This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Smoothness of components of the Emerton-Gee stack for GL2\text{GL}_{2}

Anthony Guzman Kalyani Kansal Iason Kountouridis Ben Savoie  and  Xiyuan Wang Department of Mathematics, The University of Arizona, Tucson, AZ 85721, USA [email protected] Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA [email protected] Department of Mathematics, The University of Chicago, Chicago, IL 60637, USA [email protected] Department of Mathematics, Rice University, Houston, TX 77005, USA [email protected] Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA [email protected]
Abstract.

Let KK be a finite unramified extension of p\mathbb{Q}_{p}, where p>2p>2. [CEGS22b] and [EG23] construct a moduli stack of two dimensional mod pp representations of the absolute Galois group of KK. We show that most irreducible components of this stack (including several non-generic components) are isomorphic to quotients of smooth affine schemes. We also use this quotient presentation to compute global sections on these components.

1. Introduction

Let K/pK/\mathbb{Q}_{p} be a finite extension. Following [CEGS22b, § 3], define the stack \mathcal{R} to be the moduli stack of étale φ\varphi-modules of rank two. By [Fon91], there is an equivalence of categories between étale φ\varphi-modules and pp-adic Galois representations of GGal(K¯/K)G_{\infty}\coloneqq\mathop{\rm Gal}\nolimits(\overline{K}/K_{\infty}) allowing us to view \mathcal{R} as a moduli stack of said representations.

The theory of Breuil-Kisin modules developed in [Kis06] gives us a way to associate to any Breuil-Kisin module an étale φ\varphi-module. Indeed, by denoting the moduli stack of rank two Breuil-Kisin modules of finite height hh by 𝒞h\mathcal{C}_{h}, then there is a morphism 𝒞h\mathcal{C}_{h}\rightarrow\mathcal{R} given (topologically) by

𝔐𝔐[1/u],\mathfrak{M}\longmapsto\mathfrak{M}[1/u],

where uu is a formal variable. The stack of Breuil-Kisin modules of height 1, denoted 𝒞1\mathcal{C}_{1}, admits a scheme-theoretic image 𝒵1\mathcal{Z}_{1} via the above morphism. Breuil-Kisin modules of height 1 correspond to étale φ\varphi-modules which admit natural extensions to representations of GK=Gal(K¯/K)G_{K}=\mathop{\rm Gal}\nolimits(\overline{K}/K) so the substack 𝒵1\mathcal{Z}_{1} may be viewed as a moduli stack of representations of GKG_{K}.

One method to study such objects is to introduce Breuil-Kisin modules with descent datum. This approach allows the consideration of those Galois representations that arise from generic fibers of finite flat group schemes after restriction to a finite tamely ramified extension of KK. In fact, all representations except très ramifiée ones arise in this way. Here, the très ramifiée representations are the twists of certain extensions of the trivial character by the mod pp cyclotomic character.

Let KK^{\prime} be a tamely ramified extension of KK. Endowing our Breuil-Kisin modules and étale φ\varphi-modules with descent datum from KK^{\prime} to KK allows us to define the morphism 𝒞1dddd\mathcal{C}_{1}^{dd}\rightarrow\mathcal{R}^{dd}. To focus on those non très ramifiée representations, we enforce a Barsotti-Tate condition on points in the scheme-theoretic image. The Barsotti-Tate condition on representations with coefficients in a characteristic pp field turns out to correspond to a strong determinant condition on Breuil-Kisin modules, see [CEGS22b, Theorem 5.1.2]. Let 𝒞1dd,BT\mathcal{C}^{dd,\mathrm{BT}}_{1} denote the stack of Breuil-Kisin modules of height 1 with descent data that satisfy the strong determinant condition. With this, we attain a morphism 𝒞1dd,BTdd\mathcal{C}^{dd,\mathrm{BT}}_{1}\rightarrow\mathcal{R}^{dd} whose scheme-theoretic image is denoted 𝒵1dd\mathcal{Z}^{dd}_{1}, the stack of non très ramifiée GKG_{K}-representations. We will take these stacks to be defined over 𝔽\mathbb{F}, a finite field extension of 𝔽p\mathbb{F}_{p}. To reduce notation, we will suppress the decorations dddd and 11 in the symbols for our stacks with the assumption that all of our objects have descent data and correspond to height 1 Breuil-Kisin modules. Both 𝒞BT\mathcal{C}^{\mathrm{BT}} and 𝒵\mathcal{Z} are algebraic stacks of finite presentation. The stack 𝒞BT\mathcal{C}^{\mathrm{BT}} admits a decomposition

τ𝒞τ,BT\prod_{\tau}\mathcal{C}^{\tau,\mathrm{BT}}

over tame inertial types τ:IKGL2(¯p)\tau:I_{K}\rightarrow\mathop{\rm GL}\nolimits_{2}(\overline{\mathbb{Q}}_{p}) where we interpret each substack 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} as consisting of Breuil-Kisin modules whose descent data is of type τ\tau. For each such 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}}, we write 𝒵τ\mathcal{Z}^{\tau} to be the scheme-theoretic image of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} inside 𝒵\mathcal{Z}.

Such stacks are of increasing interest in the study of pp-adic Galois representations. Related to the stack constructed by [CEGS22a] is a stack of so-called étale (φ,Γ)(\varphi,\Gamma)-modules of rank 22, constructed and studied in [EG21]. The Emerton-Gee stack for GL2\mathop{\rm GL}\nolimits_{2}, as it is called, is denoted by 𝒳2\mathcal{X}_{2} and is defined over the formal spectrum of a discrete valuation ring with residue field 𝔽\mathbb{F}. The stack 𝒳2\mathcal{X}_{2} has proven fruitful in the study of Galois representations, and in particular, the rational lifts of ρ¯:GKGL2(𝔽)\overline{\rho}:G_{K}\rightarrow\mathop{\rm GL}\nolimits_{2}(\mathbb{F}). Moreover, it is conjectured to play a role in a categorical pp-adic Langlands correspondence, as explained in [EGH22]. While theoretically important, 𝒳2\mathcal{X}_{2} is difficult to work with by hand. On the contrary, the stack 𝒵\mathcal{Z} is much easier to work with. Based on their constructions, one should suspect that there is a connection between 𝒵\mathcal{Z} and the reduced part of 𝒳2\mathcal{X}_{2}, denoted 𝒳2,red\mathcal{X}_{2,\text{red}}. Indeed, for each tame inertial type τ\tau, [BBH+, Thm. 1.4] demonstrates an isomorphism between 𝒵τ\mathcal{Z}^{\tau} and a closed substack of 𝒳2,red\mathcal{X}_{2,\text{red}}. As τ\tau varies, the isomorphism induces isomorphisms between the irreducible components of 𝒵\mathcal{Z} and 𝒳2,red\mathcal{X}_{2,\text{red}} identifying the irreducible component of 𝒵\mathcal{Z} labelled by a Serre weight σ\sigma with the irreducible component of 𝒳2,red\mathcal{X}_{2,\text{red}} labelled by σ\sigma. Hence, our main result which is technically a statement about the irreducible components of 𝒵\mathcal{Z} can be interpreted as a result on irreducible components of 𝒳2,red\mathcal{X}_{2,\text{red}}.

1.1. Main result

By [CEGS22b, § 5], the irreducible components of 𝒵\mathcal{Z} can be described in terms of non-Steinberg Serre weights. Indeed, for such a Serre weight σ\sigma, the associated irreducible component 𝒵(σ)\mathcal{Z}(\sigma) is such that the 𝔽¯p\overline{\mathbb{F}}_{p}-points of 𝒵(σ)\mathcal{Z}(\sigma) are those representations having σ\sigma as a Serre weight. Such irreducible components serve as the main objects of study in this paper. In particular, our main result is a smooth presentation of the irreducible component 𝒵(σ)\mathcal{Z}(\sigma) and a computation of its global functions.

Theorem (Theorem  5.0.1).

Let p>2p>2. Let KK be an unramified extension of p\mathbb{Q}_{p} of degree ff with residue field kk. Let 𝒵(σ)\mathcal{Z}(\sigma) be the irreducible component of 𝒵\mathcal{Z} indexed by a non-Steinberg Serre weight σ=σa,b=i=0f1(detaiSymbik2)k,κi𝔽\sigma=\sigma_{\vec{a},\vec{b}}=\bigotimes_{i=0}^{f-1}({\det}^{a_{i}}\mathop{\rm Sym}\nolimits^{b_{i}}k^{2})\otimes_{k,\kappa_{i}}\mathbb{F}, where {κi}i=0f1\{\kappa_{i}\}_{i=0}^{f-1} is the set of the distinct embeddings of kk into 𝔽\mathbb{F}, and κi+1p=κi\kappa_{i+1}^{p}=\kappa_{i}. Suppose σ\sigma satisfies the following properties:

  1. (1)

    b(0,0,,0)\vec{b}\neq(0,0,\dots,0).

  2. (2)

    b(p2,p2,,p2)\vec{b}\neq(p-2,p-2,\dots,p-2).

  3. (3)

    Extend the indices of bib_{i}’s to all of \mathbb{Z} by setting bi+f=bib_{i+f}=b_{i}. Then (bi)i(b_{i})_{i\in\mathbb{Z}} does not contain a contiguous subsequence of the form (0,p2,,p2,p1)(0,p-2,\dots,p-2,p-1) of length 2\geq 2.

Then 𝒵(σ)\mathcal{Z}(\sigma) is smooth and isomorphic to a quotient of GL2×SL2f1\mathop{\rm GL}\nolimits_{2}\times\mathop{\rm SL}\nolimits_{2}^{f-1} by 𝔾mf+1×𝔾af\mathbb{G}_{m}^{f+1}\times\mathbb{G}_{a}^{f}. The ring of global functions of 𝒵(σ)\mathcal{Z}(\sigma) is isomorphic to 𝔽[x,y][1y]\mathbb{F}[x,y][\frac{1}{y}].

Note that the case b=(0,0,,0)\vec{b}=(0,0,\dots,0) can be studied using Fontaine-Lafaille methods. The key utility of this paper is in providing a description of components indexed by non-Fontaine-Lafaille Serre weights.

1.2. Outline of the article

We begin in Section 2, by providing a concrete classification of certain Breuil-Kisin modules defined over Artinian local 𝔽\mathbb{F}-algebras with descent data classified by a tame inertial 𝔽\mathbb{F}-type τ\tau. This closely follows the ideas of [CDM18] which describe a method to classify such Breuil-Kisin modules into one of three forms which are convenient for computations. We then describe the automorphisms of such Breuil-Kisin modules that are needed to study the stack 𝒞BT\mathcal{C}^{\mathrm{BT}}. We find that this method is not foolproof however, and identify obstruction conditions on τ\tau for which our methods fail.

In Section 3, for a given tame intertial 𝔽\mathbb{F}-type τ\tau, we identify an irreducible component 𝒳(τ)\mathcal{X}(\tau) of 𝒞BT\mathcal{C}^{\mathrm{BT}} that can be written as a quotient of smooth affine schemes. This utilizes the classification from Section 2. We then use this quotient presentation to compute the global functions on 𝒳(τ)\mathcal{X}(\tau).

Finally, Section 4 is where we analyze the relationship between 𝒳(τ)\mathcal{X}(\tau)’s and the irreducible components of 𝒵\mathcal{Z}. We first explicitly identify the irreducible component of 𝒵\mathcal{Z} that turns out to be the image of 𝒳(τ)𝒞BT\mathcal{X}(\tau)\subset\mathcal{C}^{\mathrm{BT}}. Subject to the aforementioned obstruction conditions, we allow τ\tau to vary in order to obtain as many irreducible components of 𝒵\mathcal{Z} as possible in the images of 𝒳(τ)\mathcal{X}(\tau)’s. We then show that the map from 𝒳(τ)\mathcal{X}(\tau) to 𝒵\mathcal{Z} is fully faithful, and conclude finally that 𝒳(τ)\mathcal{X}(\tau) is isomorphic to its scheme-theoretic image.

1.3. Acknowledgements

This work was born out of the NSF-FRG Collaborative Grant DMS-1952556. We would like to thank Brandon Levin for suggesting this problem and guiding us throughout our research. We would also like to thank Agnès David, Matthew Emerton, Bao V. Le Hung and David Savitt for helpful conversations, and the anonymous referee for numerous suggestions that improved both accuracy and exposition.

1.4. Notation and conventions

Fix a prime p>2p>2. Let KK be a finite, unramified extension of p\mathbb{Q}_{p}, with ring of integers 𝒪K\mathcal{O}_{K} and residue field kk. Let f:=f(K/p)f:=f(K/\mathbb{Q}_{p}). Upon fixing an algebraic closure K¯\overline{K}, we let GK=Gal(K¯/K)G_{K}=\mathop{\rm Gal}\nolimits(\overline{K}/K) denote the absolute Galois group of KK and define IKI_{K} and IKwI_{K}^{\mathrm{w}} to be the inertia and wild inertia subgroups of GKG_{K} respectively. Fix a uniformizer π\pi of KK and a pp-power compatible sequence (πn)n0(\pi_{n})_{n\geq 0} so that π0=π\pi_{0}=\pi and πn+1p=πn\pi_{n+1}^{p}=\pi_{n}. We define the field KK_{\infty} to be the compositum K=nK(πn)K_{\infty}=\bigcup_{n}K(\pi_{n}) with associated Galois group G=Gal(K¯/K)GKG_{\infty}=\mathop{\rm Gal}\nolimits(\overline{K}/K_{\infty})\subset G_{K}.

Serving to capture our descent data, let K/KK^{\prime}/K be a totally tamely ramified extension of degree epf1e\coloneqq p^{f}-1 obtained by adjoining an ee-th root of pp to KK which we denote πK\pi_{K^{\prime}}. Let k=kk^{\prime}=k be the residue field of KK^{\prime}.

Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) is cyclic of order ee, and is isomorphic to μe(K)\mu_{e}(K), the group of eeth roots of unity in W(k)=𝒪KW(k^{\prime})=\mathcal{O}_{K}. This isomorphism is given by h:Gal(K/K)μe(K)h:\mathop{\rm Gal}\nolimits(K^{\prime}/K)\rightarrow\mu_{e}(K), defined by h(g)=g(πK)πKh(g)=\tfrac{g(\pi_{K^{\prime}})}{\pi_{K^{\prime}}}.

Serving as coefficients, let 𝔽\mathbb{F} be a finite extension of 𝔽p\mathbb{F}_{p} which we assume to be large enough such that 𝔽\mathbb{F} contains all embeddings of kk into 𝔽¯p\overline{\mathbb{F}}_{p}. We fix an embedding κ0:k𝔽\kappa_{0}:k\hookrightarrow\mathbb{F}, and recursively define κi:k𝔽\kappa_{i}:k\hookrightarrow\mathbb{F} for any ii\in\mathbb{Z} such that κi+1p=κi\kappa_{i+1}^{p}=\kappa_{i} and so κi+f=κi\kappa_{i+f}=\kappa_{i} for any ii\in\mathbb{Z}. Since there are ff such embeddings, we will commonly take the index to be i/fi\in\mathbb{Z}/f\mathbb{Z}.

1.4.1. Serre Weights

Recall k/𝔽pk/\mathbb{F}_{p} is a degree ff extension. A Serre weight is an isomorphism class of irreducible 𝔽\mathbb{F}-representations of GL2(k)\mathop{\rm GL}\nolimits_{2}(k). Any such representation is, up to isomorphism, of the form

σa,b:=i=0f1(detaiSymbik2)k,κi𝔽,\sigma_{\vec{a},\vec{b}}:=\bigotimes_{i=0}^{f-1}({\det}^{a_{i}}\mathop{\rm Sym}\nolimits^{b_{i}}k^{2})\otimes_{k,\kappa_{i}}\mathbb{F},

where 0ai,bip10\leq a_{i},b_{i}\leq p-1 and not all aia_{i} equal to p1p-1. We say σa,b\sigma_{\vec{a},\vec{b}} is Steinberg if each bib_{i} equals p1p-1.

1.4.2. Tame Inertial 𝔽\mathbb{F}-Types

An inertial 𝔽\mathbb{F}-type is (the isomorphism class of) a representation τ:IKGL2(𝔽)\tau:I_{K}\rightarrow\mathop{\rm GL}\nolimits_{2}(\mathbb{F}) with open kernel which extends to GKG_{K}. An inertial 𝔽\mathbb{F}-type is called tame if τ|IKw\tau|_{I_{K}^{\mathrm{w}}} is trivial.

Let τ:IKGL2(𝔽)\tau:I_{K}\rightarrow\mathop{\rm GL}\nolimits_{2}(\mathbb{F}) be a tame inertial 𝔽\mathbb{F}-type. Then τηη\tau\cong\eta\oplus\eta^{{}^{\prime}}, where η,η:IK𝔽×\eta,\eta^{\prime}:I_{K}\rightarrow\mathbb{F}^{\times} are tamely ramified characters. We say τ\tau is a tame principal series 𝔽\mathbb{F}-type if η,η\eta,\eta^{\prime} both extend to characters of GKG_{K}. We will assume that the tame inertial 𝔽\mathbb{F}-types τ\tau factor via I(K/K)=Gal(K/K)I(K^{\prime}/K)=\mathop{\rm Gal}\nolimits(K^{\prime}/K).

Given a tame principal series 𝔽\mathbb{F}-type τηη\tau\cong\eta\oplus\eta^{\prime}, let γi\gamma_{i} be the unique integer in [0,e)[0,e) such that ηη1(g)=κih(g)γi\eta\eta^{\prime-1}(g)=\kappa_{i}\circ h(g)^{\gamma_{i}}. We also define zj{0,,p1}z_{j}\in\{0,\dots,p-1\} for j/fj\in\mathbb{Z}/f\mathbb{Z} so as to satisfy

(1.4.1) γi=j=0f1zijpj.\displaystyle\gamma_{i}=\sum\limits_{j=0}^{f-1}z_{i-j}p^{j}.

Note that this implies pγi=zi+1e+γi+1p\gamma_{i}=z_{i+1}e+\gamma_{i+1}. At times, we will assume the indexing set for zi{z_{i}} to be \mathbb{Z} via the natural quotient map /f\mathbb{Z}\to\mathbb{Z}/f\mathbb{Z}.

2. Breuil-Kisin modules with descent

In this section, we introduce some basic definitions and properties about Breuil-Kisin modules and their moduli space. To begin, we introduce the relevant notions which we will use for the rest of the paper. While the general definition of Breuil-Kisin modules works over characteristic 0, we will restrict to characteristic pp and the specific case where descent data is from KK^{\prime} to KK.

Define 𝔖𝔽p:=k[[u]]\mathfrak{S}_{\mathbb{F}_{p}}:=k[\![u]\!]. The ring 𝔖𝔽p\mathfrak{S}_{\mathbb{F}_{p}} is equipped with a Frobenius endomorphism φ\varphi such that uupu\mapsto u^{p} which is semilinear with respect to the (arithmetic) Frobenius on kk. The Galois group Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) acts on 𝔖𝔽p\mathfrak{S}_{\mathbb{F}_{p}} via g(aiui)=aih(g)iuig(\sum a_{i}u^{i})=\sum a_{i}h(g)^{i}u^{i}, where gGal(K/K)g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K), aiui𝔖\sum a_{i}u^{i}\in\mathfrak{S} and h:Gal(K/K)k×h:\mathop{\rm Gal}\nolimits(K^{\prime}/K)\rightarrow k^{\times} is the map given by h(g)=g(πK)πKh(g)=\tfrac{g(\pi_{K^{\prime}})}{\pi_{K^{\prime}}} mod πK\pi_{K^{\prime}}. For later convenience, we also let v=uev=u^{e}.

Let RR be an 𝔽\mathbb{F}-algebra. We let 𝔖R:=(k𝔽pR)[[u]]\mathfrak{S}_{R}:=(k\otimes_{\mathbb{F}_{p}}R)[\![u]\!] be the extension of scalars equipped with RR-linear actions of φ\varphi and Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) naturally extended from the φ\varphi and Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) actions on 𝔖𝔽p\mathfrak{S}_{\mathbb{F}_{p}}. Let 𝔢i\mathfrak{e}_{i} denote the idempotent of

k𝔽pRκi:k𝔽Rk^{\prime}\otimes_{\mathbb{F}_{p}}R\cong\prod\limits_{\kappa_{i}:k^{\prime}\hookrightarrow\mathbb{F}}R

corresponding to (0,,0,1,0,,0)(0,\dots,0,1,0,\dots,0) with 11 in the iith coordinate. We can then write

𝔖Ri/fR[[u]]𝔢i.\mathfrak{S}_{R}\cong\bigoplus_{i\in\mathbb{Z}/f\mathbb{Z}}R[\![u]\!]\mathfrak{e}_{i}.

Note that φ(𝔢i)=𝔢i+1\varphi(\mathfrak{e}_{i})=\mathfrak{e}_{i+1}, and if gGal(K/K)g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K), then g(𝔢i)=𝔢ig(\mathfrak{e}_{i})=\mathfrak{e}_{i}.

Definition 2.0.1.

A Breuil-Kisin module with RR-coefficients and descent data from KK^{\prime} to KK is a triple (𝔐,φ𝔐,{g^}gGal(K/K))(\mathfrak{M},\varphi_{\mathfrak{M}},\{\widehat{g}\}_{g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K)}), consisting of a finitely generated projective 𝔖R\mathfrak{S}_{R}-module 𝔐\mathfrak{M} such that

  • 𝔐\mathfrak{M} admits a φ\varphi-semilinear map φ𝔐:𝔐𝔐\varphi_{\mathfrak{M}}:\mathfrak{M}\rightarrow\mathfrak{M} such that the induced map Φ𝔐=1φ𝔐:𝔖Rφ,𝔖R𝔐𝔐\Phi_{\mathfrak{M}}=1\otimes\varphi_{\mathfrak{M}}:\mathfrak{S}_{R}\otimes_{\varphi,\mathfrak{S}_{R}}\mathfrak{M}\rightarrow\mathfrak{M} is an isomorphism after inverting vv.

  • 𝔐\mathfrak{M} admits an additive bijection g^:𝔐𝔐\widehat{g}:\mathfrak{M}\rightarrow\mathfrak{M} for each gGal(K/K)g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K) which commutes with φ𝔐\varphi_{\mathfrak{M}}, respects the group structure g1g2^=g1^g2^\widehat{g_{1}\circ g_{2}}=\widehat{g_{1}}\circ\widehat{g_{2}}, and satisfies g^(sm)=g(s)g^(m)\widehat{g}(sm)=g(s)\widehat{g}(m) for all s𝔖Rs\in\mathfrak{S}_{R} and m𝔐m\in\mathfrak{M}.

We say 𝔐\mathfrak{M} has height at most h0h\geq 0 if the cokernel of Φ𝔐\Phi_{\mathfrak{M}} is killed by vhv^{h}. We say a Breuil-Kisin module 𝔐\mathfrak{M} is rank dd if the underlying 𝔖R\mathfrak{S}_{R}-module has constant rank dd. A morphism of Breuil-Kisin modules with RR-coefficients and descent data is a morphism of 𝔖R\mathfrak{S}_{R}-modules that commutes with the φ\varphi-action and the Galois action.

Localizing a Breuil-Kisin module 𝔐\mathfrak{M} by inverting uu gives rise to an étale-φ\varphi module which we define below.

Definition 2.0.2.

An étale-φ\varphi module with RR-coefficients and descent data from KK^{\prime} to KK is a triple (M,φM,{g^}gGal(K/K))(M,\varphi_{M},\{\widehat{g}\}_{g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K)}), consisting of a finitely generated projective 𝔖R[1/u]\mathfrak{S}_{R}[1/u]-module MM such that

  • MM admits a φ\varphi-semilinear map φM:MM\varphi_{M}:M\rightarrow M such that the induced map ΦM=1φM:𝔖R[1/u]φ,𝔖R[1/u]MM\Phi_{M}=1\otimes\varphi_{M}:\mathfrak{S}_{R}[1/u]\otimes_{\varphi,\mathfrak{S}_{R}[1/u]}M\rightarrow M is an isomorphism.

  • MM admits an additive bijection g^:MM\widehat{g}:M\rightarrow M for each gGal(K/K)g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K) which commutes with φM\varphi_{M}, respects the group structure g1g2^=g1^g2^\widehat{g_{1}\circ g_{2}}=\widehat{g_{1}}\circ\widehat{g_{2}}, and satisfies g^(sm)=g(s)g^(m)\widehat{g}(sm)=g(s)\widehat{g}(m) for all s𝔖R[1/u]s\in\mathfrak{S}_{R}[1/u] and mMm\in M.

Let 𝔐\mathfrak{M} be a Breuil-Kisin module with RR-coefficients. We may decompose 𝔐\mathfrak{M} in terms of idempotents

𝔐=i=0f1𝔐i,\mathfrak{M}=\bigoplus_{i=0}^{f-1}\mathfrak{M}_{i},

where 𝔐i=𝔢i𝔐\mathfrak{M}_{i}=\mathfrak{e}_{i}\mathfrak{M}. Similarly, let MM be an étale-φ\varphi module with RR-coefficients. We may again decompose MM in terms of idempotents

M=i=0f1Mi,M=\bigoplus_{i=0}^{f-1}M_{i},

where Mi=𝔢iMM_{i}=\mathfrak{e}_{i}M. It follows from the action of φ\varphi and Gal(K/K)\mathrm{Gal}(K^{\prime}/K) on 𝔢i\mathfrak{e}_{i} that φ𝔐\varphi_{\mathfrak{M}} maps 𝔐i\mathfrak{M}_{i} to 𝔐i+1\mathfrak{M}_{i+1} while Gal(K/K)\mathrm{Gal}(K^{\prime}/K) maps 𝔐i\mathfrak{M}_{i} to 𝔐i\mathfrak{M}_{i}. In this paper, we will be using this decomposition by idempotents repeatedly and without further comment.

2.1. Inertial descent datum

Let 𝔐\mathfrak{M} (resp. MM) be a Breuil-Kisin module (resp. étale-φ\varphi module) of rank two with RR coefficients. Let τ=ηη\tau=\eta\oplus\eta^{\prime} be a fixed tame principal series 𝔽\mathbb{F}-type.

Definition 2.1.1.

We say 𝔐\mathfrak{M} has tame principal series 𝔽\mathbb{F}-type τ\tau if (Zariski locally on SpecR\mathop{\rm Spec}\nolimits R if necessary) there exists a Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K)-equivariant isomorphism 𝔐i/u𝔐iRηRη\mathfrak{M}_{i}/u\mathfrak{M}_{i}\cong R\eta\oplus R\eta^{\prime} for each ii.

Many of the computations carried out in the rest of this paper depend on ensuring that any base change respects this principle series type structure. For this reason, we define such special bases and base changes in the following way.

Definition 2.1.2.

An inertial basis of 𝔐i\mathfrak{M}_{i} (resp. MiM_{i}) is an ordered basis with respect to which the Galois action is given diagonally by ηη\eta\oplus\eta^{\prime}.

Base change matrices that switch a set of inertial bases (comprising a basis for each 𝔐i\mathfrak{M}_{i}, or MiM_{i} as the case may be) to another set of inertial bases will be called inertial base change matrices, and the corresponding change of bases will be called an inertial base change.

Our first order of business is to show that we can always find an inertial basis for a Breuil-Kisin module of tame 𝔽\mathbb{F}-type τ\tau.

Lemma 2.1.3.

Let 𝔐\mathfrak{M} be a Breuil-Kisin module of tame 𝔽\mathbb{F}-type τ\tau. For all i/fi\in\mathbb{Z}/f\mathbb{Z}, (Zariski locally on RR if necessary), there exists an ordered R[[u]]R[\![u]\!]-basis (ei,fi)(e_{i},f_{i}) of 𝔐i\mathfrak{M}_{i} such that the action of gGal(K/K)g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K) is given by

(2.1.1) g^(ei)=η(g)ei,g^(fi)=η(g)fi.\widehat{g}(e_{i})=\eta(g)e_{i},\ \ \ \ \widehat{g}(f_{i})=\eta^{\prime}(g)f_{i}.
Proof.

Fix i/fi\in\mathbb{Z}/f\mathbb{Z}. Without loss of generality (after restricting to an affine open cover of Spec R\text{Spec }R if necessary), we have

𝔐i/u𝔐iRxiRyi\mathfrak{M}_{i}/u\mathfrak{M}_{i}\cong Rx_{i}\oplus Ry_{i}

where xix_{i} is an eigenvector for Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) with eigencharacter η\eta and yiy_{i} is an eigenvector for Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) with eigencharacter η\eta^{\prime}. Fix lifts x~i\tilde{x}_{i} and y~i\tilde{y}_{i} of xix_{i} and yiy_{i} respectively in 𝔐i\mathfrak{M}_{i}. Set

ei:=1|Gal(K/K)|j=0|Gal(K/K)|1gj(x~i)η(gj), and\displaystyle e_{i}:=\dfrac{1}{|\mathop{\rm Gal}\nolimits(K^{\prime}/K)|}\sum\limits_{j=0}^{|\mathop{\rm Gal}\nolimits(K^{\prime}/K)|-1}g^{j}(\tilde{x}_{i})\eta(g^{-j}),\text{ and }
fi:=1|Gal(K/K)|j=0|Gal(K/K)|1gj(y~i)η(gj)\displaystyle f_{i}:=\dfrac{1}{|\mathop{\rm Gal}\nolimits(K^{\prime}/K)|}\sum\limits_{j=0}^{|\mathop{\rm Gal}\nolimits(K^{\prime}/K)|-1}g^{j}(\tilde{y}_{i})\eta^{\prime}(g^{-j})

where gg is a generator of Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K). Clearly eie_{i} and fif_{i} lift xix_{i} and yiy_{i} and are eigenvectors for Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) with eigenvalues given by η\eta and η\eta^{\prime} respectively. We now show that they give an R[[u]]R[[u]]-basis of 𝔐i\mathfrak{M}_{i}.

Suppose (k0akuk)ei+(k0bkuk)fi=0(\sum_{k\geq 0}{a_{k}u^{k}})e_{i}+(\sum_{k\geq 0}{b_{k}u^{k}})f_{i}=0 for some k0akuk,k0bkukR[[u]]\sum_{k\geq 0}{a_{k}u^{k}},\sum_{k\geq 0}{b_{k}u^{k}}\in R[\![u]\!]. Suppose nn is the smallest degree so that either ana_{n} or bnb_{n} is nonzero. As 𝔐i\mathfrak{M}_{i} is uu-torsion free, we can divide the equation by unu^{n} and assume, without loss of generality, that a00a_{0}\neq 0. As eie_{i} and fif_{i} are linearly independent mod uu, a0a_{0} is forced to be 0, giving a contradiction. Therefore, eie_{i} and fif_{i} are linearly independent, and we have an inclusion R[[u]]eiR[[u]]fi𝔐iR[\![u]\!]e_{i}\oplus R[\![u]\!]f_{i}\hookrightarrow\mathfrak{M}_{i}, which is an equality mod uu. By Nakayama, R[[u]]eiR[[u]]fi𝔐iR[\![u]\!]e_{i}\oplus R[\![u]\!]f_{i}\hookrightarrow\mathfrak{M}_{i} is an equality.

The Frobenius Φ𝔐\Phi_{\mathfrak{M}} restricts under idempotent decomposition to a map φ𝔐i1𝔐i\varphi^{*}\mathfrak{M}_{i-1}\to\mathfrak{M}_{i} which we will call the ii-th Frobenius map and denote by Φ𝔐,i\Phi_{\mathfrak{M},i}. After fixing an inertial basis for each ii, let the ii-th Frobenius map be represented by

Fi=(A1(i)A2(i)A3(i)A4(i)),F_{i}=\begin{pmatrix}A_{1}^{(i)}&A_{2}^{(i)}\\ A_{3}^{(i)}&A_{4}^{(i)}\end{pmatrix},

such that Aj(i)R[[u]]A_{j}^{(i)}\in R[\![u]\!] with

Φ𝔐,i(1ei1)=A1(i)ei+A3(i)fi,Φ𝔐,i(1fi1)=A2(i)ei+A4(i)fi,\Phi_{\mathfrak{M},i}(1\otimes e_{i-1})=A_{1}^{(i)}e_{i}+A_{3}^{(i)}f_{i},\ \ \ \Phi_{\mathfrak{M},i}(1\otimes f_{i-1})=A_{2}^{(i)}e_{i}+A_{4}^{(i)}f_{i},

for any i/fi\in\mathbb{Z}/f\mathbb{Z}. The principle series type structure on 𝔐i\mathfrak{M}_{i} allows us to put FiF_{i} in a particular form.

Lemma 2.1.4.

Suppose ηη\eta\neq\eta^{\prime}. After fixing an inertial basis for each ii, each Frobenius linearization Φ𝔐,i:φ(𝔐i1)𝔐i\Phi_{\mathfrak{M},i}:\varphi^{*}(\mathfrak{M}_{i-1})\rightarrow\mathfrak{M}_{i} has a matrix of the form:

(2.1.2) Fi=(s1(i)ueγis2(i)uγis3(i)s4(i)),\displaystyle F_{i}=\begin{pmatrix}s_{1}^{(i)}&u^{e-\gamma_{i}}s_{2}^{(i)}\\ u^{\gamma_{i}}s_{3}^{(i)}&s_{4}^{(i)}\end{pmatrix},

where sj(i)R[[v]]s_{j}^{(i)}\in R[\![v]\!], for i/fi\in\mathbb{Z}/f\mathbb{Z}.

Proof.

This follows easily from the commutative condition between φ\varphi and Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) actions. ∎

We will further refine the form of the Frobenius action in a subsequent section but first, we must find a description of inertial base change matrices.

Lemma 2.1.5.

Suppose 𝔐\mathfrak{M} (resp. MM) is a Breuil-Kisin module (resp. étale-φ\varphi module) with an inertial basis for each 𝔐i\mathfrak{M}_{i} (resp. MiM_{i}).

For each ii, let Pi=(b1(i)b2(i)b3(i)b4(i))P_{i}=\begin{pmatrix}b_{1}^{(i)}&b_{2}^{(i)}\\ b_{3}^{(i)}&b_{4}^{(i)}\end{pmatrix} be an inertial base change matrix in GL2(R[[u]])\mathop{\rm GL}\nolimits_{2}(R[\![u]\!]) (resp. GL2(R((u)))\mathop{\rm GL}\nolimits_{2}(R(\!(u)\!)). Then b1(i),b4(i)R((v))b_{1}^{(i)},b_{4}^{(i)}\in R(\!(v)\!), b2(i)ueγiR((v))b_{2}^{(i)}\in u^{e-\gamma_{i}}R(\!(v)\!) and b3(i)uγiR((v))b_{3}^{(i)}\in u^{\gamma_{i}}R(\!(v)\!).

