This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Smoothers Based on Nonoverlapping Domain Decomposition Methods for H(𝐜𝐮𝐫𝐥)H(\mathbf{curl}) Problems: A Numerical Study

Duk-Soon Oh Department of Mathematics
Chungnam National University
South Korea
[email protected]
Abstract.

This paper presents a numerical study on multigrid algorithms of VV–cycle type for problems posed in the Hilbert space H(𝐜𝐮𝐫𝐥)H(\mathbf{curl}) in three dimensions. The multigrid methods are designed for discrete problems originated from the discretization using the hexahedral Nédélec edge element of the lowest-order. Our suggested methods are associated with smoothers constructed by substructuring based on domain decomposition methods of nonoverlapping type. Numerical experiments to demonstrate the robustness and the effectiveness of the suggested algorithms are also provided.

Key words and phrases:
multigrid method, Nédélec finite element, H(𝐜𝐮𝐫𝐥)H(\mathbf{curl}), nonoverlapping domain decomposition
2020 Mathematics Subject Classification:
65N30, 65N55, 65F08
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01072168)

1. Introduction

Let Ω\Omega be a domain that is bounded in 3\mathds{R}^{3}. We will work with the H0(𝐜𝐮𝐫𝐥;Ω)H_{0}(\mathbf{curl};\Omega) Hilbert space which consists of vector fields in the space (L2(Ω))3(L^{2}(\Omega))^{3} with curl also in (L2(Ω))3(L^{2}(\Omega))^{3} and vanishing tangential components on the boundary Ω\partial\Omega (cf. [12]). We will consider the following variational problem: Find 𝒖H0(𝐜𝐮𝐫𝐥;Ω)\bm{u}\in H_{0}(\mathbf{curl};\Omega) such that

(1) a(𝒖,𝒗)=(𝒇,𝒗),𝒗H0(𝐜𝐮𝐫𝐥;Ω),a(\bm{u},\bm{v})=(\bm{f},\bm{v}),\quad\forall\bm{v}\in H_{0}(\mathbf{curl};\Omega),

where

(2) a(𝒗,𝒘)=α(𝐜𝐮𝐫𝐥𝒗,𝐜𝐮𝐫𝐥𝒘)+β(𝒗,𝒘).a(\bm{v},\bm{w})=\alpha\cdot(\mathbf{curl}\,\bm{v},\mathbf{curl}\,\bm{w})+\beta\cdot(\bm{v},\bm{w}).

Here, (,)(\cdot,\cdot) is the standard inner product on [L2(Ω)]3[L_{2}(\Omega)]^{3} and we assume that α\alpha is nonnegative and β\beta is strictly positive. We also assume that 𝒇\bm{f} is a square integrable vector field on Ω\Omega, i.e., 𝒇(L2(Ω))3\bm{f}\in(L^{2}(\Omega))^{3}. In this manuscript, we will provide a multigrid framework for solving our model problem (1).

The model problem (1) is originated from the applications in Maxwell’s equation; see [21]. Relevant fast solvers, such as multigrid methods and domain decomposition methods, for problems connected with H(𝐜𝐮𝐫𝐥)H(\mathbf{curl}) have been discussed in [14, 15, 17, 4, 24, 25, 9, 10, 16, 11, 26, 18].

It is well-known that the traditional smoothers for solving the scalar elliptic problems do not work well for vector field problems related to H(𝐜𝐮𝐫𝐥)H(\mathbf{curl}) and H(div)H(\mathrm{div}); see [8]. Hence, a special smoothing technique is necessary for vector field problems. Function space splitting methods based on Helmholtz type decompositions pioneered by Hiptmair [14, 13] and Hiptmair and Xu [15] have been considered. In [2, 4, 3], an overlapping type domain decomposition preconditioner has been applied. We also note that the author and Brenner considered smoothers associated with nonoverlapping type domain decomposition methods for H(div)H(\mathrm{div}) problems in [5, 6].

In this paper, we propose a VV–cycle multigrid method with nonoverlapping domain decomposition smoothers and mainly consider the numerical study that is not covered by theories in [23]. In [23], the author provided the convergence analysis with the assumptions, i.e., convex domain and constant material parameters in (1). We test our method with less strict conditions, e.g., jump coefficients for α\alpha and β\beta, nonconvex domain. We note that our multigrid method is an H(𝐜𝐮𝐫𝐥)H(\mathbf{curl}) counterpart of the method in [5, 6] and a nonoverlapping alternative of the method in [4], which requires less computational costs when applying the smoother.

