This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Smart Hybrid Beamforming and Pilot Assignment for 6G Cell-Free Massive MIMO

Carles Diaz-Vilor,1 Alexei Ashikhmin,2 and Hong Yang2 1C. Diaz-Vilor is with the Univ. of California, Irvine. Email: {cdiazvil} at uci.edu 2A. Ashikhmin and H. Yang are with Nokia Bell Labs, Murray Hill. Emails: {alexei.ashikhmin, h.yang} at nokia-bell-labs.com
Abstract

We investigate Cell-Free massive MIMO networks, where each access point (AP) is equipped with a hybrid analog-digital transceiver, reducing the complexity and cost compared to a fully digital transceiver. Asymptotic approximations for the spectral efficiency are derived for uplink and downlink. Capitalizing on these expressions, a max-min problem is formulated enabling us to optimize the (i) analog beamformer at the APs and (ii) pilot assignment. Simulations show that the optimization of these variables substantially increases the minimum user throughput

Index Terms:
Cell-Free, MIMO, MMSE, RZF, hybrid beamforming, large-scale, optimization, SINR

I Introduction

A prospective candidate considered for beyond-5G wireless networks is the cell-free massive MIMO (CF-mMIMO) topology, where every user (UE) potentially connects to every access point (AP), and takes the principles of cell cooperation to the limit; see [1, 2, 3, 4, 5] and the references therein.

In parallel, forthcoming technologies will be operating at higher frequencies (i.e. mmWave or THz bands), and therefore the transceivers complexity experiences a key trade-off: data rate vs power consumption. Additionally, CF networks will cover larger areas compared to cellular systems, and therefore the severity of the path loss requires the APs to be equipped with large arrays to compensate the attenuation, demanding even more power if fully digital structures are used.

A possible solution that has attracted a lot of attention is a hybrid transceiver [6, 7], composed by two stages: (a) the analog part, in which the antennas are connected to a few RF chains by means of phase shifters, and (b) the digital part. While the former stage dramatically reduces the AP complexity and power consumption, the performance decreases as well. Consequently, properly designing the analog beamformer might be a mean to reduce the performance gap with respect to fully digital transceivers. To the best of our knowledge, there are two main works dealing with the construction of the analog beamformer as a function of slow fading channel parameters [8, 9], which is also investigated in this paper and shown to outperform the previous references.

Once the analog part is designed, we investigate the uplink and downlink of two digital benchmarks: (i) minimum mean squared error (MMSE) reception and (ii) regularized zero forcing (RZF) precoding. Asymptotic approximations on the signal-to-interference-and-noise-ratio (SINR) are derived based on [10], and shown to be tight for finite-dimension systems under the previous decoding/precoding. For a given hybrid structure, and capitalizing on the asymptotic approximations, another relevant problem is studied in this paper: pilot assignment, for which a greedy algorithm based on the asymptotic expressions is provided.

Finally, we derive two novel bounds on the gap between hybrid and fully digital structures. It is shown that such bounds only depend on the channel matrix eigenvalues.

II System Model

Consider a CF massive MIMO system composed by MM APs, each equipped with NN antennas and L(N)L(\leq N) RF chains serving KK single antenna users (UEs). We assume each AP is connected to a central processing unit (CPU) through high capacity fronthaul links. Denote by 𝒉m,kN×1\boldsymbol{h}_{m,k}\in\mathbb{C}^{N\times 1} the channel between AP mm and UE kk. Then

𝒉m,k𝒩(𝟎,𝑹m,k),\displaystyle\boldsymbol{h}_{m,k}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\boldsymbol{R}_{m,k}), (1)

with 𝑹m,k\boldsymbol{R}_{m,k} being the spatial correlation matrix. Each AP performs hybrid beamforming with the aim of reducing the number of RF chains at the transceivers, and therefore their cost and complexity. Particularly, each AP contains an analog matrix 𝑾mN×L\boldsymbol{W}_{m}\in\mathbb{C}^{N\times L} such that (|𝑾m|)n,l=1N\big{(}|\boldsymbol{W}_{m}|\big{)}_{n,l}=\frac{1}{\sqrt{N}}, emulating phase shifters and whose entries will be designed later. As a consequence, the effective channel between AP mm and UE kk is represented by 𝒈m,kL×1\boldsymbol{g}_{m,k}\in\mathbb{C}^{L\times 1}

𝒈m,k=𝑾m𝒉m,k.\displaystyle\boldsymbol{g}_{m,k}=\boldsymbol{W}_{m}^{*}\boldsymbol{h}_{m,k}. (2)

Hence, 𝒈m,k𝒩(𝟎,𝑹m,k(g))\boldsymbol{g}_{m,k}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\boldsymbol{R}_{m,k}^{(g)}) with 𝑹m,k(g)=𝑾m𝑹m,k𝑾m\boldsymbol{R}_{m,k}^{(g)}=\boldsymbol{W}_{m}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}.

II-A Channel Estimation Process

A portion of the total number of resource units, the latter denoted by τc\tau_{c}, is used for channel estimation. During τ(τc)\tau(\leq\tau_{c}) channel uses, UE kk is assigned a pilot ϕkτ×1\boldsymbol{\phi}_{k}\in\mathbb{C}^{\tau\times 1} with ϕk2=τ||\boldsymbol{\phi}_{k}||^{2}=\tau and the pilot matrix is denoted by 𝚽=(ϕ1,,ϕK)τ×K\boldsymbol{\Phi}=(\boldsymbol{\phi}_{1},\dots,\boldsymbol{\phi}_{K})\in\mathbb{C}^{\tau\times K}. Upon pilot transmission at a certain power p(t)p^{(t)}, the observations at the mmth AP are

𝒀m=p(t)(𝒈m,1,,𝒈m,K)𝚽T+𝑾m𝒁m,\displaystyle\boldsymbol{Y}_{m}=\sqrt{p^{(t)}}(\boldsymbol{g}_{m,1},\dots,\boldsymbol{g}_{m,K})\boldsymbol{\Phi}^{\textrm{{T}}}+\boldsymbol{W}_{m}^{*}\boldsymbol{Z}_{m}, (3)

with 𝒁m𝒩(𝟎,σ2𝑰N)\boldsymbol{Z}_{m}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\sigma^{2}\boldsymbol{I}_{N}) for σ2\sigma^{2} being the noise power. Standard MMSE estimation leads to the next estimates [11]

𝒈^m,k=p(t)𝑹m,k(g)(ϕk𝑰L)𝚿m1vec(𝒀m),\displaystyle\boldsymbol{\hat{g}}_{m,k}=\sqrt{p^{(t)}}\boldsymbol{R}_{m,k}^{(g)}(\boldsymbol{\phi}_{k}\otimes\boldsymbol{I}_{L})^{*}\boldsymbol{\Psi}_{m}^{-1}\text{vec}(\boldsymbol{Y}_{m}), (4)

with

𝚿m=p(t)(𝚽𝑰L)𝑹m(g)(𝚽𝑰L)+σ2𝑰τ𝑾m𝑾m,\displaystyle\boldsymbol{\Psi}_{m}={p^{(t)}}(\boldsymbol{\Phi}\otimes\boldsymbol{I}_{L})\boldsymbol{R}_{m}^{(g)}(\boldsymbol{\Phi}\otimes\boldsymbol{I}_{L})^{*}+\sigma^{2}\boldsymbol{I}_{\tau}\otimes\boldsymbol{W}_{m}^{*}\boldsymbol{W}_{m}, (5)

for 𝑹m(g)=diag{𝑹m,k(g)fork=1,,K}\boldsymbol{R}_{m}^{(g)}=\mathrm{diag}\{\boldsymbol{R}_{m,k}^{(g)}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}k=1,\dots,K\}. It can be verified that 𝒈m,k=𝒈^m,k+𝒈~m,k\boldsymbol{g}_{m,k}=\boldsymbol{\hat{g}}_{m,k}+\boldsymbol{\tilde{g}}_{m,k} with 𝒈~m,k\boldsymbol{\tilde{g}}_{m,k} denoting the error, uncorrelated with the estimate. More concretely, 𝒈^m,k𝒩(𝟎,𝚪m,k(g))\boldsymbol{\hat{g}}_{m,k}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\boldsymbol{\Gamma}_{m,k}^{(g)}) with 𝚪m,k(g)\boldsymbol{\Gamma}_{m,k}^{(g)} defined by

𝚪m,k(g)\displaystyle\boldsymbol{\Gamma}_{m,k}^{(g)} =𝔼{𝒈^m,k𝒈^m,k}\displaystyle=\mathbb{E}\{\boldsymbol{\hat{g}}_{m,k}\boldsymbol{\hat{g}}_{m,k}^{*}\} (6)
=𝑹m,k(g)(ϕk𝑰L)𝚿m1(ϕk𝑰L)𝑹m,k(g),\displaystyle=\boldsymbol{R}_{m,k}^{(g)}(\boldsymbol{\phi}_{k}\otimes\boldsymbol{I}_{L})^{*}\boldsymbol{\Psi}_{m}^{-1}(\boldsymbol{\phi}_{k}\otimes\boldsymbol{I}_{L})\boldsymbol{R}_{m,k}^{(g)}, (7)

and the channel error following 𝒈~m,k𝒩(𝟎,𝑪m,k(g))\boldsymbol{\tilde{g}}_{m,k}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\boldsymbol{C}_{m,k}^{(g)}) with 𝑪m,k(g)=𝑹m,k(g)𝚪m,k(g)\boldsymbol{C}_{m,k}^{(g)}=\boldsymbol{R}_{m,k}^{(g)}-\boldsymbol{\Gamma}_{m,k}^{(g)}.

II-B Scalable Cell-Free

Although CF networks allow users to establish connectivity to multiple APs, scalability must be taken into account. Therefore only a subset of APs jointly serve a particular user. Hence, we define by k\mathcal{F}_{k} the subset of APs involved in the decoding of the kkth UE and by 𝒰m\mathcal{U}_{m} the subset of UEs treated as signal by AP mm. Thus, the binary matrix 𝑴=(𝒎1,,𝒎K)2M×K\boldsymbol{M}=(\boldsymbol{m}_{1},\dots,\boldsymbol{m}_{K})\in\mathbb{Z}_{2}^{M\times K} whose entries are

(𝑴)m,k={1if k𝒰m0otherwise,\left(\boldsymbol{M}\right)_{m,k}=\begin{cases}1&\text{if $k\mspace{4.0mu}\in\mspace{4.0mu}\mathcal{U}_{m}$}\\ 0&\text{otherwise}\end{cases}, (8)

accounts for scalability. Provided that each AP observes an LL-dimensional signal after the hybrid beamforming stage, the expanded version of 𝑴\boldsymbol{M} is 𝑴(s)=𝑴𝟏L\boldsymbol{{M}}^{(s)}=\boldsymbol{M}\otimes\boldsymbol{1}_{L} with 𝟏L\boldsymbol{1}_{L} an LL-dimensional vector of ones. The complementary matrix 𝑴(i)=𝟏𝑴(s)\boldsymbol{{M}}^{(i)}=\boldsymbol{1}-\boldsymbol{{M}}^{(s)} accounts for the disregarded UEs per AP.

II-C Uplink & Downlink Data Transmission

After data transmission, the signal collected by the MM APs is 𝒚=(𝒚1,,𝒚M)TML×1\boldsymbol{y}=(\boldsymbol{y}_{1},\dots,\boldsymbol{y}_{M})^{\text{T}}\in\mathbb{C}^{ML\times 1} with 𝒚mL×1\boldsymbol{y}_{m}\in\mathbb{C}^{L\times 1}

𝒚\displaystyle\boldsymbol{y} =(𝑴(s)𝑮)𝒙+(𝑴(i)𝑮)𝒙+𝑾𝒏,\displaystyle=(\boldsymbol{{M}}^{(s)}\circ\boldsymbol{G})\boldsymbol{x}+(\boldsymbol{{M}}^{(i)}\circ\boldsymbol{G})\boldsymbol{x}+\boldsymbol{W}^{*}\boldsymbol{n}, (9)

with \circ denoting the Hadamard product, 𝑮ML×K\boldsymbol{G}\in\mathbb{C}^{ML\times K} being the effective channel matrix whose entries are (𝑮)m,k=𝒈m,kL×1(\boldsymbol{G})_{m,k}=\boldsymbol{g}_{m,k}\in\mathbb{C}^{L\times 1}. Vector 𝒙=(p1s1,,pKsK)T\boldsymbol{x}=(\sqrt{p_{1}}s_{1},\dots,\sqrt{p_{K}}s_{K})^{\rm T} for given UE transmit powers and symbols, denoted by pkp_{k} and sks_{k}, respectively. Finally, 𝑾=diag{𝑾mform=1,,M}\boldsymbol{W}=\textrm{diag}\{\boldsymbol{W}_{m}\mspace{4.0mu}\textrm{for}\mspace{4.0mu}m=1,\dots,M\} and 𝒏=(𝒏1,,𝒏M)T\boldsymbol{n}=(\boldsymbol{n}_{1},\dots,\boldsymbol{n}_{M})^{\mathrm{T}} where 𝒏m𝒩(𝟎,σ2𝑰N)\boldsymbol{n}_{m}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\sigma^{2}\boldsymbol{I}_{N}).

In the downlink, the APs jointly precode the users data. More particularly, the precoder intended for UE kk is denoted by 𝒗kML×1\boldsymbol{v}_{k}\in\mathbb{C}^{ML\times 1} and after data transmission, the signal collected at UE kk is

yk=i=1K𝒈k𝒗ipisi+nk,\displaystyle y_{k}=\sum\limits_{i=1}^{K}\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}\sqrt{p_{i}}s_{i}+n_{k}, (10)

where nk𝒩(0,σ2)n_{k}\sim\mathcal{N}_{\mathbb{C}}({0},\sigma^{2}).