Proof.

PiP_{i} is an inertial base change matrix if and only if for all gGal(K/K)g\in\mathop{\rm Gal}\nolimits(K^{\prime}/K), we have:

Pi1(η(g)00η(g))g(Pi)=(η(g)00η(g))\displaystyle P_{i}^{-1}\cdot\begin{pmatrix}\eta(g)&0\\ 0&\eta^{\prime}(g)\end{pmatrix}\cdot g(P_{i})=\begin{pmatrix}\eta(g)&0\\ 0&\eta^{\prime}(g)\end{pmatrix}\iff
(η(g)g(b1(i))η(g)g(b2(i))η(g)g(b3(i))η(g)g(b4(i)))=(η(g)b1(i)η(g)b2(i)η(g)b3(i)η(g)b4(i)).\displaystyle\begin{pmatrix}\eta(g)g(b_{1}^{(i)})&\eta(g)g(b_{2}^{(i)})\\ \eta^{\prime}(g)g(b_{3}^{(i)})&\eta^{\prime}(g)g(b_{4}^{(i)})\end{pmatrix}=\begin{pmatrix}\eta(g)b_{1}^{(i)}&\eta^{\prime}(g)b_{2}^{(i)}\\ \eta(g)b_{3}^{(i)}&\eta^{\prime}(g)b_{4}^{(i)}\end{pmatrix}.

Comparing the entries and letting χ=ηη1\chi=\eta\eta^{\prime-1}, we get g(b1(i))=b1(i)g(b_{1}^{(i)})=b_{1}^{(i)}, g(b2(i))=χ(g)1b2(i)g(b_{2}^{(i)})=\chi(g)^{-1}b_{2}^{(i)}, g(b3(i))=χ(g)b3(i)g(b_{3}^{(i)})=\chi(g)b_{3}^{(i)} and g(b4(i))=b4(i)g(b_{4}^{(i)})=b_{4}^{(i)}. The statement of the lemma follows immediately. ∎

2.2. Moduli Stacks

We introduced several stacks of Breuil-Kisin modules and Galois representations in Section 1. In this section, we recall more precisely the definitions of some of these stacks from [CEGS22b] for later reference. We will be suppressing the superscripts “dddd” (for descent data) and “11” (indicating that the stack is defined over 𝔽\mathbb{F}) from the original notation used in [CEGS22b].

Definition 2.2.1.

We define 𝒞\mathcal{C} to be the fppf stack defined over 𝔽\mathbb{F} characterized by the following property: For an 𝔽\mathbb{F}-algebra RR, 𝒞(R)\mathcal{C}(R) is the groupoid of rank two Breuil-Kisin modules defined over RR of height at most one and descent data from KK^{\prime} to KK.

In the previous section, we focused on Breuil-Kisin modules of tame principal series 𝔽\mathbb{F}-type τ\tau which motivates the definition of a substack encoding such modules.

Definition 2.2.2.

We define 𝒞τ\mathcal{C}^{\tau} to be the closed substack of 𝒞\mathcal{C} corresponding to Breuil-Kisin modules of tame inertial 𝔽\mathbb{F}-type τ\tau.

In the next section, we will restrict to Breuil-Kisin modules satisfying an additional determinant condition which will allow us to further understand the structure of the Frobenius matrices. Looking forward to this, we define the following substack.

Definition 2.2.3.

We define 𝒞BT\mathcal{C}^{\mathrm{BT}} (resp. 𝒞τ,BT)\mathcal{C}^{\tau,\mathrm{BT}}) to be the closed substack of 𝒞\mathcal{C} (resp. 𝒞τ\mathcal{C}^{\tau}) corresponding to Breuil-Kisin modules that additionally satisfy the the strong determinant condition in [CEGS22b, Definition 4.2.2].

We will not recall the precise definition of the strong determinant condition because it is technical and not important for this article. The essential idea is that if 𝔽\mathbb{F}^{\prime} is a finite extension of 𝔽\mathbb{F}, then by [CEGS22b, Lemma 4.2.16], the 𝔽\mathbb{F}^{\prime} points of 𝒞BT\mathcal{C}^{\mathrm{BT}} are precisely those Breuil-Kisin modules whose corresponding Galois representations become Barsotti-Tate over KK^{\prime}. The 𝒞BT\mathcal{C}^{\mathrm{BT}} is the reduced closure of such points.

By inverting the formal power series variable uu in 𝔖\mathfrak{S}, we can transform a Breuil-Kisin module into an étale-φ\varphi module. This gives us a morphism from 𝒞\mathcal{C} to the stack of étale-φ\varphi modules with descent data, denoted \mathcal{R}.

Definition 2.2.4.

We define 𝒵\mathcal{Z} (resp. 𝒵τ\mathcal{Z}^{\tau}) to be the scheme-theoretic image of the natural morphism 𝒞BT\mathcal{C}^{\mathrm{BT}}\to\mathcal{R} (resp. 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}}\to\mathcal{R}), in the sense of [EG21].

By [CEGS22b, Thm 5.1.2], the 𝔽¯p\overline{\mathbb{F}}_{p}-points of 𝒵\mathcal{Z} are the continuous representations r¯:GKGL2(𝔽¯p)\overline{r}:G_{K}\to\mathop{\rm GL}\nolimits_{2}(\overline{\mathbb{F}}_{p}) that are not très ramifiée. The irreducible components of 𝒵\mathcal{Z} are labelled by Serre weights, so that if σ\sigma is a Serre weight and 𝒵(σ)\mathcal{Z}(\sigma) is the corresponding irreducible component, then the 𝔽¯p\overline{\mathbb{F}}_{p}-points of 𝒵(σ)\mathcal{Z}(\sigma) are precisely the representations r¯:GKGL2(𝔽¯p)\overline{r}:G_{K}\to\mathop{\rm GL}\nolimits_{2}(\overline{\mathbb{F}}_{p}) having σWcris(r¯)\sigma\in W^{\mathrm{cris}}(\overline{r}) (see [BLGG13, Definition 4.1.7] for a precise definition of Wcris(r¯)W^{\mathrm{cris}}(\overline{r})).

We note that the stacks we are calling 𝒞BT\mathcal{C}^{BT}, 𝒞τ,BT\mathcal{C}^{\tau,BT}, 𝒵\mathcal{Z} and 𝒵τ\mathcal{Z}^{\tau} are respectively called 𝒞dd,BT,1\mathcal{C}^{\text{dd},BT,1}, 𝒞τ,BT,1\mathcal{C}^{\tau,BT,1}, 𝒵1\mathcal{Z}^{1} and 𝒵τ,1\mathcal{Z}^{\tau,1} in [CEGS22b], where [CEGS22b, Lem. 5.1.8] shows them to be the underlying reduced substacks of certain formal pp-adic stacks defined over the formal spectrum of a characteristic 0 local ring with residue field 𝔽\mathbb{F}. We omit giving details on these formal pp-adic stacks and refer the interested reader to loc. cit. instead.

2.3. Classification in rank two

The objective of this section is to classify and describe rank two Breuil-Kisin modules with descent data that satisfy some additional conditions, which we now introduce.

Definition 2.3.1.

[CDM18, Definition 3.1.1] A Breuil-Kisin module 𝔐\mathfrak{M} defined over an 𝔽\mathbb{F}-algebra RR with descent data is said to be of of Hodge type v0\textbf{v}_{0} if it is of rank two, height at most one, and the uu-adic valuation of the determinant of each Frobenius map Φ𝔐,i:φ(𝔐i1)𝔐i\Phi_{\mathfrak{M},i}:\varphi^{*}(\mathfrak{M}_{i-1})\rightarrow\mathfrak{M}_{i} is ee.

Lemma 2.3.2.

Suppose RR is a field and 𝔐\mathfrak{M} is a rank two Breuil-Kisin module over RR with tame 𝔽\mathbb{F}-type τ\tau and height at most one. Then Hodge type v0\textbf{v}_{0} condition is equivalent to the strong determinant condition of [CEGS22b, § 4.2].

Proof.

We will use [CEGS22b, Lem. 3.5.11, Prop.  4.2.12] for the proof. Although these results are stated for coefficients in finite fields, the proofs in fact work for all fields over 𝔽\mathbb{F}.

One direction (strong determinant condition implies Hodge type v0\textbf{v}_{0} condition) follows from [CEGS22b, Lem. 4.2.11 (2)]. For the other direction, we observe firstly that 𝔐i/im(Φ𝔐,i)\mathfrak{M}_{i}/\mathrm{im}(\Phi_{\mathfrak{M},i}) is a finitely generated torsion R[[u]]R[\![u]\!] module, being a quotient of 𝔐i/ue𝔐i\mathfrak{M}_{i}/u^{e}\mathfrak{M}_{i}. The determinant of Φ𝔐,i\Phi_{\mathfrak{M},i} is the product of the invariants of 𝔐i/im(Φ𝔐,i)\mathfrak{M}_{i}/\mathrm{im}(\Phi_{\mathfrak{M},i}) times a unit. Therefore, the sum of uu-adic valuations of the invariants is ee, implying that the dimension of 𝔐i/im(Φ𝔐,i)\mathfrak{M}_{i}/\mathrm{im}(\Phi_{\mathfrak{M},i}) is ee. By [CEGS22b, Lem. 4.2.11 (1), Lem. 4.2.12], the strong determinant condition is satisfied if and only if dimR(im(Φ𝔐,i)ue𝔐i)=e(K/p)e(K/K)=e\mathrm{dim}_{R}\left(\tfrac{\mathrm{im}(\Phi_{\mathfrak{M},i})}{u^{e}\mathfrak{M}_{i}}\right)=e(K/\mathbb{Q}_{p})\cdot e(K^{\prime}/K)=e. As 𝔐i\mathfrak{M}_{i} is a rank two free module over R[[u]]R[\![u]\!], 𝔐i/ue𝔐i\mathfrak{M}_{i}/u^{e}\mathfrak{M}_{i} has dimension 2e2e over RR, and thus dimR(im(Φ𝔐,i)ue𝔐i)=e\mathrm{dim}_{R}\left(\tfrac{\mathrm{im}(\Phi_{\mathfrak{M},i})}{u^{e}\mathfrak{M}_{i}}\right)=e. ∎

Suppose 𝔐\mathfrak{M} is Breuil-Kisin module over RR satisfying the Hodge type v0\textbf{v}_{0} condition and is of tame principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime} with ηη\eta\neq\eta^{\prime}. By Lemma 2.1.4, we know that with respect to inertial bases for 𝔐i1\mathfrak{M}_{i-1} and 𝔐i\mathfrak{M}_{i}, the ii-th Frobenius map Φ𝔐,i\Phi_{\mathfrak{M},i} is represented by a matrix FiF_{i} of the form (2.1.2). Since det(Fi)=s1(i)s4(i)vs2(i)s3(i)\det(F_{i})=s_{1}^{(i)}s_{4}^{(i)}-vs_{2}^{(i)}s_{3}^{(i)}, the Hodge type v0\textbf{v}_{0} condition implies vs1(i)s4(i)v\mid s_{1}^{(i)}s_{4}^{(i)}. This gives us three cases:

  1. (1)

    If s1(i)s_{1}^{(i)} is a non-unit and s4(i)s_{4}^{(i)} is a unit, then FiF_{i} is of genre Iη\text{I}_{\eta}, denoted by 𝒢(Fi)=Iη\mathcal{G}(F_{i})=\text{I}_{\eta}.

  2. (2)

    If s1(i)s_{1}^{(i)} is a unit and s4(i)s_{4}^{(i)} is a non-unit, then FiF_{i} is of genre Iη\text{I}_{\eta^{\prime}}, denoted by 𝒢(Fi)=Iη\mathcal{G}(F_{i})=\text{I}_{\eta^{\prime}}.

  3. (3)

    If both s1(i)s_{1}^{(i)} and s4(i)s_{4}^{(i)} are non-units, then FiF_{i} is of genre II, denoted by 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II}.

A direct calculation shows that if {Pi}i/f\{P_{i}\}_{i\in\mathbb{Z}/f\mathbb{Z}} is a set of inertial base change matrices, then 𝒢(Pi1Fiφ(Pi1))=𝒢(Fi)\mathcal{G}(P_{i}^{-1}\cdot F_{i}\cdot\varphi(P_{i-1}))=\mathcal{G}(F_{i}). We are therefore justified in defining the genre of 𝔐i\mathfrak{M}_{i} to be 𝒢(𝔐i):=𝒢(Fi)\mathcal{G}(\mathfrak{M}_{i}):=\mathcal{G}(F_{i}).

Definition 2.3.3.

For a Breuil-Kisin module 𝔐\mathfrak{M} over RR of rank two, height at most one and tame principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime} where ηη\eta\neq\eta^{\prime}, let {Fi}\{F_{i}\} be the Frobenius matrices written with respect to a choice of inertial basis for each ii. We will say that FiF_{i} is in η\eta-form if its top left entry is divisible by vv. If the bottom right entry is divisible by vv, we will say it is in η\eta^{\prime}-form.

We note that the property of being in η\eta-form or in η\eta^{\prime}-form is preserved by inertial base change, and can be seen as a property of the ii-th Frobenius map Φ𝔐,i\Phi_{\mathfrak{M},i}.

Definition 2.3.4.

A Breuil-Kisin module 𝔐\mathfrak{M} over an 𝔽\mathbb{F}-algebra RR with descent data is regular if it is of Hodge type v0\textbf{v}_{0}, tame principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime} such that ηη\eta\neq\eta^{\prime}, and with each Frobenius map either in η\eta-form or in η\eta^{\prime}-form.

For the rest of this section, our Breuil-Kisin modules will be defined over an 𝔽\mathbb{F}-algebra RR, and will be regular. We now turn to show that when RR is Artinian local, we can choose inertial bases such that each Frobenius matrix FiF_{i} takes one of three forms depending on the genre 𝒢(𝔐i)\mathcal{G}(\mathfrak{M}_{i}).

Definition 2.3.5.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let 𝔐\mathfrak{M} over RR be regular. We say that the Frobenius matrices {Fi}\{F_{i}\} (written with respect to an inertial basis for each 𝔐i\mathfrak{M}_{i}) are in CDM form if for i{1,,f1}i\in\{1,...,f-1\}, we have:

Fi\displaystyle F_{i} ={(v0Aiuγi1)if 𝒢(Fi)=Iη,(0ueγiuγiAi)if 𝒢(Fi)=II and Fi is in η-form,(1Aiueγi0v)if 𝒢(Fi)=Iη,(Aiueγiuγi0)if 𝒢(Fi)=II and Fi is in η-form,\displaystyle=\begin{cases}\begin{pmatrix}v&0\\ A_{i}u^{\gamma_{i}}&1\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{I}_{\eta},\\ \hskip 28.45274pt\\ \begin{pmatrix}0&-u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&A_{i}^{\prime}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II}\text{ and }F_{i}\text{ is in }\eta\text{-form},\\ \hskip 28.45274pt\\ \begin{pmatrix}1&A^{\prime}_{i}u^{e-\gamma_{i}}\\ 0&v\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{I}_{\eta^{\prime}},\\ \hskip 28.45274pt\\ \begin{pmatrix}A_{i}&-u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&0\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II}\text{ and }F_{i}\text{ is in }\eta^{\prime}\text{-form},\\ \end{cases}

while for i=0i=0,

F0\displaystyle F_{0} ={(α00α)(v0A0uγ01)if 𝒢(F0)=Iη,(α00α)(0ueγ0uγ0A0)if 𝒢(F0)=II and F0 is in η-form,(α00α)(1A0ueγ00v)if 𝒢(F0)=Iη,(α00α)(A0ueγ0uγ00)if 𝒢(F0)=II and F0 is in η-form.\displaystyle=\begin{cases}\begin{pmatrix}\alpha&0\\ 0&\alpha^{\prime}\end{pmatrix}\begin{pmatrix}v&0\\ A_{0}u^{\gamma_{0}}&1\end{pmatrix}&\text{if }\mathcal{G}(F_{0})=\text{I}_{\eta},\\ \hskip 28.45274pt\\ \begin{pmatrix}\alpha&0\\ 0&\alpha^{\prime}\end{pmatrix}\begin{pmatrix}0&-u^{e-\gamma_{0}}\\ u^{\gamma_{0}}&A_{0}^{\prime}\end{pmatrix}&\text{if }\mathcal{G}(F_{0})=\text{II}\text{ and }F_{0}\text{ is in }\eta\text{-form},\\ \hskip 28.45274pt\\ \begin{pmatrix}\alpha&0\\ 0&\alpha^{\prime}\end{pmatrix}\begin{pmatrix}1&A^{\prime}_{0}u^{e-\gamma_{0}}\\ 0&v\end{pmatrix}&\text{if }\mathcal{G}(F_{0})=\text{I}_{\eta^{\prime}},\\ \hskip 28.45274pt\\ \begin{pmatrix}\alpha&0\\ 0&\alpha^{\prime}\end{pmatrix}\begin{pmatrix}A_{0}&-u^{e-\gamma_{0}}\\ u^{\gamma_{0}}&0\end{pmatrix}&\text{if }\mathcal{G}(F_{0})=\text{II}\text{ and }F_{0}\text{ is in }\eta^{\prime}\text{-form}.\\ \end{cases}

where each of α\alpha, α\alpha^{\prime}, AiA_{i}, AiA^{\prime}_{i} are elements of RR. Moreover, when 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II} and FiF_{i} is in η\eta-form, Ai𝔪A^{\prime}_{i}\in\mathfrak{m}. Similarly, when 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II} and FiF_{i} is in η\eta^{\prime}-form, Ai𝔪A_{i}\in\mathfrak{m}.

We will describe the matrices of Definition 2.3.5 in terms of the parameters

(α,α,A0,A0,,Af1,Af1).(\alpha,\alpha^{\prime},A_{0},A^{\prime}_{0},...,A_{f-1},A^{\prime}_{f-1}).

If no AiA_{i} shows up in the description of FiF_{i}, we set it equal to 0. Similarly, if no AiA_{i}^{\prime} shows up in the description of FiF_{i}, we set it equal to 0. Note that, in general, (α,α,A0,A0,,Af1,Af1)(\alpha,\alpha^{\prime},A_{0},A^{\prime}_{0},...,A_{f-1},A^{\prime}_{f-1}) do not uniquely determine the Frobenius matrices. They do, however, if we know which Frobenius maps are in η\eta-form and which are in η\eta^{\prime}-form.

Definition 2.3.6.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. A regular Breuil-Kisin module 𝔐\mathfrak{M} over RR is of bad genre if the following conditions are satisfied:

  1. (1)

    i,(𝒢(Fi),zi){(II,0),(II,p1),(Iη,1),(Iη,p1),(Iη,0),(Iη,p2)}\forall i,(\mathcal{G}(F_{i}),z_{i})\in\{(\text{II},0),(\text{II},p-1),(\text{I}_{\eta},1),(\text{I}_{\eta},p-1),(\text{I}_{\eta^{\prime}},0),(\text{I}_{\eta^{\prime}},p-2)\}.

  2. (2)

    If (𝒢(Fi),zi){(II,0),(Iη,0),(Iη,p2)}(\mathcal{G}(F_{i}),z_{i})\in\{(\text{II},0),(\text{I}_{\eta^{\prime}},0),(\text{I}_{\eta^{\prime}},p-2)\}, then
    (𝒢(Fi+1),zi+1){(II,p1),(Iη,p1),(Iη,p2)}(\mathcal{G}(F_{i+1}),z_{i+1})\in\{(\text{II},p-1),(\text{I}_{\eta},p-1),(\text{I}_{\eta^{\prime}},p-2)\}.

  3. (3)

    If (𝒢(Fi),zi){(II,p1),(Iη,1),(Iη,p1)}(\mathcal{G}(F_{i}),z_{i})\in\{(\text{II},p-1),(\text{I}_{\eta},1),(\text{I}_{\eta},p-1)\}, then
    (𝒢(Fi+1),zi+1){(II,0),(Iη,1),(Iη,0)}(\mathcal{G}(F_{i+1}),z_{i+1})\in\{(\text{II},0),(\text{I}_{\eta},1),(\text{I}_{\eta^{\prime}},0)\}.

The (zj)j(z_{j})_{j} are as defined in (1.4.1).

The existence of Breuil-Kisin modules of bad genre is the primary contributor to the failure of our methods in some cases. The following proposition is the first indication of this.

Proposition 2.3.7.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let 𝔐\mathfrak{M} be a regular Breuil-Kisin module over RR, not of bad genre. Then there exists an inertial basis for each 𝔐i\mathfrak{M}_{i} with respect to which the Frobenius matrices are in CDM form (see Definition 2.3.5).

The proof of Proposition 2.3.7 is very similar to that of [CDM18, Lem. 3.1.20], with slight differences to accommodate Artinian local algebras. Before showing the proof, we first state some technical lemmas and definitions required in the proof.

Definition 2.3.8.

(As in [CDM18, Lem. 3.1.16]). Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Define an operation \mathcal{B} as follows. For any

G=(vs1ueγs2uγs3s4)\displaystyle G=\begin{pmatrix}vs_{1}&u^{e-\gamma}s_{2}\\ u^{\gamma}s_{3}&s_{4}\end{pmatrix}

with sjR[[v]]s_{j}\in R[\![v]\!] and det(G)=vα\det(G)=v\alpha for some αR[[v]]\alpha\in R[\![v]\!]^{*}, define A,ARA,A^{\prime}\in R by As3/s4modvA\equiv s_{3}/s_{4}\mod v (if s4s_{4} is invertible) and As4/s3modvA^{\prime}\equiv s_{4}/s_{3}\mod v (if s4s_{4} is not invertible). Then (G)\mathcal{B}(G) is defined as follows:

(G):={(s1As2ueγs2uγs3As4ues4)if s4R[[v]],(s2As1ueγs1uγs4As3ues3)if s4R[[v]].\displaystyle\mathcal{B}(G):=\begin{cases}\begin{pmatrix}s_{1}-As_{2}&u^{e-\gamma}s_{2}\\ u^{\gamma}\frac{s_{3}-As_{4}}{u^{e}}&s_{4}\end{pmatrix}&\text{if }s_{4}\in R[\![v]\!]^{*},\\ \hskip 28.45274pt\\ \begin{pmatrix}s_{2}-A^{\prime}s_{1}&u^{e-\gamma}s_{1}\\ u^{\gamma}\frac{s_{4}-A^{\prime}s_{3}}{u^{e}}&s_{3}\end{pmatrix}&\text{if }s_{4}\not\in R[\![v]\!]^{*}.\end{cases}

Note that det((G))=±α\det(\mathcal{B}(G))=\pm\alpha, so (G)\mathcal{B}(G) is invertible. Furthermore,

(2.3.1) G={(G)(v0Auγ1)if s4R[[v]],(G)(0ueγuγA)if s4R[[v]].\displaystyle G=\begin{cases}\mathcal{B}(G)\begin{pmatrix}v&0\\ Au^{\gamma}&1\end{pmatrix}&\text{if }s_{4}\in R[\![v]\!]^{*},\\ \hskip 28.45274pt\\ \mathcal{B}(G)\begin{pmatrix}0&u^{e-\gamma}\\ u^{\gamma}&A^{\prime}\end{pmatrix}&\text{if }s_{4}\not\in R[\![v]\!]^{*}.\end{cases}

For any

G=(s1ueγs2uγs3vs4)G=\begin{pmatrix}s_{1}&u^{e-\gamma}s_{2}\\ u^{\gamma}s_{3}&vs_{4}\end{pmatrix}

with sjR[[v]]s_{j}\in R[\![v]\!] and det(G)=vα\det(G)=v\alpha for some αR[[v]]\alpha\in R[\![v]\!]^{*}, define A,ARA,A^{\prime}\in R by As1/s2modvA\equiv s_{1}/s_{2}\mod v (if s1s_{1} is not invertible) and As2/s1modvA^{\prime}\equiv s_{2}/s_{1}\mod v (if s1s_{1} is invertible). Then (G)\mathcal{B}(G) is defined in a way that is compatible with the above definitions if we want to interchange η\eta and η\eta^{\prime}. That is,

(G):={(s1ueγs2As1ueuγs3s4As3)if s1R[[v]],(s2ueγs1As2ueuγs4s3As4)if s1R[[v]].\mathcal{B}(G):=\begin{cases}\begin{pmatrix}s_{1}&u^{e-\gamma}\frac{s_{2}-A^{\prime}s_{1}}{u^{e}}\\ u^{\gamma}s_{3}&s_{4}-A^{\prime}s_{3}\end{pmatrix}&\text{if }s_{1}\in R[\![v]\!]^{*},\\ \hskip 28.45274pt\\ \begin{pmatrix}s_{2}&u^{e-\gamma}\frac{s_{1}-As_{2}}{u^{e}}\\ u^{\gamma}s_{4}&s_{3}-As_{4}\end{pmatrix}&\text{if }s_{1}\not\in R[\![v]\!]^{*}.\end{cases}

Note that det((G))=±α\det(\mathcal{B}(G))=\pm\alpha, so (G)\mathcal{B}(G) is invertible. Furthermore,

G={(G)(1Aueγ0ue)if s1R[[v]],(G)(Aueγuγ0)if s1R[[v]].\displaystyle G=\begin{cases}\mathcal{B}(G)\begin{pmatrix}1&A^{\prime}u^{e-\gamma}\\ 0&u^{e}\end{pmatrix}&\text{if }s_{1}\in R[\![v]\!]^{*},\\ \hskip 28.45274pt\\ \mathcal{B}(G)\begin{pmatrix}A&u^{e-\gamma}\\ u^{\gamma}&0\end{pmatrix}&\text{if }s_{1}\not\in R[\![v]\!]^{*}.\end{cases}
Lemma 2.3.9.

Consider the matrix

P=(σ1ueγi1σ2uγi1σ3σ4),\displaystyle P=\begin{pmatrix}\sigma_{1}&u^{e-\gamma_{i-1}}\sigma_{2}\\ u^{\gamma_{i-1}}\sigma_{3}&\sigma_{4}\end{pmatrix},

with σjR[[v]]\sigma_{j}\in R[\![v]\!] and det(P)R[[u]]\det(P)\in R[\![u]\!]^{*}. Let

F=(vaueγibuγicd) or (aueγibuγicvd)\displaystyle F=\begin{pmatrix}va&u^{e-\gamma_{i}}b\\ u^{\gamma_{i}}c&d\end{pmatrix}\text{ or }\begin{pmatrix}a&u^{e-\gamma_{i}}b\\ u^{\gamma_{i}}c&vd\end{pmatrix}

with a,b,c,dR[[v]]a,b,c,d\in R[\![v]\!] and adbcR[[v]]ad-bc\in R[\![v]\!]^{*}. If MM is the matrix such that F=(F)MF=\mathcal{B}(F)M, where \mathcal{B} is the operation in Definition 2.3.8, then (Fφ(P))=(F)(Mφ(P))\mathcal{B}(F\varphi(P))=\mathcal{B}(F)\mathcal{B}(M\varphi(P)).

Proof.

Let XX be such that Mφ(P)=(Mφ(P))XM\varphi(P)=\mathcal{B}(M\varphi(P))X and YY be such that Fφ(P)=(Fφ(P))YF\varphi(P)=\mathcal{B}(F\varphi(P))Y. It suffices to show that X=YX=Y, because if so, by inverting XX and YY in GL2(R((v)))\mathop{\rm GL}\nolimits_{2}(R(\!(v)\!)), we can show that (Fφ(P))=Fφ(P)Y1=(F)Mφ(P)X1=(F)(Mφ(P))\mathcal{B}(F\varphi(P))=F\varphi(P)Y^{-1}=\mathcal{B}(F)M\varphi(P)X^{-1}=\mathcal{B}(F)\mathcal{B}(M\varphi(P)).

We first consider the case where F=(vaueγibuγicd)F=\begin{pmatrix}va&u^{e-\gamma_{i}}b\\ u^{\gamma_{i}}c&d\end{pmatrix}. Note that for any G=(vs1ueγis2uγis3s4)G=\begin{pmatrix}vs_{1}&u^{e-\gamma_{i}}s_{2}\\ u^{\gamma_{i}}s_{3}&s_{4}\end{pmatrix} with sjR[[v]]s_{j}\in R[\![v]\!] and det(G)=vα\det(G)=v\alpha for some αR[[v]]\alpha\in R[\![v]\!]^{*}, we can calculate (G)\mathcal{B}(G) and scalars AA or AA^{\prime} so that (2.3.1) holds. It suffices to show that AA and AA^{\prime} do not depend on whether G=Fφ(P)G=F\varphi(P) or G=Mφ(P)G=M\varphi(P). We have

Fφ(P)=(v(aφ(σ1)+bueziφ(σ3))ueγi(aue(pzi)φ(σ2)+bφ(σ4))uγi(cφ(σ1)+dueziφ(σ3))cue(pzi)φ(σ2)+dφ(σ4)).\displaystyle F\varphi(P)=\begin{pmatrix}v(a\varphi(\sigma_{1})+bu^{ez_{i}}\varphi(\sigma_{3}))&u^{e-\gamma_{i}}(au^{e(p-z_{i})}\varphi(\sigma_{2})+b\varphi(\sigma_{4}))\\ u^{\gamma_{i}}(c\varphi(\sigma_{1})+du^{ez_{i}}\varphi(\sigma_{3}))&cu^{e(p-z_{i})}\varphi(\sigma_{2})+d\varphi(\sigma_{4})\end{pmatrix}.

Let x¯\overline{x} denote the constant part of any xR[[v]]x\in R[\![v]\!]. By Definition 2.3.8, MM is given by:

M={(v0uγic¯d¯1)if dR[[v]],(0ueγiuγid¯c¯)if dR[[v]].\displaystyle M=\begin{cases}\begin{pmatrix}v&0\\ u^{\gamma_{i}}\frac{\overline{c}}{\overline{d}}&1\end{pmatrix}&\text{if }d\in R[\![v]\!]^{*},\vspace{0.5cm}\\ \begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&\frac{\overline{d}}{\overline{c}}\end{pmatrix}&\text{if }d\not\in R[\![v]\!]^{*}.\end{cases}

Therefore,

Mφ(P)={(vφ(σ1)ueγiue(pzi)φ(σ2)uγi(c¯d¯φ(σ1)+ueziφ(σ3))c¯d¯ue(pzi)φ(σ2)+φ(σ4))if dR[[v]],(vueziφ(σ3)ueγiφ(σ4)uγi(φ(σ1)+d¯c¯ueziφ(σ3))ue(pzi)φ(σ2)+d¯c¯φ(σ4))if dR[[v]].\displaystyle M\varphi(P)=\begin{cases}\begin{pmatrix}v\varphi(\sigma_{1})&u^{e-\gamma_{i}}u^{e(p-z_{i})}\varphi(\sigma_{2})\\ u^{\gamma_{i}}(\frac{\overline{c}}{\overline{d}}\varphi(\sigma_{1})+u^{ez_{i}}\varphi(\sigma_{3}))&\frac{\overline{c}}{\overline{d}}u^{e(p-z_{i})}\varphi(\sigma_{2})+\varphi(\sigma_{4})\end{pmatrix}&\text{if }d\in R[\![v]\!]^{*},\vspace{0.5cm}\\ \begin{pmatrix}vu^{ez_{i}}\varphi(\sigma_{3})&u^{e-\gamma_{i}}\varphi(\sigma_{4})\\ u^{\gamma_{i}}(\varphi(\sigma_{1})+\frac{\overline{d}}{\overline{c}}u^{ez_{i}}\varphi(\sigma_{3}))&u^{e(p-z_{i})}\varphi(\sigma_{2})+\frac{\overline{d}}{\overline{c}}\varphi(\sigma_{4})\end{pmatrix}&\text{if }d\not\in R[\![v]\!]^{*}.\end{cases}

Then X=YX=Y follows immediately from Definition 2.3.8. Similar considerations hold for the case F=(aueγibuγicvd)F=\begin{pmatrix}a&u^{e-\gamma_{i}}b\\ u^{\gamma_{i}}c&vd\end{pmatrix}. ∎

Definition 2.3.10.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let n0n\in\mathbb{Z}_{\geq 0} be the maximum such that 𝔪n0\mathfrak{m}^{n}\neq 0. For t0t\in\mathbb{Z}_{\geq 0}, define the ideal ItR[[v]]I_{t}\subset R[\![v]\!] as follows:

It={i=max{tn,0}aiviR[[v]]:a0𝔪t}.\displaystyle I_{t}=\{\sum_{i=\max{\{t-n,0\}}}^{\infty}a_{i}v^{i}\in R[\![v]\!]:a_{0}\in\mathfrak{m}^{t}\}.

In other words, for tnt\leq n, It={i=0aiviR[[v]]:a0𝔪t}I_{t}=\{\sum_{i=0}^{\infty}a_{i}v^{i}\in R[\![v]\!]:a_{0}\in\mathfrak{m}^{t}\}. For t>nt>n, It={i=tnaiviR[[v]]}I_{t}=\{\sum_{i=t-n}^{\infty}a_{i}v^{i}\in R[\![v]\!]\}.

Definition 2.3.11.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let P(0),P(1)GL2(R[[u]])P^{(0)},P^{(1)}\in\mathrm{GL}_{2}(R[[u]]) be such that for j{0,1}j\in\{0,1\},

P(j)=(σ1(j)ueγi1σ2(j)uγi1σ3(j)σ4(j)),\displaystyle P^{(j)}=\begin{pmatrix}\sigma^{(j)}_{1}&u^{e-\gamma_{i-1}}\sigma^{(j)}_{2}\\ u^{\gamma_{i-1}}\sigma^{(j)}_{3}&\sigma^{(j)}_{4}\end{pmatrix},

with σk(j)R[[v]]\sigma^{(j)}_{k}\in R[\![v]\!] for k{1,2,3,4}k\in\{1,2,3,4\}.

We say that P(0)P^{(0)} and P(1)P^{(1)} are tt-close if there exists a matrix

Y=(y1ueγiy2uγiy3y4)\displaystyle Y=\begin{pmatrix}y_{1}&u^{e-\gamma_{i}}y_{2}\\ u^{\gamma_{i}}y_{3}&y_{4}\end{pmatrix}

satisfying y1y2y3y40modIty_{1}\equiv y_{2}\equiv y_{3}\equiv y_{4}\equiv 0\mod I_{t}, such that P(1)=P(0)+YP^{(1)}=P^{(0)}+Y.

Lemma 2.3.12.

