This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sobolev extensions over Cantor-cuspidal graphs

Pekka Koskela and Zheng Zhu Pekka Koskela
Department of Mathematics and Statistics
University of Jyväskylä, P.O. Box 35 (MaD), FI-40014, Jyväskylä, Finland
[email protected] Zheng Zhu
School of Mathematical science
Beihang University
Changping District Shahe Higher Education Park South Third Street No. 9
Beijing 102206,
P. R. China
[email protected]
Abstract.

For a continuous function f:f:{\mathbb{R}}\to{\mathbb{R}}, define the corresponding graph by setting

Γf:={(x1,f(x1)):x1}.\Gamma_{f}:=\left\{(x_{1},f(x_{1})):x_{1}\in{\mathbb{R}}\right\}.

In this paper, we study the Sobolev extension property for the upper and lower domains over the graph Γψcα\Gamma_{\psi^{\alpha}_{c}} for ψcα(x1)=d(x1,𝒞)α\psi^{\alpha}_{c}(x_{1})=d(x_{1},\mathcal{C})^{\alpha}, where 𝒞\mathcal{C} is the classical ternary Cantor set in the unit interval and α(0,1)\alpha\in(0,1).

2010 Mathematics Subject Classification:
46E35, 30L99
The first author has been supported by the Academy of Finland via Centre of Excellence in Analysis and Dynamics Research (Project #323960). The second author has been supported by the NSFC grant no. 12301111.

1. Introduction

Let 1qp1\leq q\leq p\leq\infty. If ψ\psi is a Lipschitz function on ,\mathbb{R}, then the upper and lower domains determined by the graph of ψ\psi are extension domains for all the first order Sobolev spaces W1,pW^{1,p} by the works of Calderón and Stein [11]: if Ω\Omega is either one of these domains, then there is a linear bounded extension operator from W1,p(Ω)W^{1,p}(\Omega) into W1,p(2).W^{1,p}(\mathbb{R}^{2}). In fact, it is not hard to check that one can obtain such an extension operator via a bi-Lipschitz reflection that switches the upper and lower domains: the bi-Lipschitz map f(x,y)=(x,yψ(x))f(x,y)=(x,y-\psi(x)) maps the two domains onto half-planes and one can use the usual reflection with respect to the first coordinate axes, modulo ff and its inverse.

If ψ\psi is Hölder-continuous, one cannot necessarily extend from W1,p(Ω)W^{1,p}(\Omega) to W1,p(2)W^{1,p}(\mathbb{R}^{2}) since the graph of ψ\psi can contain cusps. In this case, under the correct assumptions on p,qp,q and the Hölder-exponent, one can nevertheless extend from W1,p(Ω)W^{1,p}(\Omega) to W1,q(2),W^{1,q}(\mathbb{R}^{2}), see [2], in the sense that the extension belongs to Wmissingloc1,q(2)W^{1,q}_{{\mathop{\mathrm{missing}}{\,loc\,}}}(\mathbb{R}^{2}) with

EuW1,q(2Ω)CuW1,p(Ω).||Eu||_{W^{1,q}(\mathbb{R}^{2}\setminus\Omega)}\leq C||u||_{W^{1,p}(\Omega)}.

More precisely, if 1/2<α<11/2<\alpha<1 and p>α2α1p>\frac{\alpha}{2\alpha-1} then any 1q<αpα+(1α)p1\leq q<\frac{\alpha p}{\alpha+(1-\alpha)p} can be obtained. For a single cusp, the sharp exponents for the interior are p>1+α2αp>\frac{1+\alpha}{2\alpha} and q<2α(1+α)pq<\frac{2\alpha}{(1+\alpha)p} and for the exterior p>1p>1 and q<(1+α)p2α+(1α)pq<\frac{(1+\alpha)p}{2\alpha+(1-\alpha)p} or p=1=qp=1=q. This follows from more general work of Gol’dshtein and Sitnikov [3] who showed that for certain cusp-like domains with Hölder boundaries one can obtain an extension via a reflection which in this case is not anymore bi-Lipschitz. For an exposition and more historical references for the theory of Sobolev spaces on non-smooth domains, we refer the reader to [10].

In this paper we consider the above extension problem in a model case in oder to gain better insight to the problem. Towards our model case, let 𝒞[0,1]×{0}2\mathcal{C}\subset[0,1]\times\{0\}\subset\mathbb{R}^{2} be the standard ternary Cantor set, obtained by removing a sequence of ‘centrally located” open intervals from [0,1]×{0}[0,1]\times\{0\}: at stage jj we have 2j2^{j} closed intervals, each of length 3j,3^{-j}, from the middle of each we remove an open interval of length 3j1.3^{-j-1}. For α(0,1)\alpha\in(0,1), we define ψcα:\psi^{\alpha}_{c}:{\mathbb{R}}\to{\mathbb{R}} by setting

(1.1) ψcα(x1):={d(x1,𝒞)α,ifx1(0,1)0,ifx1(0,1).\psi^{\alpha}_{c}(x_{1}):=\begin{cases}d(x_{1},\mathcal{C})^{\alpha},\ \ &\ {\rm if}\ x_{1}\in(0,1)\\ 0,\ \ &\ {\rm if}\ x_{1}\in{\mathbb{R}}\setminus(0,1).\end{cases}

Then ψcα\psi^{\alpha}_{c} is Hölder continuous with exponent α.\alpha. Define the corresponding graph by setting

Γψcα:={(x1,ψcα(x1)):x1},\Gamma_{\psi^{\alpha}_{c}}:=\{(x_{1},\psi^{\alpha}_{c}(x_{1})):x_{1}\in{\mathbb{R}}\},

and let Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}} be the domain above the “Cantor-cuspidal” graph Γψcα:\Gamma_{\psi^{\alpha}_{c}}:

Ωψcα+:={(x1,x2)2:x1andx2>ψcα(x1)},\Omega^{+}_{\psi^{\alpha}_{c}}:=\left\{(x_{1},x_{2})\in{\mathbb{R}}^{2}:x_{1}\in{\mathbb{R}}\ {\rm and}\ x_{2}>\psi^{\alpha}_{c}(x_{1})\right\},

and Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}} be the domain below the “Cantor-cuspidal” graph Γψcα:\Gamma_{\psi^{\alpha}_{c}}:

Ωψcα:={(x1,x2)2:x1andx2>ψcα(x1)}.\Omega^{-}_{\psi^{\alpha}_{c}}:=\left\{(x_{1},x_{2})\in{\mathbb{R}}^{2}:x_{1}\in{\mathbb{R}}\ {\rm and}\ x_{2}>\psi^{\alpha}_{c}(x_{1})\right\}.

See Figure 11 below. Notice that

lim supt0ψcα(x1+t)tα>0andlim supt0+ψcα(x1+t)tα>0\limsup_{t\to 0^{-}}\frac{\psi^{\alpha}_{c}(x_{1}+t)}{t^{\alpha}}>0\ {\rm and}\ \limsup_{t\to 0^{+}}\frac{\psi^{\alpha}_{c}(x_{1}+t)}{t^{\alpha}}>0

for all x1𝒞{0,1}.x_{1}\in\mathcal{C}\setminus\{0,1\}. Hence the common boundary of both of these domains is ‘cusp-like” in a set of Hausdorff dimension log2log3.\frac{\log 2}{\log 3}.

Towards our results, we call a homeomorphism :22\mathcal{R}:{\mathbb{R}}^{2}\rightarrow{\mathbb{R}}^{2} a reflection over Γψcα\Gamma_{\psi^{\alpha}_{c}} if (Ωψcα+)=Ωψcα\mathcal{R}(\Omega^{+}_{\psi^{\alpha}_{c}})=\Omega^{-}_{\psi^{\alpha}_{c}} and (x)=x\mathcal{R}(x)=x for all xΓψcα.x\in\Gamma_{\psi^{\alpha}_{c}}. Let Ω\Omega be one of the domains Ωψcα+,Ωψcα.\Omega^{+}_{\psi^{\alpha}_{c}},\Omega^{-}_{\psi^{\alpha}_{c}}. We say that a reflection \mathcal{R} over Γψcα\Gamma_{\psi^{\alpha}_{c}} induces a bounded linear extension operator from W1,p(Ω)W^{1,p}(\Omega) to Wloc1,q(2)W_{\rm loc}^{1,q}({\mathbb{R}}^{2}) if for every uW1,p(Ω),u\in W^{1,p}(\Omega), the function vv defined by setting v=uv=u on Ω\Omega and v=uv=u\circ\mathcal{R} on 2Ω¯{\mathbb{R}}^{2}\setminus\overline{{\Omega}} has a representative that belongs to Wloc1,q(2)W_{\rm loc}^{1,q}({\mathbb{R}}^{2}) such that for every bounded open set U2U\subset{\mathbb{R}}^{2}, we have

(1.2) vW1,q(U)CuW1,p(Ω),\|v\|_{W^{1,q}(U)}\leq C\|u\|_{W^{1,p}({\Omega})},

for a positive constant CC independent of uu. In our setting, this conclusion easily implies that one can find an extension EuEu with

EuW1,q(2Ω)CuW1,p(Ω).||Eu||_{W^{1,q}({\mathbb{R}}^{2}\setminus\Omega)}\leq C||u||_{W^{1,p}(\Omega)}.
Refer to caption
Figure 1. Cantor-cuspidal graph Γψcα\Gamma_{\psi^{\alpha}_{c}}

The following theorem is the main result of the article.

Theorem 1.1.

Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1. Then there exists a reflection :22\mathcal{R}:{{\mathbb{R}}^{2}}\to{{\mathbb{R}}^{2}} over Γψcα\Gamma_{\psi^{\alpha}_{c}} which induces a bounded linear extension operator from W1,p(Ωψcα+)W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W_{\rm loc}^{1,q}({\mathbb{R}}^{2}) and a bounded linear extension operator from W1,p(Ωψcα)W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W_{\rm loc}^{1,q}({\mathbb{R}}^{2}), whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

The following proposition shows the sharpness of Theorem 1.1.

