\tilde{\Gamma}_{+}^{r} Gar=ΓaΓ~rG_{ar}^{-}=-\Gamma_{a}^{-}\tilde{\Gamma}_{r}^{-}
Grs+=G+Φ~rsG^{+}_{rs}=G^{+}\tilde{\Phi}^{rs} G¯rs=GΦ~rs\bar{G}_{rs}^{-}=G^{-}\tilde{\Phi}_{rs}
χ+abc=α4ϵabcdΓdG~+\chi_{+}^{abc}=\alpha_{4}\epsilon^{abcd}\Gamma_{d}^{-}\tilde{G}^{+} χabc=α4ϵabcdΓ+dG~\chi_{abc}^{-}=-\alpha_{4}\epsilon_{abcd}\Gamma_{+}^{d}\tilde{G}^{-}
χ+abr=ΦabΓ~+r\chi_{+}^{abr}=\Phi^{ab}\tilde{\Gamma}_{+}^{r} χabr=ΦabΓ~r\chi_{abr}^{-}=\Phi_{ab}\tilde{\Gamma}_{r}^{-}
χ+ars=Γ+aΦ~rs\chi_{+}^{ars}=\Gamma_{+}^{a}\tilde{\Phi}^{rs} χars=ΓaΦ~rs\chi_{ars}^{-}=\Gamma_{a}^{-}\tilde{\Phi}_{rs}
χ+rst=α4~ϵrstuG+Γ~u\chi_{+}^{rst}=\tilde{\alpha_{4}}\epsilon^{rstu}G^{+}\tilde{\Gamma}_{u}^{-} χrst=α4~ϵrstuGΓ~+u\chi_{rst}^{-}=-\tilde{\alpha_{4}}\epsilon_{rstu}G^{-}\tilde{\Gamma}_{+}^{u}
Φabcd=α4ϵabcdGG~+\Phi^{abcd}=\alpha_{4}\epsilon^{abcd}G^{-}\tilde{G}^{+} Φabcd=α4ϵabcdG+G~\Phi_{abcd}=\alpha_{4}\epsilon_{abcd}G^{+}\tilde{G}^{-}
Φabcr=α4ϵabcdΓdΓ~+r\Phi^{abcr}=\alpha_{4}\epsilon^{abcd}\Gamma_{d}^{-}\tilde{\Gamma}_{+}^{r} Φabcr=α4ϵabcdΓ+dΓ~r\Phi_{abcr}=\alpha_{4}\epsilon_{abcd}\Gamma_{+}^{d}\tilde{\Gamma}_{r}^{-}
Φabrs=ΦabΦ~rs\Phi^{abrs}=\Phi^{ab}\tilde{\Phi}^{rs} Φabrs=ΦabΦ~rs\Phi_{abrs}=\Phi_{ab}\tilde{\Phi}_{rs}
Φarst=α4~ϵrstuΓ+aΓ~u\Phi^{arst}=\tilde{\alpha_{4}}\epsilon^{rstu}\Gamma_{+}^{a}\tilde{\Gamma}_{u}^{-} Φarst=α4~ϵrstuΓaΓ~+u\Phi_{arst}=\tilde{\alpha_{4}}\epsilon_{rstu}\Gamma_{a}^{-}\tilde{\Gamma}_{+}^{u}
Φrstu=α4~ϵrstuG+G~\Phi^{rstu}=\tilde{\alpha_{4}}\epsilon^{rstu}G^{+}\tilde{G}^{-} Φrstu=α4~ϵrstuGG~+\Phi_{rstu}=\tilde{\alpha_{4}}\epsilon_{rstu}G^{-}\tilde{G}^{+}
Table 3: Factorisation of states in supergravity into states in super Yang-Mills

Further note that the scalars in supergravity and super Yang-Mills satisfy the self duality relation, Bianchi:2008pu

ΦABCD=14!α8ϵABCDEFGHΦEFGHΦab=12!α4ϵabcdΦcdΦ~rs=12!α~4ϵrstuΦtu\begin{split}&\Phi_{ABCD}=\frac{1}{4!}\alpha_{8}\epsilon_{ABCDEFGH}\Phi^{EFGH}\\ &\Phi_{ab}=\frac{1}{2!}\alpha_{4}\epsilon_{abcd}\Phi^{cd}\\ &\tilde{\Phi}_{rs}=\frac{1}{2!}\tilde{\alpha}_{4}\epsilon_{rstu}\Phi^{tu}\end{split} (33)

with α4,α~4,α8{±1}\alpha_{4},\tilde{\alpha}_{4},\alpha_{8}\in\{\pm 1\} along with the consistency condition (Bianchi:2008pu, , Eq. 2.12),

α4α~4=α8.\alpha_{4}\tilde{\alpha}_{4}=\alpha_{8}. (34)

and ϵABH\epsilon_{AB...H} is the Levi-Civita tensor in 8 dimensions and ϵabcd,ϵrstu\epsilon_{abcd},\epsilon_{rstu} are Levi-Civita tensor in 4 dimensions. Note that since 5r,s,t,u85\leq r,s,t,u\leq 8, ϵrstu\epsilon_{rstu} is defined using permutations of 5,6,7,85,6,7,8. Using this factorisation, we can find the collinear limit of any two states in 𝒩=8\mathcal{N}=8 supergravity. The possible choices of the self-duality factors (α4,α~4,α8)(\alpha_{4},\tilde{\alpha}_{4},\alpha_{8}) are (1,1,1),(1,1,1),(1,1,1),(1,1,1)(1,1,1),(1,-1,-1),(-1,1,-1),(-1,-1,1). Based on possible choices of the self duality factors we have four different ways of getting the supergravity amplitudes via double copy.

6 Collinear limits in 𝒩=8\mathcal{N}=8 supergravity

In this section, we compute the collinear limits using the component field formalism. The double copy relation of collinear limits in component formalism is given by

Mn(1h1,2h2,,n)1||2hSplithSG(z,1h1,2h2)Mn1(ph,,n),M_{n}(1^{h_{1}},2^{h_{2}},\dots,n)\stackrel{{\scriptstyle 1||2}}{{\longrightarrow}}\sum_{h}\text{Split}_{-h}^{\text{SG}}(z,1^{h_{1}},2^{h_{2}})M_{n-1}(p^{h},\dots,n), (35)

where the split factor SplithSG(z,1h1,2h2)\text{Split}_{-h}^{\text{SG}}(z,1^{h_{1}},2^{h_{2}}) is given in terms of the split factors in 𝒩=4\mathcal{N}=4 super Yang-Mills theory as follows:

Split(h+h~)SG(z,1h1+h~1,2h2+h~2)=s12×SplithSYM(z,1h1,2h2)×Splith~SYM(z,2h~2,1h~1)\begin{split}\text{Split}_{-(h+\tilde{h})}^{\text{SG}}\left(z,1^{h_{1}+\tilde{h}_{1}},2^{h_{2}+\tilde{h}_{2}}\right)=-s_{12}&\times\text{Split}_{-h}^{\text{SYM}}\left(z,1^{h_{1}},2^{h_{2}}\right)\\ &\times\text{Split}_{-\tilde{h}}^{\text{SYM}}\left(z,2^{\tilde{h}_{2}},1^{\tilde{h}_{1}}\right)\end{split} (36)

where (h+h~)(h+\tilde{h}) is the factorisation of 𝒩=8\mathcal{N}=8 supergravity state with total spin h+h~h+\tilde{h} in terms of two copies of 𝒩=4\mathcal{N}=4 super Yang-Mills states with spins h,h~h,\tilde{h} respectively according to Table 3 and s12=12[21]s_{12}=\left<12\right>[21]. The sum over all 𝒩=8\mathcal{N}=8 supergravity states is interpreted as a double sum over a tensor product of 𝒩=4\mathcal{N}=4 SYM states Bern:1998sv . The calculation of collinear limit then involves two steps:

  1. 1.

    Calculate the split factors for all possible factorisation channels, that is, for all possible values of spin and helicity states hh in 𝒩=8\mathcal{N}=8 supergravity. This can be done in such that the factorisation h=h1+h2h=h_{1}+h_{2} into different spin and helicity states in 𝒩=4\mathcal{N}=4 SYM from Table 3 gives nontrivial split factors. In general one only needs to calculate half of all possible combinations of helicities. The remaining split factors can be calculated using

    Split(z;ah1,bh2)=Split+(z;ah1,bh2)|[ab]ab\text{Split}_{-}\left(z;a^{h_{1}},b^{h_{2}}\right)=\text{Split}_{+}\left(z;a^{-h_{1}},b^{-h_{2}}\right)|_{[ab]\leftrightarrow\langle ab\rangle} (37)
  2. 2.

    Write the collinear limit of amplitudes by consistently matching the R-symmetry factors using Table 1 which is non-trivial in case of 𝒩>1\mathcal{N}>1 theories.

6.1 Collinear limits of like spins

Here we compute the collinear amplitudes from the splits for states of same spin. We will show the computation for some cases and summarise the results for the rests in tabular form and refer the reader to Appendix C.1 for all the details of the computations. Moreover we only summarise the collinear limits for independent cases not related by Eq.(37).

Gravitons:
When both collinear gravitons are of same helicity (positive or negative), then from Table 3, we see that

Split(h+h~)SG(z,1±2,2±2)=s12×SplithSYM(z,1±1,2±1)×Splith~SYM(z,2±1,1±1).\begin{split}\text{Split}_{-(h+\tilde{h})}^{\text{SG}}\left(z,1^{\pm 2},2^{\pm 2}\right)=-s_{12}&\times\text{Split}_{-h}^{\text{SYM}}\left(z,1^{\pm 1},2^{\pm 1}\right)\\ &\times\text{Split}_{-\tilde{h}}^{\text{SYM}}\left(z,2^{\pm 1},1^{\pm 1}\right).\end{split}

A similar factorisation is true for opposite helicities. Thus split factors in 𝒩=8\mathcal{N}=8 supergravity for two collinear gravitons is

Split+2SG(z,a+2,b+2)=0=Split2SG(z,a2,b2),Split2SG(z,a+2,b+2)=1z(1z)[ab]ab,Split+2SG(z,a2,b2)=1z(1z)ab[ab]Split+2SG(z,a2,b+2)=z3(1z)[ab]ab,Split2SG(z,a2,b+2)=(1z)3zab[ab].\begin{split}&\text{Split}_{+2}^{\text{SG}}\left(z,a^{+2},b^{+2}\right)=0=\text{Split}_{-2}^{\text{SG}}\left(z,a^{-2},b^{-2}\right),\\ &\text{Split}_{-2}^{\text{SG}}\left(z,a^{+2},b^{+2}\right)=-\frac{1}{z(1-z)}\frac{[ab]}{\langle ab\rangle},\quad\text{Split}_{+2}^{\text{SG}}\left(z,a^{-2},b^{-2}\right)=-\frac{1}{z(1-z)}\frac{\langle ab\rangle}{[ab]}\\ &\text{Split}_{+2}^{\text{SG}}\left(z,a^{-2},b^{+2}\right)=-\frac{z^{3}}{(1-z)}\frac{[ab]}{\langle ab\rangle},\quad\text{Split}_{-2}^{\text{SG}}\left(z,a^{-2},b^{+2}\right)=-\frac{(1-z)^{3}}{z}\frac{\langle ab\rangle}{[ab]}.\end{split} (38)

Writing the momenta of the collinear particles as pi=ωiqi,i=1,2p_{i}=\omega_{i}q_{i},\leavevmode\nobreak\ i=1,2, the momenta along the collinear channel is p=p1+p2=ωpqpp=p_{1}+p_{2}=\omega_{p}q_{p} with ωp=ω1+ω2\omega_{p}=\omega_{1}+\omega_{2} and we can write

p1=zp,p2=(1z)p.p_{1}=zp,\quad p_{2}=(1-z)p. (39)

Note that qp=q1=q2q_{p}=q_{1}=q_{2} and hence

z=ω1ωp,(1z)=ω2ωp\displaystyle z=\frac{\omega_{1}}{\omega_{p}},\quad\left(1-z\right)=\frac{\omega_{2}}{\omega_{p}}

With this parametrization, the collinear limits can be tabulated as,

Mn(1+2,2+2,,n)M_{n}\left(1^{+2},2^{+2},\cdots,n\right) ωp2ω1ω2z¯12z12Mn1(p+2,,n)\frac{\omega_{p}^{2}}{\omega_{1}\omega_{2}}\frac{\bar{z}_{12}}{z_{12}}M_{n-1}\left(p^{+2},\ldots,n\right)
Mn(12,22,,n)M_{n}\left(1^{-2},2^{-2},\cdots,n\right) ωp2ω1ω2z12z¯12Mn1(p2,,n)\frac{\omega_{p}^{2}}{\omega_{1}\omega_{2}}\frac{z_{12}}{\bar{z}_{12}}M_{n-1}\left(p^{-2},\ldots,n\right)
Mn(1+2,22,,n)M_{n}\left(1^{+2},2^{-2},\ldots,n\right) ω13ωp2ω2z¯12z12Mn1(p2,3,,n)+ω23ωp2ω1z12z¯12Mn1(p+2,3,,n)\frac{\omega_{1}^{3}}{\omega_{p}^{2}\omega_{2}}\frac{\bar{z}_{12}}{z_{12}}M_{n-1}\left(p^{-2},3,\ldots,n\right)+\frac{\omega_{2}^{3}}{\omega_{p}^{2}\omega_{1}}\frac{z_{12}}{\bar{z}_{12}}M_{n-1}\left(p^{+2},3,\ldots,n\right)
Table 4: Amplitude corresponding to two collinear gravitons

Here in LHS 1,2,,n1,2,\dots,n refers to external particles with momenta p1,p2,,pnp_{1},p_{2},\dots,p_{n} and p1p_{1} is taken collinear to p2p_{2} according to the parametrization in Eq. (39). We will carry this notation throughout the paper.

Note that the collinear limit of two negative helicity gravitons from the collinear limit of two positive helicity gravitons by flipping the helicities throughout and z12z¯12z_{12}\leftrightarrow\bar{z}_{12}. This is reminiscent of Eq.(37).

Gravitinos:
The non-trivial split factors in 𝒩=8\mathcal{N}=8 Supergravity for two collinear gravitinos are given by

Split1SG(z,112+1,212+1)=1z(1z)[12]12,Split1SG(z,112+1,21+12)=1z(1z)[12]12Split2SG(z,112+1,2121)=z5(1z)12[12],Split+2SG(z,112+1,2121)=(1z)5z[12]12\begin{split}&\text{Split}_{-1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}+1}\right)=-\frac{1}{\sqrt{z(1-z)}}\frac{[12]}{\langle 12\rangle},\quad\text{Split}_{-1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{1+\frac{1}{2}}\right)=-\frac{1}{\sqrt{z(1-z)}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-2}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}-1}\right)=-\sqrt{\frac{z^{5}}{(1-z)}}\frac{\langle 12\rangle}{[12]},\quad\text{Split}_{+2}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}-1}\right)=-\sqrt{\frac{(1-z)^{5}}{z}}\frac{[12]}{\langle 12\rangle}\end{split} (40)

We can calculate other split factors using Eq.(37). The factorisation of R-symmetry indices has the form

{(a;32)=(a;12)1(r;32)=1(r;12)\begin{cases}\left(a;\frac{3}{2}\right)=\left(a;\frac{1}{2}\right)\otimes 1\\ \left(r;\frac{3}{2}\right)=1\otimes\left(r;\frac{1}{2}\right)\end{cases}

Corresponding to the above two factorization the amplitudes following Eq.(35) and Eq.(36), can be combined and written in the table below. For details we refer the readers to section C.1 in the Appendix.

Mn(1A;+32,2B;+32,,n)M_{n}\left(1^{A;+\frac{3}{2}},2^{B;+\frac{3}{2}},\cdots,n\right) ωpω1ω2z¯12z12Mn1(pAB;+1,,n)\frac{\omega_{p}}{\sqrt{\omega_{1}\omega_{2}}}\frac{\bar{z}_{12}}{z_{12}}\;M_{n-1}\left(p^{AB;+1},\cdots,n\right)
Mn(1A;+32,2B32,,n)M_{n}\left(1^{A;+\frac{3}{2}},2_{B}^{-\frac{3}{2}},\cdots,n\right) δBAω252ω112ωp2z¯12z12Mn1(p2,,n)+δBAω152ω212ωp2z12z¯12Mn1(p+2,,n)\delta^{A}_{B}\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{1}^{\frac{1}{2}}\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}M_{n-1}\left(p^{-2},\cdots,n\right)+\delta^{A}_{B}\frac{\omega_{1}^{\frac{5}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}M_{n-1}\left(p^{+2},\cdots,n\right)
Table 5: Amplitude corresponding to two collinear gravitinos

Gravi-photons:
Using the factorisation in Eq.(36) the non-trivial split factors for two collinear Graviphotons is given in Appendix 63. The calculation of collinear limits is done in Appendix C.1. The result is recorded in the table below.

The R-symmetry index factorizes as follows:

{(ab;1)=(ab;0)1(ar;1)=(a,12)(r;12)(rs;1)=1(rs;0)\begin{cases}\left(ab;1\right)=\left(ab;0\right)\otimes 1\\ \left(ar;1\right)=\left(a,\frac{1}{2}\right)\otimes\left(r;\frac{1}{2}\right)\\ \left(rs;1\right)=1\otimes\left(rs;0\right)\end{cases}

From the above factorisation we can combine all of the non-trivial amplitudes for 1A,B81\leq A,B\leq 8 as,

Mn(1AB;+1,2CD;+1,)M_{n}\left(1^{AB;+1},2^{CD;+1},\cdots\right) z¯12z12×Mn1(pABCD;0,)\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots\right)
Mn(1AB;+1,2CD1,)M_{n}\left(1^{AB;+1},2_{CD}^{-1},\cdots\right) δCDAB[ω22ωp2z¯12z12×Mn1(p2,)+ω12ωp2z12z¯12×Mn1(p+2,)]-\delta^{AB}_{CD}\Big{[}\frac{\omega_{2}^{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots\right)+\frac{\omega_{1}^{2}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots\right)\Big{]}
Table 6: Amplitude corresponding to two collinear graviphotons

In writing the collinear limit of opposite helicity graviphotons, we made a choice of self-duality factors α4=α~4=1,α8=1\alpha_{4}=\tilde{\alpha}_{4}=-1,\alpha_{8}=1. This choice is unique and motivated by our aim to make the R-symmetry indices consistent in both sides of the amplitude calculations. See Appendix C for details.

Graviphotinos:
Following the factorisation in Eq. (36), the non-trivial split factors for this channel in 𝒩=8\mathcal{N}=8 supergravity are given in Appendix 64.

