This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Small-time global approximate controllability for incompressible MHD with coupled Navier slip boundary conditions

Manuel Rissel School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China; [email protected]    Ya-Guang Wang School of Mathematical Sciences, Center for Applied Mathematics, MOE-LSC, CMA-Shanghai and SHL-MAC, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China; [email protected]
Abstract

We study the small-time global approximate controllability for incompressible magnetohydrodynamic (MHD) flows in smoothly bounded two- or three-dimensional domains. The controls act on arbitrary nonempty open portions of each connected boundary component, while linearly coupled Navier slip-with-friction conditions are imposed along the uncontrolled parts of the boundary. Some choices for the friction coefficients give rise to interacting velocity and magnetic field boundary layers. We obtain sufficient dissipation properties of these layers by a detailed analysis of the corresponding asymptotic expansions. For certain friction coefficients, or if the obtained controls are not compatible with the induction equation, an additional pressure-like term appears. We show that such a term does not exist for problems defined in planar simply-connected domains and various choices of Navier slip-with-friction boundary conditions.


Keywords and phrases: magnetohydrodynamics; global approximate controllability; Navier slip-with-friction boundary conditions; boundary layers

AMS Mathematical Subject classification (2020): 93B05; 93C20; 35Q35; 76D55

1 Introduction

Let ΩN\Omega\subset\mathbb{R}^{N} be a bounded domain of dimension N{2,3}N\in\{2,3\} with ΓΩ\Gamma\coloneqq\partial\Omega being smooth and 𝒏\bm{n} denoting the outward unit normal vector to Ω\Omega along Γ\Gamma. The goal of this article is to steer incompressible magnetohydrodynamic (MHD) flows from a prescribed initial state approximately towards a desired terminal state, without placing restrictions on the distance between these states or on the control time. This is accomplished by acting on the system via boundary controls supported in a possibly small subset ΓcΓ\Gamma_{\operatorname{c}}\subset\Gamma, the interior of which is assumed to intersect non-trivially with all connected components of Γ\Gamma.

When it comes to nonlinear evolution equations with controls localized in an arbitrary open subset of the boundary or an interior sub-domain, establishing the global approximate controllability usually constitutes a challenging task and few methods for tackling such questions are available. In the context of fluid dynamics, but not limited to, one successful approach is known as the return method, which has first been introduced by Coron in [Coron1992] for the stabilization of certain mechanical systems and shall also be employed here. A comprehensive introduction to the return method and its applications to nonlinear partial differential equations may be found in [Coron2007, Part 2, Chapter 6]. In contrast to the Navier–Stokes equations, for which the global approximate controllability has been actively investigated in the past, nothing seems to be known regarding the global approximate controllability of viscous MHD in the presence of physical boundaries. This article therefore aims to initiate further research in this direction. A broader motivation of this topic is provided by a well-known open problem due to J.-L. Lions, asking for the global approximate controllability of the Navier–Stokes equations with the no-slip condition (cf. [LionsJL1991] and also [CoronMarbachSueur2020, CoronMarbachSueurZhang2019] for recent progress).

In this article, we focus on incompressible flows of viscosity ν1>0\nu_{1}>0 and resistivity ν2>0\nu_{2}>0, for which the velocity 𝒖:Ω×(0,T)N\bm{u}\colon\Omega\times(0,T)\longrightarrow\mathbb{R}^{N}, the magnetic field 𝑩:Ω×(0,T)N\bm{B}\colon\Omega\times(0,T)\longrightarrow\mathbb{R}^{N}, and the total pressure p:Ω×(0,T)p\colon\Omega\times(0,T)\longrightarrow\mathbb{R} are described, until a given terminal time Tctrl>0T_{\operatorname{ctrl}}>0, as a solution to the initial boundary value problem

{t𝒖ν1Δ𝒖+(𝒖)𝒖μ(𝑩)𝑩+p=𝟎 in Ω×(0,Tctrl),t𝑩ν2Δ𝑩+(𝒖)𝑩(𝑩)𝒖=𝟎 in Ω×(0,Tctrl),𝒖=𝑩=0 in Ω×(0,Tctrl),𝒖𝒏=𝑩𝒏=0 on (ΓΓc)×(0,Tctrl),𝓝1(𝒖,𝑩)=𝓝2(𝒖,𝑩)=𝟎 on (ΓΓc)×(0,Tctrl),𝒖(,0)=𝒖0,𝑩(,0)=𝑩0 in Ω,\begin{cases}\partial_{t}\bm{u}-\nu_{1}\Delta\bm{u}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{u}-\mu(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{B}+\bm{\mathrm{\nabla}}p=\bm{0}&\mbox{ in }\Omega\times(0,T_{\operatorname{ctrl}}),\\ \partial_{t}\bm{B}-\nu_{2}\Delta\bm{B}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{B}-(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{u}=\bm{0}&\mbox{ in }\Omega\times(0,T_{\operatorname{ctrl}}),\\ \bm{\mathrm{\nabla}}\cdot\bm{u}=\bm{\mathrm{\nabla}}\cdot\bm{B}=0&\mbox{ in }\Omega\times(0,T_{\operatorname{ctrl}}),\\ \bm{u}\cdot\bm{n}=\bm{B}\cdot\bm{n}=0&\mbox{ on }(\Gamma\setminus\Gamma_{\operatorname{c}})\times(0,T_{\operatorname{ctrl}}),\\ \bm{\mathcal{N}}_{1}(\bm{u},\bm{B})=\bm{\mathcal{N}}_{2}(\bm{u},\bm{B})=\bm{0}&\mbox{ on }(\Gamma\setminus\Gamma_{\operatorname{c}})\times(0,T_{\operatorname{ctrl}}),\\ \bm{u}(\cdot,0)=\bm{u}_{0},\,\bm{B}(\cdot,0)=\bm{B}_{0}&\mbox{ in }\Omega,\end{cases} (1.1)

while the underlying state space, for both the velocity and the magnetic field, is taken as

Lc2(Ω){𝒇L2(Ω;N)|𝒇=0 in Ω,𝒇𝒏=0 on ΓΓc}.{\rm L}^{2}_{\operatorname{c}}(\Omega)\coloneqq\left\{\bm{f}\in{\rm L}^{2}(\Omega;\mathbb{R}^{N})\,\Big{|}\,\bm{\mathrm{\nabla}}\cdot\bm{f}=0\mbox{ in }\Omega,\bm{f}\cdot\bm{n}=0\mbox{ on }\Gamma\setminus\Gamma_{\operatorname{c}}\right\}.

In (1.1), the vector fields 𝒖0Lc2(Ω)\bm{u}_{0}\in{\rm L}^{2}_{\operatorname{c}}(\Omega) and 𝑩0Lc2(Ω)\bm{B}_{0}\in{\rm L}^{2}_{\operatorname{c}}(\Omega) represent the given initial data. The parameter μ>0\mu>0 quantifies the magnetic permeability. As explained in 1.7 below, the controls are sought in an implicit form and, therefore, no boundary conditions are prescribed along the controlled boundary Γc\Gamma_{\operatorname{c}}. Before introducing the general boundary operators 𝓝1\bm{\mathcal{N}}_{1} and 𝓝2\bm{\mathcal{N}}_{2} acting at ΓΓc\Gamma\setminus\Gamma_{\operatorname{c}}, it is emphasized that they particularly include all boundary conditions of the form

(×𝒖)×𝒏=[𝑴𝒖]tan,(×𝑩)×𝒏=𝟎,𝒖𝒏=𝑩𝒏=0,(\bm{\mathrm{\nabla}}\times{\bm{u}})\times\bm{n}=[\bm{M}\bm{u}]_{\operatorname{tan}},\quad(\bm{\mathrm{\nabla}}\times{\bm{B}})\times\bm{n}=\bm{0},\quad\bm{u}\cdot\bm{n}=\bm{B}\cdot\bm{n}=0, (1.2)

with symmetric 𝑴C(ΓΓc;N×N)\bm{M}\in{\rm C}^{\infty}(\Gamma\setminus\Gamma_{\operatorname{c}};\mathbb{R}^{N\times N}) and []tan[\cdot]_{\operatorname{tan}} denoting the tangential part.

Remark 1.1.

The common three-dimensional notations for the cross product and curl operator are employed whenever N=3N=3 is possible. If considering the case N=2N=2, one has to replace ×𝒉\bm{\mathrm{\nabla}}\times{\bm{h}} by 𝒉1h22h1\bm{\mathrm{\nabla}}\wedge{\bm{h}}\coloneqq\partial_{1}h_{2}-\partial_{2}h_{1}, while the curl of a scalar function hh refers to h[2h,1h]\bm{\mathrm{\nabla}}^{\perp}h\coloneqq[\partial_{2}h,-\partial_{1}h]^{\top}. Moreover, the cross product 𝒉×𝒈\bm{h}\times\bm{g} in two-dimensions becomes 𝒉𝒈h1g2g2h1\bm{h}\wedge\bm{g}\coloneqq h_{1}g_{2}-g_{2}h_{1}. Consequentially, for planar configurations, some objects denoted here as vectors might be scalars and (×𝒉)×𝒏(\bm{\mathrm{\nabla}}\times{\bm{h}})\times\bm{n} means (𝒉)[n2,n1](\bm{\mathrm{\nabla}}\wedge{\bm{h}})[n_{2},-n_{1}]^{\top}.

The Navier slip-with-friction boundary conditions.

Let 𝒟N\mathcal{D}\subset\mathbb{R}^{N} represent any smoothly bounded domain with outward unit normal field 𝒏𝒟:𝒟N\bm{n}_{\mathcal{D}}\colon\partial\mathcal{D}\longrightarrow\mathbb{R}^{N}. The tangent space of 𝒟\partial\mathcal{D} at a point 𝒙\bm{x} is denoted by T𝒙{\rm T}_{\bm{x}}. Given any 𝒙𝒟\bm{x}\in\partial\mathcal{D}, we introduce the Weingarten map (or shape operator)

𝑾𝒟(𝒙):T𝒙T𝒙,𝝉𝑾𝒟(𝒙)𝝉𝝉𝒏𝒟.\bm{W}_{\mathcal{D}}(\bm{x})\colon{\rm T}_{\bm{x}}\longrightarrow{\rm T}_{\bm{x}},\quad\bm{\tau}\longmapsto\bm{W}_{\mathcal{D}}(\bm{x})\bm{\tau}\coloneqq\bm{\mathrm{\nabla}}_{\bm{\tau}}\bm{n}_{\mathcal{D}}.

Then, for 𝒉1\bm{h}_{1}, 𝒉2:Ω¯N\bm{h}_{2}\colon\overline{\Omega}\to\mathbb{R}^{N} and friction coefficient matrices

𝑳1,𝑳2,𝑴1,𝑴2C(ΓΓc;N×N),\bm{L}_{1},\bm{L}_{2},\bm{M}_{1},\bm{M}_{2}\in{\rm C}^{\infty}(\Gamma\setminus\Gamma_{\operatorname{c}};\mathbb{R}^{N\times N}), (1.3)

the linearly coupled Navier slip-with-friction operators in (1.1) are defined as

𝓝i(𝒉1,𝒉2)[𝐃(𝒉i)𝒏(𝒙)+𝑾Ω𝒉i+𝑴i(𝒙)𝒉1+𝑳i𝒉2]tan,i=1,2,\begin{gathered}\bm{\mathcal{N}}_{i}(\bm{h}_{1},\bm{h}_{2})\coloneqq\left[\bm{\mathrm{D}}(\bm{h}_{i})\bm{n}(\bm{x})+\bm{W}_{\Omega}\bm{h}_{i}+\bm{M}_{i}(\bm{x})\bm{h}_{1}+\bm{L}_{i}\bm{h}_{2}\right]_{\operatorname{tan}},\quad i=1,2,\end{gathered} (1.4)

where the tangential part and the symmetrized gradient are respectively denoted by

[𝒉]tan𝒉(𝒉𝒏𝒟)𝒏𝒟,𝐃(𝒉)12[𝒉+(𝒉)].[\bm{h}]_{\operatorname{tan}}\coloneqq\bm{h}-\left(\bm{h}\cdot\bm{n}_{\mathcal{D}}\right)\bm{n}_{\mathcal{D}},\quad\bm{\mathrm{D}}(\bm{h})\coloneqq\frac{1}{2}[\bm{\mathrm{\nabla}}\bm{h}+(\bm{\mathrm{\nabla}}\bm{h})^{\top}].

The Weingarten map 𝑾𝒟\bm{W}_{\mathcal{D}} is smooth, cf. [CoronMarbachSueur2020, Lemma 1] and [ClopeauMikelicRobert1998, GieKelliher2012], and when 𝒉\bm{h} is tangential to 𝒟\partial\mathcal{D} one has the relation

[𝐃(𝒉(𝒙,t))𝒏𝒟(𝒙)+𝑾𝒟(𝒙)𝒉(𝒙,t)]tan=12(×𝒉(𝒙,t))×𝒏𝒟(𝒙).[\bm{\mathrm{D}}(\bm{h}(\bm{x},t))\bm{n}_{\mathcal{D}}(\bm{x})+\bm{W}_{\mathcal{D}}(\bm{x})\,\bm{h}(\bm{x},t)]_{\operatorname{tan}}=-\frac{1}{2}\left(\bm{\mathrm{\nabla}}\times\bm{h}(\bm{x},t)\right)\times\bm{n}_{\mathcal{D}}(\bm{x}). (1.5)

As a consequence of (1.5), the boundary conditions prescribed in (1.1) along (ΓΓc)×(0,Tctrl)(\Gamma\setminus\Gamma_{\operatorname{c}})\times(0,T_{\operatorname{ctrl}}) are equivalent to

(×𝒖)×𝒏\displaystyle(\bm{\mathrm{\nabla}}\times{\bm{u}})\times\bm{n} =𝝆1(𝒖,𝑩)2[𝑴1(𝒙)𝒖+𝑳1(𝒙)𝑩]tan,\displaystyle=\bm{\rho}_{1}(\bm{u},\bm{B})\coloneqq 2\left[\bm{M}_{1}(\bm{x})\bm{u}+\bm{L}_{1}(\bm{x})\bm{B}\right]_{\operatorname{tan}}, 𝒖𝒏=0,\displaystyle\bm{u}\cdot\bm{n}=0, (1.6)
(×𝑩)×𝒏\displaystyle(\bm{\mathrm{\nabla}}\times{\bm{B}})\times\bm{n} =𝝆2(𝒖,𝑩)2[𝑴2(𝒙)𝒖+𝑳2(𝒙)𝑩]tan,\displaystyle=\bm{\rho}_{2}(\bm{u},\bm{B})\coloneqq 2\left[\bm{M}_{2}(\bm{x})\bm{u}+\bm{L}_{2}(\bm{x})\bm{B}\right]_{\operatorname{tan}}, 𝑩𝒏=0.\displaystyle\bm{B}\cdot\bm{n}=0.

Our main motivation is to treat simply-connected domains and the boundary conditions (1.2). This already constitutes a general setup, which has not been studied in terms of controllability but recently attracted increased attention in view of inviscid limit problems. However, the constructions of the controls naturally extend, at least in parts, also to the case of more general domains and allow the prescription of boundary conditions of the form (1.6). Attention shall be paid to situations where 𝑴2𝟎\bm{M}_{2}\neq\bm{0} or 𝑳2𝟎\bm{L}_{2}\neq\bm{0} holds, since such configurations lead to interesting challenges that are not fully resolved here.

The Navier slip-with-friction boundary conditions, as already proposed by Navier [Navier1823] two centuries ago, are relevant to a range of applications, thus have been studied in the context of the Navier–Stokes equations from various points of view. For instance, in the absence of magnetic fields, inviscid limit problems are treated in [IftimieSueur2011, ClopeauMikelicRobert1998, Kelliher2006, XiaoXin2013], regularity questions are investigated in [AmrouchePenelSeloula2013, AlBabaAmroucheEscobedo2017, Shibata2007, Shimada2007, AlBaba2019] and controllability problems are tackled in [CoronMarbachSueur2020, Guerrero2006, LionsZuazua1998, Coron1996]. Concerning the situation of incompressible viscous MHD, several singular limit problems involving uncoupled Navier slip-with-friction boundary conditions are addressed in [GuoWang2016, XiaoXinWu2009, MengWang2016]; comparing with these references, the here employed boundary conditions are more general in that the shear stresses of the velocity and the magnetic field at the boundary are linearly coupled with tangential velocity and magnetic field contributions. While (1.6) includes the classical Navier slip condition for the velocity, it can capture also more complex interactions in the presence of magnetic fields.

From the global approximate controllability point of view, several difficulties appear however when the magnetic shear stress is coupled with the tangential velocity: a magnetic field boundary layer potentially enters the analysis of Section 3. This in turn challenges the construction of magnetic field boundary controls without generating a pressure gradient term or additional control forces in the induction equation.

1.1 Main results

The statements of the main theorems anticipate the notion of weak controlled trajectories, as introduced later in Section 2.4. Briefly speaking, a weak controlled trajectory will be defined as the restriction to Ω\Omega of a Leray–Hopf weak solution to a version of the problem (1.1), posed in an enlarged domain and driven by interior controls.

Theorem 1.2.

Assume that Ω2\Omega\subset\mathbb{R}^{2} is simply-connected, that 𝐌2=𝐋2=𝟎\bm{M}_{2}=\bm{L}_{2}=\bm{0}, and that ΓcΓ\Gamma_{\operatorname{c}}\subset\Gamma is connected. Then, for arbitrarily fixed Tctrl>0T_{\operatorname{ctrl}}>0, δ>0\delta>0, and 𝐮0,𝐁0,𝐮1,𝐁1Lc2(Ω)\bm{u}_{0},\bm{B}_{0},\bm{u}_{1},\bm{B}_{1}\in{\rm L}^{2}_{\operatorname{c}}(\Omega), there exists at least one weak controlled trajectory

(𝒖,𝑩)[Cw0([0,Tctrl];Lc2(Ω))L2((0,Tctrl);H1(Ω))]2(\bm{u},\bm{B})\in\left[{\rm C}^{0}_{w}([0,T_{\operatorname{ctrl}}];{\rm L}^{2}_{\operatorname{c}}(\Omega))\cap{\rm L}^{2}((0,T_{\operatorname{ctrl}});{\rm H}^{1}(\Omega))\right]^{2}

to the MHD equations (1.1) which obeys the terminal condition

𝒖(,Tctrl)𝒖1L2(Ω)+𝑩(,Tctrl)𝑩1L2(Ω)<δ.\|\bm{u}(\cdot,T_{\operatorname{ctrl}})-\bm{u}_{1}\|_{{\rm L}^{2}(\Omega)}+\|\bm{B}(\cdot,T_{\operatorname{ctrl}})-\bm{B}_{1}\|_{{\rm L}^{2}(\Omega)}<\delta. (1.7)
Ω\OmegaΓc\Gamma_{\operatorname{c}}
Figure 1: Sketch of a smoothly bounded simply-connected domain Ω2\Omega\subset\mathbb{R}^{2} with connected controlled boundary Γc\Gamma_{\operatorname{c}}, which is indicated by a dashed line.
Remark 1.3.

Under additional assumptions on the normal traces at Γc\Gamma_{\operatorname{c}} of the initial data in 1.2, one can choose Γc\Gamma_{\operatorname{c}} as any open subset of Γ\Gamma, see 3.7.

The next theorem holds for 𝑳1,𝑳2,𝑴1,𝑴2C(ΓΓc;N×N)\bm{L}_{1},\bm{L}_{2},\bm{M}_{1},\bm{M}_{2}\in{\rm C}^{\infty}(\Gamma\setminus\Gamma_{\operatorname{c}};\mathbb{R}^{N\times N}), but it involves a pressure-like unknown qq and a control 𝜻\bm{\zeta}, which however satisfies 𝜻𝟎\bm{\zeta}\equiv\bm{0} when 𝑴2=𝟎\bm{M}_{2}=\bm{0}. When N=3N=3, we need additional assumptions, since, to our knowledge, there is currently no literature providing L((0,T);H1()){\rm L}^{\infty}((0,T);{\rm H}^{1}(\mathcal{E})) and L((0,T);H2()){\rm L}^{\infty}((0,T);{\rm H}^{2}(\mathcal{E})) strong solutions for MHD under general (non-symmetric) Navier slip-with-friction conditions; this prevents us to prove 4.1 in the general case. Thus, when N=3N=3, we introduce the following class of the initial data.

The class 𝐒\mathbf{S}.

When 𝑴1\bm{M}_{1}, 𝑳2\bm{L}_{2} are symmetric, 𝑳1=𝑴2=𝟎\bm{L}_{1}=\bm{M}_{2}=\bm{0}, and the domain Ω3\Omega\subset\mathbb{R}^{3} is simply-connected, then 𝐒=Lc2(Ω)2\mathbf{S}={\rm L}^{2}_{\operatorname{c}}(\Omega)^{2}. Otherwise, the class 𝐒\mathbf{S} consists of all (𝒖0,𝑩0)Lc2(Ω)2(\bm{u}_{0},\bm{B}_{0})\in{\rm L}^{2}_{\operatorname{c}}(\Omega)^{2} which are restrictions of divergence-free vector fields 𝒖~0,𝑩~0H3()\widetilde{\bm{u}}_{0},\widetilde{\bm{B}}_{0}\in{\rm H}^{3}(\mathcal{E}) that are tangential to \partial\mathcal{E}, where 3\mathcal{E}\subset\mathbb{R}^{3} is a smoothly bounded domain extension for Ω3\Omega\subset\mathbb{R}^{3} of the type introduced in Section 2.1.

Example 1.4.

All states 𝒖0,𝑩0Lc2(Ω)H3(Ω)\bm{u}_{0},\bm{B}_{0}\in{\rm L}^{2}_{\operatorname{c}}(\Omega)\cap{\rm H}^{3}(\Omega) which vanish at Γc\Gamma_{\operatorname{c}} and have vanishing normal derivatives up to the second order at Γc\Gamma_{\operatorname{c}} belong to 𝐒\mathbf{S}.

Theorem 1.5.