III Spectral Efficiency Analysis

III-A Uplink MMSE Reception

Provided that for UE kk only |k||\mathcal{F}_{k}| APs are relevant, taking the rows of 𝒚\boldsymbol{y} associated to k\mathcal{F}_{k} produces the following reduced signal model

𝒚k\displaystyle\boldsymbol{y}_{k} =𝑴k(s)𝑮^k𝒙signal+(𝑴k(s)𝑮~k+𝑴k(i)𝑮k)𝒙+𝑾k𝒏 effective noise: 𝒛k ,\displaystyle=\underbrace{\boldsymbol{{M}}^{(s)}_{k}\circ\boldsymbol{{\hat{G}}}_{k}\boldsymbol{x}}_{\text{signal}}+\underbrace{\big{(}\boldsymbol{{M}}^{(s)}_{k}\circ\boldsymbol{{\tilde{G}}}_{k}+\boldsymbol{{M}}^{(i)}_{k}\circ\boldsymbol{{G}}_{k}\big{)}\,\boldsymbol{x}+\boldsymbol{W}^{*}_{k}\boldsymbol{n}}_{\text{ effective noise: $\boldsymbol{z}_{k}$ }}, (11)

where matrices in (11) are the reduced version of the original matrices which contain the rows related to k\mathcal{F}_{k} and all columns. Moreover, 𝒛k𝒩(𝟎,𝚺k)\boldsymbol{z}_{k}\sim\mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\boldsymbol{\Sigma}_{k}) with 𝚺k\boldsymbol{\Sigma}_{k} being a block diagonal matrix 𝚺k=diag{𝚺k,mL×Lformk}\boldsymbol{\Sigma}_{k}=\mathrm{diag}\{\boldsymbol{\Sigma}_{k,m}\in\mathbb{C}^{L\times L}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}m\in\mathcal{F}_{k}\} where the diagonal terms are

𝚺k,m=i𝒰m𝑪m,i(g)pi+i𝒰m𝑹m,i(g)pi+σ2𝑾m𝑾m.\displaystyle\boldsymbol{\Sigma}_{k,m}=\sum_{i\in\mathcal{U}_{m}}\boldsymbol{C}_{m,i}^{(g)}p_{i}+\sum_{i\notin\mathcal{U}_{m}}\boldsymbol{R}_{m,i}^{(g)}p_{i}+\sigma^{2}\boldsymbol{W}_{m}^{*}{}\boldsymbol{W}_{m}. (12)

In the uplink, the combiner maximizing the SINR is the MMSE, achieving a maximum value of

SINRk=𝒈^k(ikK(𝒎k,i(s)𝒈^i)(𝒎k,i(s)𝒈^i)pi+𝚺k)1𝒈^k.\displaystyle\mathrm{SINR}_{k}=\boldsymbol{\hat{g}}_{k}^{*}\bigg{(}\sum\limits_{i\neq k}^{K}(\boldsymbol{m}_{k,i}^{(s)}\circ\boldsymbol{\hat{g}}_{i})(\boldsymbol{m}_{k,i}^{(s)}\circ\boldsymbol{\hat{g}}_{i})^{*}p_{i}+\boldsymbol{\Sigma}_{k}\bigg{)}^{-1}\boldsymbol{\hat{g}}_{k}. (13)

where 𝒈^k\boldsymbol{\hat{g}}_{k} and 𝒈^i\boldsymbol{\hat{g}}_{i} are the kkth and iith columns of 𝑮^k\boldsymbol{\hat{G}}_{k}, respectively, and a similar definition applies to 𝒎k,i(s)\boldsymbol{m}_{k,i}^{(s)}. As a consequence, after accounting for the pilot overhead ττc\frac{\tau}{\tau_{c}}, the ergodic spectral efficiency that the kkth UE can achieve is

SEk=(1ττc)𝔼{log2(1+SINRk)}.\mathrm{SE}_{k}=\left(1-\frac{\tau}{\tau_{c}}\right)\mathbb{E}\{\log_{2}(1+\mathrm{SINR}_{k})\}. (14)

III-B Downlink RZF Precoding

Various precoding strategies can be used to encode the users data. However, RZF provides an outstanding performance as studied in the literature. More particularly, the subset RZF precoding, denoted by 𝑽=(𝒗1,,𝒗K)\boldsymbol{V}=(\boldsymbol{v}_{1},\dots,\boldsymbol{v}_{K}), follows

𝑽\displaystyle\boldsymbol{V} =(𝒗1,,𝒗K)\displaystyle=(\boldsymbol{v}_{1},\dots,\boldsymbol{v}_{K}) (15)
=[(𝑴(s)𝑮^)(𝑴(s)𝑮^)+ρ𝑰ML]1(𝑴(s)𝑮^)𝚲.\displaystyle=\big{[}(\boldsymbol{{M}}^{(s)}\circ\boldsymbol{\hat{G}})(\boldsymbol{{M}}^{(s)}\circ\boldsymbol{\hat{G}})^{*}+\rho\boldsymbol{I}_{ML}\big{]}^{-1}(\boldsymbol{{M}}^{(s)}\circ\boldsymbol{\hat{G}})\boldsymbol{\Lambda}. (16)

with ρ\rho being the regularitzation parameter and 𝚲=diag(λ1,,λK)\boldsymbol{\Lambda}=\mathrm{diag}(\lambda_{1},\dots,\lambda_{K}). Different formulations can be used for λk\lambda_{k}, such as to ensure (i) 𝔼{𝑾𝒗k2}1\mathbb{E}\{||\boldsymbol{W}\boldsymbol{v}_{k}||^{2}\}\leq 1 or (ii) 𝑾𝒗k21||\boldsymbol{W}\boldsymbol{v}_{k}||^{2}\leq 1. In our case, since perfect CSI is not available, we use the former formulation. Once User kk receives yky_{k}, as defined in Eq. (10), the following spectral efficiency can be achieved:

SEk=(1ττc)log2(1+SINRk),\displaystyle\mathrm{SE}_{k}=\left(1-\frac{\tau}{\tau_{c}}\right)\log_{2}(1+\mathrm{SINR}_{k}), (17)

with

SINRk=|𝔼{𝒈k𝒗k}|2pki1K𝔼{|𝒈k𝒗i|2}pi+var(𝒈k𝒗k)pk+σ2\displaystyle\mathrm{SINR}_{k}=\frac{|\mathbb{E}\{\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}\}|^{2}p_{k}}{\sum\limits_{i\neq 1}^{K}\mathbb{E}\{|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}|^{2}\}p_{i}+\mathrm{var}(\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k})p_{k}+\sigma^{2}} (18)

IV Asymptotic Analysis

To evaluate the previous SINR expressions, we consider the asymptotic regime, MN,KMN,K\to\infty with finite MN/KMN/K and investigate the convergence of the spectral efficiency expressions to deterministic limits. Provided that the subsets account for the non-zero entries in the random matrices, it is required that they grow with the network as well, i.e., |k|N,|𝒰m||\mathcal{F}_{k}|N,|\mathcal{U}_{m}|\to\infty k,m\forall\mspace{4.0mu}k,m. The premises for this convergence need the involved matrices to satisfy two technical conditions: (a) the inverse of the resolvent matrix in (13) and (15) to exist, ensured by 𝚺k\boldsymbol{\Sigma}_{k} and ρ𝑰ML\rho\boldsymbol{I}_{ML}, respectively, and that (b) 𝚪k(g)=diag{mm,k𝚪m,k(g)m=1,,M}\boldsymbol{\Gamma}_{k}^{(g)}=\text{diag}\{{m}_{m,k}\cdot\boldsymbol{\Gamma}_{m,k}^{(g)}\mspace{4.0mu}m=1,\dots,M\} has uniformly bounded spectral norm, for mm,k{m}_{m,k} being the (m,k)(m,k) element of (8). Under these conditions, the following approximations can be made.

Theorem 1.

For |k|N,|𝒰m||\mathcal{F}_{k}|N,|\mathcal{U}_{m}|\to\infty k,m\forall\mspace{4.0mu}k,m and UL MMSE combining, SINRkSINR¯k\mathrm{SINR}_{k}\approx\overline{\mathrm{SINR}}_{k} with SINR¯k\overline{\mathrm{SINR}}_{k} given in (19).

SINR¯k=pk|k|Nmktr[𝚪m,k(g)𝑻m,k],\displaystyle\overline{\mathrm{SINR}}_{k}=\frac{p_{k}}{|\mathcal{F}_{k}|N}\sum\limits_{m\in\mathcal{F}_{k}}\mathrm{tr}\Big{[}\boldsymbol{\Gamma}_{m,k}^{(g)}\boldsymbol{T}_{m,k}\Big{]}, (19)

where

𝑻m,k=(1|k|Ni=1Kmm,k𝚪m,i(g)1+eipi+1|k|N𝚺m,k)1.\displaystyle\boldsymbol{T}_{m,k}=\bigg{(}\frac{1}{|\mathcal{F}_{k}|N}\sum\limits_{i=1}^{K}\frac{{m}_{m,k}\cdot\boldsymbol{\Gamma}_{m,i}^{(g)}}{1+e_{i}}p_{i}+\frac{1}{|\mathcal{F}_{k}|N}\boldsymbol{\Sigma}_{m,k}\bigg{)}^{-1}. (20)

The coefficients eie_{i} are obtained iteratively, ei=limnei(n)e_{i}=\lim_{n\to\infty}e_{i}^{(n)}, given ei(0)=|i|Ne_{i}^{(0)}=|\mathcal{F}_{i}|N and the recursion in (21).

ei(n)\displaystyle e_{i}^{(n)} =pitr[𝚪i(g)(j=1K𝚪j(g)pj1+ej(n1)+𝚺i)1]\displaystyle=p_{i}\mathrm{tr}\Bigg{[}\boldsymbol{\Gamma}_{i}^{(g)}\bigg{(}\sum\limits_{j=1}^{K}\frac{\boldsymbol{\Gamma}_{j}^{(g)}p_{j}}{1+e_{j}^{(n-1)}}+\boldsymbol{\Sigma}_{i}\bigg{)}^{-1}\Bigg{]} (21)
Proof.

The proof can be found in App. C. ∎

Theorem 2.

For |k|N,|𝒰m||\mathcal{F}_{k}|N,|\mathcal{U}_{m}|\to\infty k,m\forall\mspace{4.0mu}k,m and DL RZF precoding, SINRkSINR¯k\mathrm{SINR}_{k}\approx\overline{\mathrm{SINR}}_{k} with SINR¯k\overline{\mathrm{SINR}}_{k} given in (22)

SINR¯k=μk2δkpki1Kθk,iδipi+σ2,\displaystyle\overline{\mathrm{SINR}}_{k}=\frac{\frac{\mu_{k}^{2}}{\delta_{k}}p_{k}}{\sum\limits_{i\neq 1}^{K}\frac{\theta_{k,i}}{\delta_{i}}p_{i}+\sigma^{2}}, (22)

where

μk=1MNtr[𝚪k(g)𝑻],\displaystyle\mu_{k}=\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}\big{]}, (23)
δk=1(MN)2tr[𝚪k(g)𝑻(ρMN,𝑾𝑾)],\displaystyle\delta_{k}=\frac{1}{(MN)^{2}}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{W}^{*}\boldsymbol{W})\big{]}, (24)
θk,i\displaystyle\theta_{k,i} =1(MN)2tr[𝑹k(g)𝑻(ρMN,𝚪i(g))]+\displaystyle=\frac{1}{(MN)^{2}}\mathrm{tr}\big{[}\boldsymbol{R}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})\big{]}+
1MNμk21MNtr[𝚪k(g)𝑻(ρMN,𝚪i(g))](1+μk)2\displaystyle\mspace{22.0mu}\frac{1}{MN}\frac{\mu_{k}^{2}\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})\big{]}}{(1+\mu_{k})^{2}}-
2MN{μk1MNtr[𝚪k(g)𝑻(ρMN,𝚪i(g))1+μk},\displaystyle\mspace{22.0mu}\frac{2}{MN}\mathbb{R}\bigg{\{}\frac{\mu_{k}\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})}{1+\mu_{k}}\bigg{\}}, (25)
𝑻=(1MNi=1K𝚪i(g)1+ei+ρMN𝑰ML)1.\displaystyle\boldsymbol{T}=\bigg{(}\frac{1}{MN}\sum\limits_{i=1}^{K}\frac{\boldsymbol{\Gamma}_{i}^{(g)}}{1+e_{i}}+\frac{\rho}{MN}\boldsymbol{I}_{ML}\bigg{)}^{-1}. (26)

The coefficients eie_{i} are obtained iteratively with ei=limnei(n)e_{i}=\lim_{n\to\infty}e_{i}^{(n)}, given ei(0)=MNe_{i}^{(0)}=MN and the recursion in (27)

ek(n)=tr[𝚪k(g)(i=1K𝚪i(g)1+ei(n1)+ρ𝑰ML)1].\displaystyle e_{k}^{(n)}=\mathrm{tr}\Bigg{[}\boldsymbol{\Gamma}_{k}^{(g)}\bigg{(}\sum\limits_{i=1}^{K}\frac{\boldsymbol{\Gamma}_{i}^{(g)}}{1+e_{i}^{(n-1)}}+\rho\boldsymbol{I}_{ML}\bigg{)}^{-1}\Bigg{]}. (27)

Moreover, matrix

𝑻(ρMN,𝚪i(g))=𝑻𝚪i(g)𝑻+𝑻1Mk=1K𝚪k(g)ek(1+ek)2𝑻,\displaystyle\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})=\boldsymbol{{T}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{{T}}+\boldsymbol{{T}}\frac{1}{M}\sum\limits_{k=1}^{K}\frac{\boldsymbol{\Gamma}_{k}^{(g)}e_{k}^{{}^{\prime}}}{(1+e_{k})^{2}}\boldsymbol{{T}}, (28)

and coefficients 𝐞(ρMN)=(e1,,eK)\boldsymbol{e}^{{}^{\prime}}(\frac{\rho}{MN})=({e}_{1}^{{}^{\prime}},\dots,{e}_{K}^{{}^{\prime}}) are calculated as

𝒆(ρMN)=(𝑰K𝑱)1𝒗(ρMN),\displaystyle\boldsymbol{e}^{{}^{\prime}}(\frac{\rho}{MN})=\big{(}\boldsymbol{I}_{K}-\boldsymbol{J}\big{)}^{-1}\boldsymbol{v}(\frac{\rho}{MN}), (29)

with 𝐉K×K\boldsymbol{J}\in\mathbb{C}^{K\times K} and 𝐯(ρMN)K×1\boldsymbol{v}(\frac{\rho}{MN})\in\mathbb{C}^{K\times 1} defined as

(𝑱)k,l=1MNtr[𝚪k(g)𝑻𝚪l(g)𝑻]MN(1+el)2,\displaystyle\big{(}\boldsymbol{J}\big{)}_{k,l}=\frac{\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{{T}}\boldsymbol{\Gamma}_{l}^{(g)}\boldsymbol{{T}}\big{]}}{MN(1+e_{l})^{2}}, (30)

and

(𝒗(ρMN))k=1MNtr[𝚪k(g)𝑻𝚪i(g)𝑻].\displaystyle\big{(}\boldsymbol{v}(\frac{\rho}{MN})\big{)}_{k}=\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{{T}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{{T}}\big{]}. (31)
Proof.