(c.f. [CDM18, Lem. 3.1.19]) Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let

P=(σ1ueγi1σ2uγi1σ3σ4)\displaystyle P=\begin{pmatrix}\sigma_{1}&u^{e-\gamma_{i-1}}\sigma_{2}\\ u^{\gamma_{i-1}}\sigma_{3}&\sigma_{4}\end{pmatrix}

be an inertial base change matrix with σ11σ410modv\sigma_{1}-1\equiv\sigma_{4}-1\equiv 0\mod v. Let PP^{\prime} be tt-close to PP with Y=PP=(y1ueγiy2uγiy3y4)Y=P^{\prime}-P=\begin{pmatrix}y_{1}&u^{e-\gamma_{i}}y_{2}\\ u^{\gamma_{i}}y_{3}&y_{4}\end{pmatrix} and y1y40modvy_{1}\equiv y_{4}\equiv 0\mod v.

  1. (1)

    Let M=(v0uγia1)M=\begin{pmatrix}v&0\\ u^{\gamma_{i}}a&1\end{pmatrix} for aRa\in R. Then Y=(Mφ(P))(Mφ(P))=(y1ueγiy2uγiy3y4)Y^{\prime}=\mathcal{B}(M\varphi(P^{\prime}))-\mathcal{B}(M\varphi(P))=\begin{pmatrix}y^{\prime}_{1}&u^{e-\gamma_{i}}y^{\prime}_{2}\\ u^{\gamma_{i}}y^{\prime}_{3}&y^{\prime}_{4}\end{pmatrix} satisfies:

    y10modIt+1,\displaystyle y^{\prime}_{1}\equiv 0\mod I_{t+1},
    y20modIt+1,\displaystyle y^{\prime}_{2}\equiv 0\mod I_{t+1},
    y3{0 if zi1,p1,φ(y3) if zi=1,a2φ(y2) if zi=p1,modIt+1,\displaystyle y^{\prime}_{3}\equiv\begin{cases}0&\text{ if }z_{i}\neq 1,p-1,\\ \varphi(y_{3})&\text{ if }z_{i}=1,\\ -a^{2}\varphi(y_{2})&\text{ if }z_{i}=p-1,\end{cases}\mod I_{t+1},
    y40modIt+1.\displaystyle y^{\prime}_{4}\equiv 0\mod I_{t+1}.

    The congruences also hold true mod vv.

  2. (2)

    Let M=(1ueγia0v)M=\begin{pmatrix}1&u^{e-\gamma_{i}}a^{\prime}\\ 0&v\end{pmatrix} for aRa^{\prime}\in R. Then Y=(Mφ(P))(Mφ(P))=(y1ueγiy2uγiy3y4)Y^{\prime}=\mathcal{B}(M\varphi(P^{\prime}))-\mathcal{B}(M\varphi(P))=\begin{pmatrix}y^{\prime}_{1}&u^{e-\gamma_{i}}y^{\prime}_{2}\\ u^{\gamma_{i}}y^{\prime}_{3}&y^{\prime}_{4}\end{pmatrix} satisfies:

    y10modIt+1,\displaystyle y^{\prime}_{1}\equiv 0\mod I_{t+1},
    y2{0 if zi0,p2,a2φ(y3) if zi=0,φ(y2) if zi=p2,modIt+1,\displaystyle y^{\prime}_{2}\equiv\begin{cases}0&\text{ if }z_{i}\neq 0,p-2,\\ -a^{\prime 2}\varphi(y_{3})&\text{ if }z_{i}=0,\\ \varphi(y_{2})&\text{ if }z_{i}=p-2,\end{cases}\mod I_{t+1},
    y30modIt+1,\displaystyle y^{\prime}_{3}\equiv 0\mod I_{t+1},
    y40modIt+1.\displaystyle y^{\prime}_{4}\equiv 0\mod I_{t+1}.

    The congruences also hold true mod vv.

  3. (3)

    Let M=(0ueγiuγia)M=\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&a^{\prime}\end{pmatrix} for a𝔪a^{\prime}\in\mathfrak{m} or M=(aueγiuγi0)M=\begin{pmatrix}a&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&0\end{pmatrix} for a𝔪a\in\mathfrak{m}. Then Y=(Mφ(P))(Mφ(P))=(y1ueγiy2uγiy3y4)Y^{\prime}=\mathcal{B}(M\varphi(P^{\prime}))-\mathcal{B}(M\varphi(P))=\begin{pmatrix}y^{\prime}_{1}&u^{e-\gamma_{i}}y^{\prime}_{2}\\ u^{\gamma_{i}}y^{\prime}_{3}&y^{\prime}_{4}\end{pmatrix} satisfies:

    y10modIt+1,\displaystyle y^{\prime}_{1}\equiv 0\mod I_{t+1},
    y2{0 if zi0,φ(y3) if zi=0,modIt+1,\displaystyle y^{\prime}_{2}\equiv\begin{cases}0&\text{ if }z_{i}\neq 0,\\ \varphi(y_{3})&\text{ if }z_{i}=0,\end{cases}\mod I_{t+1},
    y3{0 if zip1,φ(y2) if zi=p1,modIt+1,\displaystyle y^{\prime}_{3}\equiv\begin{cases}0&\text{ if }z_{i}\neq p-1,\\ \varphi(y_{2})&\text{ if }z_{i}=p-1,\end{cases}\mod I_{t+1},
    y40modIt+1.\displaystyle y^{\prime}_{4}\equiv 0\mod I_{t+1}.
Proof.
  1. (1)

    The matrix Mφ(P)M\varphi(P^{\prime}) equals

    (vφ(σ1+y1)ueγi(ue(pzi)φ(σ2+y2))uγi+1(ueziφ(σ3+y3)+aφ(σ1+y1))φ(σ4+y4)+aue(pzi)φ(σ2+y2)).\displaystyle\begin{pmatrix}v\varphi(\sigma_{1}+y_{1})&u^{e-\gamma_{i}}(u^{e(p-z_{i})}\varphi(\sigma_{2}+y_{2}))\\ u^{\gamma_{i+1}}(u^{ez_{i}}\varphi(\sigma_{3}+y_{3})+a\varphi(\sigma_{1}+y_{1}))&\varphi(\sigma_{4}+y_{4})+au^{e(p-z_{i})}\varphi(\sigma_{2}+y_{2})\end{pmatrix}.

    Let bRb\in R such that b=a(σ1+y1)+uezi(σ3+y3)(σ4+y4)b=\frac{a(\sigma_{1}+y_{1})+u^{ez_{i}}(\sigma_{3}+y_{3})}{(\sigma_{4}+y_{4})} mod vv. Then (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix} where

    σ1=φ(σ1+y1)v(pzi)bφ(σ2+y2),\displaystyle\sigma^{\prime}_{1}=\varphi(\sigma_{1}+y_{1})-v^{(p-z_{i})}b\varphi(\sigma_{2}+y_{2}),
    σ2=v(pzi)φ(σ2+y2),\displaystyle\sigma^{\prime}_{2}=v^{(p-z_{i})}\varphi(\sigma_{2}+y_{2}),
    vσ3=aφ(σ1+y1)bφ(σ4+y4)+vziφ(σ3+y3)abv(pzi)φ(σ2+y2),\displaystyle v\sigma^{\prime}_{3}=a\varphi(\sigma_{1}+y_{1})-b\varphi(\sigma_{4}+y_{4})+v^{z_{i}}\varphi(\sigma_{3}+y_{3})-abv^{(p-z_{i})}\varphi(\sigma_{2}+y_{2}),
    σ4=av(pzi)φ(σ2+y2)+φ(σ4+y4).\displaystyle\sigma^{\prime}_{4}=av^{(p-z_{i})}\varphi(\sigma_{2}+y_{2})+\varphi(\sigma_{4}+y_{4}).

    The congruences for y1y^{\prime}_{1}, y2y^{\prime}_{2} and y4y^{\prime}_{4} are immediate from the above. For y3y^{\prime}_{3}, consider first the case where t>nt>n. Then φ(y1)φ(y2)φ(y3)φ(y4)0modIt+2\varphi(y_{1})\equiv\varphi(y_{2})\equiv\varphi(y_{3})\equiv\varphi(y_{4})\equiv 0\mod I_{t+2} (as p>2p>2). Moreover, a=ba=b. We thus have

    y3=av1(φ(y1)φ(y4))+vzi1φ(y3)a2v(p1zi)φ(y2)y^{\prime}_{3}=av^{-1}\left(\varphi(y_{1})-\varphi(y_{4})\right)+v^{z_{i}-1}\varphi(y_{3})-a^{2}v^{(p-1-z_{i})}\varphi(y_{2})

    which is 0 mod It+1I_{t+1}.

    Now, let tnt\leq n. First consider the case where zi=0z_{i}=0. The right side of the equality vσ3=aφ(σ1+y1)bφ(σ4+y4)+vziφ(σ3+y3)abv(pzi)φ(σ2+y2)v\sigma^{\prime}_{3}=a\varphi(\sigma_{1}+y_{1})-b\varphi(\sigma_{4}+y_{4})+v^{z_{i}}\varphi(\sigma_{3}+y_{3})-abv^{(p-z_{i})}\varphi(\sigma_{2}+y_{2}) can have no constant terms. Therefore, vy3vy^{\prime}_{3} depends on vpφ(y2)v^{p}\varphi(y_{2}) and the nonconstant parts of φ(y1)\varphi(y_{1}), φ(y3)\varphi(y_{3}) and φ(y4)\varphi(y_{4}), which are all 0 mod v2v^{2}. Therefore, y30y^{\prime}_{3}\equiv 0 mod vv and therefore, mod It+1I_{t+1}. If zi0z_{i}\neq 0, vy3vy^{\prime}_{3} depends on vpziφ(y2)v^{p-z_{i}}\varphi(y_{2}), vziφ(y3)v^{z_{i}}\varphi(y_{3}) and the nonconstant parts of φ(y1)\varphi(y_{1}) and φ(y4)\varphi(y_{4}). The latter two terms are 0 mod v2v^{2}. This gives us the following equivalence mod vv (and hence, mod It+1I_{t+1}):

    y3vzi1φ(y3)a2vp1ziφ(y2).y^{\prime}_{3}\equiv v^{z_{i}-1}\varphi(y_{3})-a^{2}v^{p-1-z_{i}}\varphi(y_{2}).

    The desired congruences follow from the same reasoning as for the first case.

  2. (2)

    The matrix Mφ(P)M\varphi(P^{\prime}) equals

    (φ(σ1+y1)+aue(1+zi)φ(σ3+y3)ueγi(ue(p1zi)φ(σ2+y2)+aφ(σ4+y4))uγi(ue(1+zi)φ(σ3+y3))vφ(σ4+y4)).\displaystyle\begin{pmatrix}\varphi(\sigma_{1}+y_{1})+a^{\prime}u^{e(1+z_{i})}\varphi(\sigma_{3}+y_{3})&u^{e-\gamma_{i}}(u^{e(p-1-z_{i})}\varphi(\sigma_{2}+y_{2})+a^{\prime}\varphi(\sigma_{4}+y_{4}))\\ u^{\gamma_{i}}(u^{e(1+z_{i})}\varphi(\sigma_{3}+y_{3}))&v\varphi(\sigma_{4}+y_{4})\end{pmatrix}.

    Let bRb^{\prime}\in R such that b=ue(p1zi)(σ2+y2)+a(σ4+y4)σ1+y1b^{\prime}=\frac{u^{e(p-1-z_{i})}(\sigma_{2}+y_{2})+a^{\prime}(\sigma_{4}+y_{4})}{\sigma_{1}+y_{1}} mod vv. Then (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix} where

    σ1=φ(σ1+y1)av(1+zi)φ(σ3+y3),\displaystyle\sigma^{\prime}_{1}=\varphi(\sigma_{1}+y_{1})-a^{\prime}v^{(1+z_{i})}\varphi(\sigma_{3}+y_{3}),
    vσ2=v(p1zi)φ(σ2+y2)+aφ(σ4+y4)bφ(σ1+y1)+abv(1+zi)φ(σ3+y3),\displaystyle v\sigma^{\prime}_{2}=v^{(p-1-z_{i})}\varphi(\sigma_{2}+y_{2})+a^{\prime}\varphi(\sigma_{4}+y_{4})-b^{\prime}\varphi(\sigma_{1}+y_{1})+a^{\prime}b^{\prime}v^{(1+z_{i})}\varphi(\sigma_{3}+y_{3}),
    σ3=v(1+zi)φ(σ3+y3),\displaystyle\sigma^{\prime}_{3}=v^{(1+z_{i})}\varphi(\sigma_{3}+y_{3}),
    σ4=bv(1+zi)φ(σ3+y3)+φ(σ4+y4).\displaystyle\sigma^{\prime}_{4}=b^{\prime}v^{(1+z_{i})}\varphi(\sigma_{3}+y_{3})+\varphi(\sigma_{4}+y_{4}).

    The desired congruences follow using the same arguments as for the first part.

  3. (3)

    Suppose M=(0ueγiuγia)M=\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&a^{\prime}\end{pmatrix} for a𝔪a^{\prime}\in\mathfrak{m}. Then, Mφ(P)M\varphi(P^{\prime}) equals

    (ue(1+zi)φ(σ3+y3)ueγiφ(σ4)uγi(φ(σ1+y1)+aueziφ(σ3+y3))ue(pzi)φ(σ2+y2)+aφ(σ4+y4)).\begin{pmatrix}u^{e(1+z_{i})}\varphi(\sigma_{3}+y_{3})&u^{e-\gamma_{i}}\varphi(\sigma^{\prime}_{4})\\ u^{\gamma_{i}}(\varphi(\sigma_{1}+y_{1})+a^{\prime}u^{ez_{i}}\varphi(\sigma_{3}+y_{3}))&u^{e(p-z_{i})}\varphi(\sigma_{2}+y_{2})+a^{\prime}\varphi(\sigma_{4}+y_{4})\end{pmatrix}.

    Let bRb^{\prime}\in R such that b=a(σ4+y4)σ1+y1+avzi(σ3+y3)b^{\prime}=\frac{a^{\prime}(\sigma_{4}+y_{4})}{\sigma_{1}+y_{1}+a^{\prime}v^{z_{i}}(\sigma_{3}+y_{3})} mod vv. Note that b𝔪b^{\prime}\in\mathfrak{m} because a𝔪a^{\prime}\in\mathfrak{m}, and that bamod𝔪2b^{\prime}\equiv a^{\prime}\mod\mathfrak{m}^{2}   because baa(σ4σ1+y4y1)a2vzi(σ3+y3)σ1+y1+avzi(σ3+y3)0mod(𝔪2,v)b^{\prime}-a^{\prime}\equiv\frac{a^{\prime}(\sigma_{4}-\sigma_{1}+y_{4}-y_{1})-a^{\prime 2}v^{z_{i}}(\sigma_{3}+y_{3})}{\sigma_{1}+y_{1}+a^{\prime}v^{z_{i}}(\sigma_{3}+y_{3})}\equiv 0\mod(\mathfrak{m}^{2},v). Then (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix}, where

    σ1=φ(σ4+y4)bvziφ(σ3+y3),\displaystyle\sigma^{\prime}_{1}=\varphi(\sigma_{4}+y_{4})-b^{\prime}v^{z_{i}}\varphi(\sigma_{3}+y_{3}),
    σ2=vziφ(σ3+y3),\displaystyle\sigma^{\prime}_{2}=v^{z_{i}}\varphi(\sigma_{3}+y_{3}),
    vσ3=v(pzi)φ(σ2+y2)+aφ(σ4+y4)b(φ(σ1+y1)+avziφ(σ3+y3)),\displaystyle v\sigma^{\prime}_{3}=v^{(p-z_{i})}\varphi(\sigma_{2}+y_{2})+a^{\prime}\varphi(\sigma_{4}+y_{4})-b^{\prime}(\varphi(\sigma_{1}+y_{1})+a^{\prime}v^{z_{i}}\varphi(\sigma_{3}+y_{3})),
    σ4=φ(σ1+y1)+avziφ(σ3+y3).\displaystyle\sigma^{\prime}_{4}=\varphi(\sigma_{1}+y_{1})+a^{\prime}v^{z_{i}}\varphi(\sigma_{3}+y_{3}).

    On the other hand, suppose M=(aueγiuγi0)M=\begin{pmatrix}a&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&0\end{pmatrix} for a𝔪a\in\mathfrak{m}. Let bRb\in R such that b=a(σ1+y1)av(p1zi)(σ2+y2)+(σ4+y4)b=\frac{a(\sigma_{1}+y_{1})}{av^{(p-1-z_{i})}(\sigma_{2}+y_{2})+(\sigma_{4}+y_{4})} mod vv. Again, note that b𝔪b\in\mathfrak{m}, since a𝔪a\in\mathfrak{m} and that bamod𝔪2b\equiv a\mod\mathfrak{m}^{2}. By symmetry (we can interchange η\eta and η\eta^{\prime} to convert this to a previous computed case), we have (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix}, where

    σ1=av(p1zi)φ(σ2+y2)+φ(σ4),\displaystyle\sigma^{\prime}_{1}=av^{(p-1-z_{i})}\varphi(\sigma_{2}+y_{2})+\varphi(\sigma_{4}),
    vσ2=v(1+zi)φ(σ3+y3)+aφ(σ1+y1)b(φ(σ4+y4)+av(p1zi)φ(σ2+y2)),\displaystyle v\sigma^{\prime}_{2}=v^{(1+z_{i})}\varphi(\sigma_{3}+y_{3})+a\varphi(\sigma_{1}+y_{1})-b(\varphi(\sigma_{4}+y_{4})+av^{(p-1-z_{i})}\varphi(\sigma_{2}+y_{2})),
    σ3=v(p1zi)φ(σ2+y2),\displaystyle\sigma^{\prime}_{3}=v^{(p-1-z_{i})}\varphi(\sigma_{2}+y_{2}),
    σ4=φ(σ1+y1)bv(p1zi)φ(σ2+y2).\displaystyle\sigma^{\prime}_{4}=\varphi(\sigma_{1}+y_{1})-bv^{(p-1-z_{i})}\varphi(\sigma_{2}+y_{2}).

    The congruences follow immediately.

Corollary 2.3.13.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let

P=(σ1ueγi1σ2uγi1σ3σ4)\displaystyle P^{\prime}=\begin{pmatrix}\sigma_{1}&u^{e-\gamma_{i-1}}\sigma_{2}\\ u^{\gamma_{i-1}}\sigma_{3}&\sigma_{4}\end{pmatrix}

be an inertial base change matrix which is tt-close to IdId, with diagonal entries congruent to 11 mod vv.

  1. (1)

    Let M=(v0uγia1)M=\begin{pmatrix}v&0\\ u^{\gamma_{i}}a&1\end{pmatrix} for aRa\in R. Then (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix} satisfies:

    σ110modIt+1,\displaystyle\sigma^{\prime}_{1}-1\equiv 0\mod I_{t+1},
    σ20modIt+1,\displaystyle\sigma^{\prime}_{2}\equiv 0\mod I_{t+1},
    σ3{0 if zi1,p1,φ(σ3) if zi=1,a2φ(σ2) if zi=p1,modIt+1,\displaystyle\sigma^{\prime}_{3}\equiv\begin{cases}0&\text{ if }z_{i}\neq 1,p-1,\\ \varphi(\sigma_{3})&\text{ if }z_{i}=1,\\ -a^{2}\varphi(\sigma_{2})&\text{ if }z_{i}=p-1,\end{cases}\mod I_{t+1},
    σ410modIt+1.\displaystyle\sigma^{\prime}_{4}-1\equiv 0\mod I_{t+1}.

    The congruences also hold true mod vv.

  2. (2)

    Let M=(1ueγia0v)M=\begin{pmatrix}1&u^{e-\gamma_{i}}a^{\prime}\\ 0&v\end{pmatrix} for aRa^{\prime}\in R. Then (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix} satisfies:

    σ110modIt+1,\displaystyle\sigma^{\prime}_{1}-1\equiv 0\mod I_{t+1},
    σ2{0 if zi0,p2,a2φ(σ3) if zi=0,φ(σ2) if zi=p2,modIt+1,\displaystyle\sigma^{\prime}_{2}\equiv\begin{cases}0&\text{ if }z_{i}\neq 0,p-2,\\ -a^{\prime 2}\varphi(\sigma_{3})&\text{ if }z_{i}=0,\\ \varphi(\sigma_{2})&\text{ if }z_{i}=p-2,\end{cases}\mod I_{t+1},
    σ30modIt+1,\displaystyle\sigma^{\prime}_{3}\equiv 0\mod I_{t+1},
    σ410modIt+1.\displaystyle\sigma^{\prime}_{4}-1\equiv 0\mod I_{t+1}.

    The congruences also hold true mod vv.

  3. (3)

    Let M=(0ueγiuγia)M=\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&a^{\prime}\end{pmatrix} for a𝔪a^{\prime}\in\mathfrak{m} or M=(aueγiuγi0)M=\begin{pmatrix}a&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&0\end{pmatrix} for a𝔪a\in\mathfrak{m}. Then (Mφ(P))=(σ1ueγiσ2uγiσ3σ4)\mathcal{B}(M\varphi(P^{\prime}))=\begin{pmatrix}\sigma^{\prime}_{1}&u^{e-\gamma_{i}}\sigma^{\prime}_{2}\\ u^{\gamma_{i}}\sigma^{\prime}_{3}&\sigma^{\prime}_{4}\end{pmatrix} satisfies:

    σ110modIt+1,\displaystyle\sigma^{\prime}_{1}-1\equiv 0\mod I_{t+1},
    σ2{0 if zi0,φ(σ3) if zi=0,modIt+1,\displaystyle\sigma^{\prime}_{2}\equiv\begin{cases}0&\text{ if }z_{i}\neq 0,\\ \varphi(\sigma_{3})&\text{ if }z_{i}=0,\end{cases}\mod I_{t+1},
    σ3{0 if zip1,φ(σ2) if zi=p1,modIt+1,\displaystyle\sigma^{\prime}_{3}\equiv\begin{cases}0&\text{ if }z_{i}\neq p-1,\\ \varphi(\sigma_{2})&\text{ if }z_{i}=p-1,\end{cases}\mod I_{t+1},
    σ410modIt+1.\displaystyle\sigma^{\prime}_{4}-1\equiv 0\mod I_{t+1}.
Proof.

Apply Lemma 2.3.12 with P=IdP=Id, Y=(σ11ueγiσ2uγiσ3σ41)Y=\begin{pmatrix}\sigma_{1}-1&u^{e-\gamma_{i}}\sigma_{2}\\ u^{\gamma_{i}}\sigma_{3}&\sigma_{4}-1\end{pmatrix} and P=P+YP^{\prime}=P+Y. ∎

Proof of Proposition 2.3.7.

We set P0=IdP_{0}=Id and construct Ps=(σ1(s)ueγsσ2(s)uγsσ3(s)σ4(s))P_{s}=\begin{pmatrix}\sigma^{(s)}_{1}&u^{e-\gamma_{s}}\sigma^{(s)}_{2}\\ u^{\gamma_{s}}\sigma^{(s)}_{3}&\sigma^{(s)}_{4}\end{pmatrix} inductively by letting (Fs+1φ(Ps))=Ps+1Δs+1\mathcal{B}(F_{s+1}\varphi(P_{s}))=P_{s+1}\Delta_{s+1}, where we choose Δs+1\Delta_{s+1} to be a diagonal matrix in GL2(R)\mathop{\rm GL}\nolimits_{2}(R) such that the diagonal entries of Ps+1P_{s+1} are 11 mod vv. Here, the indexing set of the Frobenius matrices FsF_{s} is extended to all natural numbers via the natural map /f\mathbb{Z}\to\mathbb{Z}/f\mathbb{Z}.

We let Ms=(Fs)1FsM_{s}=\mathcal{B}(F_{s})^{-1}F_{s} (so that Ms+f=MsM_{s+f}=M_{s}). Trivially, PsP_{s} and Ps+fP_{s+f} are 0-close (see Definition 2.3.11). Suppose PsP_{s} and Ps+fP_{s+f} are tt-close for t0t\geq 0. Let Y=(y1ueγsy2uγsy3y4)Y=\begin{pmatrix}y_{1}&u^{e-\gamma_{s}}y_{2}\\ u^{\gamma_{s}}y_{3}&y_{4}\end{pmatrix} be such that Ps=Ps+f+YP_{s}=P_{s+f}+Y.

We use Lemma 2.3.12 to calculate (Ms+1φ(Ps))(Ms+f+1φ(Ps+f))\mathcal{B}(M_{s+1}\varphi(P_{s}))-\mathcal{B}(M_{s+f+1}\varphi(P_{s+f})) mod It+1I_{t+1}. Let (Ms+1φ(Ps))=(Ms+f+1φ(Ps+f))+Y\mathcal{B}(M_{s+1}\varphi(P_{s}))=\mathcal{B}(M_{s+f+1}\varphi(P_{s+f}))+Y^{\prime} where Y=(y1ueγs+1y2uγs+1y3y4)Y^{\prime}=\begin{pmatrix}y^{\prime}_{1}&u^{e-\gamma_{s+1}}y^{\prime}_{2}\\ u^{\gamma_{s+1}}y^{\prime}_{3}&y^{\prime}_{4}\end{pmatrix}. Then y1y^{\prime}_{1} and y4y^{\prime}_{4} are 0 mod It+1I_{t+1}. Moreover, at least one of y2y^{\prime}_{2} and y3y^{\prime}_{3} is 0 mod It+1I_{t+1}. Either (but not both) of y2y^{\prime}_{2} and y3y^{\prime}_{3} can depend on either (but not both) of y2y_{2} and y3y_{3} mod It+1I_{t+1} depending on the genre of FsF_{s} and the value of zs+1z_{s+1}. Since y2y_{2} and y3y_{3} are 0 mod ItI_{t}, the same ends up being true for y2y^{\prime}_{2} and y3y^{\prime}_{3}.

Using Lemma 2.3.9, we have:

(Fs+f+1φ(Ps+f))1(Fs+1φ(Ps))\displaystyle\mathcal{B}(F_{s+f+1}\varphi(P_{s+f}))^{-1}\mathcal{B}(F_{s+1}\varphi(P_{s}))
=(Ms+1φ(Ps+f))1(Fs+1)1(Fs+1)(Ms+1φ(Ps))\displaystyle=\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}\mathcal{B}(F_{s+1})^{-1}\mathcal{B}(F_{s+1})\mathcal{B}(M_{s+1}\varphi(P_{s}))
=(Ms+1φ(Ps+f))1((Ms+1φ(Ps+f)+Y)\displaystyle=\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}(\mathcal{B}(M_{s+1}\varphi(P_{s+f})+Y^{\prime})
=Id+(Ms+1φ(Ps+f))1Y.\displaystyle=Id+\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}Y^{\prime}.

Since Ps+fP_{s+f} is 0-close to IdId and the diagonal terms of Ps+fP_{s+f} are 11 mod vv , we can use the congruences in Corollary 2.3.13 to conclude that (Ms+1φ(Ps+f))1\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1} has the form Id+(x1ueγs+1x2uγs+1x3x4)Id+\begin{pmatrix}x_{1}&u^{e-\gamma_{s+1}}x_{2}\\ u^{\gamma_{s+1}}x_{3}&x_{4}\end{pmatrix}, with x1,x4I1x_{1},x_{4}\in I_{1}. Therefore,

(Ms+1φ(Ps+f))1Y=Y+(x1y1+vx2y3ueγs+1(x1y2+x2y4)uγs+1(x3y1+x4y3)vx3y2+x4y4)\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}Y^{\prime}=Y^{\prime}+\begin{pmatrix}x_{1}y^{\prime}_{1}+vx_{2}y^{\prime}_{3}&u^{e-\gamma_{s+1}}(x_{1}y^{\prime}_{2}+x_{2}y^{\prime}_{4})\\ u^{\gamma_{s+1}}(x_{3}y^{\prime}_{1}+x_{4}y^{\prime}_{3})&vx_{3}y^{\prime}_{2}+x_{4}y^{\prime}_{4}\end{pmatrix}

is (t+1)(t+1)-close to YY^{\prime}. This is evident when tnt\leq n, because in that case, I1ItIt+1I_{1}I_{t}\subset I_{t+1}. On the other hand, when t>nt>n, y2y^{\prime}_{2} and y3y^{\prime}_{3} are already 0 mod It+1I_{t+1}, and the assertion follows.

This implies that (Fs+f+1φ(Ps+f))\mathcal{B}(F_{s+f+1}\varphi(P_{s+f})) and (Fs+1φ(Ps))\mathcal{B}(F_{s+1}\varphi(P_{s})) have the same diagonal entries mod It+1I_{t+1} and consequently, Δs+1Δs+f+1mod𝔪t+1\Delta_{s+1}\equiv\Delta_{s+f+1}\mod\mathfrak{m}^{t+1}. Further,

Ps+f+11Ps+1\displaystyle P_{s+f+1}^{-1}P_{s+1} =Δs+f+1(Fs+f+1φ(Ps+f))1(Fs+1φ(Ps))Δs+11\displaystyle=\Delta_{s+f+1}\mathcal{B}(F_{s+f+1}\varphi(P_{s+f}))^{-1}\mathcal{B}(F_{s+1}\varphi(P_{s}))\Delta_{s+1}^{-1}
=Id+(Δs+f+1Δs+11Id)+Δs+f+1(Ms+1φ(Ps+f))1YΔs+11.\displaystyle=Id+(\Delta_{s+f+1}\Delta_{s+1}^{-1}-Id)+\Delta_{s+f+1}\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}Y^{\prime}\Delta_{s+1}^{-1}.

The entries of Δs+f+1(Ms+1φ(Ps+f))1YΔs+11\Delta_{s+f+1}\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}Y^{\prime}\Delta_{s+1}^{-1} differ from those of (Ms+1φ(Ps+f))1Y\mathcal{B}(M_{s+1}\varphi(P_{s+f}))^{-1}Y^{\prime} by some scalars congruent to 11 mod It+1I_{t+1}. As a result, Ps+f+11Ps+1IdP_{s+f+1}^{-1}P_{s+1}-Id is (t+1)(t+1)-close to YY^{\prime}. Let Ps+f+11Ps+1Id=Y+(z1ueγs+1z2uγs+1z3z4)P_{s+f+1}^{-1}P_{s+1}-Id=Y^{\prime}+\begin{pmatrix}z_{1}&u^{e-\gamma_{s+1}}z_{2}\\ u^{\gamma_{s+1}}z_{3}&z_{4}\end{pmatrix} with each of z1,z2,z3,z4z_{1},z_{2},z_{3},z_{4} congruent to 0modIt+10\mod I_{t+1}.

Let Y′′=Ps+1Ps+f+1=Ps+f+1(Ps+f+11Ps+1Id)Y^{\prime\prime}=P_{s+1}-P_{s+f+1}=P_{s+f+1}(P_{s+f+1}^{-1}P_{s+1}-Id). We claim that Y′′Y^{\prime\prime} is (t+1)(t+1)-close to YY^{\prime}, equivalently to Ps+f+11Ps+1IdP_{s+f+1}^{-1}P_{s+1}-Id. To see this, write

Y′′(Ps+f+11Ps+1Id)=(Ps+f+1Id)(Ps+f+11Ps+1Id)\displaystyle Y^{\prime\prime}-(P_{s+f+1}^{-1}P_{s+1}-Id)=(P_{s+f+1}-Id)(P_{s+f+1}^{-1}P_{s+1}-Id)
=(σ1(s+f+1)1ueγs+1σ2(s+f+1)uγs+1σ3(s+f+1)σ4(s+f+1)1)((y1ueγs+1y2uγs+1y3y4)+(z1ueγs+1z2uγs+1z3z4)).\displaystyle=\begin{pmatrix}\sigma^{(s+f+1)}_{1}-1&u^{e-\gamma_{s+1}}\sigma^{(s+f+1)}_{2}\\ u^{\gamma_{s+1}}\sigma^{(s+f+1)}_{3}&\sigma^{(s+f+1)}_{4}-1\end{pmatrix}\left(\begin{pmatrix}y^{\prime}_{1}&u^{e-\gamma_{s+1}}y^{\prime}_{2}\\ u^{\gamma_{s+1}}y^{\prime}_{3}&y^{\prime}_{4}\end{pmatrix}+\begin{pmatrix}z_{1}&u^{e-\gamma_{s+1}}z_{2}\\ u^{\gamma_{s+1}}z_{3}&z_{4}\end{pmatrix}\right).

Since σ1(s+f+1)1σ4(s+f+1)10modv\sigma^{(s+f+1)}_{1}-1\equiv\sigma^{(s+f+1)}_{4}-1\equiv 0\mod v, it is immediately verified that Y′′Y^{\prime\prime} is (t+1)(t+1)-close to YY^{\prime}. Thus, YY^{\prime} measures the difference between Ps+1P_{s+1} and Ps+f+1P_{s+f+1} upto an error term which is (t+1)(t+1)-close to 0.

We now induct on ss and use Lemma 2.3.12 to examine the dependency of YY^{\prime} on YY (specifically of y2y^{\prime}_{2} and y3y^{\prime}_{3} on y2y_{2} and y3y_{3} mod It+1I_{t+1}), which in turn gives the dependency of Ps+1Ps+f+1P_{s+1}-P_{s+f+1} on PsPs+fP_{s}-P_{s+f}. It is evident that if 𝔐\mathfrak{M} is not of bad genre (see Definition 2.3.6) and Ps+fP_{s+f} is tt-close to PsP_{s}, then Ps+2fP_{s+2f} is at least (t+1)(t+1)-close to Ps+fP_{s+f}, making {Ps+nf}n\{P_{s+nf}\}_{n} a Cauchy sequence.

Therefore, we can set P(i)=limnPi+nfP^{(i)}=\lim\limits_{n\to\infty}P_{i+nf} and let Fi:=(P(i))1Fiφ(P(i1))F^{\prime}_{i}:=(P^{(i)})^{-1}F_{i}\varphi(P^{(i-1)}). Then FiF^{\prime}_{i} has the following form:

(2.3.2) Fi\displaystyle F^{\prime}_{i} ={Δi(v0Aiuγi1)if 𝒢(Fi)=Iη,Δi(0ueγiuγiAi)if 𝒢(Fi)=II and Fi is in η-form,Δi(1Aiueγi0v)if 𝒢(Fi)=Iη,Δi(Aiueγiuγi+10)if 𝒢(Fi)=II and Fi is in η-form,\displaystyle=\begin{cases}\Delta_{i}\begin{pmatrix}v&0\\ A_{i}u^{\gamma_{i}}&1\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{I}_{\eta},\\ \hskip 28.45274pt\\ \Delta_{i}\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&A_{i}^{\prime}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II}\text{ and }F_{i}\text{ is in }\eta\text{-form},\\ \hskip 28.45274pt\\ \Delta_{i}\begin{pmatrix}1&A^{\prime}_{i}u^{e-\gamma_{i}}\\ 0&v\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{I}_{\eta^{\prime}},\\ \hskip 28.45274pt\\ \Delta_{i}\begin{pmatrix}A_{i}&u^{e-\gamma_{i}}\\ u^{\gamma_{i+1}}&0\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II}\text{ and }F_{i}\text{ is in }\eta^{\prime}\text{-form},\\ \end{cases}

where Δi\Delta_{i} are diagonal matrices with entries in RR^{*} and Ai,AiRA_{i},A^{\prime}_{i}\in R. Note that when 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II}, the diagonal terms of FiF^{\prime}_{i} are in 𝔪\mathfrak{m}.