For any given time Tctrl>0T_{\operatorname{ctrl}}>0, fixed initial states 𝐮0,𝐁0Lc2(Ω)\bm{u}_{0},\bm{B}_{0}\in{\rm L}^{2}_{\operatorname{c}}(\Omega), belonging to the class 𝐒\mathbf{S} when N=3N=3, target states 𝐮1,𝐁1Lc2(Ω)\bm{u}_{1},\bm{B}_{1}\in{\rm L}^{2}_{\operatorname{c}}(\Omega), and δ>0\delta>0, there exists a smooth function 𝛇:Ω¯×[0,Tctrl]N\bm{\zeta}\colon\overline{\Omega}\times[0,T_{\operatorname{ctrl}}]\longrightarrow\mathbb{R}^{N}, with 𝛇𝟎\bm{\zeta}\equiv\bm{0} when 𝐌2=𝟎\bm{M}_{2}=\bm{0}, such that the MHD system

{t𝒖ν1Δ𝒖+(𝒖)𝒖μ(𝑩)𝑩+p=𝟎 in Ω×(0,Tctrl),t𝑩ν2Δ𝑩+(𝒖)𝑩(𝑩)𝒖=q+𝜻 in Ω×(0,Tctrl),𝒖=𝑩=0 in Ω×(0,Tctrl),𝒖𝒏=𝑩𝒏=0 on (ΓΓc)×(0,Tctrl),𝓝1(𝒖,𝑩)=𝓝2(𝒖,𝑩)=𝟎 on (ΓΓc)×(0,Tctrl),𝒖(,0)=𝒖0,𝑩(,0)=𝑩0 in Ω\begin{cases}\partial_{t}\bm{u}-\nu_{1}\Delta\bm{u}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{u}-\mu(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{B}+\bm{\mathrm{\nabla}}p=\bm{0}&\mbox{ in }\Omega\times(0,T_{\operatorname{ctrl}}),\\ \partial_{t}\bm{B}-\nu_{2}\Delta\bm{B}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{B}-(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{u}=\bm{\mathrm{\nabla}}q+\bm{\zeta}&\mbox{ in }\Omega\times(0,T_{\operatorname{ctrl}}),\\ \bm{\mathrm{\nabla}}\cdot\bm{u}=\bm{\mathrm{\nabla}}\cdot\bm{B}=0&\mbox{ in }\Omega\times(0,T_{\operatorname{ctrl}}),\\ \bm{u}\cdot\bm{n}=\bm{B}\cdot\bm{n}=0&\mbox{ on }(\Gamma\setminus\Gamma_{\operatorname{c}})\times(0,T_{\operatorname{ctrl}}),\\ \bm{\mathcal{N}}_{1}(\bm{u},\bm{B})=\bm{\mathcal{N}}_{2}(\bm{u},\bm{B})=\bm{0}&\mbox{ on }(\Gamma\setminus\Gamma_{\operatorname{c}})\times(0,T_{\operatorname{ctrl}}),\\ \bm{u}(\cdot,0)=\bm{u}_{0},\,\bm{B}(\cdot,0)=\bm{B}_{0}&\mbox{ in }\Omega\end{cases} (1.8)

admits at least one weak controlled trajectory

(𝒖,𝑩)[Cw0([0,Tctrl];Lc2(Ω))L2((0,Tctrl);H1(Ω))]2(\bm{u},\bm{B})\in\left[{\rm C}^{0}_{w}([0,T_{\operatorname{ctrl}}];{\rm L}^{2}_{\operatorname{c}}(\Omega))\cap{\rm L}^{2}((0,T_{\operatorname{ctrl}});{\rm H}^{1}(\Omega))\right]^{2}

obeying the terminal condition

𝒖(,Tctrl)𝒖1L2(Ω)+𝑩(,Tctrl)𝑩1L2(Ω)<δ.\|\bm{u}(\cdot,T_{\operatorname{ctrl}})-\bm{u}_{1}\|_{{\rm L}^{2}(\Omega)}+\|\bm{B}(\cdot,T_{\operatorname{ctrl}})-\bm{B}_{1}\|_{{\rm L}^{2}(\Omega)}<\delta. (1.9)
Remark 1.6.

When 𝑴2𝟎\bm{M}_{2}\neq\bm{0}, the control 𝜻\bm{\zeta} may enter (1.8) if the magnetic field boundary layer described in Section 3.4.1 is not divergence-free. In order to illustrate that this statement is not sharp, we consider, as in Figure 2(b), a cylinder Ω(a,b)×D\Omega\coloneqq(a,b)\times D, for <a<b<+-\infty~{}<~{}a~{}<~{}b~{}<~{}+\infty and a smoothly bounded connected open set D2D\subset\mathbb{R}^{2}, with controlled part Γc{a,b}×D\Gamma_{\operatorname{c}}\coloneqq\{a,b\}\times D. In this case, 1.5 is valid for all 𝑳1,𝑳2,𝑴1,𝑴2C(ΓΓc;N×N)\bm{L}_{1},\bm{L}_{2},\bm{M}_{1},\bm{M}_{2}\in{\rm C}^{\infty}(\Gamma\setminus\Gamma_{\operatorname{c}};\mathbb{R}^{N\times N}) with 𝜻=𝟎\bm{\zeta}=\bm{0}. This will be illustrated by means of 3.4 combined with the discussion in Section 3.4.2.

(a) A general multiply-connected domain as considered in 1.5. The sketch is two-dimensional only for simplicity.
(b) A multiply-connected cylindrical domain as in 1.6, with controls at the base faces. In this case, one can take 𝜻=𝟎\bm{\zeta}=\bm{0}.
Figure 2: Two exemplary domains that are covered by 1.5.
Remark 1.7.

The systems 1.1 and 1.8 are under-determined since no boundary condition is prescribed along Γc\Gamma_{\operatorname{c}}. Once a weak controlled trajectory is found via Theorem 1.2 or 1.5, one obtains explicit boundary controls by taking traces along Γc\Gamma_{\operatorname{c}}, see also [Coron1996, CoronMarbachSueur2020, Fernandez-CaraSantosSouza2016, Glass2000].

Remark 1.8.

Since the proofs for Theorems 1.2 and 1.5 will be carried out in a certain extended domain, one can allow the interior of Γc\Gamma_{\operatorname{c}} to be part of a Lipschitz continuous Jordan curve. Moreover, the controlled boundary Γc\Gamma_{\operatorname{c}} is allowed to meet ΓΓc\Gamma\setminus\Gamma_{\operatorname{c}} in a non-smooth way, as long as one can define domain extensions in the sense of Section 2.1.

1.2 Related literature and organization of the article

The global approximate controllability for viscous- and resistive MHD in non-periodic domains has to our knowledge not been studied, neither for incompressible- nor for compressible models. Therefore, the present work constitutes a first step in this direction. As a possible continuation, it would be interesting to generalize 1.2 for arbitrary N{2,3}N~{}\in~{}\{2,3\} and 𝑴2,𝑳2C(ΓΓc;N×N)\bm{M}_{2},\bm{L}_{2}\in{\rm C}^{\infty}(\Gamma\setminus\Gamma_{\operatorname{c}};\mathbb{R}^{N\times N}) without additional interior control. Also, the question of global exact controllability to zero or towards trajectories remains open.

Concerning local exact controllability for MHD, where the initial state lies in the vicinity of the target trajectory, there have been some interesting works when the velocity satisfies the no-slip boundary condition. For incompressible viscous MHD, Badra obtained in [Badra2014] the local exact controllability to trajectories, while maintaining truly localized and solenoidal interior controls. However, since the boundary conditions are different from those employed here, one cannot deduce the small-time global exact controllability towards trajectories by combining the approaches given in [Badra2014] with our global approximate results. A variety of previous local exact controllability results may also be found in [BarbuHavarneanuPopaSritharan2005] by Barbu et al. and in [HavarneanuPopaSritharan2006, HavarneanuPopaSritharan2007] by Havârneanu et al., while approximate interior controllability for certain toroidal configurations without boundary has been investigated by Galan in [Galan2013]. Moreover, Anh and Toi studied in [AnhToi2017] the local exact controllability to trajectories for magneto-micropolar fluids, while Tao considered the local exact controllability for planar compressible MHD in the recent work [Tao2018]. Recently, we have studied the global exact controllability for the ideal incompressible MHD in [RisselWang2021], in which the small-time global exact controllability in rectangular channels is obtained in the presence of a harmonic unknown qq as in (1.8). Subsequently, Kukavica et al. demonstrated in [KukavicaNovackVicol2022], likewise restricted to a rectangular domain controlled at two opposing walls, how to find boundary controls such that q\bm{\mathrm{\nabla}}q either vanishes or is explicitly characterized.

Aside of various MHD specific constructions, this article combines the return method and the well-prepared dissipation method as described by Coron et al. in [CoronMarbachSueur2020], where the small-time global exact controllability to trajectories has been studied for incompressible Navier–Stokes equations in two- and three-dimensional domains with Navier slip-with-friction conditions. Meanwhile, we shall also extend certain asymptotic expansions, obtained by Iftimie and Sueur in [IftimieSueur2011] for the incompressible Navier–Stokes equations, to the present MHD system. Due to the structure of the induction equation, the return method has to be carefully implemented in order to avoid generating pressure-like and additional forcing terms in the induction equation. To this end, under the assumptions of 1.2, we modify the return method trajectory from [CoronMarbachSueur2020] to be everywhere divergence-free, but allow a nonzero curl in the control region; this approach seems new and might be useful for further studies on the controllability of the ideal MHD equations.

Let us also mention other recent works on global controllability problems for fluids that employ the return- and well-prepared dissipation methods. For instance, an incompressible Boussinesq system with Navier slip-with-friction boundary conditions for the velocity is considered by Chaves-Silva et al. in [ChavesSilva2020SmalltimeGE]. Moreover, the question of smooth controllability for the Navier–Stokes equations with Navier slip-with-friction boundary conditions is investigated in [LiaoSueurZhang2022]. Further, Coron et al. obtain in [CoronMarbachSueurZhang2019] global exact controllability results for the Navier–Stokes equations under the no-slip condition in a rectangular domain.

Organization of this article.

Section 2 collects several preliminaries and defines notions of weak controlled trajectories. In Section 3, the global approximate controllability from sufficiently regular initial data towards smooth states is shown. The main theorems are concluded in Section 4. In Appendices A and B, boundary layer estimates and a proof of 4.1 are provided.

2 Preliminaries

A domain extension \mathcal{E} for Ω\Omega is introduced in Section 2.1, several function spaces and norms are defined in Section 2.2, initial data extensions to \mathcal{E} are discussed in Section 2.3, notions of weak controlled trajectories for (1.1) and (1.8) are discussed in Section 2.4. Finally, Section 2.5 briefly outlines the strategy of the paper. Throughout, if not indicated otherwise, constants of the form C>0C>0 are generic and can change from line to line during the estimates.

2.1 Domain extensions

In what follows, the sets Γ1,,ΓK(Ω)\Gamma^{1},\dots,\Gamma^{K(\Omega)} denote the connected components of Γ\Gamma and Γc1,,ΓcK(Ω)\Gamma_{\operatorname{c}}^{1},\dots,\Gamma_{\operatorname{c}}^{{K(\Omega)}} stand for the respective intersections Γ1Γc,,ΓK(Ω)Γc\Gamma^{1}\cap\Gamma_{c},\dots,\Gamma^{K(\Omega)}\cap\Gamma_{c}, hence

Γ=i{1,,K(Ω)}˙Γi,Γc=i{1,,K(Ω)}˙Γci.\displaystyle\Gamma=\mathbin{\dot{\bigcup_{i\in\{1,\dots,K(\Omega)\}}}}\Gamma^{i},\quad\Gamma_{\operatorname{c}}=\mathbin{\dot{\bigcup_{i\in\{1,\dots,K(\Omega)\}}}}\Gamma_{\operatorname{c}}^{i}.

Let N\mathcal{E}\subset\mathbb{R}^{N} be a smoothly bounded domain, which is an extension of Ω\Omega as shown in Figure 3, satisfying

Ω,Γci¯,ΓΓc,Γci,i{1,,K(Ω)}.\Omega\subset\mathcal{E},\quad\Gamma^{i}_{\operatorname{c}}\subset\overline{\mathcal{E}},\quad\Gamma\setminus\Gamma_{\operatorname{c}}\subset\partial\mathcal{E},\quad\Gamma_{\operatorname{c}}^{i}\cap\mathcal{E}\neq\emptyset,\quad i\in\{1,\dots,K(\Omega)\}.

Such an extension exists by the requirements on Ω\Omega. Throughout, the outward unit normal at \partial\mathcal{E} is denoted by 𝒏\bm{n}_{\partial\mathcal{E}}, or simply by 𝒏\bm{n} if no confusion can arise. We also make the following assumptions:

  • the extension \mathcal{E} is selected such that 𝒖0\bm{u}_{0} and 𝑩0\bm{B}_{0} are tangential at Ω\partial\Omega\cap\partial\mathcal{E};

  • for the sake of simplifying the notations, to each connected component of Γc\Gamma_{\operatorname{c}} at most one connected component of Ω\mathcal{E}\setminus\Omega is attached.

Moreover, given T>0T>0, we denote

T×(0,T),ΣT×(0,T).\mathcal{E}_{T}\coloneqq\mathcal{E}\times(0,T),\quad\Sigma_{T}\coloneqq\partial\mathcal{E}\times(0,T).

When \mathcal{E} is a multiply-connected domain, there is a number L()L(\mathcal{E})\in\mathbb{N} of smooth (N1)(N-1)-dimensional and mutually disjoint cuts 𝒞1,,𝒞L()\mathcal{C}_{1},\dots,\mathcal{C}_{L(\mathcal{E})}\subset\mathcal{E}, which meet \partial\mathcal{E} transversely, such that one obtains a simply-connected set via ̊(𝒞1𝒞L())\ring{\mathcal{E}}\coloneqq\mathcal{E}\setminus(\mathcal{C}_{1}\cup\dots\cup\mathcal{C}_{L(\mathcal{E})}); see, e.g., [Temam2001, Appendix I]. Next, for each i{1,,L()}i\in\{1,\dots,L(\mathcal{E})\}, a unit normal field to 𝒞i\mathcal{C}_{i} is denoted by 𝒏~i\widetilde{\bm{n}}^{i}. When \mathcal{E} is simply-connected, we set L()0L(\mathcal{E})\coloneqq 0.

Ω\mathcal{E}\cap\OmegaΩ\mathcal{E}\setminus\OmegaΩ\mathcal{E}\setminus\OmegaΓc1\Gamma_{\operatorname{c}}^{1}   Γc2\Gamma_{\operatorname{c}}^{2}   𝒞1\mathcal{C}_{1}   
Figure 3: A multiply-connected domain Ω2\Omega\subset\mathbb{R}^{2} with two controlled boundary components and extension \mathcal{E}. The dashed lines mark the controlled boundaries.

The following Korn and Poincaré type inequalities for possibly multiply-connected domains are well-known.

Lemma 2.1.

There exists a constant C>0C>0 such that for any 𝐡H1()\bm{h}\in{\rm H}^{1}(\mathcal{E}), one has the estimate

𝒉H1()\displaystyle\|\bm{h}\|_{{\rm H}^{1}(\mathcal{E})} C(𝒉L2()+×𝒉L2()+𝒉𝒏H1/2())\displaystyle\leq C\left(\|\bm{\mathrm{\nabla}}\cdot{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{h}\cdot\bm{n}\|_{{\rm H}^{1/2}(\partial\mathcal{E})}\right) (2.1)
+Ci=1L()|𝒞i𝒉𝒏~id𝒞i|\displaystyle\quad+C\sum\limits_{i=1}^{L(\mathcal{E})}\left|\int_{\mathcal{C}_{i}}\bm{h}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}\right|
C(𝒉L2()+×𝒉L2()+𝒉𝒏H1/2()+𝒉L2()).\displaystyle\leq C\left(\|\bm{\mathrm{\nabla}}\cdot{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{h}\cdot\bm{n}\|_{{\rm H}^{1/2}(\partial\mathcal{E})}+\|\bm{h}\|_{{\rm L}^{2}(\mathcal{E})}\right).
Proof.

It is known (e.g., see [AmroucheSeloula2013, Corollary 3.4]), that all 𝒇H1()\bm{f}\in{\rm H}^{1}(\mathcal{E}) with 𝒇𝒏=0\bm{f}\cdot\bm{n}=0 along \partial\mathcal{E} obey

𝒇H1()C(𝒇L2()+×𝒇L2()+i=1L()|𝒞i𝒇𝒏~id𝒞i|).\displaystyle\|\bm{f}\|_{{\rm H}^{1}(\mathcal{E})}\leq C\left(\|\bm{\mathrm{\nabla}}\cdot{\bm{f}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{f}}\|_{{\rm L}^{2}(\mathcal{E})}+\sum\limits_{i=1}^{L(\mathcal{E})}\left|\int_{\mathcal{C}_{i}}\bm{f}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}\right|\right). (2.2)

Moreover, as demonstrated in [BoyerFabrie2013, Theorem III.4.3], there exists a function ψH2()\psi\in{\rm H}^{2}(\mathcal{E}) which solves the Neumann problem

{Δψ=𝒉 in ,𝒏ψ=𝒉𝒏 on ,\begin{cases}\Delta\psi=\bm{\mathrm{\nabla}}\cdot{\bm{h}}&\mbox{ in }\mathcal{E},\\ \partial_{\bm{n}}\psi=\bm{h}\cdot\bm{n}&\mbox{ on }\partial\mathcal{E},\end{cases}

and satisfies

ψH2()C(𝒉L2()+𝒉𝒏H1/2()).\|\psi\|_{{\rm H}^{2}(\mathcal{E})}\leq C\left(\|\bm{\mathrm{\nabla}}\cdot{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{h}\cdot\bm{n}\|_{{\rm H}^{1/2}(\partial\mathcal{E})}\right). (2.3)

By employing trace estimates and the properties of ψ\psi, the potential field 𝒈=ψ\bm{g}=\bm{\mathrm{\nabla}}\psi is seen to satisfy

𝒈=𝒉,×𝒈=𝟎,𝒈𝒏=𝒉𝒏,i=1L()|𝒞i𝒈𝒏~id𝒞i|C𝒈H1().\bm{\mathrm{\nabla}}\cdot{\bm{g}}=\bm{\mathrm{\nabla}}\cdot{\bm{h}},\quad\bm{\mathrm{\nabla}}\times{\bm{g}}=\bm{0},\quad\bm{g}\cdot\bm{n}=\bm{h}\cdot\bm{n},\quad\sum\limits_{i=1}^{L(\mathcal{E})}\left|\int_{\mathcal{C}_{i}}\bm{g}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}\right|\leq C\|\bm{g}\|_{{\rm H}^{1}(\mathcal{E})}.

Consequently, by means of the estimates (2.2) and (2.3), the first inequality in (2.1) follows with 𝒇𝒉𝒈\bm{f}\coloneqq\bm{h}-\bm{g} from

𝒉H1()𝒇H1()+𝒈H1()C×𝒉L2()+Ci=1L()|𝒞i𝒇𝒏~id𝒞i|+𝒈H1()C×𝒉L2()+Ci=1L()|𝒞i𝒉𝒏~id𝒞i|+C𝒈H1()C(𝒉L2()+×𝒉L2()+𝒉𝒏H1/2())+Ci=1L()|𝒞i𝒉𝒏~id𝒞i|.\|\bm{h}\|_{{\rm H}^{1}(\mathcal{E})}\leq\|\bm{f}\|_{{\rm H}^{1}(\mathcal{E})}+\|\bm{g}\|_{{\rm H}^{1}(\mathcal{E})}\leq C\|\bm{\mathrm{\nabla}}\times{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+C\sum\limits_{i=1}^{L(\mathcal{E})}\left|\int_{\mathcal{C}_{i}}\bm{f}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}\right|+\|\bm{g}\|_{{\rm H}^{1}(\mathcal{E})}\\ \begin{aligned} &\leq C\|\bm{\mathrm{\nabla}}\times{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+C\sum\limits_{i=1}^{L(\mathcal{E})}\left|\int_{\mathcal{C}_{i}}\bm{h}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}\right|+C\|\bm{g}\|_{{\rm H}^{1}(\mathcal{E})}\\ &\leq C\left(\|\bm{\mathrm{\nabla}}\cdot{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{h}\cdot\bm{n}\|_{{\rm H}^{1/2}(\partial\mathcal{E})}\right)+C\sum\limits_{i=1}^{L(\mathcal{E})}\left|\int_{\mathcal{C}_{i}}\bm{h}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}\right|.\end{aligned}

Concerning the second inequality in (2.1), let the multi-valued functions q1,,qL()q_{1},\dots,q_{L(\mathcal{E})} be chosen such that {q1,,qL()}\{\bm{\mathrm{\nabla}}q_{1},\dots,\bm{\mathrm{\nabla}}q_{L(\mathcal{E})}\} are smooth and form a basis for the space of curl-free and divergence-free vector fields tangential at \partial\mathcal{E}. As in [Temam2001, Appendix I], one can select this basis such that [qi]j=δi,j[q_{i}]_{j}=\delta_{i,j}, where [f]j[f]_{j} denotes the jump of ff across 𝒞j\mathcal{C}_{j} and δi,j\delta_{i,j} is the usual Kronecker symbol. Therefore, one has

𝒞i𝒉𝒏~id𝒞i=̊𝒉qid𝒙+̊(𝒉)qid𝒙(𝒉𝒏)qidS,\int_{\mathcal{C}_{i}}\bm{h}\cdot\widetilde{\bm{n}}^{i}\,{{\rm d}\mathcal{C}_{i}}=\int_{\ring{\mathcal{E}}}\bm{h}\cdot\bm{\mathrm{\nabla}}q_{i}\,{{\rm d}\bm{x}}+\int_{\ring{\mathcal{E}}}(\bm{\mathrm{\nabla}}\cdot{\bm{h}})q_{i}\,{{\rm d}\bm{x}}-\int_{\partial\mathcal{E}}(\bm{h}\cdot\bm{n})q_{i}\,{{\rm d}S},

which allows to conclude the proof. ∎

Let d>0d>0 be sufficiently small so that 𝒱{𝒙N|dist(𝒙,)<d}\mathcal{V}\coloneqq\{\bm{x}\in\mathbb{R}^{N}\,|\,\operatorname{dist}(\bm{x},\partial\mathcal{E})<d\} represents a thin tubular neighborhood in N\mathbb{R}^{N} of the boundary \partial\mathcal{E}. Further, let φC(N;)\varphi_{\mathcal{E}}\in{\rm C}^{\infty}(\mathbb{R}^{N};\mathbb{R}) satisfy |φ(𝒙)|=1|\bm{\mathrm{\nabla}}\varphi_{\mathcal{E}}(\bm{x})|=1 for all 𝒙𝒱\bm{x}\in\mathcal{V} and

𝒱={φ>0}𝒱,\displaystyle\mathcal{E}\cap\mathcal{V}=\{\varphi_{\mathcal{E}}>0\}\cap\mathcal{V}, (N¯)𝒱={φ<0}𝒱,\displaystyle(\mathbb{R}^{N}\setminus\overline{\mathcal{E}})\cap\mathcal{V}=\{\varphi_{\mathcal{E}}<0\}\cap\mathcal{V}, ={φ=0}.\displaystyle\partial\mathcal{E}=\{\varphi_{\mathcal{E}}=0\}.

This implies that φ(𝒙)=dist(𝒙,)\varphi_{\mathcal{E}}(\bm{x})=\operatorname{dist}(\bm{x},\partial\mathcal{E}) for all 𝒙𝒱¯\bm{x}\in\mathcal{V}\cap\overline{\mathcal{E}}, assuming without loss of generality that 𝒱\mathcal{V} is sufficiently thin. Now, a smooth extension of 𝒏\bm{n}_{\partial\mathcal{E}} to ¯\overline{\mathcal{E}} is provided by

𝒏(𝒙)=𝒏(𝒙){𝒏(𝒙) if 𝒙,φ(𝒙) if 𝒙.\bm{n}(\bm{x})=\bm{n}_{\mathcal{E}}(\bm{x})\coloneqq\begin{cases}\bm{n}_{\partial\mathcal{E}}(\bm{x})&\mbox{ if }\bm{x}\in\partial\mathcal{E},\\ -\bm{\mathrm{\nabla}}\varphi_{\mathcal{E}}(\bm{x})&\mbox{ if }\bm{x}\in\mathcal{E}.\end{cases} (2.4)

In this sense, the tangential part [𝒉]tan=𝒉(𝒉𝒏)𝒏[\bm{h}]_{\operatorname{tan}}=\bm{h}-\left(\bm{h}\cdot\bm{n}\right)\bm{n} of 𝒉:¯N\bm{h}\colon\overline{\mathcal{E}}\longrightarrow\mathbb{R}^{N} is then defined everywhere in ¯\overline{\mathcal{E}}. Moreover, the Weingarten map 𝑾\bm{W}_{\mathcal{E}} and the general friction matrices 𝑴1,𝑴2,𝑳1,𝑳2\bm{M}_{1},\bm{M}_{2},\bm{L}_{1},\bm{L}_{2} are smoothly continued to ¯\overline{\mathcal{E}} such that

𝑾,𝑴1,𝑴2,𝑳1,𝑳2C(¯;N×N),\bm{W}_{\mathcal{E}},\bm{M}_{1},\bm{M}_{2},\bm{L}_{1},\bm{L}_{2}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N\times N}),

while also extending the assumptions (such as 𝑴2=𝟎\bm{M}_{2}=\bm{0} or 𝑴2=ρ𝑰\bm{M}_{2}=\rho\bm{I}) that might have been made in Theorems 1.2, 1.5, and 2.5.