The proof can be found in App. D. ∎

From the continuous mapping theorem [12], the following holds: SEk(1ττc)log2(1+SINR¯k)\mathrm{SE}_{k}\approx\left(1-\frac{\tau}{\tau_{c}}\right)\log_{2}(1+\overline{\mathrm{SINR}}_{k}) with the corresponding SINR¯k\overline{\mathrm{SINR}}_{k} provided above for MNMN and KK \to\infty.

V Spectral Efficiency Optimization

Note that the asymptotic SE approximations derived in the previous section only depend on large scale parameters. Therefore, we can formulate different asymptotic optimization problems. However, with the aim of increasing fairness in the network we focus on the following max-min problem:

max𝑾,𝚽\displaystyle\max_{\boldsymbol{W},\mspace{4.0mu}\boldsymbol{\Phi}} minkSINR¯k.\displaystyle\min_{k}\overline{\mathrm{SINR}}_{k}. (32)
s.t. (|𝑾m|)n,l=1N\displaystyle\big{(}|\boldsymbol{W}_{m}|\big{)}_{n,l}=\frac{1}{\sqrt{N}}

where the optimization variables are two: (i) analog beamforing matrix 𝑾\boldsymbol{W} and (ii) pilot matrix, studied separately.

V-A Analog Beamformer Design

The design of 𝑾=diag{𝑾mform=1,,M}\boldsymbol{W}=\mathrm{diag}\{\boldsymbol{W}_{m}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}m=1,\dots,M\} is challenging given the complexity of the SINR. Therefore, directly solving (32) poses a major challenge. However, under perfect CSI, some algebraic properties on 𝑾m\boldsymbol{W}_{m} can be extracted and therefore used for its design. Concretely, we first disregard the unit-modulus constraint and after SVD decomposition 𝑾\boldsymbol{W} factorizes as 𝑾=𝑼𝑸\boldsymbol{W}=\boldsymbol{U}\boldsymbol{Q} with semi-unitary 𝑼\boldsymbol{U}, i.e. 𝑼𝑼=𝑰ML\boldsymbol{U}^{*}\boldsymbol{U}=\boldsymbol{I}_{ML}.

Proposition 1.

Under perfect CSI UL-MMSE reception, any nonsingular 𝐐\boldsymbol{Q} provides maximum SINR.

Proof.

The proof can be found in App. E. ∎

According to [13], ikK|𝒈k𝒗i|2pi+σ2ikK|𝒈i𝒗k|2pi+σ2\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}|^{2}p_{i}+\sigma^{2}\approx\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{i}^{*}\boldsymbol{v}_{k}|^{2}p_{i}+\sigma^{2}. Under the condition that the previous approximation is tight, the following proposition, which is similar to the result obtained in [9] for another metric, can be obtained.

Proposition 2.

Under perfect CSI DL-RZF precoding, the SINR is maximum when 𝐐\boldsymbol{Q} is semi-unitary: 𝐐𝐐=𝐈ML\boldsymbol{Q}\boldsymbol{Q}^{*}=\boldsymbol{I}_{ML}.

Proof.

The proof can be found in App. F. ∎

In order to full-fill both propositions, for UL and DL, 𝑸\boldsymbol{Q} can be set to 𝑸=𝑰ML\boldsymbol{Q}=\boldsymbol{I}_{ML} and therefore 𝑾=𝑼\boldsymbol{W}=\boldsymbol{U} meaning that the analog matrix should have orthogonal columns. The idea behind having orthogonal columns is that interference is reduced. To the best of our knowledge, there are two ways of smartly creating 𝑾\boldsymbol{W} explained in [8] and [9], respectively. While the latter is based on perfectly known channels, the former fails to capture the complete spectrum of the channel covariance matrices. In this work, we propose a method that takes into account all possible eigenvectors/eigenvalues of all 𝑹m,k\boldsymbol{R}_{m,k} with the aim of maximizing the minimum average UE power signal, which is shown to maximize the minimum SINR in our simulations. More particularly, 𝑹m,k=𝑽m,k𝚲m,k𝑽m,k\boldsymbol{R}_{m,k}=\boldsymbol{V}_{m,k}\boldsymbol{\Lambda}_{m,k}\boldsymbol{V}_{m,k}^{*} with 𝑽m,k\boldsymbol{V}_{m,k} having orthonormal column vectors and 𝚲m,k=diag(λm,k(1),,λm,k(N))\boldsymbol{\Lambda}_{m,k}=\mathrm{diag}(\lambda_{m,k}^{(1)},\dots,\lambda_{m,k}^{(N)}) containing the NN eigenvalues of 𝑹m,k\boldsymbol{R}_{m,k}. Note that the average signal power for UE kk is given by mktr(𝑾m𝑹m,k𝑾m)\sum\limits_{m\in\mathcal{F}_{k}}\mathrm{tr}(\boldsymbol{W}_{m}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}). Therefore, such a expression is maximized whenever the columns of 𝑾m\boldsymbol{W}_{m} match the eigenvectors of 𝑹m,k\boldsymbol{R}_{m,k}. However, not all UEs and their respective eigenmodes can be captured by 𝑾m\boldsymbol{W}_{m}. A selection of LL out of NKNK should be made. As a consequence, we define the UE average signal power as

Sk=mkn=1Nαm,k(n)λm,k(n).\displaystyle S_{k}=\sum\limits_{m\in\mathcal{F}_{k}}\sum\limits_{n=1}^{N}\alpha_{m,k}^{(n)}\lambda_{m,k}^{(n)}. (33)

where αm,k(n)\alpha_{m,k}^{(n)} is a binary optimization variable scheduling the eigenvectors to the columns of 𝑾m\boldsymbol{W}_{m}. Therefore, the following optimization problem with respect to αm,k(n)\alpha_{m,k}^{(n)} can be formulated:

maxαm,k(n)\displaystyle\max_{\alpha_{m,k}^{(n)}} minkSk\displaystyle\min_{k}S_{k} (34)
s.t. αm,k(n){0,1}\displaystyle\alpha_{m,k}^{(n)}\in\{0,1\}
k=1Kn=1Nαm,k(n)L\displaystyle\sum\limits_{k=1}^{K}\sum\limits_{n=1}^{N}\alpha_{m,k}^{(n)}\leq L

The reverse-delete algorithm is capable of efficiently solving (34) without the need of an exhaustive search. The surviving αm,k(n)\alpha_{m,k}^{(n)} determine which eigenvectors of which users will compose the columns of 𝑾m\boldsymbol{W}_{m}. However, note that 𝑾m\boldsymbol{{W}}_{m} for m=1,,Mm=1,\dots,M does not necessarily have orthogonal columns given that, most likely, eigenvectors from multiple users will be used to construct the analog matrices. As a consequence, neither Prop. 1 nor Prop. 2 are satisfied. Thus, the final unconstrained analog beamformers are obtained by 𝑾m(p)=𝒫(𝑾m)\boldsymbol{W}_{m}^{(p)}=\mathcal{P}(\boldsymbol{{W}}_{m}) where 𝒫(𝑨m)\mathcal{P}(\boldsymbol{A}_{m}) is the projection of matrix 𝑨m\boldsymbol{A}_{m} into an orthonormal basis.

Still, 𝑾m(p)\boldsymbol{W}_{m}^{(p)} is not only composed by phase shifters, i.e. the entries are not roots of unity. Therefore, for given 𝑾m(p)\boldsymbol{W}_{m}^{(p)}, we aim at solving the following optimization problem:

min𝑾^m𝑾m(p)𝑾^mF2s.t.|[𝑾^m]n,l|=1N.\begin{aligned} &\underset{\boldsymbol{{\hat{W}}}_{m}}{\text{min}}&&||\boldsymbol{{W}}_{m}^{(p)}-\boldsymbol{\hat{W}}_{m}||_{\text{F}}^{2}\\ &\text{s.t.}&&|[\boldsymbol{\hat{W}}_{m}]_{n,l}|=\frac{1}{\sqrt{N}}\end{aligned}. (35)

Although the optimal solution is obtained by taking the phase of the eigenvectors in 𝑾m(p)\boldsymbol{W}_{m}^{(p)}, the orthogonality between columns achieved by 𝒫()\mathcal{P}(\cdot) would be broken. Therefore, we modify our receiver. We add an orthogonality compensation matrix into our digital processing [9]. More concretely, for a constrained analog beamformer 𝑾^m\boldsymbol{\hat{W}}_{m}, its SVD results in 𝑾^m=𝑼^m𝑫^m𝑽^m\boldsymbol{\hat{W}}_{m}=\boldsymbol{\hat{U}}_{m}\boldsymbol{\hat{D}}_{m}\boldsymbol{\hat{V}}_{m}^{*}. The orthogonality compensation matrix, denoted by 𝑭m\boldsymbol{F}_{m}, is defined as

𝑭m=𝑽^m𝑫^m1𝑽^m.\displaystyle\boldsymbol{F}_{m}=\boldsymbol{\hat{V}}_{m}\boldsymbol{\hat{D}}_{m}^{-1}\boldsymbol{\hat{V}}_{m}^{*}. (36)

Therefore, adding such a compensation matrix allows us to improve the design of the analog matrix exploiting the following proposition.

Proposition 3.

Assume that instead of using 𝐖m(p)\boldsymbol{W}_{m}^{(p)} as the analog matrix, 𝐖m(p)𝐀m\boldsymbol{W}_{m}^{(p)}\boldsymbol{A}_{m} is the new analog beamformer with 𝐀mL×L\boldsymbol{A}_{m}\in\mathbb{C}^{L\times L} nonsingular. The product between 𝐖m(p)𝐀m𝐅m\boldsymbol{W}_{m}^{(p)}\boldsymbol{A}_{m}\boldsymbol{F}_{m} provides the same optimality as 𝐖m(p)\boldsymbol{W}_{m}^{(p)} and therefore 𝐖m(p)𝐀m\boldsymbol{W}_{m}^{(p)}\boldsymbol{A}_{m} is an optimal unconstrained analog matrix.

Proof.

The proof can be found in App. G

Using the previous proposition, the initial unconstrained beamformer 𝑾m(p)\boldsymbol{W}_{m}^{(p)} can be replaced by 𝑾m(p)𝑨m\boldsymbol{W}_{m}^{(p)}\boldsymbol{A}_{m} without a performance degradation as long as 𝑨m\boldsymbol{A}_{m} is nonsingular. As a consequence, we can formulate the following optimization problem:

min𝑾^m,𝑨m\displaystyle\underset{\boldsymbol{\hat{W}}_{m},\boldsymbol{A}_{m}}{\text{min}} 𝑾^m𝑾m(p)𝑨mF2\displaystyle||\boldsymbol{\hat{W}}_{m}-\boldsymbol{{W}}_{m}^{(p)}\boldsymbol{A}_{m}||_{\text{F}}^{2} (37)
s.t. |[𝑾^m]n,l|=1N\displaystyle|[\boldsymbol{\hat{W}}_{m}]_{n,l}|=\frac{1}{\sqrt{N}}

Thanks to the degrees of freedom added by 𝑨m\boldsymbol{A}_{m}, the constrained analog beamformer 𝑾^m\boldsymbol{\hat{W}}_{m}, can be made closer to the unconstrained one 𝑾m(p)\boldsymbol{W}_{m}^{(p)}. By alternating minimization, we split the previous problem into two sub-problems: (i) find the optimal 𝑨m\boldsymbol{A}_{m} for fixed 𝑾^m\boldsymbol{\hat{W}}_{m} and (ii) find the optimal 𝑾^m\boldsymbol{\hat{W}}_{m} for fixed 𝑨m\boldsymbol{A}_{m}. The solution to the previous subproblems is

𝑨m=𝑾m(p)𝑾^m,\boldsymbol{A}_{m}=\boldsymbol{{W}}_{m}^{(p)\mspace{4.0mu}*}\boldsymbol{\hat{W}}_{m}, (38)
𝑾^m=1Nexp(𝑾m(p)𝑨m).\displaystyle\boldsymbol{\hat{W}}_{m}=\frac{1}{\sqrt{N}}\text{exp}\angle(\boldsymbol{{W}}_{m}^{(p)}\boldsymbol{A}_{m}). (39)

An iterative process based on the block coordinate descend method follows until convergence is reached [14]. Therefore, a constrained analog matrix will be obtained and thus from Eq. (36) we can create 𝑭m\boldsymbol{F}_{m} that goes into the baseband (or digital) part. As a consequence, the equivalent channel between AP mm and UE kk has an extra component:

𝒈m,k=𝑭m𝑾^m𝒉m,k.\displaystyle\boldsymbol{g}_{m,k}=\boldsymbol{F}_{m}^{*}\boldsymbol{\hat{W}}_{m}^{*}\boldsymbol{h}_{m,k}. (40)

V-B Pilot Assignment Optimization

The optimal solution to (32) with respect to 𝚽\boldsymbol{\Phi} requires an exhaustive search over the set of possible pilot sequences. However, based on the correlation between effective channels: Δk,i=tr(𝚪k(g)𝚪i(g))\Delta_{k,i}=\text{tr}(\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{\Gamma}_{i}^{(g)}) for kik\neq i, an initial pilot assignment can be made, denoted by 𝚽(0)\boldsymbol{\Phi}^{(0)}. Particularly, a set of users is assigned the same pilot if their normalized cross-correlation, i.e. Δk,itr(𝚪k(g))tr(𝚪i(g))\frac{\Delta_{k,i}}{\text{tr}(\boldsymbol{\Gamma}_{k}^{(g)})\text{tr}(\boldsymbol{\Gamma}_{i}^{(g)})}, is minimized. Afterwards, the greedy algorithm proposed in Alg. 1 combined with the asymptotic approximations can be used to iteratively update the UE pilot assignment in a max-min SINR sense. Additionally, by construction, Alg. 1 converges provided that the cost function (i) is non-decreasing and (ii) is upper bounded.