Proposition 1.1.

(1):(1): Let 0<αlog22log30<\alpha\leq\frac{\log 2}{2\log 3} be fixed. Then for arbitrary 1p1\leq p\leq\infty, there exist functions ueW1,p(Ωψcα)u_{e}^{-}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) and ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) which do not have extensions in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}).

(2):(2): Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1 be fixed. Then for arbitrary 1p(1+α)log2log32αlog2log31\leq p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}, there exist functions ueW1,p(Ωψcs)u_{e}^{-}\in W^{1,p}(\Omega^{-}_{\psi_{c}^{s}}) and ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) which do not have extensions in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}).

(3):(3): Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1 be fixed. Then for arbitrary (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and ((1+α)log2log3)p(1+α)log2log3+(1α)pq<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}\leq q<\infty, there exist functions ueW1,p(Ωψcα)u_{e}^{-}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) and ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) which do not have extensions in the class Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}).

We would like to know if Theorem 1.1 exhibits a general principle: could it be the case that for graphs the Sobolev extension problem is equivalent to the existence of a suitable reflection? For partial results in this direction see [3, 9]. The symmetry in Theorem 1.1 cannot hold in general as follows by the results in [3], our reflection has better properties that one would in general expect [6, 7].

We close this introduction with a comment regarding the case p=1=q.p=1=q. A domain Ωn{\Omega}\subset{{{\mathbb{R}}}^{n}} is called quasiconvex, if there exists a positive constant C>1C>1 such that for every pair of points x,yΩx,y\in{\Omega}, there exists a rectifiable curve γΩ\gamma\subset{\Omega} joining x,yx,y with

l(γ)C|xy|.l(\gamma)\leq C|x-y|.

For every 0<α<10<\alpha<1, one can easily see that neither Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}} nor Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}} is quasiconvex. Then the corollary in [8] with a bit of work implies that neither Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}} nor Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}} is a Sobolev (1,1)(1,1)-extension domain. Hence, in the proof to Proposition 1.1 below, we will only discuss the case for p>1p>1.

2. Preliminaries

The notation x=(x1,x2)2x=(x_{1},x_{2})\in{\mathbb{R}}^{2} means a point in the Euclidean plane 2{\mathbb{R}}^{2}. Typically CC will be a constant that depends on various parameters and may differ even on the same line of inequalities. The notation ABA\lesssim B means there exists a finite constant CC with ACBA\leq CB , and ACBA\sim_{C}B means 1CABCA\frac{1}{C}A\leq B\leq CA for a constant C>1C>1. The Euclidean distance between points x,xx,x^{\prime} in the Euclidean plane 2\mathbb{R}^{2} is denoted by |xx||x-x^{\prime}|. The open disk of radius rr centered at xx is denoted by D(x,r)D(x,r). 2(A)\mathcal{H}^{2}(A) means the 22-dimensional Lebesgue measure for a measurable set A2A\subset\mathbb{R}^{2}.

To obtain the classical ternary Cantor set in the unit interval [0,1][0,1]\subset{\mathbb{R}}, we remove a class of pairwise disjoint open intervals step by step. At the first step, we remove the middle 13\frac{1}{3}-interval I11:=(13,23)I_{1}^{1}:=(\frac{1}{3},\frac{2}{3}) from the unit interval I:=[0,1]I:=[0,1]. At the second step, we remove the middle 19\frac{1}{9}-intervals I21:=(19,29)I_{2}^{1}:=(\frac{1}{9},\frac{2}{9}) and I22:=(79,89)I_{2}^{2}:=(\frac{7}{9},\frac{8}{9}) from the two intervals of length 13\frac{1}{3} obtained from the first step. By induction, at the nn-th step, we remove the middle 13n\frac{1}{3^{n}}-intervals from the 2n12^{n-1} intervals {Ink}k=12n1\{I_{n}^{k}\}_{k=1}^{2^{n-1}} of length 13n1\frac{1}{3^{n-1}} obtained from the (n1)(n-1)-th step. Finally, we obtain the classical ternary Cantor set

𝒞:=[0,1]n=1k=12n1Ink.\mathcal{C}:=[0,1]\setminus\bigcup_{n=1}^{\infty}\bigcup_{k=1}^{2^{n-1}}I_{n}^{k}.

Let us denote the removed open intervals by Ink:=(ank,bnk)I_{n}^{k}:=(a_{n}^{k},b_{n}^{k}). Then, the function ψcα\psi^{\alpha}_{c} defined in (1.1) can be rewritten as

(2.1) ψcα(x1):={min{|x1ank|α,|x1bnk|α},x1Ink,0,elsewhere.\psi^{\alpha}_{c}(x_{1}):=\left\{\begin{array}[]{ll}\min\left\{|x_{1}-a_{n}^{k}|^{\alpha},|x_{1}-b_{n}^{k}|^{\alpha}\right\},&\ x_{1}\in I_{n}^{k},\\ 0,&\ {\rm elsewhere}.\end{array}\right.

Let us give the definition of Sobolev spaces.

Definition 2.2.

Let Ω2{\Omega}\subset\mathbb{R}^{2} be a domain and uLloc 1(Ω)u\in L^{\,1}_{\rm loc}({\Omega}). A vector function vLloc 1(Ω,2)v\in L^{\,1}_{\rm loc}({\Omega},\mathbb{R}^{2}) is called a weak derivative of uu if

Ωη(x)v(x)𝑑x=Ωu(x)Dη(x)𝑑x\int_{{\Omega}}\eta(x)v(x)dx=-\int_{{\Omega}}u(x)D\eta(x)dx

holds for every function ηCc(Ω)\eta\in C_{c}^{\infty}({\Omega}). We refer to vv by DuDu. For 1p1\leq p\leq\infty, we define the Sobolev space by

W1,p(Ω):={uLp(Ω):|Du|Lp(Ω)}W^{1,p}({\Omega}):=\{u\in L^{\,p}({\Omega}):|Du|\in L^{\,p}({\Omega})\}

and we define the norm by

uW1,p(Ω):=(Ω|u(x)|p𝑑x)1p+(Ω|Du(x)|p𝑑x)1p.\|u\|_{W^{1,p}({\Omega})}:=\left(\int_{\Omega}|u(x)|^{p}dx\right)^{\frac{1}{p}}+\left(\int_{\Omega}|Du(x)|^{p}dx\right)^{\frac{1}{p}}.

If for every bounded open subset UΩU\subset{\Omega} with U¯Ω\overline{U}\subset{\Omega}, uW1,p(U)u\in W^{1,p}(U), then we say uWloc1,p(Ω)u\in W^{1,p}_{\rm loc}({\Omega}).

Although the Cantor-cuspidal graph Γψcα\Gamma_{\psi^{\alpha}_{c}} has a plethora of singularities, the corresponding upper and lower domains Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}} and Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}} still enjoy some nice geometric properties. For example, they satisfy the following so-called segment condition.

Definition 2.3.

We say that a domain Ω2{\Omega}\subset{\mathbb{R}}^{2} satisfies the segment condition if every xΩx\in\partial{\Omega} has a neighborhood UxU_{x} and a nonzero vector yxy_{x} such that if zΩ¯Uxz\in\overline{{\Omega}}\cap U_{x}, then z+tyxΩz+ty_{x}\in{\Omega} for 0<t<10<t<1.

For domains which satisfy the segment condition, we have the following density result. See [1, Theorem 3.22].

Lemma 2.1.

If the domain Ω2{\Omega}\subset{\mathbb{R}}^{2} satisfies the segment condition, then the set of restrictions to Ω{\Omega} of functions in Cc(2)C_{c}^{\infty}({\mathbb{R}}^{2}) is dense in W1,p(Ω)W^{1,p}({\Omega}) for 1p<1\leq p<\infty. In short, Cc(2)W1,p(Ω)C_{c}^{\infty}({\mathbb{R}}^{2})\cap W^{1,p}({\Omega}) is dense in W1,p(Ω)W^{1,p}({\Omega}) for 1p<1\leq p<\infty.

By combining the theorems in [12, 13, 14, 15], also see [4, 5], we obtain the following lemma.

Lemma 2.2.

Let 1q<p<1\leq q<p<\infty. Suppose that f:ΩΩf:{\Omega}\to{\Omega}^{\prime} is a homeomorphism in the class Wloc1,1(Ω,Ω).W^{1,1}_{\rm loc}({\Omega},{\Omega}^{\prime}). Then the following assertions are equivalent:
(1):(1): for every locally Lipschitz function uu defined on Ω{\Omega}^{\prime}, the inequality

(Ω|D(uf)(x)|q𝑑x)1qC(Ω|Du(x)|p𝑑x)1p\left(\int_{\Omega}|D(u\circ f)(x)|^{q}dx\right)^{\frac{1}{q}}\leq C\left(\int_{{\Omega}^{\prime}}|Du(x)|^{p}dx\right)^{\frac{1}{p}}

holds for a positive constant CC independent of uu;
(2):(2):

Ω|Df(x)|pqpq|Jf(x)|qpq𝑑x<.\int_{{\Omega}}\frac{|Df(x)|^{\frac{pq}{p-q}}}{|J_{f}(x)|^{\frac{q}{p-q}}}dx<\infty.

3. A reflection over Γψcα\Gamma_{\psi^{\alpha}_{c}}

In this section, we always assume log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1. To begin, we define a class of sets {𝖱n,k;k=1,,2n1}n=1\{\mathsf{R}_{n,k};k=1,...,2^{n-1}\}_{n=1}^{\infty} by setting

(3.1) 𝖱n,k:={(x1,x2)2;x1Ink,x2(2ψcα(x1),2ψcα(x1))}.\mathsf{R}_{n,k}:=\left\{(x_{1},x_{2})\in\mathbb{R}^{2};x_{1}\in I_{n}^{k},x_{2}\in\left(-2\psi^{\alpha}_{c}(x_{1}),2\psi^{\alpha}_{c}(x_{1})\right)\right\}.