For describing boundary layers in the vicinity of \partial\mathcal{E}, when a parameter ϵ>0\epsilon>0 is assumed small, some functions will depend on a slow variable 𝒙¯\bm{x}\in\overline{\mathcal{E}}, the time t0t\geq 0 and a fast variable

z=φ(𝒙)/ϵ+.z=\varphi_{\mathcal{E}}(\bm{x})/\sqrt{\epsilon}\in\mathbb{R}_{+}.

In this case, for a map (𝒙,t,z)h(𝒙,t,z)(\bm{x},t,z)\longmapsto h(\bm{x},t,z) we denote

hϵ(𝒙,t)h(𝒙,t,φ(𝒙)/ϵ).\left\llbracket h\right\rrbracket_{\epsilon}(\bm{x},t)\coloneqq h\left(\bm{x},t,\varphi_{\mathcal{E}}(\bm{x})/\sqrt{\epsilon}\right).

By convention, differential operators are always taken with respect to 𝒙¯\bm{x}\in\overline{\mathcal{E}} only, if not indicated otherwise by the notation. Therefore, as also remarked in [CoronMarbachSueur2020, IftimieSueur2011], one has the commutation formulas

(𝒉ϵ)\displaystyle\bm{\mathrm{\nabla}}\cdot\left(\left\llbracket\bm{h}\right\rrbracket_{\epsilon}\right) =𝒉ϵ𝒏z𝒉ϵ/ϵ,\displaystyle=\left\llbracket\bm{\mathrm{\nabla}}\cdot\bm{h}\right\rrbracket_{\epsilon}-\bm{n}\cdot\left\llbracket\partial_{z}\bm{h}\right\rrbracket_{\epsilon}/\sqrt{\epsilon}, (2.5)
(𝒉ϵ)\displaystyle\bm{\mathrm{\nabla}}\left(\left\llbracket\bm{h}\right\rrbracket_{\epsilon}\right) =𝒉ϵz𝒉ϵ𝒏/ϵ,\displaystyle=\left\llbracket\bm{\mathrm{\nabla}}\bm{h}\right\rrbracket_{\epsilon}-\left\llbracket\partial_{z}\bm{h}\right\rrbracket_{\epsilon}\bm{n}^{\top}/\sqrt{\epsilon},
[𝐃(𝒉ϵ)𝒏]tan\displaystyle\left[\bm{\mathrm{D}}(\left\llbracket\bm{h}\right\rrbracket_{\epsilon})\bm{n}\right]_{\operatorname{tan}} =[𝐃(𝒉)𝒏]tanϵ[z𝒉]tanϵ/4ϵ,\displaystyle=\left\llbracket\left[\bm{\mathrm{D}}(\bm{h})\bm{n}\right]_{\operatorname{tan}}\right\rrbracket_{\epsilon}-\left\llbracket[\partial_{z}\bm{h}]_{\operatorname{tan}}\right\rrbracket_{\epsilon}/\sqrt{4\epsilon},
ϵΔ𝒉ϵ\displaystyle\epsilon\Delta\left\llbracket\bm{h}\right\rrbracket_{\epsilon} =ϵΔ𝒉ϵ+ϵΔφz𝒉ϵ2ϵ(𝒏)z𝒉ϵ\displaystyle=\epsilon\left\llbracket\Delta\bm{h}\right\rrbracket_{\epsilon}+\sqrt{\epsilon}\Delta\varphi_{\mathcal{E}}\left\llbracket\partial_{z}\bm{h}\right\rrbracket_{\epsilon}-2\sqrt{\epsilon}\left\llbracket(\bm{n}\cdot\bm{\mathrm{\nabla}})\partial_{z}\bm{h}\right\rrbracket_{\epsilon}
+|𝒏|2zz𝒉ϵ,\displaystyle\quad+|\bm{n}|^{2}\left\llbracket\partial_{zz}\bm{h}\right\rrbracket_{\epsilon},

and consequently

𝓝i(𝒉1ϵ,𝒉2ϵ)=𝓝i(𝒉1,𝒉2)ϵ[z𝒉i]tanϵ/4ϵ,i{1,2}.\bm{\mathrm{\mathcal{N}}}_{i}\left(\left\llbracket\bm{h}_{1}\right\rrbracket_{\epsilon},\left\llbracket\bm{h}_{2}\right\rrbracket_{\epsilon}\right)=\left\llbracket\bm{\mathrm{\mathcal{N}}}_{i}(\bm{h}_{1},\bm{h}_{2})\right\rrbracket_{\epsilon}-\left\llbracket[\partial_{z}\bm{h}_{i}]_{\operatorname{tan}}\right\rrbracket_{\epsilon}/\sqrt{4\epsilon},\quad i\in\{1,2\}.

2.2 Function spaces

The Hilbert spaces H(){\rm H}(\mathcal{E}) and W(){\rm W}(\mathcal{E}) of divergence-free and tangential vector fields are defined by means of

H()closL2(;N)({𝒇C1(¯;N)|𝒇=0 in ,𝒇𝒏=0 on })\begin{gathered}{\rm H}(\mathcal{E})\coloneqq\operatorname{clos}_{{\rm L}^{2}(\mathcal{E};\mathbb{R}^{N})}\left(\left\{\bm{f}\in{\rm C}^{1}(\overline{\mathcal{E}};\mathbb{R}^{N})\,\left|\right.\,\bm{\mathrm{\nabla}}\cdot\bm{f}=0\mbox{ in }\mathcal{E},\bm{f}\cdot\bm{n}=0\mbox{ on }\partial\mathcal{E}\right\}\right)\end{gathered}

and

W()H(;N)H1(;N),{\rm W}(\mathcal{E})\coloneqq{\rm H}(\mathcal{E};\mathbb{R}^{N})\cap{\rm H}^{1}(\mathcal{E};\mathbb{R}^{N}),

where closL2()\operatorname{clos}_{{\rm L}^{2}(\mathcal{E})} denotes the closure in L2(){\rm L}^{2}(\mathcal{E}). For any T>0T>0, the weakly continuous functions from [0,T][0,T] to H(){\rm H}(\mathcal{E}) are denoted by Cw0([0,T];H()){\rm C}^{0}_{w}([0,T];{\rm H}(\mathcal{E})). The space for weak MHD solutions is

𝒳TCw0([0,T];H())L2((0,T);W()).\begin{gathered}\mathscr{X}_{T}\coloneqq{\rm C}^{0}_{w}([0,T];{\rm H}(\mathcal{E}))\cap{\rm L}^{2}((0,T);{\rm W}(\mathcal{E})).\end{gathered}

Moreover, for m,p,k,s0m,p,k,s\in\mathbb{N}_{0}, we employ the weighted Sobolev spaces

Hk,m,p{fL2(×+)|fHk,m,p(r=0p|f|k,m,r,2)12<+},Hk,s~(){fL2()|fHk,s()(l=0s(1+z2k)|zlf(z)|2dz)12<+},\begin{gathered}{\rm H}^{k,m,p}_{\mathcal{E}}\coloneqq\left\{f\in{\rm L}^{2}(\mathcal{E}\times\mathbb{R}_{+})\,\left|\,\|f\|_{{\rm H}^{k,m,p}_{\mathcal{E}}}\coloneqq\left(\sum\limits_{r=0}^{p}|f|_{k,m,r,\mathcal{E}}^{2}\right)^{\frac{1}{2}}<+\infty\right.\right\},\\ \widetilde{{\rm H}^{k,s}}(\mathbb{R})\coloneqq\left\{f\in{\rm L}^{2}(\mathbb{R})\,\left|\,\|f\|_{{\rm H}^{k,s}(\mathbb{R})}\coloneqq\left(\sum\limits_{l=0}^{s}\int_{\mathbb{R}}(1+z^{2k})|\partial^{l}_{z}f(z)|^{2}\,{{\rm d}z}\right)^{\frac{1}{2}}<+\infty\right.\right\},\end{gathered}

where |f|k,m,r,|f|_{k,m,r,\mathcal{E}} denotes for functions (𝒙,z)f(𝒙,z)(\bm{x},z)\mapsto f(\bm{x},z) the seminorm

|f|k,m,r,(|β|m+(1+z2k)|𝒙βzrf|2dzd𝒙)12.|f|_{k,m,r,\mathcal{E}}\coloneqq\left(\sum\limits_{|\beta|\leq m}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{\bm{x}}^{\beta}\partial_{z}^{r}f|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}\right)^{\frac{1}{2}}.

2.3 Initial data extensions

We extend the original initial data to \mathcal{E}. Whether divergence-free extensions are possible depends on the normal traces of the initial states (𝒖0,𝑩0)Lc2(Ω)×Lc2(Ω)(\bm{u}_{0},\bm{B}_{0})\in{\rm L}^{2}_{\operatorname{c}}(\Omega)\times{\rm L}^{2}_{\operatorname{c}}(\Omega) fixed in Theorems 1.2 or 1.5. More specifically, we either choose extensions of the type

𝒖~0,𝑩~0H(),𝒖~0|Ω=𝒖0,𝑩~0|Ω=𝑩0,\widetilde{\bm{u}}_{0},\widetilde{\bm{B}}_{0}\in{\rm H}(\mathcal{E}),\quad\widetilde{\bm{u}}_{0}|_{\Omega}=\bm{u}_{0},\quad\widetilde{\bm{B}}_{0}|_{\Omega}=\bm{B}_{0},

or we select continuations 𝒖~0,𝑩~0L2()\widetilde{\bm{u}}_{0},\widetilde{\bm{B}}_{0}\in{\rm L}^{2}(\mathcal{E}) with defined normal trace at \partial\mathcal{E} and which obey

𝒖~0𝒏=𝑩~0𝒏=0 at ,𝒖~0|Ω=𝒖0,𝑩~0|Ω=𝑩0.\widetilde{\bm{u}}_{0}\cdot\bm{n}=\widetilde{\bm{B}}_{0}\cdot\bm{n}=0\,\mbox{ at }\partial\mathcal{E},\quad\widetilde{\bm{u}}_{0}|_{\Omega}=\bm{u}_{0},\quad\widetilde{\bm{B}}_{0}|_{\Omega}=\bm{B}_{0}.

These extensions will be made precise below in 2.2, which is a modification of [ChavesSilva2020SmalltimeGE, Proposition 2.1]; hereto, given any i{1,,K(Ω)}i\in\{1,\dots,K(\Omega)\}, the following notations are fixed beforehand.

  • The sets Γc,1i,Γc,mii\Gamma_{\operatorname{c},1}^{i},\dots\Gamma_{\operatorname{c},m_{i}}^{i} enumerate the connected components of the ii-th controlled boundary part Γci\Gamma_{\operatorname{c}}^{i}.

  • The set ΩiΩ\Omega^{i}\subset\mathcal{E}\setminus\Omega is the extension attached to Ω\Omega at Γci\Gamma_{\operatorname{c}}^{i}, namely the maximal union of connected components of Ω\mathcal{E}\setminus\Omega with (ΩiΓ)Γci¯(\partial\Omega^{i}\cap\Gamma)\subset\overline{\Gamma_{\operatorname{c}}^{i}}.

  • For each j{1,,mi}j\in\{1,\dots,m_{i}\}, the set ΩjiΩi\Omega_{j}^{i}\subset\Omega^{i} is the connected component of Ω\mathcal{E}\setminus\Omega attached to Γc,ji\Gamma_{\operatorname{c},j}^{i}. If Ωji\Omega_{j}^{i} is attached to Γc,ji\Gamma_{\operatorname{c},j}^{i} and Γc,li\Gamma_{\operatorname{c},l}^{i} with jlj\neq l, then Ωji=Ωli\Omega_{j}^{i}=\Omega_{l}^{i}.

Lemma 2.2.

There exists a constant C>0C>0 such that for each 𝐡Lc2(Ω)\bm{h}\in{\rm L}^{2}_{\operatorname{c}}(\Omega) there are functions σC(;)\sigma\in{\rm C}^{\infty}(\mathcal{E};\mathbb{R}) with supp(σ)Ω¯\operatorname{supp}(\sigma)\subset\mathcal{E}\setminus\overline{\Omega} and 𝐡~L2()\widetilde{\bm{h}}\in{\rm L}^{2}(\mathcal{E}) satisfying

𝒉~=𝒉 in Ω,𝒉~=σ in ,𝒉~𝒏=0 on ,𝒉~L2()C𝒉L2(Ω).{\widetilde{\bm{h}}}=\bm{h}\mbox{ in }\Omega,\quad\bm{\mathrm{\nabla}}\cdot{\widetilde{\bm{h}}}=\sigma\mbox{ in }\mathcal{E},\quad\widetilde{\bm{h}}\cdot\bm{n}=0\mbox{ on }\partial\mathcal{E},\quad\|\widetilde{\bm{h}}\|_{{\rm L}^{2}(\mathcal{E})}\leq C\|\bm{h}\|_{{\rm L}^{2}(\Omega)}.

When the vector field 𝐡\bm{h} additionally obeys at Γc\Gamma_{\operatorname{c}} the conditions

i{1,,K(Ω)},j{1,,mi}:𝒉𝒏,1H1/2(ΩjiΓci),H1/2(ΩjiΓci)=0,\forall i\in\{1,\dots,K(\Omega)\},\,\forall j\in\{1,\dots,m_{i}\}\colon\\ \left\langle\bm{h}\cdot\bm{n},1\right\rangle_{{\rm H}^{-1/2}(\partial\Omega^{i}_{j}\cap\Gamma_{\operatorname{c}}^{i}),{\rm H}^{1/2}(\partial\Omega^{i}_{j}\cap\Gamma_{\operatorname{c}}^{i})}=0, (2.6)

then one can choose 𝐡~H()\widetilde{\bm{h}}\in{\rm H}(\mathcal{E}).

Proof.

Let 𝒏\bm{n} denote the outward unit normal to Ω\Omega at Γ\Gamma, while the outward unit normal to \mathcal{E} at \partial\mathcal{E} is written as 𝒏\bm{n}_{\partial\mathcal{E}}. It is known (cf. [BoyerFabrie2013, Chapter IV, Section 3.2]) that there exists a continuous normal trace operator

γ𝒏:Lc2(Ω)H1/2(Γ),𝒘C(Ω¯;N):γ𝒏(𝒘)=𝒘𝒏.\gamma_{\bm{n}}\colon{\rm L}^{2}_{\operatorname{c}}(\Omega)\longrightarrow{\rm H}^{-1/2}(\Gamma),\quad\forall\bm{w}\in{\rm C}^{\infty}(\overline{\Omega};\mathbb{R}^{N})\colon\gamma_{\bm{n}}(\bm{w})=\bm{w}\cdot\bm{n}.

Then, for each i{1,,K(Ω)}i\in\{1,\dots,K(\Omega)\}, a smooth function σiC0(Ωi;)\sigma^{i}\in{\rm C}^{\infty}_{0}(\Omega^{i};\mathbb{R}) is fixed such that

l{1,,mi}:Ωliσi(𝒙)d𝒙ΩliΓciγ𝒏(𝒉)dS=0.\forall l\in\{1,\dots,m_{i}\}\colon\int_{\Omega^{i}_{l}}\sigma^{i}(\bm{x})\,{{\rm d}\bm{x}}-\int_{\partial\Omega^{i}_{l}\cap\Gamma_{\operatorname{c}}^{i}}\gamma_{\bm{n}}(\bm{h})\,{{\rm d}S}=0.

This guarantees that one can solve for each i{1,,K(Ω)}i\in\{1,\dots,K(\Omega)\} a weak formulation of the respective elliptic problem

{Δφi=σi in Ωi,φi𝒏=γ𝒏(𝒉), on ΓciΩi,φi𝒏=0 on ΩiΓci.\begin{cases}\Delta\varphi^{i}=\sigma^{i}&\mbox{ in }\Omega^{i},\\ \bm{\mathrm{\nabla}}\varphi^{i}\cdot\bm{n}=\gamma_{\bm{n}}(\bm{h}),&\mbox{ on }\Gamma_{\operatorname{c}}^{i}\cap\partial\Omega^{i},\\ \bm{\mathrm{\nabla}}\varphi^{i}\cdot\bm{n}_{\partial\mathcal{E}}=0&\mbox{ on }\partial\Omega^{i}\setminus\Gamma_{\operatorname{c}}^{i}.\end{cases} (2.7)

In particular, if (2.6) holds for i{1,,K(Ω)}i\in\{1,\dots,K(\Omega)\}, then σi=0\sigma^{i}=0 can be chosen. Accordingly, the proof is concluded by taking 𝒉~𝒉\widetilde{\bm{h}}\coloneqq\bm{h} in Ω\Omega and 𝒉~φi\widetilde{\bm{h}}\coloneqq\bm{\mathrm{\nabla}}\varphi^{i} in Ωi\Omega^{i}. The continuity of the extension operator follows from (2.7) and the divergence-free condition encoded in Lc2(Ω){\rm L}^{2}_{\operatorname{c}}(\Omega). ∎

Remark 2.3.

In the context of 1.2, due to the assumption that Γc\Gamma_{\operatorname{c}} is connected, the condition (2.6) is automatically satisfied by all 𝒖0,𝑩0Lc2(Ω)\bm{u}_{0},\bm{B}_{0}\in{\rm L}^{2}_{\operatorname{c}}(\Omega).

2.4 Weak controlled trajectories

To define notions of weak controlled trajectories for the problems (1.1) and (1.8), we follow the idea from [CoronMarbachSueur2020] and first introduce Leray–Hopf weak solutions for interior controlled MHD problems posed in the respectively enlarged domain \mathcal{E}. Then, by restricting such solutions to Ω\Omega, one obtains a notion of boundary controlled weak solutions to (1.1) and (1.8). The plan is as follows.

  • Section 2.4.1 defines weak controlled trajectories for initial data in H(){\rm H}(\mathcal{E}).

  • Section 2.4.2 discusses the appearance of q\bm{\mathrm{\nabla}}q.

  • Section 2.4.3 formulates weak controlled trajectories in Elasser variables.

  • Section 2.4.4 defines weak controlled trajectories for more general initial data.

Given any time T>0T>0, let us recall the notation of the space-time cylinder and its mantle

T×(0,T),ΣT×(0,T).\mathcal{E}_{T}\coloneqq\mathcal{E}\times(0,T),\quad\Sigma_{T}\coloneqq\partial\mathcal{E}\times(0,T).

In this subsection, if forces 𝝃\bm{\xi} and 𝜼\bm{\eta} appear in the right-hand sides of MHD problems, then it is assumed that

𝜼=𝜼~+𝜻,t[0,T](supp(𝝃(,t))supp(𝜼~(,t)))¯Ω¯\bm{\eta}=\widetilde{\bm{\eta}}+\bm{\zeta},\quad\bigcup_{t\in[0,T]}\left(\operatorname{supp}(\bm{\xi}(\cdot,t))\cup\operatorname{supp}(\widetilde{\bm{\eta}}(\cdot,t))\right)\subset\overline{\mathcal{E}}\setminus\overline{\Omega}

for some 𝜻,𝝃,𝜼~C0([0,T];L2(;N))\bm{\zeta},\bm{\xi},\widetilde{\bm{\eta}}\in{\rm C}^{0}([0,T];{\rm L}^{2}(\mathcal{E};\mathbb{R}^{N})). In particular, 𝜻\bm{\zeta} will coincide with that in 1.5.

2.4.1 The case of H(){\rm H}(\mathcal{E}) data (e.g., 1.2)

We focus now on the situation of 1.2; however, if the initial data can be extended as H(){\rm H}(\mathcal{E})-functions, the following definitions make also sense for the setting of 1.5. To streamline the presentation, the three-dimensional cross product and curl notations are employed.

Definition of weak controlled trajectories.