Algorithm 1 Greedy pilot assignment
Set of available pilots, 𝒮={s1,,s|𝒮|}\mathcal{S}=\{s_{1},\dots,s_{|\mathcal{S}|}\} and initial pilot assignment 𝚽(0)\boldsymbol{\Phi}^{(0)} at iteration j=0j=0.
Define the cost function μ(0)=minkSINR¯k(𝚽(0))\mu^{(0)}=\min_{k}\overline{\mathrm{SINR}}_{k}(\boldsymbol{\Phi}^{(0)}).
while μ(j+1)μ(j)μ(j)>ϵ{\mu^{(j+1)}-\mu^{(j)}\over\mu^{(j)}}>\epsilon  do
     For each UE u=1,,Ku=1,\dots,K solve
ϕu(j+1)=argmaxs𝒮\displaystyle\phi_{u}^{(j+1)}=\arg\max_{s\in\mathcal{S}}\mspace{4.0mu}
minkSINR¯k(ϕ1(j+1),,ϕu1(j+1),s,ϕu+1(j),,ϕK(j))\displaystyle\min_{k}\overline{\mathrm{SINR}}_{k}(\phi_{1}^{(j+1)},\dots,\phi_{u-1}^{(j+1)},s,\phi_{u+1}^{(j)},\dots,\phi_{K}^{(j)}) (41)
     Update cost function μ(j+1)=minkSINR¯k(𝚽(j+1))\mu^{(j+1)}=\min_{k}\overline{\mathrm{SINR}}_{k}(\boldsymbol{\Phi}^{(j+1)})
end while

VI MM\to\infty Regime

Finally, we focus on the case where MM\to\infty. For simplicity, assume 𝑴(s)=𝟏\boldsymbol{{M}}^{(s)}=\boldsymbol{1} and recall that a full digital structure is the one providing the best performance in terms of SE, attained when L=NL=N and 𝑾m=𝑰N\boldsymbol{W}_{m}=\boldsymbol{I}_{N}. Then, the following can be derived.

Proposition 4.

Define the gap as the difference in SINR between full digital and hybrid. Then, there exist lower and upper bounds for the gap, denoted by δLB\delta_{\mathrm{LB}} and δUB\delta_{\mathrm{UB}}, given by

δLB=pkσ2m=1Mn=L+1Nλm,k(n).\displaystyle\delta_{\mathrm{LB}}=\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\sum\limits_{n=L+1}^{N}\lambda_{m,k}^{(n)}. (42)
δUB=pkσ2m=1M(n=1N(λm,k(n)λm,k(NL+n))+n=L+1Mλm,k(n))\displaystyle\delta_{\mathrm{UB}}=\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\bigg{(}\sum\limits_{n=1}^{N}(\lambda_{m,k}^{(n)}-\lambda_{m,k}^{(N-L+n)})+\sum\limits_{n=L+1}^{M}\lambda_{m,k}^{(n)}\bigg{)} (43)
Proof.

The proof can be found in App. H

Note that if the channel matrices are rank-deficient, i.e. rank(𝑹m,k)L\mathrm{rank}(\boldsymbol{R}_{m,k})\leq L, the gap can be as small as zero and therefore a hybrid structure would achieve the same performance as digital.

VII Simulation Results

For the purpose of performance evaluation, we consider a 200×200200\times 200 m2m^{2} wrapped around universe. To generate the channel model, we assume that the APs are deployed in urban environments at around 10 m, matching with the 3GPP Urban Microcell model in [15, Table B.1.2.1-1] at an operating frequency of 2 GHz. The shadowing terms given an AP to different UEs present a certain correlation, given by the model in [15, Table B.1.2.2.1-4]. The number of total channel uses is τc=200\tau_{c}=200. Unless otherwise specified, in order to take into account the effects of pilot contamination τ=8\tau=8 orthogonal pilots and K=16K=16 UEs (i.e. reuse factor of two). Additionally, each AP has N=32N=32 antennas. The UE transmit power is set to 200200 mW, σ2=96\sigma^{2}=-96 dBm and ρ=104\rho=10^{-4}. Moreover, to account for scalability, the [m,k][m,k] entry of 𝑴[m,k]\boldsymbol{M}_{[m,k]} is 1 if dm,kRmaxd_{m,k}\leq R_{\text{max}} for Rmax=90R_{\text{max}}=90 m, which ensures connectivity to multiple FBSs per GU for dm,kd_{m,k} the Euclidean distance between AP mm and UE kk. Finally, ϵ=0.001\epsilon=0.001 to ensure enough iterations until convergence is reached.

The applicability of Theorems 1 and 2 to finite-dimensional systems is first verified in Figs. 1 and 2, where the approximations are denoted by RMT in the legend. For different network setups, corresponding to M=4M=4, N=32N=32, L=16L=16 and M=12M=12, N=32N=32, L=8L=8, the approximations obtained in Th. 1 and 2 respectively are indeed accurate for K=16K=16 and τ=8\tau=8 orthogonal pilots.

Refer to caption
Figure 1: Exact SE vs (1τ/τc)log2(1+SINR¯k)\left(1-{\tau}/{\tau_{c}}\right)\log_{2}(1+\overline{\mathrm{SINR}}_{k}) with SINR¯k\overline{\mathrm{SINR}}_{k} given in Th. 1.
Refer to caption
Figure 2: Exact SE vs (1τ/τc)log2(1+SINR¯k)\left(1-{\tau}/{\tau_{c}}\right)\log_{2}(1+\overline{\mathrm{SINR}}_{k}) with SINR¯k\overline{\mathrm{SINR}}_{k} given in Th. 2.

In Fig. 3, we compare the UL pilot assignment obtained by Alg. 1 (Greedy) and a random assignment (RA) for different values of NN and LL. For N=L=16N=L=16 we assume a digital structure while for N=32N=32 and L=8L=8 the analog matrices 𝑾^m\boldsymbol{\hat{W}}_{m} are obtained as described in Section V-A. There is a visible improvement after running the greedy algorithm when the set of available pilots 𝒮\mathcal{S} is composed by orthogonal pilots. Additionally, the improvement in terms of minimum SE is measured and is of about 60% and 90% for N=L=16N=L=16 and N=32N=32, L=8L=8, respectively. Similar results are obtained in the DL.

Refer to caption
Figure 3: SE for the Greedy and RA pilot assignment schemes.

Next, we analyze the performance of our hybrid beamforming method compared to the two existing techniques, called SVD [8] and SLNR [9]. We measure the 95% outage SE which is a key metric in wireless systems for both the UL and DL in Figs. 4 and 5. Clearly, our method outperforms both works in the two links, i.e. UL and DL, with gains in the range of 1-8% and 10-35% in the UL and DL, respectively.

Refer to caption
Figure 4: 95% outage UL-SE for different analog methods as a function of LL for M=12M=12 and N=32N=32.
Refer to caption
Figure 5: 95% outage DL-SE for different analog methods as a function of LL for M=12M=12 and N=32N=32.

VIII Conclusions

This paper has investigated the use of hybrid transceivers in CF MIMO setups. After deriving asymptotic approximations for both UL and DL, we focused on solving two problems: (i) analog beamformer and (ii) pilot assignment. The solution to the first one is shown to outperform state-of-the-art techniques while the greedy pilot assignment highly outperforms a RA. Finally, theoretical bounds for the gap between full digital and hybrid structures are presented, showing that such a gap is highly dependant on the eigenvalues of the channel correlation matrices.

References

  • [1] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-Free Massive MIMO Versus Small Cells,” IEEE Trans. Wireless Commun., vol. 16, pp. 1834–1850, Mar. 2017.
  • [2] E. Björnson and L. Sanguinetti, “Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation,” IEEE Trans. Wireless Commun., vol. 19, pp. 77–90, Jan. 2020.
  • [3] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and Power Optimization in Cell-Free Massive MIMO Systems,” IEEE Trans. on Wireless Commun., vol. 16, pp. 4445–4459, May 2017.
  • [4] M. Bashar, K. Cumanan, A. G. Burr, M. Debbah, and H. Q. Ngo, “On the Uplink Max–Min SINR of Cell-Free Massive MIMO Systems,” IEEE Trans. on Wireless Commun., vol. 18, pp. 2021–2036, Jan. 2019.
  • [5] M. Attarifar, A. Abbasfar, and A. Lozano, “Subset MMSE Receivers for Cell-Free Networks,” IEEE Trans. Wireless Commun., vol. 19, pp. 4183–4194, Jun. 2020.
  • [6] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays,” IEEE Journal on Sel. Areas in Commun., vol. 34, pp. 998–1009, Mar. 2016.
  • [7] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Trans. on Wireless Commun., vol. 13, pp. 1499–1513, Jan. 2014.
  • [8] G. Femenias and F. Riera-Palou, “Cell-Free Millimeter-Wave Massive MIMO Systems With Limited Fronthaul Capacity,” IEEE Access, vol. 7, pp. 44596–44612, Mar. 2019.
  • [9] S. Park, J. Park, A. Yazdan, and R. W. Heath, “Exploiting Spatial Channel Covariance for Hybrid Precoding in Massive MIMO Systems,” IEEE Trans. on Sig. Proc., vol. 65, pp. 3818–3832, May 2017.
  • [10] S. Wagner, R. Couillet, M. Debbah, and D. T. M. Slock, “Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels Under Limited Feedback,” IEEE Trans. on Inf. Th., vol. 58, pp. 4509–4537, Mar. 2012.
  • [11] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall PTR, 1st ed., 1993.
  • [12] H. B. Mann and A. Wald, “On Stochastic Limit and Order Relationships,” Annals of Mathematical Statistics, vol. 14, pp. 217–226, 1943.
  • [13] P. Patcharamaneepakorn, S. Armour, and A. Doufexi, “On the Equivalence Between SLNR and MMSE Precoding Schemes with Single-Antenna Receivers,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1034–1037, 2012.
  • [14] Z. Luo and P. Tseng, “On the convergence of the coordinate descent method for convex differentiable minimization,” J. of Optimization Theory and Applications, vol. 72, pp. 7–35, Jan. 1992.
  • [15] “Rel. 9: Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects,” Tech. Rep. 36.814, 3GPP, Dec. 2017.

Appendix A

Theorem 3.

([10, Theorem 1]) Let 𝐃M×M\boldsymbol{{D}}\in\mathbb{C}^{M\times M} and 𝐒M×M\boldsymbol{{S}}\in\mathbb{C}^{M\times M} be Hermitian nonnegative-definite while 𝐇M×K\boldsymbol{{H}}\in\mathbb{C}^{M\times K} is a random matrix with zero-mean independent column vectors, 𝐡k\boldsymbol{h}_{k}, each with covariance matrix 1M𝐑k\frac{1}{M}\boldsymbol{\mathrm{R}}_{k}. Finally, 𝐃\boldsymbol{{D}} and 𝐑k\boldsymbol{{R}}_{k} have uniformly bounded spectral norm w.r.t. MM. For z>0z>0 and M,KM,K\to\infty,

1Mtr[𝑫(𝑯𝑯+𝑺+z𝑰M)1]1Mtr[𝑫𝑻]a.s.0,\frac{1}{M}\,\mathrm{tr}\!\left[\boldsymbol{{D}}\big{(}\boldsymbol{{H}}\boldsymbol{{H}}^{*}+\boldsymbol{{S}}+z\boldsymbol{{I}}_{M})^{-1}\right]-\frac{1}{M}\,\mathrm{tr}[\boldsymbol{{D}}\boldsymbol{{T}}]\stackrel{{\scriptstyle\text{a.s.}}}{{\to}}0,

where

𝑻=(1Mj=1K𝑹j1+ej+𝑺+z𝑰M)1\boldsymbol{{T}}=\bigg{(}\frac{1}{M}\sum\limits_{j=1}^{K}\frac{\boldsymbol{{R}}_{j}}{1+e_{j}}+\boldsymbol{{S}}+z\boldsymbol{{I}}_{M}\bigg{)}^{\!-1} (44)

with coefficients ek=limnek(n)e_{k}=\text{lim}_{n\xrightarrow{}\infty}e_{k}^{(n)} for

ek(n)=1Mtr[𝑹k(1Mj=1K𝑹j1+ej(n1)+𝑺+z𝑰M)1]e_{k}^{(n)}=\frac{1}{M}\,\mathrm{tr}\!\left[\boldsymbol{{R}}_{k}\bigg{(}\frac{1}{M}\sum\limits_{j=1}^{K}\frac{\boldsymbol{{R}}_{j}}{1+e_{j}^{(n-1)}}+\boldsymbol{{S}}+z\boldsymbol{{I}}_{M}\bigg{)}^{\!-1}\right] (45)

with initial values ek(0)=Me_{k}^{(0)}=M.