The remainder of this paper is structured as follows. In Section 2, the standard way to discretize our model problem using the hexahedral Nédélec element is introduced. We next present our VV–cycle multigrid algorithm in Section 3. Finally, we provide numerical experiments in Section 4.

2. The Discrete Problem

We first consider a triangulation 𝒯h\mathcal{T}_{h} of Ω\Omega into hexahedral elements. The lowest order hexahedral Nédélec element [20, 22] has the following form:

[a1+a2y+a3z+a4yzb1+b2z+b3x+b4zxc1+c2x+c3y+c4xy]\begin{bmatrix}a_{1}+a_{2}y+a_{3}z+a_{4}yz\\ b_{1}+b_{2}z+b_{3}x+b_{4}zx\\ c_{1}+c_{2}x+c_{3}y+c_{4}xy\end{bmatrix}

on each hexahedral mesh, where the aia_{i}’s, bib_{i}’s and cic_{i}’s are constants. We note that the twelve degrees of freedom can be completely recovered by the average tangential component on each edge of the element. Using the finite elements, we obtain the following discretized problem for (1): Find 𝒖hWh\bm{u}_{h}\in W_{h} such that

(3) a(𝒖h,𝒗h)=(𝒇,𝒗h)𝒗hWh,a(\bm{u}_{h},\bm{v}_{h})=(\bm{f},\bm{v}_{h})\qquad\forall\,\bm{v}_{h}\in W_{h},

where WhW_{h} is the Nédélec finite element space of the lowest order.

We define the operator A:WhWhA:W_{h}\rightarrow W_{h}^{\prime} in the following way:

(4) A𝒗h,𝒘h=a(𝒗h,𝒘h)𝒗h,𝒘hWh.\langle A\bm{v}_{h},\bm{w}_{h}\rangle=a(\bm{v}_{h},\bm{w}_{h})\qquad\forall\,\bm{v}_{h},\bm{w}_{h}\in W_{h}.

Here, ,,\langle\cdot,\cdot,\rangle is the canonical bilinear form on Wh×WhW_{h}^{\prime}\times W_{h}. We then have the following discrete problem:

(5) A𝒖h=fh,A\bm{u}_{h}=f_{h},

where fhWhf_{h}\in W_{h}^{\prime} defined by

fh,𝒗h=(𝒇,𝒗h)𝒗hWh.\langle f_{h},\bm{v}_{h}\rangle=(\bm{f},\bm{v}_{h})\qquad\forall\,\bm{v}_{h}\in W_{h}.

3. VV-Cycle Multigrid Method

In a multigrid setting, we construct a nested sequence of triangulations, 𝒯0,𝒯1,,\mathcal{T}_{0},\mathcal{T}_{1},\cdots, starting with the initial triangulation 𝒯0\mathcal{T}_{0} consisting of few hexahedral elements. We assume that 𝒯k\mathcal{T}_{k} is obtained by uniform subdivision from 𝒯k1\mathcal{T}_{k-1}. We then define WkW_{k} which is the lowest order Nédélec space related to the kthk^{\rm th} level mesh and the corresponding discrete problem: Find 𝒖kWk\bm{u}_{k}\in W_{k} such that

(6) Ak𝒖k=fk.A_{k}\bm{u}_{k}=f_{k}.

Here, fkf_{k} is defined by

fk,𝒗k=(𝒇,𝒗k)𝒗kWk.\langle f_{k},\bm{v}_{k}\rangle=(\bm{f},\bm{v}_{k})\qquad\forall\,\bm{v}_{k}\in W_{k}.

In order for solving the discrete problem (6) using multigrid methods, we need two essential ingredients, intergrid transfer operators and smoothers. We note that everything else can be constructed in a standard way.