When the initial data 𝒖0,𝑩0Lc2(Ω)\bm{u}_{0},\bm{B}_{0}\in{\rm L}^{2}_{\operatorname{c}}(\Omega) admit extensions to H(){\rm H}(\mathcal{E}), as emphasized in 2.3 for 1.2, a weak controlled trajectory for (1.1) is defined as any pair of vector fields (𝒖,𝑩)(\bm{u},\bm{B}) that are of the form

(𝒖,𝑩)[Cw0([0,T];Lc2(Ω))L2((0,T);H1(Ω))]2,(𝒖,𝑩)=(𝒖~|Ω,𝑩~|Ω),(\bm{u},\bm{B})\in\left[{\rm C}^{0}_{w}([0,T];{\rm L}^{2}_{\operatorname{c}}(\Omega))\cap{\rm L}^{2}((0,T);{\rm H}^{1}(\Omega))\right]^{2},\quad(\bm{u},\bm{B})=(\widetilde{\bm{u}}|_{\Omega},\widetilde{\bm{B}}|_{\Omega}),

where (𝒖~,𝑩~)(\widetilde{\bm{u}},\widetilde{\bm{B}}) denotes a Leray–Hopf weak solution to the viscous and resistive incompressible MHD system

{t𝒖ν1Δ𝒖+(𝒖)𝒖μ(𝑩)𝑩+p=𝝃 in T,t𝑩ν2Δ𝑩+(𝒖)𝑩(𝑩)𝒖=𝜼 in T,𝒖=𝑩=0 in T,𝒖𝒏=𝑩𝒏=0 on ΣT,𝓝1(𝒖,𝑩)=𝓝2(𝒖,𝑩)=𝟎 on ΣT,𝒖(,0)=𝒖0,𝑩(,0)=𝑩0 in .\begin{cases}\partial_{t}\bm{u}-\nu_{1}\Delta\bm{u}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{u}-\mu(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{B}+\bm{\mathrm{\nabla}}p=\bm{\xi}&\mbox{ in }\mathcal{E}_{T},\\ \partial_{t}\bm{B}-\nu_{2}\Delta\bm{B}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{B}-(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{u}=\bm{\eta}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{u}=\bm{\mathrm{\nabla}}\cdot\bm{B}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{u}\cdot\bm{n}=\bm{B}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{\mathcal{N}}_{1}(\bm{u},\bm{B})=\bm{\mathcal{N}}_{2}(\bm{u},\bm{B})=\bm{0}&\mbox{ on }\Sigma_{T},\\ \bm{u}(\cdot,0)=\bm{u}_{0},\,\bm{B}(\cdot,0)=\bm{B}_{0}&\mbox{ in }\mathcal{E}.\end{cases} (2.8)

A pair (𝒖,𝑩)𝒳T×𝒳T(\bm{u},\bm{B})\in\mathscr{X}_{T}\times\mathscr{X}_{T} is called a Leray–Hopf weak solution to (2.8), if it satisfies for all 𝝋,𝝍C0(¯×[0,T);N)C([0,T];H())\bm{\varphi},\bm{\psi}\in{\rm C}^{\infty}_{0}(\overline{\mathcal{E}}\times[0,T);\mathbb{R}^{N})\cap{\rm C}^{\infty}([0,T];{\rm H}(\mathcal{E})) and for almost all t[0,T]t\in[0,T], the variational formulation

(𝒖(𝒙,t)𝝋(𝒙,t)+𝑩(𝒙,t)𝝍(𝒙,t)𝒖0(𝒙)𝝋(𝒙,0)𝑩0(𝒙)𝝍(𝒙,0))d𝒙0t(𝒖t𝝋+𝑩t𝝍)d𝒙dt+ν10t(×𝒖)(×𝝋)d𝒙dt+ν20t(×𝑩)(×𝝍)d𝒙dt+0t((𝒖)𝒖μ(𝑩)𝑩)𝝋d𝒙dt+0t((𝒖)𝑩(𝑩)𝒖)𝝍d𝒙dtν10t𝝆1(𝒖,𝑩)𝝋dSdtν20t𝝆2(𝒖,𝑩)𝝍dSdt=0t(𝝃𝝋+𝜼𝝍)d𝒙dt,\begin{gathered}\int_{\mathcal{E}}\left(\bm{u}(\bm{x},t)\cdot\bm{\varphi}(\bm{x},t)+\bm{B}(\bm{x},t)\cdot\bm{\psi}(\bm{x},t)-\bm{u}_{0}(\bm{x})\cdot\bm{\varphi}(\bm{x},0)-\bm{B}_{0}(\bm{x})\cdot\bm{\psi}(\bm{x},0)\right)\,{{\rm d}\bm{x}}\\ -\int_{0}^{t}\int_{\mathcal{E}}\left(\bm{u}\cdot\partial_{t}\bm{\varphi}+\bm{B}\cdot\partial_{t}\bm{\psi}\right)\,{{\rm d}\bm{x}}\,{{\rm d}t}+\nu_{1}\int_{0}^{t}\int_{\mathcal{E}}(\bm{\mathrm{\nabla}}\times{\bm{u}})\cdot(\bm{\mathrm{\nabla}}\times{\bm{\varphi}})\,{{\rm d}\bm{x}}{{\rm d}t}\\ +\nu_{2}\int_{0}^{t}\int_{\mathcal{E}}(\bm{\mathrm{\nabla}}\times{\bm{B}})\cdot(\bm{\mathrm{\nabla}}\times{\bm{\psi}})\,{{\rm d}\bm{x}}{{\rm d}t}+\int_{0}^{t}\int_{\mathcal{E}}\left((\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{u}-\mu(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{B}\right)\cdot\bm{\varphi}\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ +\int_{0}^{t}\int_{\mathcal{E}}\left((\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{B}-(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{u}\right)\cdot\bm{\psi}\,{{\rm d}\bm{x}}\,{{\rm d}t}-\nu_{1}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{1}(\bm{u},\bm{B})\cdot\bm{\varphi}\,{{\rm d}S}\,{{\rm d}t}\\ -\nu_{2}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{2}(\bm{u},\bm{B})\cdot\bm{\psi}\,{{\rm d}S}\,{{\rm d}t}=\int_{0}^{t}\int_{\mathcal{E}}\left(\bm{\xi}\cdot\bm{\varphi}+\bm{\eta}\cdot\bm{\psi}\right)\,{{\rm d}\bm{x}}\,{{\rm d}t},\end{gathered} (2.9)

together with the following energy inequality for almost all 0s<tT0\leq s<t\leq T:

𝒖(,t)L2()2+μ𝑩(,t)L2()2+2st(ν1|×𝒖|2+ν2μ|×𝑩|2)d𝒙dt𝒖(,s)L2()2+μ𝑩(,s)L2()2+2st𝝃𝒖d𝒙dt+2μst𝜼𝑩d𝒙dt+2ν1st𝝆1(𝒖,𝑩)𝒖dSdt+2ν2μst𝝆2(𝒖,𝑩)𝑩dSdt.\begin{gathered}\|\bm{u}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\mu\|\bm{B}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+2\int_{s}^{t}\int_{\mathcal{E}}\left(\nu_{1}|\bm{\mathrm{\nabla}}\times{\bm{u}}|^{2}+\nu_{2}\mu|\bm{\mathrm{\nabla}}\times{\bm{B}}|^{2}\right)\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ \leq\|\bm{u}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\mu\|\bm{B}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+2\int_{s}^{t}\int_{\mathcal{E}}\bm{\xi}\cdot\bm{u}\,{{\rm d}\bm{x}}\,{{\rm d}t}+2\mu\int_{s}^{t}\int_{\mathcal{E}}\bm{\eta}\cdot\bm{B}\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ \quad+2\nu_{1}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{1}(\bm{u},\bm{B})\cdot\bm{u}\,{{\rm d}S}\,{{\rm d}t}+2\nu_{2}\mu\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{2}(\bm{u},\bm{B})\cdot\bm{B}\,{{\rm d}S}\,{{\rm d}t}.\end{gathered} (2.10)

The weak formulation (2.9) and energy inequality (2.10) are derived by utilizing the identity Δ𝒉=×(×𝒉)\Delta\bm{h}=-\bm{\mathrm{\nabla}}\times{(\bm{\mathrm{\nabla}}\times{\bm{h}})} for any sufficiently regular vector field 𝒉\bm{h} with 𝒉=0\bm{\mathrm{\nabla}}\cdot{\bm{h}}=0, while also using the integration by parts and vector calculus formulas

𝒈(×𝒉)d𝒙=(×𝒈)𝒉d𝒙(𝒈×𝒉)𝒏dS,\displaystyle\int_{\mathcal{E}}\bm{g}\cdot(\bm{\mathrm{\nabla}}\times{\bm{h}})\,{{\rm d}\bm{x}}=\int_{\mathcal{E}}(\bm{\mathrm{\nabla}}\times{\bm{g}})\cdot\bm{h}\,{{\rm d}\bm{x}}-\int_{\partial\mathcal{E}}(\bm{g}\times\bm{h})\cdot\bm{n}\,{{\rm d}S},
(𝒈×𝒉)𝒏=(𝒉×𝒏)𝒈=(𝒈×𝒏)𝒉,\displaystyle(\bm{g}\times\bm{h})\cdot\bm{n}=(\bm{h}\times\bm{n})\cdot\bm{g}=-(\bm{g}\times\bm{n})\cdot\bm{h},

where dS{{\rm d}S} stands for the surface measure on \partial\mathcal{E}.

Existence of weak solutions.

By analysis similar to the Navier–Stokes equations, for instance via the Galerkin method explained in [Temam2001, Chapter 3], one can obtain the existence of Leray–Hopf weak solutions (𝒖,𝑩)𝒳T×𝒳T(\bm{u},\bm{B})\in\mathscr{X}_{T}\times\mathscr{X}_{T} satisfying (2.9) and (2.10). Regarding the energy inequality (2.10), we refer to [IftimieSueur2011, Section 3] for a strategy that carries over to the present MHD model. In particular, the boundary integrals in 2.9 and (2.10) are not causing additional difficulties in comparison with the references mentioned above. Indeed, when 𝑴L(;N×N)\bm{M}\in{\rm L}^{\infty}(\partial\mathcal{E};\mathbb{R}^{N\times N}) and 𝒈,𝒉L2((0,T);H1())\bm{g},\bm{h}\in{\rm L}^{2}((0,T);{\rm H}^{1}(\mathcal{E})), trace inequalities and interpolation imply

|st[𝑴(𝒙)𝒉]tan𝒈dSdr|\displaystyle\left|\int_{s}^{t}\int_{\partial\mathcal{E}}\left[\bm{M}(\bm{x})\bm{h}\right]_{\operatorname{tan}}\cdot\bm{g}\,{{\rm d}S}\,{{\rm d}r}\right| Cδst𝒈(,r)L2()2dr+δst𝒈(,r)H1()2dr\displaystyle\leq\frac{C}{\delta}\!\!\int_{s}^{t}\|\bm{g}(\cdot,r)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\,{{\rm d}r}+\delta\int_{s}^{t}\|\bm{g}(\cdot,r)\|_{{\rm H}^{1}(\mathcal{E})}^{2}\,{{\rm d}r} (2.11)
+Cδst𝒉(,r)L2()2dr+δst𝒉(,r)H1()2dr\displaystyle\quad+\frac{C}{\delta}\!\!\int_{s}^{t}\|\bm{h}(\cdot,r)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\,{{\rm d}r}+\delta\int_{s}^{t}\|\bm{h}(\cdot,r)\|_{{\rm H}^{1}(\mathcal{E})}^{2}\,{{\rm d}r}

for any δ(0,1)\delta\in(0,1) and a generic constant C=C(,𝑴L())>0C=C(\mathcal{E},\|\bm{M}\|_{{\rm L}^{\infty}(\partial\mathcal{E})})>0. The estimates (2.1) and (2.11) facilitate a Galerkin method of the type described in [Temam2001, Chapter 3]. In this way, one obtains approximate solutions (𝒖k,𝑩k)k(\bm{u}^{k},\bm{B}^{k})_{k\in\mathbb{N}} to (2.9) that are bounded in L((0,T);L2())L2((0,T);H1()){\rm L}^{\infty}((0,T);{\rm L}^{2}(\mathcal{E}))\cap{\rm L}^{2}((0,T);{\rm H}^{1}(\mathcal{E})), satisfy a discrete version of (2.10), and converge in L2((0,T);L2()){\rm L}^{2}((0,T);{\rm L}^{2}(\mathcal{E})) to a Leray–Hopf weak solution (𝒖,𝑩)𝒳T×𝒳T(\bm{u},\bm{B})\in\mathscr{X}_{T}\times\mathscr{X}_{T} as k+k\to+\infty. For passing the limit k+k\to+\infty in the discrete version of the energy inequality (2.10), one needs to show

ν1st𝝆1(𝒖k,𝑩k)𝒖kdSdt+ν2μst𝝆2(𝒖k,𝑩k)𝑩kdSdtν1st𝝆1(𝒖,𝑩)𝒖dSdt+ν2μst𝝆2(𝒖,𝑩)𝑩dSdt, as k+.\nu_{1}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{1}(\bm{u}^{k},\bm{B}^{k})\cdot\bm{u}^{k}\,{{\rm d}S}\,{{\rm d}t}+\nu_{2}\mu\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{2}(\bm{u}^{k},\bm{B}^{k})\cdot\bm{B}^{k}\,{{\rm d}S}\,{{\rm d}t}\\ \longrightarrow\nu_{1}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{1}(\bm{u},\bm{B})\cdot\bm{u}\,{{\rm d}S}\,{{\rm d}t}+\nu_{2}\mu\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}_{2}(\bm{u},\bm{B})\cdot\bm{B}\,{{\rm d}S}\,{{\rm d}t},\,\mbox{ as }k\to+\infty.

To this end, if 𝒉k\bm{h}^{k} denotes either 𝒖k\bm{u}^{k} or 𝑩k\bm{B}^{k}, and 𝒉\bm{h} represents either 𝒖\bm{u} or 𝑩\bm{B}, then, by means of trace theorems and interpolation, one has

𝒉k𝒉L2((0,T);L2())2\displaystyle\|\bm{h}^{k}-\bm{h}\|_{{\rm L}^{2}((0,T);{\rm L}^{2}(\partial\mathcal{E}))}^{2} 𝒉k𝒉L2((0,T);L2())𝒉k𝒉L2((0,T);H1())\displaystyle\leq\|\bm{h}^{k}-\bm{h}\|_{{\rm L}^{2}((0,T);{\rm L}^{2}(\mathcal{E}))}\|\bm{h}^{k}-\bm{h}\|_{{\rm L}^{2}((0,T);{\rm H}^{1}(\mathcal{E}))} (2.12)
C𝒉k𝒉L2((0,T);L2())0,k+,\displaystyle\leq C\|\bm{h}^{k}-\bm{h}\|_{{\rm L}^{2}((0,T);{\rm L}^{2}(\mathcal{E}))}\longrightarrow 0,\quad k\longrightarrow+\infty,

which implies for (𝒈1,𝒈2)=(𝒖,𝑩)(\bm{g}^{1},\bm{g}^{2})=(\bm{u},\bm{B}) and (𝒈1,k,𝒈2,k)=(𝒖k,𝑩k)(\bm{g}^{1,k},\bm{g}^{2,k})=(\bm{u}^{k},\bm{B}^{k}) that

st|[𝑴i𝒖k+𝑳i𝑩k]tan𝒈i,k[𝑴i𝒖+𝑳i𝑩]tan𝒈i|dSdrst|[(𝑴i(𝒖k𝒖)+𝑳i(𝑩k𝑩))]tan𝒈i,k|dSdr+st|[𝑴i𝒖+𝑳i𝑩]tan(𝒈i𝒈i,k)|dSdr0 as k+,i=1,2.\int_{s}^{t}\int_{\partial\mathcal{E}}\left|\left[\bm{M}_{i}\bm{u}^{k}+\bm{L}_{i}\bm{B}^{k}\right]_{\operatorname{tan}}\cdot\bm{g}^{i,k}-\left[\bm{M}_{i}\bm{u}+\bm{L}_{i}\bm{B}\right]_{\operatorname{tan}}\cdot\bm{g}^{i}\right|\,{{\rm d}S}{{\rm d}r}\\ \begin{aligned} &\leq\int_{s}^{t}\int_{\partial\mathcal{E}}\left|\left[(\bm{M}_{i}(\bm{u}^{k}-\bm{u})+\bm{L}_{i}(\bm{B}^{k}-\bm{B}))\right]_{\operatorname{tan}}\cdot\bm{g}^{i,k}\right|\,{{\rm d}S}{{\rm d}r}\\ &\quad+\int_{s}^{t}\int_{\partial\mathcal{E}}\left|\left[\bm{M}_{i}\bm{u}+\bm{L}_{i}\bm{B}\right]_{\operatorname{tan}}\cdot(\bm{g}^{i}-\bm{g}^{i,k})\right|\,{{\rm d}S}{{\rm d}r}\,\longrightarrow 0\,\mbox{ as }k\longrightarrow+\infty,\,i=1,2.\end{aligned}

2.4.2 A pressure-like gradient in the induction equation

It is important to verify that sufficiently regular functions which satisfy the variational formulation (2.9) are classical solutions to the original problem (2.8). On the one hand, if the pair (𝒖,𝑩)(\bm{u},\bm{B}) possesses the necessary regularity and satisfies (2.9), then (𝒖,𝑩)(\bm{u},\bm{B}) also classically obeys a version of (2.8) where the induction equation is replaced by

t𝑩ν2Δ𝑩+(𝒖)𝑩(𝑩)𝒖+q=𝜼.\partial_{t}\bm{B}-\nu_{2}\Delta\bm{B}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{B}-(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{u}+\bm{\mathrm{\nabla}}q=\bm{\eta}. (2.13)

On the other hand, because 𝝍\bm{\psi} in (2.9) is divergence-free and tangential at \partial\mathcal{E}, one cannot generally conclude that (2.8) is satisfied. However, let us now suppose that 𝑴2=𝑳2=𝟎\bm{M}_{2}=\bm{L}_{2}=\bm{0}, and that the control 𝜼\bm{\eta} in (2.8) additionally obeys

𝜼=0inT,𝜼𝒏=0onΣT.\bm{\mathrm{\nabla}}\cdot{\bm{\eta}}=0\,{\rm in}\;\mathcal{E}_{T},\quad\bm{\eta}\cdot\bm{n}=0\,{\rm on}\;\Sigma_{T}. (2.14)

In this situation, by acting with the divergence operator on (2.13), while also taking the normal traces of (2.13) at \partial\mathcal{E}, one finds that q(,t)q(\cdot,t) solves the Neumann problem

{Δq(,t)=0 in ,q(,t)𝒏=0 on ,\begin{cases}\Delta q(\cdot,t)=0&\mbox{ in }\mathcal{E},\\ \bm{\mathrm{\nabla}}q(\cdot,t)\cdot\bm{n}=0&\mbox{ on }\partial\mathcal{E},\end{cases} (2.15)

hence q(,t)=0\bm{\mathrm{\nabla}}q(\cdot,t)=0 holds in T\mathcal{E}_{T}.

Remark 2.4.

If 𝑴2𝟎\bm{M}_{2}\neq\bm{0} or 𝑳2𝟎\bm{L}_{2}\neq\bm{0}, even for the uncontrolled model with 𝝃=𝜼=𝟎\bm{\xi}=\bm{\eta}=\bm{0} in T\mathcal{E}_{T}, we shall use the modified induction equation (2.13). Indeed, assuming, e.g., for N=2N=2, that there would exist a classical solution (𝒖,𝑩)(\bm{u},\bm{B}) to (2.8) on a short time interval, then necessarily Δ𝑩𝒏=𝜼𝒏\Delta\bm{B}\cdot\bm{n}=\bm{\eta}\cdot\bm{n} on ΣT\Sigma_{T}. Since 𝜼\bm{\eta} is supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, it is unclear whether this could contradict

Δ𝑩𝒏=(𝑩)𝒏=2([𝑴2𝒖+𝑳2𝑩]tan)𝒏 on ΣT.\Delta\bm{B}\cdot\bm{n}=-\bm{\mathrm{\nabla}}^{\perp}\left(\bm{\mathrm{\nabla}}\wedge{\bm{B}}\right)\cdot\bm{n}=-2\bm{\mathrm{\nabla}}^{\perp}\left([\bm{M}_{2}\bm{u}+\bm{L}_{2}\bm{B}]_{\operatorname{tan}}\right)\cdot\bm{n}\mbox{ on }\Sigma_{T}.

For instance, if 𝑴2\bm{M}_{2} is the identity matrix and 𝑳2=𝟎\bm{L}_{2}=\bm{0}, then it would follow for 𝜼=𝟎\bm{\eta}=\bm{0} that 𝒖\bm{u} is a constant of time at ΣT\Sigma_{T}; thus, 𝒖\bm{u} would satisfy a Navier-slip-with-friction and a Dirichlet boundary condition at the same time.

Despite that possibly q𝟎\bm{\mathrm{\nabla}}q\neq\bm{0} when 𝑴2𝟎\bm{M}_{2}\neq\bm{0} or 𝑳2𝟎\bm{L}_{2}\neq\bm{0}, it still remains an interesting question whether magnetic field interior controls with (2.14) can be constructed, as this would provide more insights on the nature of the term q\bm{\mathrm{\nabla}}q in a control theoretic context. In order to obtain a partial result in that direction (cf. 2.5), we assume for now that N=2N=2 and let (𝒈,𝒉)𝒬(𝒈,𝒉)(\bm{g},\bm{h})\mapsto\bm{\mathrm{\nabla}}\mathcal{Q}(\bm{g},\bm{h}) be the linear operator that assigns to (𝒈,𝒉)H1()H()(\bm{g},\bm{h})\in{\rm H}^{1}(\mathcal{E})\cap{\rm H}(\mathcal{E}) the gradient of the (unique up to a constant) solution to the Neumann problem

{Δ𝒬(𝒈,𝒉)=0 in ,𝒬(𝒈,𝒉)𝒏=2ν2([𝑴2𝒈+𝑳2𝒉]tan)𝒏 on .\begin{cases}\Delta\mathcal{Q}(\bm{g},\bm{h})=0&\mbox{ in }\mathcal{E},\\ \bm{\mathrm{\nabla}}\mathcal{Q}(\bm{g},\bm{h})\cdot\bm{n}=-2\nu_{2}\bm{\mathrm{\nabla}}^{\perp}\left([\bm{M}_{2}\bm{g}+\bm{L}_{2}\bm{h}]_{\operatorname{tan}}\right)\cdot\bm{n}&\mbox{ on }\partial\mathcal{E}.\end{cases}

Then, concerning the general case where 𝑴2𝟎\bm{M}_{2}\neq\bm{0} or 𝑳2𝟎\bm{L}_{2}\neq\bm{0}, the problem (2.8) with induction equation replaced by (2.13) can be reformulated as

{t𝒖ν1Δ𝒖+(𝒖)𝒖μ(𝑩)𝑩+p=𝝃 in T,t𝑩ν2Δ𝑩+(𝒖)𝑩(𝑩)𝒖+𝒬(𝒖,𝑩)=𝜼 in T,𝒖=𝑩=0 in T,𝒖𝒏=𝑩𝒏=0 on ΣT,𝓝1(𝒖,𝑩)=𝓝2(𝒖,𝑩)=𝟎 on ΣT,𝒖(,0)=𝒖0,𝑩(,0)=𝑩0 in .\begin{cases}\partial_{t}\bm{u}-\nu_{1}\Delta\bm{u}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{u}-\mu(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{B}+\bm{\mathrm{\nabla}}p=\bm{\xi}&\mbox{ in }\mathcal{E}_{T},\\ \partial_{t}\bm{B}-\nu_{2}\Delta\bm{B}+(\bm{u}\cdot\bm{\mathrm{\nabla}})\bm{B}-(\bm{B}\cdot\bm{\mathrm{\nabla}})\bm{u}+\bm{\mathrm{\nabla}}\mathcal{Q}(\bm{u},\bm{B})=\bm{\eta}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{u}=\bm{\mathrm{\nabla}}\cdot\bm{B}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{u}\cdot\bm{n}=\bm{B}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{\mathcal{N}}_{1}(\bm{u},\bm{B})=\bm{\mathcal{N}}_{2}(\bm{u},\bm{B})=\bm{0}&\mbox{ on }\Sigma_{T},\\ \bm{u}(\cdot,0)=\bm{u}_{0},\,\bm{B}(\cdot,0)=\bm{B}_{0}&\mbox{ in }\mathcal{E}.\end{cases} (2.16)

By analysis similar to the 22D incompressible Navier–Stokes system, weak solutions to (2.16) are unique and initial data 𝒖0,𝑩0H1()H()\bm{u}_{0},\bm{B}_{0}\in{\rm H}^{1}(\mathcal{E})\cap{\rm H}(\mathcal{E}) give rise to strong solutions when (2.14) is satisfied. In this article we shall prove in parallel to Theorems 1.2 and 1.5 the following controllability result for (2.16) via distributed controls 𝝃\bm{\xi} and 𝜼\bm{\eta} satisfying (2.14).

Theorem 2.5.

Let 2\mathcal{E}\subset\mathbb{R}^{2} be an annulus and ω\omega\subset\mathcal{E} an open simply-connected control region such that ω\mathcal{E}\setminus\omega is simply-connected and ω\omega contains an annulus sector. The friction coefficient matrices are arbitrarily fixed with

𝑴1,𝑳1,𝑳2C(;2×2),𝑴2ρ𝑰,ρ,𝑰[1001].\bm{M}_{1},\bm{L}_{1},\bm{L}_{2}\in{\rm C}^{\infty}(\mathcal{E};\mathbb{R}^{2\times 2}),\quad\bm{M}_{2}\coloneqq\rho\bm{I},\quad\rho\in\mathbb{R},\quad\bm{I}\coloneqq\begin{bmatrix}1&0\\ 0&1\end{bmatrix}.