Appendix B

Theorem 4.

([10, Theorem 2]) Let 𝚽M×M\boldsymbol{\Phi}\in\mathbb{C}^{M\times M} be Hermitian nonnegative-definite. Under the same conditions as Th. 3, for M,KM,K\to\infty,

1Mtr[𝑫(𝑯𝑯+𝑺+z𝑰M)1𝚽(𝑯𝑯+𝑺+z𝑰M)1]\displaystyle\frac{1}{M}\,\mathrm{tr}\!\left[\boldsymbol{{D}}\big{(}\boldsymbol{{H}}\boldsymbol{{H}}^{*}+\boldsymbol{{S}}+z\boldsymbol{{I}}_{M})^{-1}\boldsymbol{\Phi}\big{(}\boldsymbol{{H}}\boldsymbol{{H}}^{*}+\boldsymbol{{S}}+z\boldsymbol{{I}}_{M})^{-1}\right]-
1Mtr[𝑫𝑻(z,𝚽)]a.s.0,\displaystyle\frac{1}{M}\,\mathrm{tr}[\boldsymbol{{D}}\boldsymbol{T}^{{}^{\prime}}(z,\boldsymbol{\Phi})]\stackrel{{\scriptstyle\text{a.s.}}}{{\to}}0,

where 𝐓(z,𝚽)\boldsymbol{T}^{{}^{\prime}}(z,\boldsymbol{\Phi}) is defined as

𝑻(z,𝚽)=𝑻𝚽𝑻+𝑻1Mk=1K𝑹kek(z,𝚽)(1+ek)2𝑻\boldsymbol{T}^{{}^{\prime}}(z,\boldsymbol{\Phi})=\boldsymbol{{T}}\boldsymbol{\Phi}\boldsymbol{{T}}+\boldsymbol{{T}}\frac{1}{M}\sum\limits_{k=1}^{K}\frac{\boldsymbol{R}_{k}e_{k}^{{}^{\prime}}(z,\boldsymbol{\Phi})}{(1+e_{k})^{2}}\boldsymbol{{T}} (46)

with 𝐓\boldsymbol{{T}} and eke_{k} given in Th. 3 for particular zz and 𝐞(z,𝚽)=(e1(z),,eK(z))\boldsymbol{e}^{{}^{\prime}}(z,\boldsymbol{\Phi})=\big{(}e_{1}^{{}^{\prime}}(z),\dots,e_{K}^{{}^{\prime}}(z)\big{)} calculated as

𝒆(z,𝚽)=(𝑰𝑱(z))1𝒗(z,𝚽)\displaystyle\boldsymbol{e}^{{}^{\prime}}(z,\boldsymbol{\Phi})=\big{(}\boldsymbol{I}-\boldsymbol{J}(z)\big{)}^{-1}\boldsymbol{v}(z,\boldsymbol{\Phi}) (47)

with 𝐉(z)K×K\boldsymbol{J}(z)\in\mathbb{C}^{K\times K} and 𝐯(z)K×1\boldsymbol{v}(z)\in\mathbb{C}^{K\times 1} defined as

(𝑱(z))k,l=1Mtr[𝑹k𝑻𝑹l𝑻]M(1+el)2\displaystyle\big{(}\boldsymbol{J}(z)\big{)}_{k,l}=\frac{\frac{1}{M}\mathrm{tr}\big{[}\boldsymbol{R}_{k}\boldsymbol{{T}}\boldsymbol{R}_{l}\boldsymbol{{T}}\big{]}}{M(1+e_{l})^{2}} (48)

and

(𝒗(z,𝚽))k=1Mtr[𝑹k𝑻𝚽𝑻]\displaystyle\big{(}\boldsymbol{v}(z,\boldsymbol{\Phi})\big{)}_{k}=\frac{1}{M}\mathrm{tr}\big{[}\boldsymbol{R}_{k}\boldsymbol{{T}}\boldsymbol{\Phi}\boldsymbol{{T}}\big{]} (49)

Appendix C Proof of Th. 1

Let us define matrices 𝑷=diag{p1,,pK}\boldsymbol{P}=\text{diag}\{p_{1},\dots,p_{K}\},

𝛀=|k|N((𝑴(s)𝑮^k)𝑷(𝑴(s)𝑮^k)+𝚺k)1,\displaystyle\boldsymbol{\Omega}=|\mathcal{F}_{k}|N\left(\big{(}\boldsymbol{{M}}^{(s)}\circ\boldsymbol{{\hat{G}}}_{k}\big{)}\boldsymbol{{P}}{}\big{(}\boldsymbol{{M}}^{(s)}{}\circ\boldsymbol{{\hat{G}}}_{k}\big{)}^{*}+\boldsymbol{\Sigma}_{k}\right)^{\!-1}, (50)
𝛀k\displaystyle\boldsymbol{\Omega}_{k} =((𝑴(s)𝑮^k)𝑷(𝑴(s)𝑮^k)\displaystyle=\bigg{(}\big{(}\boldsymbol{{M}}^{(s)}\circ\boldsymbol{{\hat{G}}}_{k}\big{)}\boldsymbol{{P}}{}\big{(}\boldsymbol{{M}}^{(s)}{}\circ\boldsymbol{{\hat{G}}}_{k}\big{)}^{*}-
(𝒎k(s)𝒈^k)(𝒎k(s)𝒈^k)pk+𝚺k)1,\displaystyle\mspace{22.0mu}\big{(}\boldsymbol{m}_{k}^{(s)}\circ\boldsymbol{\hat{g}}_{k}\big{)}\big{(}\boldsymbol{m}_{k}^{(s)}\circ\boldsymbol{\hat{g}}_{k}\big{)}^{*}p_{k}+\boldsymbol{\Sigma}_{k}\bigg{)}^{\!-1}, (51)

and 𝛀k=|k|N𝛀k\boldsymbol{\Omega}_{k}^{{}^{\prime}}=|\mathcal{F}_{k}|N\boldsymbol{\Omega}_{k}. Then, (13) can be written as

SINRk\displaystyle\mathrm{SINR}_{k} =𝒈^k𝛀k𝒈^kpk\displaystyle=\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{k}\boldsymbol{\hat{g}}_{k}\,p_{k} (52)
=pk|k|Ntr[𝒈^k𝒈^k𝛀k].\displaystyle=\frac{p_{k}}{|\mathcal{F}_{k}|N}\,\mathrm{tr}\!\left[\boldsymbol{\hat{g}}_{k}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\right]. (53)

For |k|N|\mathcal{F}_{k}|N,|𝒰m||\mathcal{U}_{m}| \xrightarrow{}\infty k,m\forall\mspace{4.0mu}k,m, we have

pk|k|Ntr[𝒈^k𝒈^k𝛀k]\displaystyle\frac{p_{k}}{|\mathcal{F}_{k}|N}\mathrm{tr}\bigg{[}\boldsymbol{\hat{g}}_{k}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\bigg{]} (a)pk|k|Ntr[𝚪k(g)𝛀]\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{\approx}}\frac{p_{k}}{|\mathcal{F}_{k}|N}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{\Omega}\big{]} (54)
(b)pk|k|Ntr[𝚪k(g)𝑻k].\displaystyle\stackrel{{\scriptstyle\text{(b)}}}{{\approx}}\frac{p_{k}}{|\mathcal{F}_{k}|N}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{{T}}_{k}\big{]}. (55)

where (a) follows from [10, Lemmas 4 and 6] and (b) is obtained after applying Th. 3 by substituting 𝑫=𝚪k(g)pk\boldsymbol{{D}}=\boldsymbol{\Gamma}_{k}^{(g)}\,p_{k}, (ii) 𝑹j=𝚪j(g)pk\boldsymbol{{R}}_{j}=\boldsymbol{\Gamma}_{j}^{(g)}\,p_{k}, and (iii) 𝑺+z𝑰M=1|k|N𝚺k\boldsymbol{{S}}+z\boldsymbol{{I}}_{M}=\frac{1}{|\mathcal{F}_{k}|N}\boldsymbol{\Sigma}_{k} while 𝑻k\boldsymbol{{T}}_{k} is defined next

𝑻k=(1|k|Ni=1K𝚪i(g)1+eipi+1|k|N𝚺k)1.\boldsymbol{{T}}_{k}=\bigg{(}\frac{1}{|\mathcal{F}_{k}|N}\sum\limits_{i=1}^{K}\frac{\boldsymbol{\Gamma}_{i}^{(g)}}{1+e_{i}}\,p_{i}+\frac{1}{|\mathcal{F}_{k}|N}\boldsymbol{\Sigma}_{k}\bigg{)}^{\!-1}. (56)

The necessary coefficients can be calculated as ej=limnej(n)e_{j}=\lim_{n\to\infty}e_{j}^{(n)} with

ej(n)\displaystyle e_{j}^{(n)} =pj|j|Ntr[𝚪j(g)(1|j|Ni=1K𝚪i(g)1+eipi+1|j|N𝚺k)1].\displaystyle=\frac{p_{j}}{|\mathcal{F}_{j}|N}\,\mathrm{tr}\Bigg{[}\boldsymbol{\Gamma}_{j}^{(g)}\bigg{(}\frac{1}{|\mathcal{F}_{j}|N}\sum\limits_{i=1}^{K}\frac{\boldsymbol{\Gamma}_{i}^{(g)}}{1+e_{i}}\,p_{i}+\frac{1}{|\mathcal{F}_{j}|N}\boldsymbol{\Sigma}_{k}\bigg{)}^{\!-1}\Bigg{]}. (57)

The fixed-point algorithm can be used to compute ej(n)e_{j}^{(n)} and has been proved to converge [10]. Finally, given that all the involved matrices in SINR¯k\overline{\mathrm{SINR}}_{k} are block-diagonal, i.e. 𝑻k=diag{𝑻m,kformk}\boldsymbol{{T}}_{k}=\mathrm{diag}\{\boldsymbol{T}_{m,k}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}m\in\mathcal{F}_{k}\} the expression in (19) is obtained where 𝑻m,k\boldsymbol{T}_{m,k} is defined in (20).

Appendix D Proof of Th. 2

From Eq. (18), we can derive an approximation for each of the terms in the numerator and denominator, respectively. In order not to overload the formulation, we will denote by 𝐠^k=𝒎k(s)𝒈^k\boldsymbol{\bf\hat{g}}_{k}=\boldsymbol{m}_{k}^{(s)}\circ\boldsymbol{\hat{g}}_{k} the sparse version of the channel. We also define 𝛀=[𝐆^𝐆^+ρ𝑰]1=1MN𝛀\boldsymbol{\Omega}=\big{[}\boldsymbol{\bf\hat{G}}\boldsymbol{\bf\hat{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}=\frac{1}{MN}\boldsymbol{\Omega}^{{}^{\prime}} with 𝛀=[1MN𝐆^𝐆^+ρMN𝑰]1\boldsymbol{\Omega}^{{}^{\prime}}=\big{[}\frac{1}{MN}\boldsymbol{\bf\hat{G}}\boldsymbol{\bf\hat{G}}^{*}+\frac{\rho}{MN}\boldsymbol{I}\big{]}^{-1}. Denote by 𝛀k\boldsymbol{\Omega}_{k} and 𝛀k\boldsymbol{\Omega}_{k}^{{}^{\prime}} the same as 𝛀\boldsymbol{\Omega} and 𝛀\boldsymbol{\Omega}^{{}^{\prime}} after removing the contribution of UE kk (the same applies to 𝛀k,i\boldsymbol{\Omega}_{k,i} where the contributions of UEs kk and ii are removed). We first calculate the value of λk\lambda_{k}, ensuring that 𝔼{𝑾𝒗k2}=1\mathbb{E}\{||\boldsymbol{W}\boldsymbol{v}_{k}||^{2}\}=1.

