This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Smooth AA_{\infty}-form on a diffeological loop space

Norio IWASE [email protected] Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
Abstract.

To construct an AA_{\infty}-form for a loop space in the category of diffeological spaces, we have two minor problems. Firstly, the concatenation of paths in the category of diffeological spaces needs a small technical trick (see P. I-Zemmour [IZ13]), which apparently restricts the number of iterations of concatenations. Secondly, we do not know a natural smooth decomposition of an associahedron as a simplicial or a cubical complex. To resolve these difficulties, we introduce a notion of a qq-cubic set which enjoys good properties on dimensions and representabilities, and show, using it, that the smooth loop space of a reflexive diffeological space is a h-unital smooth AA_{\infty}-space. In appendix, we show an alternative solution by modifying the concatenation to be stable without assuming reflexivity for spaces nor stability for paths.

Key words and phrases:
Diffeology, homotopy associativity, AA_{\infty} structure
2010 Mathematics Subject Classification:
Primary 58A40, Secondary 58A03, 58A05, 57N60

Introduction

A site is a concrete category with a ‘coverage’ assigning a ‘covering family’ to each object. For a site 𝖢{\sf{C}}, we denote by Obj(𝖢)\operatorname{Obj}\,(\text{\small${\sf{C}}$}) the class of objects, by Mor 𝖢 (A,B)\operatorname{Mor}_{\text{\small\,${\sf{C}}$\,}}(A,B) the set of morphisms from AA to BB, and by Cov 𝖢 (U)\operatorname{Cov}_{\text{\small\,${\sf{C}}$\,}}(U) the set of covering families on UObj(𝖢)U\in\operatorname{Obj}\,(\text{\small${\sf{C}}$}). We denote by 𝖲𝖾𝗍{\sf{Set}} the category of sets and maps between sets. For a given set XX, we have two contravariant functors X,𝒦X:𝖢𝖲𝖾𝗍\mathcal{M}_{X},\,\mathcal{K}_{X}:{\sf{C}}\to{\sf{Set}} defined by

  1. (1)

    X(U)=Map(U,X)\mathcal{M}_{X}(U)=\operatorname{Map}(U,X) the set of maps from UU to XX and

  2. (2)

    𝒦X(U)={PX(U) P:UX is locally constant}\mathcal{K}_{X}(U)=\{\,P\in\mathcal{M}_{X}(U)\,\,\mathstrut\vrule\,\,\text{$P:U\to X$ is locally constant}\,\},

where we say P:UXP:U\to X is locally constant, if there exists a covering family {gα:VαU}αΛ\{\,g_{\alpha}:V_{\alpha}\to U\,\}_{\alpha\in\Lambda} of UU such that P gαP{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}g_{\alpha} is constant for any αΛ\alpha\in\Lambda.

In [Che73, Che75, Che77, Che86], K. T. Chen introduced a site 𝖢𝗈𝗇𝗏𝖾𝗑{\sf{{Convex}}} which is a category of convex sets with non-void interiors in n\mathbb{R}^{n} for some n0n\!\geq\!0, and smooth functions between them in the ordinary sense (see [KM97]), with a ‘coverage’ assigning a ‘covering family’ to each convex set with non-void interior, which is the set of open coverings by interiors of convex sets.

In [Sou80], J. M. Souriau introduced a similar but a slightly more sophisticated site 𝖣𝗈𝗆𝖺𝗂𝗇{{\sf{Domain}}} which is a category of open sets in n\mathbb{R}^{n} for some n0n\!\geq\!0, and smooth functions between them in the ordinary sense, with a ‘coverage’ assigning a ‘covering family’ to each open set, which is the set of open coverings in the usual sense.

We call a pair (X,𝒟X)(X,\mathcal{D}_{X}) a diffeological space, if it satisfies the following conditions.

  1. (D1)

    XX is a set and 𝒟X:𝖣𝗈𝗆𝖺𝗂𝗇𝖲𝖾𝗍\mathcal{D}_{X}:{{\sf{Domain}}}\to{\sf{Set}} is a contravariant functor.

  2. (D2)

    For any UObj(𝖣𝗈𝗆𝖺𝗂𝗇)U\in\operatorname{Obj}\,(\text{\small${{\sf{Domain}}}$}), 𝒦X(U)\mathcal{K}_{X}(U) \subset 𝒟X(U)\mathcal{D}_{X}(U) \subset X(U)\mathcal{M}_{X}(U).

  3. (D3)

    For any UObj(𝖣𝗈𝗆𝖺𝗂𝗇)U\!\in\!\operatorname{Obj}\,(\text{\small${{\sf{Domain}}}$}) and any PX(U)P\in\mathcal{M}_{X}(U), P𝒟X(U)P\in\mathcal{D}_{X}(U) if there exists {Uα}αΛCov 𝖣𝗈𝗆𝖺𝗂𝗇 (U)\{U_{\alpha}\}_{\alpha\in\Lambda}\in\operatorname{Cov}_{\text{\small\,${{\sf{Domain}}}$\,}}(U) such that P|Uα𝒟X(Uα)P|_{U_{\alpha}}\in\mathcal{D}_{X}(U_{\alpha}) for all αΛ\alpha\in\Lambda.

A map f:XYf:X\to Y is said to be smooth, if the natural transformation f:XYf_{\!\hbox{\footnotesize$*$}}:\mathcal{M}_{X}\to\mathcal{M}_{Y} satisfies f(𝒟X(U))𝒟Y(U)f_{\!\hbox{\footnotesize$*$}}(\mathcal{D}_{X}(U))\subset\mathcal{D}_{Y}(U) for any UObj(𝖣𝗈𝗆𝖺𝗂𝗇)U\!\in\!\operatorname{Obj}\,(\text{\small${{\sf{Domain}}}$}). We denote by 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}, the category of diffeological spaces and smooth maps between diffeological spaces. An element of 𝒟X(U)\mathcal{D}_{X}(U) is called a plot of XX on UU, and 𝒟=UObj(𝖣𝗈𝗆𝖺𝗂𝗇)𝒟X(U)\mathcal{D}=\bigcup_{U\in\operatorname{Obj}\,(\text{\small${{\sf{Domain}}}$})}\mathcal{D}_{X}(U) is called a ‘diffeology’ on XX. If we replace the site 𝖣𝗈𝗆𝖺𝗂𝗇{{\sf{Domain}}} by the site 𝖢𝗈𝗇𝗏𝖾𝗑{\sf{{Convex}}}, we obtain Chen’s smooth category denoted by 𝖢𝗁𝖾𝗇{\sf{Chen}}. From now on, we discuss in the smooth category 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}{}, rather than 𝖢𝗁𝖾𝗇{\sf{Chen}}{}, while we believe that entirely similar arguments can be performed also in 𝖢𝗁𝖾𝗇{\sf{Chen}}{}. Let \mathbb{N} be the set of non-negative integers.

Remark 0.1.

For any set XX, both 𝒦X\mathcal{K}_{X} and X\mathcal{M}_{X} give diffeologies on XX. In fact, 𝒦X\mathcal{K}_{X} gives the finest diffeology on XX and X\mathcal{M}_{X} gives the coarsest diffeology on XX (see [IZ13, 1.18]).

Remark 0.2.

Let 𝖤𝗎𝖼𝗅𝗂𝖽𝖾𝖺𝗇{{\sf{Euclidean}}} be the full-subcategory of 𝖣𝗈𝗆𝖺𝗂𝗇{{\sf{Domain}}} consisting of all Euclidean spaces of some dimension \in\mathbb{N}. Even if we replace 𝖣𝗈𝗆𝖺𝗂𝗇{{\sf{Domain}}} with 𝖤𝗎𝖼𝗅𝗂𝖽𝖾𝖺𝗇{{\sf{Euclidean}}} in the definition of 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}, we recover 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}} itself (see [IZ13, Exercise 3]).

Remark 0.3.

For nn\!\in\!\mathbb{N}, let 𝖤𝗎𝖼𝗅𝗂𝖽𝖾𝖺𝗇n{{\sf{Euclidean}}}_{n} be the full-subcategory of 𝖤𝗎𝖼𝗅𝗂𝖽𝖾𝖺𝗇{{\sf{Euclidean}}} consisting of all Euclidean spaces of dimension up to nn. If we replace 𝖣𝗈𝗆𝖺𝗂𝗇{{\sf{Domain}}} with 𝖤𝗎𝖼𝗅𝗂𝖽𝖾𝖺𝗇0{{\sf{Euclidean}}}_{0} in the definition of 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}, we must obtain 𝖲𝖾𝗍{\sf{Set}} the category of sets. If we replace 𝖣𝗈𝗆𝖺𝗂𝗇{{\sf{Domain}}} with 𝖤𝗎𝖼𝗅𝗂𝖽𝖾𝖺𝗇1{{\sf{Euclidean}}}_{1} in the definition of 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}, we must obtain the category of diffeological spaces with ‘wire-diffeology’ (see [IZ13, art.1.10]).

In this paper, a manifold is assumed to be paracompact. We denote by 𝖬𝖺𝗇𝗂𝖿𝗈𝗅𝖽{\sf{Manifold}} the category of smooth manifolds and smooth maps between them which can be embedded into 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}{} as a full subcategory (see [IZ13]). One of the advantage to expand our playground to 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}{} than to restrict ourselves in 𝖬𝖺𝗇𝗂𝖿𝗈𝗅𝖽{\sf{Manifold}} is that the category 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}{} is cartesian-closed, complete and cocomplete (see [IZ13]).

The path space in 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}{} is defined using the real line \mathbb{R} in place of the closed interval [0,1][0,1] (see [IZ13, Chapter 5]). This definition gives a nice diffeology on a path space, while it causes a technical issue on concatenation:

Paths(X)=C(,X)(=𝒟X() as a set)\operatorname{Paths}(X)=C^{\infty}(\mathbb{R},X)\ \text{($=\mathcal{D}_{X}(\mathbb{R})$ as a set)}

A work-around can easily be found as in [IZ13, art.5.4] by compressing the moving part into an open subinterval (ε,1ε)(0,1)(\varepsilon,1{-}\varepsilon)\subset(0,1)\subset\mathbb{R}, where 0<ε10<\varepsilon\ll 1:

stPathsε(X)={uPaths(X)tεu(t)=u(0)&t1εu(t)=u(1)}\displaystyle\operatorname{stPaths}_{\varepsilon}(X)=\{\,u\in\operatorname{Paths}(X)\,\,\mathstrut\vrule\,\,\forall\,{t\!\leq\!\varepsilon}\,\,u(t)=u(0)\ \&\ \forall\,{t\!\geq\!1{-}\varepsilon}\,\,u(t)=u(1)\,\}

On the other hand, if we consider AA_{\infty}-form of concatenations using stPathsε(X)\operatorname{stPaths}_{\varepsilon}(X), we need some more tricks to concatenate many paths. In this paper, we adopt slightly different ways to consider a smooth (h-unital) AA_{\infty}-form for a concatenation.

Let 𝒫(X)={uu πset=u}{\operatorname{\mathcal{P}}(X)}=\{\,u\in\mid u{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{set}=u\,\}, where πset:\pi_{set}:\mathbb{R}\to\mathbb{R} is a continuous idempotent, i.e, πset πset=πset\pi_{set}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{set}=\pi_{set}, which is defined as follows:

πset(t)=max{0,min{1,t}}=min{1,max{0,t}}.\pi_{set}(t)=\max\{0,\min\{1,t\}\}=\min\{1,\max\{0,t\}\}.

Then by definition, πset\pi_{set} enjoys the following properties. (1)  πset(t)=0\pi_{set}(t)=0, t0t\leq 0,     (2)  πset(t)+πset(1t)=1\pi_{set}(t)+\pi_{set}(1{-}t)=1,     (3)  πset(t)=t\pi_{set}(t)=t, 0<t<10<t<1.

Then by (1) and (2) above, we have πset(t)=1\pi_{set}(t)=1, t1t\geq 1 as well.

1. Basic properties on subductions

Let us recall basic properties on subductions in Diffeology used in this paper.

Lemma 1.1.

Let ϖ1:KX\varpi_{1}:K\to X and ϖ2:LY\varpi_{2}:L\to Y be two subductions. Then, ϖ=ϖ1×ϖ2:K×LX×Y\varpi=\varpi_{1}\times\varpi_{2}:K\times L\to X\times Y is also a subduction.

Proof.

This can be obtained using [Kih19, Lemma 2.5]. But we give here a direct proof: clearly, ϖ\varpi is a smooth surjection, and so we are left to show that a plot on X×YX\times Y can be pulled back to K×LK\times L locally. Let P:VX×YP:V\to X\times Y be a plot. We denote by prk\mathrm{pr}_{k} the canonical projection from a product to its kk-th factor, k=1,2k=1,2. Then, P1=pr1 P:VXP_{\!1}=\mathrm{pr}_{1}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P:V\to X and P2=pr2 P:VYP_{\!2}=\mathrm{pr}_{2}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P:V\to Y are plots, for each prk\mathrm{pr}_{k} is smooth. Since ϖ1:KX\varpi_{1}:K\to X and ϖ2:LY\varpi_{2}:L\to Y are subductions, there is an open covering {Vα}\{V_{\!\alpha}\} of VV such that there are plots Q1α:VαKQ_{1\alpha}:V_{\!\alpha}\to K and Q2α:VαLQ_{2\alpha}:V_{\!\alpha}\to L satisfying Pk|Vα=ϖk QkαP_{\!k}|_{V_{\!\alpha}}=\varpi_{k}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}Q_{k\alpha}, k=1,2k=1,2. Using the data Q1αQ_{1\alpha} and Q2αQ_{2\alpha}, we obtain a smooth map Qα:VαK×LQ_{\alpha}:V_{\!\alpha}\to K\times L satisfying Qkα=prk QαQ_{k\alpha}=\mathrm{pr}_{k}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}Q_{\alpha}, k=1,2k=1,2. Thus we obtain ϖ Qα=P|Vα\varpi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}Q_{\alpha}=P|_{V_{\!\alpha}}, and hence X×YX\times Y has the push-forward diffeology by ϖ:K×LX×Y\varpi:K\times L\to X\times Y. ∎

From now on, we assume that LL, YY and XX are diffeological spaces, and that ϖ:LY\varpi:L\to Y is a subduction. Here, we remark that dimYdimL\dim{Y}\leq\dim{L} diffeologically.