Now we do one final base change by diagonal scalar matrices QiQ_{i} where Q0=IdQ_{0}=Id and Q1,,Qf1Q_{1},...,Q_{f-1} are defined inductively so that Gi=Qi1FiQi1G_{i}=Q_{i}^{-1}F_{i}Q_{i-1} is in CDM form. ∎

Remark 2.3.14.

Note that the definition of bad genre in Definition 2.3.6 is minimal in the sense that for any choice of bad genre, it is easy to write Frobenius matrices that prohibit the convergence of the algorithm in the proof of Proposition 2.3.7.

2.4. Base changes

We continue to assume that our Breuil-Kisin modules are regular (see Definition 2.3.4). Having classified the Breuil-Kisin modules that make up the stack 𝒞τ,BT\mathcal{C}^{\tau,BT}, we now need to understand their automorphisms which we know take the form of inertial base changes which need to respect the affermentioned classification. Our first order of business is to understand what these base changes look like.

Proposition 2.4.1.

[CDM18, Prop. 3.1.22] Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let 𝔐\mathfrak{M} be a regular Breuil-Kisin module over RR, not of bad genre so that by Lemma 2.3.7, the Frobenius matrices GiG_{i} can be put in the CDM form with parameters (α,α,A0,A0,,Af1,Af1)(\alpha,\alpha^{\prime},A_{0},A^{\prime}_{0},...,A_{f-1},A^{\prime}_{f-1}). Suppose there exist inertial base change matrices PiP_{i}, so that if Fi=Pi1Giφ(Pi1)F_{i}=P_{i}^{-1}G_{i}\varphi(P_{i-1}), then {Fi}i\{F_{i}\}_{i} are also in the CDM form with some parameters (β,β,B0,B0,,Bf1,Bf1)(\beta,\beta^{\prime},B_{0},B^{\prime}_{0},...,B_{f-1},B^{\prime}_{f-1}). Then the following hold true:

  1. (1)

    For all ii, PiP_{i} are necessarily of the form:

    Pi=(λi00μi)GL2(R).\displaystyle P_{i}=\begin{pmatrix}\lambda_{i}&0\\ 0&\mu_{i}\end{pmatrix}\in\mathop{\rm GL}\nolimits_{2}(R).
  2. (2)

    For i{1,,f1}i\in\{1,\dots,f-1\}, if 𝒢(Fi){Iη,Iη}\mathcal{G}(F_{i})\in\{\text{I}_{\eta},\text{I}_{\eta^{\prime}}\}, then λi=λi1\lambda_{i}=\lambda_{i-1} and μi=μi1\mu_{i}=\mu_{i-1}.

  3. (3)

    For i{1,,f1}i\in\{1,\dots,f-1\}, if 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II}, then λi=μi1\lambda_{i}=\mu_{i-1} and μi=λi1\mu_{i}=\lambda_{i-1}.

Therefore the parameters (β,β,B0,B0,,Bf1,Bf1)(\beta,\beta^{\prime},B_{0},B^{\prime}_{0},...,B_{f-1},B^{\prime}_{f-1}) are obtained by suitably scaling the parameters (α,α,A0,A0,,Af1,Af1)(\alpha,\alpha^{\prime},A_{0},A^{\prime}_{0},...,A_{f-1},A^{\prime}_{f-1}) as dictated by the base change matrices.

The proof of this proposition uses a few more technical lemmas given below.

Lemma 2.4.2.

Assume the setting of Proposition 2.4.1. Let Ci=(Giφ(Pi1))1Giφ(Pi1)C_{i}=\mathcal{B}(G_{i}\varphi(P_{i-1}))^{-1}G_{i}\varphi(P_{i-1}). Then Ci=Δi1FiC_{i}=\Delta_{i}^{-1}F_{i} where Δi\Delta_{i} is the identity matrix for i{1,,f1}i\in\{1,\dots,f-1\} and equals (β00β)\begin{pmatrix}\beta&0\\ 0&\beta^{\prime}\end{pmatrix}, for i=0i=0.

Proof.

Let ci,cic_{i},c^{\prime}_{i} be such that:

(2.4.1) Ci\displaystyle C_{i} ={(v0ciuγi1)if 𝒢(Gi)=Iη,(0ueγiuγici)if 𝒢(Gi)=II and Gi is in η-form,(1ciueγi0v)if 𝒢(Gi)=Iη,(ciueγiuγi0)if 𝒢(Gi)=II and Gi is in η-form.\displaystyle=\begin{dcases}\begin{pmatrix}v&0\\ c_{i}u^{\gamma_{i}}&1\end{pmatrix}&\text{if }\mathcal{G}(G_{i})=\text{I}_{\eta},\\ \begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&c_{i}^{\prime}\end{pmatrix}&\text{if }\mathcal{G}(G_{i})=\text{II}\text{ and }G_{i}\text{ is in }\eta\text{-form},\\ \begin{pmatrix}1&c^{\prime}_{i}u^{e-\gamma_{i}}\\ 0&v\end{pmatrix}&\text{if }\mathcal{G}(G_{i})=\text{I}_{\eta^{\prime}},\\ \begin{pmatrix}c_{i}&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&0\end{pmatrix}&\text{if }\mathcal{G}(G_{i})=\text{II}\text{ and }G_{i}\text{ is in }\eta^{\prime}\text{-form}.\\ \end{dcases}

Since Pi1Giφ(Pi1)=FiP_{i}^{-1}G_{i}\varphi(P_{i-1})=F_{i}, we have Pi1(Giφ(Pi1))Ci=FiP_{i}^{-1}\mathcal{B}(G_{i}\varphi(P_{i-1}))C_{i}=F_{i}. Inverting CiC_{i} in GL2(R((u)))\mathop{\rm GL}\nolimits_{2}(R(\!(u)\!)), we obtain that FiCi1=Pi1(Giφ(Pi1))F_{i}C_{i}^{-1}=P_{i}^{-1}\mathcal{B}(G_{i}\varphi(P_{i-1})). Notice that Pi1(Giφ(Pi1))P_{i}^{-1}\mathcal{B}(G_{i}\varphi(P_{i-1})) is in GL2(R[[u]])\mathop{\rm GL}\nolimits_{2}(R[\![u]\!]) and therefore all the entries of FiCi1F_{i}C_{i}^{-1} must be in R[[u]]R[\![u]\!].

Now, consider the case where 𝒢(Gi)=Iη\mathcal{G}(G_{i})=\text{I}_{\eta}.

FiCi1\displaystyle F_{i}C_{i}^{-1} =Δi(v0Biuγi1)(v10ciuγie1)\displaystyle=\Delta_{i}\begin{pmatrix}v&0\\ B_{i}u^{\gamma_{i}}&1\end{pmatrix}\begin{pmatrix}v^{-1}&0\\ -c_{i}u^{\gamma_{i}-e}&1\end{pmatrix}
=Δi(10(Bici)ue+γi1)\displaystyle=\Delta_{i}\begin{pmatrix}1&0\\ (B_{i}-c_{i})u^{-e+\gamma_{i}}&1\end{pmatrix}

We conclude that the entries of FiCi1F_{i}C_{i}^{-1} are in R[[u]]R[\![u]\!] if and only if ci=Bic_{i}=B_{i} or in other words, Ci=Δi1FiC_{i}=\Delta_{i}^{-1}F_{i}. The other three cases involve similar computations and conclusions, and are omitted. ∎

Lemma 2.4.3.

Assume the setting of Proposition 2.4.1. If i{1,,f1}i\in\{1,\dots,f-1\}, then Pi=(Giφ(Pi1))P_{i}=\mathcal{B}(G_{i}\varphi(P_{i-1})). Furthermore, P0=(G0φ(Pf1))(β100β1)P_{0}=\mathcal{B}(G_{0}\varphi(P_{f-1}))\begin{pmatrix}\beta^{-1}&0\\ 0&\beta^{\prime-1}\end{pmatrix}.

Proof.

By Lemma 2.4.2, Pi1(Giφ(Pi1))Δi1Fi=Pi1Giφ(Pi1)=FiP_{i}^{-1}\mathcal{B}(G_{i}\varphi(P_{i-1}))\Delta_{i}^{-1}F_{i}=P_{i}^{-1}G_{i}\varphi(P_{i-1})=F_{i}. Inverting FiF_{i} in GL2(R((u)))\mathop{\rm GL}\nolimits_{2}(R(\!(u)\!)), we have Pi1(Giφ(Pi1))Δi1=IdP_{i}^{-1}\mathcal{B}(G_{i}\varphi(P_{i-1}))\Delta_{i}^{-1}=Id, and therefore, Pi=(Giφ(Pi1))Δi1P_{i}=\mathcal{B}(G_{i}\varphi(P_{i-1}))\Delta_{i}^{-1}. ∎

Lemma 2.4.4.

Assume the setting of Proposition 2.4.1. Suppose both the diagonal entries of P0P_{0} equal 11 mod vv. Then Pi=IdP_{i}=Id for all ii.

Proof.

Suppose that P0P_{0} is tt-close to IdId (this is automatically true for t=0t=0 from the hypothesis in the statement of the Lemma). We apply Lemma 2.3.12 successively to compute the congruences for Pi=(Giφ(Pi1))P_{i}=\mathcal{B}(G_{i}\varphi(P_{i-1})) as ii goes from 11 to f1f-1, and then finally for ((α100α1)G0φ(Pf1))\mathcal{B}(\begin{pmatrix}\alpha^{-1}&0\\ 0&\alpha^{\prime-1}\end{pmatrix}G_{0}\varphi(P_{f-1})).

We obtain that

((α100α1)G0φ(Pf1))=(σ1ueγ0σ2uγ0σ3σ4),\mathcal{B}(\begin{pmatrix}\alpha^{-1}&0\\ 0&\alpha^{\prime-1}\end{pmatrix}G_{0}\varphi(P_{f-1}))=\begin{pmatrix}\sigma_{1}&u^{e-\gamma_{0}}\sigma_{2}\\ u^{\gamma_{0}}\sigma_{3}&\sigma_{4}\end{pmatrix},

where

σ11σ2σ3σ410modIt+1.\displaystyle\sigma_{1}-1\equiv\sigma_{2}\equiv\sigma_{3}\equiv\sigma_{4}-1\equiv 0\mod I_{t+1}.

By Lemma 2.4.3,

P0\displaystyle P_{0} =(G0φ(Pf1))(β100β1)\displaystyle=\mathcal{B}(G_{0}\varphi(P_{f-1}))\begin{pmatrix}\beta^{-1}&0\\ 0&\beta^{\prime-1}\end{pmatrix}
=(α00α)((α100α1)G0φ(Pf1))(β100β1)\displaystyle=\begin{pmatrix}\alpha&0\\ 0&\alpha^{\prime}\end{pmatrix}\mathcal{B}(\begin{pmatrix}\alpha^{-1}&0\\ 0&\alpha^{\prime-1}\end{pmatrix}G_{0}\varphi(P_{f-1}))\begin{pmatrix}\beta^{-1}&0\\ 0&\beta^{\prime-1}\end{pmatrix} (using Lemma 2.3.9)
=(α00α)(σ1ueγ0σ2uγ0σ3σ4)(β100β1).\displaystyle=\begin{pmatrix}\alpha&0\\ 0&\alpha^{\prime}\end{pmatrix}\begin{pmatrix}\sigma_{1}&u^{e-\gamma_{0}}\sigma_{2}\\ u^{\gamma_{0}}\sigma_{3}&\sigma_{4}\end{pmatrix}\begin{pmatrix}\beta^{-1}&0\\ 0&\beta^{\prime-1}\end{pmatrix}.

Recalling that P0P_{0} has diagonal entries equal to 11 mod vv, we have:

αβ1σ11αβ1σ410modv,\displaystyle\alpha\beta^{-1}\sigma_{1}-1\equiv\alpha^{\prime}\beta^{\prime-1}\sigma_{4}-1\equiv 0\mod v,
αβ1σ11αβ1σ410modIt+1,\displaystyle\alpha\beta^{-1}\sigma_{1}-1\equiv\alpha^{\prime}\beta^{\prime-1}\sigma_{4}-1\equiv 0\mod I_{t+1},
αβ1σ2αβ1σ30modIt+1.\displaystyle\alpha\beta^{\prime-1}\sigma_{2}\equiv\alpha^{\prime}\beta^{-1}\sigma_{3}\equiv 0\mod I_{t+1}.

The mod vv congruence shows that α=β\alpha=\beta and α=β\alpha^{\prime}=\beta^{\prime}. Therefore, P0P_{0} is (t+1)(t+1)-close to IdId. Induction on tt gives us the desired proof. ∎

Proof of Proposition 2.4.1.

Suppose the top left entry of P0P_{0} is λ0\lambda_{0} mod vv, while the bottom right entry is μ0\mu_{0} mod vv, where λ0,μ0R\lambda_{0},\mu_{0}\in R^{*}. Let Qi:=(λi100μi1)Q_{i}:=\begin{pmatrix}\lambda_{i}^{-1}&0\\ 0&\mu_{i}^{-1}\end{pmatrix} where λi\lambda_{i} and μi\mu_{i} are defined in the following manner for i{1,,f1}i\in\{1,\dots,f-1\}: If 𝒢(Gi){Iη,Iη}\mathcal{G}(G_{i})\in\{\text{I}_{\eta},\text{I}_{\eta^{\prime}}\}, then we let λi=λi1\lambda_{i}=\lambda_{i-1} and μi=μi1\mu_{i}=\mu_{i-1}. If 𝒢(Gi)=II\mathcal{G}(G_{i})=\text{II}, we let λi=μi1\lambda_{i}=\mu_{i-1} and μi=λi1\mu_{i}=\lambda_{i-1}. To prove the proposition, we must show that Pi=Qi1P_{i}=Q_{i}^{-1}.

Observe that the matrices Hi=Qi1Fiφ(Qi1)H_{i}=Q_{i}^{-1}F_{i}\varphi(Q_{i-1}) are still in CDM form (see Definition 2.3.5). We now consider the base change given by the matrices PiQiP_{i}Q_{i}, that transforms GiG_{i} to HiH_{i}. By the choice of λ0\lambda_{0} and μ0\mu_{0}, the diagonal entries of P0Q0P_{0}Q_{0} equal 11 mod vv. Applying Lemma 2.4.4, we have PiQi=IdP_{i}Q_{i}=Id for all ii, and therefore Pi=Qi1P_{i}=Q_{i}^{-1}. ∎

Corollary 2.4.5.

Let RR be an Artinian local 𝔽\mathbb{F}-algebra and let 𝔐\mathfrak{M} be a regular Breuil-Kisin module defined over RR and not of bad genre. Suppose {Fi}i\{F_{i}\}_{i} and {Gi}i\{G_{i}\}_{i} are two sets of Frobenius matrices for 𝔐\mathfrak{M} written with respect to different sets of inertial bases. Then the base change matrices {Pi}i\{P_{i}\}_{i} to go from {Fi}i\{F_{i}\}_{i} to {Gi}i\{G_{i}\}_{i} are unique up to multiplying each of the PiP_{i} by a fixed scalar matrix.

Proof.

Since each set of Frobenius matrices can be transformed into CDM form, it suffices to check the assertion when {Fi}i\{F_{i}\}_{i} and {Gi}i\{G_{i}\}_{i} are assumed to be in CDM form. From the way the parameters for the Frobenius matrices transform under base change, it is immediate that the base change matrices are uniquely determined up to scalar multiples. ∎

For the remainder of this section, we will make the following assumption for a Breuil-Kisin module 𝔐\mathfrak{M} defined over RR.

Assumption 2.4.6.

𝔐\mathfrak{M} is a regular Breuil-Kisin module over RR, not of bad genre. Each of its Frobenius maps is in η\eta-form, and none are in η\eta^{\prime}-form.

The assumption is justified because allowing some Frobenius matrices to be in η\eta^{\prime}-form will offer very little advantage in our eventual conclusions but inundate the text with significantly more notation - a discussion of the effect of allowing some Frobenius matrices to be in η\eta^{\prime}-form is in the Appendix.

Via Proposition 2.3.7, we can now describe Frobenius maps very parsimoniously using matrices in CDM form. Base changes between CDM forms also have an easy description using Proposition 2.4.1. This bring us one step closer to finding a finite presentation of the stack of Breuil-Kisin modules. We now turn our attention to furthering this process, specifically to understanding the base changes that allowed us to write the Frobenius matrices in the CDM form. Specifically, we will be studying the matrices P(i)=limnPi+nfP^{(i)}=\lim\limits_{n\to\infty}P_{i+nf} showing up in the proof of Proposition 2.3.7. We will also analyze obstructions to a parsimonious description, one of which we have already seen show up as a ’bad genre’ condition. We have seen that 𝔐\mathfrak{M} can be of bad genre only if the infinite sequence (zi)i(z_{i})_{i\in\mathbb{Z}} is made up entirely of the building blocks 11 and (0,p1)(0,p-1). On the other hand, if (zi)i(z_{i})_{i\in\mathbb{Z}} is such, we can find an 𝔐\mathfrak{M} of bad genre by choosing the entries of the Frobenius matrices suitably. This motivates the following definition.

Definition 2.4.7.

We say that a tame principal series 𝔽\mathbb{F}-type τ\tau faces the first obstruction if (zi)i(z_{i})_{i\in\mathbb{Z}} is made up entirely of the building blocks 11 and (0,p1)(0,p-1).

Proposition 2.4.8.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m} and let 𝔐\mathfrak{M} be a Breuil-Kisin module over RR satisfying Assumption 2.4.6. Suppose with respect to an inertial basis, FiF_{i} has the form

(vaiueγibiuγicidi)\begin{pmatrix}va_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}

with ai,bi,ci,diRa_{i},b_{i},c_{i},d_{i}\in R. Let P(j)=limnPj+nfP^{(j)}=\lim\limits_{n\to\infty}P_{j+nf} denote the base change matrices described in the proof of Proposition 2.3.7 and let

Fi=(P(i))1Fiφ(Pi1)=(vaibiueγiciuγidi)F^{\prime}_{i}=(P^{(i)})^{-1}F_{i}\varphi(P_{i-1})=\begin{pmatrix}va^{\prime}_{i}&b^{\prime}_{i}u^{e-\gamma_{i}}\\ c^{\prime}_{i}u^{\gamma_{i}}&d^{\prime}_{i}\end{pmatrix}

be the matrix in (2.3.2). Define a left action of upper unipotent matrices on η\eta-form Frobenius matrices in the following manner:

(1y01)(vaueγbuγcd)=(v(a+yc)ueγ(b+yd)uγcd).\begin{pmatrix}1&y\\ 0&1\end{pmatrix}\star\begin{pmatrix}va&u^{e-\gamma}b\\ u^{\gamma}c&d\end{pmatrix}=\begin{pmatrix}v(a+yc)&u^{e-\gamma}(b+yd)\\ u^{\gamma}c&d\end{pmatrix}.

The following statements are true:

  1. (1)

    Suppose (zi)i(z_{i})_{i\in\mathbb{Z}} does not contain the subsequence (p1,1,,1,0)(p-1,1,...,1,0) (where the number of 11’s is allowed to be zero). Then there exists an upper unipotent UiU_{i} for each ii satisfying UiFi=FiU_{i}\star F_{i}=F^{\prime}_{i}.

  2. (2)

    If (zi)i(z_{i})_{i} contains the subsequence (p1,1,,1,0)(p-1,1,...,1,0), then there exists a set of Frobenius matrices {Fi}\{F_{i}\} such that, for some ll, no unipotent matrix UU satisfies UFl=FlU\star F_{l}=F^{\prime}_{l}.

The proof will use the following lemma.

Lemma 2.4.9.

Consider the setup of Proposition 2.4.8. Suppose that the base change matrices P(j)P^{(j)} are given by

(qjueγjrjuγjsjtj).\begin{pmatrix}q_{j}&u^{e-\gamma_{j}}r_{j}\\ u^{\gamma_{j}}s_{j}&t_{j}\end{pmatrix}.

For any σR[[v]]\sigma\in R[\![v]\!], denote by σ¯\overline{\sigma} the constant part of σ\sigma. Then

Fi\displaystyle F^{\prime}_{i} ={Ad(100ci+disi1¯ci)(((aicidibi)v0uγicidi)) if 𝒢(Fi)=Iη,zi=0,((aicidibi)v0uγicidi) if 𝒢(Fi)=Iη,zi0,Ad(100ci+disi1¯ci)((0ueγi(bidiciai)uγicidi)) if 𝒢(Fi)=II,zi=0,(0ueγi(bidiciai)uγicidi) if 𝒢(Fi)=II,zi0,\displaystyle=\begin{dcases}Ad\begin{pmatrix}1&0\\ 0&\frac{c_{i}+d_{i}\overline{s_{i-1}}}{c_{i}}\end{pmatrix}\left(\begin{pmatrix}(a_{i}-\frac{c_{i}}{d_{i}}b_{i})v&0\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}\right)&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}=0,\\ \begin{pmatrix}(a_{i}-\frac{c_{i}}{d_{i}}b_{i})v&0\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}\neq 0,\\ Ad\begin{pmatrix}1&0\\ 0&\frac{c_{i}+d_{i}\overline{s_{i-1}}}{c_{i}}\end{pmatrix}\left(\begin{pmatrix}0&u^{e-\gamma_{i}}(b_{i}-\frac{d_{i}}{c_{i}}a_{i})\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}\right)&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}=0,\\ \begin{pmatrix}0&u^{e-\gamma_{i}}(b_{i}-\frac{d_{i}}{c_{i}}a_{i})\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}\neq 0,\end{dcases}

where AdM(N)Ad\>M\>(N) denotes the matrix MNM1MNM^{-1}.

Proof.

Using the definition of the operator \mathcal{B} in Definition 2.3.8 and our calculations in Lemma 2.3.9, we have

(Fi)1Fi=Mi={(v0uγicidi1) if 𝒢(Fi)=Iη,(0ueγiuγidici) if 𝒢(Fi)=II,\displaystyle\mathcal{B}(F_{i})^{-1}F_{i}=M_{i}=\begin{cases}\vspace{0.4cm}\begin{pmatrix}v&0\\ u^{\gamma_{i}}\frac{c_{i}}{d_{i}}&1\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},\\ \vspace{0.4cm}\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&\frac{d_{i}}{c_{i}}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},\end{cases}
(Fi)={(aicidibiueγibi0di)if 𝒢(Fi)=Iη,(bidiciaiueγiai0ci)if 𝒢(Fi)=II,\displaystyle\mathcal{B}(F_{i})=\begin{dcases}\begin{pmatrix}a_{i}-\frac{c_{i}}{d_{i}}b_{i}&u^{e-\gamma_{i}}b_{i}\\ 0&d_{i}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{I}_{\eta},\\ \begin{pmatrix}b_{i}-\frac{d_{i}}{c_{i}}a_{i}&u^{e-\gamma_{i}}a_{i}\\ 0&c_{i}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II},\end{dcases}

and

(Miφ(P(i1)))1Miφ(P(i1))={(v0uγi(cidi+si1¯)1) if 𝒢(Fi)=Iη,zi=0,(v0uγicidi1) if 𝒢(Fi)=Iη,zi0,(0ueγiuγidici1+dicisi1¯) if 𝒢(Fi)=II,zi=0,(0ueγiuγidici) if 𝒢(Fi)=II,zi0.\displaystyle\mathcal{B}(M_{i}\varphi(P^{(i-1)}))^{-1}M_{i}\varphi(P^{(i-1)})=\begin{cases}\vspace{0.4cm}\begin{pmatrix}v&0\\ u^{\gamma_{i}}(\frac{c_{i}}{d_{i}}+\overline{s_{i-1}})&1\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}=0,\\ \vspace{0.4cm}\begin{pmatrix}v&0\\ u^{\gamma_{i}}\frac{c_{i}}{d_{i}}&1\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}\neq 0,\\ \vspace{0.4cm}\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&\frac{\frac{d_{i}}{c_{i}}}{1+\frac{d_{i}}{c_{i}}\overline{s_{i-1}}}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}=0,\\ \begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&\frac{d_{i}}{c_{i}}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}\neq 0.\end{cases}

Recall that by Lemma 2.3.9, (Fiφ(P(i1)))=(Fi)(Miφ(P(i1)))\mathcal{B}(F_{i}\varphi(P^{(i-1)}))=\mathcal{B}(F_{i})\mathcal{B}(M_{i}\varphi(P^{(i-1)})) and by the calculations in Lemma 2.3.12, (Miφ(P(i1)))\mathcal{B}(M_{i}\varphi(P^{(i-1)})) is IdId mod uu if 𝒢(Fi)II\mathcal{G}(F_{i})\neq\text{II} or if 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II} but zi0z_{i}\neq 0. By the algorithm in the proof of Proposition 2.3.7, we find that (Fiφ(P(i1)))=P(i)Δ(i)\mathcal{B}(F_{i}\varphi(P^{(i-1)}))=P^{(i)}\Delta^{(i)} for a suitable diagonal scalar matrix Δ(i)\Delta^{(i)} chosen such that the diagonal entries of P(i)P^{(i)} are 11 mod vv or, in other words, such that P(i)P^{(i)} is IdId mod uu. Therefore if 𝒢(Fi)II\mathcal{G}(F_{i})\neq\text{II} or if 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II} but zi0z_{i}\neq 0, Δ(i)(Fi)modu\Delta^{(i)}\equiv\mathcal{B}(F_{i})\mod u. If 𝒢(Fi)=II\mathcal{G}(F_{i})=\text{II} and zi=0z_{i}=0, Lemma 2.3.12 gives us the following equivalence mod uu:

Δ(i)\displaystyle\Delta^{(i)} (Fi)(1dicisi1¯1+dicisi1¯001+dicisi1¯)\displaystyle\equiv\mathcal{B}(F_{i})\begin{pmatrix}1-\frac{\frac{d_{i}}{c_{i}}\overline{s_{i-1}}}{1+\frac{d_{i}}{c_{i}}\overline{s_{i-1}}}&0\\ 0&1+\frac{d_{i}}{c_{i}}\overline{s_{i-1}}\end{pmatrix}
(Fi)(cici+disi1¯00ci+disi1¯ci).\displaystyle\equiv\mathcal{B}(F_{i})\begin{pmatrix}\frac{c_{i}}{c_{i}+d_{i}\overline{s_{i-1}}}&0\\ 0&\frac{c_{i}+d_{i}\overline{s_{i-1}}}{c_{i}}\end{pmatrix}.

Letting Di=aidibiciD_{i}=a_{i}d_{i}-b_{i}c_{i},

Δ(i)={(Didi00di)if 𝒢(Fi)=Iη,(Dici+disi1¯00ci+disi1¯)if 𝒢(Fi)=II,zi=0,(Dici00ci)if 𝒢(Fi)=II,zi0.\displaystyle\Delta^{(i)}=\begin{cases}\vspace{0.3cm}\begin{pmatrix}\frac{D_{i}}{d_{i}}&0\\ 0&d_{i}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{I}_{\eta},\\ \vspace{0.3cm}\begin{pmatrix}\frac{-D_{i}}{c_{i}+d_{i}\overline{s_{i-1}}}&0\\ 0&c_{i}+d_{i}\overline{s_{i-1}}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II},z_{i}=0,\\ \begin{pmatrix}\frac{-D_{i}}{c_{i}}&0\\ 0&c_{i}\end{pmatrix}&\text{if }\mathcal{G}(F_{i})=\text{II},z_{i}\neq 0.\end{cases}

Now we compute FiF^{\prime}_{i}:

Fi\displaystyle F^{\prime}_{i} =(P(i))1Fiφ(P(i1))\displaystyle=(P^{(i)})^{-1}F_{i}\varphi(P^{(i-1)})
=Δ(i)(Fiφ(P(i1)))1Fiφ(P(i1))\displaystyle=\Delta^{(i)}\mathcal{B}(F_{i}\varphi(P^{(i-1)}))^{-1}F_{i}\varphi(P^{(i-1)})
=Δ(i)(Miφ(P(i1)))1Miφ(P(i1))\displaystyle=\Delta^{(i)}\mathcal{B}(M_{i}\varphi(P^{(i-1)}))^{-1}M_{i}\varphi(P^{(i-1)})
={(Di/di00di)(v0uγi(ci+disi1¯di)1) if 𝒢(Fi)=Iη,zi=0,(Di/di00di)(v0uγicidi1) if 𝒢(Fi)=Iη,zi0,(Dici+disi1¯00ci+disi1¯)(0ueγiuγidici+disi1¯) if 𝒢(Fi)=II,zi=0,(Di/ci00ci)(0ueγiuγidici) if 𝒢(Fi)=II,zi0,\displaystyle=\begin{cases}\begin{pmatrix}D_{i}/d_{i}&0\\ 0&d_{i}\end{pmatrix}\begin{pmatrix}v&0\\ u^{\gamma_{i}}(\frac{c_{i}+d_{i}\overline{s_{i-1}}}{d_{i}})&1\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}=0,\\ \hskip 28.45274pt\\ \begin{pmatrix}D_{i}/d_{i}&0\\ 0&d_{i}\end{pmatrix}\begin{pmatrix}v&0\\ u^{\gamma_{i}}\frac{c_{i}}{d_{i}}&1\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}\neq 0,\\ \hskip 28.45274pt\\ \begin{pmatrix}\frac{-D_{i}}{c_{i}+d_{i}\overline{s_{i-1}}}&0\\ 0&c_{i}+d_{i}\overline{s_{i-1}}\end{pmatrix}\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&\frac{d_{i}}{c_{i}+d_{i}\overline{s_{i-1}}}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}=0,\\ \hskip 28.45274pt\\ \begin{pmatrix}-D_{i}/c_{i}&0\\ 0&c_{i}\end{pmatrix}\begin{pmatrix}0&u^{e-\gamma_{i}}\\ u^{\gamma_{i}}&\frac{d_{i}}{c_{i}}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}\neq 0,\end{cases}
={Ad(100ci+disi1¯ci)(((aicidibi)v0uγicidi)) if 𝒢(Fi)=Iη,zi=0,((aicidibi)v0uγicidi) if 𝒢(Fi)=Iη,zi0,Ad(100ci+disi1¯ci)((0ueγi(bidiciai)uγicidi)) if 𝒢(Fi)=II,zi=0,(0ueγi(bidiciai)uγicidi) if 𝒢(Fi)=II,zi0.\displaystyle=\begin{cases}Ad\begin{pmatrix}1&0\\ 0&\frac{c_{i}+d_{i}\overline{s_{i-1}}}{c_{i}}\end{pmatrix}\left(\begin{pmatrix}(a_{i}-\frac{c_{i}}{d_{i}}b_{i})v&0\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}\right)&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}=0,\\ \hskip 28.45274pt\\ \begin{pmatrix}(a_{i}-\frac{c_{i}}{d_{i}}b_{i})v&0\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{I}_{\eta},z_{i}\neq 0,\\ \hskip 28.45274pt\\ Ad\begin{pmatrix}1&0\\ 0&\frac{c_{i}+d_{i}\overline{s_{i-1}}}{c_{i}}\end{pmatrix}\left(\begin{pmatrix}0&u^{e-\gamma_{i}}(b_{i}-\frac{d_{i}}{c_{i}}a_{i})\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}\right)&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}=0,\\ \hskip 28.45274pt\\ \begin{pmatrix}0&u^{e-\gamma_{i}}(b_{i}-\frac{d_{i}}{c_{i}}a_{i})\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}\neq 0.\end{cases}

Proof of Proposition 2.4.8.

By Lemma 2.4.9, FiF^{\prime}_{i} can be obtained via left unipotent action whenever zi0z_{i}\neq 0. If zi=0z_{i}=0, then FiF^{\prime}_{i} can be obtained via left unipotent action if and only if si0s_{i}\equiv 0 mod vv.

Now, suppose zi=0z_{i}=0 and si10s_{i-1}\not\equiv 0 mod vv. Recall that P(i1)=(Fi1φ(P(i2)))(Δi1)1=(Fi1)(Mi1φ(P(i2)))(Δi1)1P^{(i-1)}=\mathcal{B}(F_{i-1}\varphi(P^{(i-2)}))(\Delta^{i-1})^{-1}=\mathcal{B}(F_{i-1})\mathcal{B}(M_{i-1}\varphi(P^{(i-2)}))(\Delta^{i-1})^{-1}.

By the explicit calculations in Lemma 2.4.9, (Fi1)\mathcal{B}(F_{i-1}) is upper triangular. Therefore, si10s_{i-1}\not\equiv 0 if and only if (Mi1φ(P(i2)))\mathcal{B}(M_{i-1}\varphi(P^{(i-2)})) is not upper triangular mod ueR[[u]]u^{e}R[\![u]\!]. By the calculations in Lemma 2.3.12, this can happen only if one of the following two statements holds:

  1. (1)

    zi1=1z_{i-1}=1 and si20s_{i-2}\not\equiv 0 mod vv. In this situation, si1s_{i-1} is a multiple of si2s_{i-2} mod vv.

  2. (2)

    zi1=p1z_{i-1}=p-1 and ri20r_{i-2}\not\equiv 0 mod vv. In this situation, si1s_{i-1} is a multiple of ri2r_{i-2} mod vv.

Going backward, we conclude that zi=0z_{i}=0 and si10s_{i-1}\not\equiv 0 can happen only if ziz_{i} is preceded by a subsequence (zik1,zik,,zi1)=(p1,1,,1)(z_{i-k-1},z_{i-k},...,z_{i-1})=(p-1,1,...,1) with rik2,sik1,,si20r_{i-k-2},s_{i-k-1},...,s_{i-2}\not\equiv 0 mod vv. In other words, if (zi)i(z_{i})_{i} does not contain a contiguous subsequence of the form (p1,1,,1,0)(p-1,1,...,1,0), we can always obtain FiF^{\prime}_{i} via a left unipotent action on FiF_{i}.