λk=1𝔼{𝐠^k𝛀𝑾𝑾𝛀𝐠^k}\displaystyle\lambda_{k}=\frac{1}{\sqrt{\mathbb{E}\{\boldsymbol{\bf\hat{g}}_{k}^{*}\boldsymbol{\Omega}\boldsymbol{W}^{*}\boldsymbol{W}\boldsymbol{\Omega}\boldsymbol{\bf\hat{g}}_{k}\}}} (58)

The term inside the squared root can be asymptotically approximated for large MNMN, KK as follows:

𝐠^k𝛀𝑾𝑾𝛀𝐠^k\displaystyle\boldsymbol{\bf\hat{g}}_{k}^{*}\boldsymbol{\Omega}\boldsymbol{W}^{*}\boldsymbol{W}\boldsymbol{\Omega}\boldsymbol{\bf\hat{g}}_{k} =𝐠^k𝛀k𝑾𝑾𝛀k𝐠^k(1+𝐠^k𝛀k𝐠^k)2\displaystyle=\frac{\boldsymbol{\bf\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{k}\boldsymbol{W}^{*}\boldsymbol{W}\boldsymbol{\Omega}_{k}\boldsymbol{\bf\hat{g}}_{k}}{(1+\boldsymbol{\bf\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{k}\boldsymbol{\bf\hat{g}}_{k})^{2}} (59)
(a)1(MN)2tr[𝚪k(g)𝛀k𝑾𝑾𝛀k](1+1MNtr[𝚪k(g)𝛀k])2\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{\approx}}\frac{\frac{1}{(MN)^{2}}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\boldsymbol{W}^{*}\boldsymbol{W}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\big{]}}{(1+\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\big{]})^{2}} (60)
(b)1(MN)2tr[𝚪k(g)𝑻(ρMN,𝑾𝑾)](1+1MNtr[𝚪k(g)𝑻])2\displaystyle\stackrel{{\scriptstyle\text{(b)}}}{{\approx}}\frac{\frac{1}{(MN)^{2}}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{W}^{*}\boldsymbol{W})\big{]}}{(1+\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}\big{]})^{2}} (61)
=(c)δk(1+μk)2\displaystyle\stackrel{{\scriptstyle\text{(c)}}}{{=}}\frac{\delta_{k}}{(1+\mu_{k})^{2}} (62)

where (a) is obtained using [10, Lemma 4] and that 𝛀k=1MN𝛀k\boldsymbol{\Omega}_{k}=\frac{1}{MN}\boldsymbol{\Omega}_{k}^{{}^{\prime}}, (b) results from [10, Lemma 6] and applying Th. 2 and Th. 1 in the numerator and denominator, respectively, with 𝑫=𝚪k(g)\boldsymbol{D}=\boldsymbol{\Gamma}_{k}^{(g)}, 𝚽=𝑾𝑾\boldsymbol{\Phi}=\boldsymbol{W}^{*}\boldsymbol{W}, 𝑺=𝟎\boldsymbol{S}=\boldsymbol{0}, z=ρMNz=\frac{\rho}{MN}. Finally, (c) defines the values of δk=1(MN)2tr[𝚪k(g)𝑻(ρMN,𝑾𝑾)]\delta_{k}=\frac{1}{(MN)^{2}}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{W}^{*}\boldsymbol{W})\big{]} and μk=1MNtr[𝚪k(g)𝑻]\mu_{k}=\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}\big{]} as they will be repeatedly used later. As a consequence, from the continous mapping theorem:

λk1δk(1+μk)2\displaystyle\lambda_{k}\approx\frac{1}{\sqrt{\frac{\delta_{k}}{(1+\mu_{k})^{2}}}} (63)

For the numerator of (18), given by |𝔼{𝒈k𝒗k}|2|\mathbb{E}\{\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}\}|^{2}, we can compute an approximated deterministic equivalent for the term inside the expectation in a similar manner as for λk\lambda_{k}:

𝒈k𝒗k\displaystyle\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k} =λk𝒈k𝛀𝐠^k\displaystyle=\lambda_{k}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}\boldsymbol{\bf\hat{g}}_{k} (64)
=(a)λk𝒈k𝛀k𝐠^k1+𝒈k𝛀k𝐠^k\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{=}}\lambda_{k}\frac{\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{k}\boldsymbol{\bf\hat{g}}_{k}}{1+\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{k}\boldsymbol{\bf\hat{g}}_{k}} (65)
(b)λk1MNtr[𝚪k(g)𝛀k]1+1MNtr[𝚪k(g)𝛀k]\displaystyle\stackrel{{\scriptstyle\text{(b)}}}{{\approx}}\lambda_{k}\frac{\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\big{]}}{1+\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{\Omega}_{k}^{{}^{\prime}}\big{]}} (66)
(c)λkμk1+μk\displaystyle\stackrel{{\scriptstyle\text{(c)}}}{{\approx}}\lambda_{k}\frac{\mu_{k}}{1+\mu_{k}} (67)

where (a) follows from [10, Lemma 1] (b) is derived applying [10, Lemma 4] and the fact that 𝛀k=1MN𝛀k\boldsymbol{\Omega}_{k}=\frac{1}{MN}\boldsymbol{\Omega}_{k}^{{}^{\prime}}. Finally, (c) is obtained by applying the definition of μk\mu_{k} previously derived. From the continuous mapping theorem and substituting the value of λk\lambda_{k} provided in (63), the numerator therefore has an approximated value of

|𝔼{𝒈k𝒗k}|2\displaystyle|\mathbb{E}\{\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}\}|^{2} λk2μk2(1+μk)2\displaystyle\approx\lambda_{k}^{2}\frac{\mu_{k}^{2}}{(1+\mu_{k})^{2}} (68)
=μk2δk\displaystyle=\frac{\mu_{k}^{2}}{\delta_{k}} (69)

For the interfering terms 𝔼{|𝒈k𝒗i|2}\mathbb{E}\{|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}|^{2}\} we can proceed similarly and obtain a deterministic approximation by considering the term inside the expectation as follows:

|𝒈k𝒗i|2\displaystyle|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}|^{2} =λi2|𝒈k𝛀𝐠^i|2\displaystyle=\lambda_{i}^{2}|\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}\boldsymbol{\bf\hat{g}}_{i}|^{2} (70)
=(a)λi2|𝒈k𝛀i𝐠^i|2(1+𝐠^i𝛀i𝐠^i)2\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{=}}\lambda_{i}^{2}\frac{|\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}\boldsymbol{\bf\hat{g}}_{i}|^{2}}{(1+\boldsymbol{\bf\hat{g}}_{i}^{*}\boldsymbol{\Omega}_{i}\boldsymbol{\bf\hat{g}}_{i})^{2}} (71)
=(b)λi2|1MN𝒈k𝛀i𝐠^i|2(1+1MN𝐠^i𝛀i𝐠^i)2\displaystyle\stackrel{{\scriptstyle\text{(b)}}}{{=}}\lambda_{i}^{2}\frac{|\frac{1}{MN}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\bf\hat{g}}_{i}|^{2}}{(1+\frac{1}{MN}\boldsymbol{\bf\hat{g}}_{i}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\bf\hat{g}}_{i})^{2}} (72)
(c)λi2|1MN𝒈k𝛀i𝐠^i|2(1+μi)2\displaystyle\stackrel{{\scriptstyle\text{(c)}}}{{\approx}}\lambda_{i}^{2}\frac{|\frac{1}{MN}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\bf\hat{g}}_{i}|^{2}}{(1+\mu_{i})^{2}} (73)
=(d)1δi|1MN𝒈k𝛀i𝐠^i|2\displaystyle\stackrel{{\scriptstyle\text{(d)}}}{{=}}\frac{1}{\delta_{i}}|\frac{1}{MN}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\bf\hat{g}}_{i}|^{2} (74)

where (a) follows from [10, Lemma 1], (b) substitutes 𝛀i=1MN𝛀i\boldsymbol{\Omega}_{i}=\frac{1}{MN}\boldsymbol{\Omega}_{i}^{{}^{\prime}}, (c) applies the definition of μk\mu_{k} in the denominator and (d) substitutes the value of λi\lambda_{i} previously derived.

To get a deterministic equivalent for the previous equation, we first know that:

|1MN𝒈k𝛀i𝐠^i|21(MN)2𝒈k𝛀i𝚪i(g)𝛀i𝒈k\displaystyle|\frac{1}{MN}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\bf\hat{g}}_{i}|^{2}\approx\frac{1}{(MN)^{2}}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{g}_{k} (75)

being a direct consequence of [10, Lemma 4]. After applying the matrix inversion lemma to 𝛀i\boldsymbol{\Omega}_{i}^{{}^{\prime}} to remove the dependency with respect to UE kk, we obtain that

𝛀i=𝛀i,k1MN𝛀i,k𝒈^k𝒈^k𝛀i,k1+1MN𝒈^k𝛀i,k𝒈^k\displaystyle\boldsymbol{\Omega}_{i}^{{}^{\prime}}=\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}-\frac{\frac{1}{MN}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}}{1+\frac{1}{MN}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}} (76)

Substituting (76) in (75) yields the following:

1(MN)2𝒈k𝛀i𝚪i(g)𝛀i𝒈k=T1+T2+T3\displaystyle\frac{1}{(MN)^{2}}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i}^{{}^{\prime}}\boldsymbol{g}_{k}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3} (77)

where each of the terms is provided below:

T1\displaystyle\mathrm{T}_{1} =1(MN)2𝒈k𝛀i,k𝚪i(g)𝛀i,k𝒈k\displaystyle=\frac{1}{(MN)^{2}}\boldsymbol{g}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{g}_{k} (78)
(a)1(MN)2tr[𝑹k(g)𝑻(ρMN,𝚪i(g))]\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{\approx}}\frac{1}{(MN)^{2}}\mathrm{tr}\big{[}\boldsymbol{R}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})\big{]} (79)

where (a) combines both [10, Lemma 4] and Th. 2 with the following substitutions 𝑫=𝚪k(g)\boldsymbol{D}=\boldsymbol{\Gamma}_{k}^{(g)}, 𝚽=𝚪i(g)\boldsymbol{\Phi}=\boldsymbol{\Gamma}_{i}^{(g)}, 𝑺=𝟎\boldsymbol{S}=\boldsymbol{0}, z=ρMNz=\frac{\rho}{MN}. In addition,

T2\displaystyle\mathrm{T}_{2} =1(MN)21(MN)2|𝒈^k𝛀i,k𝒈k|2𝒈^k𝛀i,k𝚪i(g)𝛀i,k𝒈^k(1+1MN𝒈^k𝛀i,k𝒈^k)2\displaystyle=\frac{1}{(MN)^{2}}\frac{\frac{1}{(MN)^{2}}|\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{g}_{k}|^{2}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}}{(1+\frac{1}{MN}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k})^{2}} (80)
(a)1MNμk21MN𝒈^k𝛀i,k𝚪i(g)𝛀i,k𝒈^k(1+μk)2\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{\approx}}\frac{1}{MN}\frac{\mu_{k}^{2}\frac{1}{MN}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}}{(1+\mu_{k})^{2}} (81)
(b)1MNμk21MNtr[𝚪k(g)𝑻(ρMN,𝚪i(g))](1+μk)2\displaystyle\stackrel{{\scriptstyle\text{(b)}}}{{\approx}}\frac{1}{MN}\frac{\mu_{k}^{2}\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})\big{]}}{(1+\mu_{k})^{2}} (82)

where (a) comes from the definition of μi\mu_{i}, and (b) arises from applying [10, Lemma 6] and Th. 2 to the term 1MN𝒈^k𝛀i,k𝚪i(g)𝛀i,k𝒈^k\frac{1}{MN}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k} with the same substitutions as for T1\mathrm{T}_{1}. Finally, the last term can be computed as

T3\displaystyle\mathrm{T}_{3} =2(MN)2{1MN𝒈^k𝛀i,k𝒈k𝒈k𝛀i,k𝚪i(g)𝛀i,k𝒈^k1+1MN𝒈^k𝛀i,k𝒈^k}\displaystyle=-\frac{2}{(MN)^{2}}\mathbb{R}\bigg{\{}\frac{\frac{1}{MN}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{{g}}_{k}\boldsymbol{{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}}{1+\frac{1}{MN}\boldsymbol{\hat{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}}\bigg{\}} (83)
(a)2MN{μk1MN𝒈k𝛀i,k𝚪i(g)𝛀i,k𝒈^k1+μk}\displaystyle\stackrel{{\scriptstyle\text{(a)}}}{{\approx}}\frac{2}{MN}\mathbb{R}\bigg{\{}\frac{\mu_{k}\frac{1}{MN}\boldsymbol{{g}}_{k}^{*}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\Gamma}_{i}^{(g)}\boldsymbol{\Omega}_{i,k}^{{}^{\prime}}\boldsymbol{\hat{g}}_{k}}{1+\mu_{k}}\bigg{\}} (84)
(b)2MN{μk1MNtr[𝚪k(g)𝑻(ρMN,𝚪i(g))1+μk}\displaystyle\stackrel{{\scriptstyle\text{(b)}}}{{\approx}}\frac{2}{MN}\mathbb{R}\bigg{\{}\frac{\mu_{k}\frac{1}{MN}\mathrm{tr}\big{[}\boldsymbol{\Gamma}_{k}^{(g)}\boldsymbol{T}^{{}^{\prime}}(\frac{\rho}{MN},\boldsymbol{\Gamma}_{i}^{(g)})}{1+\mu_{k}}\bigg{\}} (85)

where (a) is obtained from the definition of μk\mu_{k} and (b) follows the same step as to calculate T2\mathrm{T}_{2} (b). Consequently, the interfering terms accept an assymptotic approximation as follows:

|𝔼{𝒈k𝒗k}|2\displaystyle|\mathbb{E}\{\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}\}|^{2} θk,iδi\displaystyle\approx\frac{\theta_{k,i}}{\delta_{i}} (86)

with θk,i=T1+T2+T3\theta_{k,i}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}.

Finally, the term var(𝒈k𝒗k)\mathrm{var}(\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}) can be shown to approximately converge to zero in the asymptotic regime as follows:

var(𝒈k𝒗k)\displaystyle\mathrm{var}(\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}) =𝔼{|𝒈k𝒗k|2}𝔼{𝒈k𝒗k}2\displaystyle=\mathbb{E}\{|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}|^{2}\}-\mathbb{E}\{\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}\}^{2} (87)
(λkμk1+μk)2(λkμk1+μk)2\displaystyle\approx\bigg{(}\lambda_{k}\frac{\mu_{k}}{1+\mu_{k}}\bigg{)}^{2}-\bigg{(}\lambda_{k}\frac{\mu_{k}}{1+\mu_{k}}\bigg{)}^{2} (88)

As a consequence, the result in Th. 2 is obtained.