Since we are dealing with the nested finite element spaces, the natural injection can be used as the coarse-to-fine operator Ik1k:Wk1WkI_{k-1}^{k}:W_{k-1}\longrightarrow W_{k}. The fine-to-coarse operator Ikk1:WkWk1I_{k}^{k-1}:W_{k}^{\prime}\longrightarrow W_{k-1}^{\prime} is then defined by

(7) Ikk1r,𝒗k1=r,Ik1k𝒗k1rWk,𝒗k1Wk1.\langle I_{k}^{k-1}r,\bm{v}_{k-1}\rangle=\langle r,I_{k-1}^{k}\bm{v}_{k-1}\rangle\qquad\forall\,r\in W_{k}^{\prime},\,\bm{v}_{k-1}\in W_{k-1}.

We now focus on the missing piece, smoother. As we are interested in designing nonoverlapping type domain decomposition smoothers, we borrow the standard two level domain decomposition framework, i.e., the coarse level and the fine level that are associated with 𝒯k1\mathcal{T}_{k-1} and 𝒯k\mathcal{T}_{k}, respectively.

Before we construct the smoothers, we set up notations for the geometric substructures. Let k1\mathcal{E}_{k-1}, k1\mathcal{F}_{k-1}, and 𝒱k1\mathcal{V}_{k-1} be the sets of interior edges, interior faces, and interior vertices of the triangulation 𝒯k1\mathcal{T}_{k-1}, respectively.

We first consider the interior space. Given any coarse element T𝒯k1T\in\mathcal{T}_{k-1}, let us define the subspace WkTW_{k}^{T} by

(8) WkT={𝒗Wk:𝒗=𝟎onΩT}.W_{k}^{T}=\{\bm{v}\in W_{k}:\,\bm{v}=\bm{0}\;\text{on}\;\Omega\setminus T\}.

Let JTJ_{T} denote the natural injection from WkTW_{k}^{T} into WkW_{k}. The operator AT:WkT(WkT)A_{T}:W_{k}^{T}\rightarrow\left(W_{k}^{T}\right)^{\prime} is constructed by

(9) AT𝒗,𝒘=a(𝒗,𝒘)𝒗,𝒘WkT.\langle A_{T}\bm{v},\bm{w}\rangle=a(\bm{v},\bm{w})\qquad\forall\,\bm{v},\bm{w}\in W_{k}^{T}.

For a coarse edge Ek1E\in\mathcal{E}_{k-1}, there are four coarse elements, TEi,i=1,2,3,4T_{E}^{i},i=1,2,3,4, in 𝒯k1\mathcal{T}_{k-1} and four coarse faces, FEi,i=1,2,3,4F_{E}^{i},i=1,2,3,4, in k1\mathcal{F}_{k-1}, that are sharing EE. The edge space WkEW_{k}^{E} of WkW_{k} is defined as follow:

(10) WkE=\displaystyle W_{k}^{E}= {𝒗Wk:𝒗=𝟎 on Ω((i=14TEi)(j=14FEj)E),\displaystyle\left\{\bm{v}\in W_{k}:\bm{v}=\bm{0}\;\text{ on }\;\Omega\setminus\left(\left(\cup_{i=1}^{4}T_{E}^{i}\right)\bigcup\left(\cup_{j=1}^{4}F_{E}^{j}\right)\bigcup E\right),\right.
 and a(𝒗,𝒘)=0𝒘(WkTE1+WkTE2+WkTE3+WkTE4)}.\displaystyle\left.\hskip 10.0pt\mbox{ and }a(\bm{v},\bm{w})=0\quad\forall\,\bm{w}\in\left(W_{k}^{T_{E}^{1}}+W_{k}^{T_{E}^{2}}+W_{k}^{T_{E}^{3}}+W_{k}^{T_{E}^{4}}\right)\right\}.

Let JE:WkEWkJ_{E}:W_{k}^{E}\rightarrow W_{k} be the natural injection and the operator AE:WkE(WkE)A_{E}:W_{k}^{E}\rightarrow\left(W_{k}^{E}\right)^{\prime} be defined by

(11) AE𝒗,𝒘=a(𝒗,𝒘)𝒗,𝒘WkE.\langle A_{E}\bm{v},\bm{w}\rangle=a(\bm{v},\bm{w})\qquad\forall\,\bm{v},\bm{w}\in W_{k}^{E}.