We also define 𝖱n,k+\mathsf{R}^{+}_{n,k} and 𝖱n,k\mathsf{R}^{-}_{n,k} to be the corresponding upper and lower parts of 𝖱n,k\mathsf{R}_{n,k} with respect to Γψcα\Gamma_{\psi^{\alpha}_{c}} by setting

(3.2) 𝖱n,k+:={(x1,x2)2;x1Ink,x2(ψcα(x1),2ψcα(x1))}\mathsf{R}^{+}_{n,k}:=\left\{(x_{1},x_{2})\in\mathbb{R}^{2};x_{1}\in I_{n}^{k},x_{2}\in\left(\psi^{\alpha}_{c}(x_{1}),2\psi^{\alpha}_{c}(x_{1})\right)\right\}

and

(3.3) 𝖱n,k:={(x1,x2)2;x1Ink,x2(2ψcα(x1),ψcα(x1))}.\mathsf{R}^{-}_{n,k}:=\left\{(x_{1},x_{2})\in\mathbb{R}^{2};x_{1}\in I_{n}^{k},x_{2}\in\left(-2\psi^{\alpha}_{c}(x_{1}),\psi^{\alpha}_{c}(x_{1})\right)\right\}.

Fix x1Inkx_{1}\in I_{n}^{k} for some nn\in\mathbb{N} and k{1,2,,2n1}.k\in\{1,2,\cdots,2^{n-1}\}. Then

(3.4) 𝖲x1+:={(x1,x2)2;ψcα(x1)<x2<2ψcα(x1)}\mathsf{S}^{+}_{x_{1}}:=\left\{(x_{1},x_{2})\in\mathbb{R}^{2};\psi^{\alpha}_{c}(x_{1})<x_{2}<2\psi^{\alpha}_{c}(x_{1})\right\}

is a vertical line segment in 𝖱n,k+\mathsf{R}^{+}_{n,k} and

(3.5) 𝖲x1:={(x1,x2)2;2ψcα(x1)<x2<ψcα(x1)}\mathsf{S}^{-}_{x_{1}}:=\left\{(x_{1},x_{2})\in\mathbb{R}^{2};-2\psi^{\alpha}_{c}(x_{1})<x_{2}<\psi^{\alpha}_{c}(x_{1})\right\}

is a vertical line segment in 𝖱n,k\mathsf{R}^{-}_{n,k}.

Refer to caption
Figure 2. Reflection \mathcal{R}

Now, we are ready to define our reflection :22\mathcal{R}:{\mathbb{R}}^{2}\to{\mathbb{R}}^{2} over Γψcα\Gamma_{\psi^{\alpha}_{c}}. Our reflection will map the segment 𝖲x1+\mathsf{S}^{+}_{x_{1}} onto the segment 𝖲x1\mathsf{S}^{-}_{x_{1}} affinely for every x1Inkx_{1}\in I_{n}^{k}. To be precise, we define the reflection \mathcal{R} on Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}} by setting

(3.6) (x)={(x1,3x2+4ψcα(x1)),x𝖱n,k+,(x1,x2),elsewhere.\mathcal{R}(x)=\left\{\begin{array}[]{ll}\left(x_{1},-3x_{2}+4\psi^{\alpha}_{c}(x_{1})\right),&\ x\in\mathsf{R}^{+}_{n,k},\\ (x_{1},-x_{2}),&\ {\rm elsewhere}.\end{array}\right.

where x=(x1,x2)x=(x_{1},x_{2}). It is easy to check that \mathcal{R} maps 𝖱n,k+\mathsf{R}^{+}_{n,k} onto 𝖱n,k\mathsf{R}^{-}_{n,k}, for every nn\in\mathbb{N} and k{1,2,,2n1}k\in\{1,2,\cdots,2^{n-1}\}. On Ωn,k\Omega^{-}_{n,k}, we simply let \mathcal{R} be the inverse of (3.6). Since (Ωψcα+)=Ωψcα\mathcal{R}(\Omega^{+}_{\psi^{\alpha}_{c}})=\Omega^{-}_{\psi^{\alpha}_{c}}, (Ωψcα)=Ωψcα+\mathcal{R}(\Omega^{-}_{\psi^{\alpha}_{c}})=\Omega^{+}_{\psi^{\alpha}_{c}} and (x)=x\mathcal{R}(x)=x for every xΓψcαx\in\Gamma_{\psi^{\alpha}_{c}}, \mathcal{R} is a reflection over Γψcα\Gamma_{\psi^{\alpha}_{c}}. For every x1Inkx_{1}\in I_{n}^{k} with nn\in\mathbb{N} and k{1,2,,2n1}k\in\{1,2,\cdots,2^{n-1}\}, the reflection \mathcal{R} maps 𝖲x1+\mathsf{S}^{+}_{x_{1}} onto 𝖲x1\mathsf{S}^{-}_{x_{1}} affinely.

By a simple computation, at every point x𝖱n,k+x\in\mathsf{R}^{+}_{n,k} for some nn\in\mathbb{N} and k{1,2,,2n1}k\in\{1,2,\cdots,2^{n-1}\}, the differential matrix D(x)D\mathcal{R}(x) is

(3.7) D(x)=(104(ψcα)(x1)3).D\mathcal{R}(x)=\left(\begin{array}[]{ccc}1&~{}~{}0\\ 4(\psi^{\alpha}_{c})^{\prime}(x_{1})&~{}~{}-3\\ \end{array}\right).

By another simple computation, there exists a positive constant C>0C>0 such that for every x𝖱n,k+x\in\mathsf{R}^{+}_{n,k}, we have

(3.8) |D(x)|C|(ψcα)(x1)|Cd(x1,𝒞)α1.|D\mathcal{R}(x)|\leq C|(\psi^{\alpha}_{c})^{\prime}(x_{1})|\leq Cd(x_{1},\mathcal{C})^{\alpha-1}.

and

(3.9) |J(x)|=3.|J_{\mathcal{R}}(x)|=3.

Next, let us estimate the analog of (2)(2) of Lemma 2.2 for \mathcal{R}:

C+\displaystyle C_{+} :=\displaystyle:= n=1k=12n1𝖱n,k+|D(x)|pqpq|J(x)|qpq𝑑x\displaystyle\int_{\cup_{n=1}^{\infty}\cup_{k=1}^{2^{n-1}}\mathsf{R}^{+}_{n,k}}\frac{|D\mathcal{R}(x)|^{\frac{pq}{p-q}}}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx
\displaystyle\leq Cn=1k=12n1ankank+123nψcα(x1)2ψcα(x1)(x1ank)(α1)pqpq𝑑x2𝑑x1\displaystyle C\sum_{n=1}^{\infty}\sum_{k=1}^{2^{n-1}}\int_{a_{n}^{k}}^{a_{n}^{k}+\frac{1}{2\cdot 3^{n}}}\int_{\psi^{\alpha}_{c}(x_{1})}^{2\psi^{\alpha}_{c}(x_{1})}(x_{1}-a_{n}^{k})^{\frac{(\alpha-1)pq}{p-q}}dx_{2}dx_{1}
\displaystyle\leq Cn=12n0123nx1α+(α1)pqpq𝑑x1\displaystyle C\sum_{n=1}^{\infty}2^{n}\int_{0}^{\frac{1}{2\cdot 3^{n}}}x_{1}^{\alpha+\frac{(\alpha-1)pq}{p-q}}dx_{1}
\displaystyle\leq Cn=12n(13n)1+α+(α1)pqpq<,\displaystyle C\sum_{n=1}^{\infty}2^{n}\left(\frac{1}{3^{n}}\right)^{1+\alpha+\frac{(\alpha-1)pq}{p-q}}<\infty,

whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

By a simple computation, we can rewrite the reflection \mathcal{R} on Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}} as

(3.11) (x)={(x1,13x2+43ψcα(x1)),x𝖱n,k,(x1,x2),elsewhere.\mathcal{R}(x)=\left\{\begin{array}[]{ll}\left(x_{1},\frac{-1}{3}x_{2}+\frac{4}{3}\psi^{\alpha}_{c}(x_{1})\right),&\ x\in\mathsf{R}^{-}_{n,k},\\ (x_{1},-x_{2}),&\ {\rm elsewhere}.\end{array}\right.

where x=(x1,x2)x=(x_{1},x_{2}). At every point x𝖱n,kx\in\mathsf{R}^{-}_{n,k} for nn\in\mathbb{N} and k{1,2,,2n1}k\in\{1,2,\cdots,2^{n-1}\}, the differential matrix D(x)D\mathcal{R}(x) is

(3.12) D(x)=(143(ψcα)(x1)013).D\mathcal{R}(x)=\left(\begin{array}[]{ccc}1&~{}~{}\frac{4}{3}(\psi^{\alpha}_{c})^{\prime}(x_{1})\\ 0&~{}~{}\frac{-1}{3}\\ \end{array}\right).

There exists a positive constant C>1C>1 such that

(3.13) |D(x)|C|(ψcα)(x1)|Cd(x1,𝒞)α1|D\mathcal{R}(x)|\leq C|(\psi^{\alpha}_{c})^{\prime}(x_{1})|\leq Cd(x_{1},\mathcal{C})^{\alpha-1}

and

(3.14) |J(x)|=13.|J_{\mathcal{R}}(x)|=\frac{1}{3}.