Lemma 1.2.

For a map g:YXg:Y\to X, gg is smooth iff g ϖ:LXg{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi:L\to X is smooth.

Proof.

It is sufficient to show that gg is smooth if g ϖ:LXg{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi:L\to X is smooth: let P:UYP:U\to Y be a plot. Since ϖ\varpi is a subduction, there is an open covering {Vα}\{V_{\alpha}\} of UU and plots {Pα:VαL}\{P_{\alpha}:V_{\alpha}\to L\} such that P|VαP|_{V_{\alpha}} == ϖ Pα\varpi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P_{\alpha} for all α\alpha. Since g P|Vαg{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P|_{V_{\alpha}} == (g ϖ) Pα:VαX(g{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P_{\alpha}:V_{\alpha}\to X is smooth for all α\alpha, so is g P:UXg{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P:U\to X. Thus gg is smooth. ∎

Proposition 1.3.

ϖ\varpi induces an induction ϖ:C(Y,X)C(L,X)\varpi^{*}:C^{\infty}(Y,X)\to C^{\infty}(L,X).

Proof.

Since ϖ:LY\varpi:L\to Y is a smooth surjection, ϖ:C(Y,X)C(L,X)\varpi^{*}:C^{\infty}(Y,X)\to C^{\infty}(L,X) is a smooth injection. Now we are left to show that a plot in ImϖC(L,X)\operatorname{Im}\varpi^{*}\subset C^{\infty}(L,X) can be pulled back to C(Y,X)C^{\infty}(Y,X): let P:UImϖC(L,X)P:U\to\operatorname{Im}{\varpi^{*}}\subset C^{\infty}(L,X) be a plot. Then, for any 𝕦U\mathbb{u}\in U, there is F𝕦C(Y,X)F_{\!\mathbb{u}}\in C^{\infty}(Y,X) such that P(𝕦)=F𝕦 ϖP(\mathbb{u})=F_{\!\mathbb{u}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi. For t,sLt,\,s\in L with ϖ(t)=ϖ(s)\varpi(t)=\varpi(s) and 𝕦U\mathbb{u}\in U, the adjoint P^:U×LX\widehat{P}:U\times L\to X of PP is a smooth map satisfying P^(𝕦,t)=P(𝕦)(t)=F𝕦 ϖ(t)=F𝕦 ϖ(s)=P(𝕦)(s)=P^(𝕦,s)\widehat{P}(\mathbb{u},t)=P(\mathbb{u})(t)=F_{\!\mathbb{u}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi(t)=F_{\!\mathbb{u}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi(s)=P(\mathbb{u})(s)=\widehat{P}(\mathbb{u},s). Thus the smooth map P^:U×LX\widehat{P}:U\times L\to X induces a map Q^:U×YX\widehat{Q}:U\times Y\to X such that Q^ (1×ϖ)=P^\widehat{Q}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\mathrm{1}\times\varpi)=\widehat{P}, where 1×ϖ:U×LU×Y\mathrm{1}\times\varpi:U\times L\to U\times Y is a subduction by Lemma 1.1. By Lemma 1.2, Q^\widehat{Q} is smooth and hence its adjoint Q:UC(Y,X)Q:U\to C^{\infty}(Y,X) is a plot satisfying (ϖ Q(𝕦))(t)(\varpi^{*}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}Q(\mathbb{u}))(t) == Q(𝕦)(ϖ(t))Q(\mathbb{u})(\varpi(t)) == Q^(𝕦,ϖ(t))\widehat{Q}(\mathbb{u},\varpi(t)) == Q^ (1×ϖ)(𝕦,t)\widehat{Q}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\mathrm{1}\times\varpi)(\mathbb{u},t) == P^(𝕦,t)\widehat{P}(\mathbb{u},t) == P(𝕦)(t)P(\mathbb{u})(t), (𝕦,t)U×L(\mathbb{u},t)\in U\times L, which implies ϖ Q=P\varpi^{*}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}Q=P, and we have done. ∎

We further assume that YY is a diffeological quotient L/ϖsetL/\varpi_{set} by a relation ϖset\varpi_{set} on LL, i.e, Y={ytLy=ϖ^set(t)}Y=\{\,y\mid\exists\,{t\in L}\ y=\widehat{\varpi}_{set}(t)\,\} and ϖ(t)=ϖ^set(t)\varpi(t)=\widehat{\varpi}_{set}(t), where ϖ^set\widehat{\varpi}_{set} is an equivalence relation on LL generated by ϖset\varpi_{set}. Hence ϖ ϖset=ϖ\varpi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi_{set}=\varpi as relations from LL to YY.

Proposition 1.4.

Imϖ={fC(L,X)f ϖset=fas relations}\operatorname{Im}{\varpi^{*}}=\{\,f\in C^{\infty}(L,X)\mid f{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi_{set}=f\ \text{as relations}\,\}.

Proof.

We show that {fC(L,X)f ϖset=f}Imϖ\{\,f\in C^{\infty}(L,X)\mid f{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi_{set}=f\,\}\subset\operatorname{Im}{\varpi^{*}}. If f ϖset=fC(L,X)f{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi_{set}=f\in C^{\infty}(L,X), then ff induces a map g:YXg:Y\to X such that f=g ϖf=g{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi. By Lemma 1.2, gg is smooth, and hence fImϖf\in\operatorname{Im}{\varpi^{*}}. The converse is clear by ϖ ϖset=ϖ\varpi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\varpi_{set}=\varpi. ∎

If the relation ϖset\varpi_{set} is a continuous idempotent on LL, then YY is topologically the same as ImϖsetL\operatorname{Im}\varpi_{set}\subset L, while YY might not be a diffeological subspace of LL.

2. Cubic complex in Topology

In Topology, we use the symbol 𝕀top\mathbb{I}_{top} for the topological subspace [0,1][0,1] of \mathbb{R}. We remark that the topology of 𝕀top=[0,1]\mathbb{I}_{top}=[0,1] is the same as the quotient topology induced by a continuous map πtop:𝕀top\pi_{top}:\mathbb{R}\to\mathbb{I}_{top} given by πtop(t)=πset(t)[0,1]\pi_{top}(t)=\pi_{set}(t)\in[0,1].

Now we introduce a generalised notion of a simplicial or cubical complex using an idea of a cubic set: a qq-cubic set σ\sigma in n\mathbb{R}^{n} is defined as a convex body in some affine subspace LσL_{\sigma} in n\mathbb{R}^{n}, inductively on qq, 1qn-1\!\leq\!q\!\leq\!n (see also [II19]).

  1. (1)

    The 1-1-cubic set in n\mathbb{R}^{n} is the empty set n\emptyset\subset\mathbb{R}^{n}. In this case, L=L_{\emptyset}=\emptyset.

  2. (2)

    A 0-cubic set in n\mathbb{R}^{n} is a point 𝕡n\mathbb{p}\in\mathbb{R}^{n}. In this case, L𝕡={𝕡}L_{\mathbb{p}}=\{\mathbb{p}\}.

  3. (3)

    Let σ1\sigma_{1} and σ2\sigma_{2} be respectively q1q_{1}-cubic and q2q_{2}-cubic sets in n\mathbb{R}^{n} with 1q1q1+q2qn-1\leq q{-}1\leq q_{1}{+}q_{2}\leq q\leq n, where σ1\sigma_{1} and σ2\sigma_{2} are convex bodies in affine subspaces L1L_{1} and L2L_{2}, respectively. Let V1V_{1} and V2V_{2} be vector subspaces of n\mathbb{R}^{n} such that V1V2={𝟘}V_{1}\cap V_{2}=\{\mathbb{0}\}, L1=𝕒1+V1L_{1}=\mathbb{a}_{1}\!+\!V_{1} and L2=𝕒2+V2L_{2}=\mathbb{a}_{2}\!+\!V_{2} for some 𝕒1σ1\mathbb{a}_{1}\in\sigma_{1} and 𝕒2σ2\mathbb{a}_{2}\in\sigma_{2}.

    1. (q1+q2=q1q_{1}\!+\!q_{2}=q{-}1 and L1L2=L_{1}\!\cap\!L_{2}=\emptyset (or 𝕒2𝕒1V1+V2\mathbb{a}_{2}\!-\!\mathbb{a}_{1}\not\in V_{1}\!+\!V_{2}))

      The subset σ1σ2\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2} == {(1t)𝕩\{\,(1{-}t){\cdot}\mathbb{x} +{+} t𝕪;𝕩σ1,𝕪σ2,tItop}nt{\cdot}\mathbb{y}\,;\,\mathbb{x}\!\in\!\sigma_{1},\,\mathbb{y}\!\in\!\sigma_{2},\,t\!\in\!I_{top}\,\}\subset\mathbb{R}^{n} is a qq-cubic set in n\mathbb{R}^{n}. In this case, we have a relative homeomorphism ϕσ1,σ2:(σ1×Itop×σ2,σ1×{0,1}×σ2)(σ1σ2,σ1σ2)\phi_{\sigma_{1},\sigma_{2}}:(\sigma_{1}\times I_{top}\times\sigma_{2},\sigma_{1}\times\{0,1\}\times\sigma_{2})\to(\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2},\sigma_{1}\amalg\sigma_{2}) given by ϕσ1,σ2(𝕩,t,𝕪)=(1t)𝕩+t𝕪\phi_{\sigma_{1},\sigma_{2}}(\mathbb{x},t,\mathbb{y})=(1{-}t){\cdot}\mathbb{x}\!+\!t{\cdot}\mathbb{y}.

    2. (q1+q2=qq_{1}\!+\!q_{2}\!=\!q and L1L2L_{1}\!\cap L_{2}\not=\emptyset (or 𝕒2𝕒1V1+V2\mathbb{a}_{2}\!-\!\mathbb{a}_{1}\in V_{1}\!+\!V_{2}))

      Let L1L2={𝕒}L_{1}\!\cap L_{2}\!=\!\{\mathbb{a}\}, 𝕒n\mathbb{a}\!\in\!\mathbb{R}^{n}. Then the subset σ1×L2L1σ2={𝕩+𝕪𝕒;𝕩σ1,𝕪σ2}\sigma_{1}{\,{}_{L_{1}\!\!}\times_{\,L_{2}}}\sigma_{2}=\{\mathbb{x}\,{+}\,\mathbb{y}\,{-}\,\mathbb{a}\,;\,\mathbb{x}\!\in\!\sigma_{1},\,\mathbb{y}\!\in\!\sigma_{2}\} is a qq-cubic set in n\mathbb{R}^{n}. In this case, we have a homeomorphism ψσ1,σ2:σ1×σ2σ1×L2L1σ2\psi_{\sigma_{1},\sigma_{2}}:\sigma_{1}\times\sigma_{2}\to\sigma_{1}\,{}_{L_{1}\!\!}\times_{\,L_{2}}\sigma_{2} given by ψσ1,σ2(𝕩,𝕪)=𝕩+𝕪𝕒\psi_{\sigma_{1},\sigma_{2}}(\mathbb{x},\mathbb{y})=\mathbb{x}\!+\!\mathbb{y}\!-\!\mathbb{a}.

For each n0n\geq 0 and qq with 1qn-1\leq q\leq n, we denote by C(n)qC(n)^{q} the set of all qq-cubic sets in n\mathbb{R}^{n} and C(n)={}q0C(n)qC(n)=\{\emptyset\}\cup\underset{q\geq 0}{\cup}C(n)^{q}. Then the above construction yields two natural products: the join :C(n)q×C(n)qC(n+n+1)q+q+1\hbox{\footnotesize$*$}:C(n)^{q}\times C(n^{\prime})^{q^{\prime}}\to C(n{+}n^{\prime}{+}1)^{q+q^{\prime}+1} induced by (3) above using nn×{0}×{𝟘}=V1n××nV2={𝟘}×{0}×nn\mathbb{R}^{n}\approx\mathbb{R}^{n}\times\{0\}\times\{\mathbb{0}\}=V_{1}\subset\mathbb{R}^{n}\times\mathbb{R}\times\mathbb{R}^{n^{\prime}}\supset V_{2}=\{\mathbb{0}\}\times\{0\}\times\mathbb{R}^{n^{\prime}}\approx\mathbb{R}^{n^{\prime}} with 𝕒t=(𝟘,t,𝟘)\mathbb{a}_{t}=(\mathbb{0},t,\mathbb{0}) for t=1,2t=1,2, and the product ×:C(n)q×C(n)qC(n+n)q+q\times:C(n)^{q}\times C(n^{\prime})^{q^{\prime}}\to C(n{+}n^{\prime})^{q+q^{\prime}} induced by (3) above using nn×{𝟘}=V1n×nV2={𝟘}×nn\mathbb{R}^{n}\approx\mathbb{R}^{n}\times\{\mathbb{0}\}=V_{1}\subset\mathbb{R}^{n}\times\mathbb{R}^{n^{\prime}}\supset V_{2}=\{\mathbb{0}\}\times\mathbb{R}^{n^{\prime}}\approx\mathbb{R}^{n^{\prime}} with 𝕒=𝕒1=𝕒2=(𝟘,𝟘)\mathbb{a}=\mathbb{a}_{1}=\mathbb{a}_{2}=(\mathbb{0},\mathbb{0}).

The notion of a face of a cubic set is inductively given as follows.

  1. (1)

    Let σ\sigma be a cubic set. Then the emptyset \emptyset and σ\sigma itself are faces of σ\sigma.

  2. (2)

    Let σ1\sigma_{1} and σ2\sigma_{2} be two cubic set. Then we have the following.

    1. (a)

      A face of σ1σ2\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2} is expressed as τ1τ2\tau_{1}\,\hbox{\footnotesize$*$}\,\tau_{2} for some faces τ1\tau_{1} and τ2\tau_{2} of σ1\sigma_{1} and σ2\sigma_{2}, respectively. Therefore σ1=σ1\sigma_{1}=\sigma_{1}\,\hbox{\footnotesize$*$}\,\emptyset and σ2=σ2\sigma_{2}=\emptyset\,\hbox{\footnotesize$*$}\,\sigma_{2} are faces of σ1σ2\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2}.