Finally, we define the vertex space WkPW_{k}^{P} of WkW_{k}. For each coarse vertex P𝒱k1P\in\mathcal{V}_{k-1}, there are eight elements, TPi,i=1,,8T_{P}^{i},i=1,\cdots,8, in 𝒯k1\mathcal{T}_{k-1}, twelve faces, FPj,j=1,,12F_{P}^{j},j=1,\cdots,12, in k1\mathcal{F}_{k-1}, and six edges, EPl,l=1,,6E_{P}^{l},l=1,\cdots,6, in k1\mathcal{E}_{k-1}, that have the point PP in common. We define the vertex space WkPW_{k}^{P} by

(12) WkP=\displaystyle W_{k}^{P}= {𝒗Wk:𝒗=𝟎 on Ω((i=18TPi)(j=112FPj)(l=16EPl)),\displaystyle\left\{\bm{v}\in W_{k}:\bm{v}=\bm{0}\;\text{ on }\;\Omega\setminus\left(\left(\cup_{i=1}^{8}T_{P}^{i}\right)\bigcup\left(\cup_{j=1}^{12}F_{P}^{j}\right)\bigcup\left(\cup_{l=1}^{6}E_{P}^{l}\right)\right),\right.
 and a(𝒗,𝒘)=0𝒘(i=18WkTPi)}.\displaystyle\left.\hskip 10.0pt\mbox{ and }a(\bm{v},\bm{w})=0\quad\forall\,\bm{w}\in\left(\sum_{i=1}^{8}W_{k}^{T_{P}^{i}}\right)\right\}.

The natural injection JP:WkPWkJ_{P}:W_{k}^{P}\rightarrow W_{k} and the operator APA_{P} are obtained by a similar way to JEJ_{E} and AEA_{E}, respectively.

We now define two smoothers, the edge-based and the vertex-based preconditioners. The edge-based smoother ME,k1M_{E,k}^{-1} is constructed as follow:

(13) ME,k1=ηE(T𝒯k1JTAT1JTt+Ek1JEAE1JEt).M_{E,k}^{-1}=\eta_{E}\left(\sum_{T\in\mathcal{T}_{k-1}}J_{T}A_{T}^{-1}J_{T}^{t}+\sum_{E\in\mathcal{E}_{k-1}}J_{E}A_{E}^{-1}J_{E}^{t}\right).

Similarly, the vertex-based smoother MP,k1M_{P,k}^{-1} is obtained by

(14) MP,k1=ηP(T𝒯k1JTAT1JTt+P𝒱k1JPAP1JPt).M_{P,k}^{-1}=\eta_{P}\left(\sum_{T\in\mathcal{T}_{k-1}}J_{T}A_{T}^{-1}J_{T}^{t}+\sum_{P\in\mathcal{V}_{k-1}}J_{P}A_{P}^{-1}J_{P}^{t}\right).

Here, ηE\eta_{E} and ηP\eta_{P} are damping factors and JTt:Wk(WkT)J_{T}^{t}:W_{k}^{\prime}\rightarrow\left(W_{k}^{T}\right)^{\prime}, JEt:Wk(WkE)J_{E}^{t}:W_{k}^{\prime}\rightarrow\left(W_{k}^{E}\right)^{\prime}, and JPt:Wk(WkP)J_{P}^{t}:W_{k}^{\prime}\rightarrow\left(W_{k}^{P}\right)^{\prime} are the transposes of JTJ_{T}, JEJ_{E}, and JPJ_{P}, respectively. We can decide the damping factors such that

(15) ρ(ME,k1Ak)1 and ρ(MP,k1Ak)1,\rho\left(M_{E,k}^{-1}A_{k}\right)\leq 1\mbox{ and }\rho\left(M_{P,k}^{-1}A_{k}\right)\leq 1,

where ρ(ME,k1Ak)\rho\left(M_{E,k}^{-1}A_{k}\right) and ρ(MP,k1Ak)\rho\left(M_{P,k}^{-1}A_{k}\right) are the spectral radii of ME,k1AkM_{E,k}^{-1}A_{k} and MP,k1AkM_{P,k}^{-1}A_{k}, respectively. We note that the conditions in (15) are satisfied if ηE1/12\eta_{E}\leq 1/12 and ηP1/8\eta_{P}\leq 1/8.