On the other hand, if there exist k0k\geq 0 and ii\in\mathbb{Z} such that (zik1,zik,,zi1,zi)=(p1,1,,1,0)(z_{i-k-1},z_{i-k},...,z_{i-1},z_{i})=(p-1,1,...,1,0), we may choose FjF_{j}’s so that 𝒢(Fj)=Iη\mathcal{G}(F_{j})=\text{I}_{\eta} for all jj. Choose Fik2F_{i-k-2} so that bik20b_{i-k-2}\neq 0 and Fik1F_{i-k-1} so that cik1c_{i-k-1} is a unit. By Lemma 2.3.12, (Mik2φ(P(ik3)))\mathcal{B}(M_{i-k-2}\varphi(P^{(i-k-3)})) must be lower triangular mod ueR[[u]]u^{e}R[\![u]\!]. Therefore, rik2r_{i-k-2} is a unit multiple of bik2b_{i-k-2} mod vv. In turn, sik1s_{i-k-1} is a unit times cik12c_{i-k-1}^{2} times rik2r_{i-k-2} mod vv. Inductively, we see that si1s_{i-1} is a unit times bik2b_{i-k-2} mod vv, and therefore, non-zero mod vv. Thus, no unipotent action can give FiF^{\prime}_{i} from FiF_{i}. ∎

Proposition 2.4.8 motivates the following definition.

Definition 2.4.10.

We say that a tame principal series 𝔽\mathbb{F}-type τ\tau faces the second obstruction if (zi)i(z_{i})_{i\in\mathbb{Z}} contains a contiguous subsequence (p1,1,,1,0)(p-1,1,...,1,0) of length 2\geq 2, with the number of 11’s allowed to be zero.

Our next step is to analyze when left unipotent action of the type described in Proposition 2.4.8 can be functorially associated to inertial base change data. The eventual goal is to quotient the data of Frobenius matrices by unipotent action, and encode that as a point of the stack of Breuil-Kisin modules. In particular, the unipotent action will be encoded as base change data.

For each ii, let (ei,fi)(e_{i},f_{i}) be an inertial basis of 𝔐i\mathfrak{M}_{i}. The η\eta^{\prime}-eigenspace of 𝔐i\mathfrak{M}_{i} is a free module over R[[v]]R[\![v]\!] with an ordered basis given by (ueγiei,fi)(u^{e-\gamma_{i}}e_{i},f_{i}). The η\eta^{\prime}-eigenspace of φ𝔐i\varphi^{*}\mathfrak{M}_{i} is a free module over R[[v]]R[\![v]\!] with an ordered basis given by (ueγi+1ei,1fi)(u^{e-\gamma_{i+1}}\otimes e_{i},1\otimes f_{i}). Written with respect to our choice of inertial bases, let the ii-th Frobenius matrix be given as follows:

Fi=(aiueγibiuγicidi).\displaystyle F_{i}=\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}.

Let {Pi}i\{P_{i}\}_{i} be a set of inertial base change matrices, where

Pi=(qiueγiriuγisiti).\displaystyle P_{i}=\begin{pmatrix}q_{i}&u^{e-\gamma_{i}}r_{i}\\ u^{\gamma_{i}}s_{i}&t_{i}\end{pmatrix}.

The Frobenius map FiF_{i}, when restricted to the η\eta^{\prime}-eigenspace part and written with respect to the ordered η\eta^{\prime}-eigenspace basis of φ𝔐i1\varphi^{*}\mathfrak{M}_{i-1} and 𝔐i\mathfrak{M}_{i} has the following matrix:

(2.4.2) Gi=(aibivcidi).\displaystyle G_{i}=\begin{pmatrix}a_{i}&b_{i}\\ vc_{i}&d_{i}\end{pmatrix}.

Base change of GiG_{i} is given by:

(2.4.3) Ji1Gi(Ad(vp1zi001)(φ(Ji1))),\displaystyle J_{i}^{-1}G_{i}\left(\text{Ad}\begin{pmatrix}v^{p-1-z_{i}}&0\\ 0&1\end{pmatrix}(\varphi(J_{i-1}))\right),

where the matrices JiJ_{i} are defined as follows:

Ji=(qirivsiti).\displaystyle J_{i}=\begin{pmatrix}q_{i}&r_{i}\\ vs_{i}&t_{i}\end{pmatrix}.
Definition 2.4.11.

When a choice of an inertial basis for each ii is understood, (Gi)i(G_{i})_{i} and (Ji)i(J_{i})_{i} as above will be called the Frobenius and base change matrices (respectively) for the η\eta^{\prime}-eigenspace.

We say that the GiG_{i}’s are in CDM form if the FiF_{i}’s, which are the matrices for the unrestricted Frobenius maps, are in CDM form (see Definition 2.3.5).

It is clear that knowing the data of Frobenius and base change on the η\eta^{\prime}-eigenspace part is equivalent to knowing it for the entire Breuil-Kisin module.

Proposition 2.4.12.

Fix an inertial basis (ei,fi)(e_{i},f_{i}) for each ii. Suppose that each FiF_{i} is of the form

(vaiueγibiuγicidi)\begin{pmatrix}va_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix}

with ai,bi,ci,diRa_{i},b_{i},c_{i},d_{i}\in R. For each ii, denote by GiG_{i} the Frobenius matrices for restriction to η\eta^{\prime}-eigenspaces so that Gi=(vaibivcidi)G_{i}=\begin{pmatrix}va_{i}&b_{i}\\ vc_{i}&d_{i}\end{pmatrix}. Let Ui=(1yi01)U_{i}=\begin{pmatrix}1&y_{i}\\ 0&1\end{pmatrix} for each i/fi\in\mathbb{Z}/f\mathbb{Z}.

Then, whenever τ\tau does not face the second obstruction (Definition 2.4.10), there exists a functorially constructed inertial-base-change matrices, in (Ui)i(U_{i})_{i}, given by

Pi=(qiueγiriuγisiti)P_{i}=\begin{pmatrix}q_{i}&u^{e-\gamma_{i}}r_{i}\\ u^{\gamma_{i}}s_{i}&t_{i}\end{pmatrix}

satisfying Fi=Pi1(UiFi)φ(Pi1)F_{i}=P_{i}^{-1}(U_{i}\star F_{i})\varphi(P_{i-1}) where UiFiU_{i}\star F_{i} is as defined in Proposition 2.4.8. Equivalently,

Gi=Ji1UiGi(Ad(vp1zi001)(φ(Ji1)))\displaystyle G_{i}=J_{i}^{-1}U_{i}G_{i}\left(\text{Ad}\begin{pmatrix}v^{p-1-z_{i}}&0\\ 0&1\end{pmatrix}(\varphi(J_{i-1}))\right)

where Ji=(qirivsiti)J_{i}=\begin{pmatrix}q_{i}&r_{i}\\ vs_{i}&t_{i}\end{pmatrix}.

Proof.

We will build JiJ_{i} as a vv-adic limit of a sequence Ji(n)J_{i}^{(n)}. First, let Ji(0)J_{i}^{(0)} be the identity matrix and define Ji+1(n+1)J_{i+1}^{(n+1)} to be

Ji+1(n+1)=Ui+1Gi+1(Ad(vp1zi+1001)(φ(Ji(n))))Gi+11,\displaystyle J_{i+1}^{(n+1)}=U_{i+1}G_{i+1}\left(\text{Ad}\begin{pmatrix}v^{p-1-z_{i+1}}&0\\ 0&1\end{pmatrix}(\varphi(J_{i}^{(n)}))\right)G_{i+1}^{-1},

where we are inverting Gi+1G_{i+1} in GL2(R((u)))\mathop{\rm GL}\nolimits_{2}(R(\!(u)\!)). Therefore,

Ji+1(n+1)Ji+1(n)\displaystyle J_{i+1}^{(n+1)}-J_{i+1}^{(n)} =Ui+1Gi+1(Ad(vp1zi+1001)(φ(Ji(n)Ji(n1))))Gi+11.\displaystyle=U_{i+1}G_{i+1}\left(\text{Ad}\begin{pmatrix}v^{p-1-z_{i+1}}&0\\ 0&1\end{pmatrix}(\varphi(J_{i}^{(n)}-J_{i}^{(n-1)}))\right)G_{i+1}^{-1}.

Let Di=aidibiciD_{i}=a_{i}d_{i}-b_{i}c_{i}. Evidently, Ji+1(1)=Ui+1J_{i+1}^{(1)}=U_{i+1}. Further,

Ji(2)Ji(1)=vpziyi1Di(aiciyici2ai2+yiaicici2aici).J_{i}^{(2)}-J_{i}^{(1)}=v^{p-z_{i}}\frac{y_{i-1}}{D_{i}}\begin{pmatrix}-a_{i}c_{i}-y_{i}c_{i}^{2}&a_{i}^{2}+y_{i}a_{i}c_{i}\\ -c_{i}^{2}&a_{i}c_{i}\end{pmatrix}.

For XM2(R[[v]])X\in M_{2}(R[\![v]\!]), denote by valv(X)\text{val}_{v}(X) the highest power of vv that divides XX. Let αi=valv(Ji(2)Ji(1))\alpha_{i}=\text{val}_{v}(J_{i}^{(2)}-J_{i}^{(1)}). Then αipzi\alpha_{i}\geq p-z_{i}.

Now we compute the dependence of the valuation of Ji+1(n)Ji+1(n1)J_{i+1}^{(n)}-J_{i+1}^{(n-1)} on Ji(n)Ji(n1)J_{i}^{(n)}-J_{i}^{(n-1)}.

If vrv^{r} divides Ji(n)Ji(n1)J_{i}^{(n)}-J_{i}^{(n-1)}, then vpr(p1zi+1)v^{pr-(p-1-z_{i+1})} divides Ad(vp1zi+1001)φ(Ji(n)Ji(n1))\text{Ad}\begin{pmatrix}v^{p-1-z_{i+1}}&0\\ 0&1\end{pmatrix}\varphi(J_{i}^{(n)}-J_{i}^{(n-1)}). After taking into account an extra factor of vv coming from the determinant of Gi+1G_{i+1} which we will need to divide by when inverting Gi+1G_{i+1}, we conclude that vpr(pzi+1)=vp(r1)+zi+1v^{pr-(p-z_{i+1})}=v^{p(r-1)+z_{i+1}} divides Ji+1(n+1)Ji+1(n)J_{i+1}^{(n+1)}-J_{i+1}^{(n)}.

Therefore,

valv(Ji+1(3)Ji+1(2))\displaystyle\text{val}_{v}(J_{i+1}^{(3)}-J_{i+1}^{(2)})\quad p(αi1)+zi+1,\displaystyle\geq p(\alpha_{i}-1)+z_{i+1},
valv(Ji+1(4)Ji+1(3))\displaystyle\text{val}_{v}(J_{i+1}^{(4)}-J_{i+1}^{(3)})\quad p2(αi11)+(pzi+zi+1)p,\displaystyle\geq p^{2}(\alpha_{i-1}-1)+(pz_{i}+z_{i+1})-p,
valv(Ji+1(5)Ji+1(4))\displaystyle\text{val}_{v}(J_{i+1}^{(5)}-J_{i+1}^{(4)})\quad p3(αi21)+(p2zi1+pzi+zi+1)(p2+p),\displaystyle\geq p^{3}(\alpha_{i-2}-1)+(p^{2}z_{i-1}+pz_{i}+z_{i+1})-(p^{2}+p),
\displaystyle...
valv(Ji+1(n)Ji+1(n1))\displaystyle\text{val}_{v}(J_{i+1}^{(n)}-J_{i+1}^{(n-1)}) pn2(αi(n3)1)+j=1n3pj(zi(j1)1)+zi+1\displaystyle\geq p^{n-2}(\alpha_{i-(n-3)}-1)+\sum_{j=1}^{n-3}p^{j}(z_{i-(j-1)}-1)+z_{i+1}
pn2(p1zi(n3))+j=1n3pj(zi(j1)1)+zi+1.\displaystyle\geq p^{n-2}(p-1-z_{i-(n-3)})+\sum_{j=1}^{n-3}p^{j}(z_{i-(j-1)}-1)+z_{i+1}.

We have the following scenarios:

  • Suppose zi(n3)<p1z_{i-(n-3)}<p-1. Let m:=n3fm:=\lfloor\frac{n-3}{f}\rfloor. Then

    valv(Ji+1(n)Ji+1(n1))\displaystyle\text{val}_{v}(J_{i+1}^{(n)}-J_{i+1}^{(n-1)}) pn2+j=1n3pj(zij+11)+zi+1\displaystyle\geq p^{n-2}+\sum_{j=1}^{n-3}p^{j}(z_{i-j+1}-1)+z_{i+1}
    =p+j=1n3(p1)pj+j=1n3pj(zi(j1)1)+zi+1\displaystyle=p+\sum_{j=1}^{n-3}(p-1)p^{j}+\sum_{j=1}^{n-3}p^{j}(z_{i-(j-1)}-1)+z_{i+1}
    =p+j=1n3(p2)pj+j=0n3pjzi+1j\displaystyle=p+\sum_{j=1}^{n-3}(p-2)p^{j}+\sum_{j=0}^{n-3}p^{j}z_{i+1-j}
    j=1n3(p2)pj+k=0m1pkγi+1\displaystyle\geq\sum_{j=1}^{n-3}(p-2)p^{j}+\sum_{k=0}^{m-1}p^{k}\gamma_{i+1} (using (1.4.1))
    >pm1.\displaystyle>p^{m-1}.
  • Suppose zi(n3)=p1z_{i-(n-3)}=p-1 and zj0z_{j}\neq 0 for each jj. Then

    valv(Ji+1(n)Ji+1(n1))\displaystyle\text{val}_{v}(J_{i+1}^{(n)}-J_{i+1}^{(n-1)}) j=1n3pj(zi(j1)1)+zi+1\displaystyle\geq\sum_{j=1}^{n-3}p^{j}(z_{i-(j-1)}-1)+z_{i+1}
    j[1,n3] and j1n3modfpj\displaystyle\geq\sum_{\begin{subarray}{c}j\in[1,n-3]\text{ and }\\ j-1\equiv n-3\mod f\end{subarray}}p^{j}
    pn2f.\displaystyle\geq p^{n-2-f}.

    The second to last step uses p>2p>2.

  • Suppose zi(n3)=p1z_{i-(n-3)}=p-1 and there exists a k[0,n3]k\in[0,n-3] such that zi(k1)=0z_{i-(k-1)}=0. Take kk to be as large as possible. As {zj}j\{z_{j}\}_{j} is ff-periodic, k[n2f,n3]k\in[n-2-f,n-3]. Since τ\tau does not face the second obstruction, there exists a largest possible l(k,n3)l\in(k,n-3) such that zi(l1)>1z_{i-(l-1)}>1. Then

    valv(Ji+1(n)Ji+1(n1))\displaystyle\text{val}_{v}(J_{i+1}^{(n)}-J_{i+1}^{(n-1)}) j=k+1lpj(zi(j1)1)+j=1k(zi(j1)1)+zi+1\displaystyle\geq\sum_{j=k+1}^{l}p^{j}(z_{i-(j-1)}-1)+\sum_{j=1}^{k}(z_{i-(j-1)}-1)+z_{i+1}
    >pk+1j=1kpj\displaystyle>p^{k+1}-\sum_{j=1}^{k}p^{j}
    =p+j=1k(p1)pjj=1kpj\displaystyle=p+\sum_{j=1}^{k}(p-1)p^{j}-\sum_{j=1}^{k}p^{j}
    =p+j=1k(p2)pj\displaystyle=p+\sum_{j=1}^{k}(p-2)p^{j}
    >pk\displaystyle>p^{k}
    pn2f.\displaystyle\geq p^{n-2-f}.

    The second to last step uses that p>2p>2.

The above calculations show that whenever τ\tau does not face the second obstruction, (Ji+1(n))n(J_{i+1}^{(n)})_{n} is a Cauchy sequence for all ii.

We set Ji=limn(Ji(n))nJ_{i}=\lim_{n\to\infty}(J_{i}^{(n)})_{n}, and construct the base change matrices PiP_{i} using the data of JiJ_{i}. Since Ji(1)M2(R[[v]])J_{i}^{(1)}\in M_{2}(R[\![v]\!]) and valv(Ji(n)Ji(n1))0\text{val}_{v}(J_{i}^{(n)}-J_{i}^{(n-1)})\geq 0 for each ii and n2n\geq 2, JiM2(R[[v]])J_{i}\in M_{2}(R[\![v]\!]). Since each GiG_{i} is invertable in GL2(M((v))\mathop{\rm GL}\nolimits_{2}(M(\!(v)\!) then we may repeat the argument for Ji1J_{i}^{-1} to see that JiGL2(M[[v]!])J_{i}\in\mathop{\rm GL}\nolimits_{2}(M[\![v]!]). Since vv divides the upper and lower left entries of GiG_{i}, it can be shown by direct computation that the lower left entry of JiJ_{i} is 0 mod vv. Therefore, PiGL2(R[[u]])P_{i}\in\mathop{\rm GL}\nolimits_{2}(R[\![u]\!]) for each ii. ∎

Definition 2.4.13.

Denote the inverses of JiJ_{i}’s constructed in Proposition 2.4.12 by Ji1=i(𝐔)J_{i}^{-1}=\mathcal{F}_{i}(\mathbf{U}) to indicate the functorial dependence on the tuple of unipotent matrices 𝐔=(Uj)j\mathbf{U}=(U_{j})_{j}. Then (i(𝐔))i(\mathcal{F}_{i}(\mathbf{U}))_{i} capture the base change data to go from (Gi)i(UiGi)i(G_{i})_{i}\to(U_{i}G_{i})_{i}.

3. A component of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} as a quotient of a scheme

At this point, via Proposition 2.3.7, we have an easy way of describing the Frobenius maps for certain Breuil-Kisin modules by writing the matrices in CDM form (see Definition 2.3.5). We also have a complete description of base changes between such Frobenius matrices in Proposition 2.4.1. Finally, in some cases, we have a way of obtaining Frobenius matrices in CDM form through a particular group action (see Proposition 2.4.8). The goal of this section is to use these results to write a certain irreducible component of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} (Definition 2.2.3) as a quotient stack [X/G][X/G] for some scheme XX and group scheme GG acting on XX. We will use this presentation to compute global functions on the component.

In order to allow us to use Propositions 2.3.7, 2.4.1 and 2.4.8, we make the following assumption for the entirety of this section.

Assumption 3.0.1.

The tame principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime} satisfies:

  • ηη\eta\neq\eta^{\prime}, and

  • τ\tau does not face either the first obstruction (in the sense of Definition 2.4.7) or the second obstruction (in the sense of Definition 2.4.10).

3.1. A smooth map from a scheme to 𝒞\mathcal{C}

Let G=(𝔾m)f+1𝔽×𝔽U𝔽fG=(\mathbb{G}_{m})^{f+1}_{\mathbb{F}}\times_{\mathbb{F}}U_{\mathbb{F}}^{f} and X=(GL2)𝔽×𝔽(SL2)𝔽f1X=(\mathop{\rm GL}\nolimits_{2})_{\mathbb{F}}\times_{\mathbb{F}}(\mathop{\rm SL}\nolimits_{2})_{\mathbb{F}}^{f-1}, where U𝔾aU\cong\mathbb{G}_{a} is the upper unipotent subgroup of GL2\mathop{\rm GL}\nolimits_{2}. Define a GG-action on XX in the following way:

Let (λ,μ,r1,r2,,rf1,m0,,mf1)G(\lambda,\mu,r_{1},r_{2},...,r_{f-1},m_{0},...,m_{f-1})\in G and (A0,,Af1)X(A_{0},...,A_{f-1})\in X. Then

(3.1.1) (λ,μ,r1,r2,,rf1,m0,,mf1)(A0,,Af1):=\displaystyle(\lambda,\mu,r_{1},r_{2},...,r_{f-1},m_{0},...,m_{f-1})\bm{\cdot}(A_{0},...,A_{f-1}):=
((λ100μ1)m0A0(rf1100rf1)(λ00μ),\displaystyle\Bigg{(}\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}m_{0}A_{0}\begin{pmatrix}r_{f-1}^{-1}&0\\ 0&r_{f-1}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix},
(λ100μ1)(r100r11)m1A1(λ00μ),\displaystyle\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\begin{pmatrix}r_{1}&0\\ 0&r_{1}^{-1}\end{pmatrix}m_{1}A_{1}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix},
(λ100μ1)(r200r21)m2A2(r1100r1)(λ00μ),\displaystyle\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\begin{pmatrix}r_{2}&0\\ 0&r_{2}^{-1}\end{pmatrix}m_{2}A_{2}\begin{pmatrix}r_{1}^{-1}&0\\ 0&r_{1}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix},
\displaystyle\hskip 85.35826pt\dots
(λ100μ1)(rf100rf11)mf1Af1(rf2100rf2)(λ00μ)).\displaystyle\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\begin{pmatrix}r_{f-1}&0\\ 0&r_{f-1}^{-1}\end{pmatrix}m_{f-1}A_{f-1}\begin{pmatrix}r_{f-2}^{-1}&0\\ 0&r_{f-2}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}\Bigg{)}.
Definition 3.1.1.

Define a functor 𝒯:X𝒞τ\mathcal{T}:X\to\mathcal{C}^{\tau} by sending

((a0b0c0d0),,(af1bf1cf1df1))X(R)\left(\begin{pmatrix}a_{0}&b_{0}\\ c_{0}&d_{0}\end{pmatrix},\dots,\begin{pmatrix}a_{f-1}&b_{f-1}\\ c_{f-1}&d_{f-1}\end{pmatrix}\right)\in X(R)

to the Breuil-Kisin module 𝔐𝒞τ(R)\mathfrak{M}\in\mathcal{C}^{\tau}(R) constructed as follows:

  1. (1)

    𝔐i=R[[u]]eiR[[u]]fi\mathfrak{M}_{i}=R[\![u]\!]e_{i}\oplus R[\![u]\!]f_{i}.

  2. (2)

    With respect to the basis {ei,fi}\{e_{i},f_{i}\}, the action of gGal(K/K)g\in Gal(K^{\prime}/K) is given by the diagonal matrix (η(g)00η(g))\begin{pmatrix}\eta(g)&0\\ 0&\eta^{\prime}(g)\end{pmatrix}.

  3. (3)

    With respect to the basis {ueγiei1,1fi1}\{u^{e-\gamma_{i}}\otimes e_{i-1},1\otimes f_{i-1}\} (resp. {ueγiei,fi}\{u^{e-\gamma_{i}}e_{i},f_{i}\}) of the η\eta^{\prime}-eigenspace of φ𝔐i1\varphi^{*}\mathfrak{M}_{i-1} (resp. 𝔐i\mathfrak{M}_{i}), the matrix of the restriction of the ii-th Frobenius map φ𝔐i1𝔐i\varphi^{*}\mathfrak{M}_{i-1}\to\mathfrak{M}_{i} to the η\eta^{\prime}-eigenspace is (vaibivcidi)\begin{pmatrix}va_{i}&b_{i}\\ vc_{i}&d_{i}\end{pmatrix}.

Consider the pullback of 𝒯\mathcal{T} by the closed embedding 𝒞τ,BT𝒞τ\mathcal{C}^{\tau,\mathrm{BT}}\hookrightarrow\mathcal{C}^{\tau}. The pullback is a closed subscheme of XX that contains all the closed points of XX by Lemma 2.3.2. Since XX is reduced, the pullback must be all of XX and 𝒯\mathcal{T} must map XX into 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}}. Choose an irreducible component 𝒳(τ)𝒞τ,BT\mathcal{X}(\tau)\subset\mathcal{C}^{\tau,\mathrm{BT}} containing the image of 𝒯\mathcal{T}. Such an irreducible component must exist because XX is irreducible, although a priori, it is not unique (we will see later in Proposition 3.1.4 that in fact it is unique). Henceforth, we will see 𝒯\mathcal{T} as a functor from XX to 𝒳(τ)\mathcal{X}(\tau).

Definition 3.1.2.

Suppose τ\tau satisfies Assumption 3.0.1. We define a functor F:G×XX×𝒳(τ)XF:G\times X\to X\times_{\mathcal{X}(\tau)}X in the following way:

Let g=(λ,μ,r1,,rf1,m0,,mf1)G(R)g=(\lambda,\mu,r_{1},...,r_{f-1},m_{0},...,m_{f-1})\in G(R) and xX(R)x\in X(R). Then F((g,x))F((g,x)) is the triple (x,gx,{Ji}i)(x,\>g\bm{\cdot}x,\>\{J_{i}\}_{i}) where (x,gx)X(R)×X(R)(x,\>g\bm{\cdot}x)\in X(R)\times X(R) and {Ji}i\{J_{i}\}_{i} are base change matrices for η\eta^{\prime}-eigenspaces (in the sense of Definition 2.4.11) that encode transformation of the Frobenius matrices of 𝒯(x)\mathcal{T}(x) to those of 𝒯(gx)\mathcal{T}(g\bm{\cdot}x). They are given by:

(3.1.2) Ji:={i((mj)j)(λ00μ) for i=0,i((mj)j)(r1i00ri)(λ00μ) for i{1,,f1}.\displaystyle J_{i}:=\begin{cases}\mathcal{F}_{i}((m_{j})_{j})\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}&\text{ for }i=0,\\ \mathcal{F}_{i}((m_{j})_{j})\begin{pmatrix}r^{-1}_{i}&0\\ 0&r_{i}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}&\text{ for }i\in\{1,\dots,f-1\}.\\ \end{cases}

Here, i((mj)j)\mathcal{F}_{i}((m_{j})_{j}) are described in Definition 2.4.13.

There exists a prestack [X/G]pre[X/G]^{\text{pre}} over Spec𝔽\mathop{\rm Spec}\nolimits\mathbb{F} whose fiber category over SpecR\mathop{\rm Spec}\nolimits R is the groupoid with objects given by elements of the set X(R)X(R) and morphisms given in the following way: for each xX(R)x\in X(R) and gG(R)g\in G(R), there exists a morphism x𝑔gxx\xmapsto{g}g\bm{\cdot}x. The functor FF induces a functor [X/G]pre𝒳(τ)[X/G]^{\text{pre}}\to\mathcal{X}(\tau) given by mapping xX(R)x\in X(R) to 𝒯(x)\mathcal{T}(x) and x𝑔gxx\xmapsto{g}g\bm{\cdot}x to the isomorphism 𝒯(x)𝒯(gx)\mathcal{T}(x)\to\mathcal{T}(g\bm{\cdot}x) encoded in the data of F(g,x)F(g,x). Thus, by stackifying in the fppf topology, one obtains a functor [X/G]𝒳(τ)[X/G]\to\mathcal{X}(\tau).

Definition 3.1.3.

Suppose τ\tau satisfies Assumption 3.0.1. We let 𝒯~:[X/G]𝒳(τ)\widetilde{\mathcal{T}}:[X/G]\to\mathcal{X}(\tau) be the functor induced by FF, as explained above.

Proposition 3.1.4.

The functor 𝒯~\widetilde{\mathcal{T}} is an isomorphism.

The proof of Proposition 3.1.4 will be given in several steps outlined below.

Lemma 3.1.5.

The functor FF in Definition 3.1.2 is surjective on points valued in Artinian local 𝔽\mathbb{F}-algebras and a monomorphism.

Proof.

Let RR be an Artinian local 𝔽\mathbb{F}-algebra. Let (x,y,{Ji}i)(X×𝒞τX)(R)(x,y,\{J_{i}\}_{i})\in(X\times_{\mathcal{C}^{\tau}}X)(R) where (x,y)X(R)×X(R)(x,y)\in X(R)\times X(R) and {Ji}i\{J_{i}\}_{i} are the base change matrices for η\eta^{\prime}-eigenspaces to transform 𝒯(x)\mathcal{T}(x) to 𝒯(y)\mathcal{T}(y).

Let (Ai)i=0f1(A_{i})_{i=0}^{f-1} be the Frobenius matrices for the η\eta^{\prime}-eigenspace for 𝒯(x)\mathcal{T}(x). Because τ\tau does not face the first obstruction, 𝒯(x)\mathcal{T}(x) is not of bad genre and with respect to a suitable choice of inertial bases, the Frobenius matrices of 𝒯(x)\mathcal{T}(x) will be in CDM form (see Proposition 2.3.7 and Definition 2.4.11). Because τ\tau also does not face the second obstruction, using Proposition 2.4.8 we can uniquely determine (r1,,rf1)𝔾mf1(R)(r_{1},\dots,r_{f-1})\in\mathbb{G}_{m}^{f-1}(R) and (m0,,mf1)Uf(R)(m_{0},\dots,m_{f-1})\in U^{f}(R) so that the tuple (Ai)i=0f1(A^{\prime}_{i})_{i=0}^{f-1} defined below is in CDM form:

Ai:={miAi(ri1100ri1) if i=0,(ri00ri1)miAi if i=1,(ri00ri1)miAi(ri1100ri1) if i{2,,f1}.\displaystyle A^{\prime}_{i}:=\begin{cases}\vspace{0.3cm}m_{i}A_{i}\begin{pmatrix}r_{i-1}^{-1}&0\\ 0&r_{i-1}\end{pmatrix}&\text{ if }i=0,\\ \vspace{0.3cm}\begin{pmatrix}r_{i}&0\\ 0&r_{i}^{-1}\end{pmatrix}m_{i}A_{i}&\text{ if }i=1,\\ \begin{pmatrix}r_{i}&0\\ 0&r_{i}^{-1}\end{pmatrix}m_{i}A_{i}\begin{pmatrix}r_{i-1}^{-1}&0\\ 0&r_{i-1}\end{pmatrix}&\text{ if }i\in\{2,\dots,f-1\}.\end{cases}

Similarly, let (Bi)i=0f1(B_{i})_{i=0}^{f-1} be the Frobenius matrices for the η\eta^{\prime}-eigenspace corresponding to the data of 𝒯(y)\mathcal{T}(y). We can uniquely determine (s1,,sf1)𝔾mf1(R)(s_{1},\dots,s_{f-1})\in\mathbb{G}_{m}^{f-1}(R) and (n0,,nf1)Uf1(R)(n_{0},\dots,n_{f-1})\in U^{f-1}(R) so that the tuple (Bi)i=0f1(B^{\prime}_{i})_{i=0}^{f-1} defined below is in CDM form:

Bi={niBi(si1100si1) if i=0,(si00si1)niBi if i=1,(si00si1)niBi(si1100si1) if i{2,,f1}.\displaystyle B^{\prime}_{i}=\begin{cases}\vspace{0.3cm}n_{i}B_{i}\begin{pmatrix}s_{i-1}^{-1}&0\\ 0&s_{i-1}\end{pmatrix}&\text{ if }i=0,\\ \vspace{0.3cm}\begin{pmatrix}s_{i}&0\\ 0&s_{i}^{-1}\end{pmatrix}n_{i}B_{i}&\text{ if }i=1,\\ \begin{pmatrix}s_{i}&0\\ 0&s_{i}^{-1}\end{pmatrix}n_{i}B_{i}\begin{pmatrix}s_{i-1}^{-1}&0\\ 0&s_{i-1}\end{pmatrix}&\text{ if }i\in\{2,\dots,f-1\}.\\ \end{cases}

Since (Ai)i(A^{\prime}_{i})_{i} and (Bi)i(B^{\prime}_{i})_{i} are base changes of (Ai)i(A_{i})_{i} and (Bi)i(B_{i})_{i} respectively, there exist base change matrices (Pi)i(P_{i})_{i} that allow us to transform (Ai)i(A^{\prime}_{i})_{i} to (Bi)i(B^{\prime}_{i})_{i}. By Proposition 2.4.1, there exist λ,μ𝔾m(R)\lambda,\mu\in\mathbb{G}_{m}(R) so that P0=(λ00μ)P_{0}=\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix} and for i{1,,f1}i\in\{1,\dots,f-1\}, Pi=(λ00μ)(ki00ki1)P_{i}=\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}\begin{pmatrix}k_{i}&0\\ 0&k_{i}^{-1}\end{pmatrix}, where ki=μλ1k_{i}=\mu\lambda^{-1} if |{j[1,i]𝒢(Aj)=II}| is odd|\{j\in[1,i]\mid\mathcal{G}(A^{\prime}_{j})=\text{II}\}|\text{ is odd}, and 11 otherwise.

We now use (ri)i(r_{i})_{i}, (si)i(s_{i})_{i}, (mi)i(m_{i})_{i}, (ni)i(n_{i})_{i} and (Pi)i(P_{i})_{i} to write (Bi)i(B_{i})_{i} in terms of (Ai)i(A_{i})_{i}.