    2. (b)

      A face of σ1×L2L1σ2\sigma_{1}\,{}_{L_{1}\!\!}\times_{\,L_{2}}\sigma_{2} is expressed as τ1×L2L1τ2\tau_{1}\,{}_{L_{1}\!\!}\times_{\,L_{2}}\tau_{2} for some faces τ1\tau_{1} and τ2\tau_{2} of σ1\sigma_{1} and σ2\sigma_{2}, respectively.

We denote τσ\tau\prec\sigma if τC(n)\tau\in C(n) is a face of σC(n)\sigma\in C(n).

An ordered subset 𝕂C(n)\mathbb{K}\subset C(n) is called a cubic complex, if the following holds. (0)  τ,σ𝕂τσC(n),τστandτσσ\forall\,\tau,\,\sigma\in\mathbb{K}\ \ \tau\cap\sigma\in C(n),\ \tau\cap\sigma\prec\tau\ \text{and}\ \tau\cap\sigma\prec\sigma.     (1)  𝕂\emptyset\in\mathbb{K},     (2)  τC(n)σ𝕂τστ𝕂\forall\,\tau\in C(n)\ \,\forall\,\sigma\in\mathbb{K}\ \ \tau\prec\sigma\implies\tau\in\mathbb{K}, A subset 𝕃𝕂\mathbb{L}\subset\mathbb{K} with the following properties is called a cubic subcomplex of 𝕂\mathbb{K}. (1)  𝕃\emptyset\in\mathbb{L},     (2)  τ𝕂σ𝕃τστ𝕃\forall\,\tau\in\mathbb{K}\ \,\forall\,\sigma\in\mathbb{L}\ \ \tau\prec\sigma\implies\tau\in\mathbb{L}. Then we denote dim𝕂=max{dimσσ𝕂}\dim{\mathbb{K}}=\max\{\,\dim\sigma\mid\sigma\in\mathbb{K}\,\}, where dimσ=q\dim\sigma=q if σC(n)q\sigma\in C(n)^{q}.

For any qq-cubic set σK\sigma\in K, 𝕂(σ)={τC(n) τ\preceqqσ}\mathbb{K}(\sigma)=\{\,\tau\!\in\!C(n)\,\,\mathstrut\vrule\,\,\tau\preceqq\sigma\,\} for q1q\geq-1 and 𝕂(σ˙)={τC(n) τσ}\mathbb{K}(\dot{\sigma})=\{\tau\!\in\!C(n)\,\,\mathstrut\vrule\,\,\tau\precneqq\sigma\} for q0q\geq 0 are cubic subcomplexes of 𝕂\mathbb{K}.

Proposition 2.1.

For any qq-cubic set σC(n)\sigma\in C(n), q0q\geq 0, we have σ=|𝕂(σ˙)|\partial\sigma=|{\mathbb{K}(\dot{\sigma})}|.

For any two cubic complexes 𝕂C(n)\mathbb{K}\subset C(n) and 𝕃C(m)\mathbb{L}\subset C(m), we obtain

  1. (1)

    𝕂𝕃:={στ σ𝕂,τ𝕃}C(n+m+1)\mathbb{K}\,\hbox{\footnotesize$*$}\,\mathbb{L}:=\{\,\sigma\,\hbox{\footnotesize$*$}\,\tau\,\,\mathstrut\vrule\,\,\sigma\!\in\!\mathbb{K},\tau\!\in\!\mathbb{L}\,\}\subset C(n{+}m{+}1)

  2. (2)

    𝕂×𝕃:={σ×τ σ𝕂,τ𝕃}C(n+m)\mathbb{K}\times\mathbb{L}:=\{\,\sigma\times\tau\,\,\mathstrut\vrule\,\,\sigma\!\in\!\mathbb{K},\tau\!\in\!\mathbb{L}\,\}\subset C(n{+}m)

Proposition 2.2.

For any two cubic sets σ,τC(n)\sigma,\tau\in C(n) and 0-cubic sets aa, bb, we have (σa)×(τb)(\sigma\,\hbox{\footnotesize$*$}\,a)\times(\tau\,\hbox{\footnotesize$*$}\,b) \approx 𝕃c\mathbb{L}\,\hbox{\footnotesize$*$}\,c, where 𝕃=(σa)×τσ×(τb)\mathbb{L}=(\sigma\,\hbox{\footnotesize$*$}\,a)\times\tau\cup\sigma\times(\tau\,\hbox{\footnotesize$*$}\,b) and c=(a,b)c=(a,b).

For any cubic complexes 𝕂C(n)\mathbb{K}\subset C(n) and 𝕂C(m)\mathbb{K}^{\prime}\subset C(m), an order-preserving map φ:𝕂𝕂\varphi:\mathbb{K}\rightarrow\mathbb{K}^{\prime} is called a cubic map, if the following conditions are satisfied. (1)  φ1()={}\varphi^{-1}(\emptyset)=\{\emptyset\},     (2)  τ𝕂σ𝕂τφ(σ)τσ\forall\,\tau^{\prime}\in\mathbb{K}^{\prime}\ \,\forall\,\sigma\in\mathbb{K}\ \ \tau^{\prime}\prec\varphi(\sigma)\implies\exists\,\tau\prec\sigmaφ(τ)=τ\varphi(\tau)=\tau^{\prime}. In particular, the image of a cubic map φ:𝕂𝕂\varphi:\mathbb{K}\rightarrow\mathbb{K}^{\prime} is a cubic subcomplex of 𝕂\mathbb{K}^{\prime}.

Proposition 2.3.

Let * be a 0-cubic set. The following maps are cubic maps.

  1. (1)

    The trivial map ϕ:𝕂𝕂()\phi:\mathbb{K}\to\mathbb{K}(\hbox{\footnotesize$*$}) given by ϕ()=\phi(\emptyset)=\emptyset and ϕ(τ)={}\phi(\tau)=\{\hbox{\footnotesize$*$}\}, τ𝕂{}\tau\in\mathbb{K}\smallsetminus\{\emptyset\}.

  2. (2)

    The natural inclusion ϕ:𝕃𝕂\phi:\mathbb{L}\hookrightarrow\mathbb{K} of cubic subcomplex 𝕃\mathbb{L} of 𝕂\mathbb{K}.

  3. (3)

    For two cubic maps ϕ1:𝕂(1)𝕂1\phi_{1}:\mathbb{K}(1)\to\mathbb{K}^{\prime}_{1} and ϕ2:𝕂(2)𝕂2\phi_{2}:\mathbb{K}(2)\to\mathbb{K}^{\prime}_{2}, maps

    1. (a)

      ϕ:𝕂(1)𝕂(2)𝕂1𝕂2\phi:\mathbb{K}(1)\,\hbox{\footnotesize$*$}\,\mathbb{K}(2)\to\mathbb{K}^{\prime}_{1}\,\hbox{\footnotesize$*$}\,\mathbb{K}^{\prime}_{2} given by ϕ(τ1τ2)=ϕ1(τ1)ϕ2(τ2)\phi(\tau_{1}\,\hbox{\footnotesize$*$}\,\tau_{2})=\phi_{1}(\tau_{1})\,\hbox{\footnotesize$*$}\,\phi_{2}(\tau_{2}) and

    2. (b)

      ψ:𝕂(1)×𝕂(2)𝕂1×𝕂2\psi:\mathbb{K}(1)\times\mathbb{K}(2)\to\mathbb{K}^{\prime}_{1}\times\mathbb{K}^{\prime}_{2} given by ψ(τ1×τ2)=ϕ1(τ1)×ϕ2(τ2)\psi(\tau_{1}\times\tau_{2})=\phi_{1}(\tau_{1})\times\phi_{2}(\tau_{2}).

For a cubic complex 𝕂C(n)\mathbb{K}\!\subset\!C(n), n0n\!\geq\!0, we denote 𝕂q={σK;σ is q-cubic}\mathbb{K}^{q}=\{\,\sigma\!\in\!K\,;\,\text{$\sigma$ is $q$-{cubic}}\,\}, q1q\!\geq\!-1 and by |𝕂|=σ𝕂σ|{\mathbb{K}}|=\underset{\sigma\in\mathbb{K}}{\bigcup}\,\sigma the polyhedron in n\mathbb{R}^{n} associated to 𝕂\mathbb{K}. For a cubic complexes 𝕂\mathbb{K} and 𝕃\mathbb{L}, a continuous map f:|𝕃||𝕂|f:|{\mathbb{L}}|\to|{\mathbb{K}}| is called cubic, if there exists a map φ:𝕃𝕂\varphi:\mathbb{L}\to\mathbb{K} such that f|τ:τφ(τ)|𝕂|f|_{\tau}:\tau\to\varphi(\tau)\subset|{\mathbb{K}}| for any τ𝕃\tau\in\mathbb{L}. Such a map ff is often denoted by |φ|:|𝕃||𝕂||\varphi|:|{\mathbb{L}}|\to|{\mathbb{K}}|.

3. Smooth cubic complex

In Diffeology, we use the symbol 𝕀\mathbb{I} for a special diffeological space: let 𝕀=/πset\mathbb{I}=\mathbb{R}/{\pi_{set}} be the diffeological quotient of \mathbb{R}, where 𝕀=[0,1]\mathbb{I}=[0,1] as a set, with a subduction π:𝕀\pi:\mathbb{R}\to\mathbb{I} given by π(t)=πset(t)[0,1]\pi(t)=\pi_{set}(t)\in[0,1], so that we obtain dim𝕀=1\dim\mathbb{I}=1 diffeologically and π πset=π\pi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{set}=\pi. The underlying topology (DD-Topology in [IZ13, 2.8]) of 𝕀\mathbb{I} is the same as 𝕀top\mathbb{I}_{top}\subset\mathbb{R}, while 𝕀\mathbb{I}\hookrightarrow\mathbb{R} can not be an induction.

Theorem 3.1.

By Propositions 1.3 and 1.4, π:C(𝕀,X)𝒫(X)\pi^{*}:C^{\infty}(\mathbb{I},X)\rightarrow{\operatorname{\mathcal{P}}(X)} is a diffeomorphism, and so 𝕀\mathbb{I} represents the functor 𝒫{\operatorname{\mathcal{P}}}. Moreover we have dim𝕀=1\dim\mathbb{I}=1.

As is well-known, there is a smooth function λ:\lambda:\mathbb{R}\to\mathbb{R} enjoying (1)  λ(t)=0\lambda(t)=0, t0t\leq 0,     (2)  λ(t)+λ(1t)=1\lambda(t)+\lambda(1{-}t)=1,     (3)  λ(t)>0\lambda^{\prime}(t)>0, 0<t<10<t<1.

Then by (1) and (2) above, we have λ(t)=1\lambda(t)=1, t1t\geq 1 as well and hence λ πset=λ\lambda{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{set}=\lambda. Thus λ\lambda induces a smooth injection λ^:𝕀\hat{\lambda}:\mathbb{I}\to\mathbb{R} satisfying λ=λ^ π\lambda=\hat{\lambda}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi.

Defninition 3.2.

We give a diffeology on a qq-cubic set σC(n)\sigma\in C(n) by a subduction πσ:qσ\pi_{\sigma}:\mathbb{R}^{q}\to\sigma, equipped with a smooth injection λ^σ:σn\hat{\lambda}_{\sigma}:\sigma\to\mathbb{R}^{n} induced from some smooth map λσ:qn\lambda_{\sigma}:\mathbb{R}^{q}\to\mathbb{R}^{n} such that λσ=λ^σ πσ\lambda_{\sigma}=\hat{\lambda}_{\sigma}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{\sigma}, by induction on qq.

  1. (1)

    0-cubic set is a one point space which has the trivial diffeology.

  2. (2)

    Let σ1\sigma_{1} and σ2\sigma_{2} be cubic set with subductions πi:qiσi\pi_{i}:\mathbb{R}^{q_{i}}\to\sigma_{i}, i=1, 2i=1,\,2, equipped with smooth injections λ^i:σin\hat{\lambda}_{i}:\sigma_{i}\to\mathbb{R}^{n} induced from some smooth maps λi:qin\lambda_{i}:\mathbb{R}^{q_{i}}\to\mathbb{R}^{n} such that λi=λ^i πi\lambda_{i}=\hat{\lambda}_{i}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{i}, i=1, 2i=1,\,2.

    1. (a)

      If σ=σ1σ2n\sigma=\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2}\subset\mathbb{R}^{n}, we have a subduction πσ=ϕσ1,σ2 (π1×π×π2):q1××q2σ1σ2\pi_{\sigma}=\phi_{\sigma_{1},\sigma_{2}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\pi_{1}\times\pi\times\pi_{2}):\mathbb{R}^{q_{1}}\times\mathbb{R}\times\mathbb{R}^{q_{2}}\to\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2} and a smooth map λσ=ϕσ1,σ2 (λ1×λ×λ2):q1××q2n\lambda_{\sigma}=\phi_{\sigma_{1},\sigma_{2}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\lambda_{1}\times\lambda\times\lambda_{2}):\mathbb{R}^{q_{1}}\times\mathbb{R}\times\mathbb{R}^{q_{2}}\to\mathbb{R}^{n}, which induces a smooth injection λ^σ:σn\hat{\lambda}_{\sigma}:\sigma\to\mathbb{R}^{n}.

    2. (b)

      If σ=σ1×L2L1σ2n\sigma=\sigma_{1}\,{}_{L_{1}\!\!}\times_{\,L_{2}}\sigma_{2}\subset\mathbb{R}^{n}, we have a subduction πσ=ψσ1,σ2 (π1×π2)\pi_{\sigma}=\psi_{\sigma_{1},\sigma_{2}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\pi_{1}\times\pi_{2}) and a smooth map λσ=ψσ1,σ2 (λ1×λ2):q1×q2n\lambda_{\sigma}=\psi_{\sigma_{1},\sigma_{2}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\lambda_{1}\times\lambda_{2}):\mathbb{R}^{q_{1}}\times\mathbb{R}^{q_{2}}\to\mathbb{R}^{n}, which induces a smooth injection λ^σ:σn\hat{\lambda}_{\sigma}:\sigma\to\mathbb{R}^{n}.

For any qq-cubic set σ\sigma, we clearly have dimσ=q\dim\sigma=q diffeologically, and by Proposition 1.3, we obtain that πσ:C(σ,X)C(q,X)\pi_{\sigma}^{*}:C^{\infty}(\sigma,X)\rightarrow C^{\infty}(\mathbb{R}^{q},X) is an induction.