Putting all together, we can completely determine the multigrid framework. The output MGV(k,g,𝒛0,m)MGV\left(k,g,\bm{z}_{0},m\right) of the kthk^{\rm th} level (symmetric) multigrid VV-cycle algorithm for Ak𝒛=gA_{k}\bm{z}=g, with initial guess 𝒛0Wk\bm{z}_{0}\in W_{k} and mm smoothing steps, is defined as follows:

For k=0k=0, the result is obtained by using a direct solver:

MGV(0,g,𝒛0,m)=A01g.MGV\left(0,g,\bm{z}_{0},m\right)=A_{0}^{-1}g.

For k1k\geq 1, we set

𝒛l\displaystyle\bm{z}_{l} =𝒛l1+Mk1(gAk𝒛l1)forl=1,,m,\displaystyle=\bm{z}_{l-1}+M_{k}^{-1}\left(g-A_{k}\bm{z}_{l-1}\right)\qquad\text{for}\;l=1,\cdots,m,
g¯\displaystyle\overline{g} =Ikk1(gAk𝒛m),\displaystyle=I_{k}^{k-1}\left(g-A_{k}\bm{z}_{m}\right),
𝒛m+1\displaystyle\bm{z}_{m+1} =𝒛m+Ik1kMGV(k1,g¯,0,m),\displaystyle=\bm{z}_{m}+I_{k-1}^{k}MGV\left(k-1,\overline{g},0,m\right),
𝒛l\displaystyle\bm{z}_{l} =𝒛l1+Mk1(gAk𝒛l1)forl=m+2,,2m+1.\displaystyle=\bm{z}_{l-1}+M_{k}^{-1}\left(g-A_{k}\bm{z}_{l-1}\right)\qquad\text{for}\;l=m+2,\cdots,2m+1.

The output of MGV(k,g,𝒛0,m)MGV\left(k,g,\bm{z}_{0},m\right) is 𝒛2m+1\bm{z}_{2m+1}. The smoother MkM_{k} is either ME,kM_{E,k} or MP,kM_{P,k} defined earlier in the current section.

In order to check the efficiency of the algorithm, we consider the following error propagation operator:

(16) 𝔼km(𝒛𝒛0)=𝒛MGV(k,g,𝒛0,m).\mathbb{E}_{k}^{m}(\bm{z}-\bm{z}_{0})=\bm{z}-MGV(k,g,\bm{z}_{0},m).

The operator 𝔼km\mathbb{E}_{k}^{m} is affiliated with the error after one kthk^{\rm th} multigrid sweep with mm smoothing steps. For more detail, see [7, Chapter 6].

4. Numerical Results

We note that a part of the finite element discretizations has been implemented with the MFEM library [1, 19]. The codes used for the experiments are available at the repository https://github.com/duksoon-open/MG_ND.

4.1. Jump Coefficients

Refer to caption
Figure 1. Checkerboard distribution of the coefficients

The first experiment is for the cube Ω=(1,1)3\Omega=(-1,1)^{3}. The domain Ω\Omega is decomposed into eight identical cubical subdomains and set the subregions as the initial triangulation 𝒯0\mathcal{T}_{0}. We assume that the coefficients α\alpha and β\beta are constants in each subdomain in a checkerboard pattern; see Fig. 1. We apply the multigrid algorithms, edge-based method and vertex-based method, introduced in Section 3. We report the contraction numbers by calculating the largest eigenvalue of the operators 𝔼km\mathbb{E}_{k}^{m} in (16), for k=1,,4k=1,\cdots,4 and for m=1,,5m=1,\cdots,5. The results are presented in Table 1 and Table 2. We see that the multigrid methods provide contraction and are robust to the jump between the interface of the initial mesh.