Then, for any control time Tctrl>0T_{\operatorname{ctrl}}>0, accuracy parameter δ>0\delta>0, and

  • initial states 𝒖0,𝑩0H()H3()\bm{u}_{0},\bm{B}_{0}\in{\rm H}(\mathcal{E})\cap{\rm H}^{3}(\mathcal{E}) with 𝑩0=ψ0\bm{B}_{0}=\bm{\mathrm{\nabla}}^{\perp}\psi_{0} and ψ0\psi_{0} vanishing on \partial\mathcal{E},

  • target states 𝒖1,𝑩1H()\bm{u}_{1},\bm{B}_{1}\in{\rm H}(\mathcal{E}) with 𝑩1=ψ1\bm{B}_{1}=\bm{\mathrm{\nabla}}^{\perp}\psi_{1} for a stream function ψ1\psi_{1} that vanishes on \partial\mathcal{E},

there exist controls 𝛏,𝛈C0([0,Tctrl];H2(;N))\bm{\xi},\bm{\eta}\in{\rm C}^{0}([0,T_{\operatorname{ctrl}}];{\rm H}^{2}(\mathcal{E};\mathbb{R}^{N})), supported in ω¯×[0,T]\overline{\omega}\times[0,T] and obeying (2.14), such that the solution (𝐮,𝐁)(\bm{u},\bm{B}) to (2.16) satisfies the terminal condition

𝒖(,Tctrl)𝒖1L2()+𝑩(,Tctrl)𝑩1L2()<δ.\|\bm{u}(\cdot,T_{\operatorname{ctrl}})-\bm{u}_{1}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{B}(\cdot,T_{\operatorname{ctrl}})-\bm{B}_{1}\|_{{\rm L}^{2}(\mathcal{E})}<\delta.
\mathcal{E}ω\omega
Figure 4: Sketch of an annulus \mathcal{E} with control region ω\omega as required by 2.5. In order to integrate 2.5 into the notational framework of Theorems 1.2 and 1.5, one can identify Ω=ω\Omega=\mathcal{E}\setminus\omega.

2.4.3 Change of unknowns

A few exceptions aside, the subsequent analysis can be streamlined by introducing the symmetrized notations

𝒛±𝒖±μ𝑩,p±=p±μq,𝝃±𝝃±μ𝜼,λ±ν1±ν22,𝒛0±𝒖0±μ𝑩0,\begin{gathered}\bm{z}^{\pm}\coloneqq\bm{u}\pm\sqrt{\mu}\bm{B},\quad p^{\pm}=p\pm\sqrt{\mu}q,\quad\bm{\xi}^{\pm}\coloneqq\bm{\xi}\pm\sqrt{\mu}\bm{\eta},\\ \lambda^{\pm}\coloneqq\frac{\nu_{1}\pm\nu_{2}}{2},\quad\bm{z}^{\pm}_{0}\coloneqq\bm{u}_{0}\pm\sqrt{\mu}\bm{B}_{0},\end{gathered} (2.17)

as well as

𝓝±(𝒉+,𝒉)[𝐃(𝒉±)𝒏(𝒙)+𝑾𝒉±+𝑴±(𝒙)𝒉++𝑳±𝒉]tan\begin{gathered}\bm{\mathcal{N}}^{\pm}(\bm{h}^{+},\bm{h}^{-})\coloneqq\left[\bm{\mathrm{D}}(\bm{h}^{\pm})\bm{n}(\bm{x})+\bm{W}_{\mathcal{E}}\bm{h}^{\pm}+\bm{M}^{\pm}(\bm{x})\bm{h}^{+}+\bm{L}^{\pm}\bm{h}^{-}\right]_{\operatorname{tan}}\end{gathered}

and

𝝆±(𝒉+,𝒉)2[𝑴±(𝒙)𝒉++𝑳±(𝒙)𝒉]tan,\bm{\rho}^{\pm}(\bm{h}^{+},\bm{h}^{-})\coloneqq 2\left[\bm{M}^{\pm}(\bm{x})\bm{h}^{+}+\bm{L}^{\pm}(\bm{x})\bm{h}^{-}\right]_{\operatorname{tan}},

where

𝑴±μ𝑴1±μ𝑴2+L1±L22μ,𝑳±μ𝑴1±μ𝑴2L1L22μ.\bm{M}^{\pm}\coloneqq\frac{\sqrt{\mu}\bm{M}_{1}\pm\sqrt{\mu}\bm{M}_{2}+L_{1}\pm L_{2}}{2\sqrt{\mu}},\quad\bm{L}^{\pm}\coloneqq\frac{\sqrt{\mu}\bm{M}_{1}\pm\sqrt{\mu}\bm{M}_{2}-L_{1}\mp L_{2}}{2\sqrt{\mu}}.

By utilizing the inner product structure of L2(){\rm L}^{2}(\mathcal{E}), one can verify that the energy

E(t)𝒖(,t)L2()2+μ𝑩(,t)L2()2+2st(ν1|×𝒖|2+ν2|×𝑩|2)d𝒙dtE(t)\coloneqq\|\bm{u}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\mu\|\bm{B}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+2\int_{s}^{t}\int_{\mathcal{E}}\left(\nu_{1}|\bm{\mathrm{\nabla}}\times{\bm{u}}|^{2}+\nu_{2}|\bm{\mathrm{\nabla}}\times{\bm{B}}|^{2}\right)\,{{\rm d}\bm{x}}\,{{\rm d}t}

satisfies

E(t)\displaystyle E(t) =12{+,}𝒛(,t)L2()2+λ+{+,}0t×𝒛×𝒛d𝒙ds\displaystyle=\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}\cdot\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}\,{{\rm d}\bm{x}}{{\rm d}s} (2.18)
+λ(,){(+,),(,+)}0t×𝒛×𝒛d𝒙ds.\displaystyle\quad+\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\triangle}}\cdot\bm{\mathrm{\nabla}}\times{\bm{z}^{\circ}}\,{{\rm d}\bm{x}}{{\rm d}s}.

Therefore, if (𝒖,𝑩)𝒳T×𝒳T(\bm{u},\bm{B})\in\mathscr{X}_{T}\times\mathscr{X}_{T} is a Leray–Hopf weak solution to (2.8), by inserting (2.18) to (2.10) and using the transformations from (2.17), it follows for almost all 0stT0\leq s\leq t\leq T the inequality

12{+,}𝒛(,t)L2()2+λ+{+,}st×𝒛×𝒛d𝒙dr+λ(,){(+,),(,+)}st×𝒛×𝒛d𝒙dr{+,}(12𝒛(,s)L2()2+st𝝃𝒛d𝒙dr+λ+st𝝆(𝒛+,𝒛)𝒛dSdr)+λ(,){(+,),(,+)}st𝝆(𝒛+,𝒛)𝒛dSdr.\begin{gathered}\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{s}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}\cdot\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}\,{{\rm d}\bm{x}}{{\rm d}r}\\ +\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{s}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\triangle}}\cdot\bm{\mathrm{\nabla}}\times{\bm{z}^{\circ}}\,{{\rm d}\bm{x}}{{\rm d}r}\\ \leq\sum\limits_{\square\in\{+,-\}}\left(\frac{1}{2}\|\bm{z}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\int_{s}^{t}\int_{\mathcal{E}}\bm{\xi}^{\square}\cdot\bm{z}^{\square}\,{{\rm d}\bm{x}}{{\rm d}r}+\lambda^{+}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\square}(\bm{z}^{+},\bm{z}^{-})\cdot\bm{z}^{\square}\,{{\rm d}S}{{\rm d}r}\right)\\ +\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\triangle}(\bm{z}^{+},\bm{z}^{-})\cdot\bm{z}^{\circ}\,{{\rm d}S}{{\rm d}r}.\end{gathered} (2.19)

2.4.4 The case of 1.5

Given the assumptions of 1.5, an application of 2.2 provides initial data extensions 𝒖0,𝑩0L2()\bm{u}_{0},\bm{B}_{0}\in{\rm L}^{2}(\mathcal{E}) with 𝒖0𝒏=𝑩0𝒏=0\bm{u}_{0}\cdot\bm{n}=\bm{B}_{0}\cdot\bm{n}=0 at \partial\mathcal{E}. Moreover, the scalar functions 𝒖0\bm{\mathrm{\nabla}}\cdot{\bm{u}_{0}} and 𝑩0\bm{\mathrm{\nabla}}\cdot{\bm{B}_{0}} belong to C(¯;){\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}) and are supported in Ω¯\mathcal{E}\setminus\overline{\Omega}. A weak controlled trajectory for (1.8) is then defined as any pair

(𝒖,𝑩)[Cw0([0,T];Lc2)L2((0,T);H1(Ω))]2,(\bm{u},\bm{B})\in\left[{\rm C}^{0}_{w}([0,T];{\rm L}^{2}_{\operatorname{c}})\cap{\rm L}^{2}((0,T);{\rm H}^{1}(\Omega))\right]^{2},

with

𝒖=𝒛++𝒛2|Ω,𝑩=𝒛+𝒛μ2|Ω,\bm{u}=\frac{\bm{z}^{+}+\bm{z}^{-}}{2}|_{\Omega},\quad\bm{B}=\frac{\bm{z}^{+}-\bm{z}^{-}}{\sqrt{\mu}2}|_{\Omega},

where 𝒛±Cw0([0,T];L2())L2((0,T);H1())\bm{z}^{\pm}\in{\rm C}^{0}_{w}([0,T];{\rm L}^{2}(\mathcal{E}))\cap{\rm L}^{2}((0,T);{\rm H}^{1}(\mathcal{E})) solve in the below specified Leray–Hopf weak sense the Elsasser system111Systems of the form (2.20), but with different boundary conditions, have been considered by Elsasser in [Elsasser1950].

{t𝒛±Δ(λ±𝒛++λ𝒛)+(𝒛)𝒛±+p±=𝝃± in T,𝒛±=σ± in T,𝒛±𝒏=0 on ΣT,𝓝±(𝒛+,𝒛)=𝟎 on ΣT,𝒛±(,0)=𝒛0±𝒖0±μ𝑩0 in ,\begin{cases}\partial_{t}\bm{z}^{\pm}-\Delta(\lambda^{\pm}\bm{z}^{+}+\lambda^{\mp}\bm{z}^{-})+(\bm{z}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm}+\bm{\mathrm{\nabla}}p^{\pm}=\bm{\xi}^{\pm}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{z}^{\pm}=\sigma^{\pm}&\mbox{ in }\mathcal{E}_{T},\\ \bm{z}^{\pm}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{\mathcal{N}}^{\pm}(\bm{z}^{+},\bm{z}^{-})=\bm{0}&\mbox{ on }\Sigma_{T},\\ \bm{z}^{\pm}(\cdot,0)=\bm{z}_{0}^{\pm}\coloneqq\bm{u}_{0}\pm\sqrt{\mu}\bm{B}_{0}&\mbox{ in }\mathcal{E},\end{cases} (2.20)

where 𝝃±=𝝃±μ𝜼\bm{\xi}^{\pm}=\bm{\xi}\pm\sqrt{\mu}\bm{\eta}. In (2.20), the boundary operators 𝓝±\bm{\mathcal{N}}^{\pm} are as defined in Section 2.4.3. Moreover, the functions σ±:¯×[0,T]\sigma^{\pm}\colon\overline{\mathcal{E}}\times[0,T]\longrightarrow\mathbb{R} are assumed to be smooth, supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, and of zero average in \mathcal{E}, that is i=1K(Ω)Ωiσ±d𝒙=0\sum_{i=1}^{K(\Omega)}\smallint_{\Omega^{i}}\sigma^{\pm}\,{{\rm d}\bm{x}}=0. Since 𝑴±\bm{M}^{\pm} and 𝑳±\bm{L}^{\pm} are likewise smooth, a notion for weak solutions to (2.20) can now be introduced similarly to the Navier–Stokes case in [CoronMarbachSueur2020]. In order to lift the nonzero divergence constraints, let 𝒛σ±\bm{z}_{\sigma}^{\pm} solve the linear Elsasser system

{t𝒛σ±Δ(λ±𝒛σ++λ𝒛σ)+pσ±=𝟎 in T,𝒛σ±=σ± in T,𝒛σ±𝒏=0 on ΣT,(×𝒛σ±)×𝒏𝝆±(𝒛σ+,𝒛σ)=𝟎 on ΣT,𝒛σ±(,0)=𝒛0± in .\begin{cases}\partial_{t}\bm{z}_{\sigma}^{\pm}-\Delta(\lambda^{\pm}\bm{z}_{\sigma}^{+}+\lambda^{\mp}\bm{z}_{\sigma}^{-})+\bm{\mathrm{\nabla}}p_{\sigma}^{\pm}=\bm{0}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{z}_{\sigma}^{\pm}=\sigma^{\pm}&\mbox{ in }\mathcal{E}_{T},\\ \bm{z}_{\sigma}^{\pm}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ (\bm{\mathrm{\nabla}}\times{\bm{z}_{\sigma}^{\pm}})\times\bm{n}-\bm{\rho}^{\pm}(\bm{z}_{\sigma}^{+},\bm{z}_{\sigma}^{-})=\bm{0}&\mbox{ on }\Sigma_{T},\\ \bm{z}_{\sigma}^{\pm}(\cdot,0)=\bm{z}_{0}^{\pm}&\mbox{ in }\mathcal{E}.\end{cases} (2.21)

For defining a weak formulation for (2.21), it is of advantage to first eliminate the inhomogeneous divergence data σ±\sigma^{\pm}. Hereto, one may decompose 𝒛σ±𝒁σ±+θσ±\bm{z}_{\sigma}^{\pm}\coloneqq\bm{Z}^{\pm}_{\sigma}+\bm{\mathrm{\nabla}}\theta^{\pm}_{\sigma}, where θσ±(,t)\theta_{\sigma}^{\pm}(\cdot,t) are for each t[0,T]t\in[0,T] smooth solutions to the elliptic Neumann problems

{Δθσ±(,t)=σ±(,t) in ,θσ±(,t)𝒏(𝒙)=0 on ,\begin{cases}\Delta\theta_{\sigma}^{\pm}(\cdot,t)=\sigma^{\pm}(\cdot,t)&\mbox{ in }\mathcal{E},\\ \bm{\mathrm{\nabla}}\theta_{\sigma}^{\pm}(\cdot,t)\cdot\bm{n}(\bm{x})=0&\mbox{ on }\partial\mathcal{E},\\ \end{cases} (2.22)

while 𝒁σ±\bm{Z}^{\pm}_{\sigma} obey the inhomogeneous system

{t𝒁σ±Δ(λ±𝒁σ++λ𝒁σ)+pσ±=𝚯±tθσ±+Δ(λ±θσ++λθσ) in T,𝒁σ±=0 in T,𝒁σ±𝒏=0 on ΣT,(×𝒁σ±)×𝒏𝝆±(𝒁σ+,𝒁σ)=𝝆±(θσ+,θσ) on ΣT,𝒁σ±(,0)=𝒛0±θ±(,0) in .\begin{cases}\partial_{t}\bm{Z}^{\pm}_{\sigma}-\Delta(\lambda^{\pm}\bm{Z}_{\sigma}^{+}+\lambda^{\mp}\bm{Z}_{\sigma}^{-})+\bm{\mathrm{\nabla}}p^{\pm}_{\sigma}=\bm{\Theta}^{\pm}\coloneqq-\partial_{t}\bm{\mathrm{\nabla}}\theta_{\sigma}^{\pm}+\Delta(\lambda^{\pm}\bm{\mathrm{\nabla}}\theta_{\sigma}^{+}+\lambda^{\mp}\bm{\mathrm{\nabla}}\theta_{\sigma}^{-})\!\!&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot{\bm{Z}^{\pm}_{\sigma}}=0\!\!&\mbox{ in }\mathcal{E}_{T},\\ \bm{Z}^{\pm}_{\sigma}\cdot\bm{n}=0\!\!&\mbox{ on }\Sigma_{T},\\ (\bm{\mathrm{\nabla}}\times{\bm{Z}}_{\sigma}^{\pm})\times\bm{n}-\bm{\rho}^{\pm}(\bm{Z}_{\sigma}^{+},\bm{Z}_{\sigma}^{-})=\bm{\rho}^{\pm}(\bm{\mathrm{\nabla}}\theta_{\sigma}^{+},\bm{\mathrm{\nabla}}\theta_{\sigma}^{-})\!\!&\mbox{ on }\Sigma_{T},\\ \bm{Z}^{\pm}_{\sigma}(\cdot,0)=\bm{z}^{\pm}_{0}-\bm{\mathrm{\nabla}}\theta^{\pm}(\cdot,0)\!\!&\mbox{ in }\mathcal{E}.\end{cases}

The regularity of weak solutions to this linear problem can be investigated with the help of estimates that are known for the Navier–Stokes system (cf. B.1). As a result, one finds that 𝒁σ±\bm{Z}^{\pm}_{\sigma} are smooth for t>0t>0. Finally, the ansatz 𝒛±=𝒛~±+𝒛σ±\bm{z}^{\pm}=\widetilde{\bm{z}}^{\pm}+\bm{z}_{\sigma}^{\pm} for the solutions of (2.20) provides a description of 𝒛~±\widetilde{\bm{z}}^{\pm} by means of the perturbed Elsasser equations

{t𝒛~±Δ(λ±𝒛~++λ𝒛~)+(𝒛~+𝒛σ)(𝒛~±+𝒛σ±)+p~±=𝝃± in T,𝒛~±=0 in T𝓝±(𝒛~+,𝒛~)=𝟎 on ΣT,𝒛~±(,0)=𝟎 in .\begin{cases}\partial_{t}\widetilde{\bm{z}}^{\pm}-\Delta(\lambda^{\pm}\widetilde{\bm{z}}^{+}+\lambda^{\mp}\widetilde{\bm{z}}^{-})+(\widetilde{\bm{z}}^{\mp}+\bm{z}_{\sigma}^{\mp})\cdot\bm{\mathrm{\nabla}}(\widetilde{\bm{z}}^{\pm}+\bm{z}_{\sigma}^{\pm})+\bm{\mathrm{\nabla}}\widetilde{p}^{\pm}=\bm{\xi}^{\pm}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\widetilde{\bm{z}}^{\pm}=0&\mbox{ in }\mathcal{E}_{T}\\ \bm{\mathcal{N}}^{\pm}(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})=\bm{0}&\mbox{ on }\Sigma_{T},\\ \widetilde{\bm{z}}^{\pm}(\cdot,0)=\bm{0}&\mbox{ in }\mathcal{E}.\end{cases}

A Leray–Hopf weak solution to the above system is any pair (𝒛~+,𝒛~)𝒳T×𝒳T(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})\in\mathscr{X}_{T}\times\mathscr{X}_{T} which satisfies for all 𝝋±C0(¯×[0,T);N)C([0,T];H())\bm{\varphi}^{\pm}\in{\rm C}^{\infty}_{0}(\overline{\mathcal{E}}\times[0,T);\mathbb{R}^{N})\cap{\rm C}^{\infty}([0,T];{\rm H}(\mathcal{E})) and almost all t[0,T]t\in[0,T] the variational formulation

𝒛~±(𝒙,t)𝝋±(𝒙,t)d𝒙0t𝒛~±t𝝋±d𝒙dt+λ±0t(×𝒛~+)(×𝝋±)d𝒙dt+λ0t(×𝒛~)(×𝝋±)d𝒙dtλ±0t𝝆+(𝒛~+,𝒛~)𝝋±dSdtλ0t𝝆(𝒛~+,𝒛~)𝝋±dSdt+0t((𝒛~)𝒛~±+(𝒛~)𝒛σ±+(𝒛σ)𝒛~±+(𝒛σ)𝒛σ±)𝝋±d𝒙dt=0t𝝃±𝝋±d𝒙dt,\begin{gathered}\int_{\mathcal{E}}\widetilde{\bm{z}}^{\pm}(\bm{x},t)\cdot\bm{\varphi}^{\pm}(\bm{x},t)\,{{\rm d}\bm{x}}-\int_{0}^{t}\int_{\mathcal{E}}\widetilde{\bm{z}}^{\pm}\cdot\partial_{t}\bm{\varphi}^{\pm}\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ +\lambda^{\pm}\int_{0}^{t}\int_{\mathcal{E}}(\bm{\mathrm{\nabla}}\times{\widetilde{\bm{z}}^{+}})\cdot(\bm{\mathrm{\nabla}}\times{\bm{\varphi}^{\pm}})\,{{\rm d}\bm{x}}\,{{\rm d}t}+\lambda^{\mp}\int_{0}^{t}\int_{\mathcal{E}}(\bm{\mathrm{\nabla}}\times{\widetilde{\bm{z}}^{-}})\cdot(\bm{\mathrm{\nabla}}\times{\bm{\varphi}^{\pm}})\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ -\lambda^{\pm}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{+}(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})\cdot\bm{\varphi}^{\pm}\,{{\rm d}S}\,{{\rm d}t}-\lambda^{\mp}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{-}(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})\cdot\bm{\varphi}^{\pm}\,{{\rm d}S}\,{{\rm d}t}\\ +\int_{0}^{t}\int_{\mathcal{E}}\left((\widetilde{\bm{z}}^{\mp}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{z}}^{\pm}+(\widetilde{\bm{z}}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}_{\sigma}^{\pm}+(\bm{z}_{\sigma}^{\mp}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{z}}^{\pm}+(\bm{z}_{\sigma}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}_{\sigma}^{\pm}\right)\cdot\bm{\varphi}^{\pm}\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ =\int_{0}^{t}\int_{\mathcal{E}}\bm{\xi}^{\pm}\cdot\bm{\varphi}^{\pm}\,{{\rm d}\bm{x}}\,{{\rm d}t},\end{gathered} (2.23)

and for almost all 0stT0\leq s\leq t\leq T the energy inequality

{+,}𝒛~(,t)L2()2+{+,}(λ+λ)st|×(𝒛~+𝒛~)|2d𝒙dt{+,}(𝒛~(,s)L2()2+2λ+st𝝆(𝒛~+,𝒛~)𝒛~dSdt)+(,){(+,),(,+)}(2λst𝝆(𝒛~+,𝒛~)𝒛~dSdt+stσ|𝒛~|2d𝒙dt)2(,){(+,),(,+)}(st((𝒛~)𝒛σ+(𝒛σ)𝒛σ𝝃)𝒛~d𝒙dt).\begin{gathered}\sum\limits_{\square\in\{+,-\}}\|\widetilde{\bm{z}}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\sum\limits_{\square\in\{+,-\}}(\lambda^{+}\square\,\lambda^{-})\int_{s}^{t}\int_{\mathcal{E}}\left|\bm{\mathrm{\nabla}}\times{(\widetilde{\bm{z}}^{+}\square\,\widetilde{\bm{z}}^{-})}\right|^{2}\,{{\rm d}\bm{x}}\,{{\rm d}t}\\ \leq\sum\limits_{\square\in\{+,-\}}\left(\|\widetilde{\bm{z}}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+2\lambda^{+}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\square}(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})\cdot\widetilde{\bm{z}}^{\square}\,{{\rm d}S}\,{{\rm d}t}\right)\\ +\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\left(2\lambda^{-}\int_{s}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\triangle}(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})\cdot\widetilde{\bm{z}}^{\circ}\,{{\rm d}S}\,{{\rm d}t}+\int_{s}^{t}\int_{\mathcal{E}}\sigma^{\triangle}|\widetilde{\bm{z}}^{\circ}|^{2}\,{{\rm d}\bm{x}}\,{{\rm d}t}\right)\\ -2\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\left(\int_{s}^{t}\int_{\mathcal{E}}\left((\widetilde{\bm{z}}^{\triangle}\cdot\bm{\mathrm{\nabla}})\bm{z}_{\sigma}^{\circ}+(\bm{z}_{\sigma}^{\triangle}\cdot\bm{\mathrm{\nabla}})\bm{z}_{\sigma}^{\circ}-\bm{\xi}^{\circ}\right)\cdot\widetilde{\bm{z}}^{\circ}\,{{\rm d}\bm{x}}\,{{\rm d}t}\right).\end{gathered} (2.24)

Since the profiles 𝒛~σ±\widetilde{\bm{z}}^{\pm}_{\sigma} are smooth and 𝑳±,𝑴±C(¯;N×N)\bm{L}^{\pm},\bm{M}^{\pm}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N\times N}), the existence of (𝒛~+,𝒛~)𝒳T×𝒳T(\widetilde{\bm{z}}^{+},\widetilde{\bm{z}}^{-})\in\mathscr{X}_{T}\times\mathscr{X}_{T} satisfying (2.23) and (2.24) can be obtained through a Galerkin method as explained in Section 2.4.1.