Appendix E Proof of Prop. 1

From Eq. (13), under perfect CSI it can be shown that the SINR achieved by UE kk is:

SINRk=𝒈k(ikK𝒈i𝒈ipi+𝚺k)1𝒈k,\displaystyle\mathrm{SINR}_{k}=\boldsymbol{{g}}_{k}^{*}\bigg{(}\sum\limits_{i\neq k}^{K}\boldsymbol{{g}}_{i}\boldsymbol{{g}}_{i}^{*}p_{i}+\boldsymbol{\Sigma}_{k}\bigg{)}^{-1}\boldsymbol{{g}}_{k}, (89)

where, for simplicity we assume that 𝑴(s)=𝟏\boldsymbol{{M}}^{(s)}=\boldsymbol{1} though the same analysis and conclusion is valid for subsets of APs and UEs. Therefore, 𝚺k\boldsymbol{\Sigma}_{k} is a block diagonal matrix 𝚺k=diag{𝚺k,mL×Lformk}\boldsymbol{\Sigma}_{k}=\mathrm{diag}\{\boldsymbol{\Sigma}_{k,m}\in\mathbb{C}^{L\times L}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}m\in\mathcal{F}_{k}\} where 𝚺k,m=σ2𝑾m𝑾m\boldsymbol{\Sigma}_{k,m}=\sigma^{2}\boldsymbol{W}_{m}^{*}{}\boldsymbol{W}_{m}. Note that 𝒈k=𝑾𝒉k\boldsymbol{{g}}_{k}=\boldsymbol{W}\boldsymbol{{h}}_{k}. As a consequence:

SINRk\displaystyle\mathrm{SINR}_{k} =𝒉k𝑾(ikK𝑾𝒉i𝒉i𝑾pi+σ2𝑾𝑾)1𝑾𝒉k\displaystyle=\boldsymbol{{h}}_{k}^{*}\boldsymbol{W}\bigg{(}\sum\limits_{i\neq k}^{K}\boldsymbol{W}^{*}\boldsymbol{{h}}_{i}\boldsymbol{{h}}_{i}^{*}\boldsymbol{W}p_{i}+\sigma^{2}\boldsymbol{W}^{*}\boldsymbol{W}\bigg{)}^{-1}\boldsymbol{W}\boldsymbol{{h}}_{k} (90)
=𝒉k𝑾(𝑾(ikK𝒉i𝒉ipi+σ2𝑰)𝑾)1𝑾𝒉k.\displaystyle=\boldsymbol{{h}}_{k}^{*}\boldsymbol{W}\bigg{(}\boldsymbol{W}^{*}\Big{(}\sum\limits_{i\neq k}^{K}\boldsymbol{{h}}_{i}\boldsymbol{{h}}_{i}^{*}p_{i}+\sigma^{2}\boldsymbol{I}\Big{)}\boldsymbol{W}\bigg{)}^{-1}\boldsymbol{W}\boldsymbol{{h}}_{k}. (91)

Consider the generic case of rank(𝑾m)=rmL\mathrm{rank}(\boldsymbol{W}_{m})=r_{m}\leq L. It can be easily shown that if rm<L\exists\mspace{4.0mu}r_{m}<L (𝑾(ikK𝒉i𝒉ipi+σ2𝑰)𝑾)1\bigg{(}\boldsymbol{W}^{*}\Big{(}\sum\limits_{i\neq k}^{K}\boldsymbol{{h}}_{i}\boldsymbol{{h}}_{i}^{*}p_{i}+\sigma^{2}\boldsymbol{I}\Big{)}\boldsymbol{W}\bigg{)}^{-1} does not exist. As a consequence, each 𝑾m\boldsymbol{W}_{m} must be full rank. After doing the compact SVD on 𝑾=𝑼𝑸NM×r\boldsymbol{W}=\boldsymbol{U}\boldsymbol{Q}\in\mathbb{C}^{NM\times r} where r=mrmr=\sum_{m}r_{m} and both 𝑼\boldsymbol{U} and 𝑸\boldsymbol{Q} are block diagonal. More particularly, 𝑼=diag{𝑼mform=1,,M}\boldsymbol{U}=\mathrm{diag}\{\boldsymbol{U}_{m}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}m=1,\dots,M\} with each 𝑼mN×rm\boldsymbol{U}_{m}\in\mathbb{C}^{N\times r_{m}} and 𝑼m𝑼m=𝑰\boldsymbol{U}_{m}^{*}\boldsymbol{U}_{m}=\boldsymbol{I}. Similarly, 𝑸=diag{𝑸mform=1,,M}\boldsymbol{Q}=\mathrm{diag}\{\boldsymbol{Q}_{m}\mspace{4.0mu}\mathrm{for}\mspace{4.0mu}m=1,\dots,M\} with each 𝑸mrm×rm\boldsymbol{Q}_{m}\in\mathbb{C}^{r_{m}\times r_{m}}. Then it follows that

SINRk=𝒉k𝑼𝑸(𝑸𝑼(ikK𝒉i𝒉ipi+σ2𝑰)𝑼𝑸)1𝑸𝑼𝒉k=𝒉k𝑼(𝑼(ikK𝒉i𝒉ipi+σ2𝑰)𝑼)1𝑼𝒉k\displaystyle\begin{gathered}\mathrm{SINR}_{k}=\\ \boldsymbol{{h}}_{k}^{*}\boldsymbol{U}\boldsymbol{Q}\bigg{(}\boldsymbol{Q}^{*}\boldsymbol{U}^{*}\Big{(}\sum\limits_{i\neq k}^{K}\boldsymbol{{h}}_{i}\boldsymbol{{h}}_{i}^{*}p_{i}+\sigma^{2}\boldsymbol{I}\Big{)}\boldsymbol{U}\boldsymbol{Q}\bigg{)}^{-1}\boldsymbol{Q}^{*}\boldsymbol{U}^{*}\boldsymbol{{h}}_{k}\\ =\boldsymbol{{h}}_{k}^{*}\boldsymbol{U}\bigg{(}\boldsymbol{U}^{*}\Big{(}\sum\limits_{i\neq k}^{K}\boldsymbol{{h}}_{i}\boldsymbol{{h}}_{i}^{*}p_{i}+\sigma^{2}\boldsymbol{I}\Big{)}\boldsymbol{U}\bigg{)}^{-1}\boldsymbol{U}^{*}\boldsymbol{{h}}_{k}\end{gathered} (95)

As a consequence, the UL SINR after MMSE reception under perfect CSI does not depend on 𝑸\boldsymbol{Q}. Therefore, any non-singular 𝑸\boldsymbol{Q} maximizes SINRk\mathrm{SINR}_{k}.

Appendix F Proof of Prop. 2

Under perfect CSI, the DL-SINR under RZF precoding is

SINRk\displaystyle\mathrm{SINR}_{k} =|𝒈k𝒗k|2pkikK|𝒈k𝒗i|2pi+σ2\displaystyle=\frac{|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}^{*}|^{2}p_{k}}{\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}|^{2}p_{i}+\sigma^{2}} (96)

According to [13], the term i1K|𝒈k𝒗i|2pi+σ2ikK|𝒈i𝒗k|2pi+σ2\sum\limits_{i\neq 1}^{K}|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{i}|^{2}p_{i}+\sigma^{2}\approx\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{i}^{*}\boldsymbol{v}_{k}|^{2}p_{i}+\sigma^{2}. As a consequence, SINRk\mathrm{SINR}_{k} can be approximately rewritten as

SINRk\displaystyle\mathrm{SINR}_{k} |𝒈k𝒗k|2pkikK|𝒈i𝒗k|2pi+σ2.\displaystyle\approx\frac{|\boldsymbol{g}_{k}^{*}\boldsymbol{v}_{k}^{*}|^{2}p_{k}}{\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{i}^{*}\boldsymbol{v}_{k}|^{2}p_{i}+\sigma^{2}}. (97)

Again, and for simplicity, we assume 𝑴(s)=𝟏\boldsymbol{{M}}^{(s)}=\boldsymbol{1}. Using a RZF precoding

𝑽\displaystyle\boldsymbol{V} =[𝑮𝑮+ρ𝑰]1𝑮𝚲.\displaystyle=\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{{G}}\boldsymbol{\Lambda}. (98)

where 𝚲=diag(λ1,,λK)\boldsymbol{\Lambda}=\mathrm{diag}(\lambda_{1},\dots,\lambda_{K}) such that 𝒗k2=1||\boldsymbol{v}_{k}||^{2}=1. Therefore

λk=1𝑾[𝑮𝑮+ρ𝑰]1𝒈k2.\displaystyle\lambda_{k}=\frac{1}{\sqrt{||\boldsymbol{W}\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{g}_{k}||^{2}}}. (99)

Substituting the previous expression in Eq. (97) we obtain

SINRk\displaystyle\mathrm{SINR}_{k} |𝒈k[𝑮𝑮+ρ𝑰]1𝒈k|2λk2pkikK|𝒈i[𝑮𝑮+ρ𝑰]1𝒈k|2pi+σ2\displaystyle\approx\frac{|\boldsymbol{g}_{k}^{*}\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{g}_{k}|^{2}\lambda_{k}^{2}p_{k}}{\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{i}^{*}\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{g}_{k}|^{2}p_{i}+\sigma^{2}} (100)
=|𝒈k[𝑮𝑮+ρ𝑰]1𝒈k|2pkikK|𝒈i[𝑮𝑮+ρ𝑰]1𝒈k|2λk2pi+σ2λk2\displaystyle=\frac{|\boldsymbol{g}_{k}^{*}\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{g}_{k}|^{2}p_{k}}{\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{i}^{*}\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{g}_{k}|^{2}\lambda_{k}^{2}p_{i}+\frac{\sigma^{2}}{\lambda_{k}^{2}}} (101)
=𝒉k𝛀𝒉k𝒉k𝛀𝒉kpk𝒉k𝛀(𝑯𝑷𝑯𝒉k𝒉kpk+σ2𝑰)𝛀𝒉k\displaystyle=\frac{\boldsymbol{h}_{k}^{*}\boldsymbol{\Omega}\boldsymbol{h}_{k}\boldsymbol{h}_{k}^{*}\boldsymbol{\Omega}\boldsymbol{h}_{k}p_{k}}{\boldsymbol{h}_{k}^{*}\boldsymbol{\Omega}\big{(}\boldsymbol{H}\boldsymbol{P}\boldsymbol{H}^{*}-\boldsymbol{h}_{k}\boldsymbol{h}_{k}^{*}p_{k}+\sigma^{2}\boldsymbol{I}\big{)}\boldsymbol{\Omega}\boldsymbol{h}_{k}} (102)

where, in the last step we define by 𝛀=𝑾[𝑮𝑮+ρ𝑰]1𝑾\boldsymbol{\Omega}=\boldsymbol{W}\big{[}\boldsymbol{{G}}\boldsymbol{{G}}^{*}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{W}^{*}. Now, by compact SVD 𝑾=𝑼𝑸NM×r\boldsymbol{W}=\boldsymbol{U}\boldsymbol{Q}\in\mathbb{C}^{NM\times r} where r=mrmr=\sum_{m}r_{m} and both 𝑼\boldsymbol{U} and 𝑸\boldsymbol{Q} are block diagonal. Let 𝐇=𝑼𝑯\boldsymbol{\bf H}=\boldsymbol{U}^{*}\boldsymbol{H} and 𝐡k=𝑼𝒉k\boldsymbol{\bf h}_{k}=\boldsymbol{U}^{*}\boldsymbol{h}_{k}. Then 𝒉k𝛀\boldsymbol{h}_{k}^{*}\boldsymbol{\Omega} can be written as

𝒉k𝛀\displaystyle\boldsymbol{h}_{k}^{*}\boldsymbol{\Omega} =𝒉k𝑾[𝑾𝑯𝑯𝑾+ρ𝑰]1𝑾\displaystyle=\boldsymbol{h}_{k}^{*}\boldsymbol{W}\big{[}\boldsymbol{W}^{*}\boldsymbol{{H}}\boldsymbol{{H}}^{*}\boldsymbol{W}+\rho\boldsymbol{I}\big{]}^{-1}\boldsymbol{W}^{*} (103)
=𝐡k[𝐇𝐇+ρ(𝑸𝑸)1]1𝑼.\displaystyle=\boldsymbol{\bf h}_{k}^{*}\big{[}\boldsymbol{\bf H}\boldsymbol{\bf H}^{*}+\rho(\boldsymbol{Q}\boldsymbol{Q}^{*})^{-1}\big{]}^{-1}\boldsymbol{U}^{*}. (104)

We define by 𝑩=[𝐇𝐇+ρ(𝑸𝑸)1]1\boldsymbol{B}=\big{[}\boldsymbol{\bf H}\boldsymbol{\bf H}^{*}+\rho(\boldsymbol{Q}\boldsymbol{Q}^{*})^{-1}\big{]}^{-1}. Operating on (19), we obtain that