Table 1. Contraction numbers of the VV-cycle edge-based methods. αb\alpha_{b} and βb\beta_{b} for the black subregions and αw\alpha_{w} and βw\beta_{w} for the white subregions as indicated in a checkerboard pattern as in Fig. 1
m=1m=1 m=2m=2 m=3m=3 m=4m=4 m=5m=5
αb=0.01,βb=1,αw=1,βw=1\alpha_{b}=0.01,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.905 0.827 0.762 0.709 0.663
k=2k=2 0.940 0.908 0.872 0.841 0.811
k=3k=3 0.967 0.952 0.935 0.917 0.902
k=4k=4 0.981 0.970 0.960 0.955 0.942
αb=0.1,βb=1,αw=1,βw=1\alpha_{b}=0.1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.905 0.827 0.763 0.710 0.666
k=2k=2 0.941 0.910 0.875 0.844 0.807
k=3k=3 0.967 0.954 0.937 0.92 0.905
k=4k=4 0.980 0.971 0.961 0.956 0.945
αb=1,βb=1,αw=1,βw=1\alpha_{b}=1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.907 0.831 0.769 0.719 0.677
k=2k=2 0.944 0.917 0.885 0.858 0.830
k=3k=3 0.970 0.959 0.944 0.930 0.917
k=4k=4 0.981 0.972 0.965 0.963 0.956
αb=10,βb=1,αw=1,βw=1\alpha_{b}=10,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.909 0.836 0.777 0.729 0.690
k=2k=2 0.948 0.924 0.896 0.872 0.853
k=3k=3 0.972 0.965 0.952 0.941 0.931
k=4k=4 0.982 0.974 0.971 0.969 0.966
αb=100,βb=1,αw=1,βw=1\alpha_{b}=100,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.910 0.837 0.778 0.731 0.693
k=2k=2 0.949 0.926 0.898 0.875 0.857
k=3k=3 0.973 0.966 0.954 0.943 0.934
k=4k=4 0.982 0.975 0.972 0.970 0.968
Table 2. Contraction numbers of the VV-cycle vertex-based methods. αb\alpha_{b} and βb\beta_{b} for the black subregions and αw\alpha_{w} and βw\beta_{w} for the white subregions as indicated in a checkerboard pattern as in Fig. 1
m=1m=1 m=2m=2 m=3m=3 m=4m=4 m=5m=5
αb=0.01,βb=1,αw=1,βw=1\alpha_{b}=0.01,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.790 0.624 0.493 0.390 0.308
k=2k=2 0.792 0.627 0.495 0.393 0.312
k=3k=3 0.791 0.625 0.494 0.391 0.310
k=4k=4 0.791 0.626 0.495 0.392 0.317
αb=0.1,βb=1,αw=1,βw=1\alpha_{b}=0.1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.790 0.624 0.493 0.390 0.308
k=2k=2 0.791 0.626 0.494 0.392 0.310
k=3k=3 0.791 0.626 0.495 0.392 0.310
k=4k=4 0.791 0.626 0.495 0.392 0.311
αb=1,βb=1,αw=1,βw=1\alpha_{b}=1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.790 0.624 0.493 0.390 0.308
k=2k=2 0.791 0.626 0.495 0.392 0.310
k=3k=3 0.791 0.626 0.495 0.392 0.311
k=4k=4 0.791 0.626 0.495 0.392 0.311
αb=10,βb=1,αw=1,βw=1\alpha_{b}=10,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.790 0.624 0.493 0.390 0.308
k=2k=2 0.791 0.626 0.495 0.392 0.311
k=3k=3 0.791 0.626 0.495 0.392 0.311
k=4k=4 0.791 0.626 0.495 0.392 0.311
αb=100,βb=1,αw=1,βw=1\alpha_{b}=100,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.790 0.624 0.493 0.390 0.308
k=2k=2 0.791 0.626 0.495 0.392 0.311
k=3k=3 0.791 0.626 0.495 0.393 0.318
k=4k=4 0.791 0.632 0.524 0.483 0.429

4.2. Nonconvex Domain

In the second set of numerical tests, we consider the domain Ω=(1,1)3\(1,0)3\Omega=(-1,1)^{3}\backslash(-1,0)^{3}, which is nonconvex. We begin with the initial mesh 𝒯0\mathcal{T}_{0} which consists of seven identical cubes as in Figure 2 and inductively define the kthk^{\rm th} level mesh 𝒯k\mathcal{T}_{k} by a uniform subdivision. Other general settings are similar to those of Section 4.1. We apply our multigrid algorithm for the problem (1) on the domain Ω\Omega and report the contraction numbers computed in the same manner with the first experiment. As we see the results in the Table 3 and Table 4, the uniform convergences and robustness are observed except for the problem with k=1k=1 using the vertex-based smoother.