Proposition 3.3.

σ\sigma is a smooth neighbourhood deformation retract of στ\sigma\,\hbox{\footnotesize$*$}\,\tau.

Proof.

Since there is a subduction πσ=ϕσ1,σ2 (π1×π×π2):q1××q2σ1σ2\pi_{\sigma}=\phi_{\sigma_{1},\sigma_{2}}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\pi_{1}\times\pi\times\pi_{2}):\mathbb{R}^{q_{1}}\times\mathbb{R}\times\mathbb{R}^{q_{2}}\to\sigma_{1}\,\hbox{\footnotesize$*$}\,\sigma_{2}, we have a deformation hs:q1×(,1)×q2q1××q2h_{s}:\mathbb{R}^{q_{1}}\times(-\infty,1)\times\mathbb{R}^{q_{2}}\to\mathbb{R}^{q_{1}}\times\mathbb{R}\times\mathbb{R}^{q_{2}} given by

hs(𝕩,t,𝕪)=(𝕩,tλ(s),𝕪),s,h_{s}(\mathbb{x},t,\mathbb{y})=(\mathbb{x},t{-}\lambda(s),\mathbb{y}),\quad s\in\mathbb{R},

which is clearly smooth and thus inducing a smooth deformation h^s:Oστ\hat{h}_{s}:O\to\sigma\,\hbox{\footnotesize$*$}\,\tau, ss\in\mathbb{R}, where O=σττO=\sigma\,\hbox{\footnotesize$*$}\,\tau\smallsetminus\tau. By definition, it induces a smooth deformation of OO relative to σ\sigma, and σ\sigma is a smooth deformation retract of OO a neighbourhood of σ\sigma. ∎

For a cubic complex 𝕂C(n)\mathbb{K}\subset C(n), we introduce a smooth structure on the polyhedron |𝕂||\mathbb{K}| as |𝕂|=colimσ𝕂σ|{\mathbb{K}}|=\underset{\sigma\in\mathbb{K}}{\operatorname{colim}}\,\sigma, which is called a smooth cubic polyhedron. Then by definition, we obtain a smooth injection λ^𝕂:|𝕂|n\hat{\lambda}_{\mathbb{K}}:|\mathbb{K}|\to\mathbb{R}^{n} by collecting smooth maps λ^σ:σn\hat{\lambda}_{\sigma}:\sigma\to\mathbb{R}^{n}, σ𝕂\sigma\in\mathbb{K}. Then we instantly see that dim|𝕂|=dim𝕂\dim{|\mathbb{K}|}=\dim{\mathbb{K}} diffeologically.

Remark 3.4.

Following the above definition, we obtain a cube 𝕀n=(/πset)n\mathbb{I}^{n}=\left(\mathbb{R}/{\pi_{set}}\right)^{n} as a diffeological quotient of n\mathbb{R}^{n} which instantly implies dim𝕀n=n\dim\mathbb{I}^{n}=n diffeologically. The cube 𝕀n\mathbb{I}^{n} is set-theoretically the same as [0,1]n[0,1]^{n}, while its diffeology is different from the induced diffeology from n\mathbb{R}^{n} which is used in [HS20].

4. Associahedra as cubic complexes

Let us introduce associahedra KnnK_{n}\subset\mathbb{R}^{n}, n1n\geq 1 in 𝖳𝗈𝗉𝗈𝗅𝗈𝗀𝗒{\sf{Topology}}{} as follows, which is slightly modified from the definition by Stasheff (see [Sta63], [IM89] or [Iwa12]):

Kn={(t1,,tn)t1=0tkk1i=1k1ti(1<k<n),tn=n1i=1n1ti},\displaystyle K_{n}=\{\,(t_{1},\ldots,t_{n})\,\,\mathstrut\vrule\,\,t_{1}\!=\!0\leq t_{k}\leq k{-}1{-}\textstyle\sum_{i=1}^{k-1}t_{i}\ (1\!<\!k\!<\!n),\ t_{n}\!=\!n{-}1-\textstyle\sum_{i=1}^{n-1}t_{i}\,\},

or equivalently, we can describe the associahedron as follows.

Kn={(u1,,un)  0=u1u2un1un=n1,ukk1(1<k<n)}.\displaystyle K^{\prime}_{n}=\{\,(u_{1},\ldots,u_{n})\,\,\mathstrut\vrule\,\,0\!=\!u_{1}\leq u_{2}\leq\cdots\leq u_{n-1}\leq u_{n}\!=\!n{-}1,\ u_{k}\leq k{-}1\ (1\!<\!k\!<\!n)\,\}.

Let H1n2H_{1}^{n-2}​ : ​x1++xn=n1,x1=0x_{1}+{\cdots}+x_{n}\!=\!n{-}1,x_{1}\!=\!0 be an affine space where KnK_{n} is a convex body.

x2x_{2}(0,0,2)(0,0,2)(0,1,1)(0,1,1)(K3H11)(K_{3}\subset H_{1}^{1}\approx\mathbb{R})x3x_{3}x2x_{2}(0,0,2,1)(0,0,2,1)(0,0,1,2)(0,0,1,2)(0,0,0,3)(0,0,0,3)(0,1,0,2)(0,1,0,2)(0,1,1,1)(0,1,1,1)(K4H122)(K_{4}\subset H_{1}^{2}\approx\mathbb{R}^{2})x4x_{4}x3x_{3}x2x_{2}\curvedashes[.3mm]1,1,1 \curve(0,0 , 0,130)\curve(0,0 , -60,-30)\curve(0,0 , 40,-14)\curve(0,0 , 0,40)\curve(0,0 , 30,60)\curve(0,0 , 0,45)\curve(0,0 , -40,14)(K5H133)(K_{5}\subset H_{1}^{3}\approx\mathbb{R}^{3})(0,1,1,1,1)(0,1,1,1,1)(0,0,1,1,2)(0,0,1,1,2)(0,0,1,0,3)(0,0,1,0,3)(0,0,0,3,1)(0,0,0,3,1)(0,0,1,2,1)(0,0,1,2,1)(0,0,2,1,1)(0,0,2,1,1)(0,0,2,0,2)(0,0,2,0,2)(0,0,0,0,4)(0,0,0,0,4)(0,0,0,1,3)(0,0,0,1,3)(0,0,0,2,2)(0,0,0,2,2)(0,1,0,2,1)(0,1,0,2,1)(0,1,0,1,2)(0,1,0,1,2)(0,1,0,0,3)(0,1,0,0,3)(0,1,1,0,2)(0,1,1,0,2)

Let A(n)={(k,r,s)   1kr, 2s=nr+1n1}A(n)=\{\,(k,r,s)\in\mathbb{N}\,\,\mathstrut\vrule\,\,1\!\leq\!k\!\leq\!r,\ 2\!\leq\!s\!=\!n{-}r{+}1\!\leq\!n{-}1\,\}. Then the boundary of KnK_{n} is the union of faces corresponding to elements in A(n)A(n), given as follows.

Lk(r,s)={(t1,,tn)Kn(tk,,tk+s2,t)Ks,tk+s1t=s1i=kk+s2tk+i1}.\displaystyle L_{k}(r,s)=\{\,(t_{1},\ldots,t_{n})\!\in\!K_{n}\,\,\mathstrut\vrule\,\,(t_{k},\ldots,t_{k+s-2},t)\!\in\!K_{s},\,t_{k+s-1}\!\geq\!t\!=\!s{-}1-\textstyle\sum_{i=k}^{k+s-2}t_{k+i-1}\,\}.
\curve(0,0 , 3,-1.5)\curve(0,0 , 2,0)(K5S2)(\partial K_{5}\approx S^{2})L1(4,2)L_{1}(4,2)L1(3,3)L_{1}(3,3)L1(2,4)L_{1}(2,4)L2(2,4)L_{2}(2,4)L2(3,3)L_{2}(3,3)L2(4,2)L_{2}(4,2)L3(3,3)L_{3}(3,3)L3(4,2)L_{3}(4,2)L4(4,2)L_{4}(4,2)(0,0,0,3,1)(0,0,0,3,1)(0,0,1,2,1)(0,0,1,2,1)(0,0,2,1,1)(0,0,2,1,1)(0,0,2,0,2)(0,0,2,0,2)(0,1,1,1,1)(0,1,1,1,1)(0,1,0,2,1)(0,1,0,2,1)(0,1,0,1,2)(0,1,0,1,2)(0,1,0,0,3)(0,1,0,0,3)(0,1,1,0,2)(0,1,1,0,2)(0,0,1,1,2)(0,0,1,1,2)(0,0,1,0,3)(0,0,1,0,3)(0,0,0,3,1)(0,0,0,3,1)(0,0,1,2,1)(0,0,1,2,1)(0,0,2,1,1)(0,0,2,1,1)(0,0,2,0,2)(0,0,2,0,2)(0,0,0,0,4)(0,0,0,0,4)(0,0,0,1,3)(0,0,0,1,3)(0,0,0,2,2)(0,0,0,2,2)(0,1,0,2,1)(0,1,0,2,1)(0,1,0,1,2)(0,1,0,1,2)(0,1,0,0,3)(0,1,0,0,3)(0,1,1,0,2)(0,1,1,0,2)

Following Stasheff [Sta63] (see also [IM89] or [Iwa12]), we introduce face operators k:r×sn\partial_{k}:\mathbb{R}^{r}\times\mathbb{R}^{s}\to\mathbb{R}^{n}, r+s=n+1r+s=n+1, 1kr1\leq k\leq r, as the following linear maps.

k((t1,,tr),(u1,,us))={(u1,,us1,us+t1,t2,,tr),k=1,(t1,,tk1,u1,,us1,us+tk,tk+1,,tr),2kr,\partial_{k}((t_{1},\ldots,t_{r}),(u_{1},\ldots,u_{s}))=\begin{cases}\,(u_{1},\ldots,u_{s-1},u_{s}{+}t_{1},t_{2},\ldots,t_{r}),&\!\!k\!=\!1,\\[2.15277pt] \,(t_{1},\ldots,t_{k-1},u_{1},\ldots,u_{s-1},u_{s}{+}t_{k},t_{k+1},\ldots,t_{r}),&\!\!2\!\leq\!k\!\leq\!r,\end{cases}

If we restrict k\partial_{k} to Kr×KsK_{r}\times K_{s}, then we obtain k:Kr×KsLk(r,s)Knn\partial_{k}:K_{r}\times K_{s}\approx L_{k}(r,s)\subset K_{n}\subset\mathbb{R}^{n}. Now we choose an interior point of KnK_{n}, as 𝕓n=(0,1/2,,1/2,n/2)Kn\mathbb{b}_{n}=(0,\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\ldots,\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\mbox{\raise 2.15277pt\hbox{\footnotesize$n$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}})\in K_{n}. Then we see that KnK_{n} and Lk(r,s)L_{k}(r,s) are characterised by the following two conditions. (1)  k:Kr×KsLk(r,s)\partial_{k}:K_{r}\times K_{s}\xrightarrow{\approx}L_{k}(r,s), (k,r,s)A(n)(k,r,s)\in A(n),     (2)  Kn=(k,r,s)A(n)Lk(r,s)𝕓nK_{n}=\bigcup_{(k,r,s)\in A(n)}L_{k}(r,s)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{n}.

Example 4.1.

K2={𝕓2}K_{2}=\{\mathbb{b}_{2}\}, K3=L2(2,2){𝕓3}L1(2,2)K_{3}=L_{2}(2,2)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{3}\}\,\hbox{\footnotesize$*$}\,L_{1}(2,2), and K4=L2(2,3)𝕓4L2(3,2)𝕓4L3(3,2)𝕓4L1(2,3)𝕓4L1(3,2)𝕓4K_{4}=L_{2}(2,3)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{4}\cup L_{2}(3,2)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{4}\cup L_{3}(3,2)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{4}\cup L_{1}(2,3)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{4}\cup L_{1}(3,2)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{4}.

Firstly, KnK_{n} is the realisation of a cubic set, namely 𝕂(n)\mathbb{K}(n), which begins with

  1. (1)

    𝕂(1)={}\mathbb{K}(1)=\{\emptyset\}.

Secondly, we define cubic complexes 𝕃k(r,s)\mathbb{L}_{k}(r,s), (k,r,s)A(n)(k,r,s)\in A(n), assuming that 𝕂(r)\mathbb{K}(r) and 𝕂(s)\mathbb{K}(s) are given: let us denote 𝟘n=(0,,0)n\mathbb{0}_{n}=(0,\ldots,0)\in\mathbb{R}^{n} and Hn={(0,x2,,xn)n x2++xn=0}H_{n}=\{(0,x_{2},\ldots,x_{n})\in\mathbb{R}^{n}\,\,\mathstrut\vrule\,\,x_{2}+\cdots+x_{n}=0\}. Then we have the following two linear subspaces of n\mathbb{R}^{n}:

V1=k(Hr×{𝟘s})and\displaystyle V_{1}=\partial_{k}(H_{r}\times\{\mathbb{0}_{s}\})\quad\text{and}
V2=k({𝟘r}×Hs)withV1V2={𝟘n}.\displaystyle V_{2}=\partial_{k}(\{\mathbb{0}_{r}\}\times H_{s})\quad\text{with}\quad V_{1}\cap V_{2}=\{\mathbb{0}_{n}\}.

Let 𝕒=k(𝕓r,𝕓s)n\mathbb{a}=\partial_{k}(\mathbb{b}_{r},\mathbb{b}_{s})\in\mathbb{R}^{n}. Since KnHn+𝕓nK_{n}\subset H_{n}+\mathbb{b}_{n}, we obtain

L1=V1+𝕒=k((Hr+𝕓r)×{𝕓s})k(Kr×{𝕓s})Kr,\displaystyle L_{1}=V_{1}+\mathbb{a}=\partial_{k}((H_{r}\!+\!\mathbb{b}_{r})\times\{\mathbb{b}_{s}\})\supset\partial_{k}(K_{r}\times\{\mathbb{b}_{s}\})\approx K_{r},
L2=V2+𝕒=k({𝕓r}×(Hs+𝕓s))k({𝕓r}×Ks)Ks.\displaystyle L_{2}=V_{2}+\mathbb{a}=\partial_{k}(\{\mathbb{b}_{r}\}\times(H_{s}\!+\!\mathbb{b}_{s}))\supset\partial_{k}(\{\mathbb{b}_{r}\}\times K_{s})\approx K_{s}.