The factorisation of the R-symmetry indices is as follows:

{(abr;12)=(ab;0)(r;12)(ars;12)=(a;12)(rs;0)\begin{cases}\left(abr;\frac{1}{2}\right)=\left(ab;0\right)\otimes\left(r;\frac{1}{2}\right)&\\ \left(ars;\frac{1}{2}\right)=\left(a;\frac{1}{2}\right)\otimes\left(rs;0\right)\end{cases}
{(rst;12)=ϵrstu(1(u;12))(abc;12)=ϵabcd((d;12)1)(sum overu,d)\begin{cases}\left(rst;\frac{1}{2}\right)=-\epsilon^{rstu}(1\otimes(u;-\frac{1}{2}))&\\ \left(abc;\frac{1}{2}\right)=-\epsilon^{abcd}((d;-\frac{1}{2})\otimes 1)\end{cases}\quad(\text{sum over}\leavevmode\nobreak\ u,d)

The amplitudes corresponding to the above factorisation channels are summarised as follows

Mn(1ars;+12,2btu;+12,)M_{n}\left(1^{ars;+\frac{1}{2}},2^{btu;+\frac{1}{2}},\cdots\right) ϵrstuϵabcdω1ω2ωpz¯12z12×Mn1(pcd1,)\epsilon^{rstu}\epsilon^{abcd}\;\frac{\sqrt{\omega_{1}\omega_{2}}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{cd}^{-1},\cdots\right)
Mn(1ars;+12,2bct;+12,)M_{n}\left(1^{ars;+\frac{1}{2}},2^{bct;+\frac{1}{2}},\cdots\right) ϵabcdϵrstuω1ω2ωpz¯12z12×Mn1(pdu1,)\epsilon^{abcd}\epsilon^{rstu}\;\frac{\sqrt{\omega_{1}\omega_{2}}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-1}_{du},\cdots\right)
Mn(1rst;+12,2abc;+12,)M_{n}\left(1^{rst;+\frac{1}{2}},2^{abc;+\frac{1}{2}},\cdots\right) ϵrstuϵabcdω1ω2ωpz¯12z12×Mn1(pud1,)\epsilon^{rstu}\epsilon^{abcd}\;\frac{\sqrt{\omega_{1}\omega_{2}}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{ud}^{-1},\cdots\right)
Mn(1ars;+12,2btu12,)M_{n}\left(1^{ars;+\frac{1}{2}},2_{btu}^{-\frac{1}{2}},\cdots\right) ϵtuvwϵrsvwδba[ω132ω212ωp2z12z¯12Mn1(p+2,)+ω232ω112ωp2z¯12z12Mn1(p2,)]\epsilon_{tuvw}\epsilon^{rsvw}\delta^{a}_{b}\Big{[}\frac{\omega_{1}^{\frac{3}{2}}\omega_{2}^{\frac{1}{2}}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}M_{n-1}\left(p^{+2},\cdots\right)+\frac{\omega_{2}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}M_{n-1}\left(p^{-2},\cdots\right)\Big{]}
Table 7: Amplitude corresponding to two collinear graviphotinos

Scalars:
The three possible channels are 0=000=0\otimes 0, 0=±110=\pm 1\otimes\mp 1 and 0=±12120=\pm\frac{1}{2}\otimes\mp\frac{1}{2}. We have the non-trivial splits given in Appendix 65.

The factorizations of R-symmetry indices are given by

(abrs;0)=(ab;0)(rs;0)\left(abrs;0\right)=\left(ab;0\right)\otimes(rs;0)
{(abcd;0)=ϵabcd(11)(rstu;0)=ϵrstu(11)\begin{cases}\left(abcd;0\right)=-\epsilon^{abcd}(-1\otimes 1)\\ \left(rstu;0\right)=-\epsilon^{rstu}(1\otimes-1)\end{cases}
{(abcr;0)=ϵabcd(d;12)(r;12)(arst;0)=ϵrstu(a;12)(u;12)\begin{cases}\left(abcr;0\right)=-\epsilon^{abcd}\left(d;-\frac{1}{2}\right)\otimes(r;\frac{1}{2})\\ \left(arst;0\right)=-\epsilon^{rstu}(a;\frac{1}{2})\otimes\left(u;-\frac{1}{2}\right)\end{cases}

The factorised amplitudes are,

Mn(1abrs;0,2cdtu;0,)M_{n}\left(1^{abrs;0},2^{cdtu;0},\cdots\right) ϵabcdϵrstu[ω1ω2ωp2z12z¯12×Mn1(p+2,)+ω1ω2ωp2z¯12z12×Mn1(p2,)]\epsilon^{abcd}\epsilon^{rstu}\Big{[}\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots\right)+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots\right)\Big{]}
Mn(1abcd;0,2rstu;0,)M_{n}\left(1^{abcd;0},2^{rstu;0},\cdots\right) ϵabcdϵrstu[ω2ω1ωp2z12z¯12×Mn1(p+2,)ω1ω2ωp2z¯12z12×Mn1(p2,)]\epsilon^{abcd}\epsilon^{rstu}\Big{[}\frac{\omega_{2}\omega_{1}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots\right)\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots\right)\Big{]}
Mn(1abcu;0,2drst;0,)M_{n}\left(1^{abcu;0},2^{drst;0},\cdots\right) ϵabcdϵrstu[ω2ω1ωp2z12z¯12×Mn1(p+2,)+ω1ω2ωp2z¯12z12×Mn1(p2,)]\epsilon^{abcd}\epsilon^{rstu}\Big{[}\frac{\omega_{2}\omega_{1}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots\right)+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots\right)\Big{]}
Mn(1arst;0,2bcdu;0,)M_{n}\left(1^{arst;0},2^{bcdu;0},\cdots\right) ϵrstuϵabcd[ω2ω1ωp2z12z¯12×Mn1(p+2,)+ω1ω2ωp2z¯12z12×Mn1(p2,)]\epsilon^{rstu}\epsilon^{abcd}\Big{[}\frac{\omega_{2}\omega_{1}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots\right)+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots\right)\Big{]}
Table 8: Amplitude corresponding to two collinear scalars

6.2 Collinear limits of Mixed Spins

In this section, we list the collinear limit of states with different spins. The non-trivial split factors are listed in Appendix B and the detailed calculation is done in Appendix C.2.

Graviton-Gravitino:
The non-trivial split factors for this collinear pair are given in Appendix 66.
Using different factorisation channels of the Gravitinos we have,

Mn(1+2,2r;+32,,n)M_{n}\left(1^{+2},2^{r;+\frac{3}{2}},\cdots,n\right) ωp32ω212ω1z¯12z12×Mn1(pr;+32,,n)\frac{\omega_{p}^{\frac{3}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{r;+\frac{3}{2}},\cdots,n\right)
Mn(1+2,2r32,,n)M_{n}\left(1^{+2},2_{r}^{-\frac{3}{2}},\cdots,n\right) ω252ωp32ω1z¯12z12×Mn1(pr32,,n)\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{p}^{\frac{3}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{r}^{-\frac{3}{2}},\cdots,n\right)
Mn(1+2,2a;+32,,n)M_{n}\left(1^{+2},2^{a;+\frac{3}{2}},\cdots,n\right) ωp32ω212ω1z¯12z12×Mn1(pa;+32,,n)\frac{\omega_{p}^{\frac{3}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{a;+\frac{3}{2}},\cdots,n\right)
Mn(1+2,2a32,,n)M_{n}\left(1^{+2},2_{a}^{-\frac{3}{2}},\cdots,n\right) ω252ωp32ω1z¯12z12×Mn1(pa32,,n)\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{p}^{\frac{3}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{a}^{-\frac{3}{2}},\cdots,n\right)
Table 9: Amplitude corresponding to collinear graviton and gravitino

Graviton-Graviphoton:
The split factors are given in Appendix 67. For 1A,B81\leq A,B\leq 8 all the amplitudes corresponding to different factorisation channels are summarised as

Mn(1+2,2AB1,,n)=ω22ω1ωpz¯12z12×Mn1(pAB1,,n)\boxed{M_{n}\left(1^{+2},2_{AB}^{-1},\cdots,n\right)=\frac{\omega_{2}^{2}}{\omega_{1}\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{AB}^{-1},\cdots,n\right)}

Graviton-Graviphotino:
Non-trivial split factors are given in Appendix 68.

Mn(1+2,2abr;+12,,n)M_{n}\left(1^{+2},2^{abr;+\frac{1}{2}},\cdots,n\right) ω2ωpω1z¯12z12×Mn1(pabr;+12,,n)\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abr;+\frac{1}{2}},\cdots,n\right)
Mn(1+2,2ars;+12,,n)M_{n}\left(1^{+2},2^{ars;+\frac{1}{2}},\cdots,n\right) ω2ωpω1z¯12z12×Mn1(pars;+12,,n)\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ars;+\frac{1}{2}},\cdots,n\right)
Mn(1+2,2abc;+12,,n)M_{n}\left(1^{+2},2^{abc;+\frac{1}{2}},\cdots,n\right) ω2ωpω1z¯12z12×Mn1(pabc;+12,,n)\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abc;+\frac{1}{2}},\cdots,n\right)
Mn(1+2,2rst;+12,,n)M_{n}\left(1^{+2},2^{rst;+\frac{1}{2}},\cdots,n\right) ω2ωpω1z¯12z12×Mn1(prst;+12,,n)\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rst;+\frac{1}{2}},\cdots,n\right)
Mn(1+2,2abr12,,n)M_{n}\left(1^{+2},2_{abr}^{-\frac{1}{2}},\cdots,n\right) ω232ωp12ω1z¯12z12×Mn1(pabr12,,n)\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{abr}^{-\frac{1}{2}},\cdots,n\right)
Mn(1+2,2ars12,,n)M_{n}\left(1^{+2},2_{ars}^{-\frac{1}{2}},\cdots,n\right) ω232ωp12ω1z¯12z12×Mn1(pars12,,n)\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{ars}^{-\frac{1}{2}},\cdots,n\right)
Mn(1+2,2abc12,,n)M_{n}\left(1^{+2},2_{abc}^{-\frac{1}{2}},\cdots,n\right) ω232ωp12ω1z¯12z12×Mn1(pabc12,,n)-\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{abc}^{-\frac{1}{2}},\cdots,n\right)
Mn(1+2,2rst12,,n)M_{n}\left(1^{+2},2_{rst}^{-\frac{1}{2}},\cdots,n\right) ω232ωp12ω1z¯12z12×Mn1(prst12,,n)-\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{rst}^{-\frac{1}{2}},\cdots,n\right)
Table 10: Amplitude corresponding to collinear graviton and graviphotino

Graviton-Scalar:
The non-trivial split factors are given in Appendix 69. For all the factorisation channel for the Scalars in 𝒩=8\mathcal{N}=8 the split factors will remain the same. Hence

Mn(1+2,2ABCD;0,,n)=ω2ω1z¯12z12×Mn1(pABCD;0,,n)\boxed{M_{n}\left(1^{+2},2^{ABCD;0},\cdots,n\right)=\frac{\omega_{2}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots,n\right)}

Gravitino-Graviphoton:
The split factors for this collinear pair are given in Appendix 70. For any 1A,B81\leq A,B\leq 8 we have

Mn(1A;+32,2BC1,,n)=ω22ωp32ω112z¯12z122!δ[BA×Mn1(pC]32,,n)\boxed{M_{n}\left(1^{A;+\frac{3}{2}},2_{BC}^{-1},\cdots,n\right)=\frac{\omega_{2}^{2}}{\omega_{p}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}2!\delta^{A}_{[B}\times M_{n-1}\left(p_{C]}^{-\frac{3}{2}},\cdots,n\right)}

Here [][...] indicates antisymmetrized indices defined by

p[A1An]:=1n!σSnsign(σ)pAσ(1)Aσ(n).p_{[A_{1}\dots A_{n}]}:=\frac{1}{n!}\sum_{\sigma\in S_{n}}\text{sign}(\sigma)\;p_{A_{\sigma(1)}\dots A_{\sigma(n)}}. (41)

Gravitino-Graviphotino:
The split factors are given in Appendix 71.

Mn(1A;+32,2BCD;+12,)M_{n}\left(1^{A;+\frac{3}{2}},2^{BCD;+\frac{1}{2}},\cdots\right) ω2ω1z¯12z12×Mn1(pABCD;0,)\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots\right)
Mn(1A;+32,2BCD12,)M_{n}\left(1^{A;+\frac{3}{2}},2_{BCD}^{-\frac{1}{2}},\cdots\right) ω232ωpω112z¯12z12×3δ(BAMn1(pCD)1,)-\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times 3\delta^{A}_{(B}M_{n-1}\left(p^{-1}_{CD)},\cdots\right)
Table 11: Amplitude corresponding to collinear gravitino and graviphotino

Here ()(...) indicates symmetrized indices defined by

p(A1An):=1n!σSnpAσ(1)Aσ(n).p_{(A_{1}\dots A_{n})}:=\frac{1}{n!}\sum_{\sigma\in S_{n}}p_{A_{\sigma(1)}\dots A_{\sigma(n)}}. (42)

Gravitino-scalar:
The splits are given in Appendix 72.

Mn(1A;+32,2BCDE;0,,n)=13!ϵABCDEFGHω2ω1ωpz¯12z12×Mn1(pFGH12,,n)\boxed{M_{n}\left(1^{A;+\frac{3}{2}},2^{BCDE;0},\cdots,n\right)=-\frac{1}{3!}\epsilon^{ABCDEFGH}\frac{\omega_{2}}{\sqrt{\omega_{1}\omega_{p}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{FGH}^{-\frac{1}{2}},\cdots,n\right)}

Graviphoton-Graviphotino:
The splits are in Appendix 73.

Mn(1ab;+1,2cdr;+12,,n)M_{n}\left(1^{ab;+1},2^{cdr;+\frac{1}{2}},\cdots,n\right) ω2ω1z¯12z12×Mn1(pABCD;0,)\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots\right)
Mn(1ab;+1,2cdr;12,,n)M_{n}\left(1^{ab;+1},2_{cdr;\;-\frac{1}{2}},\cdots,n\right) δcdabω232ωp32z¯12z12×Mn1(pr32,,n)-\delta^{ab}_{cd}\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{r}^{-\frac{3}{2}},\cdots,n\right)
Table 12: Amplitude corresponding to collinear graviphoton and graviphotino

Graviphoton-scalar:
The splits for this collinear pair are in Appendix 74.

Mn(1ab;+1,2cdrs;0,,n)M_{n}\left(1^{ab;+1},2^{cdrs;0},\cdots,n\right) ϵabcdϵrstuω2ωpz¯12z12×Mn1(ptu1,,n)\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)
Mn(1rs;+1,2abtu;0,,n)M_{n}\left(1^{rs;+1},2^{abtu;0},\cdots,n\right) ϵrstuϵabcdω2ωpz¯12z12×Mn1(pcd1,,n)\epsilon^{rstu}\epsilon^{abcd}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{cd}^{-1},\cdots,n\right)
Mn(1ar;+1,2bcst;0,,n)M_{n}\left(1^{ar;+1},2^{bcst;0},\cdots,n\right) ϵabcdϵrstuω2ωpz¯12z12×Mn1(pdu1,,n)\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{du}^{-1},\cdots,n\right)
Mn(1ab;+1,2cdef;0,,n)M_{n}\left(1^{ab;+1},2^{cdef;0},\cdots,n\right) ϵcdefϵabghω2ωpz¯12z12×Mn1(pgh1,,n)-\epsilon^{cdef}\epsilon^{abgh}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{gh}^{-1},\cdots,n\right)
Mn(1rs;+1,2cdef;0,,n)M_{n}\left(1^{rs;+1},2^{cdef;0},\cdots,n\right) ϵcdefϵrstuω2ωpz¯12z12×Mn1(ptu1,,n)-\epsilon^{cdef}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)
Mn(1ar;+1,2bcds;0,,n)M_{n}\left(1^{ar;+1},2^{bcds;0},\cdots,n\right) ϵabcdϵrstuω2ωpz¯12z12×Mn1(ptu1,,n)-\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)
Mn(1ab1,2cdef;0,,n)M_{n}\left(1_{ab}^{-1},2^{cdef;0},\cdots,n\right) ϵcdefϵabghω2ωpz12z¯12×Mn1(pgh;+1,,n)-\epsilon^{cdef}\epsilon_{abgh}\;\frac{\omega_{2}}{\omega_{p}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{gh;+1},\cdots,n\right)
Mn(1ar1,2bcds;0,,n)M_{n}\left(1_{ar}^{-1},2^{bcds;0},\cdots,n\right) ϵbcdeδrsϵaefgω1ωpz12z¯12×Mn1(pfg;+1,,n)-\epsilon^{bcde}\delta^{s}_{r}\epsilon_{aefg}\;\frac{\omega_{1}}{\omega_{p}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{fg;+1},\cdots,n\right)
Mn(1ar1,2bcst;0,,n)M_{n}\left(1_{ar}^{-1},2^{bcst;0},\cdots,n\right) ω2ωpz12z¯124!δa[bδrsMn1(ptc];+1,,n)-\frac{\omega_{2}}{\omega_{p}}\frac{z_{12}}{\bar{z}_{12}}4!\delta^{[b}_{a}\delta^{s}_{r}\;M_{n-1}\left(p^{tc];+1},\cdots,n\right)
Table 13: Amplitude corresponding to collinear graviphoton and scalar

Graviphotino-scalar:
The splits are given in Appendix 75.