Hence, we have

C\displaystyle C_{-} :=\displaystyle:= n=1k=12n1𝖱n,k|D(x)|pqpq|J(x)|qpq𝑑x\displaystyle\int_{\cup_{n=1}^{\infty}\cup_{k=1}^{2^{n-1}}\mathsf{R}^{-}_{n,k}}\frac{|D\mathcal{R}(x)|^{\frac{pq}{p-q}}}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx
\displaystyle\leq Cn=1k=12n1ankank+123n2ψcα(x1)ψcα(x1)(x1ank)(α1)pqpq)𝑑x2𝑑x1\displaystyle C\sum_{n=1}^{\infty}\sum_{k=1}^{2^{n-1}}\int_{a_{n}^{k}}^{a_{n}^{k}+\frac{1}{2\cdot 3^{n}}}\int_{-2\psi^{\alpha}_{c}(x_{1})}^{\psi^{\alpha}_{c}(x_{1})}(x_{1}-a_{n}^{k})^{\frac{(\alpha-1)pq}{p-q)}}dx_{2}dx_{1}
\displaystyle\leq Cn=12n0123nx1α+(1s)pqs(pq)𝑑x1\displaystyle C\sum_{n=1}^{\infty}2^{n}\int_{0}^{\frac{1}{2\cdot 3^{n}}}x_{1}^{\alpha+\frac{(1-s)pq}{s(p-q)}}dx_{1}
\displaystyle\leq Cn=12n(13n)1+α+(α1)pqpq<,\displaystyle C\sum_{n=1}^{\infty}2^{n}\left(\frac{1}{3^{n}}\right)^{1+\alpha+\frac{(\alpha-1)pq}{p-q}}<\infty,

whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

Finally, it is easy to see that the reflection \mathcal{R} is bi-Lipschitz on every open set U2U\subset{\mathbb{R}}^{2} with d(U,Γψcα)>0d(U,\Gamma_{\psi^{\alpha}_{c}})>0.

4. Sobolev extendability for Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}}

4.1. Extension from W1,p(Ωψcα+)W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2})

Theorem 4.1.

Let Γψcα2\Gamma_{\psi^{\alpha}_{c}}\subset{\mathbb{R}}^{2} be a Cantor-cuspidal graph with log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1. The reflection :22\mathcal{R}:{\mathbb{R}}^{2}\to{\mathbb{R}}^{2} over Γψcα\Gamma_{\psi^{\alpha}_{c}} defined in (3.6) and (3.11) induces a bounded linear extension operator from W1,p(Ωψcα+)W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}), whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

Proof.

Let (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p} be fixed. Since Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}} satisfies the segment condition defined in Definition 2.3, by Lemma 2.1, Cc(2)W1,p(Ωψcα+)C_{c}^{\infty}({\mathbb{R}}^{2})\cap W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) is dense in W1,p(Ωψcα+)W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}). Let uCc(2)W1,p(Ωψcα+)u\in C_{c}^{\infty}({\mathbb{R}}^{2})\cap W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) be arbitrary. We define a function E~(u)\tilde{E}_{\mathcal{R}}(u) on 2{\mathbb{R}}^{2} by setting

(4.1) E~(u)(x):={u((x)),forx2Ωψcα+¯,u(x),forxΩψcα+¯,\tilde{E}_{\mathcal{R}}(u)(x):=\left\{\begin{array}[]{ll}u(\mathcal{R}(x)),&\ {\rm for}\ x\in{\mathbb{R}}^{2}\setminus\overline{\Omega^{+}_{\psi^{\alpha}_{c}}},\\ u(x),&\ {\rm for}\ x\in\overline{\Omega^{+}_{\psi^{\alpha}_{c}}},\end{array}\right.

Since uCc(2)W1,p(Ωψcα+)u\in C_{c}^{\infty}({\mathbb{R}}^{2})\cap W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}), E~(u)\tilde{E}_{\mathcal{R}}(u) is continuous on 2{\mathbb{R}}^{2}. Also since \mathcal{R} is bi-Lipschitz on every open set UU with d(U,Γψcα)>0d(U,\Gamma_{\psi^{\alpha}_{c}})>0, the function E~(u)\tilde{E}_{\mathcal{R}}(u) is locally Lipschitz on 2Γψcα{\mathbb{R}}^{2}\setminus\Gamma_{\psi^{\alpha}_{c}}. Hence, the weak derivative DE~(u)D\tilde{E}_{\mathcal{R}}(u) is well-defined on 2Γψcα{\mathbb{R}}^{2}\setminus\Gamma_{\psi^{\alpha}_{c}}.

Let U2U\subset{\mathbb{R}}^{2} be an arbitrary bounded open set. We define

U~:=(U(U))Ωψcα+.\tilde{U}:=\left(U\cup\mathcal{R}(U)\right)\cap\Omega^{+}_{\psi^{\alpha}_{c}}.

We will show that E~(u)Wloc1,q(2)\tilde{E}_{\mathcal{R}}(u)\in W^{1,q}_{\rm loc}({\mathbb{R}}^{2}) with

E~(u)W1,q(U)CuW1,p(U~)CuW1,p(Ωψcα+).\|\tilde{E}_{\mathcal{R}}(u)\|_{W^{1,q}(U)}\leq C\|u\|_{W^{1,p}(\tilde{U})}\leq C\|u\|_{W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}})}.

Here the constant CC may depend on the open set UU but must be independent of the function uu. Since U2U\subset{\mathbb{R}}^{2} is an arbitrary bounded open set, it suffices to prove inequalities

(4.2) (U|E~(u)(x)|q𝑑x)1qC(U~|u(x)|p𝑑x)1p\left(\int_{U}|\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx\right)^{\frac{1}{q}}\leq C\left(\int_{\tilde{U}}|u(x)|^{p}dx\right)^{\frac{1}{p}}

and

(4.3) (U|DE~(u)(x)|q𝑑x)1qC(U~|Du(x)|p𝑑x)1p.\left(\int_{U}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx\right)^{\frac{1}{q}}\leq C\left(\int_{\tilde{U}}|Du(x)|^{p}dx\right)^{\frac{1}{p}}.

Define

U+:=UΩψcα+andU:=UΩψcα.U^{+}:=U\cap\Omega^{+}_{\psi^{\alpha}_{c}}\ {\rm and}\ U^{-}:=U\cap\Omega^{-}_{\psi^{\alpha}_{c}}.

Then U~=U+(U)\tilde{U}=U^{+}\cup\mathcal{R}(U^{-}). Since 2(Γψcα)=0\mathcal{H}^{2}(\Gamma_{\psi^{\alpha}_{c}})=0, we have

(4.4) U|E~(u)(x)|q𝑑x=U+|E~(u)(x)|q𝑑x+U|E~(u)(x)|q𝑑x\int_{U}|\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx=\int_{U^{+}}|\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx+\int_{U^{-}}|\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx

and

(4.5) U|DE~(u)(x)|q𝑑x=U+|DE~(u)(x)|q𝑑x+U|DE~(u)(x)|q𝑑x.\int_{U}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx=\int_{U^{+}}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx+\int_{U^{-}}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx.

By the definition of E~(u)\tilde{E}_{\mathcal{R}}(u) in (4.1), the Hölder inequality implies

(4.6) (U+|E~(u)(x)|q𝑑x)1qC(U+|u(x)|p𝑑x)1p\left(\int_{U^{+}}|\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx\right)^{\frac{1}{q}}\leq C\left(\int_{U^{+}}|u(x)|^{p}dx\right)^{\frac{1}{p}}

and

(4.7) (U+|DE~(u)(x)|q𝑑x)1qC(U+|DE~(u)(x)|p𝑑x)1p.\left(\int_{U^{+}}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx\right)^{\frac{1}{q}}\leq C\left(\int_{U^{+}}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{p}dx\right)^{\frac{1}{p}}.

By (3.9), the Hölder inequality and a change of variables, we have

U|E~(u)(x)|q𝑑x\displaystyle\int_{U^{-}}|\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx \displaystyle\leq (U|u((x))|p|J(x)|𝑑x)qp\displaystyle\left(\int_{U^{-}}|u(\mathcal{R}(x))|^{p}|J_{\mathcal{R}}(x)|dx\right)^{\frac{q}{p}}
(U1|J(x)|qpq𝑑x)pqp\displaystyle\cdot\left(\int_{U^{-}}\frac{1}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx\right)^{\frac{p-q}{p}}
\displaystyle\leq C((U)|u(x)|p𝑑x)qp.\displaystyle C\left(\int_{\mathcal{R}(U^{-})}|u(x)|^{p}dx\right)^{\frac{q}{p}}.

By combining (4.6) and (4.1), we obtain the inequality (4.2). In order to prove the inequality (4.3), it suffices to show

(4.9) (U|DE~(u)(x)|q𝑑x)1qC((U)|Du(x)|p𝑑x)1p.\left(\int_{U^{-}}|D\tilde{E}_{\mathcal{R}}(u)(x)|^{q}dx\right)^{\frac{1}{q}}\leq C\left(\int_{\mathcal{R}(U^{-})}|Du(x)|^{p}dx\right)^{\frac{1}{p}}.

By Lemma 2.2, it suffices to show that

U|D(x)|pqpq|J(x)|qpq𝑑x<.\int_{U^{-}}\frac{|D\mathcal{R}(x)|^{\frac{pq}{p-q}}}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx<\infty.