Then we clearly have that L1L2={𝕒}L_{1}\cap L_{2}=\{\mathbb{a}\}. Hence, when 𝕂(r)\mathbb{K}(r) and 𝕂(s)\mathbb{K}(s) have already been defined, we must obtain the following.

  1. (2)

    𝕃k(r,s)=k(𝕂(r)×{𝕓s})×L2L1k({𝕓r}×𝕂(s))\mathbb{L}_{k}(r,s)=\partial_{k}(\mathbb{K}(r)\times\{\mathbb{b}_{s}\})\,\,{}_{L_{1}\!\!}\times_{L_{2}}\partial_{k}(\{\mathbb{b}_{r}\}\times\mathbb{K}(s)), (k,r,s)A(n)(k,r,s)\in A(n).

Thirdly, we define a cubic complex 𝕂(n)\mathbb{K}(n): let V1=V1+V2V^{\prime}_{1}=V_{1}+V_{2}, V2={𝟘n}V^{\prime}_{2}=\{\mathbb{0}_{n}\}, 𝕒1=𝕒\mathbb{a}^{\prime}_{1}=\mathbb{a} and 𝕒2=𝕓n\mathbb{a}^{\prime}_{2}=\mathbb{b}_{n}. Then Lk(r,s)V1+𝕒1{L}_{k}(r,s)\subset V^{\prime}_{1}+\mathbb{a}^{\prime}_{1}, 𝕓nV2+𝕒2\mathbb{b}_{n}\in V^{\prime}_{2}+\mathbb{a}^{\prime}_{2} and V1V2=V^{\prime}_{1}\cap V^{\prime}_{2}=\emptyset. Hence, when 𝕃k(r,s)\mathbb{L}_{k}(r,s), (k,r,s)A(n)(k,r,s)\in A(n), have already been defined, we must obtain the following.

  1. (3)

    𝕂(n)=(k,r,s)A(n)𝕃k(r,s)𝕓n\mathbb{K}(n)=\bigcup_{(k,r,s)\in A(n)}\mathbb{L}_{k}(r,s)\,\hbox{\footnotesize$*$}\,\mathbb{b}_{n}.

Thus 𝕂(n)\mathbb{K}(n), n1n\geq 1 can inductively be defined by the above formulas (1), (2) and (3). Then we can easily see that there is a natural homeomorphism from |𝕂(n)||\mathbb{K}(n)| to KnK_{n}.

By slightly modifying the definition in Stasheff [Sta63], we obtain the following degeneracy operators sj:KnKn1s_{j}:K_{n}\to K_{n-1}, 1jn1\!\leq\!j\!\leq\!n, n2n\!\geq\!2 (see [IM89] or [Iwa12]).

sj((1t)k(ρ,σ)+t𝕓n)=(1t)sj k(ρ,σ)+t𝕓n1,\displaystyle s_{j}((1{-}t){\cdot}\partial_{k}(\rho,\sigma)+t{\cdot}\mathbb{b}_{n})=(1{-}t){\cdot}s_{j}\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}\partial_{k}(\rho,\sigma)+t{\cdot}\mathbb{b}_{n-1},

where sj k:Kr×KsKn1s_{j}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\partial_{k}:K_{r}\times K_{s}\to K_{n-1} is given by

sj k(ρ,σ)={k1(r1,s) (sjρ×σ),j<k,r>2,σ,j=1,k=2,r=2,k(r,s1) (ρ×sjk+1σ),kj<k+s,r<n1,ρ,kjk+1,r=n1,k1(r1,s) (sjs+1ρ×σ),k+sjn,r>2,σ,j=n,k=1,r=2.s_{j}\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}\partial_{k}(\rho,\sigma)=\begin{cases}\partial_{k-1}(r{-}1,s){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(s_{j}\rho\times\sigma),&j\!<\!k,\ r\!>\!2,\\[0.0pt] \sigma,&j\!=\!1,\,k\!=\!2,\,r\!=\!2,\\[2.15277pt] \partial_{k}(r,s{-}1){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\rho\times s_{j-k+1}\sigma),&k\!\leq\!j\!<\!k{+}s,\ r\!<\!n{-}1,\\[0.0pt] \rho,&k\!\leq\!j\!\leq\!k{+}1,\ r\!=\!n{-}1,\\[2.15277pt] \partial_{k-1}(r{-}1,s){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(s_{j-s+1}\rho\times\sigma),&k{+}s\!\leq\!j\!\leq\!n,\ r\!>\!2,\\[0.0pt] \sigma,&j\!=n,\,k\!=\!1,\,r\!=\!2.\end{cases}

Thus we may suppose that sj:KnKn1s_{j}:K_{n}\to K_{n-1}, 1jn1\leq j\leq n, n2n\geq 2 is a realisation of a cubic map, which is denoted again by sj:𝕂(n)𝕂(n1)s_{j}:\mathbb{K}(n)\to\mathbb{K}(n-1).

Remark 4.2.

J. L. Loday [Lod07, Lod12] gave a nice realisation of an associahedron and its triangulation using Tamari ordering on vertices, which could give a natural smooth structure on such triangulation in terms of trees.

5. AA_{\infty}-form in 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}

In this section, let us concentrate on our cubic complex of assosiahedra. The following is obtained by induction on nn.

Theorem 5.1.

k:𝕂(r)×𝕂(s)𝕂(n)\partial_{k}:\mathbb{K}(r)\times\mathbb{K}(s)\to\mathbb{K}(n), r+s=n+1r+s=n+1, 1kr1\leq k\leq r and sj:𝕂(n)𝕂(n1)s_{j}:\mathbb{K}(n)\to\mathbb{K}(n{-}1), 1jn21\leq j\leq n\geq 2 are smooth cubic maps.

We now state the smooth version of a strict unital AA_{\infty}-space: let GG be a diffeological space with a base point eGe\in G, which is called a unit of GG.

Defninition 5.2 (Stasheff [Sta63]).

GG is called a smooth (strict unital) AA_{\infty}-space, if there is a series of smooth maps {M(n):|𝕂(n)|×GnG}n2\{M(n):|\mathbb{K}(n)|\times G^{n}\to G\}_{n\geq 2} (AA_{\infty}-form) satisfying

  1. (1)

    M(n)(k(ρ,σ);g1,,gn)=M(r)(ρ;g1,,M(s)(σ;gk,,gk+s1),,gn)M(n)(\partial_{k}(\rho,\sigma);g_{1},\ldots,g_{n})=M(r)(\rho;g_{1},\ldots,M(s)(\sigma;g_{k},\ldots,g_{k+s-1}),\ldots,g_{n}).

  2. (2)

    M(n)(τ;g1,,gj1,e,gj+1,,gn)=M(n1)(sj(τ);g1,,gj1,gj+1,,gn)M(n)(\tau;g_{1},\ldots,g_{j-1},e,g_{j+1},\ldots,g_{n})=M(n{-}1)(s_{j}(\tau);g_{1},\ldots,g_{j-1},g_{j+1},\ldots,g_{n}).

An AA_{\infty}-space allowing homotopy unit was introduced in [Sta70] as in the following definition, which shall be referred as h-unital AA_{\infty}-space in this article.

Defninition 5.3 (Stasheff [Sta70]).

GG is called a smooth h-unital AA_{\infty}-space, if there is a series of smooth maps {M(n):|𝕂(n)|×GnG}n2\{M(n):|\mathbb{K}(n)|\times G^{n}\to G\}_{n\geq 2} (AA_{\infty}-form) satisfying

  1. (1)

    M(n)(k(ρ,σ);g1,,gn)=M(r)(ρ;g1,,M(s)(σ;gk,,gk+s1),,gn)M(n)(\partial_{k}(\rho,\sigma);g_{1},\ldots,g_{n})=M(r)(\rho;g_{1},\ldots,M(s)(\sigma;g_{k},\ldots,g_{k+s-1}),\ldots,g_{n}).

  2. (2’)​

    M2(e,g)M2(g,e)gM_{2}(e,g)\simeq M_{2}(g,e)\simeq g the identity.

By [Iwa12, Theorem 1.4], these definitions are not the same but equivalent up to homotopy. In view of [Iwa12], we give two notions of internal precategories:

Defninition 5.4.

A pair of diffeological spaces G=(G,X)G=(G,X) is called an internal precategory, if it is equipped with three smooth (structure) maps

σ:GX,τ:GX,ι:XG\displaystyle\sigma:G\to X,\quad\tau:G\to X,\quad\iota:X\to G

with relations σ ι=τ ι=1\sigma{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\iota=\tau{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\iota=\mathrm{1}.

For an internal precategory G=(G,X)G=(G,X), we define {Gn;σn,τn:GnX}n1\{G^{n};\sigma_{n},\tau_{n}:G^{n}\to X\}_{n\geq 1} by induction: (1)  G1=GG^{1}=G,  σ1=σ\sigma_{1}=\sigma and τ1=τ\tau_{1}=\tau     (n+1) Gn+1=Gn×XGG^{n+1}=G^{n}\times_{X}G,  σn+1(χ,h)=σn(χ)\sigma_{n+1}(\chi,h)=\sigma_{n}(\chi) and τn+1(χ,h)=τ(h)\tau_{n+1}(\chi,h)=\tau(h),

where Gn×XGG^{n}\times_{X}G is the pullback of τn\tau_{n} and σ\sigma, that is, Gn×XG={(χ,h)Gn×G τn(χ)=σ(h)}G^{n}\times_{X}G=\{\,(\chi,h)\in G^{n}\times G\,\,\mathstrut\vrule\,\,\tau_{n}(\chi)\!=\!\sigma(h)\,\} is a subspace of Gn×GG^{n}\times G.

Defninition 5.5.

An internal precategory G=(G,X)G=(G,X) in Diffeology is called an internal (strict unital) smooth AA_{\infty}-category, if there is a series of smooth maps {M(n):|𝕂(n)|×GnG}n2\{M(n):|\mathbb{K}(n)|\times G^{n}\to G\}_{n\geq 2} (AA_{\infty}-form) satisfying the conditions (0), (1) and (2):

  1. (0)

    σ M(n)(τ;g1,,gn)=σ(g1)\sigma{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}M(n)(\tau;g_{1},\dots,g_{n})=\sigma(g_{1}) and τ M(n)(τ;g1,,gn)=τ(gn)\tau{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}M(n)(\tau;g_{1},\dots,g_{n})=\tau(g_{n}).

  2. (1)

    M(n) (k×1n)=M(r) (1×1k1×XM(s)×X1rk) (1×Tk):|𝕂(r)|×|𝕂(s)|×GnGM(n){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\partial_{k}\times\mathrm{1}^{n})=M(r){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\mathrm{1}\times\mathrm{1}^{k-1}\times_{X}M(s)\times_{X}\mathrm{1}^{r-k}){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\mathrm{1}\times T_{k}):|\mathbb{K}(r)|\times|\mathbb{K}(s)|\times G^{n}\to G,​​​​​​​​​​

    {diagram}\begin{diagram}

    where Tk:|𝕂(s)|×Gn=|𝕂(s)|×Gk1×XGs×XGrkGk1×X(|𝕂(s)|×Gs)×XGrkT_{k}:|\mathbb{K}(s)|\times G^{n}=|\mathbb{K}(s)|\times G^{k-1}\times_{X}G^{s}\times_{X}G^{r-k}\to G^{k-1}\times_{X}(|\mathbb{K}(s)|\times G^{s})\times_{X}G^{r-k} is given by Tk(a,𝕩,𝕪,𝕫)=(𝕩,a,𝕪,𝕫)T_{k}(a,\mathbb{x},\mathbb{y},\mathbb{z})=(\mathbb{x},a,\mathbb{y},\mathbb{z}).

  3. (2)

    M(n) (1×1j1×Xι×X1nj)=M(n1) (sj×1j1×X1nj):|𝕂(n)|×Gn1GM(n){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\mathrm{1}\times\mathrm{1}^{j-1}\times_{X}\iota\times_{X}\mathrm{1}^{n-j})=M(n{-}1){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(s_{j}\times\mathrm{1}^{j-1}\times_{X}\mathrm{1}^{n-j}):|\mathbb{K}(n)|\times G^{n-1}\to G.

    {diagram}\begin{diagram}
Defninition 5.6.

We call G=(G,X)G=(G,X) an internal smooth h-unital AA_{\infty}-category in Diffeology, if there is a series of smooth maps {M(n):|𝕂(n)|×GnG}n2\{M(n):|\mathbb{K}(n)|\times G^{n}\to G\}_{n\geq 2} (AA_{\infty}-form) satisfying the conditions (0) and (1) in Definition 5.5 and (2’) below.

  1. (2’)​

    M(2)|{𝕓2}×{e}×GM(1) (s1×1)M(2)|_{\{\mathbb{b}_{2}\}\times\{e\}\times G}\simeq M(1){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(s_{1}\times\mathrm{1}) and M(2)|{𝕓2}×G×{e}M(1) (s2×1)M(2)|_{\{\mathbb{b}_{2}\}\times G\times\{e\}}\simeq M(1){\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(s_{2}\times\mathrm{1}) the identity.

6. Path space with usual concatenation

In this section, we work in Diffeology making some additional assumptions on the diffeology 𝒟(X)\mathcal{D}(X) of a diffeological space XX. Let us denote by (X)=C(X,)\mathcal{F}(X)=C^{\infty}(X,\mathbb{R}) the set of smooth functions on XX to \mathbb{R}. Then we define a superset 𝒟(X)\mathcal{D}^{\prime}(X) of 𝒟(X)\mathcal{D}(X) as the set of parametrisations PP on XX satisfying that φ P\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}P is smooth for any φ(X)\varphi\in\mathcal{F}(X).

Defninition 6.1 (J. Watts [Wat12] (see also [IZ13])).

A diffeological space XX is said to be reflexive, if 𝒟(X)=𝒟(X)\mathcal{D}(X)=\mathcal{D}^{\prime}(X).

Theorem 6.2 ([IZ13, Exercise 79]).