Bi={ni1(λ100μ1)miAi(ri1100ri1)(λ00μ)(ki100ki11)(si100si11) for i=0,ni1(si100si)(ki100ki)(λ100μ1)(ri00ri1)miAi(λ00μ) for i=1,ni1(si100si)(ki100ki)(λ100μ1)(ri00ri1)miAi(ri1100ri1)(λ00μ)(ki100ki11)(si100si11) for i{2,,f1}.\displaystyle B_{i}=\begin{cases}\begin{aligned} &n_{i}^{-1}\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}m_{i}A_{i}\begin{pmatrix}r_{i-1}^{-1}&0\\ 0&r_{i-1}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}\\ &\hskip 125.19194pt\begin{pmatrix}k_{i-1}&0\\ 0&k_{i-1}^{-1}\end{pmatrix}\begin{pmatrix}s_{i-1}&0\\ 0&s_{i-1}^{-1}\end{pmatrix}\end{aligned}&\text{ for }i=0,\\ \vspace{0.1cm}\\ \begin{aligned} &n_{i}^{-1}\begin{pmatrix}s_{i}^{-1}&0\\ 0&s_{i}\end{pmatrix}\begin{pmatrix}k_{i}^{-1}&0\\ 0&k_{i}\end{pmatrix}\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\\ &\hskip 113.81102pt\begin{pmatrix}r_{i}&0\\ 0&r_{i}^{-1}\end{pmatrix}m_{i}A_{i}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}\end{aligned}&\text{ for }i=1,\\ \vspace{0.1cm}\\ \begin{aligned} &n_{i}^{-1}\begin{pmatrix}s_{i}^{-1}&0\\ 0&s_{i}\end{pmatrix}\begin{pmatrix}k_{i}^{-1}&0\\ 0&k_{i}\end{pmatrix}\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\begin{pmatrix}r_{i}&0\\ 0&r_{i}^{-1}\end{pmatrix}\\ &\hskip 28.45274ptm_{i}A_{i}\begin{pmatrix}r_{i-1}^{-1}&0\\ 0&r_{i-1}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}\begin{pmatrix}k_{i-1}&0\\ 0&k_{i-1}^{-1}\end{pmatrix}\begin{pmatrix}s_{i-1}&0\\ 0&s_{i-1}^{-1}\end{pmatrix}\end{aligned}&\text{ for }i\in\{2,\dots,f-1\}.\\ \end{cases}

Simplifying,

Bi={(λ100μ1)m~iAi(si1ki1ri1100si11ki11ri1)(λ00μ) for i=0,(λ100μ1)(si1ki1ri00sikiri1)m~iAi(λ00μ) for i=1,(λ100μ1)(si1ki1ri00sikiri1)m~iAi(si1ki1ri1100si11ki11ri1)(λ00μ) for i{2,,f1}.\displaystyle B_{i}=\begin{cases}\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\tilde{m}_{i}A_{i}\begin{pmatrix}s_{i-1}k_{i-1}r_{i-1}^{-1}&0\\ 0&s_{i-1}^{-1}k_{i-1}^{-1}r_{i-1}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}&\text{ for }i=0,\\ \vspace{0.1cm}\\ \begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\begin{pmatrix}s_{i}^{-1}k_{i}^{-1}r_{i}&0\\ 0&s_{i}k_{i}r_{i}^{-1}\end{pmatrix}\tilde{m}_{i}A_{i}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}&\text{ for }i=1,\\ \vspace{0.1cm}\\ \begin{aligned} &\begin{pmatrix}\lambda^{-1}&0\\ 0&\mu^{-1}\end{pmatrix}\begin{pmatrix}s_{i}^{-1}k_{i}^{-1}r_{i}&0\\ 0&s_{i}k_{i}r_{i}^{-1}\end{pmatrix}\tilde{m}_{i}A_{i}\\ &\hskip 85.35826pt\begin{pmatrix}s_{i-1}k_{i-1}r_{i-1}^{-1}&0\\ 0&s_{i-1}^{-1}k_{i-1}^{-1}r_{i-1}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}\end{aligned}&\text{ for }i\in\{2,\dots,f-1\}.\\ \end{cases}

where m~i\tilde{m}_{i} are suitably chosen unipotent matrices.

This implies the existence of a gGg\in G such that y=gxy=g\bm{\cdot}x. By (3.1.2), F((g,x))F((g,x)) contains the data of some base change matrices to go from {Ai}\{A_{i}\} to {Bi}\{B_{i}\} . These can only differ by a fixed scalar multiple from the original base change matrices {Ji}i\{J_{i}\}_{i} (by Corollary 2.4.5). Scaling λ\lambda and μ\mu by this fixed multiple gives us a gg^{\prime} such that F((g,x))=(x,y,{Ji}i)F((g^{\prime},x))=(x,y,\{J_{i}\}_{i}). This shows surjectivity on Artinian local points.

Now suppose that RR is any 𝔽\mathbb{F}-algebra. Let (g,x),(g,x)(G×X)(R)(g,x),(g^{\prime},x^{\prime})\in(G\times X)(R) such that F((g,x))=F((g,x))=(x,y,{Ji}i)F((g,x))=F((g^{\prime},x^{\prime}))=(x,y,\{J_{i}\}_{i}). Then x=xx=x^{\prime} and y=gx=gxy=g\bm{\cdot}x=g^{\prime}\bm{\cdot}x. Let (Ai)i=0f1(A_{i})_{i=0}^{f-1} be the Frobenius matrices for η\eta^{\prime}-eigenspaces in the data of 𝒯(x)\mathcal{T}(x) (described in Definition 3.1.1) and (Bi)i=0f1(B_{i})_{i=0}^{f-1} be the corresponding matrices for 𝒯(y)\mathcal{T}(y). Let

g=(λ,μ,r1,r2,,rf1,m0,,mf1),\displaystyle g=(\lambda,\mu,r_{1},r_{2},...,r_{f-1},m_{0},...,m_{f-1}),
g=(λ,μ,r1,r2,,rf1,m0,,mf1).\displaystyle g^{\prime}=(\lambda^{\prime},\mu^{\prime},r^{\prime}_{1},r^{\prime}_{2},...,r^{\prime}_{f-1},m^{\prime}_{0},...,m^{\prime}_{f-1}).

By (3.1.2),

J0=0((mj)j)(λ00μ)=0((mj)j)(λ00μ).\displaystyle J_{0}=\mathcal{F}_{0}((m_{j})_{j})\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}=\mathcal{F}_{0}((m^{\prime}_{j})_{j})\begin{pmatrix}\lambda^{\prime}&0\\ 0&\mu^{\prime}\end{pmatrix}.

All inertial base change matrices for η\eta^{\prime}-eigenspaces, including i((mj)j)\mathcal{F}_{i}((m_{j})_{j}), are upper unipotent mod vv. Reducing mod vv, we get λ=λ\lambda=\lambda^{\prime} and μ=μ\mu=\mu^{\prime}.

For i{1,,f1}i\in\{1,\dots,f-1\},

Ji=i((mj)j)(r1i00ri)(λ00μ)=i((mj)j)(r1i00ri)(λ00μ).\displaystyle J_{i}=\mathcal{F}_{i}((m_{j})_{j})\begin{pmatrix}r^{-1}_{i}&0\\ 0&r_{i}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}=\mathcal{F}_{i}((m^{\prime}_{j})_{j})\begin{pmatrix}r^{\prime-1}_{i}&0\\ 0&r^{\prime}_{i}\end{pmatrix}\begin{pmatrix}\lambda&0\\ 0&\mu\end{pmatrix}.

Again reducing mod vv, we get (r1,,rf1)=(r1,,rf1)(r_{1},...,r_{f-1})=(r^{\prime}_{1},...,r^{\prime}_{f-1}). Finally we use (3.1.1) to write BiB_{i} in terms of AiA_{i} and gg, and compare it to BiB_{i} written in terms of AiA_{i} and gg^{\prime}. It is immediate that for each ii, mi=mim_{i}=m^{\prime}_{i}. ∎

Lemma 3.1.6.

The functor FF is an isomorphism.

Proof.

We note that the diagonal of FF is an isomorphism because FF is a monomorphism (by Lemma 3.1.5). This implies via [Sta18, Tag 0AHJ] that FF is representable by algebraic spaces.

To show FF is an isomorphism, we will show that FF is étale since it is already known to be a surjective monomorphism and étale monomorphisms are open immersions. The property of being étale is étale-smooth local on the source-and-target by [Sta18, Tag 0CG3]. Therefore, it suffices by [Sta18, Tag 0CIF] to show the top arrow in the following diagram is étale, where TT is a smooth cover of X×𝒳(τ)XX\times_{\mathcal{X}(\tau)}X and f:WT×(X×𝒳(τ)X)(G×𝔽X)f:W\to T\times_{(X\times_{\mathcal{X}(\tau)}X)}(G\times_{\mathbb{F}}X) is an étale cover.

W{W}T×(X×𝒳(τ)X)(G×𝔽X){T\times_{(X\times_{\mathcal{X}(\tau)}X)}(G\times_{\mathbb{F}}X)}T{T}G×𝔽X{G\times_{\mathbb{F}}X}X×𝒳(τ)X{X\times_{\mathcal{X}(\tau)}X}f\scriptstyle{f}F\scriptstyle{F}

The functor FF is unramified because it is locally of finite presentation with its diagonal an isomorphism. The only thing remaining to check then is that the map W𝑓T×(X×𝒳(τ)X)(G×𝔽X)pr1TW\xrightarrow{f}T\times_{(X\times_{\mathcal{X}(\tau)}X)}(G\times_{\mathbb{F}}X)\xrightarrow{pr_{1}}T is formally smooth, and since ff is already formally smooth, we reduce via [Sta18, Tag 02HX] to checking the lifting property for pr1pr_{1} along Artinian local rings. This is the content of the following lemma (since pr1pr_{1} is the scheme version of FF): ∎

Lemma 3.1.7.

Suppose RR and SS are Artinian local 𝔽\mathbb{F}-algebras with j:SpecSSpecRj:Spec\;S\to Spec\;R a closed scheme and j#:RSj^{\#}:R\to S a surjection of local rings with the kernel squaring to zero. Then the dashed arrow exists in the following diagram

SpecSSpecRG×𝔽XX×𝒳(τ)XjF.\leavevmode\hbox to110.95pt{\vbox to51.85pt{\pgfpicture\makeatletter\hbox{\hskip 55.47601pt\lower-25.97481pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.47601pt}{-25.87497pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 19.41025pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.1047pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${Spec\;S}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 19.41025pt\hfil&\hfil\hskip 43.89113pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.58562pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${Spec\;R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.89116pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 19.59926pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.29372pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G\times_{\mathbb{F}}X}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.59926pt\hfil&\hfil\hskip 47.87674pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.57123pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X\times_{\mathcal{X}(\tau)}X}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.87677pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.26651pt}{10.72224pt}\pgfsys@lineto{11.10812pt}{10.72224pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.3081pt}{10.72224pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.02087pt}{14.4361pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{j}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-35.87675pt}{2.4181pt}\pgfsys@lineto{-35.87675pt}{-14.78198pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-35.87675pt}{-14.98196pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.59924pt}{2.4181pt}\pgfsys@lineto{31.59924pt}{-14.78198pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{31.59924pt}{-14.98196pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@setdash{2.79985pt,1.59991pt}{0.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{15.17192pt}{2.4181pt}\pgfsys@lineto{-19.30676pt}{-15.00159pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.89255}{-0.45094}{0.45094}{-0.89255}{-19.48526pt}{-15.09177pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.0775pt}{-23.37497pt}\pgfsys@lineto{7.12251pt}{-23.37497pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.3225pt}{-23.37497pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.01431pt}{-21.0222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{F}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.
Proof.

The existence and uniqueness of the dashed arrow follows immediately from Lemma 3.1.5, since FF induces a bijection for points valued in Artinian local rings. ∎

Let l/𝔽l/\mathbb{F} be a field with xx an ll-point of XX, such that 𝔐=𝒯(x)\mathfrak{M}=\mathcal{T}(x) is a Breuil-Kisin module over ll. Then there exists a map G×𝔽ll×𝒳(τ)X𝔐×𝒳(τ)XG\times_{\mathbb{F}}l\rightarrow l\times_{\mathcal{X}(\tau)}X\xrightarrow{\sim}\mathfrak{M}\times_{\mathcal{X}(\tau)}X. By Lemma 3.1.5, this map is surjective on field-valued points and the fiber of G×𝔽ll×𝒳(τ)XG\times_{\mathbb{F}}l\rightarrow l\times_{\mathcal{X}(\tau)}X over any field-valued point contains exactly one point, and is therefore of dimension 0. By [Sta18, Tag 0DS6], the dimension of l×𝒳(τ)X𝔐×𝒳(τ)Xl\times_{\mathcal{X}(\tau)}X\xrightarrow{\sim}\mathfrak{M}\times_{\mathcal{X}(\tau)}X is dim(G×𝔽l)=dimG\textrm{dim}(G\times_{\mathbb{F}}l)=\textrm{dim}\>G. Since the fiber over 𝔐\mathfrak{M} in XX is of the same dimension as GG, the fiber over 𝔐\mathfrak{M} in [X/G][X/G] has dimension 0.

Applying [Sta18, Tag 0DS6] again to the map 𝒯~\widetilde{\mathcal{T}} and using the above calculations of fiber dimension over 𝔐𝒳(τ)(l)\mathfrak{M}\in\mathcal{X}(\tau)(l), we obtain that the dimension of the scheme-theoretic image of 𝒯~\widetilde{\mathcal{T}} is the same as the dimension of [X/G][X/G] which is ff.

Lemma 3.1.8.

Suppose τ\tau satisfies Assumption 3.0.1.

  1. (1)

    Let RR be an arbitrary 𝔽\mathbb{F}-algebra and 𝔐𝒳(τ)(R)\mathfrak{M}\in\mathcal{X}(\tau)(R). Fix an inertial basis for each 𝔐i\mathfrak{M}_{i} . Let FiF_{i} denote the matrix for the Frobenius map φ(𝔐i1)𝔐i\varphi^{*}(\mathfrak{M}_{i-1})\to\mathfrak{M}_{i} with respect to the chosen bases. Then, for each ii, the top left entry of FiF_{i} is 0 mod vv.

  2. (2)

    The map 𝒯\mathcal{T} is a surjection onto 𝒳(τ)\mathcal{X}(\tau).

Proof.

Consider the substack \mathcal{L} of 𝒳(τ)\mathcal{X}(\tau) defined in the following way: If RR is any 𝔽\mathbb{F}-algebra, then (R)𝒳(τ)(R)\mathcal{L}(R)\subset\mathcal{X}(\tau)(R) is the subgroupoid of those Breuil-Kisin modules for which the upper left entry of the Frobenius matrices is 0 mod vv when the Frobenius matrices are written with respect to some inertial basis (hence, with respect to any inertial bases). A direct computation shows that this property is invariant under inertial base change. We claim, first of all, that \mathcal{L} is a closed substack of 𝒳(τ)\mathcal{X}(\tau).

We can check it is representable by algebraic spaces and a closed immersion after pulling back to an affine scheme and working fpqc-locally (by [Sta18, Tag 0420]). Let RR be an 𝔽\mathbb{F}-algebra and 𝔐\mathfrak{M} an RR point of 𝒳(τ)\mathcal{X}(\tau). For i/fi\in\mathbb{Z}/f\mathbb{Z}, choose an inertial basis {ei,fi}\{e_{i},f_{i}\} of 𝔐i\mathfrak{M}_{i}, and write Frobenius matrices FiF_{i} of 𝔐\mathfrak{M} with respect to these bases. Suppose that for each ii, the upper left entry of FiF_{i} equals aia_{i} mod vv, where aiRa_{i}\in R. For every RR-algebra SS, the Frobenius matrices of 𝔐S\mathfrak{M}_{S} with respect to these bases are given by {FiS}i\{F_{i}\otimes S\}_{i}. Then 𝔐S\mathfrak{M}_{S} is a point of \mathcal{L} if and only if ai=0a_{i}=0 in SS for each ii. Therefore the pullback of 𝒳(τ)\mathcal{L}\to\mathcal{X}(\tau) by the map 𝔐\mathfrak{M}: Spec R𝒳(τ)\text{Spec }R\to\mathcal{X}(\tau) is given by the closed immersion V(a0,,af1)Spec RV(a_{0},...,a_{f-1})\hookrightarrow\text{Spec }R.

Secondly, we note that 𝒯\mathcal{T} factors as 𝒯:X𝒳(τ)\mathcal{T}:X\twoheadrightarrow\mathcal{L}\hookrightarrow\mathcal{X}(\tau). The first map in this factorization is a surjection because for every field-valued point of \mathcal{L}, Proposition 2.3.7 demonstrates the existence of an inertial basis with respect to which the Frobenius matrices are in CDM form, and thus the point is in the image of the functor 𝒯\mathcal{T}. The dimension of the scheme-theoretic image of 𝒯\mathcal{T} is ff by the discussion before the statement of this Lemma, and the same is true for the dimension of 𝒳(τ)\mathcal{X}(\tau) by [CEGS22b, Prop. 5.2.20] (in particular, this relies on the fact that KK is an unramified extension of p\mathbb{Q}_{p}, or else, the dimension of 𝒳(τ)\mathcal{X}(\tau) would be strictly greater than ff). Since 𝒳(τ)\mathcal{X}(\tau) is reduced by construction in [CEGS22a, Cor. 5.3.1], dimension considerations imply that it is the scheme-theoretic image of 𝒯\mathcal{T}. However, the scheme-theoretic image of 𝒯\mathcal{T} must be contained in \mathcal{L}, the latter being a closed substack. Therefore, =𝒳(τ)\mathcal{L}=\mathcal{X}(\tau).

Both assertions of the Lemma follow immediately. ∎

Lemma 3.1.9.

Suppose τ\tau satisfies Assumption 3.0.1. The map 𝒯~:[X/G]𝒳(τ)\widetilde{\mathcal{T}}:\left[X/G\right]\to\mathcal{X}(\tau) is an étale monomorphism, representable by algebraic spaces.

Proof.

To see that 𝒯~\mathcal{\tilde{T}} is a monomorphism and representable by algebraic spaces, we show that the diagonal is an isomorphism. This is implied by the fact that the top arrow in the following cartesian diagram is an isomorphism (by Lemma 3.1.6) and [Sta18, Tag 04XD].

G×𝔽X{G\times_{\mathbb{F}}X}X×𝒳(τ)X{X\times_{\mathcal{X}(\tau)}X}[X/G]{\left[X/G\right]}[X/G]×𝒳(τ)[X/G]{\left[X/G\right]\times_{\mathcal{X}(\tau)}\left[X/G\right]}pr2,action\scriptstyle{\text{pr}_{2},\text{action}}Δ\scriptstyle{\Delta}

Since the diagonal is an isomorphism, we also have that 𝒯~\mathcal{\tilde{T}} is unramified. Therefore, to show étaleness, it suffices to show that 𝒯~\mathcal{\tilde{T}} is formally smooth [Sta18, Tag 0DP0]. As quotient map X[X/G]X\to\left[X/G\right] is smooth, we reduce to showing formal smoothness of 𝒯\mathcal{T} by checking the lifting property along Artinian local rings as in Lemma 3.1.6. It suffices then to show the following:

Suppose RR and SS are Artinian local 𝔽\mathbb{F}-algebras with j:SpecSSpecRj:Spec\,S\to Spec\,R a closed scheme and j#:RSj^{\#}:R\to S a surjection of local rings with the kernel II squaring to zero. Then the dashed arrow in the following diagram exists so that all triangles commute:

SpecSSpecRX𝒳(τ)jab𝒯.\leavevmode\hbox to102.6pt{\vbox to51.52pt{\pgfpicture\makeatletter\hbox{\hskip 51.30139pt\lower-25.80815pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-51.30139pt}{-25.70831pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 19.41025pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.1047pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${Spec\;S}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 19.41025pt\hfil&\hfil\hskip 43.89113pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.58562pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${Spec\;R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.89116pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 8.84026pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.53471pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.84026pt\hfil&\hfil\hskip 38.13019pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.82468pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{X}(\tau)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.13022pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.2809pt}{11.55559pt}\pgfsys@lineto{10.91911pt}{11.55559pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.1191pt}{11.55559pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.12257pt}{15.26944pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{j}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-31.89114pt}{3.25145pt}\pgfsys@lineto{-31.89114pt}{-14.61533pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-31.89114pt}{-14.8153pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.94402pt}{-7.38885pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{a}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.41023pt}{3.25145pt}\pgfsys@lineto{31.41023pt}{-13.94864pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{31.41023pt}{-14.14862pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{33.763pt}{-7.97911pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{b}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@setdash{2.79985pt,1.59991pt}{0.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{16.29108pt}{3.25145pt}\pgfsys@lineto{-22.50032pt}{-18.05258pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.87651}{-0.48138}{0.48138}{-0.87651}{-22.67561pt}{-18.14885pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-22.85089pt}{-23.20831pt}\pgfsys@lineto{16.68005pt}{-23.20831pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.88004pt}{-23.20831pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.41321pt}{-20.85555pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mathcal{T}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

In order to construct such an arrow, we first claim that there exists some cX(R)c\in X(R) such that 𝒯(c)=b\mathcal{T}(c)=b. To see this, note that the determinant of each of the Frobenius matrices of bb is divisible by vv (by Lemma 3.1.8(1)). Further, modulo the maximal ideal of RR, the uu-adic valuation of the determinant of each Frobenius map is ee (by Lemma 2.3.2). Therefore, the same holds true over RR, and consequently bb is of Hodge type v0\textbf{v}_{0} (see Definition 2.3.1). Moreover, again by Lemma 3.1.8(1), each Frobenius matrix is in η\eta-form (see Definition 2.3.3). By Proposition 2.3.7, we can find a CDM form for bb giving us a suitable point cX(R)c\in X(R).

Since 𝒯(a)=bj=𝒯(cj)\mathcal{T}(a)=b\circ j=\mathcal{T}(c\circ j), there exists some gG(S)g\in G(S), such that g(cj)=ag\bm{\cdot}(c\circ j)=a (by Lemma 3.1.5). Lift gg to any g~G(R)\tilde{g}\in G(R). Then g~c\tilde{g}\bm{\cdot}c is the appropriate choice for the dashed arrow in the diagram above. ∎

Proof of Proposition 3.1.4.

Follows from Lemmas 3.1.8 and 3.1.9. ∎

Proposition 3.1.10.

Suppose τ\tau satisfies Assumption 3.0.1. The ring of global functions on 𝒳(τ)\mathcal{X}(\tau) is isomorphic to 𝔽[x,y][1y]\mathbb{F}[x,y][\dfrac{1}{y}].

Proof.

By Proposition 3.1.4 the global functions of 𝒳(τ)\mathcal{X}(\tau) are the GG-invariant global functions of XX, where G=(𝔾m)f+1𝔽×𝔽U𝔽fG=(\mathbb{G}_{m})^{f+1}_{\mathbb{F}}\times_{\mathbb{F}}U_{\mathbb{F}}^{f} and X=(GL2)𝔽×𝔽(SL2)𝔽f1X=(\mathop{\rm GL}\nolimits_{2})_{\mathbb{F}}\times_{\mathbb{F}}(\mathop{\rm SL}\nolimits_{2})_{\mathbb{F}}^{f-1} and the GG-action on XX is as in (3.1.1). These functions are the same as the (𝔾m)𝔽f+1(\mathbb{G}_{m})_{\mathbb{F}}^{f+1}-invariant global functions of (U\GL2)𝔽×𝔽(U\SL2)𝔽f1(U\backslash\mathop{\rm GL}\nolimits_{2})_{\mathbb{F}}\times_{\mathbb{F}}(U\backslash\mathop{\rm SL}\nolimits_{2})_{\mathbb{F}}^{f-1}. By the isomorphisms

U\GL2𝔸2{0}×𝔾m,\displaystyle U\backslash\mathop{\rm GL}\nolimits_{2}\xrightarrow{\sim}\mathbb{A}^{2}\smallsetminus\{0\}\times\mathbb{G}_{m},
(abcd)((c,d),adbc)\displaystyle\begin{pmatrix}a&b\\ c&d\end{pmatrix}\mapsto((c,d),\>ad-bc)

and

U\SL2𝔸2{0},\displaystyle U\backslash\mathop{\rm SL}\nolimits_{2}\xrightarrow{\sim}\mathbb{A}^{2}\smallsetminus\{0\},
(abcd)(c,d),\displaystyle\begin{pmatrix}a&b\\ c&d\end{pmatrix}\mapsto(c,d),

the ring of global functions of (U\GL2)𝔽×𝔽(U\SL2)𝔽f1(U\backslash\mathop{\rm GL}\nolimits_{2})_{\mathbb{F}}\times_{\mathbb{F}}(U\backslash\mathop{\rm SL}\nolimits_{2})_{\mathbb{F}}^{f-1} is isomorphic to

𝔽[c0,,cf1,d0,,df1,D][1D]\mathbb{F}[c_{0},...,c_{f-1},d_{0},...,d_{f-1},D][\dfrac{1}{D}]

where {ci,di}\{c_{i},d_{i}\} capture the lower two entries of the ii-th matrix group while DD captures the determinant of the GL2\mathop{\rm GL}\nolimits_{2} matrices. Under this identification, (λ,μ,r1,r2,,rf1)(𝔾m)f+1𝔽(\lambda,\mu,r_{1},r_{2},...,r_{f-1})\in(\mathbb{G}_{m})^{f+1}_{\mathbb{F}} acts on the global functions of (U\GL2)𝔽×𝔽(U\SL2)𝔽f1(U\backslash\mathop{\rm GL}\nolimits_{2})_{\mathbb{F}}\times_{\mathbb{F}}(U\backslash\mathop{\rm SL}\nolimits_{2})_{\mathbb{F}}^{f-1} via:

gci={λμ1ri11ciif i=0,λμ1ri1ciif i=1,λμ1ri1ri11ciif i{2,,f1},\displaystyle g\bm{\cdot}c_{i}=\begin{cases}\lambda\mu^{-1}r_{i-1}^{-1}c_{i}&\text{if }i=0,\\ \lambda\mu^{-1}r_{i}^{-1}c_{i}&\text{if }i=1,\\ \lambda\mu^{-1}r_{i}^{-1}r_{i-1}^{-1}c_{i}&\text{if }i\in\{2,\dots,f-1\},\\ \end{cases}
gdi={ri1diif i=0,ri1diif i=1,ri1ri1diif i{2,,f1},\displaystyle g\bm{\cdot}d_{i}=\begin{cases}r_{i-1}d_{i}&\text{if }i=0,\\ r_{i}^{-1}d_{i}&\text{if }i=1,\\ r_{i}^{-1}r_{i-1}d_{i}&\text{if }i\in\{2,\dots,f-1\},\\ \end{cases}
gD=D.\displaystyle g\bm{\cdot}D=D.

Therefore, the subring of (𝔾m)f1𝔽(\mathbb{G}_{m})^{f-1}_{\mathbb{F}}-invariant functions is 𝔽[d0df1,D][1D]𝔽[x,y][1y]\mathbb{F}[d_{0}\cdots d_{f-1},D][\dfrac{1}{D}]\cong\mathbb{F}[x,y][\dfrac{1}{y}]. ∎

3.2. Identifying the component

Our next order of business is to identify precisely which irreducible component of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} can be written as the quotient stack [X/G][X/G] using the strategy employed in Section 3.1. [CEGS22a, Cor. 5.3.1] shows that the irreducible components of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} are in one-to-one correspondence with subsets of /f\mathbb{Z}/f\mathbb{Z} called profiles. We now recall the definition of the profile of a Breuil-Kisin module and some of the specifics of the correspondence between irreducible components and profiles as it applies to our situation.

Definition 3.2.1.

Let 𝔅𝒞τ,BT(𝔽¯)\mathfrak{B}\in\mathcal{C}^{\tau,\mathrm{BT}}(\overline{\mathbb{F}}) be an extension of 𝔐\mathfrak{M} by 𝔑\mathfrak{N}, where 𝔐\mathfrak{M} and 𝔑\mathfrak{N} are two rank 11 Breuil-Kisin modules. For each ii, let mim_{i} be a generator of 𝔐i\mathfrak{M}_{i} as an 𝔽¯[[u]]\overline{\mathbb{F}}[\![u]\!] module.

The profile of 𝔅\mathfrak{B} is the set J:={i/fgGal(K/K),gmiη(g)mimodu}J:=\{i\in\mathbb{Z}/f\mathbb{Z}\mid\forall g\in Gal(K^{\prime}/K),gm_{i}\equiv\eta(g)m_{i}\mod u\}. If we suppose the image of mi1m_{i-1} under Frobenius is aiurimia_{i}u^{r_{i}}m_{i}, where ai𝔽¯[[u]]a_{i}\in\overline{\mathbb{F}}[\![u]\!]^{*}, then the refined profile of 𝔅\mathfrak{B} is the pair (J,r)(J,r) where JJ is the profile of 𝔅\mathfrak{B} and r=(ri)i/fr=(r_{i})_{i\in\mathbb{Z}/f\mathbb{Z}}.

Definition 3.2.2.

Let r=(ri)i/fr=(r_{i})_{i\in\mathbb{Z}/f\mathbb{Z}} be as follows:

(3.2.1) ri={e if i1,iJ or if i1,iJ,γi if i1J and iJ,eγi if i1J and iJ.\displaystyle r_{i}=\begin{cases}e&\text{ if }i-1,i\in J\text{ or if }i-1,i\not\in J,\\ \gamma_{i}&\text{ if }i-1\in J\text{ and }i\not\in J,\\ e-\gamma_{i}&\text{ if }i-1\not\in J\text{ and }i\in J.\end{cases}

Then the maximal refined profile associated to JJ is (J,r)(J,r).

By [CEGS22a, Lem. 4.2.14], the irreducible component 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) is the closure of a constructible set whose 𝔽¯\overline{\mathbb{F}} points are precisely the Breuil-Kisin modules of maximal refined profile associated to JJ.

Lemma 3.2.3.

Let τ=ηη\tau=\eta\oplus\eta^{\prime} be a tame principal series 𝔽\mathbb{F}-type with ηη\eta\neq\eta^{\prime}. Let J/fJ\subset\mathbb{Z}/f\mathbb{Z}. Then 𝒞τ,BT(J)(𝔽¯)\mathcal{C}^{\tau,\mathrm{BT}}(J)(\overline{\mathbb{F}}) contains a dense open subset of Breuil-Kisin modules 𝔅\mathfrak{B} satisfying 𝒢(𝔅i)=Iη\mathcal{G}(\mathfrak{B}_{i})=\text{I}_{\eta} for each ii if and only if J=/fJ=\mathbb{Z}/f\mathbb{Z}.

Proof.

Let 𝔅\mathfrak{B} be an 𝔽¯\overline{\mathbb{F}} point of maximal refined profile associated to JJ. Let 𝔅\mathfrak{B} be an extension of 𝔐\mathfrak{M} by 𝔑\mathfrak{N} where 𝔐\mathfrak{M} and 𝔑\mathfrak{N} are two rank 11 Breuil-Kisin modules. For each ii, choose a generator mim_{i} of 𝔐i\mathfrak{M}_{i} and nin_{i} of 𝔑i\mathfrak{N}_{i} as 𝔽¯[[u]]\overline{\mathbb{F}}[\![u]\!]-modules. Let the image under Frobenius of mi1m_{i-1} be aiurimia_{i}u^{r_{i}}m_{i} and that of ni1n_{i-1} be aiurinia^{\prime}_{i}u^{r^{\prime}_{i}}n_{i} for some ai,ai𝔽¯[[u]]a_{i},a^{\prime}_{i}\in\overline{\mathbb{F}}[\![u]\!]^{*}. The strong determinant condition forces that ri+si=er_{i}+s^{\prime}_{i}=e for each ii by Lemma 2.3.2. By making careful choices of mim_{i} and nin_{i} (using either [CEGS22a, Lem. 4.1.1] or the proof of Lemma 2.1.3), we can construct an inertial basis of 𝔅i\mathfrak{B}_{i} made up of mim_{i} and a lift n~i\tilde{n}_{i} of nin_{i}. Now we use the explicit description of rir_{i} in (3.2.1) to check the genre of the Frobenius maps for 𝔅\mathfrak{B} for different JJ’s. We have the following possibilities:

  1. (1)

    If J=/fJ=\mathbb{Z}/f\mathbb{Z}, then Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) acts on mim_{i} via η\eta (and therefore on nin_{i} via η\eta^{\prime}) for each i/fi\in\mathbb{Z}/f\mathbb{Z}. Since ri=er_{i}=e, the genre of 𝔅i\mathfrak{B}_{i} is Iη\text{I}_{\eta} for each ii.

  2. (2)

    If JJ is the empty set, Gal(K/K)\mathop{\rm Gal}\nolimits(K^{\prime}/K) acts on nin_{i} via η\eta for each i/fi\in\mathbb{Z}/f\mathbb{Z}. As ri=0r^{\prime}_{i}=0, the genre of 𝔅i\mathfrak{B}_{i} is Iη\text{I}_{\eta^{\prime}} for each ii.

  3. (3)

    If JJ is neither /f\mathbb{Z}/f\mathbb{Z} nor empty, then there exists an i/fi\in\mathbb{Z}/f\mathbb{Z} such that iJi\in J, but i+1Ji+1\not\in J. This implies that ri+1=γi+1r_{i+1}=\gamma_{i+1} and ri+1=eγi+1r^{\prime}_{i+1}=e-\gamma_{i+1}. Consider the Frobenius matrix for φ𝔅i𝔅i+1\varphi^{*}\mathfrak{B}_{i}\to\mathfrak{B}_{i+1} with respect to inertial bases (mi,n~i)(m_{i},\tilde{n}_{i}) of 𝔅i\mathfrak{B}_{i} and (n~i+1,mi+1)(\tilde{n}_{i+1},m_{i+1}) of 𝔅i+1\mathfrak{B}_{i+1}. The matrix has a zero in the lower right corner, and therefore is of genre Iη\text{I}_{\eta^{\prime}} or of genre II. Either way, 𝒢(𝔅i+1)Iη\mathcal{G}(\mathfrak{B}_{i+1})\neq\text{I}_{\eta}.

Corollary 3.2.4.

Recall 𝒯~\widetilde{\mathcal{T}} from Definition 3.1.3. The scheme-theoretic image of 𝒯~\widetilde{\mathcal{T}} is 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}).

Proof.

Since 𝒯~:[X/G]𝒳(τ)\widetilde{\mathcal{T}}:[X/G]\to\mathcal{X}(\tau) is an isomorphism (by Proposition 3.1.4), there exists a dense open set of 𝒳(τ)\mathcal{X}(\tau) having the following property: If 𝔅\mathfrak{B} is an 𝔽¯\overline{\mathbb{F}} point of this dense open, then the lower right entry of each of its Frobenius matrices (with respect to inertial bases) is invertible. In other words, each Frobenius map has genre Iη\text{I}_{\eta}. By Lemma 3.2.3, 𝒳(τ)\mathcal{X}(\tau) must be 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}). ∎

Corollary 3.2.5.

Let τ\tau be a tame principal series 𝔽\mathbb{F}-type satisfying Assumption 3.0.1. Then the ring of global functions on 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}) is isomorphic to 𝔽[x,y][1y]\mathbb{F}[x,y][\dfrac{1}{y}].

Proof.

It follows from Proposition 3.1.10 and Corollary 3.2.4. ∎

4. Passage to the Emerton-Gee stack

4.1. Image of irreducible components of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} in 𝒵\mathcal{Z}

Given a tame principal series 𝔽\mathbb{F}-type τ\tau, 𝒵τ\mathcal{Z}^{\tau} is the scheme-theoretic image of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} in 𝒵\mathcal{Z} (Definition 2.2.4). By [CEGS22b, Prop. 5.2.20], 𝒵τ\mathcal{Z}^{\tau} is of pure dimension [K:p][K:\mathbb{Q}_{p}]. [CEGS22a, Cor. 5.3.1] tells us that the irreducible components of 𝒵τ\mathcal{Z}^{\tau} are indexed by profiles J𝒫τJ\in\mathcal{P}_{\tau}, where 𝒫τ\mathcal{P}_{\tau} is defined in the following way.

Definition 4.1.1.

For a tame principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime}, let 𝒫τ\mathcal{P}_{\tau} be the collection of profiles J/fJ\subset\mathbb{Z}/f\mathbb{Z} such that

  • if i1Ji-1\in J and iJi\not\in J, then zip1z_{i}\neq p-1;

  • if i1Ji-1\not\in J and iJi\in J, then zi0z_{i}\neq 0.