By a similar computation as in the previous section, we have

U|D(x)|pqpq|J(x)|qpq𝑑x\displaystyle\int_{U^{-}}\frac{|D\mathcal{R}(x)|^{\frac{pq}{p-q}}}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx =\displaystyle= U(n,k𝖱n,k)|D(x)|pqpq|J(x)|qpq𝑑x\displaystyle\int_{U^{-}\cap\left(\bigcup_{n,k}\mathsf{R}^{-}_{n,k}\right)}\frac{|D\mathcal{R}(x)|^{\frac{pq}{p-q}}}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx
+U(n,k𝖱n,k)|D(x)|pqpq|J(x)|qpq𝑑x\displaystyle+\int_{U\setminus\left(\bigcup_{n,k}\mathsf{R}^{-}_{n,k}\right)}\frac{|D\mathcal{R}(x)|^{\frac{pq}{p-q}}}{|J_{\mathcal{R}}(x)|^{\frac{q}{p-q}}}dx
\displaystyle\leq C+2(U)<,\displaystyle C_{-}+\mathcal{H}^{2}(U)<\infty,

whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}. By combining (4.7) and (4.9), we obtain the inequality (4.3). Hence, the reflection \mathcal{R} defined in (3.6) induces a bounded linear extension operator from Cc(2)W1,p(Ωψcα+)C_{c}^{\infty}({\mathbb{R}}^{2})\cap W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}). For arbitrary uW1,p(Ωψcα+)u\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}), there exists a sequence of function {um}m=1Cc(2)W1,p(Ωψcα+)\{u_{m}\}_{m=1}^{\infty}\subset C_{c}^{\infty}({\mathbb{R}}^{2})\cap W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) with

limmumuW1,p(Ωψcα+)=0\lim_{m\to\infty}\|u_{m}-u\|_{W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}})}=0

and

limmum(x)=u(x)foralmosteveryxΩψcα+.\lim_{m\to\infty}u_{m}(x)=u(x)\ {\rm for\ almost\ every}\ x\in\Omega^{+}_{\psi^{\alpha}_{c}}.

By combining (4.2) and (4.3), we obtain

(4.10) E~(um)W1,q(U)CumW1,p(U~)CumW1,p(Ωψcα+).\|\tilde{E}_{\mathcal{R}}(u_{m})\|_{W^{1,q}(U)}\leq C\|u_{m}\|_{W^{1,p}(\tilde{U})}\leq C\|u_{m}\|_{W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}})}.

It implies that {E~(um)|U}m=1\{\tilde{E}_{\mathcal{R}}(u_{m})\big{|}_{U}\}_{m=1}^{\infty} is a Cauchy sequence in the Sobolev space W1,q(U)W^{1,q}(U) for arbitrary bounded open set U2U\subset{\mathbb{R}}^{2}. Hence, there exists a subsequence of {E~(um)}\{\tilde{E}_{\mathcal{R}}(u_{m})\} which converges to a Sobolev function vUW1,q(U)v_{U}\in W^{1,q}(U) point-wise almost everywhere. By covering 2{\mathbb{R}}^{2} with countably many bounded open sets, there exists a subsequence of {E~(um)}\{\tilde{E}_{\mathcal{R}}(u_{m})\} which converges to a function vWloc1,q(2)v\in W^{1,q}_{\rm loc}({\mathbb{R}}^{2}) point-wise almost everywhere and v|U=vUv\big{|}_{U}=v_{U} for every bounded open set U2U\subset{\mathbb{R}}^{2}. We define E(u)E_{\mathcal{R}}(u) on \mathbb{C} by setting

(4.11) E(u)(x,y):={u((x)),forxΩψc+,0,forxΓψc,u(x),forxΩψc.E_{\mathcal{R}}(u)(x,y):=\left\{\begin{array}[]{ll}u(\mathcal{R}(x)),&\ {\rm for}\ x\in\Omega^{+}_{\psi_{c}},\\ 0,&\ {\rm for}\ x\in\Gamma_{\psi_{c}},\\ u(x),&\ {\rm for}\ x\in\Omega^{-}_{\psi_{c}}.\end{array}\right.

By the definition of E(u)E_{\mathcal{R}}(u), we have limmE~(um)(x)=E(u)(x)\lim_{m\to\infty}\widetilde{E}_{\mathcal{R}}(u_{m})(x)=E_{\mathcal{R}}(u)(x) for almost every x2x\in{\mathbb{R}}^{2}. Hence, E(u)(x)=v(x)E_{\mathcal{R}}(u)(x)=v(x) for almost every x2x\in{\mathbb{R}}^{2}. It means that E(u)Wloc1,q(2)E_{\mathcal{R}}(u)\in W^{1,q}_{\rm loc}({\mathbb{R}}^{2}) with

(4.12) E(u)W1,q(U)CuW1,p(U~)CuW1,p(Ωψcα+).\|E_{\mathcal{R}}(u)\|_{W^{1,q}(U)}\leq C\|u\|_{W^{1,p}(\tilde{U})}\leq C\|u\|_{W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}})}.

Since U2U\subset{\mathbb{R}}^{2} is an arbitrary bounded open set, we proved that the reflection \mathcal{R} induces a bounded linear extension operator from W1,p(Ωψcα+)W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}), whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}. ∎

4.2. Sharpness of Theorem 4.1 for Ωψcα+\Omega^{+}_{\psi^{\alpha}_{c}}

Let 0<α<10<\alpha<1 be fixed. For every nn\in\mathbb{N} and k=1,,2n1k=1,...,2^{n-1}, we define a cuspidal domain 𝒞n,k\mathcal{C}_{n,k} by setting

(4.13) 𝒞n,k:={x=(x1,x2)2;x1In,kand 0<x2<ψcα(x1)}.\mathcal{C}_{n,k}:=\left\{x=(x_{1},x_{2})\in\mathbb{R}^{2};x_{1}\in I_{n,k}\ {\rm and}\ 0<x_{2}<\psi^{\alpha}_{c}(x_{1})\right\}.

The reason why we call 𝒞n,k\mathcal{C}_{n,k} a cuspidal domain is that the domain 𝒞n,k\mathcal{C}_{n,k} has a cuspidal singularity at every end-point of the removed interval In,kI_{n,k}. For nn-th generation of cuspidal domains {𝒞n,k}k=12n1\{\mathcal{C}_{n,k}\}_{k=1}^{2^{n-1}}, let 𝒞n,1\mathcal{C}_{n,1} be the left-most one and 𝒞n,2n1\mathcal{C}_{n,2^{n-1}} be the right-most one. For a cuspidal domain 𝒞n,k\mathcal{C}_{n,k} with 1<k<2n11<k<2^{n-1} in the nn-th generation with n>2n>2, there exist two cuspidal domains 𝒞n1,k1\mathcal{C}_{n_{1},k_{1}} and 𝒞n2,k2\mathcal{C}_{n_{2},k_{2}} from generations before nn which are close to 𝒞n,k\mathcal{C}_{n,k}. One is on the right-hand side of 𝒞n,k\mathcal{C}_{n,k} and the other is on the left-hand side of 𝒞n,k\mathcal{C}_{n,k}. Let 𝒞n1,k1\mathcal{C}_{n_{1},k_{1}} be in the left-hand side of 𝒞n,k\mathcal{C}_{n,k} and 𝒞n2,k2\mathcal{C}_{n_{2},k_{2}} be in the right-hand side of 𝒞n,k\mathcal{C}_{n,k}. For every removed open interval InkI_{n}^{k}, define qnk:=12(ank+bnk)q_{n}^{k}:=\frac{1}{2}(a_{n}^{k}+b_{n}^{k}) to be the middle point of it. Then we define two open sets Un,klU^{l}_{n,k} and Un,krU^{r}_{n,k} by setting

Un,kl:={x=(x1,x2)Ωψcα+:qn1k1<x1<qnkand(13)α(123n)α<x2<(123n)α}U^{l}_{n,k}:=\left\{x=(x_{1},x_{2})\in\Omega^{+}_{\psi^{\alpha}_{c}}:q_{n_{1}}^{k_{1}}<x_{1}<q_{n}^{k}\ {\rm and}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right\}

and

Un,kr:={x=(x1,x2)Ωψcα+:qnk<x1<qn2k2and(13)α(123n)α<x2<(123n)α}.U^{r}_{n,k}:=\left\{x=(x_{1},x_{2})\in\Omega^{+}_{\psi^{\alpha}_{c}}:q_{n}^{k}<x_{1}<q_{n_{2}}^{k_{2}}\ {\rm and}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right\}.

For the left-most generation nn cuspidal domain 𝒞n,1\mathcal{C}_{n,1}, we define

Un,1r:={x=(x1,x2)Ωψcα+:qn1<x1<qn11and(13)α(123n)α<x2<(123n)α}U^{r}_{n,1}:=\left\{x=(x_{1},x_{2})\in\Omega^{+}_{\psi^{\alpha}_{c}}:q_{n}^{1}<x_{1}<q_{n-1}^{1}\ {\rm and}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right\}

and

Un,1l:={x=(x1,x2)Ωψcα+:<x1<qn1and(13)α(123n)α<x2<(123n)α}.U^{l}_{n,1}:=\left\{x=(x_{1},x_{2})\in\Omega^{+}_{\psi^{\alpha}_{c}}:-\infty<x_{1}<q_{n}^{1}\ {\rm and}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right\}.

For the right-most generation nn cuspidal domain 𝒞n,2n1\mathcal{C}_{n,2^{n-1}}, we define

Un,2n1l:={x=(x1,x2)Ωψcα+:qn12n2<x1<qn2n1and(13)α(123n)α<x2<(123n)α}U^{l}_{n,2^{n-1}}:=\left\{x=(x_{1},x_{2})\in\Omega^{+}_{\psi^{\alpha}_{c}}:q^{2^{n-2}}_{n-1}<x_{1}<q_{n}^{2^{n-1}}\ {\rm and}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right\}

and

Un,2n1r:={x=(x1,x2)Ωψcα+:qn2n1<x1<and(13)α(123n)α<x2<(123n)α}.U^{r}_{n,2^{n-1}}:=\left\{x=(x_{1},x_{2})\in\Omega^{+}_{\psi^{\alpha}_{c}}:q_{n}^{2^{n-1}}<x_{1}<\infty\ {\rm and}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right\}.