Mn(1abr;+12,2cdst;0,,n)M_{n}\left(1^{abr;+\frac{1}{2}},2^{cdst;0},\cdots,n\right) ϵabcdϵrstuω112ω2ωp32z¯12z12×Mn1(pu32,,n)\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{u}^{-\frac{3}{2}},\cdots,n\right)
Mn(1abr;+12,2cstu;0,,n)M_{n}\left(1^{abr;+\frac{1}{2}},2^{cstu;0},\cdots,n\right) ϵabcdϵrstuω112ω2ωp32z¯12z12×Mn1(pd32,,n)-\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{d}^{-\frac{3}{2}},\cdots,n\right)
Mn(1ars;+12,2bctu;0,,n)M_{n}\left(1^{ars;+\frac{1}{2}},2^{bctu;0},\cdots,n\right) ϵabcdϵrstuω112ω2ωp32z¯12z12×Mn1(pd32,,n)\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{d}^{-\frac{3}{2}},\cdots,n\right)
Mn(1ars12,2bctu;0,,n)M_{n}\left(1_{ars}^{-\frac{1}{2}},2^{bctu;0},\cdots,n\right) 2!δrstuω112ω2ωp32z12z¯12δa[b×Mn1(pc];+32,,n)-2!\delta^{tu}_{rs}\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\delta^{[b}_{a}\times M_{n-1}\left(p^{c];+\frac{3}{2}},\cdots,n\right)
Mn(1ars12,2btuv 0,,n)M_{n}\left(1_{ars}^{-\frac{1}{2}},2^{btuv\leavevmode\nobreak\ 0},\cdots,n\right) δabϵtuvwϵwrsxω112ω2ωp32z12z¯12×Mn1(px;+32,,n)-\delta_{a}^{b}\epsilon^{tuvw}\epsilon_{wrsx}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{x;+\frac{3}{2}},\cdots,n\right)
Mn(1rst12,2avwx;0,,n)M_{n}\left(1_{rst}^{-\frac{1}{2}},2^{avwx;0},\cdots,n\right) ϵrstuϵvwxuω112ω2ωp32z12z¯12×Mn1(pa;+32,,n)-\epsilon_{rstu}\epsilon^{vwxu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{a;+\frac{3}{2}},\cdots,n\right)
Mn(1rst12,2uvwx;0,,n)M_{n}\left(1_{rst}^{-\frac{1}{2}},2^{uvwx;0},\cdots,n\right) ϵrstyϵuvwxω112ω2ωp32z12z¯12×Mn1(py;+32,,n)-\epsilon_{rsty}\epsilon^{uvwx}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{y;+\frac{3}{2}},\cdots,n\right)
Table 14: Amplitude corresponding to collinear graviphotino and scalar

7 Soft Limits in 𝒩\mathcal{N}=8 supergravity

To complete our study, we now move on to study the soft limit of supergravity amplitudes. In particular, in this section, we will compute the soft limits of graviton and gravitinos up to sub-subleaing order. As explained earlier, for both holomorphic and antiholomorphic soft limits for supergravity amplitudes we have,

n+1(Ψs,Ψ1,,Ψn)=ε0k=021ε3k𝒮(k)n(Ψ1,,Ψn)(holomorphic soft limit)n+1(Ψs,Ψ1,,Ψn)=ε0k=021ε3k𝒮¯(k)n(Ψ1,,Ψn)(antiholomorphic soft limit)\begin{split}\mathcal{M}_{n+1}\left(\Psi_{s},\Psi_{1},\ldots,\Psi_{n}\right)&\stackrel{{\scriptstyle\varepsilon\to 0}}{{=}}\sum_{k=0}^{2}\frac{1}{\varepsilon^{3-k}}\mathcal{S}^{(k)}\mathcal{M}_{n}\left(\Psi_{1},\ldots,\Psi_{n}\right)\quad\text{(holomorphic soft limit)}\\ \mathcal{M}_{n+1}\left(\Psi_{s},\Psi_{1},\ldots,\Psi_{n}\right)&\stackrel{{\scriptstyle\varepsilon\to 0}}{{=}}\sum_{k=0}^{2}\frac{1}{\varepsilon^{3-k}}\overline{\mathcal{S}}^{(k)}\mathcal{M}_{n}\left(\Psi_{1},\ldots,\Psi_{n}\right)\quad\text{(antiholomorphic soft limit)}\end{split} (43)

where in both the cases the holomorphic and antiholomorphic soft limits are parametrised by ε0\varepsilon\to 0 for the soft superfield Ψs\Psi_{s} and 𝒮(k)\mathcal{S}^{(k)} and 𝒮¯(k)\overline{\mathcal{S}}^{(k)} are soft operators corresponding to these limits.

7.1 Graviton soft limit

Recall that in the physical soft limit ps0p_{s}\rightarrow 0 or equivalently hs,h~s0h_{s},\tilde{h}_{s}\rightarrow 0, the leading soft factor in SYM is given by the sum of leading soft factors in holomorphic and anti-holomorphic soft limit:

Softleading SYM(a,s,b)=abassb+[ab][as][sb]δ4(ηs)\text{Soft}_{\text{leading }}^{\mathrm{SYM}}(a,s,b)=\frac{\langle ab\rangle}{\langle as\rangle\langle sb\rangle}+\frac{[ab]}{[as][sb]}\delta^{4}\left(\eta^{s}\right) (44)

As described in Section 4, we will use the double copy relation (He:2014bga, , Eq. 2.15)

1ε3Soft(0)SG+1ε2Soft(1)SG+1εSoft(2)SG=i=1nεsi[is](1ε2Soft(0)SYM(i,s,a)+12εSoft(1)SYM(i,s,a))2.\begin{split}\frac{1}{\varepsilon^{3}}\text{Soft($0$)}^{\mathrm{SG}}&+\frac{1}{\varepsilon^{2}}\text{Soft($1$)}^{\mathrm{SG}}+\frac{1}{\varepsilon}\text{Soft($2$)}^{\mathrm{SG}}\\ &=\sum_{i=1}^{n}\varepsilon\langle si\rangle[is]\left(\frac{1}{\varepsilon^{2}}\text{Soft($0$)}^{\mathrm{SYM}}(i,s,a)+\frac{1}{2\varepsilon}\text{Soft($1$)}^{\mathrm{SYM}}(i,s,a)\right)^{2}.\end{split} (45)

Comparing the coefficients of ε\varepsilon powers, we get

Soft(0)SG=i=1nsi[is][Soft(0)SYM(i,s,a)]2Soft(1)SG=i=1nsi[is][Soft(0)SYM(i,s,a)×Soft(1)SYM(i,s,a)]Soft(2)SG=14i=1nsi[is][Soft(1)SYM(i,s,a)]2\begin{split}&\text{Soft($0$)}^{\mathrm{SG}}=\sum_{i=1}^{n}\langle si\rangle[is]\left[\text{Soft($0$)}^{\mathrm{SYM}}(i,s,a)\right]^{2}\\ &\text{Soft($1$)}^{\mathrm{SG}}=\sum_{i=1}^{n}\langle si\rangle[is]\left[\text{Soft($0$)}^{\mathrm{SYM}}(i,s,a)\times\text{Soft($1$)}^{\mathrm{SYM}}(i,s,a)\right]\\ &\text{Soft($2$)}^{\mathrm{SG}}=\frac{1}{4}\sum_{i=1}^{n}\langle si\rangle[is]\left[\text{Soft($1$)}^{\mathrm{SYM}}(i,s,a)\right]^{2}\end{split} (46)

Thus the double copy relation gives the sum of leading, subleading and subsubleading soft factors in supergravity in terms of the leading and subleading soft factors in SYM. It is clear that the leading and subleading soft factors in supergravity are given by

Softleading SG=i=1nsi[is]([Soft(0)holSYM(i,s,a)]2+[Soft(0)antiholSYM(i,s,a)]2)\text{Soft}_{\text{leading }}^{\mathrm{SG}}=\sum_{i=1}^{n}\langle si\rangle[is]\left([\text{Soft(0)}_{\mathrm{hol}}^{\mathrm{SYM}}(i,s,a)]^{2}+[\text{Soft(0)}_{\mathrm{anti-hol}}^{\mathrm{SYM}}(i,s,a)]^{2}\right) (47)

and

Softsubleading SG=i=1nsi[is][Soft(0)holSYM(i,s,a)×Soft(1)holSYM(i,s,a)+Soft(0)antiholSYM(i,s,a)×Soft(1)antiholSYM(i,s,a)]\begin{split}\text{Soft}_{\text{subleading }}^{\mathrm{SG}}=\sum_{i=1}^{n}\langle si\rangle[is]\bigg{[}&\text{Soft(0)}_{\mathrm{hol}}^{\mathrm{SYM}}(i,s,a)\times\text{Soft(1)}_{\mathrm{hol}}^{\mathrm{SYM}}(i,s,a)\\ &+\text{Soft(0)}_{\mathrm{anti-hol}}^{\mathrm{SYM}}(i,s,a)\times\text{Soft(1)}_{\mathrm{anti-hol}}^{\mathrm{SYM}}(i,s,a)\bigg{]}\end{split} (48)

We now substitute (9) and (10) into (47) and (48) to get the leading and subleading soft factors in supergravity. Note that the nonholomorphic soft factor in SYM includes the Grassmann delta function δ4(η)\delta^{4}(\eta). So while squaring the nonholomorphic soft factor of SYM, the square of this delta function in double copy is interpreted as the Grassmann delta function on 𝒩=8\mathcal{N}=8 superspace:

(δ4(ηa))2=δ8(ηA)\left(\delta^{4}(\eta_{a})\right)^{2}=\delta^{8}(\eta_{A}) (49)

where the indices have the usual meanings with aa running from 1 to 4 and AA running from 1 to 8. The leading soft factor is then given by

Softleading SG(a,s,b)=i=1n([si]siai2as2+si[si][ai]2[as]2δ8(ηA))\text{Soft}_{\text{leading }}^{\mathrm{SG}}(a,s,b)=\sum_{i=1}^{n}\left(\frac{[si]}{\langle si\rangle}\frac{\langle ai\rangle^{2}}{\langle as\rangle^{2}}+\frac{\langle si\rangle}{[si]}\frac{[ai]^{2}}{[as]^{2}}\delta^{8}(\eta_{A})\right) (50)

We now evaluate the subleading soft limit. From (10) and (48) we have,

Softsubleading SG=i=1nsi[is][iaissa{1sa(h~sα˙h~aα˙+ηAsηAa)+1is(h~sα˙h~iα˙+ηsAηiA)}+[ia][is][sa]δ8(ηs+[as][ab]ηb+[sb][ab]ηa)(1[is]hsαhiα+1[sa]hsαhaα)]=i=1nsi[is][iais2sa(h~sα˙h~iα˙+ηAsηAi)+[ia][is]2[sa]δ8(ηs+[as][ab]ηb+[sb][ab]ηa)(hsαhiα)]\begin{split}&\text{Soft}_{\text{subleading }}^{\mathrm{SG}}\\ &=\sum_{i=1}^{n}\langle si\rangle[is]\Bigg{[}\frac{\langle ia\rangle}{\langle is\rangle\langle sa\rangle}\Bigg{\{}\frac{1}{\langle sa\rangle}\left(\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{a}^{\dot{\alpha}}}+\eta^{s}_{A}\frac{\partial}{\partial\eta^{a}_{A}}\right)+\frac{1}{\langle is\rangle}\left(\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{i}^{\dot{\alpha}}}+\eta_{s}^{A}\frac{\partial}{\partial\eta_{i}^{A}}\right)\Bigg{\}}\\ &+\frac{[ia]}{[is][sa]}\delta^{8}\left(\eta^{s}+\frac{[as]}{[ab]}\eta^{b}+\frac{[sb]}{[ab]}\eta^{a}\right)\Bigg{(}\frac{1}{[is]}h_{s}^{\alpha}\frac{\partial}{\partial h_{i}^{\alpha}}+\frac{1}{[sa]}h_{s}^{\alpha}\frac{\partial}{\partial h_{a}^{\alpha}}\Bigg{)}\Bigg{]}\\ &=\sum_{i=1}^{n}\langle si\rangle[is]\Bigg{[}\frac{\langle ia\rangle}{\langle is\rangle^{2}\langle sa\rangle}\left(\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{i}^{\dot{\alpha}}}+\eta^{s}_{A}\frac{\partial}{\partial\eta^{i}_{A}}\right)+\frac{[ia]}{[is]^{2}[sa]}\delta^{8}\left(\eta^{s}+\frac{[as]}{[ab]}\eta^{b}+\frac{[sb]}{[ab]}\eta^{a}\right)\Bigg{(}h_{s}^{\alpha}\frac{\partial}{\partial h_{i}^{\alpha}}\Bigg{)}\Bigg{]}\end{split}

where we used the momentum conservation

isi[ia]=i[si]ia=0.\sum_{i}\langle si\rangle[ia]=\sum_{i}[si]\langle ia\rangle=0.

Note that in the soft superfield, ηs0\eta_{s}\to 0 gives the positive helicity soft graviton and δ8(ηs)\delta^{8}(\eta_{s}) gives the negative helicity soft graviton. Thus we only retain these terms in the soft factor. Thus we get

Softsubleading SG(a,s,b)=i=1n[is]iasisah~sα˙h~iα˙+si[ia][is][sa]δ8(ηs)hsαhiα\text{Soft}_{\text{subleading }}^{\mathrm{SG}}(a,s,b)=\sum_{i=1}^{n}\frac{[is]\langle ia\rangle}{\langle si\rangle\langle sa\rangle}\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{i}^{\dot{\alpha}}}+\frac{\langle si\rangle[ia]}{[is][sa]}\delta^{8}(\eta^{s})h_{s}^{\alpha}\frac{\partial}{\partial h_{i}^{\alpha}}

which is the sum of soft factor for positive and negative helicity soft graviton in pure gravity (He:2014bga, , Eq. 2.9). Note that in the above formula, the momenta pap_{a} acts as reference vector and hence can be taken to be any null vector rr. This is an indication of the diffeomorphism symmetry of gravity amplitudes. We can thus rewrite the soft factor as

Softsubleading SG(a,s,b)=i=1n[is]irsisrh~sα˙h~iα˙+si[ir][is][sr]δ8(ηs)hsαhiα\text{Soft}_{\text{subleading }}^{\mathrm{SG}}(a,s,b)=\sum_{i=1}^{n}\frac{[is]\langle ir\rangle}{\langle si\rangle\langle sr\rangle}\tilde{h}_{s}^{\dot{\alpha}}\frac{\partial}{\partial\tilde{h}_{i}^{\dot{\alpha}}}+\frac{\langle si\rangle[ir]}{[is][sr]}\delta^{8}(\eta^{s})h_{s}^{\alpha}\frac{\partial}{\partial h_{i}^{\alpha}} (51)

7.2 Leading soft gravitino limit

To calculate the soft limit of gravitinos, we use the results of Liu:2014vva . Under the holomorphic soft limit of the superfield, we have

n+1(Ψs,Ψ1,,Ψn)=(1ε3𝒮(0)+1ε2𝒮(1)+1ε𝒮(2))n(Ψ1,,Ψn)+O(ε0).\mathcal{M}_{n+1}\left(\Psi_{s},\Psi_{1},\ldots,\Psi_{n}\right)=\left(\frac{1}{\varepsilon^{3}}\mathcal{S}^{(0)}+\frac{1}{\varepsilon^{2}}\mathcal{S}^{(1)}+\frac{1}{\varepsilon}\mathcal{S}^{(2)}\right)\mathcal{M}_{n}\left(\Psi_{1},\ldots,\Psi_{n}\right)+O\left(\varepsilon^{0}\right). (52)

The leading soft factor444note that we have made explicit the reference vector rr which was taken to be pnp_{n} in Liu:2014vva is same with the one in pure gravity:

𝒮(0)=i=1n[si]ri2sirs2=S(0).\mathcal{S}^{(0)}=\sum_{i=1}^{n}\frac{[si]\langle ri\rangle^{2}}{\langle si\rangle\langle rs\rangle^{2}}=S^{(0)}. (53)

The sub-leading soft operator is given by

𝒮(1)=i=1n[si]risirs(λ~sα˙λ~iα˙+ηsAηiA)=S(1)+ηsA𝒮A(1).\mathcal{S}^{(1)}=\sum_{i=1}^{n}\frac{[si]\langle ri\rangle}{\langle si\rangle\langle rs\rangle}\left(\tilde{\lambda}_{s\dot{\alpha}}\frac{\partial}{\partial\tilde{\lambda}_{i\dot{\alpha}}}+\eta_{sA}\frac{\partial}{\partial\eta_{iA}}\right)=S^{(1)}+\eta_{sA}\mathcal{S}^{A(1)}. (54)

where

𝒮A(1)=i=1n[si]risirsηiA\mathcal{S}^{A(1)}=\sum_{i=1}^{n}\frac{[si]\langle ri\rangle}{\langle si\rangle\langle rs\rangle}\frac{\partial}{\partial\eta_{iA}}

Here the leading soft gravitino operator involves the first order derivatives with respect to the Grassmannian variables ηi\eta_{i}’s. These term will preserves the total helicity as well as SU(8)\mathrm{SU}(8) RR-symmetry.
The sub-sub-leading soft factor is given by

𝒮(2)\displaystyle\mathcal{S}^{(2)} =S(2)+ηsA𝒮A(2)+12ηsAηsB𝒮AB(2)\displaystyle=S^{(2)}+\eta_{sA}\mathcal{S}^{A(2)}+\frac{1}{2}\eta_{sA}\eta_{sB}\mathcal{S}^{AB(2)} (55)

where

S(2)=12i=1n[si]siλ~sα˙λ~sβ˙2λ~iα˙λ~iβ˙,𝒮A(2)=i=1n[si]siλ~sα˙2λ~iα˙ηaA,𝒮AB(2)=i=1n[si]si2ηaBηaA.\begin{split}S^{(2)}&=\frac{1}{2}\sum_{i=1}^{n}\frac{[si]}{\langle si\rangle}\tilde{\lambda}_{s\dot{\alpha}}\tilde{\lambda}_{s\dot{\beta}}\frac{\partial^{2}}{\partial\tilde{\lambda}_{i\dot{\alpha}}\partial\tilde{\lambda}_{i\dot{\beta}}},\\ \mathcal{S}^{A(2)}&=\sum_{i=1}^{n}\frac{[si]}{\langle si\rangle}\tilde{\lambda}_{s\dot{\alpha}}\frac{\partial^{2}}{\partial\tilde{\lambda}_{i\dot{\alpha}}\partial\eta_{aA}},\\ \mathcal{S}^{AB(2)}&=\sum_{i=1}^{n}\frac{[si]}{\langle si\rangle}\frac{\partial^{2}}{\partial\eta_{aB}\partial\eta_{aA}}.\end{split} (56)

We now expand the generic superamplitude on the left hand side of (52) in the grassmann odd variable ηs\eta_{s} of the soft superfield:

n+1(Ψs,Ψ1,,Ψn)=\displaystyle\mathcal{M}_{n+1}\left(\Psi_{s},\Psi_{1},\ldots,\Psi_{n}\right)= n+1(Hs+,Ψ1,,Ψn)+ηsAn+1(Ss+A,Ψ1,,Ψn)\displaystyle\mathcal{M}_{n+1}\left(H_{s+},\Psi_{1},\ldots,\Psi_{n}\right)+\eta_{sA}\mathcal{M}_{n+1}\left(S^{A}_{s+},\Psi_{1},\ldots,\Psi_{n}\right) (57)
+12ηsAηsBn+1(Gs+AB,Ψ1,,Ψn)+\displaystyle+\frac{1}{2}\eta_{sA}\eta_{sB}\mathcal{M}_{n+1}\left(G^{AB}_{s+},\Psi_{1},\ldots,\Psi_{n}\right)+\cdots

and compare with the right hand side of (52) to get the following soft limits:

Soft Superfields Superamplitude expansion on ε0\varepsilon\to 0
Soft graviton n+1(Hs+,)=(1ε3S(0)+1ε2S(1)+1εS(2))n+O(ε0)\mathcal{M}_{n+1}\left(H_{s+},\ldots\right)=\left(\frac{1}{\varepsilon^{3}}S^{(0)}+\frac{1}{\varepsilon^{2}}S^{(1)}+\frac{1}{\varepsilon}S^{(2)}\right)\mathcal{M}_{n}+O\left(\varepsilon^{0}\right)
Soft gravitino n+1(Ss+A,)=(1ε2𝒮A(1)+1ε𝒮A(2))n+O(ε0)\mathcal{M}_{n+1}\left(S^{A}_{s+},\ldots\right)=\left(\frac{1}{\varepsilon^{2}}\mathcal{S}^{A(1)}+\frac{1}{\varepsilon}\mathcal{S}^{A(2)}\right)\mathcal{M}_{n}+O\left(\varepsilon^{0}\right)
Soft graviphoton n+1(Gs+AB)=1ε𝒮AB(2)n+𝒪(ε0)\mathcal{M}_{n+1}\left(G^{AB}_{s+}\ldots\right)=\frac{1}{\varepsilon}\mathcal{S}^{AB(2)}\mathcal{M}_{n}+\mathcal{O}\left(\varepsilon^{0}\right)
Soft graviphotino n+1(χsABC)=0ε+𝒪(ε0)\mathcal{M}_{n+1}\left(\chi^{ABC}_{s}\ldots\right)=\frac{0}{\varepsilon}+\mathcal{O}\left(\varepsilon^{0}\right)
Soft scalar n+1(ΦsABCD,)=0ε+𝒪(ε0)\mathcal{M}_{n+1}\left(\Phi^{ABCD}_{s},\ldots\right)=\frac{0}{\varepsilon}+\mathcal{O}\left(\varepsilon^{0}\right)
Table 15: Various soft limit expansion of the superamplitude

One can easily check that the soft graviton limit obtained here coincides with our calculations in Subsection 7.1. We also see that there are no soft divergences for graviphotino and scalar.