(Recall ziz_{i} from (1.4.1)).

We denote by 𝒵τ(J)\mathcal{Z}^{\tau}(J) the irreducible component of 𝒵τ\mathcal{Z}^{\tau} indexed by JJ. [CEGS22a, Prop. 5.1.13] shows that 𝒵τ(J)\mathcal{Z}^{\tau}(J) is the scheme-theoretic image of 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J). The irreducible components of 𝒵\mathcal{Z} are indexed by Serre weights, and for each σ\sigma a Serre weight, 𝒵(σ)\mathcal{Z}(\sigma) can show up in 𝒵τ\mathcal{Z}^{\tau} for multiple choices of τ\tau. Thus we need to specify a dictionary to go from J𝒫τJ\in\mathcal{P}_{\tau} to a Serre weight σ\sigma.

For J𝒫τJ\in\mathcal{P}_{\tau}, let δJ\delta_{J} denote the characteristic function of the set JJ. Define the integers bib_{i} and aia_{i} by

(4.1.1) ai={zi+δJc(i)if i1J0if i1J,bi={p1ziδJc(i)if i1JziδJ(i)if i1J.\displaystyle a_{i}=\begin{cases}z_{i}+\delta_{J^{c}}(i)&\text{if }i-1\in J\\ 0&\text{if }i-1\not\in J\end{cases},\hskip 56.9055ptb_{i}=\begin{cases}p-1-z_{i}-\delta_{J^{c}}(i)&\text{if }i-1\in J\\ z_{i}-\delta_{J}(i)&\text{if }i-1\not\in J\end{cases}.

Viewing η\eta^{\prime} as a map k×𝔽k^{\times}\to\mathbb{F} via Artin reciprocity, let σJ\sigma_{J} be the Serre weight σa,bηdet\sigma_{\vec{a},\vec{b}}\otimes\eta^{\prime}\circ\det. Then by [CEGS22a, Thm. 5.1.17, Appendix A], 𝒵τ(J)\mathcal{Z}^{\tau}(J) is the irreducible component indexed by the Serre weight σJ\sigma_{J}.

From now until the end of Section 5, our focus will be on the case where J=/fJ=\mathbb{Z}/f\mathbb{Z}. However, in Appendix A, it will be necessary to refer back to the general definition of JJ above.

Proposition 4.1.2.

Set J=/fJ=\mathbb{Z}/f\mathbb{Z}. Let σ\sigma be a Serre weight that is not a twist of either the trivial or the Steinberg representation. That is, σ=σa,b\sigma=\sigma_{\vec{a},\vec{b}} where b{(0,,0),(p1,,p1)}\vec{b}\not\in\{(0,...,0),(p-1,...,p-1)\}.

Then we can find a unique principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime} such that ηη\eta\neq\eta^{\prime} and σ=σJ\sigma=\sigma_{J}.

Proof.

Let zi=p1biz_{i}=p-1-b_{i}. Define η\eta and η\eta^{\prime} via

η(g):=i=0f1(κih(g)aizi)\displaystyle\eta^{\prime}(g):=\prod_{i=0}^{f-1}(\kappa_{i}\circ h(g)^{a_{i}-z_{i}})\hskip 14.22636pt η(g):=η(g)i=0f1(κih(g)zi).\displaystyle\eta(g):=\eta^{\prime}(g)\>\prod_{i=0}^{f-1}(\kappa_{i}\circ h(g)^{z_{i}}).

Let τ:=ηη\tau:=\eta\oplus\eta^{\prime}. Clearly, σ=(i=0f1(detziSymbik2)k,κi𝔽)ηdet=σJ\sigma=\left(\otimes_{i=0}^{f-1}({\det}^{z_{i}}\mathop{\rm Sym}\nolimits^{b_{i}}k^{2})\otimes_{k,\kappa_{i}}\mathbb{F}\right)\otimes\eta^{\prime}\circ det=\sigma_{J} for inertial 𝔽\mathbb{F}-type τ\tau as desired. Any τ\tau so chosen is unique by (4.1.1); b\vec{b} tells us exactly what the {zi}i\{z_{i}\}_{i} should be. Note that η=η\eta=\eta^{\prime} if and only if all the ziz_{i}’s are 0 or if all the ziz_{i}’s are p1p-1. Both of these situations are ruled out by the hypotheses in the statement of the Proposition. ∎

Corollary 4.1.3.

Let SS be the set of non-Steinberg Serre weights σ\sigma such that 𝒵(σ)\mathcal{Z}(\sigma) is the image of 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}) for some τ=ηη\tau=\eta\oplus\eta^{\prime} satisfying Assumption 3.0.1. Then σa,bS\sigma_{\vec{a},\vec{b}}\in S if and only if each of the following conditions are satisfied:

  1. (1)

    b(0,0,,0)\vec{b}\neq(0,0,\dots,0),

  2. (2)

    b(p2,p2,,p2)\vec{b}\neq(p-2,p-2,\dots,p-2), and

  3. (3)

    Extend the indices of bib_{i}’s to all of \mathbb{Z} by setting bi+f=bib_{i+f}=b_{i}. Then (bi)i(b_{i})_{i\in\mathbb{Z}} does not contain a contiguous subsequence of the form (0,p2,,p2,p1)(0,p-2,\dots,p-2,p-1), where the number of p2p-2’s in between 0 and p1p-1 can be anything in 0\mathbb{Z}_{\geq 0}.

Proof.

Proposition 4.1.2 accounts for the first condition. By (4.1.1), requiring τ\tau to not face the first obstruction is equivalent to requiring (bi)i(b_{i})_{i\in\mathbb{Z}} to not be made up entirely of concatenations of just two building blocks: p2p-2 and (p1,0)(p-1,0). Similarly, requiring τ\tau to not face the second obstruction is equivalent to requiring (bi)i(b_{i})_{i\in\mathbb{Z}} to not contain a contiguous subsequence of the form (0,p2,,p2,p1)(0,p-2,\dots,p-2,p-1) of length 2\geq 2. If (bi)i(b_{i})_{i\in\mathbb{Z}} is entirely made up of and contains both p2p-2 and (p1,0)(p-1,0), then it automatically contains a contiguous subsequence of the form (0,p2,,p2,p1)(0,p-2,\dots,p-2,p-1). Therefore, removing the redundant condition, we get the list of the conditions in the statement of the Corollary. ∎

4.2. Presentations of components of 𝒵\mathcal{Z}

We will now show that if 𝒵(σ)\mathcal{Z}(\sigma) is as in the statement of Corollary 4.1.3, then it is isomorphic to 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}). A key ingredient in our proof will be the following proposition.

Proposition 4.2.1.

Let τ=ηη\tau=\eta\oplus\eta^{\prime} be a tame principal series type satisfying Assumption 3.0.1. Let σ=σ/f\sigma=\sigma_{\mathbb{Z}/f\mathbb{Z}}. The map q:[X/G]𝒳(τ)=𝒞τ,BT(/f)𝒵(σ)q:[X/G]\cong\mathcal{X}(\tau)=\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z})\to\mathcal{Z}(\sigma) induced from Definition 2.2.4 is a monomorphism.

The proof of this Proposition depends on the following Lemma.

Lemma 4.2.2.

Let RR be an arbitrary 𝔽\mathbb{F}-algebra and let 𝔐,𝔑𝒞τ,BT(R)\mathfrak{M},\mathfrak{N}\in\mathcal{C}^{\tau,\mathrm{BT}}(R) be such that with respect to some fixed inertial bases, the ii-th Frobenius maps of 𝔐\mathfrak{M} and 𝔑\mathfrak{N} are in η\eta-form. setting v(α,β)=(vα00vβ)v^{(\alpha,\beta)}=\begin{pmatrix}v^{\alpha}&0\\ 0&v^{\beta}\end{pmatrix}, suppose that upon restriction to the η\eta^{\prime}-eigenspace, the Frobenius matrices for 𝔐\mathfrak{M} and 𝔑\mathfrak{N} are represented by

(4.2.1) Fi=(aibicidi)v(1,0) and Gi=(aibicidi)v(1,0),respectively,\displaystyle F_{i}=\begin{pmatrix}a_{i}&b_{i}\\ c_{i}&d_{i}\end{pmatrix}v^{(1,0)}\quad\text{ and }\quad G_{i}=\begin{pmatrix}a^{\prime}_{i}&b^{\prime}_{i}\\ c^{\prime}_{i}&d^{\prime}_{i}\end{pmatrix}v^{(1,0)},\quad\text{respectively, }

where Fi=(aibicidi)F^{\prime}_{i}=\begin{pmatrix}a_{i}&b_{i}\\ c_{i}&d_{i}\end{pmatrix} and Gi=(aibicidi)G^{\prime}_{i}=\begin{pmatrix}a^{\prime}_{i}&b^{\prime}_{i}\\ c^{\prime}_{i}&d^{\prime}_{i}\end{pmatrix} are matrices in GL2(R[[v]])\mathrm{GL}_{2}(R[\![v]\!]).
If 𝔐\mathfrak{M} and 𝔑\mathfrak{N} are isomorphic as étale φ\varphi-modules, so that by (2.4.3), there exist B0,,Bf1GL2(R((v)))B_{0},\dots,B_{f-1}\in\mathop{\rm GL}\nolimits_{2}(R(\!(v)\!)) such that

(4.2.2) Gi=Bi1Fi(Adv(p1zi,0)(φ(Bi1))),\displaystyle G_{i}=B_{i}^{-1}F_{i}\left(\text{Ad}\;v^{(p-1-z_{i},0)}(\varphi(B_{i-1}))\right),

then det(Bi)R[[v]]\text{det}(B_{i})\in R[\![v]\!]^{*} and vBiM2(R[[v]])vB_{i}\in M_{2}(R[\![v]\!]).

We observe that in the statement of Lemma 4.2.4, BiGL2(R((v)))B_{i}\in\mathop{\rm GL}\nolimits_{2}(R(\!(v)\!)) by Lemma 2.1.5 and Definition 2.4.11.

Proof.

From (4.2.2), we see that

det(Bi)det(Gi)=det(Fi)φ(det(Bi1)).\det(B_{i})\det(G_{i})=\det(F_{i})\varphi(\text{det}(B_{i-1})).

Since valv(det(Fi))=valv(det(Gi))=1\text{val}_{v}(\text{det}(F_{i}))=\text{val}_{v}(\text{det}(G_{i}))=1, we have

valv(det(Bi))=valv(φ(det(Bi1))=pvalv(det(Bi1)).\displaystyle\text{val}_{v}(\text{det}(B_{i}))=\text{val}_{v}(\varphi(\text{det}(B_{i-1}))=p\text{val}_{v}(\text{det}(B_{i-1})).

Iterating this equation gives us

valv(det(Bi))=pvalv(det(Bi1))=p2valv(det(Bi2))==pfvalv(det(Bi)),\displaystyle\text{val}_{v}(\text{det}(B_{i}))=p\text{val}_{v}(\text{det}(B_{i-1}))=p^{2}\text{val}_{v}(\text{det}(B_{i-2}))=\cdots=p^{f}\text{val}_{v}(\text{det}(B_{i})),

which shows valv(det(Bi))=0\text{val}_{v}(\text{det}(B_{i}))=0. We now choose ki0k_{i}\in\mathbb{Z}_{\geq 0} minimal such that

Bi\displaystyle B_{i} =vkiBi+=vki(s1(i)s2(i)s3(i)s4(i)),\displaystyle=v^{-k_{i}}B_{i}^{+}=v^{-k_{i}}\begin{pmatrix}s_{1}^{(i)}&s_{2}^{(i)}\\ s_{3}^{(i)}&s_{4}^{(i)}\end{pmatrix}, where s1(i),s2(i),s3(i),s4(i)R[[v]].\displaystyle\text{ where }s_{1}^{(i)},s_{2}^{(i)},s_{3}^{(i)},s_{4}^{(i)}\in R[\![v]\!].

Then from (4.2.2), we have

Gi=Bi1Fi(Adv(pzi,0)(φ(Bi1))).\displaystyle G^{\prime}_{i}=B_{i}^{-1}F^{\prime}_{i}\left(\text{Ad}\;v^{(p-z_{i},0)}(\varphi(B_{i-1}))\right).

Equivalently,

Fi1Bi+Gi\displaystyle F_{i}^{\prime-1}B_{i}^{+}G_{i}^{\prime} =vkipki1(vpzi001)φ(Bi1+)(vp+zi001)\displaystyle=v^{k_{i}-pk_{i-1}}\begin{pmatrix}v^{p-z_{i}}&0\\ 0&1\end{pmatrix}\varphi(B_{i-1}^{+})\begin{pmatrix}v^{-p+z_{i}}&0\\ 0&1\end{pmatrix}
=vkipki1(φ(s1(i1))vpziφ(s2(i1))vp+ziφ(s3(i1))φ(s4(i1))).\displaystyle=v^{k_{i}-pk_{i-1}}\begin{pmatrix}\varphi(s_{1}^{(i-1)})&v^{p-z_{i}}\varphi(s_{2}^{(i-1)})\\ v^{-p+z_{i}}\varphi(s_{3}^{(i-1)})&\varphi(s_{4}^{(i-1)})\end{pmatrix}.

Since ki1k_{i-1} is chosen to be minimal, we must have valv(φ(smi(i1)))=0\text{val}_{v}(\varphi(s_{m_{i}}^{(i-1)}))=0 for some mi{1,2,3,4}m_{i}\in\{1,2,3,4\}. Then, since F1Bi+GiM2(R[[v]])F^{\prime-1}B_{i}^{+}G_{i}^{\prime}\in\text{M}_{2}(R[\![v]\!]), we have:

mi{1,4}\displaystyle\hskip 34.14322ptm_{i}\in\{1,4\} \displaystyle\implies 0kipki1\displaystyle 0\leq k_{i}-pk_{i-1} \displaystyle\implies kipki1,\displaystyle k_{i}\geq pk_{i-1},
mi=2\displaystyle\hskip 34.14322ptm_{i}=2 \displaystyle\implies 0kipki1+pzi\displaystyle 0\leq k_{i}-pk_{i-1}+p-z_{i} \displaystyle\implies kipki1(pzi),\displaystyle k_{i}\geq pk_{i-1}-(p-z_{i}),
mi=3\displaystyle\hskip 34.14322ptm_{i}=3 \displaystyle\implies 0kipki1p+zi\displaystyle 0\leq k_{i}-pk_{i-1}-p+z_{i} \displaystyle\implies kipki1+(pzi).\displaystyle k_{i}\geq pk_{i-1}+(p-z_{i}).

In other words, kipki1ϵik_{i}\geq pk_{i-1}-\epsilon_{i} where

ϵi={0 if mi{1,4}pzi if mi=2(pzi) if mi=3\displaystyle\epsilon_{i}=\begin{cases}0&\text{ if }m_{i}\in\{1,4\}\\ p-z_{i}&\text{ if }m_{i}=2\\ -(p-z_{i})&\text{ if }m_{i}=3\end{cases}

Iterating, we get

kipfki(pf1ϵi+1+pf2ϵi+2++ϵi+f)\displaystyle\hskip 11.38092ptk_{i}\geq p^{f}k_{i}-(p^{f-1}\epsilon_{i+1}+p^{f-2}\epsilon_{i+2}+...+\epsilon_{i+f})
(pf1)ki(pf1ϵi+1+pf2ϵi+2++ϵi+f)p(j=0f1pj).\displaystyle\iff(p^{f}-1)k_{i}\leq(p^{f-1}\epsilon_{i+1}+p^{f-2}\epsilon_{i+2}+...+\epsilon_{i+f})\leq p(\sum_{j=0}^{f-1}p^{j}).

Since pf1=(p1)(j=0f1pj)p^{f}-1=(p-1)(\sum_{j=0}^{f-1}p^{j}), we must have ki{0,1}k_{i}\in\{0,1\}, showing that BivM2(R[[v]])B_{i}\in vM_{2}(R[\![v]\!]). ∎

Lemma 4.2.3.

Assume the setup and notation in the statement and proof of Lemma 4.2.2. If ki1=1k_{i-1}=1, then v2v^{2} divides s3(i1)s_{3}^{(i-1)}. Consequently, there exists BiGL2(R[[v]])B^{\prime}_{i}\in\mathop{\rm GL}\nolimits_{2}(R[\![v]\!]) with the top right entry not divisible by vv, and such that Bi=Ad(v(0,1))(Bi)B_{i}=\text{Ad}(v^{(0,1)})(B_{i}^{\prime}).

Proof.

Evidently, ki1=1k_{i-1}=1 implies that ϵip1\epsilon_{i}\geq p-1, or equivalently, zi{0,1}z_{i}\in\{0,1\} and vv divides s1(i1)s_{1}^{(i-1)}, s3(i1)s_{3}^{(i-1)}, and s4(i1)s_{4}^{(i-1)} but not s2(i1)s_{2}^{(i-1)}. Let xx be the constant part of s3(i1)v\frac{s_{3}^{(i-1)}}{v}. We wish to show that x=0x=0. Note that since det(Bi1)\text{det}(B_{i-1}) is a unit in R[[v]]R[\![v]\!], xs2(i1)0modvxs_{2}^{(i-1)}\equiv 0\mod v.

From the top left and bottom left entries of the matrices in (4.2.2), we get the following equalities:

(4.2.3) vki+pki1aidet(Bi)=aiφ(s1(i1))s4(i)+vp+zibiφ(s3(i1))s4(i)ciφ(s1(i1))s2(i)vp+zidiφ(s3(i1))s2(i),\displaystyle v^{k_{i}+pk_{i-1}}a^{\prime}_{i}\text{det}(B_{i})=\begin{split}a_{i}\varphi(s_{1}^{(i-1)})s_{4}^{(i)}+v^{-p+z_{i}}b_{i}\varphi(s_{3}^{(i-1)})s_{4}^{(i)}\\ -c_{i}\varphi(s_{1}^{(i-1)})s_{2}^{(i)}-v^{-p+z_{i}}d_{i}\varphi(s_{3}^{(i-1)})s_{2}^{(i)},\end{split}
(4.2.4) vki+pki1cidet(Bi)=aiφ(s1(i1))s3(i)vp+zibiφ(s3(i1))s3(i)+ciφ(s1(i1))s1(i)+vp+zidiφ(s3(i1))s1(i).\displaystyle v^{k_{i}+pk_{i-1}}c^{\prime}_{i}\text{det}(B_{i})=\begin{split}-a_{i}\varphi(s_{1}^{(i-1)})s_{3}^{(i)}-v^{-p+z_{i}}b_{i}\varphi(s_{3}^{(i-1)})s_{3}^{(i)}\\ +c_{i}\varphi(s_{1}^{(i-1)})s_{1}^{(i)}+v^{-p+z_{i}}d_{i}\varphi(s_{3}^{(i-1)})s_{1}^{(i)}.\end{split}

Consider the equations s1(i)s_{1}^{(i)}(4.2.3) +s2(i)+\;s_{2}^{(i)}(4.2.4) and s3(i)s_{3}^{(i)}(4.2.3) +s4(i)+\;s_{4}^{(i)}(4.2.4). Dividing both equations by det(Bi+)=v2kidet(Bi)\text{det}(B_{i}^{+})=v^{2k_{i}}\text{det}(B_{i}), we obtain:

(4.2.5) vpki1ki(s1(i)ai+s2(i)ci)=\displaystyle v^{pk_{i-1}-k_{i}}(s_{1}^{(i)}a^{\prime}_{i}+s_{2}^{(i)}c^{\prime}_{i})\hskip 2.84544pt= aiφ(s1(i1))+vp+zibiφ(s3(i1)),\displaystyle\hskip 2.84544pta_{i}\varphi(s_{1}^{(i-1)})+v^{-p+z_{i}}b_{i}\varphi(s_{3}^{(i-1)}),
(4.2.6) vpki1ki(s3(i)ai+s4(i)ci)=\displaystyle v^{pk_{i-1}-k_{i}}(s_{3}^{(i)}a^{\prime}_{i}+s_{4}^{(i)}c^{\prime}_{i})\hskip 2.84544pt= ciφ(s1(i1))+vp+zidiφ(s3(i1)).\displaystyle\hskip 2.84544ptc_{i}\varphi(s_{1}^{(i-1)})+v^{-p+z_{i}}d_{i}\varphi(s_{3}^{(i-1)}).

Using that vpv^{p} divides φ(s1(i1))\varphi(s_{1}^{(i-1)}) and φ(s3(i1))\varphi(s_{3}^{(i-1)}), we make the following observations:

  1. (1)

    In (4.2.5), the LHS is divisible by vpkiv^{p-k_{i}}, while aiφ(s1(i1))a_{i}\varphi(s_{1}^{(i-1)}) is divisible by vpv^{p}. Therefore, vpkivp+zibiφ(s3(i1))v^{p-k_{i}}\mid v^{-p+z_{i}}b_{i}\varphi(s_{3}^{(i-1)}), implying vpkizibixv^{p-k_{i}-z_{i}}\mid b_{i}x.

  2. (2)

    Similarly, in (4.2.6), vpkizidixv^{p-k_{i}-z_{i}}\mid d_{i}x.

Since zi,ki{0,1}z_{i},k_{i}\in\{0,1\} and p>2p>2, bixdix0modvb_{i}x\equiv d_{i}x\equiv 0\mod v. Multiplying det(Fi)R[[v]]\text{det}(F^{\prime}_{i})\in R[\![v]\!]^{*} by xx, we get:

aidixcibix0modv.a_{i}d_{i}x-c_{i}b_{i}x\equiv 0\mod v.

This shows that x0x\equiv 0 mod vv. Since xRx\in R, x=0x=0 and we are done. ∎

Lemma 4.2.4.

Assume the setup and notation in the statement and proof of Lemma 4.2.2. If τ\tau does not face the first or second obstructions, then BiGL2(R[[v]])B_{i}\in\mathop{\rm GL}\nolimits_{2}(R[\![v]\!]). Furthermore, each BiB_{i} is upper triangular mod vv.

Proof.

To prove the first statement, it suffices to show that:

  1. (1)

    (ki1,ki)=(0,1)zi=p1(k_{i-1},k_{i})=(0,1)\implies z_{i}=p-1,

  2. (2)

    (ki1,ki)=(1,1)zi=1(k_{i-1},k_{i})=(1,1)\implies z_{i}=1,

  3. (3)

    (ki1,ki)=(1,0)zi=0(k_{i-1},k_{i})=(1,0)\implies z_{i}=0.

This is because if the above three results hold, then ki=1k_{i}=1 for some ii implies that either each zj=1z_{j}=1 (first obstruction), or there exists a contiguous subsequence (p1,1,,1,0)(p-1,1,\dots,1,0) in z\vec{z} (second obstruction). Thus, the hypothesis on τ\tau forces each ki=0k_{i}=0, and therefore, each BiB_{i} is a matrix in M2(R[[v]])\mathrm{M}_{2}(R[\![v]\!]). As det(Bi)\text{det}(B_{i}) is a unit, we obtain that BiGL2(R[[v]])B_{i}\in\mathrm{GL}_{2}(R[\![v]\!]).

We now prove the three claims.

  1. (1)

    Suppose ki1=0k_{i-1}=0 and ki=1k_{i}=1. Lemma 4.2.3 allows us to write BiB_{i} as Ad(v(0,1))(Bi)\text{Ad}(v^{(0,1)})(B_{i}^{\prime}), where Bi=(t1t2t3t4)GL2(R[[v]])B_{i}^{\prime}=\begin{pmatrix}t_{1}&t_{2}\\ t_{3}&t_{4}\end{pmatrix}\in\mathrm{GL}_{2}(R[\![v]\!]) and t20t_{2}\not\equiv 0 mod vv.

    By (4.2.2),  Ad(v(0,1))(Bi)Gi\displaystyle\text{By (\ref{base-change-Bi}), }\text{ Ad}(v^{(0,1)})(B_{i}^{\prime})\hskip 2.84544ptG^{\prime}_{i}
    =(ait1+v1cit2bit1+v1dit2cit4+vait3dit4+vbit3)\displaystyle\hskip 14.22636pt=\begin{pmatrix}a^{\prime}_{i}t_{1}+v^{-1}c^{\prime}_{i}t_{2}&b^{\prime}_{i}t_{1}+v^{-1}d^{\prime}_{i}t_{2}\\ c^{\prime}_{i}t_{4}+va^{\prime}_{i}t_{3}&d^{\prime}_{i}t_{4}+vb^{\prime}_{i}t_{3}\end{pmatrix}
    =(aiφ(s1(i1))+biφ(s3(i1))v(pzi)biφ(s4(i1))+aiφ(s2(i1))vpziciφ(s1(i1))+diφ(s3(i1))v(pzi)diφ(s4(i1))+ciφ(s2(i1))vpzi)\displaystyle\hskip 14.22636pt=\begin{pmatrix}a_{i}\varphi(s_{1}^{(i-1)})+b_{i}\varphi(s_{3}^{(i-1)})v^{-(p-z_{i})}&b_{i}\varphi(s_{4}^{(i-1)})+a_{i}\varphi(s_{2}^{(i-1)})v^{p-z_{i}}\\ c_{i}\varphi(s_{1}^{(i-1)})+d_{i}\varphi(s_{3}^{(i-1)})v^{-(p-z_{i})}&d_{i}\varphi(s_{4}^{(i-1)})+c_{i}\varphi(s_{2}^{(i-1)})v^{p-z_{i}}\end{pmatrix}
    =FiAd(v(pzi,0))(φ(Bi1)).\displaystyle\hskip 14.22636pt=F^{\prime}_{i}\hskip 2.84544pt\text{Ad}(v^{(p-z_{i},0)})\big{(}\varphi(B_{i-1})\big{)}.

    An examination of the bottom left entry shows vpzidiφ(s3(i1))v^{p-z_{i}}\mid d_{i}\varphi(s_{3}^{(i-1)}). If vφ(s3(i1))v\mid\varphi(s_{3}^{(i-1)}), then vs3(i1)v\mid s_{3}^{(i-1)} and vpφ(s3(i1))v^{p}\mid\varphi(s_{3}^{(i-1)}). But then both the top entries of FiAd(v(pzi,0))(φ(Bi1))F^{\prime}_{i}\hskip 2.84544pt\text{Ad}(v^{(p-z_{i},0)})\big{(}\varphi(B_{i-1})\big{)} are in R[[v]]R[\![v]\!], which implies cit2dit20modvc^{\prime}_{i}t_{2}\equiv d^{\prime}_{i}t_{2}\equiv 0\mod v. Multiplying det(Gi)R[[v]]\text{det}(G^{\prime}_{i})\in R[\![v]\!]^{*} by t2t_{2}, we see that t20t_{2}\equiv 0 mod vv. This is a contradiction. Therefore, the constant part of s3(i1)s_{3}^{(i-1)} is non-zero and we denote it by xx.

    Now, assume that zi<p1z_{i}<p-1. Comparing the top and bottom left entries of Ad(v(0,1))(Bi)Gi\text{Ad}(v^{(0,1)})(B_{i}^{\prime})\hskip 2.84544ptG^{\prime}_{i} and FiAd(v(pzi,0))(φ(Bi1))F^{\prime}_{i}\hskip 2.84544pt\text{Ad}(v^{(p-z_{i},0)})\big{(}\varphi(B_{i-1})\big{)}, we obtain bixdix0b_{i}x\equiv d_{i}x\equiv 0 mod vv. Therefore, vv divides xdet(Fi)x\;\text{det}(F^{\prime}_{i}). Since det(Fi)R[[v]]\text{det}(F^{\prime}_{i})\in R[\![v]\!]^{*}, this means that x=0x=0, a contradiction. Hence, zi=p1z_{i}=p-1.

  2. (2)

    Suppose ki1=ki=1k_{i-1}=k_{i}=1. As before, let Bi1,BiGL2(R[[v]])B^{\prime}_{i-1},B^{\prime}_{i}\in\mathop{\rm GL}\nolimits_{2}(R[\![v]\!]) be such that Bi1=Ad(v(0,1))(Bi1)B_{i-1}=\text{Ad}(v^{(0,1)})(B_{i-1}^{\prime}) and Bi=Ad(v(0,1))(Bi)B_{i}=\text{Ad}(v^{(0,1)})(B_{i}^{\prime}). Since ki1=1k_{i-1}=1 implies zi{0,1}z_{i}\in\{0,1\}, it suffices to show that zi=0z_{i}=0 leads to a contradiction. If zi=0z_{i}=0, then

    Ad(v(0,1))(Bi)Gi\displaystyle\text{Ad}(v^{(0,1)})(B_{i}^{\prime})\hskip 2.84544ptG^{\prime}_{i} =FiAd(v(p,0))(φ(Ad(v(0,1))(Bi1))=Fiφ(Bi1)\displaystyle=F^{\prime}_{i}\hskip 2.84544pt\text{Ad}(v^{(p,0)})\big{(}\varphi(\text{Ad}(v^{(0,1)})(B_{i-1}^{\prime})\big{)}=F^{\prime}_{i}\varphi(B_{i-1}^{\prime})
    Ad(v(0,1))(Bi)\displaystyle\implies\text{Ad}(v^{(0,1)})(B_{i}^{\prime}) =Fiφ(Bi1)Gi1GL2(R[[v]]).\displaystyle=F^{\prime}_{i}\varphi(B^{\prime}_{i-1})G_{i}^{\prime-1}\in\mathop{\rm GL}\nolimits_{2}(R[\![v]\!]).

    This forces v(Bi)1,2v\mid(B_{i}^{\prime})_{1,2}, a contradiction.

  3. (3)

    Suppose ki1=1k_{i-1}=1 and ki=0k_{i}=0, so that zi{0,1}z_{i}\in\{0,1\}. Suppose zi=1.z_{i}=1. Then

    Fi1BiGi\displaystyle F_{i}^{\prime-1}B_{i}G^{\prime}_{i} =Ad(v(p1,0))(φ(Ad(v(0,1))(Bi1))\displaystyle=\text{Ad}(v^{(p-1,0)})\big{(}\varphi(\text{Ad}(v^{(0,1)})(B_{i-1}^{\prime})\big{)}
    =Ad(v(0,1))(φ(Bi1))GL2(R[[v]]).\displaystyle=\text{Ad}(v^{(0,1)})\big{(}\varphi(B^{\prime}_{i-1})\big{)}\in\mathop{\rm GL}\nolimits_{2}(R[\![v]\!]).

    Once again, this is a contradiction because it implies v(Bi1)1,2v\mid(B^{\prime}_{i-1})_{1,2}.

To justify the second statement , we continue using the notation of the proof of Lemma 4.2.2. Since each kik_{i} is 0, (4.2.5) gives us:

(4.2.7) s1(i)ai+s2(i)ci=\displaystyle s_{1}^{(i)}a^{\prime}_{i}+s_{2}^{(i)}c^{\prime}_{i}\hskip 2.84544pt= aiφ(s1(i1))+vp+zibiφ(s3(i1))\displaystyle\hskip 2.84544pta_{i}\varphi(s_{1}^{(i-1)})+v^{-p+z_{i}}b_{i}\varphi(s_{3}^{(i-1)})

Since the LHS is integral, the same must be true for RHS. Therefore bis3(i1)0b_{i}s_{3}^{(i-1)}\equiv 0 mod vv. Considering (4.2.3) and (4.2.4), we have dis3(i1)s1(i)dis3(i1)s2(i)0d_{i}s_{3}^{(i-1)}s_{1}^{(i)}\equiv d_{i}s_{3}^{(i-1)}s_{2}^{(i)}\equiv 0 mod vv. Multiplying det(Bi)\text{det}(B_{i}) by dis3(i1)d_{i}s_{3}^{(i-1)}, we see that dis3(i1)0d_{i}s_{3}^{(i-1)}\equiv 0 mod vv. Finally, multiplying det(Fi)=aidibici\text{det}(F^{\prime}_{i})=a_{i}d_{i}-b_{i}c_{i} by s3(i1)s_{3}^{(i-1)}, we see that s3(i1)0s_{3}^{(i-1)}\equiv 0 mod vv.

Proof of Proposition 4.2.1.

Let RR be an arbitrary 𝔽\mathbb{F}-algebra, and let 𝔐,𝔑𝒳(τ)(R)[X/G](R)\mathfrak{M},\mathfrak{N}\in\mathcal{X}(\tau)(R)\cong[X/G](R) be two Breuil-Kisin modules equipped with an isomorphism after inverting uu. By Proposition 3.1.4, the Frobenius matrices of 𝔐\mathfrak{M} and 𝔑\mathfrak{N} can be written in the form described in the statement of Lemma 4.2.4 (after passing to an affine cover of Spec R\text{Spec }R if necessary). Denoting the Frobenius matrices of 𝔐\mathfrak{M} by {Fi}i\{F_{i}\}_{i} and those of 𝔑\mathfrak{N} by {Gi}i\{G_{i}\}_{i}, the isomorphism between q(𝔐)q(\mathfrak{M}) and q(𝔑)q(\mathfrak{N}) is described by invertible matrices {Bi}i\{B_{i}\}_{i} satisfying (4.2.2). Lemma 4.2.4 shows each BiGL2(R[[v]])B_{i}\in\text{GL}_{2}(R[\![v]\!]) and all are upper triangular mod vv. Hence, by comparison with the form of inertial base change matrices for η\eta^{\prime}-eigenspace, the set {Bi}i\{B_{i}\}_{i} gives an isomorphism between 𝔐\mathfrak{M} and 𝔑\mathfrak{N}. Therefore, X×𝒳(τ)XX×𝒵XX\times_{\mathcal{X}(\tau)}X\to X\times_{\mathcal{Z}}X is an isomorphism. Using 3.1.6, the diagonal of qq is an isomorphism (the argument for this is the same as in the first paragraph of the proof of Lemma 3.1.9). Therefore, qq is a monomorphism.

Corollary 4.2.5.

Fix τ=ηη\tau=\eta\oplus\eta^{\prime} a tame principal series 𝔽\mathbb{F}-type with ηη\eta\neq\eta^{\prime} such that τ\tau does not face either the first or the second obstruction. Let σ=σ/f\sigma=\sigma_{\mathbb{Z}/f\mathbb{Z}}. The map q:[X/G]𝒞τ,BT(/f)𝒵(σ)q:[X/G]\cong\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z})\to\mathcal{Z}(\sigma) is an isomorphism.

Proof.

The map qq is proper and scheme-theoretically dominant by [CEGS22b, Thm. 5.1.2] (using terminology from [EG21], 1.1.1), and it is also a monomorphism by Proposition 4.2.1. Since proper monomorphisms are the same as closed immersions (by [Sta18, Tag 0418, Tag 04XV]), qq must be an isomorphism. ∎

5. Conclusion

Theorem 5.0.1.