On every Un,klU^{l}_{n,k} with k>1k>1, we define a function v+v^{+} by setting

(4.14) v+(x):={x2(1(23)α)(123n)α+1(1(23n)α),if(23)α(123n)α<x2<(123n)α,1,if(12)α(123n)αx2(23)α(123n)α,x2((12)α(13)α)(123n)α(13)α(12)α(13)α,if(13)α(123n)α<x2<(12)α(123n)α.v^{+}(x):=\left\{\begin{array}[]{ll}\frac{-x_{2}}{\left(1-\left(\frac{2}{3}\right)^{\alpha}\right)\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}}+\frac{1}{\left(1-\left(\frac{2}{3^{n}}\right)^{\alpha}\right)},&\ {\rm if}\ \left(\frac{2}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},\\ 1,&\ {\rm if}\left(\frac{1}{2}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\leq x_{2}\leq\left(\frac{2}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},\\ \frac{x_{2}}{\left(\left(\frac{1}{2}\right)^{\alpha}-\left(\frac{1}{3}\right)^{\alpha}\right)\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}}-\frac{\left(\frac{1}{3}\right)^{\alpha}}{\left(\frac{1}{2}\right)^{\alpha}-\left(\frac{1}{3}\right)^{\alpha}},&\ {\rm if}\ \left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{2}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}.\end{array}\right.

On the set Ωψcα+n=1k=22n1Un,kl\Omega^{+}_{\psi^{\alpha}_{c}}\setminus\bigcup_{n=1}^{\infty}\bigcup_{k=2}^{2^{n-1}}U^{l}_{n,k}, we simply set v+(x)0v^{+}(x)\equiv 0. For every 1<p<1<p<\infty, we define a number αp\alpha_{p} by setting

(4.15) αp1:={((1+α)log2log3)p(1+α)log2log3+(1α)p,if(1+α)log2log32αlog2log3<p<,1,if 1<p(1+α)log2log32αlog2log3.\alpha_{p}^{-1}:=\left\{\begin{array}[]{ll}\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p},&\ {\rm if}\ \frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty,\\ 1,&\ {\rm if}\ 1<p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}.\end{array}\right.

Then 1αp1<p1\leq\alpha^{-1}_{p}<p. Next, we define our test-function ue+u_{e}^{+} by setting

(4.16) ue+(x)=3nαβ(1nlogn)αpv+(x)foreveryxΩψcα+,u_{e}^{+}(x)=3^{n\alpha\beta}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}v^{+}(x)\ {\rm for\ every}\ x\in\Omega^{+}_{\psi^{\alpha}_{c}},

with

(4.17) β(1+α)log2log3αp1.\beta\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{\alpha p}-1.

First, a simple computation gives

ψcα+|ue+(x)|p𝑑x\displaystyle\int_{\mathbb{H}^{+}_{\psi^{\alpha}_{c}}}|u_{e}^{+}(x)|^{p}dx \displaystyle\leq Cn=1k=22n13nαβp(1nlogn)αpp2(Un,kl)\displaystyle C\sum_{n=1}^{\infty}\sum_{k=2}^{2^{n-1}}3^{n\alpha\beta p}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}\mathcal{H}^{2}(U^{l}_{n,k})
\displaystyle\leq Cn=12n3n(βαpα1)(1nlogn)αpp<,\displaystyle C\sum_{n=1}^{\infty}2^{n}3^{n\left(\beta\alpha p-\alpha-1\right)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}<\infty,

for 23(βαpα1)<12\cdot 3^{(\beta\alpha p-\alpha-1)}<1 and αpp>1\alpha_{p}p>1. Furthermore

(4.19) |Due+(x)|{C3nα(β+1)(1nlogn)αp,xUn,klwith 1<k,0,elsewhere.|Du_{e}^{+}(x)|\leq\left\{\begin{array}[]{ll}C3^{{n\alpha(\beta+1)}}\left(\frac{1}{n\log n}\right)^{\alpha_{p}},&\ x\in U^{l}_{n,k}\ {\rm with}\ 1<k,\\ 0,&\ {\rm elsewhere}.\end{array}\right.

Hence,

ψcα+|Due+(x)|p𝑑x\displaystyle\int_{\mathbb{H}^{+}_{\psi^{\alpha}_{c}}}|Du_{e}^{+}(x)|^{p}dx \displaystyle\leq Cn=1k=22n13nαp(β+1)(1nlogn)αpp2(Un,kl)\displaystyle C\sum_{n=1}^{\infty}\sum_{k=2}^{2^{n-1}}3^{n\alpha p(\beta+1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}\mathcal{H}^{2}(U^{l}_{n,k})
\displaystyle\leq Cn=12n3n(αp(β+1)α1)(1nlogn)αpp\displaystyle C\sum_{n=1}^{\infty}2^{n}3^{n\left(\alpha p(\beta+1)-\alpha-1\right)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}
<\displaystyle< ,\displaystyle\infty,

for 23(αp(β+1)α1)12\cdot 3^{\left(\alpha p(\beta+1)-\alpha-1\right)}\leq 1 and αpp>1\alpha_{p}p>1. Hence, ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}). For every n{1}n\in\mathbb{N}\setminus\{1\} and k{2,3,,2n1}k\in\{2,3,\cdots,2^{n-1}\} and every

(12)α(123n)αx2(23)α(123n)α,\left(\frac{1}{2}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\leq x_{2}\leq\left(\frac{2}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},

we define Sn,k(x2):=(×{x2})𝒞n,kS_{n,k}(x_{2}):=({\mathbb{R}}\times\{x_{2}\})\cap\mathcal{C}_{n,k} to be a horizontal line segment inside the cuspidal domain 𝒞n,k\mathcal{C}_{n,k}. See the picture below. Assume that there exists an extension E(ue+)Wloc1,q(2)E(u_{e}^{+})\in W^{1,q}_{\rm loc}({\mathbb{R}}^{2}) for some 1qp1\leq q\leq p. By the ACLACL-characterization of Sobolev functions and the Hölder inequality, for almost every

x2((12)α(123n)α,(23)α(123n)α),x_{2}\in\left(\left(\frac{1}{2}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},\left(\frac{2}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right),

we have

(4.21) CSn,k(x2)|DE(ue+)(x)|q𝑑x13nαβq+n(q1)(1nlogn)αpq,C\int_{S_{n,k}(x_{2})}|DE(u_{e}^{+})(x)|^{q}dx_{1}\geq 3^{n\alpha\beta q+n(q-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q},

with a uniform constant CC independent of n,k,x2n,k,x_{2}.

The following three propositions show the sharpness of the result in Theorem 4.1.

Proposition 4.1.

Let 0<αlog22log30<\alpha\leq\frac{\log 2}{2\log 3} and let Γψcα\Gamma_{\psi^{\alpha}_{c}} be the corresponding Cantor-cuspidal graph. Then, for arbitrary 1<p1<p\leq\infty, the function ue+u_{e}^{+} cannot be extended to be a function in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}).

Proof.

Since 0<αlog22log30<\alpha\leq\frac{\log 2}{2\log 3}, we can choose 1log2αlog3β11-\frac{\log 2}{\alpha\log 3}\leq\beta\leq-1 in the definition of the function ue+u^{+}_{e} in (4.16). Then ue+W1,(ψcα+)u_{e}^{+}\in W^{1,\infty}(\mathbb{H}^{+}_{\psi^{\alpha}_{c}}). Since both |ue+||u_{e}^{+}| and |Due+||Du_{e}^{+}| vanish outside a bounded set, the Hölder inequality implies ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}), for every 1<p1<p\leq\infty. Assume that there exists an extension E(ue+)E(u_{e}^{+}) in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}). By (4.21) and the Fubini theorem, we obtain

D(0,2)|DE(ue+)(x)|𝑑x\displaystyle\int_{D(0,2)}|DE(u_{e}^{+})(x)|dx \displaystyle\geq Cn=1k=22n13nα(β1)(1nlogn)αp\displaystyle C\sum_{n=1}^{\infty}\sum_{k=2}^{2^{n-1}}3^{n\alpha(\beta-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}
\displaystyle\geq Cn=12n3nα(β1)(1nlogn)αp=.\displaystyle C\sum_{n=1}^{\infty}2^{n}3^{n\alpha(\beta-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}=\infty.

This contradicts the assumption that E(ue+)Wloc1,1(2)E(u^{+}_{e})\in W^{1,1}_{\rm loc}({\mathbb{R}}^{2}) and the proof is finished. ∎

Proposition 4.2.

Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1 and Γψcα\Gamma_{\psi^{\alpha}_{c}} be the corresponding Cantor-cuspidal graph. Then for arbitrary 1<p(1+α)log2log32αlog2log31<p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}, there exists a function ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) which can not be extended to be a function in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}).

Proof.

For every 1<p(1+α)log2log32αlog2log31<p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}, we fix β=(1+α)log2log3αp1\beta=\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{\alpha p}-1 in the definition of the function ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) in (4.16). Assume that there exists an extension E(ue+)Wloc1,1(2)E(u^{+}_{e})\in W^{1,1}_{\rm loc}({\mathbb{R}}^{2}). Then by (4.21) and the Fubini theorem, we have

D(0,2)|DE(ue+)(x)|𝑑x\displaystyle\int_{D(0,2)}|DE(u_{e}^{+})(x)|dx \displaystyle\geq Cn=1k=22n13nα(β1)(1nlogn)αp\displaystyle C\sum_{n=1}^{\infty}\sum_{k=2}^{2^{n-1}}3^{n\alpha(\beta-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}
\displaystyle\geq Cn=12n3nα(β1)(1nlogn)αp=,\displaystyle C\sum_{n=1}^{\infty}2^{n}3^{n\alpha(\beta-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}=\infty,

since 23nα(β1)12\cdot 3^{n\alpha(\beta-1)}\geq 1 and αp=1\alpha_{p}=1 for 1<p(1+α)log2log32αlog2log31<p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}. This contradicts the assumption that E(ue+)Wloc1,1(2)E(u_{e}^{+})\in W^{1,1}_{\rm loc}({\mathbb{R}}^{2}) and the proof is finished. ∎

Proposition 4.3.

Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1 and Γψcα\Gamma_{\psi^{\alpha}_{c}} be the corresponding Cantor-cuspidal graph. For arbitrary (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty, there exists a function ue+W1,p(Ωψcα+)u_{e}^{+}\in W^{1,p}(\Omega^{+}_{\psi^{\alpha}_{c}}) which can not be extended to be a function in the class Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}), whenever ((1+α)log2log3)p(1+α)log2log3+(1α)pq<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}\leq q<\infty.