Remark 2.6.

The weak formulation from Section 2.4.1 for (2.8) can be regarded as a special case of (2.23) and (2.24). The two formulations are presented separately in order to make a stronger distinction between the case without q\bm{\mathrm{\nabla}}q and non-physical situations, where even 𝑩0\bm{\mathrm{\nabla}}\cdot{\bm{B}}\neq 0 is possible in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}.

2.5 Brief description of the strategy

To prove Theorems 1.2, 1.5, and 2.5, we develop the approach from [CoronMarbachSueur2020]. Essentially, the time interval [0,Tctrl][0,T_{\operatorname{ctrl}}] will be divided into two sub-intervals [0,Treg][0,T_{\operatorname{reg}}] and (Treg,Tctrl](T_{\operatorname{reg}},T_{\operatorname{ctrl}}] which correspond to the two main stages of the control strategy.

Stage 1 (Section 4).

Leray–Hopf weak solutions to (2.8) or (2.20) with 𝝃=𝜼=𝟎\bm{\xi}=\bm{\eta}=\bm{0} are selected such that their state at t=Tregt=T_{\operatorname{reg}} belongs to H3()W(){\rm H}^{3}(\mathcal{E})\cap{\rm W}(\mathcal{E}) at a time Treg[0,Tctrl)T_{\operatorname{reg}}\in[0,T_{\operatorname{ctrl}}).

Stage 2 (Section 3).

During (Treg,Tctrl](T_{\operatorname{reg}},T_{\operatorname{ctrl}}], controls 𝝃\bm{\xi} and 𝜼\bm{\eta} are applied in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}. More precisely, we determine 𝝃\bm{\xi} and 𝜼\bm{\eta} such that each Leray–Hopf weak solution to (2.8) or (2.20), starting from H3()H(){\rm H}^{3}(\mathcal{E})\cap{\rm H}(\mathcal{E}) at t=Tregt=T_{\operatorname{reg}}, approaches the final state in L2(){\rm L}^{2}(\mathcal{E}) at t=Tt=T. As discussed in Section 2.4, for proving Theorems 1.2 and 2.5, we have to ensure that 𝜼\bm{\eta} is supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega} and obeys 𝜼=0\bm{\mathrm{\nabla}}\cdot{\bm{\eta}}=0 in \mathcal{E} and 𝜼𝒏=0\bm{\eta}\cdot\bm{n}=0 at \partial\mathcal{E}.

3 Approximate controllability between regular states

Let T>0T>0, δ>0\delta>0, and 𝒖0,𝑩0H3()W()\bm{u}_{0},\bm{B}_{0}\in{\rm H}^{3}(\mathcal{E})\cap{\rm W}(\mathcal{E}). Then, assuming that sufficiently regular 𝝃,𝜼\bm{\xi},\bm{\eta}, and σ±\sigma^{\pm} are given, the different configurations in Theorems 1.2, 1.5, and 2.5 are treated simultaneously as follows.

  • To show Theorems 1.2 and 2.5, the Leray–Hopf weak solution (𝒖,𝑩)𝒳T×𝒳T(\bm{u},\bm{B})\in\mathscr{X}^{T}_{\mathcal{E}}\times\mathscr{X}^{T}_{\mathcal{E}} to (2.8) with the data (𝒖0,𝑩0,𝝃,𝜼)(\bm{u}_{0},\bm{B}_{0},\bm{\xi},\bm{\eta}) is fixed and, by means of Section 2.4.3, rewritten in the symmetrized variables 𝒛±\bm{z}^{\pm}.

  • For proving 1.5, any Leray–Hopf weak solution (𝒛+,𝒛)𝒳T×𝒳T(\bm{z}^{+},\bm{z}^{-})\in\mathscr{X}^{T}_{\mathcal{E}}\times\mathscr{X}^{T}_{\mathcal{E}} to (2.20) with the data (𝒛0±=𝒖0±μ𝑩0,𝝃±=𝝃±μ𝜼,σ±)(\bm{z}^{\pm}_{0}=\bm{u}_{0}\pm\sqrt{\mu}\bm{B}_{0},\bm{\xi}^{\pm}=\bm{\xi}\pm\sqrt{\mu}\bm{\eta},\sigma^{\pm}) is fixed.

It will be shown that, if the a priori selected functions (𝝃,𝜼,σ±)(\bm{\xi},\bm{\eta},\sigma^{\pm}) are of a certain form, then 𝒛±\bm{z}^{\pm} satisfy

𝒛+(,T)L2()+𝒛(,T)L2()<δmin{1,μ}.\|\bm{z}^{+}(\cdot,T)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{z}^{-}(\cdot,T)\|_{{\rm L}^{2}(\mathcal{E})}<\delta\min\{1,\sqrt{\mu}\}. (3.1)

More generally, given arbitrary states 𝒛¯1±C(¯;N)H()\overline{\bm{z}}^{\pm}_{1}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N})\cap{\rm H}(\mathcal{E}), it will be demonstrated that for suitable choices (𝝃,𝜼,σ±)(\bm{\xi},\bm{\eta},\sigma^{\pm}) one has

𝒛+(,T)𝒛¯1+L2()+𝒛(,T)𝒛¯1L2()<δmin{1,μ},\|\bm{z}^{+}(\cdot,T)-\overline{\bm{z}}^{+}_{1}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{z}^{-}(\cdot,T)-\overline{\bm{z}}^{-}_{1}\|_{{\rm L}^{2}(\mathcal{E})}<\delta\min\{1,\sqrt{\mu}\}, (3.2)

which implies

𝒖(,T)𝒖¯1L2()+𝑩(,T)𝑩¯1L2()<δ,\|\bm{u}(\cdot,T)-\overline{\bm{u}}_{1}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{B}(\cdot,T)-\overline{\bm{B}}_{1}\|_{{\rm L}^{2}(\mathcal{E})}<\delta,

where

2𝒖(𝒛++𝒛),2μ𝑩(𝒛+𝒛),2𝒖¯1(𝒛¯1++𝒛¯1),2μ𝑩¯1(𝒛¯1+𝒛¯1).2\bm{u}\coloneqq(\bm{z}^{+}+\bm{z}^{-}),\quad 2\sqrt{\mu}\bm{B}\coloneqq(\bm{z}^{+}-\bm{z}^{-}),\quad 2\overline{\bm{u}}_{1}\coloneqq(\overline{\bm{z}}^{+}_{1}+\overline{\bm{z}}^{-}_{1}),\quad 2\sqrt{\mu}\overline{\bm{B}}_{1}\coloneqq(\overline{\bm{z}}^{+}_{1}-\overline{\bm{z}}^{-}_{1}).

3.1 Asymptotic expansions

The systems (2.8) and (2.20) are reformulated as a small-dissipation perturbation of an ideal MHD type system in the variables (𝒛+,𝒛)(\bm{z}^{+},\bm{z}^{-}). Hereto, for any small ϵ(0,1)\epsilon\in(0,1), the following scaling is performed

𝒛±,ϵ(𝒙,t)ϵ𝒛±(𝒙,ϵt),p±,ϵ(𝒙,t)ϵ2p±(𝒙,ϵt),σ±,ε(𝒙,t)εσ±(𝒙,εt),\begin{gathered}\bm{z}^{\pm,\epsilon}(\bm{x},t)\coloneqq\epsilon\bm{z}^{\pm}(\bm{x},\epsilon t),\quad p^{\pm,\epsilon}(\bm{x},t)\coloneqq\epsilon^{2}p^{\pm}(\bm{x},\epsilon t),\quad\sigma^{\pm,\varepsilon}(\bm{x},t)\coloneqq\varepsilon\sigma^{\pm}(\bm{x},\varepsilon t),\end{gathered} (3.3)

and for the controls

𝝃±,ϵ(𝒙,t)ϵ2𝝃±(𝒙,ϵt).\begin{gathered}\bm{\xi}^{\pm,\epsilon}(\bm{x},t)\coloneqq\epsilon^{2}\bm{\xi}^{\pm}(\bm{x},\epsilon t).\end{gathered} (3.4)

As a result, the profiles 𝒛±,ϵ\bm{z}^{\pm,\epsilon} are seen to satisfy a weak formulation and strong energy inequality for the following problem

{t𝒛±,ϵϵΔ(λ±𝒛+,ϵ+λ𝒛,ϵ)+(𝒛,ϵ)𝒛±,ϵ+p±,ϵ=𝝃±,ϵ in T/ϵ,𝒛±,ϵ=σ±,ϵ in T/ϵ,𝒛±,ϵ𝒏=0 on ΣT/ϵ,𝓝±(𝒛+,ϵ,𝒛,ϵ)=𝟎 on ΣT/ϵ,𝒛±,ϵ(,0)=ϵ𝒛0± in .\begin{cases}\partial_{t}\bm{z}^{\pm,\epsilon}-\epsilon\Delta(\lambda^{\pm}\bm{z}^{+,\epsilon}+\lambda^{\mp}\bm{z}^{-,\epsilon})+(\bm{z}^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm,\epsilon}+\bm{\mathrm{\nabla}}p^{\pm,\epsilon}=\bm{\xi}^{\pm,\epsilon}&\mbox{ in }\mathcal{E}_{T/\epsilon},\\ \bm{\mathrm{\nabla}}\cdot\bm{z}^{\pm,\epsilon}=\sigma^{\pm,\epsilon}&\mbox{ in }\mathcal{E}_{T/\epsilon},\\ \bm{z}^{\pm,\epsilon}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T/\epsilon},\\ \bm{\mathcal{N}}^{\pm}(\bm{z}^{+,\epsilon},\bm{z}^{-,\epsilon})=\bm{0}&\mbox{ on }\Sigma_{T/\epsilon},\\ \bm{z}^{\pm,\epsilon}(\cdot,0)=\epsilon\bm{z}_{0}^{\pm}&\mbox{ in }\mathcal{E}.\end{cases} (3.5)

In order to achieve the desired estimate (3.2), it shall be verified that, for 𝝃±,ε\bm{\xi}^{\pm,\varepsilon} and σ±,ϵ\sigma^{\pm,\epsilon} being of specific forms, all solutions (𝒛+,𝒛)𝒳T×𝒳T(\bm{z}^{+},\bm{z}^{-})\in\mathscr{X}^{T}_{\mathcal{E}}\times\mathscr{X}^{T}_{\mathcal{E}} to (3.5) obey

𝒛±,ϵ(𝒙,T/ϵ)𝒛¯1±(,T/ϵ)L2()=O(ϵ9/8).\|\bm{z}^{\pm,\epsilon}(\bm{x},T/\epsilon)-\overline{\bm{z}}^{\pm}_{1}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}=O(\epsilon^{9/8}). (3.6)

Hence, after choosing ϵ=ϵ(δ)>0\epsilon=\epsilon(\delta)>0 sufficiently small, the asymptotic behavior (3.6) implies 3.2. To prove (3.6) with 𝒛¯1±=𝟎\overline{\bm{z}}^{\pm}_{1}=\bm{0}, see Section 3.6 for the general case, the selected solution to (3.5) is expanded according to the ansatz

𝒛±,ϵ\displaystyle\bm{z}^{\pm,\epsilon} =𝒛0+ϵ𝒗±ϵ+ϵ𝒛±,1+ϵθ±,ϵ+ϵ𝒘±ϵ+ϵ𝒓±,ϵ,\displaystyle=\bm{z}^{0}+\sqrt{\epsilon}\left\llbracket\bm{v}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\bm{z}^{\pm,1}+\epsilon\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+\epsilon\left\llbracket\bm{w}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\bm{r}^{\pm,\epsilon}, (3.7)
p±,ϵ\displaystyle p^{\pm,\epsilon} =p0+ϵq±ϵ+ϵp±,1+ϵϑ±,ϵ+ϵπ±,ϵ,\displaystyle=p^{0}+\epsilon\left\llbracket q^{\pm}\right\rrbracket_{\epsilon}+\epsilon p^{\pm,1}+\epsilon\vartheta^{\pm,\epsilon}+\epsilon\pi^{\pm,\epsilon},
σ±,ϵ\displaystyle\sigma^{\pm,\epsilon} =σ0,\displaystyle=\sigma^{0},

and for the controls

𝝃±,ϵ=𝝃0+ϵ𝝁±ϵ+ϵ𝝃±,1+ϵ𝜻~±,ϵ.\bm{\xi}^{\pm,\epsilon}=\bm{\xi}^{0}+\sqrt{\epsilon}\left\llbracket\bm{\bm{\mu}}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\bm{\xi}^{\pm,1}+\epsilon\widetilde{\bm{\zeta}}^{\pm,\epsilon}. (3.8)

For all tTt\geq T, we fix

𝒛0(,t)=𝒛±,1(,t)=𝝃0(,t)=𝝃±,1(,t)=𝜻~±,ϵ(,t)=𝝁±(,t,)=𝟎\bm{z}^{0}(\cdot,t)=\bm{z}^{\pm,1}(\cdot,t)=\bm{\xi}^{0}(\cdot,t)=\bm{\xi}^{\pm,1}(\cdot,t)=\widetilde{\bm{\zeta}}^{\pm,\epsilon}(\cdot,t)=\bm{\mu}^{\pm}(\cdot,t,\cdot)=\bm{0}

and

p0(,t)=p±,1(,t)=σ0(,t)=0.p^{0}(\cdot,t)=p^{\pm,1}(\cdot,t)=\sigma^{0}(\cdot,t)=0.

On the time interval [0,T][0,T], the profiles

𝒛0:TN,p0:T,𝝃0:TN,σ0:T\bm{z}^{0}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}^{N},\quad p^{0}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R},\quad\bm{\xi}^{0}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}^{N},\quad\sigma^{0}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}

are chosen in the following way:

  • If Ω2\Omega\subset\mathbb{R}^{2} is the simply-connected domain from 1.2, then 𝒛0\bm{z}^{0}, p0p^{0}, 𝝃0\bm{\xi}^{0}, and σ0\sigma^{0} are determined by 3.5 below. Regarding the related situation of 2.5, see (3.12).

  • If Ω\Omega is a general smoothly bounded domain as in 1.5, then 𝒛0\bm{z}^{0}, p0p^{0}, 𝝃0\bm{\xi}^{0}, and σ0\sigma^{0} are determined by 3.2 below.

  • If Ω\Omega is the cylinder from 1.6, then 𝒛0\bm{z}^{0}, p0p^{0}, 𝝃0\bm{\xi}^{0}, and σ0\sigma^{0} are given by 3.4.

The profiles 𝒛±,1:TN\bm{z}^{\pm,1}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}^{N} are, later on, defined on [0,T][0,T] via 3.8 as the solutions to (3.14), together with associated pressure terms p±,1:Tp^{\pm,1}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}, and interior controls 𝝃±,1:TN\bm{\xi}^{\pm,1}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}^{N}. The vector field 𝒛0\bm{z}^{0} fails in general to obey the boundary condition 𝓝±(𝒛0,𝒛0)=𝟎\bm{\mathcal{N}}^{\pm}(\bm{z}^{0},\bm{z}^{0})=\bm{0} at \partial\mathcal{E}, giving rise to weak amplitude boundary layers in the zero dissipation limit ϵ0\epsilon\longrightarrow 0. These boundary layers are of a similar nature as those studied in [IftimieSueur2011, CoronMarbachSueur2020]. In the particular case 𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0)\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})\neq\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}), there appears not only a velocity boundary layer, but also one for the magnetic field. The profiles

𝒗±,𝒘±:×+×+,θ±,q±,ϑ±:×+×+,\bm{v}^{\pm},\bm{w}^{\pm}\colon\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R}_{+}\longrightarrow\mathbb{R},\quad\theta^{\pm},q^{\pm},\vartheta^{\pm}\colon\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R}_{+}\longrightarrow\mathbb{R},

which are related to such boundary layers, will be described in Section 3.4. In the presence of magnetic field boundary layers, the controls 𝜻~±,ϵ:TN\widetilde{\bm{\zeta}}^{\pm,\epsilon}\colon\mathcal{E}_{T}\longrightarrow\mathbb{R}^{N} shall be defined in Section 3.4.2. The boundary layer dissipation controls 𝝁±:T×+N\bm{\mu}^{\pm}\colon\mathcal{E}_{T}\times\mathbb{R}_{+}\longrightarrow\mathbb{R}^{N} will be obtained in Section 3.4.3. Subsequently, in Section 3.5, the remainders 𝒓±,ϵ\bm{r}^{\pm,\epsilon} are estimated. Then, concerning approximate null controllability, the asymptotic behavior (3.6) with 𝒛¯1±=𝟎\overline{\bm{z}}^{\pm}_{1}=\bm{0} is shown in 3.28. The approximate controllability towards arbitrary smooth states is concluded in Section 3.6.

3.2 A return method trajectory

The zero order profiles 𝒛0\bm{z}^{0}, p0p^{0}, 𝝃0\bm{\xi}^{0}, and σ0\sigma^{0} are chosen for t[0,T]t\in[0,T] as a special solution to the controlled Euler system

{t𝒛0+(𝒛0)𝒛0+p0=𝝃0 in T,𝒛0=σ0 in T,𝒛0𝒏=0 on ΣT,𝒛0(,0)=𝟎 in ,𝒛0(,T)=𝟎 in .\begin{cases}\partial_{t}\bm{z}^{0}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\bm{\mathrm{\nabla}}p^{0}=\bm{\xi}^{0}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{z}^{0}=\sigma^{0}&\mbox{ in }\mathcal{E}_{T},\\ \bm{z}^{0}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{z}^{0}(\cdot,0)=\bm{0}&\mbox{ in }\mathcal{E},\\ \bm{z}^{0}(\cdot,T)=\bm{0}&\mbox{ in }\mathcal{E}.\end{cases} (3.9)

Given a smooth vector field 𝒛0\bm{z}^{0}, let 𝓩0(𝒙,s,t)\bm{\mathcal{Z}}^{0}(\bm{x},s,t) denote for (𝒙,s,t)¯×[0,T]×[0,T](\bm{x},s,t)\in\overline{\mathcal{E}}\times[0,T]\times[0,T] the unique flow which solves the ordinary differential equation

ddt𝓩0(𝒙,s,t)=𝒛0(𝓩0(𝒙,s,t),t),𝓩0(𝒙,s,s)=𝒙.\frac{{\rm d}}{{\rm d}t}\bm{\mathcal{Z}}^{0}(\bm{x},s,t)=\bm{z}^{0}(\bm{\mathcal{Z}}^{0}(\bm{x},s,t),t),\quad\bm{\mathcal{Z}}^{0}(\bm{x},s,s)=\bm{x}. (3.10)
Remark 3.1.

As in [CoronMarbachSueur2020], the ansatz (3.7)–(3.8) is based on the idea that the states (𝒛±,ϵ,p±,ϵ,σ±,ε)(\bm{z}^{\pm,\epsilon},p^{\pm,\epsilon},\sigma^{\pm,\varepsilon}) should be near the return method profile (𝒛0,p0,σ0)(\bm{z}^{0},p^{0},\sigma^{0}), which starts from (𝟎,0,0)(\bm{0},0,0) at t=0t=0 and returns back to (𝟎,0,0)(\bm{0},0,0) at time t=Tt=T.

Under the assumptions of 1.5, the profiles 𝒛0\bm{z}^{0}, p0p^{0}, 𝝃0\bm{\xi}^{0}, and σ0\sigma^{0} are chosen by means of 3.2 below, which is taken from [CoronMarbachSueur2020, Lemma 2] and has been proved in [Coron1993, Coron1996EulerEq, Glass1997, Glass2000].

Lemma 3.2 ([CoronMarbachSueur2020, Lemma 2]).

There exists a solution (𝐳0,p0,𝛏0,σ0)C(¯×[0,T];2N+2)(\bm{z}^{0},p^{0},\bm{\xi}^{0},\sigma^{0})\in{\rm C}^{\infty}(\overline{\mathcal{E}}\times[0,T];\mathbb{R}^{2N+2}) to the controlled system (3.9) such that the flow 𝓩0\bm{\mathcal{Z}}^{0} obtained via (3.10), satisfies

𝒙¯,t𝒙(0,T):𝓩0(𝒙,0,t𝒙)Ω¯.\forall\bm{x}\in\overline{\mathcal{E}},\,\exists t_{\bm{x}}\in(0,T)\colon\bm{\mathcal{Z}}^{0}(\bm{x},0,t_{\bm{x}})\notin\overline{\Omega}. (3.11)

Moreover, all functions (𝐳0,p0,𝛏0,σ0)(\bm{z}^{0},p^{0},\bm{\xi}^{0},\sigma^{0}) are compactly supported in (0,T)(0,T) with respect to time, the control 𝛏0\bm{\xi}^{0} obeys

supp(𝝃0)(¯Ω¯)×(0,T),\operatorname{supp}(\bm{\xi}^{0})\subset(\overline{\mathcal{E}}\setminus\overline{\Omega})\times(0,T),

while 𝐳0\bm{z}^{0} can be chosen with 𝐳0=0\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=0 in Ω¯×[0,T]\overline{\Omega}\times[0,T] and ×𝐳0=𝟎\bm{\mathrm{\nabla}}\times{\bm{z}^{0}}=\bm{0} in ¯×[0,T]\overline{\mathcal{E}}\times[0,T].

Remark 3.3.

As shown in [Coron1993], for two-dimensional simply-connected domains one can replace (3.11) by a uniform flushing property. That is to say, there exists a smoothly bounded open set Ω1\Omega_{1}\subset\mathcal{E} such that (Ω¯)Ω1(\overline{\Omega}\setminus\partial\mathcal{E})\subset\Omega_{1} and for all 𝒙Ω¯1\bm{x}\in\overline{\Omega}_{1} one has 𝓩0(𝒙,0,T)Ω¯1\bm{\mathcal{Z}}^{0}(\bm{x},0,T)\notin\overline{\Omega}_{1}.

Example 3.4.

In order to illustrate 3.3 by means of a very specific example, and to provide more details regarding 1.6, let us consider, as in Figure 5, for a smoothly bounded connected open set D2D\subset\mathbb{R}^{2} the cylindrical setup

Ω(0,1)×D,Γc{0,1}×D.\Omega\coloneqq(0,1)\times D,\quad\Gamma_{\operatorname{c}}\coloneqq\{0,1\}\times D.

Let D~D\widetilde{D}\supseteq D be the planar simply-connected extension of DD with D~D\partial\widetilde{D}\subset\partial D. One can extend Ω\Omega through Γc\Gamma_{\operatorname{c}}, in the sense of Section 2.1, to a smoothly bounded domain 3\mathcal{E}\subset\mathbb{R}^{3} with

(1,2)×D×D~.(-1,2)\times D\subset\mathcal{E}\subset\mathbb{R}\times\widetilde{D}.