A manifold is reflexive in 𝖣𝗂𝖿𝖿𝖾𝗈𝗅𝗈𝗀𝗒{\sf{Diffeology}}{}.

Let us introduce the following notion for a point 𝕒\mathbb{a} in XX.

Defninition 6.3.

A diffeological space XX is said to be reflexive at 𝕒X\mathbb{a}\in X, if there is a DD-open neighbourhood UU of 𝕒\mathbb{a}, which is reflexive as a diffeological space.

Example 6.4.

A manifold is reflexive at any point, and hence a smooth CW complex of finite dimension is reflexive at an interior point of a top cell.

Example 6.5.

Let f:𝕀f:\mathbb{R}\to\mathbb{I} be a map given by

f(t)=π(max{0,t}),f(t)=\pi(\max\{0,\sqrt{t}\}),

which is not smooth at t=0t\!=\!0. In fact, if ff is smooth, ff can be expressed as f=π ϕf=\pi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\phi near t=0t\!=\!0 by a smooth map ϕ:\phi:\mathbb{R}\to\mathbb{R}. Then we have ϕ(t)=t\phi(t)=\sqrt{t} for small t>0t>0, and hence ϕ(0)=limt+0ϕ(t)=+\phi^{\prime}(0)=\underset{t\to+0}{\lim}\phi^{\prime}(t)=+\infty. It contradicts to the smoothness of ϕ\phi at t=0t=0. On the other hand, for any smooth map g:𝕀g:\mathbb{I}\to\mathbb{R}, the composition ψ=g π:\psi=g{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi:\mathbb{R}\to\mathbb{R} is smooth on \mathbb{R}, and constant on (,0](-\infty,0]. Thus we have

limt+0ψ(r)(t)=ψ(r)(0)=limt0ψ(r)(t)=0for all r1.\underset{t\to+0}{\lim}\,\psi^{(r)}(t)=\psi^{(r)}(0)=\underset{t\to-0}{\lim}\,\psi^{(r)}(t)=0\quad\text{for all $r\!\geq\!1$.}

By applying L’Hôpital’s rule many times, we obtain that limt+0ψ(r)(t)/tn=0\underset{t\to+0}{\lim}\,\psi^{(r)}(t)/t^{n}=0 for all r,n1r,\,n\geq 1. Then by induction, we can express (ψ f)(r)(t)(\psi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}f)^{(r)}(t) as the following form:

(ψ f)(r)(t)=j=0𝑟Pr,j(1/t)ψ(j)(t),t>0,for all r>1,(\psi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}f)^{(r)}(t)=\underset{j=0}{\overset{r}{\sum}}\,P_{\!r,j}(1/\sqrt{t}){\cdot}\psi^{(j)}(\sqrt{t}),\,t>0,\quad\text{for all $r>1$,}

where Pr,j(x)P_{\!r,j}(x) is a polynomial on xx. Again by applying L’Hôpital’s rule, we obtain that (ψ f)(r)(0)(\psi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}f)^{(r)}(0) exists and equals to limt0(ψ f)(r)(t)=0\underset{t\to 0}{\lim}\,(\psi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}f)^{(r)}(t)=0 for all r1r\!\geq\!1, and hence ψ f\psi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}f is smooth at t=0t\!=\!0. Thus f𝒟(𝕀)f\in\mathcal{D}^{\prime}(\mathbb{I}) while f𝒟(𝕀)f\not\in\mathcal{D}(\mathbb{I}). So, 𝕀\mathbb{I} is not reflexive (at t=0t\!=\!0). In contrast, 𝕀\mathbb{I} is reflexive at any point t(0,1)𝕀t\in(0,1)\subset\mathbb{I}.

Let us recall the following diffeological subspace of Paths(X)\operatorname{Paths}(X).

𝒫(X)={uPaths(X) u πset=u}C(𝕀,X).{\operatorname{\mathcal{P}}(X)}=\{\,u\in\operatorname{Paths}(X)\,\,\mathstrut\vrule\,\,u{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\pi_{set}=u\,\}\cong C^{\infty}(\mathbb{I},X).

From now on, we often identify 𝒫(X){\operatorname{\mathcal{P}}(X)} with C(𝕀,X)C^{\infty}(\mathbb{I},X) without mentioning π\pi^{*}.

Proposition 6.6.

For u𝒫(X)=C(𝕀,X)u\in{\operatorname{\mathcal{P}}(X)}=C^{\infty}(\mathbb{I},X) and φC(X,)\varphi\in C^{\infty}(X,\mathbb{R}), we obtain

dn(φ u)dtn=0on(,0][1,)for alln>0.\frac{\operatorname{\mathit{d}}^{n}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u)}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{on}\ \ (-\infty,0]\cup[1,\infty)\ \ \text{for all}\ \ n>0.
Proof.

Since uu is constant on (,0)(-\infty,0) and on (1,)(1,\infty), so is φ u\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u and we obtain

d(φ u)dt=0on(,0)(1,).\frac{\operatorname{\mathit{d}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u)}{\operatorname{\mathit{d}}t}=0\ \ \text{on}\ \ (-\infty,0)\cup(1,\infty).

Hence by iterating differentiations, we obtain

dn(φ u)dtn=0on(,0)(1,)for alln>0.\frac{\operatorname{\mathit{d}}^{n}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u)}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{on}\ \ (-\infty,0)\cup(1,\infty)\ \ \text{for all}\ \ n>0.

Because all the derivatives are continuous, we obtain the propostion. ∎

Since 𝒫(X)=C(𝕀,X){\operatorname{\mathcal{P}}(X)}=C^{\infty}(\mathbb{I},X) is the left adjoint of the product functor with 𝕀\mathbb{I}, 𝒫(X){\operatorname{\mathcal{P}}(X)} is an internal precategory with the following smooth structure maps.

σ=σX:𝒫(X)XσX(u)=u(0),u𝒫(X),\displaystyle\sigma=\sigma_{X}:{\operatorname{\mathcal{P}}(X)}\to X\iff\sigma_{X}(u)=u(0),\quad u\in{\operatorname{\mathcal{P}}(X)},
τ=τX:𝒫(X)XτX(u)=u(1),u𝒫(X),\displaystyle\tau=\tau_{X}:{\operatorname{\mathcal{P}}(X)}\to X\iff\tau_{X}(u)=u(1),\quad u\in{\operatorname{\mathcal{P}}(X)},
ι=ιX:X𝒫(X)ιX(𝕩)(t)=𝕩,𝕩X&t.\displaystyle\iota=\iota_{X}:X\to{\operatorname{\mathcal{P}}(X)}\iff\iota_{X}(\mathbb{x})(t)=\mathbb{x},\quad\mathbb{x}\in X\ \&\ t\in\mathbb{R}.
The internal precategory 𝒫(X){\operatorname{\mathcal{P}}(X)} is equipped with the following structure map μ=μX\mu=\mu_{X} called a concatenation, which could fail to be well-defined in general:
μ=μX:𝒫(X)×X𝒫(X)𝒫(X)\displaystyle\mu=\mu_{X}:{\operatorname{\mathcal{P}}(X)}\times_{X}{\operatorname{\mathcal{P}}(X)}\dashrightarrow{\operatorname{\mathcal{P}}(X)}
μX(u,v)(t)={u(2t),t1/2,v(2t1),t1/2,t,\displaystyle\qquad\qquad\iff\mu_{X}(u,v)(t)=\begin{cases}\,u(2t),&t\leq\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\\ \,v(2t{-}1),&t\geq\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\end{cases}\ \ t\in\mathbb{R},

where 𝒫(X)×X𝒫(X){\operatorname{\mathcal{P}}(X)}\times_{X}{\operatorname{\mathcal{P}}(X)} denotes the pullback of τ:𝒫(X)X\tau:{\operatorname{\mathcal{P}}(X)}\to X and σ:𝒫(X)X\sigma:{\operatorname{\mathcal{P}}(X)}\to X:

𝒫(X)×X𝒫(X)={(u,v)𝒫(X)×𝒫(X) τ(u)=σ(v)}.{\operatorname{\mathcal{P}}(X)}\times_{X}{\operatorname{\mathcal{P}}(X)}=\{\,(u,v)\in{\operatorname{\mathcal{P}}(X)}\times{\operatorname{\mathcal{P}}(X)}\,\,\mathstrut\vrule\,\,\tau(u)=\sigma(v)\,\}.
Defninition 6.7.

We define the following subspaces of 𝒫(X)C(,X){\operatorname{\mathcal{P}}(X)}\subset C^{\infty}(\mathbb{R},X).

  1. (1)

    𝒫(X;𝕒,𝕓)={u𝒫(X) u(0)=𝕒&u(1)=𝕓}{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{b})}=\{\,u\in{\operatorname{\mathcal{P}}(X)}\,\,\mathstrut\vrule\,\,u(0)=\mathbb{a}\ \&\ u(1)=\mathbb{b}\,\}.

  2. (2)

    (X,𝕒)=𝒫(X;𝕒,𝕒)\operatorname{\mathcal{L}}(X,\mathbb{a})={\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{a})} and (X)=𝒫(X;,)\operatorname{\mathcal{L}}(X)={\operatorname{\mathcal{P}}(X;\mathbb{\hbox{\footnotesize$*$}},\mathbb{\hbox{\footnotesize$*$}})}.

Let 𝕒,𝕓,𝕔X\mathbb{a},\mathbb{b},\mathbb{c}\in X. In the remainder of this section, we assume that XX is reflexive at 𝕓X\mathbb{b}\in X. For any two paths u𝒫(X;𝕒,𝕓)u\in{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{b})} and v𝒫(X;𝕓,𝕔)v\in{\operatorname{\mathcal{P}}(X;\mathbb{b},\mathbb{c})}, and any function φ(X)\varphi\in\mathcal{F}(X), both uu and vv are smooth, and φ u\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u and φ v\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v are smooth functions in the ordinary sense. The function φ μ(u,v)\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v) can be described as follows:

(A) φ μ(u,v)(t)=μ(φ u,φ v)(t)={φ u(2t),t1/2,φ v(2t1),t1/2.t.\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v)(t)=\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v)(t)=\begin{cases}\,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u(2t),&t\leq\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\\ \,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v(2t{-}1),&t\geq\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}.\end{cases}\ \ t\in\mathbb{R}.

Then, φ μ(u,v)=μ(φ u,φ v)\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v)=\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v) is smooth: by Proposition 6.6, we obtain

dn(φ u)dtn=0anddn(φ v)dtn=0on(,0][1,)for alln>0.\frac{\operatorname{\mathit{d}}^{n}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u)}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{and}\ \ \frac{\operatorname{\mathit{d}}^{n}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v)}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{on}\ \ (-\infty,0]\cup[1,\infty)\ \ \text{for all}\ \ n>0.

So we define φ1,φ2𝒫(X)\varphi_{1},\varphi_{2}\in{\operatorname{\mathcal{P}}(X)} by φ1(t)=φ u(2t)\varphi_{1}(t)=\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u(2t) and φ2(t)=φ v(2t1)\varphi_{2}(t)=\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v(2t{-}1), tt\in\mathbb{R} to obtain φ1=φ μ(u,k(𝕓))=μ(φ u,k(φ(𝕓)))\varphi_{1}=\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,k(\mathbb{b}))=\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u,k(\varphi(\mathbb{b}))) and φ2=φ μ(k(𝕓),v)=μ(k(φ(𝕓)),φ v)\varphi_{2}=\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(k(\mathbb{b}),v)=\mu_{\mathbb{R}}(k(\varphi(\mathbb{b})),\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v), where k(𝕓)k(\mathbb{b}) and k(φ(𝕓))k(\varphi(\mathbb{b})) are the constant maps at 𝕓X\mathbb{b}\in X and φ(𝕓)\varphi(\mathbb{b})\in\mathbb{R}, respectively. Since φ1\varphi_{1} and φ2\varphi_{2} are compositions of smooth maps, they are smooth satisfying

dnφ1dtn=0on(,0][1/2,)for alln>0,and\displaystyle\frac{\operatorname{\mathit{d}}^{n}\!\varphi_{1}}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{on}\ \ (-\infty,0]\cup[\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\infty)\ \ \text{for all}\ \ n>0,\ \ \text{and}
dnφ2dtn=0on(,1/2][1,)for alln>0.\displaystyle\frac{\operatorname{\mathit{d}}^{n}\!\varphi_{2}}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{on}\ \ (-\infty,\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}]\cup[1,\infty)\ \ \text{for all}\ \ n>0.

Since φ μ(u,v)(t)=μ(φ u,φ v)(t)=φ1(t)+φ2(t)φ(𝕓)\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v)(t)=\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v)(t)=\varphi_{1}(t)+\varphi_{2}(t)-\varphi(\mathbb{b}), tt\!\in\!\mathbb{R} by the equation (A), the composition φ μ(u,v)=μ(φ u,φ v)\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v)=\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}u,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}v) is also a smooth function satisfying

dn(φ μ(u,v))dtn=0on(,0]{1/2}[1,)for alln>0.\frac{\operatorname{\mathit{d}}^{n}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v))}{\operatorname{\mathit{d}}{t\,}^{n}}=0\ \ \text{on}\ \ (-\infty,0]\cup\{\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}\}\cup[1,\infty)\ \ \text{for all}\ \ n>0.

Here, let us recall that μ(u,v)\mu(u,v) :: X\mathbb{R}\to X is smooth on {1/2}\mathbb{R}\smallsetminus\{\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}\} and that there is a DD-open neighbourhood UXU\subset X of 𝕓\mathbb{b} such that UU is reflexive, since XX is reflexive at the point 𝕓\mathbb{b}. Since φ μ(u,v)\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(u,v) is smooth for any smooth function φ:X\varphi:X\to\mathbb{R}, we obtain that μ(u,v)\mu(u,v) is smooth on the open set μ(u,v)1(U)1/2\mu(u,v)^{-1}(U)\ni\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}. It means that μ(u,v)\mu(u,v) is a plot, and μ\mu is well-defined.

Theorem 6.8.

Let XX be a diffeological space and reflexive at 𝕓\mathbb{b} with 𝕒,𝕓,𝕔X\mathbb{a},\mathbb{b},\mathbb{c}\!\in\!X. Then the concatenation μ=μX:𝒫(X;𝕒,𝕓)×𝒫(X;𝕓,𝕔)𝒫(X;𝕒,𝕔)\mu=\mu_{X}:{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{b})}\times{\operatorname{\mathcal{P}}(X;\mathbb{b},\mathbb{c})}\to{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{c})} is well-defined and smooth.