Refer to caption
Figure 2. Checkerboard distribution of the coefficients for the nonconvex domain
Table 3. Contraction numbers of the VV-cycle edge-based methods for the nonconvex domain. αb\alpha_{b} and βb\beta_{b} for the black subregions and αw\alpha_{w} and βw\beta_{w} for the white subregions as indicated in a checkerboard pattern as in Fig. 2
m=1m=1 m=2m=2 m=3m=3 m=4m=4 m=5m=5
αb=0.01,βb=1,αw=1,βw=1\alpha_{b}=0.01,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.835 0.702 0.576 0.471 0.420
k=2k=2 0.940 0.881 0.828 0.785 0.749
k=3k=3 0.967 0.940 0.918 0.892 0.869
k=4k=4 0.982 0.969 0.957 0.948 0.934
αb=0.1,βb=1,αw=1,βw=1\alpha_{b}=0.1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.823 0.682 0.542 0.436 0.390
k=2k=2 0.943 0.887 0.832 0.796 0.757
k=3k=3 0.966 0.941 0.918 0.892 0.870
k=4k=4 0.983 0.970 0.958 0.948 0.936
αb=1,βb=1,αw=1,βw=1\alpha_{b}=1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.799 0.627 0.511 0.419 0.338
k=2k=2 0.945 0.894 0.844 0.802 0.768
k=3k=3 0.970 0.942 0.920 0.896 0.876
k=4k=4 0.984 0.974 0.961 0.950 0.941
αb=10,βb=1,αw=1,βw=1\alpha_{b}=10,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.802 0.646 0.523 0.420 0.348
k=2k=2 0.946 0.896 0.851 0.804 0.773
k=3k=3 0.972 0.943 0.924 0.902 0.881
k=4k=4 0.986 0.976 0.964 0.954 0.945
αb=100,βb=1,αw=1,βw=1\alpha_{b}=100,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 0.804 0.651 0.529 0.424 0.354
k=2k=2 0.947 0.896 0.851 0.805 0.774
k=3k=3 0.972 0.944 0.924 0.903 0.882
k=4k=4 0.986 0.976 0.965 0.955 0.946
Table 4. Contraction numbers of the VV-cycle vertex-based methods for the nonconvex domain. αb\alpha_{b} and βb\beta_{b} for the black subregions and αw\alpha_{w} and βw\beta_{w} for the white subregions as indicated in a checkerboard pattern as in Fig. 2
m=1m=1 m=2m=2 m=3m=3 m=4m=4 m=5m=5
αb=0.01,βb=1,αw=1,βw=1\alpha_{b}=0.01,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 >1>1 >1>1 >1>1 >1>1 >1>1
k=2k=2 0.912 0.835 0.765 0.683 0.648
k=3k=3 0.905 0.825 0.758 0.689 0.622
k=4k=4 0.912 0.834 0.765 0.697 0.626
αb=0.1,βb=1,αw=1,βw=1\alpha_{b}=0.1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 >1>1 >1>1 >1>1 >1>1 >1>1
k=2k=2 0.896 0.808 0.726 0.622 0.598
k=3k=3 0.878 0.789 0.710 0.629 0.535
k=4k=4 0.890 0.792 0.703 0.577 0.518
αb=1,βb=1,αw=1,βw=1\alpha_{b}=1,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 >1>1 >1>1 >1>1 >1>1 >1>1
k=2k=2 0.869 0.758 0.660 0.576 0.504
k=3k=3 0.837 0.705 0.593 0.497 0.425
k=4k=4 0.827 0.689 0.570 0.479 0.407
αb=10,βb=1,αw=1,βw=1\alpha_{b}=10,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 >1>1 >1>1 >1>1 >1>1 >1>1
k=2k=2 0.863 0.766 0.666 0.591 0.503
k=3k=3 0.844 0.725 0.613 0.495 0.453
k=4k=4 0.829 0.706 0.574 0.498 0.420
αb=100,βb=1,αw=1,βw=1\alpha_{b}=100,\beta_{b}=1,\alpha_{w}=1,\beta_{w}=1
k=1k=1 >1>1 >1>1 >1>1 >1>1 >1>1
k=2k=2 0.865 0.772 0.675 0.602 0.515
k=3k=3 0.849 0.735 0.626 0.509 0.471
k=4k=4 0.833 0.717 0.590 0.519 0.447

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01072168).