Now, let χ1C0((1,2);[0,1])\chi_{1}\in{\rm C}^{\infty}_{0}((-1,2);[0,1]) with χ1(s)=1\chi_{1}(s)=1 for s[1/2,3/2]s\in[-1/2,3/2] and extend χ1\chi_{1} by zero to \mathbb{R}. Moreover, for some large number M1>0M_{1}>0, take γ1C0((0,T);[0,1])\gamma_{1}\in{\rm C}^{\infty}_{0}((0,T);[0,1]) such that γ1(t)=M1\gamma_{1}(t)=M_{1} when t[T/8,7T/8]t\in[T/8,7T/8]. Then, for 𝒙=[x1,x2,x3]¯\bm{x}=[x_{1},x_{2},x_{3}]^{\top}\in\overline{\mathcal{E}} and t[0,T]t\in[0,T] choose

𝒛0(𝒙,t)\displaystyle\bm{z}^{0}(\bm{x},t) (γ1(t)χ1(x1)x1),\displaystyle\coloneqq\bm{\mathrm{\nabla}}\left(\gamma_{1}(t)\chi_{1}(x_{1})x_{1}\right),
p0(𝒙,t)\displaystyle p^{0}(\bm{x},t) tγ1(t)χ1(x1)x1,\displaystyle\coloneqq-\partial_{t}\gamma_{1}(t)\chi_{1}(x_{1})x_{1},
𝝃0(𝒙,t)\displaystyle\bm{\xi}^{0}(\bm{x},t) (𝒛0(𝒙,t))𝒛0(𝒙,t),\displaystyle\coloneqq(\bm{z}^{0}(\bm{x},t)\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}(\bm{x},t),
σ0(𝒙,t)\displaystyle\sigma^{0}(\bm{x},t) 𝒛0(𝒙,t).\displaystyle\coloneqq\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}(\bm{x},t).

Since 𝒛0\bm{z}^{0} does not depend on the spatial variables in (1/2,3/2)×D¯(-1/2,3/2)\times\overline{D}, the above profiles solve the controllability problem (3.9) with the support of σ0\sigma^{0} and 𝝃0\bm{\xi}^{0} being located away from Ω¯\overline{\Omega}. Also, for M1>0M_{1}>0 large enough, one has a uniform flushing property as mentioned in 3.3, see for instance the proof of [RisselWang2021, Lemma 3.1] which carries over to a three-dimensional pipe.

Figure 5: A sketch of a cylindrical domain. The arrows indicate the profile 𝒛0\bm{z}^{0}, which is constant in the original domain, hence curl-free and divergence-free, but ceases to be divergence-free at certain parts in the extended domain.

In the context of 1.2, the zeroth order profiles (𝒛0,p0,𝝃0,σ00)(\bm{z}^{0},p^{0},\bm{\xi}^{0},\sigma^{0}\coloneqq 0) in (3.7)–(3.8) will be chosen by 3.5 below.

Lemma 3.5.

When Ω2\Omega\subset\mathbb{R}^{2} is simply-connected and Γc\Gamma_{\operatorname{c}} is connected, there exists a number >0\ell>0, and profiles 𝐳0,𝛏0C(T¯;2)\bm{z}^{0},\bm{\xi}^{0}\in{\rm C}^{\infty}(\overline{\mathcal{E}_{T}};\mathbb{R}^{2}), and p0C(T¯;)p^{0}\in{\rm C}^{\infty}(\overline{\mathcal{E}_{T}};\mathbb{R}) such that (𝐳0,p0,𝛏0,σ0=0)(\bm{z}^{0},p^{0},\bm{\xi}^{0},\sigma^{0}=0) solves (3.9) and it holds

t[0,T]:dist(supp(𝒛0(,t)),Ω¯)>,(𝒙,t)¯×[0,T]:𝒛0=0\displaystyle\forall t\in[0,T]\colon\operatorname{dist}\left(\operatorname{supp}(\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}}(\cdot,t)),\overline{\Omega}\right)>\ell,\quad\forall(\bm{x},t)\in\overline{\mathcal{E}}\times[0,T]\colon\bm{\mathrm{\nabla}}\cdot{\bm{z}_{0}}=0
x¯:supp(𝒛0(𝒙,))supp(p0(𝒙,))supp(𝝃0(𝒙,))(0,T).\displaystyle\forall x\in\overline{\mathcal{E}}\colon\operatorname{supp}(\bm{z}^{0}(\bm{x},\cdot))\cup\operatorname{supp}(p^{0}(\bm{x},\cdot))\cup\operatorname{supp}(\bm{\xi}^{0}(\bm{x},\cdot))\subset(0,T).

Moreover, the force 𝛏0(,t)\bm{\xi}^{0}(\cdot,t) is supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega} for all t[0,T]t\in[0,T] and the flow 𝓩0\bm{\mathcal{Z}}^{0} determined via (3.10) obeys the flushing property (3.11).

Proof.

At first, let (𝒛0,p0,𝝃0,σ0)(\bm{z}^{0},p^{0},\bm{\xi}^{0},\sigma^{0}) be the profiles obtained from 3.2; thus, one might have σ0=𝒛00\sigma^{0}=\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}\neq 0 at some points. However, as sketched in Figure 6, there exist an open set B2B\subset\mathbb{R}^{2} and a number >0\ell>0 satisfying

B,dist(B¯,Ω¯)>B\cap\partial\mathcal{E}\neq\emptyset,\quad\operatorname{dist}(\overline{B},\overline{\Omega})>\ell

such that

supp(σ0)B×(0,T).\operatorname{supp}(\sigma^{0})\subset B\times(0,T).

It is not restrictive to assume that VB¯V\coloneqq\mathcal{E}\setminus\overline{B} is simply-connected; hence, there is a scalar potential ϕC(V¯×[0,T];)\phi\subset{\rm C}^{\infty}(\overline{V}\times[0,T];\mathbb{R}) with

𝒛0(𝒙,t)=ϕ(𝒙,t),(𝒙,t)V×[0,T].\bm{z}^{0}(\bm{x},t)=\bm{\mathrm{\nabla}}^{\perp}\phi(\bm{x},t),\quad(\bm{x},t)\in V\times[0,T].

Indeed, if 𝑹:22\bm{R}\colon\mathbb{R}^{2}\longrightarrow\mathbb{R}^{2} denotes a rotation by π/2\pi/2, then

𝒛0=0(𝑹𝒛0)=0,𝑹𝒛0=ϕ𝒛0=ϕ.\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=0\iff\bm{\mathrm{\nabla}}\wedge{(\bm{R}\bm{z}^{0})}=0,\quad\bm{R}\bm{z}^{0}=\bm{\mathrm{\nabla}}\phi\iff\bm{z}^{0}=\bm{\mathrm{\nabla}}^{\perp}\phi.

Let ϕ~:2×[0,T]\widetilde{\phi}\colon\mathbb{R}^{2}\times[0,T]\longrightarrow\mathbb{R} be any extension of ϕ\phi to 2×[0,T]\mathbb{R}^{2}\times[0,T] and take a smooth cutoff function ψC(2;[0,1])\psi\in{\rm C}^{\infty}(\mathbb{R}^{2};[0,1]) with

ψ(𝒙){0 if 𝒙B¯,1 if dist(𝒙,Ω)</2.\psi(\bm{x})\coloneqq\begin{cases}0&\mbox{ if }\bm{x}\in\overline{B},\\ 1&\mbox{ if }\operatorname{dist}(\bm{x},\Omega)<\ell/2.\end{cases}

Since 𝝉=[n2,n1]\bm{\tau}=[n_{2},-n_{1}]^{\top} is tangential at \partial\mathcal{E}, one can observe along ΣT(V¯×[0,T])\Sigma_{T}\cap(\overline{V}\times[0,T]) the vanishing tangential derivatives

ϕ𝝉=ϕ𝒏=𝒛0𝒏=0.\bm{\mathrm{\nabla}}\phi\cdot\bm{\tau}=-\bm{\mathrm{\nabla}}^{\perp}\phi\cdot\bm{n}=-\bm{z}^{0}\cdot\bm{n}=0.

Therefore, there is a time-dependent constant c(t)c(t) such that ϕ~(,t)=c(t)\widetilde{\phi}(\cdot,t)=c(t) at B\partial\mathcal{E}\setminus B for each t[0,T]t\in[0,T]. Finally, we define

𝒛~0(𝒙,t)(ψ(𝒙)(ϕ~(𝒙,t)c(t))),(𝒙,t)T,\widetilde{\bm{z}}^{0}(\bm{x},t)\coloneqq\bm{\mathrm{\nabla}}^{\perp}\left(\psi(\bm{x})\left(\widetilde{\phi}(\bm{x},t)-c(t)\right)\right),\quad(\bm{x},t)\in\mathcal{E}_{T},

which implies 𝒛~0=0\bm{\mathrm{\nabla}}\cdot{\widetilde{\bm{z}}^{0}}=0 in ¯×[0,T]\overline{\mathcal{E}}\times[0,T] and 𝒛~0𝒏=0\widetilde{\bm{z}}^{0}\cdot\bm{n}=0 at ×[0,T]\partial\mathcal{E}\times[0,T]. Since 𝒛~0\widetilde{\bm{z}}^{0} can only differ from 𝒛0\bm{z}^{0} if dist(𝒙,Ω)/2\operatorname{dist}(\bm{x},\Omega)\geq\ell/2, one has supp(𝒛~0)¯Ω¯\operatorname{supp}(\bm{\mathrm{\nabla}}\wedge{\widetilde{\bm{z}}^{0}})\in\overline{\mathcal{E}}\setminus\overline{\Omega}, and the flushing property (3.11) remains valid for 𝒛~0\widetilde{\bm{z}}^{0}. The proof is then concluded by renaming 𝒛~0\widetilde{\bm{z}}^{0} as 𝒛0\bm{z}^{0}, emphasizing that 𝒛~0=0\bm{\mathrm{\nabla}}\cdot{\widetilde{\bm{z}}^{0}}=0 in ×(0,T)\mathcal{E}\times(0,T) and renaming 𝒛~0\bm{\mathrm{\nabla}}\cdot{\widetilde{\bm{z}}^{0}} as σ0\sigma^{0}, and by modifying 𝝃0\bm{\xi}^{0} inside ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega} such that (3.9) holds. ∎

ψ=1\psi=1BBΩ\OmegaΩ1\Omega^{1}ϕ~=c(t)\widetilde{\phi}=c(t)ϕ~=arbitrary\widetilde{\phi}=\mbox{arbitrary}
Figure 6: A sketch of the situation considered in the proof of 3.5. The (red) circle indicates the set BB. To the right of the thick (green) line which crosses the domain, one has ψ=1\psi=1. The thin dashed line stands for Γc\Gamma_{\operatorname{c}}. Along the boundary part (Ω1Ω)B\partial(\Omega^{1}\cup\Omega)\setminus B, which is highlighted by thick dashes, it holds ϕ~(,t)=ϕ(,t)=c(t)\widetilde{\phi}(\cdot,t)=\phi(\cdot,t)=c(t).
Remark 3.6.

In the proof of 3.5, one can explicitly choose the size and location of BB, as long as BB is open and BB\cap\partial\mathcal{E}\neq\emptyset.

Remark 3.7.

When Γc\Gamma_{\operatorname{c}} is not connected, the proof of 3.5 can still be applied to situation where \mathcal{E} is simply-connected; for instance, by selecting 𝒛0\bm{z}^{0} such that all its integral curves cross the same connected component of ¯Ω\overline{\mathcal{E}}\setminus\Omega. To avoid creating a gradient term q\bm{\mathrm{\nabla}}q during the regularization stage described in Section 4, the initial data should then obey relations of the type (2.6).

The special case of an annulus.

Concerning 2.5, where \mathcal{E} is an annulus (cf. Figure 7), we introduce an explicit return method trajectory 𝒛0\bm{z}^{0}, which is curl-free, divergence-free, and tangential at \partial\mathcal{E}. This is possible because annuli are doubly-connected. More precisely, we define

φ~:¯+,𝒙φ~(𝒙)ln|𝒙|\widetilde{\varphi}\colon\overline{\mathcal{E}}\longrightarrow\mathbb{R}_{+},\quad\bm{x}\longmapsto\widetilde{\varphi}(\bm{x})\coloneqq\ln|\bm{x}|

and choose for a constant M>0M_{\mathcal{E}}>0 a smooth function γMC0((0,1);+)\gamma_{M}\in{\rm C}^{\infty}_{0}((0,1);\mathbb{R}_{+}), satisfying

γM(t)M\gamma_{M_{\mathcal{E}}}(t)\geq M_{\mathcal{E}}

for all t(T/8,7T/8)t\in(T/8,7T/8). Then, for (𝒙,t)T¯(\bm{x},t)\in\overline{\mathcal{E}_{T}}, we denote the vector field

𝒚(𝒙,t)[y1,y2](𝒙,t)γM(t)[2φ~(𝒙)1φ~(𝒙)],\bm{y}^{*}(\bm{x},t)\coloneqq[y^{*}_{1},y^{*}_{2}]^{\top}(\bm{x},t)\coloneqq\gamma_{M_{\mathcal{E}}}(t)\begin{bmatrix}-\partial_{2}\widetilde{\varphi}(\bm{x})\\ \partial_{1}\widetilde{\varphi}(\bm{x})\end{bmatrix},

which possesses in T¯\overline{\mathcal{E}_{T}} the properties

𝒚=0,2y11y2=0,𝒚𝒏=0.\bm{\mathrm{\nabla}}\cdot{\bm{y}^{*}}=0,\quad\partial_{2}y^{*}_{1}-\partial_{1}y^{*}_{2}=0,\quad\bm{y}^{*}\cdot\bm{n}=0.

Due to the symmetry of \mathcal{E}, the extended unit normal field 𝒏\bm{n} can be chosen everywhere orthogonal to 𝒚\bm{y}^{*}. Now, for M>0M_{\mathcal{E}}>0 sufficiently large, we define

𝒛0\displaystyle\bm{z}^{0} 𝒚\displaystyle\coloneqq\bm{y}^{*} in T¯,\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}}, (3.12)
p0\displaystyle p^{0} tψ12|𝒚|2\displaystyle\coloneqq-\partial_{t}\psi^{*}-\frac{1}{2}|\bm{y}^{*}|^{2} in T¯,\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}},
𝝃0\displaystyle\bm{\xi}^{0} t𝒚+(𝒚)𝒚+p0\displaystyle\coloneqq\partial_{t}\bm{y}^{*}+(\bm{y}^{*}\cdot\bm{\mathrm{\nabla}})\bm{y}^{*}+\bm{\mathrm{\nabla}}p^{0}\quad in T¯,\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}},

where ψC(T¯;)\psi^{*}\in{\rm C}^{\infty}(\overline{\mathcal{E}_{T}};\mathbb{R}) satisfies 𝒚(𝒙,)=ψ(𝒙,)\bm{y}^{*}(\bm{x},\cdot)=\bm{\mathrm{\nabla}}\psi^{*}(\bm{x},\cdot) whenever dist(𝒙,Ω¯)<\operatorname{dist}(\bm{x},\overline{\Omega})<\ell, for some >0\ell>0 independent of 𝒙\bm{x}. In particular, assuming that M>0M_{\mathcal{E}}>0 is fixed sufficiently large, a flushing property of the type (3.11) holds. Indeed, the profile 𝒛0\bm{z}^{0} never vanishes in ¯×(T/8,7T/8)\overline{\mathcal{E}}\times(T/8,7T/8) and the associated flow 𝓩0\bm{\mathcal{Z}}^{0} propagates information along circular trajectories around the annulus.

𝓩0\bm{\mathcal{Z}}^{0}
Figure 7: An annulus divided into a physical sector and a control sector. The (blue) arrow indicates the flow 𝓩0\bm{\mathcal{Z}}^{0}.

Finally, we take ρ\rho\in\mathbb{R} and set 𝑴2=ρ𝑰C(¯;2×2)\bm{M}_{2}=\rho\bm{I}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{2\times 2}), while choosing general friction coefficient matrices 𝑴1,𝑳1,𝑳2C(¯;2×2)\bm{M}_{1},\bm{L}_{1},\bm{L}_{2}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{2\times 2}). Then, 𝒛0\bm{z}^{0} satisfies the relations

(𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0))=0\displaystyle\bm{\mathrm{\nabla}}\cdot{(\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}))}=0 in T¯,\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}}, (3.13)
𝒛0𝒏=0\displaystyle\bm{z}^{0}\cdot\bm{n}=0 in T¯,\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}},
𝒛0=0\displaystyle\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=0 in T¯,\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}},
𝒛0=0\displaystyle\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}}=0 in T¯\displaystyle\mbox{ in }\overline{\mathcal{E}_{T}}

because

(𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0))=2[𝑴2𝒛0]tan=2ρ[𝒛0]tan=2ρ𝒛0=0.\bm{\mathrm{\nabla}}\cdot{(\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}))}=2\bm{\mathrm{\nabla}}\cdot{[\bm{M}_{2}\bm{z}^{0}]_{\operatorname{tan}}}=2\rho\bm{\mathrm{\nabla}}\cdot{[\bm{z}^{0}]_{\operatorname{tan}}}=2\rho\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=0.

3.3 Flushing the initial data

Due to the scaling in (3.3) and (3.4), the contributions of 𝒛0±\bm{z}^{\pm}_{0} to 𝒛±,ϵ\bm{z}^{\pm,\epsilon} are at O(ϵ)O(\epsilon). In order to avoid that 𝒛0±\bm{z}^{\pm}_{0} impact the remainder estimates in Section 3.5 below, the goal is to cancel their influence for tTt\geq T by using the controls 𝝃±,1\bm{\xi}^{\pm,1}, which are supported only in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}. After inserting (3.7) and (3.8) into (3.5), motivated by [CoronMarbachSueur2020], one observes that a good strategy consists of defining 𝒛±,1\bm{z}^{\pm,1} as the solutions to the linear problem

{t𝒛±,1+(𝒛,1)𝒛0+(𝒛0)𝒛±,1+p±,1=𝝃±,1+(λ±+λ)Δ𝒛0 in T,𝒛±,1=0 in T,𝒛±,1𝒏=0 on ΣT,𝒛±,1(,0)=𝒛0± in .\begin{cases}\partial_{t}\bm{z}^{\pm,1}+(\bm{z}^{\mp,1}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm,1}+\bm{\mathrm{\nabla}}p^{\pm,1}=\bm{\xi}^{\pm,1}+(\lambda^{\pm}+\lambda^{\mp})\Delta\bm{z}^{0}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{z}^{\pm,1}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{z}^{\pm,1}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{z}^{\pm,1}(\cdot,0)=\bm{z}_{0}^{\pm}&\mbox{ in }\mathcal{E}.\end{cases} (3.14)

We shall determine the controls 𝝃±,1C0([0,T];H2(;N))\bm{\xi}^{\pm,1}\in{\rm C}^{0}([0,T];{\rm H}^{2}(\mathcal{E};\mathbb{R}^{N})) such that the corresponding solution (𝒛+,1,𝒛,1)(\bm{z}^{+,1},\bm{z}^{-,1}) to (3.14) satisfies 𝒛±,1(,T)=𝟎\bm{z}^{\pm,1}(\cdot,T)=\bm{0}. This is achieved by combining [CoronMarbachSueur2020, Lemma 3] with new ideas for the cases of Theorems 1.2 and 2.5, where we have to maintain the properties

(𝝃+,1𝝃,1)=0 in T,(𝝃+,1𝝃,1)𝒏=0 on ΣT.\displaystyle\bm{\mathrm{\nabla}}\cdot{(\bm{\xi}^{+,1}-\bm{\xi}^{-,1})}=0\mbox{ in }\mathcal{E}_{T},\quad(\bm{\xi}^{+,1}-\bm{\xi}^{-,1})\cdot\bm{n}=0\mbox{ on }\Sigma_{T}. (3.15)
Lemma 3.8.

There are 𝛏±,1C0([0,T];H2(;N))\bm{\xi}^{\pm,1}\in{\rm C}^{0}([0,T];{\rm H}^{2}(\mathcal{E};\mathbb{R}^{N})) such that the solution (𝐳+,1,𝐳,1)(\bm{z}^{+,1},\bm{z}^{-,1}) to (3.14) obeys 𝐳±,1(𝐱,T)=𝟎\bm{z}^{\pm,1}(\bm{x},T)=\bm{0} for all 𝐱\bm{x}\in\mathcal{E} and is bounded in L((0,T);H3()2){\rm L}^{\infty}((0,T);{\rm H}^{3}(\mathcal{E})^{2}). Moreover, for all t(0,T)t\in(0,T) it holds

supp(𝝃±,1(,t))¯Ω¯.\operatorname{supp}(\bm{\xi}^{\pm,1}(\cdot,t))\subset\overline{\mathcal{E}}\setminus\overline{\Omega}.

Given the assumptions of 1.2, one can choose the controls 𝛏±,1\bm{\xi}^{\pm,1} with (3.15).

Proof.

When 𝒛0\bm{z}^{0} is determined via 3.2, the proof is a direct application of the arguments from [CoronMarbachSueur2020, Lemma 3] to the uncoupled systems solved by 𝒛+,1±𝒛,1\bm{z}^{+,1}\pm\bm{z}^{-,1}. Hence, we consider here only the two-dimensional situations of Theorems 1.2 and 2.5, where 𝒛0\bm{z}^{0} is obtained either via 3.5 or by (3.12). Our strategy is close that from [CoronMarbachSueur2020, Lemma 3], but compared to [CoronMarbachSueur2020] there are two new challenges:

  • constructing the controls such that the relations in (3.15) are satisfied;

  • for 𝒛0\bm{z}^{0} taken via 3.5, one might have 𝒛00\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}}\neq 0 in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, which obstructs a direct application of the arguments from [CoronMarbachSueur2020].

Step 1. Preliminaries.

Due to 3.5 or (3.12) one has 𝒛0=𝟎\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=\bm{0} in ¯×[0,T]\overline{\mathcal{E}}\times[0,T]. Thus, the smooth vector field

(λ++λ)Δ𝒛0=(λ++λ)((𝒛0))(\lambda^{+}+\lambda^{-})\Delta\bm{z}^{0}=-(\lambda^{+}+\lambda^{-})(\bm{\mathrm{\nabla}}^{\perp}{(\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}})})

is spatially supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega} and can be absorbed by the control terms

𝒇±𝝃±,1+(λ±+λ)Δ𝒛0.\bm{f}^{\pm}\coloneqq\bm{\xi}^{\pm,1}+(\lambda^{\pm}+\lambda^{\mp})\Delta\bm{z}^{0}.

In order to construct suitable functions 𝒇±\bm{f}^{\pm}, we shall denote vector fields proportional to the original MHD unknowns; namely,

𝑬±𝒛+,1±𝒛,1,\displaystyle\bm{E}^{\pm}\coloneqq\bm{z}^{+,1}\pm\bm{z}^{-,1}, 𝑭±𝒇+±𝒇.\displaystyle\bm{F}^{\pm}\coloneqq\bm{f}^{+}\pm\bm{f}^{-}. (3.16)
Step 2. A partition of unity.

Due to the regularity of 𝓩0\bm{\mathcal{Z}}^{0} and the flushing property (3.11), as provided by 3.2, 3.5, or by the definition for 𝒛0\bm{z}^{0} in (3.12), there exists a small number a>0a>0 such that

𝒙¯,t𝒙(0,T):dist(𝓩0(𝒙,0,t𝒙),Ω¯)a.\forall\bm{x}\in\overline{\mathcal{E}},\exists t_{\bm{x}}\in(0,T)\colon\operatorname{dist}(\bm{\mathcal{Z}}^{0}(\bm{x},0,t_{\bm{x}}),\overline{\Omega})\geq a.