8 Conclusion

In this work we have computed the soft and collinear limits of the maximally supersymmetric 𝒩=8\mathcal{N}=8 supergravity theory in four spacetime dimensions using the double copy relations in both soft and collinear sectors of 𝒩=4\mathcal{N}=4 Super Yang-Mills. The computations are done in the celestial basis appropriate for applications to celestial holography. An important point in our application of double copy is a different choice of self-duality condition for scalars. The constraints imposed here differs in signs: α4=α~4=1\alpha_{4}=\tilde{\alpha}_{4}=-1 and α8=1\alpha_{8}=1. This choice is motivated by our desire to combine the collinear limits for different factorisations of 𝒩=4\mathcal{N}=4 SYM to 𝒩=8\mathcal{N}=8 supergravity. Based on the factorisation of states in the gravity theory in terms of states in the gauge theory, we are able to constrain and determine the R-symmetry indices in the collinear limit. This is also the novelty of this work.

The goal of this work is twofold: first we would like to construct the dual celestial CFT corresponding to the bulk 𝒩=8\mathcal{N}=8 supergravity in four dimensions. This requires the collinear limits of bulk amplitudes as they imply the OPEs of (super)conformal operators in the CCFT. Second, we would like to determine the asymptotic symmetries of 𝒩=8\mathcal{N}=8 supergravity using celestial holography. As discussed in tab , our final goal is to determine the contribution of (super)BMS hairs to black hole entropy 555For similar analysis in the context of three dimensional supergravity can be found in Banerjee:2018hbl and references there in.. The first step to such an analysis would be to understand the extension of the BMS group to super BMS group in 𝒩=8\mathcal{N}=8 supergravity. The corresponding 𝒩=1\mathcal{N}=1 supergravity case has already been worked out in Fotopoulos:2020bqj and a primary construction of the same for higher supersymmetric cases, purely from algebraic perspective, has been addressed in Banerjee:2022abf . However a thorough gravity analysis with higher supersymmetry is still missing. This issue has been addressed in a companion paper tab , where the asymptotic symmetry algebra of the 𝒩=8\mathcal{N}=8 supergravity has been derived.

Acknowledgement

We would like to thank Abay Zhakenov for helping us with some Mathematica computations. The work of RKS is supported by the US Department of Energy under grant DE-SC0010008. The work of TR is supported by University Grant Commission, Govt. of India. Finally we highly appreciate the people of India for their support to fundamental research.

Appendix A A brief review of spinor-helicity formalism

Recall that helicity spinors are left and right handed representations of the Lorentz group SO(1,3)SL(2,)\mathrm{SO}(1,3)\sim\mathrm{SL}(2,\mathbb{C}). We denote the left and right handed helicity spinors by hαh_{\alpha} and h~α˙\tilde{h}^{\dot{\alpha}} respectively. Lorentz invariant contractions of spinors is defined using the completely antisymmetric rank 22 tensor ϵαβ\epsilon^{\alpha\beta} defined as

ϵαβ=ϵαβ=ϵα˙β˙=ϵα˙β˙=(0110).\epsilon^{\alpha\beta}=-\epsilon_{\alpha\beta}=\epsilon^{\dot{\alpha}\dot{\beta}}=-\epsilon_{\dot{\alpha}\dot{\beta}}=\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right). (58)

The contractions are then defined as

λχϵαβλαχβ=λαχα=λαχα=χλ[λχ]ϵα˙β˙λ~α˙χ~β˙=λ~α˙χ~α˙=λ~α˙χ~α˙=[χλ].\begin{array}[]{l}\langle\lambda\chi\rangle\equiv\epsilon^{\alpha\beta}\lambda_{\alpha}\chi_{\beta}=\lambda_{\alpha}\chi^{\alpha}=-\lambda^{\alpha}\chi_{\alpha}=-\langle\chi\lambda\rangle\\ {[\lambda\chi]\equiv\epsilon_{\dot{\alpha}\dot{\beta}}\widetilde{\lambda}^{\dot{\alpha}}\widetilde{\chi}^{\dot{\beta}}=\widetilde{\lambda}^{\dot{\alpha}}\widetilde{\chi}_{\dot{\alpha}}=-\widetilde{\lambda}_{\dot{\alpha}}\widetilde{\chi}^{\dot{\alpha}}=-[\chi\lambda]}.\end{array} (59)

Wherever we have angular brackets, we understand that it is the contraction of left handed spinor whereas the square bracket is the contraction of the right handed spinor. We thus suggestively denote left handed spinor by |λα|\lambda\rangle^{\alpha} and right handed spinor by [λ|α˙[\lambda|^{\dot{\alpha}}. A given null momentum pμp^{\mu} can be written as a bispinor

pαα˙=σμαα˙pμ=(p0+p3p1ip2p1+ip2p0p3)|p[p|p^{\alpha\dot{\alpha}}=\sigma_{\mu}^{\alpha\dot{\alpha}}p^{\mu}=\left(\begin{array}[]{cc}p^{0}+p^{3}&p^{1}-ip^{2}\\ p^{1}+ip^{2}&p^{0}-p^{3}\end{array}\right)\equiv|p\rangle[p| (60)

where σμ=(1,σx,σy,σz)\sigma_{\mu}=(1,\sigma_{x},\sigma_{y},\sigma_{z}) and |p,[p||p\rangle,[p| are some spinors. For real physical momentum, the two spinors and their contractions are related by complex conjugation ([p|)=|p)([p|)^{*}=|p\rangle) and pq=[qp]\langle pq\rangle^{*}=[qp]. Given the bispinor of a 4-vector pμp^{\mu}, we can recover the 4-vector as follows:

pμ=12σμαα˙pα˙α=12σ¯α˙αμpαα˙,p^{\mu}=\frac{1}{2}\sigma^{\mu\alpha\dot{\alpha}}p_{\dot{\alpha}\alpha}=\frac{1}{2}\bar{\sigma}_{\dot{\alpha}\alpha}^{\mu}p^{{\alpha}\dot{\alpha}},

where σ¯μ=(1,σx,σy,σz)\bar{\sigma}_{\mu}=(1,-\sigma_{x},-\sigma_{y},-\sigma_{z}). The inner product of two null momentas pμ=|p[p|p^{\mu}=|p\rangle[p| and qμ=|q[q|q^{\mu}=|q\rangle[q| is given in terms of spinor contractions as

pq=12[pq]qp.p\cdot q=\frac{1}{2}[pq]\langle qp\rangle. (61)

If we have several momenta, which is usually the case in scattering processes, say p1,,pnp_{1},\dots,p_{n}, then we shorten the notations further and denote the corresponding spinors by |i,[i||i\rangle,[i| for i=1,,ni=1,\dots,n. The momentum conservation can then be expressed as

j=1nij[ji]=0\sum_{j=1}^{n}\langle ij\rangle[ji]=0 (62)

for pi=|i[i|p_{i}=|i\rangle[i|. ii be any one out of the nn external momenta. One can also express polarisations in terms of spinors but we will not need it explicitly in our discussions.

Appendix B Split Factors

Here we list all of the split factors corresponding to both like and unlike spins in our supergravity theory.
Gravi-photons splits:

Split0SG(z,11+0,21+0)=[12]12,Split0SG(z,11+0,20+1)=[12]12Split0SG(z,112+12,212+12)=[12]12,Split+2SG(z,11+0,21+0)=(1z)2[12]12Split2SG(z,11+0,21+0)=z212[12],Split2SG(z,11212,212+12)=(1z)212[12]Split+2SG(z,11212,212+12)=z2[12]12\begin{split}&\text{Split}_{0}^{\text{SG}}\left(z,1^{1+0},2^{1+0}\right)=-\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{0}^{\text{SG}}\left(z,1^{1+0},2^{0+1}\right)=-\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{0}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{\frac{1}{2}+\frac{1}{2}}\right)=-\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+2}^{\text{SG}}\left(z,1^{1+0},2^{-1+0}\right)=-(1-z)^{2}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-2}^{\text{SG}}\left(z,1^{1+0},2^{-1+0}\right)=-z^{2}\frac{\langle 12\rangle}{[12]},\qquad\text{Split}_{-2}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{\frac{1}{2}+\frac{1}{2}}\right)=-(1-z)^{2}\frac{\langle 12\rangle}{[12]}\\ &\text{Split}_{+2}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{\frac{1}{2}+\frac{1}{2}}\right)=-z^{2}\frac{[12]}{\langle 12\rangle}\end{split} (63)

Gravi-photinos splits:

Split1SG(z,112+0,212+0)=z(1z)[12]12,Split1SG(z,112+0,20+12)=z(1z)[12]12Split+2SG(z,112+0,212+0)=z(1z)3[12]12,Split2SG(z,112+0,212+0)=z3(1z)12[12]Split1SG(z,1112,212+1)=z(1z)[12]12,Split2SG(z,1121,212+1)=z(1z)312[12]Split+2SG(z,1121,212+1)=z3(1z)[12]12.\begin{split}&\text{Split}_{1}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{\frac{1}{2}+0}\right)=-\sqrt{z(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{1}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{0+\frac{1}{2}}\right)=-\sqrt{z(1-z)}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+2}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{-\frac{1}{2}+0}\right)=-\sqrt{z(1-z)^{3}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-2}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{-\frac{1}{2}+0}\right)=-\sqrt{z^{3}(1-z)}\frac{\langle 12\rangle}{[12]}\\ &\text{Split}_{1}^{\text{SG}}\left(z,1^{1-\frac{1}{2}},2^{-\frac{1}{2}+1}\right)=-\sqrt{z(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-2}^{\text{SG}}\left(z,1^{\frac{1}{2}-1},2^{-\frac{1}{2}+1}\right)=-\sqrt{z(1-z)^{3}}\frac{\langle 12\rangle}{[12]}\\ &\text{Split}_{+2}^{\text{SG}}\left(z,1^{\frac{1}{2}-1},2^{-\frac{1}{2}+1}\right)=-\sqrt{z^{3}(1-z)}\frac{[12]}{\langle 12\rangle}.\end{split} (64)

Scalars Splits:

Split2SG(z,10+0,20+0)z(1z)12[12],Split+2SG(z,10+0,20+0)=z(1z)[12]12Split2SG(z,11+1,2+11)=z(1z)12[12],Split+2SG(z,11+1,2+11)=z(1z)[12]12Split2SG(z,112+12,2+1212)=z(1z)12[12],Split+2SG(z,112+12,2+1212)=z(1z)[12]12.\begin{split}&\text{Split}_{-2}^{\text{SG}}\left(z,1^{0+0},2^{0+0}\right)-z(1-z)\frac{\langle 12\rangle}{[12]},\qquad\text{Split}_{+2}^{\text{SG}}\left(z,1^{0+0},2^{0+0}\right)=-z(1-z)\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-2}^{\text{SG}}\left(z,1^{-1+1},2^{+1-1}\right)=-z(1-z)\frac{\langle 12\rangle}{[12]},\qquad\text{Split}_{+2}^{\text{SG}}\left(z,1^{-1+1},2^{+1-1}\right)=-z(1-z)\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-2}^{\text{SG}}\left(z,1^{-\frac{1}{2}+\frac{1}{2}},2^{+\frac{1}{2}-\frac{1}{2}}\right)=-z(1-z)\frac{\langle 12\rangle}{[12]},\qquad\text{Split}_{+2}^{\text{SG}}\left(z,1^{-\frac{1}{2}+\frac{1}{2}},2^{+\frac{1}{2}-\frac{1}{2}}\right)=-z(1-z)\frac{[12]}{\langle 12\rangle}.\end{split} (65)

Graviton-Gravitino Splits:

Split32SG(z,11+1,21+12)=1z1z[12]12,Split32SG(z,11+1,212+1)=1z(1z)[12]12Split+32SG(z,11+1,2112)=(1z)5z[12]12,Split+32SG(z,11+1,2121)=(1z)5z[12]12\begin{split}&\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{1+1},2^{1+\frac{1}{2}}\right)=-\frac{1}{z\sqrt{1-z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}+1}\right)=-\frac{1}{z\sqrt{(1-z)}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+\frac{3}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-1-\frac{1}{2}}\right)=-\frac{\sqrt{(1-z)^{5}}}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+\frac{3}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-\frac{1}{2}-1}\right)=-\frac{\sqrt{(1-z)^{5}}}{z}\frac{[12]}{\langle 12\rangle}\end{split} (66)

All other Splits can be written via the helicity flipping relation in Eq. (37).

Graviton-Graviphoton splits:

Split1SG(z,11+1,21+0)=1z[12]12,Split1SG(z,11+1,20+1)=1z[12]12Split+1SG(z,11+1,201)=(1z)2z[12]12,Split+1SG(z,11+1,21+0)=(1z)2z[12]12Split1SG(z,11+1,212+12)=1z[12]12,Split+1SG(z,11+1,21212)=(1z)2z[12]12\begin{split}&\text{Split}_{-1}^{\text{SG}}\left(z,1^{1+1},2^{1+0}\right)=-\frac{1}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-1}^{\text{SG}}\left(z,1^{1+1},2^{0+1}\right)=-\frac{1}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+1},2^{0-1}\right)=-\frac{(1-z)^{2}}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+1},2^{-1+0}\right)=-\frac{(1-z)^{2}}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-1}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}+\frac{1}{2}}\right)=-\frac{1}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+1},2^{-\frac{1}{2}-\frac{1}{2}}\right)=-\frac{(1-z)^{2}}{z}\frac{[12]}{\langle 12\rangle}\end{split} (67)

Rest are summarised in Eq. (37).

Graviton-Graviphotino splits:

Split12SG(z,11+1,212+0)=(1z)z[12]12,Split12SG(z,11+1,212+0)=(1z)3z[12]12Split12SG(z,11+1,20+12)=(1z)z[12]12,Split12SG(z,11+1,2012)=(1z)3z[12]12Split12SG(z,11+1,2112)=(1z)z[12]12,Split12SG(z,11+1,21+12)=(1z)3z[12]12Split12SG(z,11+1,212+1)=(1z)z[12]12,Split12SG(z,11+1,2121)=(1z)3z[12]12\begin{split}&\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}+0}\right)=-\frac{\sqrt{(1-z)}}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-\frac{1}{2}+0}\right)=-\frac{\sqrt{(1-z)^{3}}}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{0+\frac{1}{2}}\right)=-\frac{\sqrt{(1-z)}}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{0-\frac{1}{2}}\right)=-\frac{\sqrt{(1-z)^{3}}}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{1-\frac{1}{2}}\right)=-\frac{\sqrt{(1-z)}}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-1+\frac{1}{2}}\right)=-\frac{\sqrt{(1-z)^{3}}}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-\frac{1}{2}+1}\right)=-\frac{\sqrt{(1-z)}}{z}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}-1}\right)=-\frac{\sqrt{(1-z)^{3}}}{z}\frac{[12]}{\langle 12\rangle}\end{split} (68)

Graviton-Scalar Splits:

Split0SG(z,11+1,20+0)=(1z)z[12]12Split0SG(z,11+1,211)=(1z)z[12]12Split0SG(z,11+1,21212)=(1z)z[12]12\begin{split}&\text{Split}_{0}^{\text{SG}}\left(z,1^{1+1},2^{0+0}\right)=-\frac{(1-z)}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{0}^{\text{SG}}\left(z,1^{1+1},2^{1-1}\right)=-\frac{(1-z)}{z}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{0}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}-\frac{1}{2}}\right)=-\frac{(1-z)}{z}\frac{[12]}{\langle 12\rangle}\end{split} (69)

Gravitino-Graviphoton Splits:

Split12SG(z,112+1,20+1)=1z[12]12,Split12SG(z,112+1,21+0)=1z[12]12Split12SG(z,112+1,212+12)=1z[12]12,Split12SG(z,11+12,20+1)=1z[12]12Split12SG(z,11+12,21+0)=1z[12]12,Split12SG(z,11+12,212+12)=1z[12]12Split+32SG(z,112+1,201)=(1z)2z[12]12,Split+32SG(z,11+12,21+0)=(1z)2z[12]12\begin{split}&\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0+1}\right)=-\frac{1}{\sqrt{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{1+0}\right)=-\frac{1}{\sqrt{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}+\frac{1}{2}}\right)=-\frac{1}{\sqrt{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{0+1}\right)=-\frac{1}{\sqrt{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{1+0}\right)=-\frac{1}{\sqrt{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{\frac{1}{2}+\frac{1}{2}}\right)=-\frac{1}{\sqrt{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+\frac{3}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0-1}\right)=-\frac{(1-z)^{2}}{\sqrt{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+\frac{3}{2}}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{-1+0}\right)=-\frac{(1-z)^{2}}{\sqrt{z}}\frac{[12]}{\langle 12\rangle}\end{split} (70)

Gravitino-Graviphotino Splits:

Split0SG(z,112+1,20+12)=(1z)z[12]12,Split0SG(z,112+1,212+0)=(1z)z[12]12Split0SG(z,112+1,2112)=(1z)z[12]12,Split0SG(z,112+1,212+1)=(1z)z[12]12Split+1SG(z,112+1,2012)=(1z)3z[12]12,Split+1SG(z,112+1,212+0)=(1z)3z[12]12Split+1SG(z,112+1,2121)=(1z)3z[12]12,Split0SG(z,11+12,20+12)=(1z)z[12]12Split0SG(z,11+12,212+0)=(1z)z[12]12,Split0SG(z,11+12,2112)=(1z)z[12]12Split0SG(z,11+12,212+1)=(1z)z[12]12,Split+1SG(z,11+12,2012)=(1z)3z[12]12Split+1SG(z,11+12,212+0)=(1z)3z[12]12,Split+1SG(z,11+12,21+12)=(1z)3z[12]12\begin{split}&\text{Split}_{0}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0+\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{0}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}+0}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{0}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{1-\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{0}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}+1}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0-\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)^{3}}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}+0}\right)=-\sqrt{\frac{(1-z)^{3}}{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}-1}\right)=-\sqrt{\frac{(1-z)^{3}}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{0}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{0+\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{0}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{\frac{1}{2}+0}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{0}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{1-\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{0}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{-\frac{1}{2}+1}\right)=-\sqrt{\frac{(1-z)}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{0-\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)^{3}}{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{-\frac{1}{2}+0}\right)=-\sqrt{\frac{(1-z)^{3}}{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{-1+\frac{1}{2}}\right)=-\sqrt{\frac{(1-z)^{3}}{z}}\frac{[12]}{\langle 12\rangle}\end{split} (71)