References

  • [1] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini. MFEM: A modular finite element library. Computers & Mathematics with Applications, 81:42–74, 2021.
  • [2] D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div)H({\rm div}) and applications. Math. Comp., 66(219):957–984, 1997.
  • [3] D. N. Arnold, R. S. Falk, and R. Winther. Multigrid preconditioning in H(div)H({\rm div}) on non-convex polygons. Comput. Appl. Math., 17(3):303–315, 1998.
  • [4] D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div)H({\rm div}) and H(curl)H({\rm curl}). Numer. Math., 85(2):197–217, 2000.
  • [5] S. C. Brenner and D.-S. Oh. Multigrid methods for H(div)H({\rm div}) in three dimensions with nonoverlapping domain decomposition smoothers. Numer. Linear Algebra Appl., 25(5):e2191, 14, 2018.
  • [6] S. C. Brenner and D.-S. Oh. A smoother based on nonoverlapping domain decomposition methods for H(div)H({\rm div}) problems: a numerical study. In Domain decomposition methods in science and engineering XXIV, volume 125 of Lect. Notes Comput. Sci. Eng., pages 523–531. Springer, Cham, 2018.
  • [7] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
  • [8] Z. Q. Cai, C. I. Goldstein, and J. E. Pasciak. Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput., 14(5):1072–1088, 1993.
  • [9] J. G. Calvo. A two-level overlapping Schwarz method for H(curl)H(\rm curl) in two dimensions with irregular subdomains. Electron. Trans. Numer. Anal., 44:497–521, 2015.
  • [10] J. G. Calvo. A new coarse space for overlapping Schwarz algorithms for H(curl)H(\rm curl) problems in three dimensions with irregular subdomains. Numer. Algorithms, 83(3):885–899, 2020.
  • [11] C. R. Dohrmann and O. B. Widlund. A BDDC algorithm with deluxe scaling for three-dimensional H(𝐜𝐮𝐫𝐥)H({\bf curl}) problems. Comm. Pure Appl. Math., 69(4):745–770, 2016.
  • [12] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.
  • [13] R. Hiptmair. Multigrid method for H(div)H({\rm div}) in three dimensions. Electron. Trans. Numer. Anal., 6(Dec.):133–152, 1997. Special issue on multilevel methods (Copper Mountain, CO, 1997).
  • [14] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36(1):204–225, 1999.
  • [15] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in 𝐇(𝐜𝐮𝐫𝐥){\bf H}({\bf curl}) and 𝐇(div){\bf H}({\rm div}) spaces. SIAM J. Numer. Anal., 45(6):2483–2509, 2007.
  • [16] Q. Hu and J. Zou. A nonoverlapping domain decomposition method for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal., 41(5):1682–1708, 2003.
  • [17] T. V. Kolev and P. S. Vassilevski. Parallel auxiliary space AMG for H(curl)H({\rm curl}) problems. J. Comput. Math., 27(5):604–623, 2009.
  • [18] Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly singular systems. Math. Models Methods Appl. Sci., 17(11):1937–1963, 2007.
  • [19] MFEM: Modular finite element methods [Software]. mfem.org.
  • [20] P. Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.
  • [21] P. B. Monk. A mixed method for approximating Maxwell’s equations. SIAM J. Numer. Anal., 28(6):1610–1634, 1991.
  • [22] J.-C. Nédélec. Mixed finite elements in 𝐑3{\bf R}^{3}. Numer. Math., 35(3):315–341, 1980.
  • [23] D.-S. Oh. Multigrid methods for 3DD H(𝐜𝐮𝐫𝐥){H}(\mathbf{curl}) problems with nonoverlapping domain decomposition smoothers, 2022. submitted, arXiv:2205.05840.
  • [24] A. Toselli. Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math., 86(4):733–752, 2000.
  • [25] A. Toselli. Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions. C. R. Math. Acad. Sci. Paris, 339(9):673–678, 2004.
  • [26] S. Zampini. Adaptive BDDC deluxe methods for H(curl)\rm H(curl). In Domain decomposition methods in science and engineering XXIII, volume 116 of Lect. Notes Comput. Sci. Eng., pages 285–292. Springer, Cham, 2017.