Proof.

Define

qo=((1+α)log2log3)p(1+α)log2log3+(1α)p.q_{o}=\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

The Hölder inequality implies that it suffices to show that ue+u^{+}_{e} can not be extended to be a function in the class Wloc1,qo(2)W^{1,q_{o}}_{\rm loc}({\mathbb{R}}^{2}). Fix β=(1+α)log2log3αp1\beta=\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{\alpha p}-1 in the definition of ue+u^{+}_{e} in (4.16). By (4.21) and the Fubini theorem, we have

D(0,2)|DE(ue+)(x)|qo𝑑x\displaystyle\int_{D(0,2)}|DE(u_{e}^{+})(x)|^{q_{o}}dx \displaystyle\geq Cn=1k=22n13(nβqon)α+n(qo1)(1nlogn)αpqo\displaystyle C\sum_{n=1}^{\infty}\sum_{k=2}^{2^{n-1}}3^{(n\beta q_{o}-n)\alpha+n(q_{o}-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q_{o}}
\displaystyle\geq Cn=12n3α(nβqon)+n(qo1)(1nlogn)αpqo=,\displaystyle C\sum_{n=1}^{\infty}2^{n}3^{\alpha(n\beta q_{o}-n)+n(q_{o}-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q_{o}}=\infty,

since 23α(βqo1)+(qo1)=12\cdot 3^{\alpha(\beta q_{o}-1)+(q_{o}-1)}=1 and αpqo=1\alpha_{p}q_{o}=1. This contradicts the assumption that E(ue+)Wloc1,qo(2)E(u_{e}^{+})\in W^{1,q_{o}}_{\rm loc}({\mathbb{R}}^{2}) and the proof is finished. ∎

5. Sobolev extendability for Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}}

5.1. Extension from W1,p(Ωψcα)W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2})

Theorem 5.1.

Let Γψcα2\Gamma_{\psi^{\alpha}_{c}}\subset{\mathbb{R}}^{2} be a Cantor-cuspidal graph with log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1. Then the reflection :22\mathcal{R}:{\mathbb{R}}^{2}\to{\mathbb{R}}^{2} over Γψcα\Gamma_{\psi^{\alpha}_{c}} defined in (3.6) and (3.11) induces a bounded linear extension operator from W1,p(Ωψcα)W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) to Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}), whenever (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty and 1q<((1+α)log2log3)p(1+α)log2log3+(1α)p1\leq q<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

Proof.

Simply replace 𝖱n,k\mathsf{R}^{-}_{n,k} by 𝖱n,k+\mathsf{R}^{+}_{n,k} in the proof of Theorem 4.1 and repeat the argument. ∎

5.2. Sharpness of Theorem 5.1

Let us define a function vv_{-} on Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}}. For every even nn\in\mathbb{N} and k=1,2,,2n1k=1,2,...,2^{n-1}, we define

v(x)=0,foreveryx𝒞n,k.v_{-}(x)=0,\ {\rm for\ every}\ x\in\mathcal{C}_{n,k}.

For odd nn\in\mathbb{N} and every k=1,2,,2n1k=1,2,...,2^{n-1}, we define the function vv_{-} on 𝒞n,k\mathcal{C}_{n,k} by setting

(5.1) v(x):={1,x2>(16)α(123n)α,x2(19)α(123n)α((16)α(19)α)(123n)α,(19)α(123n)αx2(16)α(123n)α,0,x2<(19)α(123n)α.v_{-}(x):=\left\{\begin{array}[]{ll}1,&\ x_{2}>\left(\frac{1}{6}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},\\ \frac{x_{2}-\left(\frac{1}{9}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}}{\left(\left(\frac{1}{6}\right)^{\alpha}-\left(\frac{1}{9}\right)^{\alpha}\right)\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}},&\ \left(\frac{1}{9}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\leq x_{2}\leq\left(\frac{1}{6}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},\\ 0,&\ x_{2}<\left(\frac{1}{9}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}.\end{array}\right.

Outside the set n=1k=12n1𝒞n,k\cup_{n=1}^{\infty}\cup_{k=1}^{2^{n-1}}\mathcal{C}_{n,k}, we just set v=0v_{-}=0. Finally, we define our function ueu_{e}^{-} on Ωψcα\Omega^{-}_{\psi^{\alpha}_{c}} by setting

(5.2) ue(x)=3nαβ(1nlogn)αpv(x),u^{-}_{e}(x)=3^{n\alpha\beta}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}v_{-}(x),

where αp\alpha_{p} is given in (4.15) and β\beta is given in (4.17). Then we have

ψcα|ue(x)|p𝑑x\displaystyle\int_{\mathbb{H}^{-}_{\psi^{\alpha}_{c}}}|u^{-}_{e}(x)|^{p}dx \displaystyle\leq nisoddk=12n1𝒞n,k|ue(x)|p𝑑x\displaystyle\sum_{n\ {\rm is\ odd}}\sum_{k=1}^{2^{n-1}}\int_{\mathcal{C}_{n,k}}|u^{-}_{e}(x)|^{p}dx
\displaystyle\leq Cnisodd2n3n(pαβ1α)(1nlogn)αpp<,\displaystyle C\sum_{n\ {\rm is\ odd}}2^{n}3^{n\left(p\alpha\beta-1-\alpha\right)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}<\infty,

since 23pαβ1α<12\cdot 3^{p\alpha\beta-1-\alpha}<1. There exists a positive constant C>0C>0 such that for odd nn

(5.4) |Due(x)|C3nα(β+1)(1nlogn)αp,|Du^{-}_{e}(x)|\leq C3^{n\alpha(\beta+1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}},

for every x𝒞n,kx\in\mathcal{C}_{n,k} with (19)α(123n)αx2(16)α(123n)α\left(\frac{1}{9}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\leq x_{2}\leq\left(\frac{1}{6}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}. Moreover Due(x)=0Du^{-}_{e}(x)=0 elsewhere. Hence, we have

ψcα|Due(x)|p𝑑x\displaystyle\int_{\mathbb{H}^{-}_{\psi^{\alpha}_{c}}}|Du^{-}_{e}(x)|^{p}dx \displaystyle\leq Cnisoddk=12n13n(pα(β+1)(1+α))(1nlogn)αpp\displaystyle C\sum_{n\ {\rm is\ odd}}\sum_{k=1}^{2^{n-1}}3^{n\left(p\alpha(\beta+1)-(1+\alpha)\right)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}
\displaystyle\leq Cnisodd2n3n(pα(β+1)(1+α))(1nlogn)αpp<,\displaystyle C\sum_{n\ {\rm is\ odd}}2^{n}3^{n\left(p\alpha(\beta+1)-(1+\alpha)\right)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}p}<\infty,

since 23pα(β+1)(1+α)12\cdot 3^{p\alpha(\beta+1)-(1+\alpha)}\leq 1 and αpp>1\alpha_{p}p>1. Hence, ueW1,p(Ωψcα)u^{-}_{e}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}). Fixing an odd nn\in\mathbb{N} and k=1,2,,2n1k=1,2,...,2^{n-1}, there exists two cuspidal domains 𝒞n+1,k1\mathcal{C}_{n+1,k_{1}} and 𝒞n+1,k1\mathcal{C}_{n+1,k_{1}^{\prime}} nearby from the next generation. One is on the right-hand side of 𝒞n,k\mathcal{C}_{n,k} and the other is on the left-hand side of 𝒞n,k\mathcal{C}_{n,k}. Without loss of generalization, we assume 𝒞n+1,k1\mathcal{C}_{n+1,k_{1}} is on the left-hand side of 𝒞n,k\mathcal{C}_{n,k} and 𝒞n+1,k2\mathcal{C}_{n+1,k_{2}} is on the right-hand side of 𝒞n,k\mathcal{C}_{n,k}. For every

(16)α(123n)α<x2<(13)α(123n)α\left(\frac{1}{6}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}<x_{2}<\left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}

we define

Ln,kl:={x=(x1,x2)ψcα+:qn+1k1<x1<qnk}L^{l}_{n,k}:=\left\{x=(x_{1},x_{2})\in\mathbb{H}^{+}_{\psi^{\alpha}_{c}}:q_{n+1}^{k_{1}}<x_{1}<q_{n}^{k}\right\}

and

Ln,kr:={x=(x1,x2)ψcα+:qnk<x1<qn+1k2}.L^{r}_{n,k}:=\left\{x=(x_{1},x_{2})\in\mathbb{H}^{+}_{\psi^{\alpha}_{c}}:q_{n}^{k}<x_{1}<q_{n+1}^{k_{2}}\right\}.

Assume that there exists an extension E(ue)Wloc1,q(2)E(u^{-}_{e})\in W^{1,q}_{\rm loc}({\mathbb{R}}^{2}). By the ACLACL-characterization of Sobolev functions and the Hölder inequality, we have

(5.6) CLn,kl(x2)|DE(ue)(x)|q𝑑x13nαβq+n(q1)(1nlogn)αpqC\int_{L^{l}_{n,k}(x_{2})}|DE(u^{-}_{e})(x)|^{q}dx_{1}\geq 3^{n\alpha\beta q+n(q-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q}

and

(5.7) CLn,kr(x2)|DE(ue)(x)|q𝑑x13nαβq+n(q1)(1nlogn)αpqC\int_{L^{r}_{n,k}(x_{2})}|DE(u^{-}_{e})(x)|^{q}dx_{1}\geq 3^{n\alpha\beta q+n(q-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q}

for almost every

x2((16)α(123n)α,(13)α(123n)α),x_{2}\in\left(\left(\frac{1}{6}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha},\left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2\cdot 3^{n}}\right)^{\alpha}\right),

where the constant CC is independent of n,k,x2n,k,x_{2}.