Gravitino-Scalar Splits:

Split12SG(z,112+1,20+0)=(1z)z[12]12,Split12SG(z,112+1,211)=(1z)z[12]12Split12SG(z,112+1,21212)=(1z)z[12]12,Split12SG(z,11+12,20+0)=(1z)z[12]12\begin{split}&\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0+0}\right)=-\frac{(1-z)}{\sqrt{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{1-1}\right)=-\frac{(1-z)}{\sqrt{z}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}-\frac{1}{2}}\right)=-\frac{(1-z)}{\sqrt{z}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+\frac{1}{2}},2^{0+0}\right)=-\frac{(1-z)}{\sqrt{z}}\frac{[12]}{\langle 12\rangle}\end{split} (72)

Similarly for other factorisations of Gravitino we have the same split factors.
Graviphoton-Graviphotino Splits:

Split12SG(z,10+1,20+12)=(1z)[12]12,Split12SG(z,10+1,212+0)=(1z)[12]12Split12SG(z,10+1,2112)=(1z)[12]12,Split12SG(z,112+12,20+12)=(1z)[12]12Split12SG(z,112+12,212+0)=(1z)[12]12,Split12SG(z,112+12,2112)=(1z)[12]12Split12SG(z,112+12,212+1)=(1z)[12]12,Split12SG(z,11+0,20+12)=(1z)[12]12Split12SG(z,11+0,212+0)=(1z)[12]12,Split12SG(z,11+0,212+1)=(1z)[12]12Split32SG(z,10+1,2012)=(1z)32[12]12,Split32SG(z,10+1,2121)=(1z)32[12]12Split32SG(z,112+12,2012)=(1z)32[12]12,Split32SG(z,112+12,212+0)=(1z)32[12]12Split32SG(z,11+0,212+0)=(1z)32[12]12,Split32SG(z,11+0,21+12)=(1z)32[12]12\begin{split}&\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{0+1},2^{0+\frac{1}{2}}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{0+1},2^{\frac{1}{2}+0}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{0+1},2^{1-\frac{1}{2}}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{0+\frac{1}{2}}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{\frac{1}{2}+0}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{1-\frac{1}{2}}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{-\frac{1}{2}+1}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+0},2^{0+\frac{1}{2}}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+0},2^{\frac{1}{2}+0}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+0},2^{-\frac{1}{2}+1}\right)=-\sqrt{(1-z)}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+1},2^{0-\frac{1}{2}}\right)=-(1-z)^{\frac{3}{2}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+1},2^{\frac{1}{2}-1}\right)=-(1-z)^{\frac{3}{2}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{0-\frac{1}{2}}\right)=-(1-z)^{\frac{3}{2}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{-\frac{1}{2}+0}\right)=-(1-z)^{\frac{3}{2}}\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{1+0},2^{-\frac{1}{2}+0}\right)=-(1-z)^{\frac{3}{2}}\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{1+0},2^{-1+\frac{1}{2}}\right)=-(1-z)^{\frac{3}{2}}\frac{[12]}{\langle 12\rangle}\end{split} (73)

Graviphoton-Scalar Splits:

Split1SG(z,10+1,20+0)=(1z)[12]12,Split1SG(z,10+1,211)=(1z)[12]12Split1SG(z,10+1,21212)=(1z)[12]12,Split1SG(z,11+0,20+0)=(1z)[12]12Split1SG(z,112+12,20+0)=(1z)[12]12,Split+1SG(z,112+12,21212)=(1z)[12]12Split1SG(z,11+0,211)=(1z)12[12],Split1SG(z,11+0,21212)=(1z)12[12]Split1SG(z,11212,21212)=(1z)12[12]\begin{split}&\text{Split}_{1}^{\text{SG}}\left(z,1^{0+1},2^{0+0}\right)=-(1-z)\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{1}^{\text{SG}}\left(z,1^{0+1},2^{1-1}\right)=-(1-z)\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{1}^{\text{SG}}\left(z,1^{0+1},2^{\frac{1}{2}-\frac{1}{2}}\right)=-(1-z)\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{1}^{\text{SG}}\left(z,1^{1+0},2^{0+0}\right)=-(1-z)\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{1}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{0+0}\right)=-(1-z)\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)=-(1-z)\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{-1}^{\text{SG}}\left(z,1^{-1+0},2^{1-1}\right)=-(1-z)\frac{\langle 12\rangle}{[12]},\qquad\text{Split}_{-1}^{\text{SG}}\left(z,1^{-1+0},2^{\frac{1}{2}-\frac{1}{2}}\right)=-(1-z)\frac{\langle 12\rangle}{[12]}\\ &\text{Split}_{-1}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)=-(1-z)\frac{\langle 12\rangle}{[12]}\end{split} (74)

Graviphotino-Scalar Splits:

Split32SG(z,10+12,20+0)=z12(1z)[12]12,Split32SG(z,10+12,21212)=z12(1z)[12]12Split32SG(z,112+0,20+0)=z12(1z)[12]12,Split32SG(z,112+0,21212)=z12(1z)12[12]Split32SG(z,11+12,211)=z12(1z)12[12],Split32SG(z,11+12,21212)=z12(1z)12[12]\begin{split}&\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+\frac{1}{2}},2^{0+0}\right)=-z^{\frac{1}{2}}(1-z)\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)=-z^{\frac{1}{2}}(1-z)\frac{[12]}{\langle 12\rangle}\\ &\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{0+0}\right)=-z^{\frac{1}{2}}(1-z)\frac{[12]}{\langle 12\rangle},\qquad\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-\frac{1}{2}+0},2^{\frac{1}{2}-\frac{1}{2}}\right)=-z^{\frac{1}{2}}(1-z)\frac{\langle 12\rangle}{[12]}\\ &\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-1+\frac{1}{2}},2^{1-1}\right)=-z^{\frac{1}{2}}(1-z)\frac{\langle 12\rangle}{[12]},\qquad\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-1+\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)=-z^{\frac{1}{2}}(1-z)\frac{\langle 12\rangle}{[12]}\end{split} (75)

Appendix C Explicit computations of Amplitudes

In this appendix, we explicitly calculate the collinear limits of states various spin combinations.

C.1 Like spins

The collinear limits of gravitons is calculated in Section 6.1 in detail. So we start with collinear limit of gravitinos.

Gravitinos
The factorisation of R-symmetry indices has the form

{(a;32)=(a;12)1(r;32)=1(r;12).\begin{cases}\left(a;\frac{3}{2}\right)=\left(a;\frac{1}{2}\right)\otimes 1\\ \left(r;\frac{3}{2}\right)=1\otimes\left(r;\frac{1}{2}\right).\end{cases}

We then have

Mn(1a;+32,2b;+32,,n)=Mn(1(a;12)1,2(b;12)1,,n)=Split1SG(z,112+1,212+1)×Mn1(pab;+1,,n)=ωpω1ω2z¯12z12Mn1(pab;+1,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{b;+\frac{3}{2}},\cdots,n\right)&=M_{n}\left(1^{\left(a;\frac{1}{2}\right)\otimes 1},2^{\left(b;\frac{1}{2}\right)\otimes 1},\cdots,n\right)\\ &=\text{Split}_{-1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}+1}\right)\times M_{n-1}\left(p^{ab;+1},\cdots,n\right)\\ &=\frac{\omega_{p}}{\sqrt{\omega_{1}\omega_{2}}}\frac{\bar{z}_{12}}{z_{12}}\;M_{n-1}\left(p^{ab;+1},\cdots,n\right)\end{split} (76)
Mn(1a;+32,2r;+32,,n)=Mn(1(a;12)1,21(r;12),,n)=Split1SG(z,112+1,21+12)×Mn1(par;+1,,n)=ωpω1ω2z¯12z12Mn1(par;+1,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{r;+\frac{3}{2}},\cdots,n\right)&=M_{n}\left(1^{\left(a;\frac{1}{2}\right)\otimes 1},2^{1\otimes\left(r;\frac{1}{2}\right)},\cdots,n\right)\\ &=\text{Split}_{-1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{1+\frac{1}{2}}\right)\times M_{n-1}\left(p^{ar;+1},\cdots,n\right)\\ &=\frac{\omega_{p}}{\sqrt{\omega_{1}\omega_{2}}}\frac{\bar{z}_{12}}{z_{12}}\;M_{n-1}\left(p^{ar;+1},\cdots,n\right)\end{split} (77)

The collinear limits remains the same under (a,b)(r,s)(a,b)\to(r,s). All these can be combined and we can write

Mn(1A;+32,2B;+32,,n)=ωpω1ω2z¯12z12Mn1(pAB;+1,,n)\begin{split}M_{n}\left(1^{A;+\frac{3}{2}},2^{B;+\frac{3}{2}},\cdots,n\right)=\frac{\omega_{p}}{\sqrt{\omega_{1}\omega_{2}}}\frac{\bar{z}_{12}}{z_{12}}\;M_{n-1}\left(p^{AB;+1},\cdots,n\right)\end{split} (78)

For opposite helicities, we have

Mn(1a;+32,2b32,,n)=δbaSplit2SG(z,112+1,2121)Mn1(p+2,,n)+δbaSplit+2SG(z,112+1,2121)Mn1(p2,,n)=δbaω252ω112ωp2z¯12z12Mn1(p2,,n)+δbaω152ω212ωp2z12z¯12Mn1(p+2,,n).\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2_{b}^{-\frac{3}{2}},\cdots,n\right)&=\delta^{a}_{b}\text{Split}_{-2}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}-1}\right)M_{n-1}\left(p^{+2},\cdots,n\right)\\ &+\delta^{a}_{b}\text{Split}_{+2}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}-1}\right)M_{n-1}\left(p^{-2},\cdots,n\right)\\ &=\delta^{a}_{b}\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{1}^{\frac{1}{2}}\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}M_{n-1}\left(p^{-2},\cdots,n\right)+\delta^{a}_{b}\frac{\omega_{1}^{\frac{5}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}M_{n-1}\left(p^{+2},\cdots,n\right).\end{split} (79)

The collinear limit remains the same under (a,b)(r,s)(a,b)\to(r,s). Infact since there are no other nontrivial split factors for other factorisations, the above collinear limit is true for any 1A,B81\leq A,B\leq 8:

Mn(1A;+32,2B32,,n)=δBAω252ω112ωp2z¯12z12Mn1(p2,,n)+δBAω152ω212ωp2z12z¯12Mn1(p+2,,n).\begin{split}M_{n}\left(1^{A;+\frac{3}{2}},2_{B}^{-\frac{3}{2}},\cdots,n\right)=\delta^{A}_{B}\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{1}^{\frac{1}{2}}\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}M_{n-1}\left(p^{-2},\cdots,n\right)+\delta^{A}_{B}\frac{\omega_{1}^{\frac{5}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}M_{n-1}\left(p^{+2},\cdots,n\right).\end{split} (80)

Graviphotons
The factorizations of R-symmetry indices are as follows,

{(ab;1)=(ab;0)1(ar;1)=(a,12)(r;12)(rs;1)=1(rs;0)\begin{cases}\left(ab;1\right)=\left(ab;0\right)\otimes 1\\ \left(ar;1\right)=\left(a,\frac{1}{2}\right)\otimes\left(r;\frac{1}{2}\right)\\ \left(rs;1\right)=1\otimes\left(rs;0\right)\end{cases}

Using the split factors from Appendix B we have

Mn(1ab;+1,2cd;+1,,n)=Mn(1ab;(10),2cd;(10),,n)=Split0SG(z,11+0,21+0)×Mn1(pabcd;0,,n)=z¯12z12×Mn1(pabcd;0,,n)\begin{split}M_{n}\left(1^{ab;+1},2^{cd;+1},\cdots,n\right)&=M_{n}\left(1^{ab;(1\otimes 0)},2^{cd;(1\otimes 0)},\cdots,n\right)\\ &=\text{Split}_{0}^{\text{SG}}\left(z,1^{1+0},2^{1+0}\right)\times M_{n-1}\left(p^{abcd;0},\cdots,n\right)\\ &=\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abcd;0},\cdots,n\right)\end{split} (81)

Similarly

Mn(1rs;+1,2tu;+1,,n)=z¯12z12×Mn1(prstu;0,,n)M_{n}\left(1^{rs;+1},2^{tu;+1},\cdots,n\right)=\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rstu;0},\cdots,n\right)

Next

Mn(1rs;+1,2ab;+1,,n)=Mn(1rs;(10),2ab;(01),,n)=z¯12z12×Mn1(prsab;0,,n)\begin{split}M_{n}\left(1^{rs;+1},2^{ab;+1},\cdots,n\right)&=M_{n}\left(1^{rs;(1\otimes 0)},2^{ab;(0\otimes 1)},\cdots,n\right)\\ &=\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rsab;0},\cdots,n\right)\end{split} (82)

Similarly

Mn(1ab;+1,2rs;+1,,n)=z¯12z12×Mn1(pabrs;0,,n)M_{n}\left(1^{ab;+1},2^{rs;+1},\cdots,n\right)=\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abrs;0},\cdots,n\right)

Next

Mn(1ar;+1,2bs;+1,,n)=Mn(1ar;(1212),2bs;(1212),,n)=z¯12z12×Mn1(parbs;0,,n)\begin{split}M_{n}\left(1^{ar;+1},2^{bs;+1},\cdots,n\right)&=M_{n}\left(1^{ar;(\frac{1}{2}\otimes\frac{1}{2})},2^{bs;(\frac{1}{2}\otimes\frac{1}{2})},\cdots,n\right)\\ &=\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{arbs;0},\cdots,n\right)\end{split} (83)

These can be combined to write the collinear limit uniformly as

Mn(1AB;+1,2CD;+1,,n)=z¯12z12×Mn1(pABCD;0,,n)\begin{split}M_{n}\left(1^{AB;+1},2^{CD;+1},\cdots,n\right)&=\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots,n\right)\end{split} (84)

where 1A,B81\leq A,B\leq 8. For opposite helicities we have,

Mn(1ar;+1,2bs1,,n)=Mn(1ar;(1212),2bs(1212),,n)=δbaδsr[Split2SG(z,112+12,21212)×Mn1(p+2,,n)+Split+2SG(z,112+12,21212)×Mn1(p2,,n)]=δbaδsr[ω22ωp2z¯12z12×Mn1(p2,,n)+ω12ωp2z12z¯12×Mn1(p+2,,n)]\begin{split}M_{n}\left(1^{ar;+1},2_{bs}^{-1},\cdots,n\right)&=M_{n}\left(1^{ar;(\frac{1}{2}\otimes\frac{1}{2})},2_{bs}^{(-\frac{1}{2}\otimes-\frac{1}{2})},\cdots,n\right)\\ &=-\delta^{a}_{b}\delta^{r}_{s}\Big{[}\text{Split}_{-2}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{-\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\text{Split}_{+2}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{-\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\\ &=-\delta^{a}_{b}\delta^{r}_{s}\Big{[}\frac{\omega_{2}^{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)+\frac{\omega_{1}^{2}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\Big{]}\end{split} (85)

Note that the negative sign in the first comes from the negative sign in the factorisation of negative helicity graviphotons.
Similarly,

Mn(1ab;+1,2cd1,,n)=Mn(1ab;(10),2cd(10),,n)=12!α4ϵcdefϵabef[Split2SG(z,11+0,21+0)×Mn1(p+2,,n)+Split+2SG(z,11+0,21+0)×Mn1(p2,,n)]=α4δcdab[ω22ωp2z¯12z12×Mn1(p2,,n)+ω12ωp2z12z¯12×Mn1(p+2,,n)]\begin{split}M_{n}\left(1^{ab;+1},2_{cd}^{-1},\cdots,n\right)&=M_{n}\left(1^{ab;(1\otimes 0)},2_{cd}^{(-1\otimes 0)},\cdots,n\right)\\ &=\frac{1}{2!}\alpha_{4}\epsilon_{cdef}\epsilon^{abef}\Big{[}\text{Split}_{-2}^{\text{SG}}\left(z,1^{1+0},2^{-1+0}\right)\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\text{Split}_{+2}^{\text{SG}}\left(z,1^{1+0},2^{-1+0}\right)\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\\ &=\alpha_{4}\delta^{ab}_{cd}\Big{[}\frac{\omega_{2}^{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)+\frac{\omega_{1}^{2}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\Big{]}\end{split} (86)

where the generalised Kronecker delta δb1bna1an\delta^{a_{1}\dots a_{n}}_{b_{1}\dots b_{n}} is defined as

δb1bna1an=σSnsign(σ)δb1aσ(1)δbnaσ(n),\delta^{a_{1}\dots a_{n}}_{b_{1}\dots b_{n}}=\sum_{\sigma\in S_{n}}\text{sign}(\sigma)\delta^{a_{\sigma(1)}}_{b_{1}}\dots\delta^{a_{\sigma(n)}}_{b_{n}}, (87)

and we used the self-duality condition Eq.(33). This collinear limit remains the same under (a,b,c,d)(r,s,t,u)(a,b,c,d)\to(r,s,t,u) with α4\alpha_{4} replaced by α~4\tilde{\alpha}_{4}. Thus if we pick α4=α~4=1\alpha_{4}=\tilde{\alpha}_{4}=-1, then using the fact that δra=0\delta^{a}_{r}=0, we can write the collinear limit of two opposite helicity gauge bosons collectively as

Mn(1AB;+1,2CD1,,n)=δCDAB[ω22ωp2z¯12z12×Mn1(p2,,n)+ω12ωp2z12z¯12×Mn1(p+2,,n)].\begin{split}M_{n}\left(1^{AB;+1},2_{CD}^{-1},\cdots,n\right)&=-\delta^{AB}_{CD}\Big{[}\frac{\omega_{2}^{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)\\ &\hskip 85.35826pt+\frac{\omega_{1}^{2}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\Big{]}.\end{split} (88)

Our choice of the parameters α4\alpha_{4} and α~4\tilde{\alpha}_{4} is purely motivated by our desire to combine the collinear limits for different factorisations of the gauge bosons in supergravity. Other choices of the parameters will introduce some extra negative signs in some of the collinear limits.