SINRk\displaystyle\mathrm{SINR}_{k} 𝐡k𝑩𝐡k𝐡k𝑩𝐡kpk𝐡k𝑩(𝐇𝑷𝐇+σ2𝑰)𝑩𝐡k𝐡k𝑩𝐡k𝐡k𝑩𝐡kpk\displaystyle\approx\frac{\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\boldsymbol{\bf h}_{k}\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\boldsymbol{\bf h}_{k}p_{k}}{\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\big{(}\boldsymbol{\bf H}\boldsymbol{P}\boldsymbol{\bf H}^{*}+\sigma^{2}\boldsymbol{I}\big{)}\boldsymbol{B}\boldsymbol{\bf h}_{k}-\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\boldsymbol{\bf h}_{k}\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\boldsymbol{\bf h}_{k}p_{k}} (105)
=Kk1Kk\displaystyle=\frac{\mathrm{K}_{k}}{1-\mathrm{K}_{k}} (106)

where 0Kk10\leq\mathrm{K}_{k}\leq 1 with Kk\mathrm{K}_{k} defined as

Kk\displaystyle\mathrm{K}_{k} =𝐡k𝑩𝐡k𝐡k𝑩𝐡kpk𝐡k𝑩(𝐇𝑷𝐇+σ2𝑰)𝑩𝐡k\displaystyle=\frac{\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\boldsymbol{\bf h}_{k}\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\boldsymbol{\bf h}_{k}p_{k}}{\boldsymbol{\bf h}_{k}^{*}\boldsymbol{B}\big{(}\boldsymbol{\bf H}\boldsymbol{P}\boldsymbol{\bf H}^{*}+\sigma^{2}\boldsymbol{I}\big{)}\boldsymbol{B}\boldsymbol{\bf h}_{k}} (107)
=𝒃k𝐡k𝐡k𝒃kpk𝒃k(𝐇𝑷𝐇+σ2𝑰)𝒃k.\displaystyle=\frac{\boldsymbol{b}_{k}^{*}\boldsymbol{\bf h}_{k}\boldsymbol{\bf h}_{k}^{*}\boldsymbol{b}_{k}p_{k}}{\boldsymbol{b}_{k}^{*}\big{(}\boldsymbol{\bf H}\boldsymbol{P}\boldsymbol{\bf H}^{*}+\sigma^{2}\boldsymbol{I}\big{)}\boldsymbol{b}_{k}}. (108)

with 𝒃k=𝑩𝐡k\boldsymbol{b}_{k}=\boldsymbol{B}\boldsymbol{\bf h}_{k}. Note that (105) is an increasing function with respect to Kk\mathrm{K}_{k}. Thus, maximizing Kk\mathrm{K}_{k} is equivalent to maximizing the SINR. Since Kk\mathrm{K}_{k} follows a Rayleigh quotient, the optimal 𝒃k\boldsymbol{b}_{k} maximizing Kk\mathrm{K}_{k} is the eigenvector associated to the maximum eigenvalue of (𝐇𝑷𝐇+σ2𝑰)1𝐡k𝐡k\big{(}\boldsymbol{\bf H}\boldsymbol{P}\boldsymbol{\bf H}^{*}+\sigma^{2}\boldsymbol{I}\big{)}^{-1}\boldsymbol{\bf h}_{k}\boldsymbol{\bf h}_{k}^{*}. Given that the previous matrix is rank-ones, there is only one eigenvector. As a consequence:

𝒃k(max)=(𝐇𝑷𝐇+σ2𝑰)1𝐡k.\displaystyle\boldsymbol{b}_{k}^{(\mathrm{max})}=\big{(}\boldsymbol{\bf H}\boldsymbol{P}\boldsymbol{\bf H}^{*}+\sigma^{2}\boldsymbol{I}\big{)}^{-1}\boldsymbol{\bf h}_{k}. (109)

By definition, 𝒃k=𝑩𝐡k=[𝐇𝐇+ρ(𝑸𝑸)1]1𝐡k\boldsymbol{b}_{k}=\boldsymbol{B}\boldsymbol{\bf h}_{k}=\big{[}\boldsymbol{\bf H}\boldsymbol{\bf H}^{*}+\rho(\boldsymbol{Q}\boldsymbol{Q}^{*})^{-1}\big{]}^{-1}\boldsymbol{\bf h}_{k}. As a consequence, to obtain that 𝒃k=𝒃k(max)\boldsymbol{b}_{k}=\boldsymbol{b}_{k}^{(\mathrm{max})}, matrix 𝑸\boldsymbol{Q} has to satisfy 𝑸𝑸=𝑰\boldsymbol{Q}\boldsymbol{Q}^{*}=\boldsymbol{I}, i.e. being semi-unitary.

Appendix G Proof of Prop. 3

Let us assume a generic and nonsingular 𝑨m\boldsymbol{A}_{m}. Then, 𝑨m=𝑼1𝑫1𝑽1\boldsymbol{A}_{m}=\boldsymbol{U}_{1}\boldsymbol{D}_{1}\boldsymbol{V}_{1}^{*} with 𝑼1\boldsymbol{U}_{1} and 𝑽1\boldsymbol{V}_{1} being unitary. After adding 𝑨m\boldsymbol{A}_{m}, the output of the analog beamformer is

𝑾^m𝑨m=𝑾^m𝑼1𝑫1𝑽1\displaystyle\boldsymbol{\hat{W}}_{m}\boldsymbol{A}_{m}=\boldsymbol{\hat{W}}_{m}\boldsymbol{U}_{1}\boldsymbol{D}_{1}\boldsymbol{V}_{1}^{*} (110)

Now, let us add the compensation matrix 𝑭m\boldsymbol{F}_{m}. Recall that the compensation matrix tries to somehow compensate the matrix that is in front of it, as shown in Eq. (36). In this case, for a generic 𝑨m\boldsymbol{A}_{m}, the compensation matrix of 𝑾^m𝑨m\boldsymbol{\hat{W}}_{m}^{*}\boldsymbol{A}_{m} is 𝑭m=𝑽1𝑫11𝑽1\boldsymbol{F}_{m}=\boldsymbol{{V}}_{1}\boldsymbol{{D}}_{1}^{-1}\boldsymbol{{V}}_{1}^{*} following Eq. (36). Then, the product of the three matrices is:

𝑾^m𝑨m𝑭m=𝑾^m𝑼1𝑫1𝑽1𝑽1𝑫11𝑽1=𝑾^m𝑼1𝑽1\displaystyle\boldsymbol{\hat{W}}_{m}\boldsymbol{A}_{m}\boldsymbol{F}_{m}=\boldsymbol{\hat{W}}_{m}\boldsymbol{U}_{1}\boldsymbol{D}_{1}\boldsymbol{V}_{1}^{*}\boldsymbol{{V}}_{1}\boldsymbol{{D}}_{1}^{-1}\boldsymbol{{V}}_{1}^{*}=\boldsymbol{\hat{W}}_{m}\boldsymbol{U}_{1}\boldsymbol{{V}}_{1}^{*} (111)

Note that since both 𝑼1\boldsymbol{{U}}_{1} and 𝑽1\boldsymbol{{V}}_{1} are unitary, we are not modifying the optimality of the solution. As a consequence, 𝑾^m𝑨m𝑭m\boldsymbol{\hat{W}}_{m}\boldsymbol{A}_{m}\boldsymbol{F}_{m} is also an unconstrained combiner, as the initial one 𝑾^m\boldsymbol{\hat{W}}_{m}, that does not change the output power.

Appendix H Proof of Prop. 4

For simplicity, let us assume 𝑴(s)=𝟏\boldsymbol{{M}}^{(s)}=\boldsymbol{1}. Under perfect CSI and maximum ratio combining (MRC), i.e. 𝒗k=𝒈k\boldsymbol{v}_{k}=\boldsymbol{g}_{k} for the unconstrained solution of 𝑾\boldsymbol{W}, the SINR in (112) becomes

SINRk=|𝒈k𝒈k|2pkikK|𝒈k𝒈i|2pi+σ2𝒈k𝒈k.\displaystyle\mathrm{SINR}_{k}=\frac{|\boldsymbol{g}_{k}^{*}\boldsymbol{{g}}_{k}|^{2}p_{k}}{\sum\limits_{i\neq k}^{K}|\boldsymbol{g}_{k}^{*}\boldsymbol{{g}}_{i}|^{2}p_{i}+\sigma^{2}\boldsymbol{g}_{k}^{*}\boldsymbol{g}_{k}}. (112)

For MM\to\infty at a faster peace than KK, 𝒈k𝒈i0\boldsymbol{g}_{k}^{*}\boldsymbol{{g}}_{i}\to 0 almost surely. As a consequence, the asymptotic SINR achieved by UE kk is

SINR¯k=pkσ2m=1Mtr[𝑾m𝑹m,k𝑾m].\displaystyle\overline{\mathrm{SINR}}_{k}=\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\mathrm{tr}\Big{[}\boldsymbol{W}_{m}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}\Big{]}. (113)

Let {λm,k(1),,λm,k(N)}\{\lambda_{m,k}^{(1)},\dots,\lambda_{m,k}^{(N)}\} be the eigenvalues of 𝑹m,k\boldsymbol{R}_{m,k} sorted in descending order. Recall that 𝑾m\boldsymbol{W}_{m} is semi-unitary. Therefore we can construct a unitary 𝑾m(u)=[𝑾m𝑾m,0]\boldsymbol{W}_{m}^{(u)}=[\boldsymbol{W}_{m}\mspace{4.0mu}\boldsymbol{W}_{m,0}] such that 𝑾m,0𝑾m,0=𝑰\boldsymbol{W}_{m,0}^{*}\boldsymbol{W}_{m,0}=\boldsymbol{I} and 𝑾m𝑾m,0=𝟎\boldsymbol{W}_{m}^{*}\boldsymbol{W}_{m,0}=\boldsymbol{0}. Provided that 𝑾m(u)\boldsymbol{W}_{m}^{(u)} is unitary, 𝑾m(u)𝑹m,k𝑾m(u)\boldsymbol{W}_{m}^{(u)\mspace{4.0mu}*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}^{(u)} has the same eigenvalues as 𝑹m,k\boldsymbol{R}_{m,k} and can be written as

𝑾m(u)𝑹m,k𝑾m(u)\displaystyle\boldsymbol{W}_{m}^{(u)\mspace{4.0mu}*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}^{(u)} =\displaystyle= (114)
[𝑾m𝑹m,k𝑾m𝑾m𝑹m,k𝑾m,0𝑾m,0𝑹m,k𝑾m𝑾m,0𝑹m,k𝑾m,0]\displaystyle\left[{\begin{array}[]{cc}\boldsymbol{W}_{m}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}&\boldsymbol{W}_{m}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m,0}\\ \boldsymbol{W}_{m,0}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m}^{*}&\boldsymbol{W}_{m,0}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m,0}\\ \end{array}}\right] (117)

Denote the eigenvalues of 𝑾m𝑹m,k𝑾m\boldsymbol{W}_{m}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m} by μm,k(1)μm,k(2)μm,k(L)\mu_{m,k}^{(1)}\geq\mu_{m,k}^{(2)}\geq\dots\geq\mu_{m,k}^{(L)}. For a fully digital receiver, the asymptotic SINR is

SINR¯kFD=pkσ2m=1Mtr[𝑹m,k].\displaystyle\overline{\mathrm{SINR}}_{k}^{\mathrm{FD}}=\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\mathrm{tr}\Big{[}\boldsymbol{R}_{m,k}\Big{]}. (118)

By the Cauchy’s interlacing theorem, the eigenvalues of the leading principal submatrix 𝑾m𝑹m,k𝑾m\boldsymbol{W}_{m}^{*}\boldsymbol{R}_{m,k}\boldsymbol{W}_{m} satisfy

λm,k(i)μm,k(i)λm,k(NL+i)fori=1,,L.\displaystyle\lambda_{m,k}^{(i)}\geq\mu_{m,k}^{(i)}\geq\lambda_{m,k}^{(N-L+i)}\mspace{10.0mu}\mathrm{for}\mspace{4.0mu}i=1,\dots,L. (119)

As a consequence, two bounds can be derived. A lower bound for the gap between hybrid and full digital occurs when μm,k(i)=λm,k(i)\mu_{m,k}^{(i)}=\lambda_{m,k}^{(i)}. As a consequence, such a gap, denoted by δLB\delta_{\mathrm{LB}} is:

δ\displaystyle\delta =SINR¯kFDSINR¯k\displaystyle=\overline{\mathrm{SINR}}_{k}^{\mathrm{FD}}-\overline{\mathrm{SINR}}_{k} (120)
=pkσ2m=1M(n=1Nλm,k(n)n=1Lμm,k(n))\displaystyle=\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\bigg{(}\sum\limits_{n=1}^{N}\lambda_{m,k}^{(n)}-\sum\limits_{n=1}^{L}\mu_{m,k}^{(n)}\bigg{)} (121)
pkσ2m=1Mn=L+1Nλm,k(n)\displaystyle\geq\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\sum\limits_{n=L+1}^{N}\lambda_{m,k}^{(n)} (122)
=δLB.\displaystyle=\delta_{\mathrm{LB}}. (123)

To the contrary, the gap is maximum when μm,k(i)=λm,k(NM+i)\mu_{m,k}^{(i)}=\lambda_{m,k}^{(N-M+i)}. As a consequence, an upper bound on the gap between hybrid and full digital can be derived

δ\displaystyle\delta =SINR¯kFDSINR¯k\displaystyle=\overline{\mathrm{SINR}}_{k}^{\mathrm{FD}}-\overline{\mathrm{SINR}}_{k} (124)
=pkσ2m=1M(n=1Nλm,k(n)n=1Lμm,k(n))\displaystyle=\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\bigg{(}\sum\limits_{n=1}^{N}\lambda_{m,k}^{(n)}-\sum\limits_{n=1}^{L}\mu_{m,k}^{(n)}\bigg{)} (125)
pkσ2m=1M(n=1L(λm,k(n)λm,k(NL+n))+n=L+1Nλm,k(n))\displaystyle\leq\frac{p_{k}}{\sigma^{2}}\sum\limits_{m=1}^{M}\bigg{(}\sum\limits_{n=1}^{L}(\lambda_{m,k}^{(n)}-\lambda_{m,k}^{(N-L+n)})+\sum\limits_{n=L+1}^{N}\lambda_{m,k}^{(n)}\bigg{)} (126)
=δUB\displaystyle=\delta_{\mathrm{UB}} (127)