Proof.

For any two plots P:kU𝒫(X;𝕒,𝕓)P:\mathbb{R}^{k}\supset U\to{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{b})}, Q:V𝒫(X;𝕓,𝕔)Q:\mathbb{R}^{\ell}\supset V\to{\operatorname{\mathcal{P}}(X;\mathbb{b},\mathbb{c})} and any φ(X)\varphi\in\mathcal{F}(X), the adjoints P^:×UX\widehat{P}:\mathbb{R}\times U\to X and Q^:×VX\widehat{Q}:\mathbb{R}\times V\to X of PP and QQ are smooth, and hence φ P^:×U\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P}:\mathbb{R}\times U\to\mathbb{R} and φ Q^:×V\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q}:\mathbb{R}\times V\to\mathbb{R} are smooth functions. Let (PQ)^:×U×VX\widehat{(P{\cdot}Q)}:\mathbb{R}\times U\times V\to X be the adjoint map of PQ:=μ (P×Q):U×V𝒫(X;𝕒,𝕓)×𝒫(X;𝕓,𝕔)𝒫(X;𝕒,𝕔)P{\cdot}Q:=\mu{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(P\times Q):U\times V\to{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{b})}\times{\operatorname{\mathcal{P}}(X;\mathbb{b},\mathbb{c})}\to{\operatorname{\mathcal{P}}(X;\mathbb{a},\mathbb{c})}. The function φ (PQ)^\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{(P{\cdot}Q)} can be described as

(B) φ (PQ)^(t,𝕩,𝕪)={φ P^(2t,𝕩),t1/2,φ Q^(2t1,𝕪),t1/2,(t,𝕩,𝕪)×U×V.\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{(P{\cdot}Q)}(t,\mathbb{x},\mathbb{y})=\begin{cases}\,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P}(2t,\mathbb{x}),&t\leq\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\\[2.15277pt] \,\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q}(2t{-}1,\mathbb{y}),&t\geq\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\end{cases}\quad(t,\mathbb{x},\mathbb{y})\in\mathbb{R}\times U\times V.

Since the adjoint map P^\widehat{P} of PP is constant on (,0]×U(-\infty,0]\times U and on [1,)×U[1,\infty)\times U, so is φ P^\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P}, and we obtain the following equation.

(φ P^)t=(φ P^)xi=0on((,0][1,))×Ufor 1ik.\displaystyle\frac{\operatorname{\partial}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P})}{\operatorname{\partial}t}=\frac{\operatorname{\partial}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P})}{\operatorname{\partial}x_{i}}=0\ \ \text{on}\ \ ((-\infty,0]\cup[1,\infty))\times U\ \text{for}\ 1\!\leq\!i\!\leq\!k.

Similarly for the adjoint map Q^\widehat{Q} of QQ, we obtain the following equation.

(φ Q^)t=(φ Q^)yj=0on((,0][1,))×Vfor 1j.\displaystyle\frac{\operatorname{\partial}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q})}{\operatorname{\partial}t}=\frac{\operatorname{\partial}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q})}{\operatorname{\partial}y_{j}}=0\ \ \text{on}\ \ ((-\infty,0]\cup[1,\infty))\times V\ \text{for}\ 1\!\leq\!j\!\leq\!\ell.

Hence by iterating partial differentials, we obtain

n+|I|(φ P^)tn𝕩I=0on((,0][1,))×Ufor(n,I)×k,n+|I|>0,\displaystyle\frac{\partial^{n+|I|}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P})}{\operatorname{\partial}t^{n}\operatorname{\partial}\mathbb{x}^{I}}=0\ \text{on}\ ((-\infty,0]\cup[1,\infty))\times U\ \text{for}\ (n,I)\in\mathbb{N}\times\mathbb{N}^{k},\ n\!+\!|I|>0,
n+|J|(φ Q^)tn𝕪J=0on((,0][1,))×Vfor(n,J)×,if n+|J|>0,\displaystyle\frac{\partial^{n+|J|}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q})}{\operatorname{\partial}t^{n}\operatorname{\partial}\mathbb{y}^{J}}=0\ \text{on}\ ((-\infty,0]\cup[1,\infty))\times V\ \text{for}\ (n,J)\in\mathbb{N}\times\mathbb{N}^{\ell},\ \text{if $n+|J|>0$,}

where |I|=i1++ik|I|=i_{1}+\cdots+i_{k} and 𝕩I=x1i1xkik\partial\mathbb{x}^{I}=\partial{x}_{1}^{i_{1}}\cdots\partial{x}_{k}^{i_{k}} for I=(i1,,ik)I\!=\!(i_{1},\ldots,i_{k}), and |J|=j1++j|J|=j_{1}+\cdots+j_{\ell} and 𝕪J=y1j1yj\partial\mathbb{y}^{J}=\partial{y}_{1}^{j_{1}}\cdots\partial{y}_{\ell}^{j_{\ell}} for J=(j1,,j)J\!=\!(j_{1},\ldots,j_{\ell}). Let Φ1=φ μ(P^,k(𝕓))=μ(φ P^,k(φ(𝕓)))\Phi_{1}=\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\mu(\widehat{P},k(\mathbb{b}))=\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P},k(\varphi(\mathbb{b}))) and Φ2=μ(k(φ(𝕓)),φ Q^)\Phi_{2}=\mu_{\mathbb{R}}(k(\varphi(\mathbb{b})),\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q}). Then we obtain the following equations.

n+|I|+|J|Φ1tn𝕩I𝕪J=0on((,0][1/2,))×Uand\displaystyle\frac{\partial^{n+|I|+|J|}\Phi_{1}}{\operatorname{\partial}t^{n}\operatorname{\partial}\mathbb{x}^{I}\operatorname{\partial}\mathbb{y}^{J}}=0\ \text{on}\ ((-\infty,0]\cup[\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}},\infty))\times U\ \ \text{and}
n+|I|+|J|Φ2tn𝕩I𝕪J=0on((,1/2][1,))×V\displaystyle\frac{\partial^{n+|I|+|J|}\Phi_{2}}{\operatorname{\partial}t^{n}\operatorname{\partial}\mathbb{x}^{I}\operatorname{\partial}\mathbb{y}^{J}}=0\ \text{on}\ ((-\infty,\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}]\cup[1,\infty))\times V

for (n,I,J)×k×(n,I,J)\in\mathbb{N}\times\mathbb{N}^{k}\times\mathbb{N}^{\ell}\!,  n+|I|+|J|>0n+|I|+|J|>0. Since φ (PQ)^(t,𝕩,𝕪)\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{(P{\cdot}Q)}(t,\mathbb{x},\mathbb{y}) == μ(φ P^,φ Q^)(t,𝕩,𝕪)\mu_{\mathbb{R}}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{P},\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{Q})(t,\mathbb{x},\mathbb{y}) == Φ1(t,𝕩,𝕪)+Φ2(t,𝕩,𝕪)φ k(𝕓)\Phi_{1}(t,\mathbb{x},\mathbb{y})+\Phi_{2}(t,\mathbb{x},\mathbb{y})-\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}k(\mathbb{b}), (t,𝕩,𝕪)×U×V(t,\mathbb{x},\mathbb{y})\!\in\!\mathbb{R}\times U\times V by the equation (B), the composition φ (PQ)^\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{(P{\cdot}Q)} is also a smooth function satisfying

n+|I|+|J|(φ (PQ)^)tn𝕩I𝕪J=0on((,0]{1/2}[1,))×U×V\frac{\partial^{n+|I|+|J|}(\varphi{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\widehat{(P{\cdot}Q)})}{\operatorname{\partial}t^{n}\operatorname{\partial}\mathbb{x}^{I}\operatorname{\partial}\mathbb{y}^{J}}=0\ \text{on}\ ((-\infty,0]\cup\{\mbox{\raise 2.15277pt\hbox{\footnotesize$1$}{\footnotesize\hskip-0.80005pt$/$\hskip-0.80005pt}\raise-2.15277pt\hbox{\footnotesize$2$}}\}\cup[1,\infty))\times U\times V

for (n,I,J)×k×(n,I,J)\in\mathbb{N}\times\mathbb{N}^{k}\times\mathbb{N}^{\ell}, n+|I|+|J|>0n+|I|+|J|>0. Therefore, by the reflexivity at a point 𝕓X\mathbb{b}\!\in\!X, we can deduce, using a similar argument given to show the well-definedness of μ(u,v)\mu(u,v), that the map (PQ)^:×U×VX\widehat{(P{\cdot}Q)}:\mathbb{R}\times U\times V\to X is a plot, which means μ (P×Q):U×V𝒫(X)\mu{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(P\times Q):U\times V\to{\operatorname{\mathcal{P}}(X)} is a plot, and hence μ\mu is smooth. ∎

There also is an obvious smooth homotopy μ (ι×X1)1μ (1×Xι)\mu{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\iota\times_{X}\mathrm{1})\sim\mathrm{1}\sim\mu{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\mathrm{1}\times_{X}\iota).

Corollary 6.9.

If XX is reflexive, then μ:𝒫(X)×X𝒫(X)𝒫(X)\mu:{\operatorname{\mathcal{P}}(X)}\times_{X}{\operatorname{\mathcal{P}}(X)}\to{\operatorname{\mathcal{P}}(X)} is smooth, and hence (𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X) is an internal H-category in Diffeology. If XX is reflexive at the base point *, then the concatenation of (X)=𝒫(X;,)\operatorname{\mathcal{L}}(X)={\operatorname{\mathcal{P}}(X;\mathbb{\hbox{\footnotesize$*$}},\mathbb{\hbox{\footnotesize$*$}})} is smooth.

Example 6.10.

Let XX be a manifold, or a smooth CW complex of finite dimension whose base point is in the top cell. Then the concatenation of (X)\operatorname{\mathcal{L}}(X) is smooth.

Theorem 6.11.

If XX is a reflexive diffeological space, then (𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X) is an internal smooth h-unital AA_{\infty}-category in Diffeology.

Proof.

Firstly, we introduce the space of concatenations as follows:

En={(r1,r2,,rn)n1   0<ri(1in),r1+r2++rn=1}E_{n}=\{\,(r_{1},r_{2},\ldots,r_{n})\in\mathbb{R}^{n-1}\,\,\mathstrut\vrule\,\,0<r_{i}\ (1\!\leq\!i\!\leq\!n),\ r_{1}+r_{2}+\cdots+r_{n}=1\,\}

which is a convex open set in an affine space of dimension n1n{-}1:

Hn1:x1+x2++xn=1.H^{n-1}:x_{1}+x_{2}+\cdots+x_{n}=1.

Let 𝒫(X)n=𝒫(X)×X×X𝒫(X){\operatorname{\mathcal{P}}(X)}^{n}={\operatorname{\mathcal{P}}(X)}\times_{X}\cdots\times_{X}{\operatorname{\mathcal{P}}(X)}. Then we define β^n:En×𝒫(X)n⸦⟶𝒫(X)\widehat{\beta}_{n}:E_{n}\times{\operatorname{\mathcal{P}}(X)}^{n}\lhook\joinrel\longrightarrow{\operatorname{\mathcal{P}}(X)} as

β^n(r1,,rn;u1,,un1)=v𝒫(X),\widehat{\beta}_{n}(r_{1},\dots,r_{n};u_{1},\ldots,u_{n-1})=v\in{\operatorname{\mathcal{P}}(X)},

which is defined by

v(t)={u1(tr1),tv1,ui(tvi1ri),vi1tvi, 1<i<n,un(tvn1rn),vn1t,t,v(t)=\begin{cases}u_{1}(\frac{t}{r_{1}}),&t\!\leq\!v_{1},\\[6.45831pt] u_{i}(\frac{t{-}v_{i-1}}{r_{i}}),&v_{i-1}\!\leq\!t\!\leq\!v_{i},\ 1\!<\!i\!<\!n,\\[6.45831pt] u_{n}(\frac{t{-}v_{n-1}}{r_{n}}),&v_{n-1}\!\leq\!t,\end{cases}\quad\text{$t\in\mathbb{R}$,}

where vi=r1++riv_{i}=r_{1}+\cdots+r_{i}, 1in1\!\leq\!i\!\leq\!n. It is not very hard to show that β^n\widehat{\beta}_{n} is well-defined and also smooth by using a similar arguments to the proof of Theorem 6.8, and we leave it to the reader. Thus by taking adjoint, we obtain a smooth map βn:EnC(𝒫(X)n,𝒫(X))\beta_{n}:E_{n}\to C^{\infty}({\operatorname{\mathcal{P}}(X)}^{n},{\operatorname{\mathcal{P}}(X)}).

Secondly, let kE:Er×EsEn\partial^{E}_{k}:E_{r}\times E_{s}\to E_{n}, r+s=n+1r{+}s=n{+}1, be the smooth map defined by

kE(x1,,xr;y1,,ys)=(x1,,xk1,xky1,,xkys,xk+1,,xr).\partial^{E}_{k}(x_{1},\dots,x_{r};y_{1},\dots,y_{s})=(x_{1},\dots,x_{k-1},x_{k}{\cdot}y_{1},\dots,x_{k}{\cdot}y_{s},x_{k+1},\dots,x_{r}).

Let 𝕖n=1n(1,1,,1)En\mathbb{e}_{n}=\frac{1}{n}(1,1,\ldots,1)\in E_{n}. Then we define ϕn:KnEn\phi_{n}:K_{n}\to E_{n} inductively by

(1)  ϕn:Kn𝕓n𝕖nEn\phi_{n}:K_{n}\ni\mathbb{b}_{n}\mapsto\mathbb{e}_{n}\in E_{n}, and     (2)  ϕn k=kE (ϕr×ϕs)\phi_{n}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\partial_{k}=\partial^{E}_{k}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\phi_{r}\times\phi_{s}).