The following propositions show the sharpness of the result in Theorem 5.1.

Proposition 5.1.

Let 0<αlog22log30<\alpha\leq\frac{\log 2}{2\log 3} and Γψcα\Gamma_{\psi^{\alpha}_{c}} be the corrersponding Cantor-cuspidal graph. Then for arbitrary 1<p1<p\leq\infty, there exists a function ueW1,p(Ωψcα)u^{-}_{e}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) which cannot be extended to be a function in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}).

Proof.

Since 0<αlog22log30<\alpha\leq\frac{\log 2}{2\log 3}, we fix 1log2αlog3β11-\frac{\log 2}{\alpha\log 3}\leq\beta\leq-1 in the definition of ueu^{-}_{e} in (5.2). Then ueW1,(ψcα)u^{-}_{e}\in W^{1,\infty}(\mathbb{H}^{-}_{\psi^{\alpha}_{c}}). Since both |ue||u^{-}_{e}| and |Due||Du^{-}_{e}| vanish outside a bounded set, the Hölder inequality implies ueW1,p(ψcα)u^{-}_{e}\in W^{1,p}(\mathbb{H}^{-}_{\psi^{\alpha}_{c}}), for every 1<p1<p\leq\infty. Assume that there exists an function E(ue)E(u^{-}_{e}) in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}). By (5.6), (5.7) and the Fubini theorem, we have

D(0,2)|DE(ue)(x)|𝑑x\displaystyle\int_{D(0,2)}|DE(u^{-}_{e})(x)|dx \displaystyle\geq Cnisoddk=12n13nα(β1)(1nlogn)αp\displaystyle C\sum_{n\ {\rm is\ odd}}\sum_{k=1}^{2^{n-1}}3^{n\alpha(\beta-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}
\displaystyle\geq Cnisodd2n3nα(β1)(1nlogn)αp=,\displaystyle C\sum_{n\ {\rm is\ odd}}2^{n}3^{n\alpha(\beta-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}=\infty,

since 23α(β1)12\cdot 3^{\alpha(\beta-1)}\geq 1 and αp1\alpha_{p}\leq 1 This contradicts the assumption that E(ue)Wloc1,1(2)E(u^{-}_{e})\in W^{1,1}_{\rm loc}({\mathbb{R}}^{2}) and the proof is finished. ∎

Proposition 5.2.

Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1 and Γψcα\Gamma_{\psi^{\alpha}_{c}} be the corresponding Cantor-cuspidal graph. Then, for arbitrary 1<p(1+α)log2log32αlog2log31<p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}, there exists a function ueW1,p(Ωψcα)u^{-}_{e}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) which can not be extended to be a function in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}).

Proof.

For every 1<p(1+α)log2log32αlog2log31<p\leq\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}, we fix β=(1+α)log2log3αp1\beta=\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{\alpha p}-1 in the definition of the function ueW1,p(Ωψcα)u^{-}_{e}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) in (5.2). Assume that there exists an extended function E(ue)E(u^{-}_{e}) in the class Wloc1,1(2)W^{1,1}_{\rm loc}({\mathbb{R}}^{2}). Then by (5.6), (5.7) and the Fubini theorem, we have

D(0,2)|DE(ue)(x)|𝑑x\displaystyle\int_{D(0,2)}|DE(u^{-}_{e})(x)|dx \displaystyle\geq Cnisoddk=12n13nα(β1)(1nlogn)αp\displaystyle C\sum_{n\ {\rm is\ odd}}\sum_{k=1}^{2^{n-1}}3^{{n\alpha(\beta-1)}}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}
\displaystyle\geq Cnisodd2n3nα(β1)(1nlogn)αp=,\displaystyle C\sum_{n\ {\rm is\ odd}}2^{n}3^{{n\alpha(\beta-1)}}\left(\frac{1}{n\log n}\right)^{\alpha_{p}}=\infty,

since 23α(β1)12\cdot 3^{\alpha(\beta-1)}\geq 1 and αp1\alpha_{p}\leq 1. This contradicts the assumption that E(ue)Wloc1,1(2)E(u^{-}_{e})\in W^{1,1}_{\rm loc}({\mathbb{R}}^{2}) and the proof is finished. ∎

Proposition 5.3.

Let log22log3<α<1\frac{\log 2}{2\log 3}<\alpha<1 and Γψcα\Gamma_{\psi^{\alpha}_{c}} be the corresponding Cantor-cuspidal graph. For arbitrary (1+α)log2log32αlog2log3<p<\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{2\alpha-\frac{\log 2}{\log 3}}<p<\infty, there exists a function ueW1,p(Ωψcα)u^{-}_{e}\in W^{1,p}(\Omega^{-}_{\psi^{\alpha}_{c}}) which can not be extended to be a function in the class Wloc1,q(2)W^{1,q}_{\rm loc}({\mathbb{R}}^{2}), whenever ((1+α)log2log3)p(1+α)log2log3+(1α)pq<\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}\leq q<\infty.

Proof.

Fix

qo=((1+α)log2log3)p(1+α)log2log3+(1α)p.q_{o}=\frac{((1+\alpha)-\frac{\log 2}{\log 3})p}{(1+\alpha)-\frac{\log 2}{\log 3}+(1-\alpha)p}.

The Hölder inequality implies that it suffices to show that ueu^{-}_{e} can not be extended to be a function in the class Wloc1,qo(2)W^{1,q_{o}}_{\rm loc}({\mathbb{R}}^{2}). Fix β=(1+α)log2log3αp1\beta=\frac{(1+\alpha)-\frac{\log 2}{\log 3}}{\alpha p}-1 in the definition of ueu^{-}_{e} in (5.2). Assume that there exists an extension E(ue)Wloc1,qo(2)E(u^{-}_{e})\in W^{1,q_{o}}_{\rm loc}({\mathbb{R}}^{2}). By (5.6), (5.7) and the Fubini theorem, we have

D(0,2)|DE(ue)(x)|qo𝑑x\displaystyle\int_{D(0,2)}|DE(u^{-}_{e})(x)|^{q_{o}}dx \displaystyle\geq Cnisoddk=12n13(nβqon)α+n(qo1)(1nlogn)αpqo\displaystyle C\sum_{n\ {\rm is\ odd}}\sum_{k=1}^{2^{n-1}}3^{{(n\beta q_{o}-n})\alpha+n(q_{o}-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q_{o}}
\displaystyle\geq Cnisodd2n3α(nβqon)+n(qo1)(1nlogn)αpqo=,\displaystyle C\sum_{n\ {\rm is\ odd}}2^{n}3^{\alpha({n\beta q_{o}-n})+n(q_{o}-1)}\left(\frac{1}{n\log n}\right)^{\alpha_{p}q_{o}}=\infty,

since 23α(βqo1)+(qo1)=12\cdot 3^{\alpha(\beta q_{o}-1)+(q_{o}-1)}=1 and αpqo=1\alpha_{p}q_{o}=1. This contradicts the assumption that E(ue)Wloc1,qo(2)E(u^{-}_{e})\in W^{1,q_{o}}_{\rm loc}({\mathbb{R}}^{2}) and the proof is finished. ∎

References

  • [1] R. A. Adams and J. J. F. Fournier, Sobolev space. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
  • [2] Faĭn, B. L., Extension of functions from Sobolev spaces for irregular domains preserving the index of smoothness. (Russian) Dokl. Akad. Nauk SSSR 285 (1985), no. 2, 296–301.
  • [3] V. M. Gol’dshtein and V. N. Sitnikov, Continuation of functions of the class Wp1W^{1}_{p} across Hölder boundaries. (Russian) Imbedding theorems and their applications, 31–43, Trudy Sem. S. L. Soboleva, No. 1, 1982, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1982.
  • [4] V. M. Gol’dshtein and A. D. Ukhlov, About homeomorphisms that induce composition operators on Sobolev spaces, Complex Var. Elliptic Equ. 55 (2010), no. 8-10, 833-845.
  • [5] V. M. Gol’dshtein and A. D. Ukhlov, Sobolev homeomorphisms and composition operators, Around the research of Vladimir Maz’ya. I,, 207-220, Int. Math. Ser. (N. Y.), 11, Springer, New York, 2010.
  • [6] S. Hencl and P. Koskela, Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Ration. Mech. Anal. 180 (2006), no.1, 75-95.
  • [7] S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion, Lecture Notes in Mathematics 2096, Springer.
  • [8] P.Koskela, M. Miranda and N. Shanmugalingam, Geometric properties of planar BV-extension domains. Around the research of Vladimir Maz’ya. I, 255–272, Int. Math. Ser. (N. Y.), 11, Springer, New York, 2010.
  • [9] P. Koskela, P. Pankka and Y. Zhang, Ahlfors reflection theorem for pp-morphisms, https://arxiv.org/abs/1912.09200.
  • [10] V. G. Maz’ya and S. V. Poborchi, Differentiable functions on bad domains, World Scientific Publishing Co., River Edge, NJ, 1997.
  • [11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Priceton University Press, 1970.
  • [12] A. D. Ukhlov, Mappings that generate embeddings of Sobolev spaces, (Russian) Sibirsk. Mat. Zh. 34(1993), no.1, 185-192; translation in Siberian Math. J. 34 (1993), no.1, 165-171.
  • [13] S. K. Vodop’yanov, Mappings on homogeneous groups and embeddings of functional spaces, Sibirsk. Mat. Zh., 30, No. 5, 25-41 (1989).
  • [14] S. K. Vodop’yanov, Weighted Sobolev spaces and the theory of functions, in: Abstracts: First All-Union School on Potential Theory [in Russian], Ins. Math., Kiev (1991).
  • [15] S. K. Vodop’yanov, On the regularity of mappings inverse to the Sobolev mapping.(Russian. Russian summary) Mat. Sb. 203 (2012), no. 10, 3–32; translation in Sb. Math. 203 (2012), no. 9-10, 1383–1410.