Let p>2p>2. Let KK be an unramified extension of p\mathbb{Q}_{p} of degree ff with residue field kk. Let 𝒵(σ)\mathcal{Z}(\sigma) be the irreducible component of 𝒵\mathcal{Z} indexed by a non-Steinberg Serre weight σ=σa,b=i=0f1(detaiSymbik2)k,κi𝔽\sigma=\sigma_{\vec{a},\vec{b}}=\bigotimes_{i=0}^{f-1}({\det}^{a_{i}}\mathop{\rm Sym}\nolimits^{b_{i}}k^{2})\otimes_{k,\kappa_{i}}\mathbb{F} satisfying the following properties:

  1. (1)

    b(0,0,,0)\vec{b}\neq(0,0,\dots,0),

  2. (2)

    b(p2,p2,,p2)\vec{b}\neq(p-2,p-2,\dots,p-2),

  3. (3)

    Extend the indices of bib_{i}’s to all of \mathbb{Z} by setting bi+f=bib_{i+f}=b_{i}. Then (bi)i(b_{i})_{i\in\mathbb{Z}} does not contain a contiguous subsequence of the form (0,p2,,p2,p1)(0,p-2,\dots,p-2,p-1) of length 2\geq 2.

Then 𝒵(σ)\mathcal{Z}(\sigma) is smooth and isomorphic to a quotient of GL2×SL2f1\mathop{\rm GL}\nolimits_{2}\times\mathop{\rm SL}\nolimits_{2}^{f-1} by 𝔾mf+1×𝔾af\mathbb{G}_{m}^{f+1}\times\mathbb{G}_{a}^{f}. The ring of global functions of 𝒵(σ)\mathcal{Z}(\sigma) is isomorphic to 𝔽[x,y][1y]\mathbb{F}[x,y][\frac{1}{y}].

Proof.

Follows directly from Corollaries 3.2.5, 4.1.3 and 4.2.5. ∎

Remark 5.0.2.

Assume the conditions in the statement of Theorem 5.0.1. Let τ=ηη\tau=\eta\oplus\eta^{\prime} be an inertial type with η(g)=i=0f1(κih(g)ai)\eta(g)=\prod_{i=0}^{f-1}(\kappa_{i}\circ h(g)^{a_{i}}) and η(g)=i=0f1(κih(g)ai+bi(p1))\eta^{\prime}(g)=\prod_{i=0}^{f-1}(\kappa_{i}\circ h(g)^{a_{i}+b_{i}-(p-1)}). Since b(0,0,,0)\vec{b}\neq(0,0,\dots,0), 𝒵(σa,b)=𝒵τ(/f)\mathcal{Z}(\sigma_{\vec{a},\vec{b}})=\mathcal{Z}^{\tau}(\mathbb{Z}/f\mathbb{Z}) by Proposition 4.1.2. The proof of Theorem 5.0.1 tells us that

q:[X/G]𝒯~𝒞τ,BT(/f)𝒵(σa,b)q:[X/G]\xrightarrow{\widetilde{\mathcal{T}}}\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z})\to\mathcal{Z}(\sigma_{\vec{a},\vec{b}})

is an isomorphism, providing a concrete description of the points of 𝒵(σa,b)\mathcal{Z}(\sigma_{\vec{a},\vec{b}}).

Remark 5.0.3.

In fact, when f2f\geq 2 and p>3p>3, we can allow b=(0,0,,0)\vec{b}=(0,0,\dots,0) in the statement of Thoerem 5.0.1 (see discussion in Section A.4).

Appendix A Allowing η\eta^{\prime}-forms

The objective of this Appendix is to show that allowing some of the Frobenius matrices to be in η\eta^{\prime}-form does not allow us to obtain information on more irreducible components, with the exception of the component indexed by the trivial Serre weight. Before we embark on a proof, we first survey the overall strategy employed in the main body of the paper, and analyze how it might be affected by allowing some Frobenius matrices to be in η\eta^{\prime}-form.

A key ingredient in the proof of our main theorem is constructing the functor 𝒯~:[X/G]𝒳(τ)\widetilde{\mathcal{T}}:[X/G]\to\mathcal{X}(\tau) (see Definition 3.1.3), where X=GL2×SL2f1X=\mathop{\rm GL}\nolimits_{2}\times\mathop{\rm SL}\nolimits_{2}^{f-1} and G=𝔾mf+1×UfG=\mathbb{G}_{m}^{f+1}\times U^{f}, and then showing that it is an isomorphism (see Proposition 3.1.4). The proof of the isomorphism relies, among other things, on the following:

  1. (1)

    Let 𝔐\mathfrak{M} be a regular Breuil-Kisin module and let {Fi}i\{F_{i}\}_{i} be the set of its Frobenius matrices with respect to some choice of inertial bases. Suppose that each FiF_{i} is in η\eta-form. Then, upon imposing some conditions on (zi)i(z_{i})_{i}, we can guarantee that 𝔐\mathfrak{M} is not of bad genre and therefore the algorithm in Proposition 2.3.7 converges to give Frobenius matrices in CDM form. The minimal set of values of (zi)i(z_{i})_{i} we need to exclude constitutes the definition of the first obstruction.

  2. (2)

    For 𝔐\mathfrak{M} as above, we also need to obtain the CDM form of Frobenius matrices through an action of GG. The conditions on (zi)i(z_{i})_{i} that prohibit this constitute the definition of the second obstruction.

After showing that 𝒯~:[X/G]𝒳(τ)\widetilde{\mathcal{T}}:[X/G]\to\mathcal{X}(\tau) is an isomorphism, our next step is to identify the irreducible component 𝒳(τ)𝒞τ,BT\mathcal{X}(\tau)\subset\mathcal{C}^{\tau,\mathrm{BT}} by its profile index. We identify this profile index to be /f\mathbb{Z}/f\mathbb{Z} by observing that 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}) is the only irreducible component containing a dense set of points with each Frobenius map of genre Iη\text{I}_{\eta} (see Lemma 3.2.3). Using (4.1.1), we finally compute the Serre weight index of 𝒵τ(/f)\mathcal{Z}^{\tau}(\mathbb{Z}/f\mathbb{Z}) which is the image of 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}) in 𝒵\mathcal{Z}.

If we allow η\eta^{\prime}-forms, we will need to change the definitions of first and second obstructions since they are presently tailored to work in the situation where each Frobenius matrix is in η\eta-form. Furthermore, the definition of 𝒯\mathcal{T} (and therefore of 𝒯~\tilde{\mathcal{T}}) will have to be modified to allow for the image to have some Frobenius maps in η\eta^{\prime}-form. The image of 𝒯~\widetilde{\mathcal{T}} will no longer be 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}). We will need to compute the correct profile index as a function of the indices i/fi\in\mathbb{Z}/f\mathbb{Z} for which we are allowing η\eta^{\prime}-form Frobenius matrices, and then compute the Serre weight index using the correct profile index.

Instead of directly replicating the structure of our proofs in the main body of the text, we will now evaluate the effect of allowing η\eta^{\prime}-form Frobenius matrices in a slightly non-linear fashion. We will first compute the profile JJ needed such that 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) contains a dense set of points with some Frobenius maps of genre Iη\text{I}_{\eta} and others of genre Iη\text{I}_{\eta^{\prime}} as well as investigate the relationship of JJ to Serre weights. Next, we will compute the altered conditions for first and second obstructions. Finally, we will show that although we could not include twists of trivial Serre weight in our main analysis, we can include them if we allow η\eta^{\prime}-form Frobenius matrices, and that this is the only extra advantage to be gained by allowing η\eta^{\prime}-form matrices.

To start, we introduce some notation:

We let T/fT\subset\mathbb{Z}/f\mathbb{Z} be the fixed set of indices ii such that the ii-th Frobenius map is in η\eta-form, while TcT^{c} is the set of indices ii such that the ii-th Frobenius map is in η\eta^{\prime}-form.

Definition A.0.1.

Let i/fi\in\mathbb{Z}/f\mathbb{Z}. We say that (i1,i)(i-1,i) is a transition if one of {i1,i}\{i-1,i\} is in TT and the other in TcT^{c}.

Given τ=ηη\tau=\eta\oplus\eta^{\prime} with ηη\eta\neq\eta^{\prime}, define (z~i)i(\tilde{z}_{i})_{i} via:

(A.0.1) z~i={zi if i1T,iT,zi+1 if i1T,iT,pzi if i1T,iT,p1zi if i1T,iT,\displaystyle\tilde{z}_{i}=\begin{cases}z_{i}&\text{ if }i-1\in T,i\in T,\\ z_{i}+1&\text{ if }i-1\in T,i\not\in T,\\ p-z_{i}&\text{ if }i-1\not\in T,i\in T,\\ p-1-z_{i}&\text{ if }i-1\not\in T,i\not\in T,\\ \end{cases}

where ziz_{i} is defined in (1.4.1). As with ziz_{i}, we will take the indexing set of z~i\tilde{z}_{i} to be either /f\mathbb{Z}/f\mathbb{Z} or \mathbb{Z} depending on the situation.

Remark A.0.2.

By (A.0.1), z~i0\tilde{z}_{i}\neq 0 whenever (i1,i)(i-1,i) is a transition.

A.1. Profiles

Lemma A.1.1.

Let τ\tau be a tame principal series 𝔽\mathbb{F}-type. Suppose 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) is an irreducible component of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} comprising a dense set of 𝔽¯p\overline{\mathbb{F}}_{p}-points corresponding to Breuil-Kisin modules that satisfy the following:

  • The genre of the ii-th Frobenius map is Iη\text{I}_{\eta} for iTi\in T.

  • The genre of the ii-th Frobenius map is Iη\text{I}_{\eta^{\prime}} for iTi\not\in T.

Then J=TJ=T.

Proof.

By the argument in the proof of Lemma 3.2.3, 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) contains a dense constructible set of points such that if iJi\in J, then the upper left entry of ii-th Frobenius is 0 or vv-divisible, making it necessarily of genre Iη\text{I}_{\eta} or II. On the other hand, if iJi\not\in J, then the lower right entry of ii-th Frobenius is either 0 or vv-divisible, making it necessarily of genre Iη\text{I}_{\eta^{\prime}} or II. ∎

Lemma A.1.2.

Let 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) be as in Lemma A.1.1. Then 𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) is a cover of an irreducible component of 𝒵\mathcal{Z} if and only if J𝒫τJ\in\mathcal{P}_{\tau} if and only if for each ii, z~ip\tilde{z}_{i}\neq p.

Proof.

𝒞τ,BT(J)\mathcal{C}^{\tau,\mathrm{BT}}(J) is a cover of an irreducible component of 𝒵\mathcal{Z} if and only if J𝒫τJ\in\mathcal{P}_{\tau} by [CEGS22a, Thm. 5.1.12]. By the definition of 𝒫τ\mathcal{P}_{\tau} (Definition 4.1.1) and the fact that J=TJ=T, the condition on (z~i)i(\tilde{z}_{i})_{i} is immediate. ∎

Since the strategy of this paper rests on covering a suitable irreducible component of 𝒵\mathcal{Z} by the irreducible component of 𝒞τ,BT\mathcal{C}^{\tau,\mathrm{BT}} in the image of 𝒯\mathcal{T}, it is reasonable to impose the condition that for each ii, z~ip\tilde{z}_{i}\neq p.

Remark A.1.3.

Suppose J=TJ=T as in Lemma A.1.1 and z~ip\tilde{z}_{i}\neq p. Since J𝒫τJ\in\mathcal{P}_{\tau}, we may compute the Serre weight corresponding to JJ. By (4.1.1), the symmetric powers of the Serre weight are given by bi=p1z~ib_{i}=p-1-\tilde{z}_{i}.

A.2. First obstruction

As in the greater part of Section 2.3, we will assume that all Breuil-Kisin modules in this section are regular (see Definition 2.3.4). We will also assume that z~ip\tilde{z}_{i}\neq p.

Definition A.2.1.

Let 𝔐\mathfrak{M} be a Breuil-Kisin module over an 𝔽\mathbb{F}-algebra RR with Frobenius matrices {Fi}i\{F_{i}\}_{i} written with respect to some inertial bases. We say that 𝒢(𝔐i)=𝒢(Fi)=I\mathcal{G}(\mathfrak{M}_{i})=\mathcal{G}(F_{i})=\text{I} if 𝒢(𝔐i)=𝒢(Fi){Iη,Iη}\mathcal{G}(\mathfrak{M}_{i})=\mathcal{G}(F_{i})\in\{\text{I}_{\eta},\text{I}_{\eta^{\prime}}\}.

Lemma A.2.2.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. A regular Breuil-Kisin module 𝔐\mathfrak{M} defined over RR is of bad genre if and only if the following conditions are satisfied (assuming z~ip\tilde{z}_{i}\neq p for all ii):

  1. (1)

    If (i1,i)(i-1,i) is not a transition, then (𝒢(Fi),z~i){(II,0),(II,p1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},0),(\text{II},p-1),(\text{I},1),(\text{I},p-1)\}.
    If (i1,i)(i-1,i) is a transition, then (𝒢(Fi),z~i){(II,1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},1),(\text{I},1),(\text{I},p-1)\}.

  2. (2)

    If (i1,i)(i-1,i) is not a transition and (𝒢(Fi),z~i)=(II,0)(\mathcal{G}(F_{i}),\tilde{z}_{i})=(\text{II},0), then
    (𝒢(Fi+1),z~i+1)=(I,p1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},p-1), or (𝒢(Fi+1),z~i+1)=(II,p1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},p-1) with (i,i+1)(i,i+1) not a transition.

  3. (3)

    If (i1,i)(i-1,i) is not a transition and (𝒢(Fi),z~i){(II,p1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},p-1),(\text{I},1),(\text{I},p-1)\}, then (𝒢(Fi+1),z~i+1)=(II,0)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},0) with (i,i+1)(i,i+1) not a transition, or (𝒢(Fi+1),z~i+1)=(II,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},1) with (i,i+1)(i,i+1) a transition, or (𝒢(Fi+1),z~i+1)=(I,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},1).

  4. (4)

    If (i1,i)(i-1,i) is a transition and (𝒢(Fi),z~i){(II,1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},1),(\text{I},1),(\text{I},p-1)\}, then (𝒢(Fi+1),z~i+1)=(II,0)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},0) with (i,i+1)(i,i+1) not a transition, or (𝒢(Fi+1),z~i+1)=(II,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},1) with (i,i+1)(i,i+1) a transition, or (𝒢(Fi+1),z~i+1)=(I,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},1).

Proof.

Suppose iTi\in T. We restate the conditions for bad genre by expressing the conditions from Definition 2.3.6 in terms of z~i\tilde{z}_{i}:

  1. (1)

    If i1Ti-1\in T, then (𝒢(Fi),z~i){(II,0),(II,p1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},0),(\text{II},p-1),(\text{I},1),(\text{I},p-1)\}.
    If i1Ti-1\not\in T, then (𝒢(Fi),z~i){(II,1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},1),(\text{I},1),(\text{I},p-1)\}.

  2. (2)

    If i1Ti-1\in T and (𝒢(Fi),z~i)=(II,0)(\mathcal{G}(F_{i}),\tilde{z}_{i})=(\text{II},0), then
    (𝒢(Fi+1),z~i+1)=(II,p1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},p-1) with i+1Ti+1\in T, or (𝒢(Fi+1),z~i+1)=(I,p1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},p-1).

  3. (3)

    If i1Ti-1\in T and (𝒢(Fi),z~i){(II,p1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},p-1),(\text{I},1),(\text{I},p-1)\}, then (𝒢(Fi+1),z~i+1)=(II,0)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},0) with i+1Ti+1\in T or (𝒢(Fi+1),z~i+1)=(II,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},1) with i+1Ti+1\not\in T or (𝒢(Fi+1),z~i+1)=(I,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},1).

  4. (4)

    If i1Ti-1\not\in T and (𝒢(Fi),z~i){(II,1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},1),(\text{I},1),(\text{I},p-1)\}, then (𝒢(Fi+1),z~i+1)=(II,0)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},0) with i+1Ti+1\in T or (𝒢(Fi+1),z~i+1)=(II,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},1) with i+1Ti+1\not\in T or (𝒢(Fi+1),z~i+1)=(I,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},1).

By symmetry, for iTi\not\in T, the conditions for bad genre are:

  1. (1)

    If i1Ti-1\not\in T, then (𝒢(Fi),z~i){(II,0),(II,p1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},0),(\text{II},p-1),(\text{I},1),(\text{I},p-1)\}.
    If i1Ti-1\in T, then (𝒢(Fi),z~i){(II,1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},1),(\text{I},1),(\text{I},p-1)\}.

  2. (2)

    If i1Ti-1\not\in T and (𝒢(Fi),z~i)=(II,0)(\mathcal{G}(F_{i}),\tilde{z}_{i})=(\text{II},0), then
    (𝒢(Fi+1),z~i+1)=(II,p1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},p-1) with i+1Ti+1\not\in T, or (𝒢(Fi+1),z~i+1)=(I,p1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},p-1).

  3. (3)

    If i1Ti-1\not\in T and (𝒢(Fi),z~i){(II,p1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},p-1),(\text{I},1),(\text{I},p-1)\}, then (𝒢(Fi+1),z~i+1)=(II,0)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},0) with i+1Ti+1\not\in T or (𝒢(Fi+1),z~i+1)=(II,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},1) with i+1Ti+1\in T or (𝒢(Fi+1),z~i+1)=(I,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},1).

  4. (4)

    If i1Ti-1\in T and (𝒢(Fi),z~i){(II,1),(I,1),(I,p1)}(\mathcal{G}(F_{i}),\tilde{z}_{i})\in\{(\text{II},1),(\text{I},1),(\text{I},p-1)\}, then (𝒢(Fi+1),z~i+1)=(II,0)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},0) with i+1Ti+1\not\in T or (𝒢(Fi+1),z~i+1)=(II,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{II},1) with i+1Ti+1\in T or (𝒢(Fi+1),z~i+1)=(I,1)(\mathcal{G}(F_{i+1}),\tilde{z}_{i+1})=(\text{I},1).

Bringing the two sets of conditions together, the conditions for bad genre are as in the statement of the lemma. ∎

From Lemma A.2.2, it is immediate that the following is the appropriate generalization of the definition of first obstruction.

Definition A.2.3.

We say that a tame prinicipal series 𝔽\mathbb{F}-type τ\tau faces the first obstruction if (z~i)i(\tilde{z}_{i})_{i\in\mathbb{Z}} is made up entirely of the building blocks 11 and (0,p1)(0,p-1).

A.3. Second obstruction

To compute the right form of second obstruction conditions, we first state a version of Lemma 2.4.9 for Frobenius matrices in η\eta^{\prime}-form.

Lemma A.3.1.

Let RR be an Artinian local ring over 𝔽\mathbb{F} with maximal ideal 𝔪\mathfrak{m}. Let 𝔐\mathfrak{M} be a regular Breuil-Kisin module, not of bad genre. Suppose with respect to an inertial basis, FiF_{i} has the form

(aiueγibiuγicivdi)\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&vd_{i}\end{pmatrix}

with ai,bi,ci,diRa_{i},b_{i},c_{i},d_{i}\in R. Let

P(j)=limnPj+nf=(qjueγjrjuγjsjtj)P^{(j)}=\lim\limits_{n\to\infty}P_{j+nf}=\begin{pmatrix}q_{j}&u^{e-\gamma_{j}}r_{j}\\ u^{\gamma_{j}}s_{j}&t_{j}\end{pmatrix}

denote the base change matrices described in the proof of Proposition 2.3.7. Let Fi=(P(i+1))1Fiφ(Pi)F^{\prime}_{i}=(P^{(i+1)})^{-1}F_{i}\varphi(P_{i}) be the matrix in 2.3.2, and explicitly, let

Fi=(aibiueγiciuγivdi).F^{\prime}_{i}=\begin{pmatrix}a^{\prime}_{i}&b^{\prime}_{i}u^{e-\gamma_{i}}\\ c^{\prime}_{i}u^{\gamma_{i}}&vd^{\prime}_{i}\end{pmatrix}.

For any σR[[v]]\sigma\in R[\![v]\!], denote by σ¯\overline{\sigma} the constant part of σ\sigma.

Then

Fi\displaystyle F^{\prime}_{i} ={Ad(bi+airi1¯bi001)((aiueγibi0(dibiaici)v)) if 𝒢(Fi)=Iη,zi=p1,(aiueγibi0(dibiaici)v) if 𝒢(Fi)=Iη,zip1,Ad(bi+airi1¯bi001)((aiueγibiuγi(ciaibidi)0)) if 𝒢(Fi)=II,zi=p1,(aiueγibiuγi(ciaibidi)0) if 𝒢(Fi)=II,zip1,\displaystyle=\begin{cases}Ad\begin{pmatrix}\frac{b_{i}+a_{i}\overline{r_{i-1}}}{b_{i}}&0\\ 0&1\end{pmatrix}\left(\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ 0&(d_{i}-\frac{b_{i}}{a_{i}}c_{i})v\end{pmatrix}\right)&\text{ if }\mathcal{G}(F_{i})=I_{\eta^{\prime}},z_{i}=p-1,\\ \hskip 28.45274pt\\ \begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ 0&(d_{i}-\frac{b_{i}}{a_{i}}c_{i})v\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=I_{\eta^{\prime}},z_{i}\neq p-1,\\ \hskip 28.45274pt\\ Ad\begin{pmatrix}\frac{b_{i}+a_{i}\overline{r_{i-1}}}{b_{i}}&0\\ 0&1\end{pmatrix}\left(\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}(c_{i}-\frac{a_{i}}{b_{i}}d_{i})&0\end{pmatrix}\right)&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}=p-1,\\ \hskip 28.45274pt\\ \begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}(c_{i}-\frac{a_{i}}{b_{i}}d_{i})&0\end{pmatrix}&\text{ if }\mathcal{G}(F_{i})=\text{II},z_{i}\neq p-1,\end{cases}

where AdM(N)Ad\>M\>(N) denotes the matrix MNM1MNM^{-1}.

Proof.

By Lemma 2.4.9 using symmetry. ∎

Analogous to Proposition 2.4.8, we define a left action of lower unipotent matrices on η\eta^{\prime}-form via:

(A.3.1) (10y1)(aiueγibiuγicivdi)=(aiueγibiuγi(ci+yai)v(di+ybi)).\displaystyle\begin{pmatrix}1&0\\ y&1\end{pmatrix}\star\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&vd_{i}\end{pmatrix}=\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}(c_{i}+ya_{i})&v(d_{i}+yb_{i})\end{pmatrix}.

We will assume now that 𝔐\mathfrak{M} is a regular Breuil-Kisin module with Frobenius matrices {Fi}i\{F_{i}\}_{i} such that for iTi\in T, Fi=(vaiueγibiuγicidi)F_{i}=\begin{pmatrix}va_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&d_{i}\end{pmatrix} and for iTi\not\in T, Fi=(aiueγibiuγicivdi)F_{i}=\begin{pmatrix}a_{i}&u^{e-\gamma_{i}}b_{i}\\ u^{\gamma_{i}}c_{i}&vd_{i}\end{pmatrix} with ai,bi,ci,diRa_{i},b_{i},c_{i},d_{i}\in R. Our objective is to find the minimal set of conditions on ziz_{i} that prohibit unipotent action (upper or lower, depending on the form of FiF_{i}) from giving FiF^{\prime}_{i} (FiF^{\prime}_{i} are as defined in Lemmas 2.4.9 and A.3.1). Evidently, left unipotent action on FiF_{i} fails to give FiF^{\prime}_{i} if and only if one of the following is true:

  • iTi\in T, zi=0z_{i}=0 and si10modvs_{i-1}\not\equiv 0\mod v, or

  • iTi\not\in T, zi=p1z_{i}=p-1 and ri10modvr_{i-1}\not\equiv 0\mod v.

Recall that P(i)=(Fiφ(P(i1)))(Δi)1=(Fi)(Miφ(P(i1)))(Δi)1P^{(i)}=\mathcal{B}(F_{i}\varphi(P^{(i-1)}))(\Delta^{i})^{-1}=\mathcal{B}(F_{i})\mathcal{B}(M_{i}\varphi(P^{(i-1)}))(\Delta^{i})^{-1}. Also by the explicit calculations in Lemma 2.4.9, (Fi)\mathcal{B}(F_{i}) is upper triangular if iTi\in T and correspondingly, (Fi)\mathcal{B}(F_{i}) is lower triangular if iTi\not\in T.

We want to now ascertain criteria for when si10s_{i-1}\not\equiv 0 mod vv. We have the following possibilities:

  1. (1)

    If i1Ti-1\in T, (Fi1)\mathcal{B}(F_{i-1}) is upper triangular. Therefore, si10s_{i-1}\not\equiv 0 if and only if (Mi1φ(P(i2)))\mathcal{B}(M_{i-1}\varphi(P^{(i-2)})) is not upper triangular mod ueR[[u]]u^{e}R[\![u]\!]. By the calculations in Lemma 2.3.12, this can happen only if one of the following statements holds:

    1. (a)

      zi1=1z_{i-1}=1 and si20s_{i-2}\not\equiv 0 mod vv. In this situation, si1s_{i-1} is a multiple of si2s_{i-2} mod vv.

    2. (b)

      zi1=p1z_{i-1}=p-1 and ri20r_{i-2}\not\equiv 0 mod vv. In this situation, si1s_{i-1} is a multiple of ri2r_{i-2} mod vv.

  2. (2)

    If i1Ti-1\not\in T, (Fi1)\mathcal{B}(F_{i-1}) is lower triangular. In this case, if 𝒢(Fi1)=Iη\mathcal{G}(F_{i-1})=\text{I}_{\eta^{\prime}}, si1Cci1modvs_{i-1}\equiv Cc_{i-1}\mod v where CRC\in R^{*} . If 𝒢(Fi1)=II\mathcal{G}(F_{i-1})=\text{II}, si1s_{i-1} is an RR-linear combination of ri2r_{i-2} and di1d_{i-1} mod vv.

Similarly, for the situation where ri10r_{i-1}\not\equiv 0 mod vv, we have the following possibilities:

  1. (1)

    If i1Ti-1\not\in T, (Fi1)\mathcal{B}(F_{i-1}) is lower triangular. Therefore, ri10r_{i-1}\not\equiv 0 if and only if (Mi1φ(P(i2)))\mathcal{B}(M_{i-1}\varphi(P^{(i-2)})) is not lower triangular mod ueR[[u]]u^{e}R[\![u]\!]. By the calculations in Lemma 2.3.12, this can happen only if one of the following statements holds:

    1. (a)

      zi1=p2z_{i-1}=p-2 and ri20r_{i-2}\not\equiv 0 mod vv. In this situation, ri1r_{i-1} is a multiple of ri2r_{i-2} mod vv.

    2. (b)

      zi1=0z_{i-1}=0 and si20s_{i-2}\not\equiv 0 mod vv. In this situation, ri1r_{i-1} is a multiple of si2s_{i-2} mod vv.

  2. (2)

    If i1Ti-1\in T, (Fi1)\mathcal{B}(F_{i-1}) is upper triangular. In this case, if 𝒢(Fi1)=Iη\mathcal{G}(F_{i-1})=\text{I}_{\eta}, ri1Cbimodvr_{i-1}\equiv Cb_{i}\mod v where CRC\in R^{*} . If 𝒢(Fi1)=II\mathcal{G}(F_{i-1})=\text{II}, ri1r_{i-1} is an RR-linear combination of si2s_{i-2} and ai1a_{i-1} mod vv.

Suppose si10s_{i-1}\not\equiv 0 mod vv. Then ziz_{i} is preceded by some sequence (zik1,,zi1)=(1,,1)(z_{i-k-1},...,z_{i-1})=(1,...,1) with k1k\geq-1 and such that [ik2,i2]T[i-k-2,i-2]\subset T. When k=1k=-1, we mean that the sequence is empty. This sequence of 11’s must be preceded by either of the following:

  • zik2=p1z_{i-k-2}=p-1 with ik2,ik3Ti-k-2,i-k-3\in T. This situation is enough to construct an example with si10s_{i-1}\not\equiv 0 as we saw while proving the minimality of the second obstruction conditions in the proof of Proposition 2.4.8. In this case, (z~ik2,z~ik1,,z~i1)=(p1,1,,1)(\tilde{z}_{i-k-2},\tilde{z}_{i-k-1},...,\tilde{z}_{i-1})=(p-1,1,...,1) and none of the pairs in {(ik3,ik2),(ik2,ik1),,(i2,i1)}\{(i-k-3,i-k-2),(i-k-2,i-k-1),...,(i-2,i-1)\} are transitions.

  • zik2=p1z_{i-k-2}=p-1 with ik2Ti-k-2\in T, ik3Ti-k-3\not\in T and rik30r_{i-k-3}\not\equiv 0. This implies that (z~ik2,z~ik1,,z~i1)=(1,1,,1)(\tilde{z}_{i-k-2},\tilde{z}_{i-k-1},...,\tilde{z}_{i-1})=(1,1,...,1) and the sequence is preceded by another sequence that allows rik30r_{i-k-3}\not\equiv 0. Moreover the pair (ik3,ik2)(i-k-3,i-k-2) is a transition but none of the pairs in {(ik2,ik1),,(i2,i1)}\{(i-k-2,i-k-1),...,(i-2,i-1)\} are transitions.

By symmetry, similar conditions on z~j\tilde{z}_{j} exist when ri10r_{i-1}\not\equiv 0 mod vv.

Combining the analyses for si1s_{i-1} and ri1r_{i-1} together, we find that whenever there exists an ii such that FiUFiF^{\prime}_{i}\neq U\star F_{i} for all possible choices of UU (where UU is upper unipotent if FiF_{i} is in η\eta-form and lower unipotent if FiF_{i} is an η\eta^{\prime}-form), then (z~j)j(\tilde{z}_{j})_{j} must contain a contiguous subsequence of the form (p1,1,,1,0)(p-1,1,...,1,0) of length 2\geq 2. On the other hand, if such a contiguous subsequence exists, we can construct an example so that FiUFiF^{\prime}_{i}\neq U\star F_{i} for some ii, for any choice of UU (upper or lower unipotent depending on the form of FiF_{i}).

Thus, we generalize the definition of second obstruction as follows:

Definition A.3.2.

We say that a tame principal series 𝔽\mathbb{F}-type τ\tau faces the second obstruction if (z~i)i(\tilde{z}_{i})_{i\in\mathbb{Z}} contains a contiguous subsequence (p1,1,,1,0)(p-1,1,...,1,0) of length 2\geq 2.

A.4. Trivial Serre weight

The generalizations of the definitions of first and second obstructions (see Definitions A.2.3 and A.3.2) are very similar to the original definitions of first and second obstructions (see Definitions 2.4.7 and 2.4.10). Note that in the case where each Frobenius matrix is in η\eta-form, z~i=zi\tilde{z}_{i}=z_{i}. By Remark A.1.3, upon requiring τ\tau to not face the first and second obstructions, we exclude no fewer irreducible components of 𝒵\mathcal{Z} than we had done earlier.

However, notice that the components of 𝒵\mathcal{Z} indexed by twists of the trivial Serre weight were also not covered under our strategy when we allowed only η\eta-form Frobenius matrices, even though their exclusion did not arise from the first and second obstruction conditions. If 𝒵(σ)\mathcal{Z}(\sigma) is such a component, then by Proposition 4.1.2, the only possible tame principal series 𝔽\mathbb{F}-type τ=ηη\tau=\eta\oplus\eta^{\prime} such that 𝒞τ,BT(/f)\mathcal{C}^{\tau,\mathrm{BT}}(\mathbb{Z}/f\mathbb{Z}) covers 𝒵(σ)\mathcal{Z}(\sigma) does not satisfy ηη\eta\neq\eta^{\prime}. This situation can be rectified by allowing some Frobenius matrices to be in η\eta^{\prime}-form when f2f\geq 2. By the calculations in Remark A.1.3, all we need is that each z~i=p1\tilde{z}_{i}=p-1, while not all ziz_{i} equal 0 (so that ηη)\eta\neq\eta^{\prime}). For instance, we can choose T=/f{0}T=\mathbb{Z}/f\mathbb{Z}\smallsetminus\{0\}, and choose τ\tau so that z0=p2z_{0}=p-2, z1=1z_{1}=1 and all other zjz_{j}’s equal to p1p-1. A version of Proposition 2.4.12 can be shown to hold for this situation when p>3p>3 and we can find a similar result as in Theorem 5.0.1 when p>3p>3, the Serre weight is trivial and f2f\geq 2. We omit the technical calculations from this paper because the trivial weight is in the Fontaine-Lafaille range and amenable to other methods.

References

  • [BBH+] R. Bellovin, N. Borade, A. Hilado, K. Kansal, H. Lee, B. Levin, D. Savitt, and H. Wiersema, Irregular loci in the Emerton-Gee stack for GL2GL_{2}, Preprint.
  • [BLGG13] Tom Barnet-Lamb, Toby Gee, and David Geraghty, Serre weights for rank two unitary groups, Math. Ann. 356 (2013), 1551–1598.
  • [CDM18] Xavier Caruso, Agnès David, and Ariane Mézard, Un calcul d’anneaux de déformations potentiellement Barsotti–Tate, Trans. Amer. Math. Soc. 370 (2018), 6041–6096.
  • [CEGS22a] Ana Caraiani, Matthew Emerton, Toby Gee, and David Savitt, Components of moduli stacks of two-dimensional Galois representations, arXiv preprint arXiv:2207.05237 (2022).
  • [CEGS22b] by same author, Local geometry of moduli stacks of two-dimensional Galois representations, arXiv preprint arXiv:2207.14337 (2022).
  • [EG21] Matthew Emerton and Toby Gee, “Scheme-theoretic images” of morphisms of stacks, Algebraic Geometry (2021), 1–132.
  • [EG23] by same author, Moduli stacks of étale (ϕ,Γ)(\phi,{\Gamma})-modules and the existence of crystalline lifts, Annals of Mathematical Studies AMS-215 (2023).
  • [EGH22] Matthew Emerton, Toby Gee, and Eugen Hellmann, An introduction to the categorical pp-adic langlands program, arXiv preprint arXiv:2210.01404 (2022).
  • [Fon91] Jean-Marc Fontaine, Représentations p-adiques des corps locaux (1ère partie), The Grothendieck Festschrift (1991), 249–309.
  • [Kis06] Mark Kisin, Crystalline representations and F-crystals, Algebraic Geometry and Number Theory (2006), 459–496.
  • [Sta18] The Stacks project authors, The stacks project, http://stacks.math.columbia.edu, 2018.