By (1), ϕ2:K2={(0,1)}{𝕖2}E2\phi_{2}:K_{2}\!=\!\{(0,1)\}\to\{\mathbb{e}_{2}\}\subset E_{2} is the trivial map, since 𝕓2=(0,1)\mathbb{b}_{2}\!=\!(0,1). (2) determines a smooth map ϕ^k,r,s:Lk(r,s)En\widehat{\phi}_{k,r,s}:L_{k}(r,s)\to E_{n}, since k:Kr×KsLk(r,s)\partial_{k}:K_{r}\times K_{s}\to L_{k}(r,s) is a diffeomorphism. There is a smooth extension ϕk,r,s:Lk(r,s){𝕓n}En\phi_{k,r,s}:L_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\}\to E_{n} of  ϕ^k,r,s\widehat{\phi}_{k,r,s}, (k,r,s)A(n)(k,r,s)\in A(n), such that ϕk,r,s(𝕓n)=𝕖n\phi_{k,r,s}(\mathbb{b}_{n})=\mathbb{e}_{n}, since EnE_{n} is star-shaped w.r.t. 𝕖nEn\mathbb{e}_{n}\!\in\!E_{n}. As |𝕂(n)||\mathbb{K}(n)| is the colimit of |𝕃k(r,s){𝕓n}||\mathbb{L}_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\}| and the identity map |𝕃k(r,s){𝕓n}|Lk(r,s){𝕓n}|\mathbb{L}_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\}|\to L_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\} is a smooth bijection, smooth maps ϕk,r,s\phi_{k,r,s}, (k,r,s)A(n)(k,r,s)\in A(n), give a smooth map ϕn:|𝕂(n)|En\phi_{n}:|\mathbb{K}(n)|\to E_{n}.

Finally, smooth maps Mn=βn ϕnM_{n}=\beta_{n}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\phi_{n} satisfy (0), (1) and (2’) in Definition 5.5, which determines a smooth AA_{\infty}-form on (𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X), and hence (𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X) is an internal smooth AA_{\infty}-category in Diffeology. ∎

Corollary 6.12.

If a diffeological space XX is reflexive at the base point, then the diffeological loop space (X)\operatorname{\mathcal{L}}(X) is a smooth h-unital AA_{\infty}-space in Diffeology.

Corollary 6.13.

Let XX be a manifold, or a smooth CW complex of finite dimension with base point in the interior of the top cell. Then (X)\operatorname{\mathcal{L}}(X) is a smooth h-unital AA_{\infty}-space in Diffeology.

Appendix A Path space with stable concatenation

In this section, we modify a concatenation to obtain a smooth AA_{\infty}-form on 𝒫(X){\operatorname{\mathcal{P}}(X)} without assuming reflexivity on XX. The internal precategory 𝒫(X){\operatorname{\mathcal{P}}(X)} is equipped with the following stable concatenation for a fixed small ε>0\varepsilon\!>\!0.

με:𝒫(X)×X𝒫(X)𝒫(X)\displaystyle\mu_{\varepsilon}:{\operatorname{\mathcal{P}}(X)}\times_{X}{\operatorname{\mathcal{P}}(X)}\to{\operatorname{\mathcal{P}}(X)}
με(u,v)(t)={u(2t1ε),t<1+ε2,v(2t1ε1ε),t>1ε2,t.\displaystyle\qquad\qquad\iff\mu_{\varepsilon}(u,v)(t)=\begin{cases}\,u(\frac{2t}{1-\varepsilon}),&t<\frac{1+\varepsilon}{2},\\[8.61108pt] \,v(\frac{2t-1-\varepsilon}{1-\varepsilon}),&t>\frac{1-\varepsilon}{2},\end{cases}\ \ t\in\mathbb{R}.

Then με\mu_{\varepsilon} is stable when 1ε2t1+ε2\frac{1-\varepsilon}{2}\!\leq\!t\!\leq\!\frac{1+\varepsilon}{2}, and is smooth for any diffeological space XX.

Theorem A.1.

(𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X) is an internal h-unital AA_{\infty}-category in Diffeology.

Proof.

Firstly, we introduce the space of stable concatenations as follows:

Dn={(r1,,rn;ε1,,εn1)(0,1)2n1 r1++rn+ε1++εn1=1}D_{n}=\{\,(r_{1},\dots,r_{n};\varepsilon_{1},\dots,\varepsilon_{n-1})\!\in\!(0,1)^{2n-1}\,\,\mathstrut\vrule\,\,r_{1}+\cdots{+}r_{n}+\varepsilon_{1}+\cdots+\varepsilon_{n-1}=1\,\}

which is a convex open set in the following affine space of dimension 2n22n{-}2:

H2n2:x1++xn+xn+1++x2n1=1.H^{2n-2}:x_{1}+\cdots+x_{n}+x_{n+1}+\cdots+x_{2n-1}=1.

We define α^n:Dn×𝒫(X)n𝒫(X)\widehat{\alpha}_{n}:D_{n}\times{\operatorname{\mathcal{P}}(X)}^{n}\to{\operatorname{\mathcal{P}}(X)} as

α^n(r1,,rn;ε1,,εn1,rn;u1,,un)=v𝒫(X),\displaystyle\widehat{\alpha}_{n}(r_{1},\dots,r_{n};\varepsilon_{1},\dots,\varepsilon_{n-1},r_{n};u_{1},\dots,u_{n})=v\in{\operatorname{\mathcal{P}}(X)},

which is defined by

v(r)={u1(rr1),r<s1+ε1,ui(rsi1εi1ri),si1<r<si+εi, 1<i<n,un(rsn1εn1rn).sn1<r,r,\displaystyle v(r)=\begin{cases}\,u_{1}(\frac{r}{r_{1}}),&r\!<\!s_{1}{+}\varepsilon_{1},\\[6.45831pt] \,u_{i}(\frac{r{-}s_{i-1}{-}\varepsilon_{i-1}}{r_{i}}),&s_{i-1}\!<\!r\!<\!s_{i}{+}\varepsilon_{i},\ 1\!<\!i\!<\!n,\\[6.45831pt] \,u_{n}(\frac{r{-}s_{n-1}{-}\varepsilon_{n-1}}{r_{n}}).&s_{n-1}\!<\!r,\end{cases}\quad\text{$r\in\mathbb{R}$,}

where si=r1++ri+ε1++εi1s_{i}=r_{1}+\cdots+r_{i}+\varepsilon_{1}+\cdots+\varepsilon_{i-1}, 1in1\!\leq\!i\!\leq\!n, and hence sisi1εi1=ris_{i}\!-\!s_{i-1}\!-\!\varepsilon_{i-1}=r_{i}, 1in1\!\leq\!i\!\leq\!n. Since the open sets (,s1+ε1)(,s1](-\infty,s_{1}{+}\varepsilon_{1})\supset(-\infty,s_{1}], (si1,si+εi)(si1,si](s_{i-1},s_{i}{+}\varepsilon_{i})\supset(s_{i-1},s_{i}], 1<i<n1\!<\!i\!<\!n and (sn1,)(s_{n-1},\infty) cover entire \mathbb{R}, α^n\widehat{\alpha}_{n} is well-defined by definition and is also smooth. Thus by taking adjoint, we obtain a smooth map αn:DnC(𝒫(X)n,𝒫(X))\alpha_{n}:D_{n}\to C^{\infty}({\operatorname{\mathcal{P}}(X)}^{n},{\operatorname{\mathcal{P}}(X)}).

Secondly, let kD:Dr×DsDn\partial^{D}_{k}:D_{r}\times D_{s}\to D_{n}, r+s=n+1r{+}s=n{+}1, be the smooth map defined by

kD(x1,,xr;ε1,,εr1;y1,,ys;η1,,ηr1)\displaystyle\partial^{D}_{k}(x_{1},\dots,x_{r};\varepsilon_{1},\dots,\varepsilon_{r-1};y_{1},\dots,y_{s};\eta_{1},\dots,\eta_{r-1})
=(x1,,xk1,xky1,,xkys,xk+1,,xr;ε1,,εk1;xkη1,,xkηs1;εk,,εr1).\displaystyle\quad=(x_{1},\dots,x_{k-1},x_{k}{\cdot}y_{1},\dots,x_{k}{\cdot}y_{s},x_{k+1},\dots,x_{r};\varepsilon_{1},\dots,\varepsilon_{k-1};x_{k}{\cdot}\eta_{1},\dots,x_{k}{\cdot}\eta_{s-1};\varepsilon_{k},\dots,\varepsilon_{r-1}).

Let 𝕕n=13n1(2,,2;1,,1)Dn\mathbb{d}_{n}=\frac{1}{3n-1}(2,\dots,2;1,\dots,1)\in D_{n}. Then we define ψn:KnDn\psi_{n}:K_{n}\to D_{n} inductively by

(1)  ψn:Kn𝕓n𝕕nDn\psi_{n}:K_{n}\ni\mathbb{b}_{n}\mapsto\mathbb{d}_{n}\in D_{n}and     (2)  ψn k=kD (ψr×ψs)\psi_{n}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\partial_{k}=\partial^{D}_{k}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}(\psi_{r}\times\psi_{s}).

By (1), ψ2:K2={(0,1)}{𝕕2}D2\psi_{2}:K_{2}\!=\!\{(0,1)\}\to\{\mathbb{d}_{2}\}\subset D_{2} is the trivial map, since 𝕓2=(0,1)\mathbb{b}_{2}\!=\!(0,1). (2) determines a smooth map ψ^k,r,s:Lk(r,s)Dn\widehat{\psi}_{k,r,s}:L_{k}(r,s)\to D_{n}, since k:Kr×KsLk(r,s)\partial_{k}:K_{r}\times K_{s}\to L_{k}(r,s) is a diffeomorphism. There is a smooth extension ψk,r,s:Lk(r,s){𝕓n}Dn\psi_{k,r,s}:L_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\}\to D_{n} of  ψ^k,r,s\widehat{\psi}_{k,r,s}, (k,r,s)A(n)(k,r,s)\in A(n), such that ψk,r,s(𝕓n)=𝕕n\psi_{k,r,s}(\mathbb{b}_{n})=\mathbb{d}_{n}, since DnD_{n} is star-shaped w.r.t. 𝕕nDn\mathbb{d}_{n}\!\in\!D_{n}. Since |𝕂(n)||\mathbb{K}(n)| is the colimit of |𝕃k(r,s){𝕓n}||\mathbb{L}_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\}| and the identity map |𝕃k(r,s){𝕓n}||\mathbb{L}_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\}| \to Lk(r,s){𝕓n}L_{k}(r,s)\,\hbox{\footnotesize$*$}\,\{\mathbb{b}_{n}\} is a smooth bijection, smooth maps ψk,r,s\psi_{k,r,s}, (k,r,s)A(n)(k,r,s)\in A(n), give rise to a smooth map ψn:|𝕂(n)|Dn\psi_{n}:|\mathbb{K}(n)|\to D_{n}.

Finally, smooth maps Mn=αn ψnM_{n}=\alpha_{n}{\smash{\lower-0.43057pt\hbox{\scriptsize$\circ$\,}}}\psi_{n} satisfy (0), (1) and (2’) in Definition 5.5, which determines a smooth AA_{\infty}-form on (𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X), and hence (𝒫(X),X)({\operatorname{\mathcal{P}}(X)},X) is an internal smooth AA_{\infty}-category in Diffeology. ∎

Corollary A.2.

(X)\operatorname{\mathcal{L}}(X) is a smooth h-unital AA_{\infty}-space in Diffeology.

Acknowledgements

This research was supported by Grant-in-Aid for Scientific Research (S) #17H06128 and Exploratory Research #18K18713 from Japan Society for the Promotion of Science.

References

  • [Che73] Kuo-Tsai Chen. Iterated integrals of differential forms and loop space homology. Ann. of Math. (2), 97:217–246, 1973.
  • [Che75] Kuo-Tsai Chen. Iterated integrals, fundamental groups and covering spaces. Trans. Amer. Math. Soc., 206:83–98, 1975.
  • [Che77] Kuo-Tsai Chen. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831–879, 1977.
  • [Che86] Kuo-Tsai Chen. On differentiable spaces. In Categories in continuum physics (Buffalo, N.Y., 1982), volume 1174 of Lecture Notes in Math., pages 38–42. Springer, Berlin, 1986.
  • [HS20] Tadayuki Haraguchi and Kazuhisa Shimakawa. A model structure on the category of diffeological spaces, i, 11 2020. arXiv preprint, https://arxiv.org/pdf/2011.12842.pdf.
  • [II19] Norio Iwase and Nobuyuki Izumida. Mayer-Vietoris sequence for differentiable/diffeological spaces. In Algebraic topology and related topics, Trends Math., pages 123–151. Birkhäuser/Springer, Singapore, 2019.
  • [IM89] Norio Iwase and Mamoru Mimura. Higher homotopy associativity. In Algebraic topology (Arcata, CA, 1986), volume 1370 of Lecture Notes in Math., pages 193–220. Springer, Berlin, 1989.
  • [Iwa12] Norio Iwase. Associahedra, multiplihedra and units in AA_{\infty} form, 11 2012. arXiv preprint, https://arxiv.org/pdf/1211.5741.pdf.
  • [IZ13] Patrick Iglesias-Zemmour. Diffeology, volume 185 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013.
  • [Kih19] Hiroshi Kihara. Model category of diffeological spaces. J. Homotopy Relat. Struct., 14(1):51–90, 2019.
  • [KM97] Andreas Kriegl and Peter W. Michor. The convenient setting of global analysis, volume 53 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
  • [Lod07] Jean-Louis Loday. Parking functions and triangulation of the associahedron. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 327–340. Amer. Math. Soc., Providence, RI, 2007.
  • [Lod12] Jean-Louis Loday. Dichotomy of the addition of natural numbers. In Associahedra, Tamari lattices and related structures, volume 299 of Progr. Math., pages 65–79. Birkhäuser/Springer, Basel, 2012.
  • [Sou80] J.-M. Souriau. Groupes différentiels. In Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), volume 836 of Lecture Notes in Math., pages 91–128. Springer, Berlin-New York, 1980.
  • [Sta63] James D. Stasheff. Homotopy associativity of HH-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid., 108:293–312, 1963.
  • [Sta70] James D. Stasheff. HH-spaces from a homotopy point of view. Lecture Notes in Mathematics, Vol. 161. Springer-Verlag, Berlin-New York, 1970.
  • [Wat12] Jordan Watts. Diffeologies, Differential Spaces, and Symplectic Geometry. ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Toronto (Canada).