Graviphotinos
The factorisation R-symmetry indices is given by

{(abr;12)=(ab;0)(r;12)(ars;12)=(a;12)(rs;0){(rst;12)=ϵrstu(1(u;12))(abc;12)=ϵabcd((d;12)1)(sum overu,d)\begin{split}&\begin{cases}\left(abr;\frac{1}{2}\right)=\left(ab;0\right)\otimes\left(r;\frac{1}{2}\right)&\\ \left(ars;\frac{1}{2}\right)=\left(a;\frac{1}{2}\right)\otimes\left(rs;0\right)\end{cases}\\ &\begin{cases}\left(rst;\frac{1}{2}\right)=-\epsilon^{rstu}(1\otimes(u;-\frac{1}{2}))&\\ \left(abc;\frac{1}{2}\right)=-\epsilon^{abcd}((d;-\frac{1}{2})\otimes 1)\end{cases}\quad(\text{sum over}\leavevmode\nobreak\ u,d)\end{split}

Using this factoriation and the split factors in Appendix B the collinear limits of various combination of R-symmetry indices is calculated below. We have

Mn(1ars;+12,2btu;12,,n)=Mn(1ars;(120),2btu;(120),,n)=ϵrstuϵabcdSplit1SG(z,112+0,212+0)×Mn1(pcd1,,n)=ϵrstuϵabcdω1ω2ωpz¯12z12×Mn1(pcd1,,n).\begin{split}M_{n}\left(1^{ars;+\frac{1}{2}},2^{btu;\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{ars;(\frac{1}{2}\otimes 0)},2^{btu;(\frac{1}{2}\otimes 0)},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{\frac{1}{2}+0}\right)\times M_{n-1}\left(p_{cd}^{-1},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\;\frac{\sqrt{\omega_{1}\omega_{2}}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{cd}^{-1},\cdots,n\right).\end{split} (89)

Here the ϵrstu\epsilon^{rstu} factor appears because of the collinear split factor between two scalars in 𝒩=4\mathcal{N}=4 SYM.
Similarly for other non-trivial factorisation we have,

Mn(1ars;+12,2bct;+12,,n)=Mn(1ars;(120),2bct;(012),,n)=ϵabcdϵrstuω1ω2ωpz¯12z12×Mn1(pdu1,,n)\begin{split}M_{n}\left(1^{ars;+\frac{1}{2}},2^{bct;+\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{ars;(\frac{1}{2}\otimes 0)},2^{bct;(0\otimes\frac{1}{2})},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\frac{\sqrt{\omega_{1}\omega_{2}}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-1}_{du},\cdots,n\right)\end{split} (90)
Mn(1rst;+12,2abc;+12,,n)=Mn(1rst;(112),2abc;(121),,n)=ϵrstuϵabcdω1ω2ωpz¯12z12×Mn1(pud1,,n)\begin{split}M_{n}\left(1^{rst;+\frac{1}{2}},2^{abc;+\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{rst;(1\otimes-\frac{1}{2})},2^{abc;(-\frac{1}{2}\otimes 1)},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\;\frac{\sqrt{\omega_{1}\omega_{2}}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{ud}^{-1},\cdots,n\right)\end{split} (91)
Mn(1ars;+12,2btu12,,n)=Mn(1ars;(120),2btu(120),,n)=ϵtuvwϵrsvwδba[Split2SG(z,112+0,212+0)×Mn1(p+2,,n)+Split+2SG(z,112+0,212+0)×Mn1(p2,,n)]=ϵtuvwϵrsvwδba[ω132ω212ωp2z12z¯12×Mn1(p+2,,n)+ω232ω112ωp2z¯12z12×Mn1(p2,,n)]\begin{split}M_{n}\left(1^{ars;+\frac{1}{2}},2_{btu}^{-\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{ars;(\frac{1}{2}\otimes 0)},2_{btu}^{(-\frac{1}{2}\otimes 0)},\cdots,n\right)\\ &=\epsilon_{tuvw}\epsilon^{rsvw}\delta^{a}_{b}\Big{[}\text{Split}_{-2}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{-\frac{1}{2}+0}\right)\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\text{Split}_{+2}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{-\frac{1}{2}+0}\right)\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\\ &=\epsilon_{tuvw}\epsilon^{rsvw}\delta^{a}_{b}\Big{[}\frac{\omega_{1}^{\frac{3}{2}}\omega_{2}^{\frac{1}{2}}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\frac{\omega_{2}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\end{split} (92)


Scalars
The three possible channels are 0=000=0\otimes 0, 0=±110=\pm 1\otimes\mp 1 and 0=±12120=\pm\frac{1}{2}\otimes\mp\frac{1}{2}. We have the non-trivial splits are given in Appendix 65. The factorization of R-symmetry indices are,

(abrs;0)=(ab;0)(rs;0)\left(abrs;0\right)=\left(ab;0\right)\otimes(rs;0)
{(abcd;0)=ϵabcd(11)(rstu;0)=ϵrstu(11)\begin{cases}\left(abcd;0\right)=-\epsilon^{abcd}(-1\otimes 1)\\ \left(rstu;0\right)=-\epsilon^{rstu}(1\otimes-1)\end{cases}
{(abcr;0)=ϵabcd(d;12)(r;12)(arst;0)=ϵrstu(a;12)(u;12)\begin{cases}\left(abcr;0\right)=-\epsilon^{abcd}\left(d;-\frac{1}{2}\right)\otimes(r;\frac{1}{2})\\ \left(arst;0\right)=-\epsilon^{rstu}(a;\frac{1}{2})\otimes\left(u;-\frac{1}{2}\right)\end{cases}

The collinear amplitudes are then given by

Mn(1abrs;0,2cdtu;0,,n)=Mn(1abrs;(00),2cdtu;(00),,n)=ϵabcdϵrstu[Split2SG(z,10+0,20+0)×Mn1(p+2,,n)+Split+2SG(z,10+0,20+0)×Mn1(p2,,n)]=ϵabcdϵrstu[ω1ω2ωp2z12z¯12×Mn1(p+2,,n)+ω1ω2ωp2z¯12z12×Mn1(p2,,n)]\begin{split}M_{n}\left(1^{abrs;0},2^{cdtu;0},\cdots,n\right)&=M_{n}\left(1^{abrs;(0\otimes 0)},2^{cdtu;(0\otimes 0)},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\Big{[}\text{Split}_{-2}^{\text{SG}}\left(z,1^{0+0},2^{0+0}\right)\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\text{Split}_{+2}^{\text{SG}}\left(z,1^{0+0},2^{0+0}\right)\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\\ &=\epsilon^{abcd}\epsilon^{rstu}\Big{[}\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\end{split} (93)
Mn(1abcd;0,2rstu;0,,n)=Mn(1abcd;(11),2rstu;(+11),,n)=ϵabcdϵrstu[Split2SG(z,11+1,2+11)×Mn1(p+2,,n)+Split+2SG(z,11+1,2+11)×Mn1(p2,,n)]=ϵabcdϵrstu[ω2ω1ωp2z12z¯12×Mn1(p+2,,n)+ω1ω2ωp2z¯12z12×Mn1(p2,,n)]\begin{split}M_{n}\left(1^{abcd;0},2^{rstu;0},\cdots,n\right)&=M_{n}\left(1^{abcd;(-1\otimes 1)},2^{rstu;(+1\otimes-1)},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\Big{[}\text{Split}_{-2}^{\text{SG}}\left(z,1^{-1+1},2^{+1-1}\right)\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\text{Split}_{+2}^{\text{SG}}\left(z,1^{-1+1},2^{+1-1}\right)\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\\ &=\epsilon^{abcd}\epsilon^{rstu}\Big{[}\frac{\omega_{2}\omega_{1}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\end{split} (94)
Mn(1abcu;0,2drst;0,,n)=ϵabceϵrstvMn(1(e,12)(u,12),2(d,+12)(v,12),,n)=ϵabceϵrstvδedδvu[Split2SG(z,112+12,21212)×Mn1(p+2,,n)+Split+2SG(z,112+12,2+1212)×Mn1(p2,,n)]=ϵabcdϵrstu[ω2ω1ωp2z12z¯12×Mn1(p+2,,n)+ω1ω2ωp2z¯12z12×Mn1(p2,,n)]\begin{split}M_{n}\left(1^{abcu;0},2^{drst;0},\cdots,n\right)&=\epsilon^{abce}\epsilon^{rstv}M_{n}\left(1^{(e,-\frac{1}{2})\otimes(u,\frac{1}{2})},2^{(d,+\frac{1}{2})\otimes(v,-\frac{1}{2})},\cdots,n\right)\\ &=\epsilon^{abce}\epsilon^{rstv}\delta^{d}_{e}\delta^{u}_{v}\Big{[}\text{Split}_{-2}^{\text{SG}}\left(z,1^{-\frac{1}{2}+\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\text{Split}_{+2}^{\text{SG}}\left(z,1^{-\frac{1}{2}+\frac{1}{2}},2^{+\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\\ &=\epsilon^{abcd}\epsilon^{rstu}\Big{[}\frac{\omega_{2}\omega_{1}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\end{split} (95)

Similarly,

Mn(1arst;0,2bcdu;0,,n)=ϵrstuϵabcd[ω2ω1ωp2z12z¯12×Mn1(p+2,,n)+ω1ω2ωp2z¯12z12×Mn1(p2,,n)]\begin{split}M_{n}\left(1^{arst;0},2^{bcdu;0},\cdots,n\right)&=\epsilon^{rstu}\epsilon^{abcd}\Big{[}\frac{\omega_{2}\omega_{1}}{\omega_{p}^{2}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{+2},\cdots,n\right)\\ &\qquad+\frac{\omega_{1}\omega_{2}}{\omega_{p}^{2}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-2},\cdots,n\right)\Big{]}\end{split}

C.2 For Unlike Spins

We now use the splits for mixed helicities listed in Appendix B and the factorisation of R-symmetry indices mentioned in the calculation of collinear limit for like spins.

Graviton-Gravitino
We have

Mn(1+2,2r;+32,,n)=Mn(1(11),21(r;12),,n)=Split32SG(z,11+1,21+12)×Mn1(pr;+32,,n)=ωp32ω212ω1z¯12z12×Mn1(pr;+32,,n)\begin{split}M_{n}\left(1^{+2},2^{r;+\frac{3}{2}},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{1\otimes(r;\frac{1}{2})},\cdots,n\right)\\ &=\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{1+1},2^{1+\frac{1}{2}}\right)\times M_{n-1}\left(p^{r;+\frac{3}{2}},\cdots,n\right)\\ &=\frac{\omega_{p}^{\frac{3}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{r;+\frac{3}{2}},\cdots,n\right)\end{split} (96)
Mn(1+2,2r32,,n)=Mn(1(11),21(r;12),,n)=Split+32SG(z,11+1,2112)×Mn1(pr32,,n)=ω252ωp32ω1z¯12z12×Mn1(pr32,,n)\begin{split}M_{n}\left(1^{+2},2_{r}^{-\frac{3}{2}},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{-1\otimes(r;-\frac{1}{2})},\cdots,n\right)\\ &=\text{Split}_{+\frac{3}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-1-\frac{1}{2}}\right)\times M_{n-1}\left(p_{r}^{-\frac{3}{2}},\cdots,n\right)\\ &=\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{p}^{\frac{3}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{r}^{-\frac{3}{2}},\cdots,n\right)\end{split} (97)

Similarly we have

Mn(1+2,2a;+32,,n)=ωp32ω212ω1z¯12z12×Mn1(pa;+32,,n)\begin{split}M_{n}\left(1^{+2},2^{a;+\frac{3}{2}},\cdots,n\right)&=\frac{\omega_{p}^{\frac{3}{2}}}{\omega_{2}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{a;+\frac{3}{2}},\cdots,n\right)\end{split}
Mn(1+2,2a32,,n)=ω252ωp32ω1z¯12z12×Mn1(pa32,,n)\begin{split}M_{n}\left(1^{+2},2_{a}^{-\frac{3}{2}},\cdots,n\right)&=\frac{\omega_{2}^{\frac{5}{2}}}{\omega_{p}^{\frac{3}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{a}^{-\frac{3}{2}},\cdots,n\right)\end{split}

Other helicity combination of graviton and gravitino can be obtained by flipping the indices along with z12z¯12z_{12}\leftrightarrow\bar{z}_{12}.

Graviton-Graviphoton

Mn(1+2,2ab;+1,,n)=Mn(1(11),2(ab;0)1,,n)=Split1SG(z,11+1,20+1)×Mn1(pab;+1,,n)=ωpω1z¯12z12×Mn1(pab;+1,,n)\begin{split}M_{n}\left(1^{+2},2^{ab;+1},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{(ab;0)\otimes 1},\cdots,n\right)\\ &=\text{Split}_{-1}^{\text{SG}}\left(z,1^{1+1},2^{0+1}\right)\times M_{n-1}\left(p^{ab;+1},\cdots,n\right)\\ &=\frac{\omega_{p}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ab;+1},\cdots,n\right)\end{split} (98)
Mn(1+2,2rs;+1,,n)=Mn(1(11),21(rs;0),,n)=Split1SG(z,11+1,21+0)×Mn1(prs;+1,,n)=ωpω1z¯12z12×Mn1(prs;+1,,n)\begin{split}M_{n}\left(1^{+2},2^{rs;+1},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{1\otimes(rs;0)},\cdots,n\right)\\ &=\text{Split}_{-1}^{\text{SG}}\left(z,1^{1+1},2^{1+0}\right)\times M_{n-1}\left(p^{rs;+1},\cdots,n\right)\\ &=\frac{\omega_{p}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rs;+1},\cdots,n\right)\end{split} (99)
Mn(1+2,2ar;+1,,n)=Mn(1(11),2(a;12)(r;12),,n)=Split1SG(z,11+1,212+12)×Mn1(par;+1,,n)=ωpω1z¯12z12×Mn1(par;+1,,n)\begin{split}M_{n}\left(1^{+2},2^{ar;+1},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{(a;\frac{1}{2})\otimes(r;\frac{1}{2})},\cdots,n\right)\\ &=\text{Split}_{-1}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}+\frac{1}{2}}\right)\times M_{n-1}\left(p^{ar;+1},\cdots,n\right)\\ &=\frac{\omega_{p}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ar;+1},\cdots,n\right)\end{split} (100)
Mn(1+2,2ab1,,n)=Mn(1(11),2(ab;0)1,,n)=Split+1SG(z,11+1,201)×Mn1(pab1,,n)=ω22ωpω1z¯12z12×Mn1(pab1,,n)\begin{split}M_{n}\left(1^{+2},2_{ab}^{-1},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{(ab;0)\otimes-1},\cdots,n\right)\\ &=\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+1},2^{0-1}\right)\times M_{n-1}\left(p_{ab}^{-1},\cdots,n\right)\\ &=\frac{\omega_{2}^{2}}{\omega_{p}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{ab}^{-1},\cdots,n\right)\end{split} (101)
Mn(1+2,2rs1,,n)=Mn(1(11),21(rs;0),,n)=Split+1SG(z,11+1,21+0)×Mn1(prs1,,n)=ω22ωpω1z¯12z12×Mn1(prs1,,n)\begin{split}M_{n}\left(1^{+2},2_{rs}^{-1},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{-1\otimes(rs;0)},\cdots,n\right)\\ &=\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+1},2^{-1+0}\right)\times M_{n-1}\left(p_{rs}^{-1},\cdots,n\right)\\ &=\frac{\omega_{2}^{2}}{\omega_{p}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{rs}^{-1},\cdots,n\right)\end{split} (102)
Mn(1+2,2ar1,,n)=Mn(1(11),2(a;12)(r;12),,n)=Split+1SG(z,11+1,21212)×Mn1(par1,,n)=ω22ω1ωpz¯12z12×Mn1(par1,,n)\begin{split}M_{n}\left(1^{+2},2_{ar}^{-1},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{(a;-\frac{1}{2})\otimes(r;-\frac{1}{2})},\cdots,n\right)\\ &=\text{Split}_{+1}^{\text{SG}}\left(z,1^{1+1},2^{-\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p_{ar}^{-1},\cdots,n\right)\\ &=\frac{\omega_{2}^{2}}{\omega_{1}\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{ar}^{-1},\cdots,n\right)\end{split} (103)

Similarly we can calculate the collinear helicity combinations of Graviphotons with negative helicity Gravitons.
Hence

Mn(1+2,2AB1,,n)=ω22ω1ωpz¯12z12×Mn1(pAB1,,n)\begin{split}M_{n}\left(1^{+2},2_{AB}^{-1},\cdots,n\right)=\frac{\omega_{2}^{2}}{\omega_{1}\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{AB}^{-1},\cdots,n\right)\end{split} (104)

Graviton-Graviphotino

Mn(1+2,2abr;+12,,n)=Mn(1(11),2(ab;0)(r;12),,n)=Split12SG(z,11+1,20+12)×Mn1(pabr;+12,,n)=ω2ωpω1z¯12z12×Mn1(pabr;+12,,n)\begin{split}M_{n}\left(1^{+2},2^{abr;+\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{(ab;0)\otimes(r;\frac{1}{2})},\cdots,n\right)\\ &=\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{0+\frac{1}{2}}\right)\times M_{n-1}\left(p^{abr;+\frac{1}{2}},\cdots,n\right)\\ &=\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abr;+\frac{1}{2}},\cdots,n\right)\end{split} (105)

Similarly,

Mn(1+2,2ars;+12,,n)=ω2ωpω1z¯12z12×Mn1(pars;+12,,n)\begin{split}M_{n}\left(1^{+2},2^{ars;+\frac{1}{2}},\cdots,n\right)&=\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ars;+\frac{1}{2}},\cdots,n\right)\end{split}
Mn(1+2,2abc;+12,,n)=ϵabcdMn(1(11),2(d;12)1,,n)=13!ϵabcdϵdefgSplit12SG(z,11+1,212+1)×Mn1(pefg;+12,,n)=13!δefgabcω2ωpω1z¯12z12×Mn1(pefg;+12,,n)=ω2ωpω1z¯12z12×Mn1(pabc;+12,,n)\begin{split}M_{n}\left(1^{+2},2^{abc;+\frac{1}{2}},\cdots,n\right)&=-\epsilon^{abcd}M_{n}\left(1^{(1\otimes 1)},2^{(d;-\frac{1}{2})\otimes 1},\cdots,n\right)\\ &=-\frac{1}{3!}\epsilon^{abcd}\epsilon_{defg}\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{-\frac{1}{2}+1}\right)\times M_{n-1}\left(p^{efg;+\frac{1}{2}},\cdots,n\right)\\ &=\frac{1}{3!}\delta^{abc}_{efg}\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{efg;+\frac{1}{2}},\cdots,n\right)\\ &=\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abc;+\frac{1}{2}},\cdots,n\right)\end{split} (106)

Here we are using change of basis as a redefinition for the fields in SYM:

Γa13!ϵabcdΓbcd\Gamma_{a}^{-}\equiv\frac{1}{3!}\epsilon_{abcd}\Gamma^{-bcd}

Similarly,

Mn(1+2,2rst;+12,,n)=ω2ωpω1z¯12z12×Mn1(prst;+12,,n)\begin{split}M_{n}\left(1^{+2},2^{rst;+\frac{1}{2}},\cdots,n\right)&=\frac{\sqrt{\omega_{2}\omega_{p}}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rst;+\frac{1}{2}},\cdots,n\right)\end{split}
Mn(1+2,2abr12,,n)=Mn(1(11),2(ab;0)(r;12),,n)=Split+12SG(z,11+1,2012)×Mn1(pabr12,,n)=ω232ωp12ω1z¯12z12×Mn1(pabr12,,n)\begin{split}M_{n}\left(1^{+2},2_{abr}^{-\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(1\otimes 1)},2^{(ab;0)\otimes(r;-\frac{1}{2})},\cdots,n\right)\\ &=\text{Split}_{+\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{0-\frac{1}{2}}\right)\times M_{n-1}\left(p_{abr}^{-\frac{1}{2}},\cdots,n\right)\\ &=\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{abr}^{-\frac{1}{2}},\cdots,n\right)\end{split} (107)

Similarly,

Mn(1+2,2ars12,,n)=ω232ωp12ω1z¯12z12×Mn1(pars12,,n)\begin{split}M_{n}\left(1^{+2},2_{ars}^{-\frac{1}{2}},\cdots,n\right)&=\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{ars}^{-\frac{1}{2}},\cdots,n\right)\end{split}
Mn(1+2,2abc12,,n)=ϵabcdMn(1(11),2(d;12)1,,n)=13!ϵabcdϵdefgSplit12SG(z,11+1,2121)×Mn1(pefg;12,,n)=13!δabcefgω232ωp12ω1z¯12z12×Mn1(pefg;12,,n)=ω232ωp12ω1z¯12z12×Mn1(pabc12,,n)\begin{split}M_{n}\left(1^{+2},2_{abc}^{-\frac{1}{2}},\cdots,n\right)&=\epsilon_{abcd}M_{n}\left(1^{(1\otimes 1)},2^{(d;\frac{1}{2})\otimes-1},\cdots,n\right)\\ &=\frac{1}{3!}\epsilon_{abcd}\epsilon^{defg}\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{1+1},2^{\frac{1}{2}-1}\right)\times M_{n-1}\left(p^{-\frac{1}{2}}_{efg;},\cdots,n\right)\\ &=-\frac{1}{3!}\delta^{efg}_{abc}\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-\frac{1}{2}}_{efg;},\cdots,n\right)\\ &=-\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{abc}^{-\frac{1}{2}},\cdots,n\right)\end{split} (108)

Similarly

Mn(1+2,2rst12,,n)=ω232ωp12ω1z¯12z12×Mn1(prst12,,n).\begin{split}M_{n}\left(1^{+2},2_{rst}^{-\frac{1}{2}},\cdots,n\right)&=-\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{1}{2}}\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{rst}^{-\frac{1}{2}},\cdots,n\right).\end{split}

Graviton-Scalar
Since the split factors corresponding to all factorisations of the R-symmetry indices is the same, the collinear limit can be uniformly written as

Mn(1+2,2ABCD;0,,n)=ω2ω1z¯12z12×Mn1(pABCD;0,,n)M_{n}\left(1^{+2},2^{ABCD;0},\cdots,n\right)=\frac{\omega_{2}}{\omega_{1}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots,n\right) (109)

Gravitino-Graviphoton

Mn(1a;+32,2bc;+1,,n)=Mn(1(a;12)1,2(bc;0)1,,n)=Split12SG(z,112+1,20+1)×Mn1(pabc;12,,n)=ωpω1z¯12z12×Mn1(pabc;+12,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{bc;+1},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(bc;0)\otimes 1},\cdots,n\right)\\ &=\text{Split}_{-\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0+1}\right)\times M_{n-1}\left(p^{abc;\frac{1}{2}},\cdots,n\right)\\ &=\sqrt{\frac{\omega_{p}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abc;+\frac{1}{2}},\cdots,n\right)\end{split} (110)

Similarly,

Mn(1r;+32,2st;+1,,n)=ωpω1z¯12z12×Mn1(prst;+12,,n)\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2^{st;+1},\cdots,n\right)&=\sqrt{\frac{\omega_{p}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rst;+\frac{1}{2}},\cdots,n\right)\end{split}
Mn(1a;+32,2rs;+1,,n)=ωpω1z¯12z12×Mn1(pars;+12,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{rs;+1},\cdots,n\right)&=\sqrt{\frac{\omega_{p}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ars;+\frac{1}{2}},\cdots,n\right)\end{split}
Mn(1r;+32,2ab;+1,,n)=ωpω1z¯12z12×Mn1(prab;+12,,n)\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2^{ab;+1},\cdots,n\right)&=\sqrt{\frac{\omega_{p}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rab;+\frac{1}{2}},\cdots,n\right)\end{split}

In conclusion, we can write

Mn(1A;+32,2BC;+1,,n)=ωpω1z¯12z12×Mn1(pABC;+12,,n)M_{n}\left(1^{A;+\frac{3}{2}},2^{BC;+1},\cdots,n\right)=\sqrt{\frac{\omega_{p}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABC;+\frac{1}{2}},\cdots,n\right) (111)
Mn(1a;+32,2bc1,,n)=Mn(1(a;12)1,2(bc;0)1,,n)=12!ϵbcdeϵadefSplit32SG(z,112+1,201)×Mn1(pf32,,n)=δbcafω22ωp32ω112z¯12z12×Mn1(pf32,,n)=ω22ωp32ω112z¯12z122!δ[ba×Mn1(pc]32,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2_{bc}^{-1},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(bc;0)\otimes 1},\cdots,n\right)\\ &=\frac{1}{2!}\epsilon_{bcde}\epsilon^{adef}\;\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0-1}\right)\times M_{n-1}\left(p_{f}^{-\frac{3}{2}},\cdots,n\right)\\ &=\delta^{af}_{bc}\frac{\omega_{2}^{2}}{\omega_{p}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{f}^{-\frac{3}{2}},\cdots,n\right)\\ &=\frac{\omega_{2}^{2}}{\omega_{p}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}2!\delta^{a}_{[b}\times M_{n-1}\left(p_{c]}^{-\frac{3}{2}},\cdots,n\right)\end{split} (112)
Mn(1r;+32,2st1,,n)=ω22ωp32ω112z¯12z122!δ[sr×Mn1(pt]32,,n).\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2_{st}^{-1},\cdots,n\right)&=\frac{\omega_{2}^{2}}{\omega_{p}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}2!\delta^{r}_{[s}\times M_{n-1}\left(p_{t]}^{-\frac{3}{2}},\cdots,n\right).\end{split}

Hence for any 1A,B81\leq A,B\leq 8 we have,

Mn(1A;+32,2BC1,,n)=ω22ωp32ω112z¯12z122!δ[BA×Mn1(pC]32,,n).\begin{split}M_{n}\left(1^{A;+\frac{3}{2}},2_{BC}^{-1},\cdots,n\right)&=\frac{\omega_{2}^{2}}{\omega_{p}^{\frac{3}{2}}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}2!\delta^{A}_{[B}\times M_{n-1}\left(p_{C]}^{-\frac{3}{2}},\cdots,n\right).\end{split} (113)

Gravitino-Graviphotino

Mn(1a;+32,2brs;+12,,n)=Mn(1(a;12)1,2(b;12)(rs;0),,n)=Split0SG(z,112+1,212+0)×Mn1(pabrs;0,,n)=ω2ω1z¯12z12×Mn1(pabrs;0,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{brs;+\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(b;\frac{1}{2})\otimes(rs;0)},\cdots,n\right)\\ &=\text{Split}_{0}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}+0}\right)\times M_{n-1}\left(p^{abrs;0},\cdots,n\right)\\ &=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abrs;0},\cdots,n\right)\end{split} (114)

Similarly for all other factorisations the split factors will remain the same for two same helicity Gravitino and Graviphotino pair,

Mn(1a;+32,2bcr;+12,,n)=ω2ω1z¯12z12×Mn1(pabcr;0,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{bcr;+\frac{1}{2}},\cdots,n\right)&=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abcr;0},\cdots,n\right)\end{split}
Mn(1r;+32,2sta;+12,,n)=ω2ω1z¯12z12×Mn1(prsta;0,,n)\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2^{sta;+\frac{1}{2}},\cdots,n\right)&=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{rsta;0},\cdots,n\right)\end{split}
Mn(1r;+32,2abs;+12,,n)=ω2ω1z¯12z12×Mn1(pabrs;0,,n)\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2^{abs;+\frac{1}{2}},\cdots,n\right)&=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abrs;0},\cdots,n\right)\end{split}
Mn(1a;+32,2bcd;+12,,n)=ω2ω1z¯12z12×Mn1(pabcd;0,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{bcd;+\frac{1}{2}},\cdots,n\right)&=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{abcd;0},\cdots,n\right)\end{split}
Mn(1a;+32,2rst;+12,,n)=ω2ω1z¯12z12×Mn1(parst;0,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{rst;+\frac{1}{2}},\cdots,n\right)&=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{arst;0},\cdots,n\right)\end{split}

Collecting all of them, we can write

Mn(1A;+32,2BCD;+12,,n)=ω2ω1z¯12z12×Mn1(pABCD;0,,n)M_{n}\left(1^{A;+\frac{3}{2}},2^{BCD;+\frac{1}{2}},\cdots,n\right)=\sqrt{\frac{\omega_{2}}{\omega_{1}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{ABCD;0},\cdots,n\right) (115)
Mn(1a;+32,2bcr12,,n)=Mn(1(a;12)1,2(bc;0)(r;12),,n)=12!ϵbcdeϵdeafSplit+1SG(z,112+1,2012)×Mn1(pfr1,,n)=δbcafω232ωpω112z¯12z12×Mn1(pfr1,,n)=2!ω232ωpω112z¯12z12δ[ba×Mn1(pc]r1,,n)=3!ω232ωpω112z¯12z12δ[ba×Mn1(pcr]1,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2_{bcr}^{-\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(bc;0)\otimes(r;-\frac{1}{2})},\cdots,n\right)\\ &=-\frac{1}{2!}\epsilon_{bcde}\epsilon^{deaf}\;\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0-\frac{1}{2}}\right)\times M_{n-1}\left(p^{-1}_{fr},\cdots,n\right)\\ &=-\delta^{af}_{bc}\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-1}_{fr},\cdots,n\right)\\ &=-2!\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta^{a}_{[b}\times M_{n-1}\left(p^{-1}_{c]r},\cdots,n\right)\\ &=-3!\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta^{a}_{[b}\times M_{n-1}\left(p^{-1}_{cr]},\cdots,n\right)\end{split} (116)

where we used the fact that δra=0\delta^{a}_{r}=0 to write

2!δ[bapc]r1=δbapcr1δbaprc1+δcaprb1δcapbr1+δrapbc1δrapcb1=3!δ[bapcr]1.\begin{split}2!\delta^{a}_{[b}p^{-1}_{c]r}&=\delta^{a}_{b}p^{-1}_{cr}-\delta^{a}_{b}p^{-1}_{rc}+\delta^{a}_{c}p^{-1}_{rb}-\delta^{a}_{c}p^{-1}_{br}+\delta^{a}_{r}p^{-1}_{bc}-\delta^{a}_{r}p^{-1}_{cb}\\ &=3!\delta_{[b}^{a}p^{-1}_{cr]}.\end{split} (117)
Mn(1a;+32,2brs12,,n)=Mn(1(a;12)1,2(b;12)(rs;0),,n)=δbaSplit+1SG(z,112+1,212+0)×Mn1(prs1,,n)=ω232ωpω112z¯12z12δba×Mn1(prs1,,n).\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2_{brs}^{-\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(b;-\frac{1}{2})\otimes(rs;0)},\cdots,n\right)\\ &=\delta_{b}^{a}\;\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-\frac{1}{2}+0}\right)\times M_{n-1}\left(p^{-1}_{rs},\cdots,n\right)\\ &=\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta_{b}^{a}\times M_{n-1}\left(p^{-1}_{rs},\cdots,n\right).\end{split} (118)

Similarly we have

Mn(1r;+32,2ast12,,n)=12!ϵstuvϵuvrwω232ωpω112z¯12z12×Mn1(pwa1,,n)=3!ω232ωpω112z¯12z12δ[sr×Mn1(pta]1,,n)\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2_{ast}^{-\frac{1}{2}},\cdots,n\right)&=-\frac{1}{2!}\epsilon_{stuv}\epsilon^{uvrw}\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-1}_{wa},\cdots,n\right)\\ &=-3!\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta^{r}_{[s}\times M_{n-1}\left(p^{-1}_{ta]},\cdots,n\right)\end{split}
Mn(1t;+32,2rab12,,n)=ω232ωpω112z¯12z12δrt×Mn1(pab1,,n)M_{n}\left(1^{t;+\frac{3}{2}},2_{rab}^{-\frac{1}{2}},\cdots,n\right)=\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta_{r}^{t}\times M_{n-1}\left(p^{-1}_{ab},\cdots,n\right)
Mn(1a;+32,2bcd12,,n)=ϵbcdeMn(1(a;12)1,2(e;+12)1,,n)=12!ϵbcdeϵaefgSplit+1SG(z,112+1,2121)×Mn1(pfg1,,n)=12!ϵbcdeϵafgeω232ωpω112z¯12z12×Mn1(pfg1,,n)=12!δbcdafgω232ωpω112z¯12z12×Mn1(pfg1,,n)=3ω232ωpω112z¯12z12δ[ba×Mn1(pcd]1,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2_{bcd}^{-\frac{1}{2}},\cdots,n\right)&=\epsilon_{bcde}M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(e;+\frac{1}{2})\otimes-1},\cdots,n\right)\\ &=-\frac{1}{2!}\epsilon_{bcde}\epsilon^{aefg}\;\text{Split}_{+1}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{\frac{1}{2}-1}\right)\times M_{n-1}\left(p^{-1}_{fg},\cdots,n\right)\\ &=-\frac{1}{2!}\epsilon_{bcde}\epsilon^{afge}\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-1}_{fg},\cdots,n\right)\\ &=-\frac{1}{2!}\delta^{afg}_{bcd}\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p^{-1}_{fg},\cdots,n\right)\\ &=3\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta^{a}_{[b}\times M_{n-1}\left(p^{-1}_{cd]},\cdots,n\right)\end{split} (119)

Note that the second ϵaefg\epsilon^{aefg} comes from the fact that we are lowering the index of he scalar in 𝒩=4\mathcal{N}=4 SYM in the factorisation of the negative helicity gluon. The factorisation looks as

Gfg1=ΦfgG1=12!ϵaefgΦaeG1=:12!ϵaefgGae1,G^{-1}_{fg}=\Phi_{fg}\otimes G^{-1}=-\frac{1}{2!}\epsilon_{aefg}\Phi^{ae}\otimes G^{-1}=:-\frac{1}{2!}\epsilon_{aefg}G^{ae-1}, (120)

where GfgG_{fg} is the gluon in 𝒩=8\mathcal{N}=8 supergravity and GG is the gluon in 𝒩=4\mathcal{N}=4 SYM.

Mn(1d;+32,2abc12,,n)=3ω232ωpω112z¯12z12δ[ad×Mn1(pbc]1,,n)M_{n}\left(1^{d;+\frac{3}{2}},2_{abc}^{-\frac{1}{2}},\cdots,n\right)=-3\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta^{d}_{[a}\times M_{n-1}\left(p^{-1}_{bc]},\cdots,n\right)

Thus we have the collinear limit

Mn(1u;+32,2rst12,,n)=3ω232ωpω112z¯12z12δ[ru×Mn1(pst]1,,n)M_{n}\left(1^{u;+\frac{3}{2}},2_{rst}^{-\frac{1}{2}},\cdots,n\right)=-3\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\delta^{u}_{[r}\times M_{n-1}\left(p^{-1}_{st]},\cdots,n\right)

Hence

Mn(1A;+32,2BCD12,,n)=ω232ωpω112z¯12z12[δBAMn1(pCD1,,n)+δCAMn1(pDB1,,n)+δDAMn1(pBC1,,n)]\begin{split}M_{n}\left(1^{A;+\frac{3}{2}},2_{BCD}^{-\frac{1}{2}},\cdots,n\right)&=-\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}\omega_{1}^{\frac{1}{2}}}\frac{\bar{z}_{12}}{z_{12}}\Big{[}\delta^{A}_{B}M_{n-1}\left(p^{-1}_{CD},\cdots,n\right)\\ &+\delta^{A}_{C}M_{n-1}\left(p^{-1}_{DB},\cdots,n\right)+\delta^{A}_{D}M_{n-1}\left(p^{-1}_{BC},\cdots,n\right)\Big{]}\end{split} (121)

Similarly we get the same splitting factors for all other factorisation channels.

Gravitino-Scalar

Mn(1a;+32,2bcrs;0,,n)=Mn(1(a;12)1,2(bc;0)(rs;0),,n)=ϵrstuϵabcdSplit12SG(z,112+1,20+0)×Mn1(pdtu12,,n)=ϵrstuϵabcdω2ω1ωpz¯12z12×Mn1(pdrs12,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{bcrs;0},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{(bc;0)\otimes(rs;0)},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{0+0}\right)\times M_{n-1}\left(p_{dtu}^{-\frac{1}{2}},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\frac{\omega_{2}}{\sqrt{\omega_{1}\omega_{p}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{drs}^{-\frac{1}{2}},\cdots,n\right)\end{split} (122)
Mn(1a;+32,2rstu;0,,n)=Mn(1(a;12)1,2rstu;(11),,n)=ϵrstuϵabcdSplit12SG(z,112+1,211)×Mn1(pbcd12,,n)=ϵabcdϵrstuω2ω1ωpz¯12z12×Mn1(pbcd12,,n)\begin{split}M_{n}\left(1^{a;+\frac{3}{2}},2^{rstu;0},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes 1},2^{rstu;(1\otimes 1)},\cdots,n\right)\\ &=-\epsilon^{rstu}\epsilon^{abcd}\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{1-1}\right)\times M_{n-1}\left(p_{bcd}^{-\frac{1}{2}},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\frac{\omega_{2}}{\sqrt{\omega_{1}\omega_{p}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{bcd}^{-\frac{1}{2}},\cdots,n\right)\end{split} (123)

where we lowered the index on gluino in the SYM theory.

Mn(1r;+32,2abcd;0,,n)=Mn(1(r;12)1,2abcd;(11),,n)=ϵabcdϵrstuSplit12SG(z,112+1,21+1)×Mn1(pstu12,,n)=ϵabcdϵrstuω2ω1ωpz¯12z12×Mn1(pstu12,,n)\begin{split}M_{n}\left(1^{r;+\frac{3}{2}},2^{abcd;0},\cdots,n\right)&=M_{n}\left(1^{(r;\frac{1}{2})\otimes 1},2^{abcd;(1\otimes 1)},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+1},2^{-1+1}\right)\times M_{n-1}\left(p_{stu}^{-\frac{1}{2}},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\frac{\omega_{2}}{\sqrt{\omega_{1}\omega_{p}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{stu}^{-\frac{1}{2}},\cdots,n\right)\end{split} (124)

Hence we can write the above in simplified form as

Mn(1A;+32,2BCDE;0,,n)=13!ϵABCDEFGHω2ω1ωpz¯12z12×Mn1(pFGH12,,n)\begin{split}M_{n}\left(1^{A;+\frac{3}{2}},2^{BCDE;0},\cdots,n\right)&=-\frac{1}{3!}\epsilon^{ABCDEFGH}\frac{\omega_{2}}{\sqrt{\omega_{1}\omega_{p}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{FGH}^{-\frac{1}{2}},\cdots,n\right)\end{split} (125)

Similarly we can have the relations for opposite helicity collinear pair.

Graviphoton-Graviphotino

Mn(1ab;+1,2cdr;+12,,n)=Mn(1(ab;0)1,2(cd;0)(r;12),,n)=13!ϵabcdϵrstuSplit12SG(z,10+1,20+12)×Mn1(pstu12,,n)=13!ϵabcdϵrstuω2ωpz¯12z12×Mn1(pstu12,,n)\begin{split}M_{n}\left(1^{ab;+1},2^{cdr;+\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(ab;0)\otimes 1},2^{(cd;0)\otimes(r;\frac{1}{2})},\cdots,n\right)\\ &=\frac{1}{3!}\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{\frac{1}{2}}^{\text{SG}}\left(z,1^{0+1},2^{0+\frac{1}{2}}\right)\times M_{n-1}\left(p_{stu}^{-\frac{1}{2}},\cdots,n\right)\\ &=\frac{1}{3!}\epsilon^{abcd}\epsilon^{rstu}\;\sqrt{\frac{\omega_{2}}{\omega_{p}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{stu}^{-\frac{1}{2}},\cdots,n\right)\end{split} (126)

This is true for all other factorisation channels of both positive helicity Graviphoton and Graviphotino collinear pair. Similarly we can have the amplitude for negative helicity collinear pairs.

Mn(1ab;+1,2cdr;12,,n)=Mn(1(ab;0)1,2(cd;0)(r;12),,n)=12!ϵabefϵcdefSplit32SG(z,10+1,2012)×Mn1(pr32,,n)=δcdabω232ωp32z¯12z12×Mn1(pr32,,n)\begin{split}M_{n}\left(1^{ab;+1},2_{cdr;\;-\frac{1}{2}},\cdots,n\right)&=M_{n}\left(1^{(ab;0)\otimes 1},2^{(cd;0)\otimes(r;\frac{1}{2})},\cdots,n\right)\\ &=-\frac{1}{2!}\epsilon^{abef}\epsilon_{cdef}\;\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+1},2^{0-\frac{1}{2}}\right)\times M_{n-1}\left(p_{r}^{-\frac{3}{2}},\cdots,n\right)\\ &=-\delta^{ab}_{cd}\;\frac{\omega_{2}^{\frac{3}{2}}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{r}^{-\frac{3}{2}},\cdots,n\right)\end{split} (127)

All other factorisation channels also correspond to the same collinear divergence factor and we get the other amplitudes in the usual way by flipping the helicity and z12z¯12z_{12}\leftrightarrow\bar{z}_{12}.

Graviphoton-Scalar

Mn(1ab;+1,2cdrs;0,,n)=Mn(1(ab;0)1,2(cd;0)(rs;0),,n)=ϵabcdϵrstuSplit1SG(z,10+1,20+0)×Mn1(ptu1,,n)=ϵabcdϵrstuω2ωpz¯12z12×Mn1(ptu1,,n)\begin{split}M_{n}\left(1^{ab;+1},2^{cdrs;0},\cdots,n\right)&=M_{n}\left(1^{(ab;0)\otimes 1},2^{(cd;0)\otimes(rs;0)},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{0+1},2^{0+0}\right)\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)\end{split} (128)
Mn(1rs;+1,2abtu;0,,n)=Mn(11(rs;0),2(ab;0)(tu;0),,n)=ϵrstuϵabcdSplit1SG(z,11+0,20+0)×Mn1(pcd1,,n)=ϵrstuϵabcdω2ωpz¯12z12×Mn1(pcd1,,n)\begin{split}M_{n}\left(1^{rs;+1},2^{abtu;0},\cdots,n\right)&=M_{n}\left(1^{1\otimes(rs;0)},2^{(ab;0)\otimes(tu;0)},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{1+0},2^{0+0}\right)\times M_{n-1}\left(p_{cd}^{-1},\cdots,n\right)\\ &=\epsilon^{rstu}\epsilon^{abcd}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{cd}^{-1},\cdots,n\right)\end{split} (129)
Mn(1ar;+1,2bcst;0,,n)=Mn(1(a;12)(r;12),2(bc;0)(st;0),,n)=ϵabcdϵrstuSplit1SG(z,112+12,20+0)×Mn1(pdu1,,n)=ϵabcdϵrstuω2ωpz¯12z12×Mn1(pdu1,,n)\begin{split}M_{n}\left(1^{ar;+1},2^{bcst;0},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes(r;\frac{1}{2})},2^{(bc;0)\otimes(st;0)},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{0+0}\right)\times M_{n-1}\left(p_{du}^{-1},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{du}^{-1},\cdots,n\right)\end{split} (130)
Mn(1ab;+1,2cdef;0,,n)=Mn(1(ab;0)1,2cdef;(11),,n)=ϵcdefϵabghSplit1SG(z,10+1,21+1)×Mn1(pgh1,,n)=ϵcdefϵabghω2ωpz¯12z12×Mn1(pgh1,,n)\begin{split}M_{n}\left(1^{ab;+1},2^{cdef;0},\cdots,n\right)&=-M_{n}\left(1^{(ab;0)\otimes 1},2^{cdef;(-1\otimes 1)},\cdots,n\right)\\ &=-\epsilon^{cdef}\epsilon^{abgh}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{0+1},2^{-1+1}\right)\times M_{n-1}\left(p_{gh}^{-1},\cdots,n\right)\\ &=-\epsilon^{cdef}\epsilon^{abgh}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{gh}^{-1},\cdots,n\right)\end{split} (131)
Mn(1rs;+1,2cdef;0,,n)=Mn(11(rs;0),2cdef;(11),,n)=ϵcdefϵrstuSplit1SG(z,11+0,21+1)×Mn1(ptu1,,n)=ϵcdefϵrstuω2ωpz¯12z12×Mn1(ptu1,,n)\begin{split}M_{n}\left(1^{rs;+1},2^{cdef;0},\cdots,n\right)&=-M_{n}\left(1^{1\otimes(rs;0)},2^{cdef;(-1\otimes 1)},\cdots,n\right)\\ &=-\epsilon^{cdef}\epsilon^{rstu}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{1+0},2^{-1+1}\right)\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)\\ &=-\epsilon^{cdef}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)\end{split} (132)
Mn(1ar;+1,2bcds;0,,n)=Mn(1(a;12)(r;12),2bcds;(12+12),,n)=ϵabcdϵrstuSplit1SG(z,112+12,212+12)×Mn1(ptu1,,n)=ϵabcdϵrstuω2ωpz¯12z12×Mn1(ptu1,,n)\begin{split}M_{n}\left(1^{ar;+1},2^{bcds;0},\cdots,n\right)&=-M_{n}\left(1^{(a;\frac{1}{2})\otimes(r;\frac{1}{2})},2^{bcds;(-\frac{1}{2}+\frac{1}{2})},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{1}^{\text{SG}}\left(z,1^{\frac{1}{2}+\frac{1}{2}},2^{-\frac{1}{2}+\frac{1}{2}}\right)\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{2}}{\omega_{p}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{tu}^{-1},\cdots,n\right)\end{split} (133)

Similarly we can write for other remaining factorisation channels.

Mn(1ab1,2cdef;0,,n)=Mn(1(ab;0)1,2cdef;(11),,n)=ϵcdefϵabghSplit1SG(z,101,21+1)×Mn1(pgh;+1,,n)=ϵcdefϵabghω2ωpz12z¯12×Mn1(pgh;+1,,n)\begin{split}M_{n}\left(1_{ab}^{-1},2^{cdef;0},\cdots,n\right)&=-M_{n}\left(1^{(ab;0)\otimes-1},2^{cdef;(-1\otimes 1)},\cdots,n\right)\\ &=-\epsilon^{cdef}\epsilon_{abgh}\;\text{Split}_{-1}^{\text{SG}}\left(z,1^{0-1},2^{-1+1}\right)\times M_{n-1}\left(p^{gh;+1},\cdots,n\right)\\ &=-\epsilon^{cdef}\epsilon_{abgh}\;\frac{\omega_{2}}{\omega_{p}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{gh;+1},\cdots,n\right)\end{split} (134)
Mn(1ar1,2bcds;0,,n)=Mn(1(a;12)(r;12),2bcds;(1212),,n)=ϵbcdeδrsϵaefgSplit1SG(z,11212,212+12)×Mn1(pfg;+1,,n)=ϵbcdeδrsϵaefgω1ωpz12z¯12×Mn1(pfg;+1,,n)\begin{split}M_{n}\left(1_{ar}^{-1},2^{bcds;0},\cdots,n\right)&=-M_{n}\left(1^{(a;-\frac{1}{2})\otimes(r;-\frac{1}{2})},2^{bcds;(-\frac{1}{2}\otimes\frac{1}{2})},\cdots,n\right)\\ &=-\epsilon^{bcde}\delta^{s}_{r}\;\epsilon_{aefg}\;\text{Split}_{-1}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{-\frac{1}{2}+\frac{1}{2}}\right)\times M_{n-1}\left(p^{fg;+1},\cdots,n\right)\\ &=-\epsilon^{bcde}\delta^{s}_{r}\epsilon_{aefg}\;\frac{\omega_{1}}{\omega_{p}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{fg;+1},\cdots,n\right)\end{split} (135)
Mn(1ar1,2bcst;0,,n)=Mn(1(a;12)(r;12),2(bc;0)(st;0),,n)=[δabδrsSplit1SG(z,11212,20+0)×Mn1(pct;+1,,n)+δacδrtSplit1SG(z,11212,20+0)×Mn1(pbs;+1,,n)+δabδrtSplit1SG(z,11212,20+0)×Mn1(pcδcaδsrSplit1SG(z,11212,20+0)×Mn1(pbt;+1,,n)]=ω2ωpz12z¯124!δ[baδsrMn1(ptc];+1,,n)\begin{split}M_{n}\left(1_{ar}^{-1},2^{bcst;0},\cdots,n\right)&=-M_{n}\left(1^{(a;\frac{1}{2})\otimes(r;\frac{1}{2})},2^{(bc;0)\otimes(st;0)},\cdots,n\right)\\ &=\Big{[}-\delta^{b}_{a}\delta^{s}_{r}\;\text{Split}_{-1}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{0+0}\right)\times M_{n-1}\left(p^{ct;+1},\cdots,n\right)\\ &+\delta^{c}_{a}\delta^{t}_{r}\;\text{Split}_{-1}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{0+0}\right)\times M_{n-1}\left(p^{bs;+1},\cdots,n\right)\\ &+\delta^{b}_{a}\delta^{t}_{r}\;\text{Split}_{-1}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{0+0}\right)\times M_{n-1}\left(p^{cs;+1},\cdots,n\right)\\ &-\delta^{c}_{a}\delta^{s}_{r}\;\text{Split}_{-1}^{\text{SG}}\left(z,1^{-\frac{1}{2}-\frac{1}{2}},2^{0+0}\right)\times M_{n-1}\left(p^{bt;+1},\cdots,n\right)\Big{]}\\ &=-\frac{\omega_{2}}{\omega_{p}}\frac{z_{12}}{\bar{z}_{12}}4!\delta^{[b}_{a}\delta^{s}_{r}\;M_{n-1}\left(p^{tc];+1},\cdots,n\right)\end{split} (136)

Note that the above expression contains 16 terms but only four terms are nonzero since δar=0\delta^{a}_{r}=0.

Graviphotino-Scalar

Mn(1abr;+12,2cdst;0,,n)=Mn(1(ab;0)(r;12),2(cd;0)(st;0),,n)=ϵabcdϵrstuSplit32SG(z,10+12,20+0)×Mn1(pu32,,n)=ϵabcdϵrstuω112ω2ωp32z¯12z12×Mn1(pu32,,n)\begin{split}M_{n}\left(1^{abr;+\frac{1}{2}},2^{cdst;0},\cdots,n\right)&=M_{n}\left(1^{(ab;0)\otimes(r;\frac{1}{2})},2^{(cd;0)\otimes(st;0)},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+\frac{1}{2}},2^{0+0}\right)\times M_{n-1}\left(p_{u}^{-\frac{3}{2}},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{u}^{-\frac{3}{2}},\cdots,n\right)\end{split} (137)
Mn(1abr;+12,2cstu;0,,n)=Mn(1(ab;0)(r;12),2cstu;(1212),,n)=ϵabcdϵrstuSplit32SG(z,10+12,21212)×Mn1(pd32,,n)=ϵabcdϵrstuω112ω2ωp32z¯12z12×Mn1(pd32,,n)\begin{split}M_{n}\left(1^{abr;+\frac{1}{2}},2^{cstu;0},\cdots,n\right)&=-M_{n}\left(1^{(ab;0)\otimes(r;\frac{1}{2})},2^{cstu;(\frac{1}{2}\otimes-\frac{1}{2})},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{0+\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p_{d}^{-\frac{3}{2}},\cdots,n\right)\\ &=-\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{d}^{-\frac{3}{2}},\cdots,n\right)\end{split} (138)
Mn(1ars;+12,2bctu;0,,n)=Mn(1(a;12)(rs;0),2(bc;0)(tu;0),,n)=ϵabcdϵrstuSplit32SG(z,112+0,20+0)×Mn1(pd32,,n)=ϵabcdϵrstuω112ω2ωp32z¯12z12×Mn1(pd32,,n)\begin{split}M_{n}\left(1^{ars;+\frac{1}{2}},2^{bctu;0},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes(rs;0)},2^{(bc;0)\otimes(tu;0)},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\text{Split}_{\frac{3}{2}}^{\text{SG}}\left(z,1^{\frac{1}{2}+0},2^{0+0}\right)\times M_{n-1}\left(p_{d}^{-\frac{3}{2}},\cdots,n\right)\\ &=\epsilon^{abcd}\epsilon^{rstu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{\bar{z}_{12}}{z_{12}}\times M_{n-1}\left(p_{d}^{-\frac{3}{2}},\cdots,n\right)\end{split} (139)
Mn(1ars12,2bctu;0,,n)=Mn(1(a;12)(rs;0),2(bc;0)(tu;0),,n)=12!ϵtuvwϵvwrs2!δ[baSplit32SG(z,112+0,20+0)×Mn1(pc];+32,,n)=2!δtursω112ω2ωp32z12z¯12δ[ba×Mn1(pc];+32,,n)\begin{split}M_{n}\left(1_{ars}^{-\frac{1}{2}},2^{bctu;0},\cdots,n\right)&=M_{n}\left(1^{(a;\frac{1}{2})\otimes(rs;0)},2^{(bc;0)\otimes(tu;0)},\cdots,n\right)\\ &=-\frac{1}{2!}\epsilon^{tuvw}\epsilon_{vwrs}2!\delta^{[b}_{a}\;\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-\frac{1}{2}+0},2^{0+0}\right)\times M_{n-1}\left(p^{c];+\frac{3}{2}},\cdots,n\right)\\ &=-2!\delta^{tu}_{rs}\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\delta^{[b}_{a}\times M_{n-1}\left(p^{c];+\frac{3}{2}},\cdots,n\right)\end{split} (140)
Mn(1ars12,2btuv 0,,n)=Mn(1(a;12)(rs;0),2btuv;(1212),,n)=δabϵtuvwϵwrsxSplit32SG(z,112+0,212+12)×Mn1(px;+32,,n)=δabϵtuvwϵwrsxω112ω2ωp32z12z¯12×Mn1(px;+32,,n)\begin{split}M_{n}\left(1_{ars}^{-\frac{1}{2}},2^{btuv\leavevmode\nobreak\ 0},\cdots,n\right)&=-M_{n}\left(1^{(a;\frac{1}{2})\otimes(rs;0)},2^{btuv;(\frac{1}{2}\otimes-\frac{1}{2})},\cdots,n\right)\\ &=-\delta_{a}^{b}\epsilon^{tuvw}\epsilon_{wrsx}\;\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-\frac{1}{2}+0},2^{-\frac{1}{2}+\frac{1}{2}}\right)\times M_{n-1}\left(p^{x;+\frac{3}{2}},\cdots,n\right)\\ &=-\delta_{a}^{b}\epsilon^{tuvw}\epsilon_{wrsx}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{x;+\frac{3}{2}},\cdots,n\right)\end{split} (141)
Mn(1rst12,2avwx;0,,n)=Mn(1rst;(112),2avwx;(1212),,n)=ϵrstuϵvwxyδuySplit32SG(z,11+12,21212)×Mn1(pa;+32,,n)=ϵrstuϵvwxuω112ω2ωp32z12z¯12×Mn1(pa;+32,,n)\begin{split}M_{n}\left(1_{rst}^{-\frac{1}{2}},2^{avwx;0},\cdots,n\right)&=-M_{n}\left(1^{rst;(-1\otimes\frac{1}{2})},2^{avwx;(\frac{1}{2}\otimes-\frac{1}{2})},\cdots,n\right)\\ &=-\epsilon_{rstu}\epsilon^{vwxy}\delta^{u}_{y}\;\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-1+\frac{1}{2}},2^{\frac{1}{2}-\frac{1}{2}}\right)\times M_{n-1}\left(p^{a;+\frac{3}{2}},\cdots,n\right)\\ &=-\epsilon_{rstu}\epsilon^{vwxu}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{a;+\frac{3}{2}},\cdots,n\right)\end{split} (142)
Mn(1rst12,2uvwx;0,,n)=Mn(1rst;(112),2uvwx;(11),,n)=ϵrstyϵuvwxSplit32SG(z,11+12,211)×Mn1(py;+32,,n)=ϵrstyϵuvwxω112ω2ωp32z12z¯12×Mn1(py;+32,,n)\begin{split}M_{n}\left(1_{rst}^{-\frac{1}{2}},2^{uvwx;0},\cdots,n\right)&=-M_{n}\left(1^{rst;(-1\otimes\frac{1}{2})},2^{uvwx;(1\otimes-1)},\cdots,n\right)\\ &=-\epsilon_{rsty}\epsilon^{uvwx}\;\text{Split}_{-\frac{3}{2}}^{\text{SG}}\left(z,1^{-1+\frac{1}{2}},2^{1-1}\right)\times M_{n-1}\left(p^{y;+\frac{3}{2}},\cdots,n\right)\\ &=-\epsilon_{rsty}\epsilon^{uvwx}\;\frac{\omega_{1}^{\frac{1}{2}}\omega_{2}}{\omega_{p}^{\frac{3}{2}}}\frac{z_{12}}{\bar{z}_{12}}\times M_{n-1}\left(p^{y;+\frac{3}{2}},\cdots,n\right)\end{split} (143)

References