Hence, one can select a smoothly bounded closed set 𝒮¯\mathcal{S}\subset\overline{\mathcal{E}} with 𝒮Ω¯=\mathcal{S}\cap\overline{\Omega}=\emptyset and

𝒙¯,t𝒙(0,T):𝓩0(𝒙,0,t𝒙)𝒮.\forall\bm{x}\in\overline{\mathcal{E}},\exists t_{\bm{x}}\in(0,T)\colon\bm{\mathcal{Z}}^{0}(\bm{x},0,t_{\bm{x}})\in\mathcal{S}.

Moreover, for some LL\in\mathbb{N}, we fix a finite covering c1,,cLc_{1},\dots,c_{L} of 𝒮\mathcal{S} which consists of interior and boundary squares. The boundary squares are centered in points of 𝒮\partial\mathcal{E}\cap\mathcal{S}, fully included inside 2Ω¯\mathbb{R}^{2}\setminus\overline{\Omega}, and one side lies in the interior of \mathcal{E}. The interior squares are centered in points of 𝒮\mathcal{S}\setminus\partial\mathcal{E} and belong to Ω¯\mathcal{E}\setminus\overline{\Omega}. Consequently, there exists b>0b>0 and a number MM\in\mathbb{N} of balls B1,,BM2B_{1},\dots,B_{M}\subset\mathbb{R}^{2} which cover ¯\overline{\mathcal{E}} such that for each index l{1,,M}l\in\{1,\dots,M\} one has

tl(b,Tb),rl{1,,L},t(tlb,tl+b):𝓩0(Bl,0,t)crl.\displaystyle\exists t_{l}\in(b,T-b),\exists r_{l}\in\{1,\dots,L\},\forall t\in(t_{l}-b,t_{l}+b)\colon\bm{\mathcal{Z}}^{0}(B_{l},0,t)\in c_{r_{l}}. (3.17)

With respect to the balls B1,,BMB_{1},\dots,B_{M}, let (μl)l=1,,MC0(2;2)(\mu_{l})_{l=1,\dots,M}\subset{\rm C}^{\infty}_{0}(\mathbb{R}^{2};\mathbb{R}^{2}) be any fixed smooth partition of unity in the sense that

l{1,,M}:supp(μl)Bl,𝒙¯:l=1Mμl(𝒙)=1.\forall l\in\{1,\dots,M\}\colon\operatorname{supp}(\mu_{l})\subset B_{l},\quad\forall\bm{x}\in\overline{\mathcal{E}}\colon\sum_{l=1}^{M}\mu_{l}(\bm{x})=1. (3.18)
Remark 3.9.

When 𝒛0\bm{z}^{0} is obtained via 3.5, or as defined in (3.12), one can use a simplified partition of unity and only few squares. The notations used here align with the argument from [CoronMarbachSueur2020, Lemma 3] to which we refer when 𝒛0\bm{z}^{0} is the vector field from 3.2.

Step 3. Flushing the initial magnetic field.

Since 𝒛0=0\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=0 holds in ¯×[0,T]\overline{\mathcal{E}}\times[0,T] for the presently case, the initial magnetic field can be flushed without pressure term. To this end, we rely on the existence of a stream function ψ~0\widetilde{\psi}_{0} with

𝒛0+𝒛0=ψ~0 in T,ψ~0=0 on ΣT.\bm{z}_{0}^{+}-\bm{z}_{0}^{-}=\bm{\mathrm{\nabla}}^{\perp}\widetilde{\psi}_{0}\mbox{ in }\mathcal{E}_{T},\quad\widetilde{\psi}_{0}=0\,\mbox{ on }\Sigma_{T}.

Indeed, under the assumptions of 1.2 this follows from \mathcal{E} being simply-connected, while for 2.5 it is part of the hypotheses. Then, by the decomposition in (3.16), the vector field 𝑬\bm{E}^{-} satisfies the linear problem

{t𝑬+(𝒛0)𝑬(𝑬)𝒛0+q1=𝑭=𝝃+,1𝝃,1 in T,𝑬=0 in T,𝑬𝒏=0 on ΣT,𝑬(,0)=𝒛0+𝒛0 in ,\begin{cases}\partial_{t}\bm{E}^{-}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{E}^{-}-(\bm{E}^{-}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\nabla q^{1}=\bm{F}^{-}=\bm{\xi}^{+,1}-\bm{\xi}^{-,1}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{E}^{-}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{E}^{-}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{E}^{-}(\cdot,0)=\bm{z}_{0}^{+}-\bm{z}_{0}^{-}&\mbox{ in }\mathcal{E},\end{cases} (3.19)

with q1p+,1p,1q^{1}\coloneqq p^{+,1}-p^{-,1}. By employing the partition of unity (μl)l{1,,M}(\mu_{l})_{l\in\{1,\dots,M\}} given in (3.18), we first solve for l{1,,M}l\in\{1,\dots,M\} the homogeneous problems

{t𝑬l+(𝒛0)𝑬l(𝑬l)𝒛0+ql1=𝟎 in T,𝑬l=0 in T,𝑬l𝒏=0 on ΣT,𝑬l(,0)=(μlψ~0) in .\begin{cases}\partial_{t}\bm{E}^{-}_{l}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{E}^{-}_{l}-(\bm{E}^{-}_{l}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\bm{\mathrm{\nabla}}q^{1}_{l}=\bm{0}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{E}^{-}_{l}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{E}^{-}_{l}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{E}^{-}_{l}(\cdot,0)=\bm{\mathrm{\nabla}}^{\perp}(\mu_{l}\widetilde{\psi}_{0})&\mbox{ in }\mathcal{E}.\end{cases} (3.20)

Concerning the pressure gradient, after multiplying in (3.20) with ql1\bm{\mathrm{\nabla}}q^{1}_{l} and integrating by parts, one finds

ql1L2()2=(𝒛0𝑬l)ql1𝒏dS=0.\|\bm{\mathrm{\nabla}}q^{1}_{l}\|_{{\rm L}^{2}(\mathcal{E})}^{2}=\int_{\partial\mathcal{E}}(\bm{z}^{0}\wedge\bm{E}^{-}_{l})\bm{\mathrm{\nabla}}q^{1}_{l}\wedge\bm{n}\,{{\rm d}S}=0.

Finally, we take 𝑭=𝝃+,1𝝃,1C0([0,T];H2(;N))\bm{F}^{-}=\bm{\xi}^{+,1}-\bm{\xi}^{-,1}\in{\rm C}^{0}([0,T];{\rm H}^{2}(\mathcal{E};\mathbb{R}^{N})) supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, satisfying (3.15), and such that the corresponding solution 𝑬\bm{E}^{-} to (3.19) obeys 𝑬(,T)=𝟎\bm{E}^{-}(\cdot,T)=\bm{0}. For instance, one can choose

𝑬(𝒙,t)l=1Mβ(ttl)𝑬l(𝒙,t),𝑭(𝒙,t)l=1Mdβdt(ttl)𝑬l(𝒙,t),\displaystyle\bm{E}^{-}(\bm{x},t)\coloneqq\sum\limits_{l=1}^{M}\beta(t-t_{l})\bm{E}^{-}_{l}(\bm{x},t),\quad\bm{F}^{-}(\bm{x},t)\coloneqq\sum\limits_{l=1}^{M}\frac{{\rm d}\beta}{{\rm d}t}(t-t_{l})\bm{E}^{-}_{l}(\bm{x},t), (3.21)

where β:[0,1]\beta\colon\mathbb{R}\longrightarrow[0,1] is a smooth cut-off with

β(t)={1 if t(,b),0 if t(b,+)\beta(t)=\begin{cases}1&\mbox{ if }t\in(-\infty,-b),\\ 0&\mbox{ if }t\in(b,+\infty)\end{cases} (3.22)

for b>0b>0 from (3.17).

Step 4. Flushing the initial velocity: the idea.

The vector field 𝑬+\bm{E}^{+} obeys with p1p+,1+p,1p^{1}\coloneqq p^{+,1}+p^{-,1} the linear problem

{t𝑬++(𝒛0)𝑬++(𝑬+)𝒛0+p1=𝑭+ in T,𝑬+=0 in T,𝑬+𝒏=0 on ΣT,𝑬+(,0)=𝒛0++𝒛0 in .\begin{cases}\partial_{t}\bm{E}^{+}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{E}^{+}+(\bm{E}^{+}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\nabla p^{1}=\bm{F}^{+}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{E}^{+}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{E}^{+}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{E}^{+}(\cdot,0)=\bm{z}_{0}^{+}+\bm{z}_{0}^{-}&\mbox{ in }\mathcal{E}.\end{cases} (3.23)

The pressure gradient is eliminated by taking the curl in (3.23), leading to a transport equation for 𝑬+\bm{\mathrm{\nabla}}\wedge{\bm{E}^{+}} with non-local terms. The goal is to determine 𝑭+\bm{F}^{+}, spatially supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, such that the corresponding solution 𝑬+\bm{E}^{+} to (3.23) satisfies

{𝑬+(,T)=𝟎 in ,𝑬+(,T)=𝟎 in ,𝑬+(,T)𝒏=𝟎 on .\begin{cases}\bm{\mathrm{\nabla}}\wedge{\bm{E}^{+}}(\cdot,T)=\bm{0}&\mbox{ in }\mathcal{E},\\ \bm{\mathrm{\nabla}}\cdot{\bm{E}^{+}}(\cdot,T)=\bm{0}&\mbox{ in }\mathcal{E},\\ \bm{E}^{+}(\cdot,T)\cdot\bm{n}=\bm{0}&\mbox{ on }\partial\mathcal{E}.\end{cases} (3.24)

Regarding 1.2, where \mathcal{E} is simply-connected, (3.24) implies 𝑬+(,T)=𝟎\bm{E}^{+}(\cdot,T)=\bm{0} in \mathcal{E} (cf. (2.1)). Concerning 2.5, since \mathcal{E} might in that case be multiply-connected, one can from (3.24) only conclude that 𝑬+(,T)=λ1𝑸\bm{E}^{+}(\cdot,T)=\lambda_{1}\bm{Q}, where λ1\lambda_{1}\in\mathbb{R} and 𝑸\bm{Q} spans the one-dimensional space of divergence-free, curl-free, and tangential vector fields on the annulus \mathcal{E}. In fact, one can take 𝑸=ln|𝒙|\bm{Q}=\bm{\mathrm{\nabla}}^{\perp}\ln|\bm{x}|. Therefore, we need to be able to steer any state of the form λ1𝑸\lambda_{1}\bm{Q} to zero. To this end, note that 𝒛0=γM𝑸\bm{z}^{0}=\gamma_{M_{\mathcal{E}}}\bm{Q}. Moreover, since Ω\Omega is simply-connected, for γ~C([0,T];[0,1])\widetilde{\gamma}\in{\rm C}^{\infty}([0,T];[0,1]) with γ~(t)=1\widetilde{\gamma}(t)=1 for t[0,T/8]t\in[0,T/8] and γ~(t)=0\widetilde{\gamma}(t)=0 when tT/4t\geq T/4, there exists ψ~C(Ω¯×[0,T];)\widetilde{\psi}\in{\rm C}^{\infty}(\overline{\Omega}\times[0,T];\mathbb{R}), with ψ~(,t)=0\widetilde{\psi}(\cdot,t)=0 for all t[0,T/8)t\in[0,T/8), such that

(𝒙,t)Ω¯×[0,T]:λ1dγ~dt(t)𝑸(𝒙)=ψ~(𝒙,t).\forall(\bm{x},t)\in\overline{\Omega}\times[0,T]\colon\lambda_{1}\frac{{\rm d}\widetilde{\gamma}}{{\rm d}t}(t)\bm{Q}(\bm{x})=\bm{\mathrm{\nabla}}\widetilde{\psi}(\bm{x},t).

Thus, the function 𝑨γ~(t)λ1𝑸\bm{A}\coloneqq\widetilde{\gamma}(t)\lambda_{1}\bm{Q} solves together with a smooth pressure p~\widetilde{p} and a smooth control 𝑭~\widetilde{\bm{F}}, which is spatially supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, the controllability problem

{t𝑨+(𝒛0)𝑨+(𝑨)𝒛0+p~=𝑭~ in T,𝑨=0 in T,𝑨𝒏=0 on ΣT,𝑨(,0)=λ1𝑸 in ,𝑨(,T)=𝟎 in .\begin{cases}\partial_{t}\bm{A}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{A}+(\bm{A}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\nabla\widetilde{p}=\widetilde{\bm{F}}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\bm{A}=0&\mbox{ in }\mathcal{E}_{T},\\ \bm{A}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \bm{A}(\cdot,0)=\lambda_{1}\bm{Q}&\mbox{ in }\mathcal{E},\\ \bm{A}(\cdot,T)=\bm{0}&\mbox{ in }\mathcal{E}.\end{cases} (3.25)

Indeed, one can take p~=ψ~γMγ~λ1|𝑸|2\widetilde{p}=-\widetilde{\psi}-\gamma_{M_{\mathcal{E}}}\widetilde{\gamma}\lambda_{1}|\bm{Q}|^{2} and 𝑭~=𝟎\widetilde{\bm{F}}=\bm{0} in Ω¯\overline{\Omega}. In ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}, one may choose any smooth extension of p~\widetilde{p} and fix 𝑭~=t𝑨+(𝒛0)𝑨+(𝑨)𝒛0+p~\widetilde{\bm{F}}=\partial_{t}\bm{A}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{A}+(\bm{A}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\nabla\widetilde{p}. Summarized, first one employs (𝑭+,𝑭)(\bm{F}^{+},\bm{F}^{-}) for steering (𝑬+,𝑬)(\bm{E}^{+},\bm{E}^{-}) to (λ1𝑸,𝟎)(\lambda_{1}\bm{Q},\bm{0}), followed by utilizing the controls (𝑭~,𝟎)(\widetilde{\bm{F}},\bm{0}) to connect (λ1𝑸,𝟎)(\lambda_{1}\bm{Q},\bm{0}) with (𝟎,𝟎)(\bm{0},\bm{0}).

Step 5. Flushing the initial velocity: showing (3.24).

To determine 𝑭+\bm{F}^{+} such that (3.24) holds, we rewrite (3.23) in vorticity form, which describes ω+𝑬+\omega^{+}\coloneqq\bm{\mathrm{\nabla}}\wedge{\bm{E}^{+}}. That is, given the partition of unity (μl)l{1,,M}(\mu_{l})_{l\in\{1,\dots,M\}} from (3.18), we make an ansatz of the form

ω+=l=1Mωl+,𝑬+=l=1M𝑬l+,𝑭+=l=1M𝑭l+,\omega^{+}=\sum_{l=1}^{M}\omega^{+}_{l},\quad\bm{E}^{+}=\sum_{l=1}^{M}\bm{E}^{+}_{l},\quad\bm{F}^{+}=\sum_{l=1}^{M}\bm{F}^{+}_{l}, (3.26)

where each triple (ωl+,𝑬l+,𝑭l+)(\omega^{+}_{l},\bm{E}^{+}_{l},\bm{F}^{+}_{l}) is sought to satisfy

{tωl++(𝒛0)ωl+=𝑭l+(𝑬l+)(𝒛0) in T,𝑬l+=ωl+, in T,𝑬l+=0 in T,𝑬l+𝒏=0 on ΣT,ωl+(,0)=(μl(𝒛0++𝒛0)) in .\begin{cases}\partial_{t}\omega^{+}_{l}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\omega^{+}_{l}=\bm{\mathrm{\nabla}}\wedge{\bm{F}^{+}_{l}}-({\bm{E}^{+}_{l}}\cdot\bm{\mathrm{\nabla}})({\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}}})&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\wedge{{\bm{E}^{+}_{l}}}=\omega^{+}_{l},&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot{\bm{E}^{+}_{l}}=0&\mbox{ in }\mathcal{E}_{T},\\ {\bm{E}^{+}_{l}}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \omega^{+}_{l}(\cdot,0)=\bm{\mathrm{\nabla}}\wedge{(\mu_{l}(\bm{z}_{0}^{+}+\bm{z}_{0}^{-}))}&\mbox{ in }\mathcal{E}.\end{cases} (3.27)

Since 𝒛0\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}} is supported in (¯Ω¯)×(0,T)(\overline{\mathcal{E}}\setminus\overline{\Omega})\times(0,T), the transport problem decouples in Ω\Omega from the div-curl system. To see this, let ω¯l+\overline{\omega}^{+}_{l} for each l{1,,M}l\in\{1,\dots,M\} be the solution to

{tω¯l++(𝒛0)ω¯l+=0 in T,ω¯l+(,0)=(μl(𝒛0++𝒛0)) in .\begin{cases}\partial_{t}\overline{\omega}^{+}_{l}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\overline{\omega}^{+}_{l}=0&\mbox{ in }\mathcal{E}_{T},\\ \overline{\omega}^{+}_{l}(\cdot,0)=\bm{\mathrm{\nabla}}\wedge{(\mu_{l}(\bm{z}_{0}^{+}+\bm{z}_{0}^{-}))}&\mbox{ in }\mathcal{E}.\end{cases} (3.28)

Then, we take ω~l+β(ttl)ω¯l+\widetilde{\omega}^{+}_{l}\coloneqq\beta(t-t_{l})\overline{\omega}^{+}_{l} and define (𝑬l+~)l{1,,M}(\widetilde{\bm{E}^{+}_{l}})_{l\in\{1,\dots,M\}} via

{𝑬l+~=ω~l+ in T,𝑬l+~=0 in T,𝑬l+~𝒏=0 on ΣT,\begin{cases}\bm{\mathrm{\nabla}}\wedge{\widetilde{\bm{E}^{+}_{l}}}=\widetilde{\omega}^{+}_{l}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\widetilde{\bm{E}^{+}_{l}}=0&\mbox{ in }\mathcal{E}_{T},\\ \widetilde{\bm{E}^{+}_{l}}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\end{cases} (3.29)

where β\beta is the function from (3.22). Owing to (3.17) and (3.22), one finds for all l{1,,M}l\in\{1,\dots,M\} and t[0,T]t\in[0,T] the relations

ω~l+(,T)=𝟎,supp(dβdt(ttl)ω¯l+(,t))crl.\widetilde{\omega}^{+}_{l}(\cdot,T)=\bm{0},\quad\operatorname{supp}\left(\frac{{\rm d}\beta}{{\rm d}t}(t-t_{l})\overline{\omega}^{+}_{l}(\cdot,t)\right)\subset c_{r_{l}}.

Therefore, if it would be possible to choose 𝑭~l+\widetilde{\bm{F}}^{+}_{l} for each l{1,,M}l\in\{1,\dots,M\} such that

𝑭~l+=dβdt(ttl)ω¯l++(𝑬l+~)(𝒛0),\bm{\mathrm{\nabla}}\wedge{\widetilde{\bm{F}}^{+}_{l}}=\frac{{\rm d}\beta}{{\rm d}t}(t-t_{l})\overline{\omega}^{+}_{l}+(\widetilde{\bm{E}^{+}_{l}}\cdot\bm{\mathrm{\nabla}})({\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}}}), (3.30)

then (ωl+ω~l+,𝑬l+𝑬~l+,𝑭l+𝑭~l+)(\omega^{+}_{l}\coloneqq\widetilde{\omega}^{+}_{l},\bm{E}^{+}_{l}\coloneqq\widetilde{\bm{E}}^{+}_{l},\bm{F}^{+}_{l}\coloneqq\widetilde{\bm{F}}^{+}_{l}) would satisfy (3.27). To construct such 𝑭~l+\widetilde{\bm{F}}^{+}_{l}, the following observations are remarked.

  • The right-hand side of (3.30) is supported in ¯Ω¯\overline{\mathcal{E}}\setminus\overline{\Omega}.

  • When 𝒛0\bm{z}^{0} is obtained from 3.5, one can for simplicity assume that supp(𝒛0)\operatorname{supp}(\bm{\mathrm{\nabla}}\wedge{\bm{z}^{0}}) is contained in a single boundary cube (cf. 3.6).

Since 𝑭~1+,,𝑭~M+\widetilde{\bm{F}}^{+}_{1},\dots,\widetilde{\bm{F}}^{+}_{M} should be supported in ¯Ω¯×[0,T]\overline{\mathcal{E}}\setminus\overline{\Omega}\times[0,T] and obey (3.30), the average of the right-hand side in (3.30) must vanish on each interior cube. This indeed happens because ω¯l+\overline{\omega}^{+}_{l} solves the homogeneous transport equation (3.28); in fact, for each l{1,,L}l\in\{1,\dots,L\} with BlB_{l}\subset\mathcal{E}, the average of ω¯l+\overline{\omega}^{+}_{l} on BlB_{l} vanishes at t=0t=0 and is transported by 𝓩0\bm{\mathcal{Z}}^{0}. Finally, by undoing the curl in (3.30) (cf. [CoronMarbachSueur2020, Section A.2] for explicit formulas), one obtains the desired controls 𝑭1+,,𝑭M+\bm{F}^{+}_{1},\dots,\bm{F}^{+}_{M}. Thanks to the assumption 𝒛0±H3()H()\bm{z}^{\pm}_{0}\in{\rm H}^{3}(\mathcal{E})\cap{\rm H}(\mathcal{E}), one has 𝝃±,1C0([0,T];H2(;))\bm{\mathrm{\nabla}}\wedge{\bm{\xi}^{\pm,1}}\in{\rm C}^{0}([0,T];{\rm H}^{2}(\mathcal{E};\mathbb{R})) and 𝒛±,1\bm{z}^{\pm,1} are bounded in L((0,T);H3()){\rm L}^{\infty}((0,T);{\rm H}^{3}(\mathcal{E})). ∎

3.4 Boundary layers and technical profiles

In this subsection, the boundary layers and related technical profiles, appearing in (3.7)–(3.8), will be described. In addition to to the neighborhood 𝒱\mathcal{V}, as defined in Section 2.1, another tubular region is denoted by

𝒱d{𝒙¯|dist(𝒙,)<d}𝒱¯,\mathcal{V}_{d^{*}}\coloneqq\{\bm{x}\in\overline{\mathcal{E}}\,|\,\operatorname{dist}(\bm{x},\partial\mathcal{E})<d^{*}\}\subset\mathcal{V}\cap\overline{\mathcal{E}},

where d(0,d)d^{*}\in(0,d) is a small number to be fixed in 3.19 below. Moreover, given a function ψdC(;[0,1])\psi_{d^{*}}\in{\rm C}^{\infty}(\mathbb{R};[0,1]) with

ψd(s)={1 for sd/2,0 for s2d/3,\psi_{d^{*}}(s)=\begin{cases}1&\mbox{ for }s\leq d^{*}/2,\\ 0&\mbox{ for }s\geq 2d^{*}/3,\end{cases}

a smooth cutoff χC(¯;[0,1])\chi_{\partial\mathcal{E}}\in{\rm C}^{\infty}(\overline{\mathcal{E}};[0,1]) is defined by

χ(𝒙)ψd(φ(𝒙)),\chi_{\partial\mathcal{E}}(\bm{x})\coloneqq\psi_{d^{*}}(\varphi_{\mathcal{E}}(\bm{x})), (3.31)

where φ(𝒙)=dist(𝒙,)\varphi_{\mathcal{E}}(\bm{x})=\operatorname{dist}(\bm{x},\partial\mathcal{E}) for 𝒙𝒱\bm{x}\in\mathcal{V} as described in Section 2.1. By construction, one observes that χ=1\chi_{\partial\mathcal{E}}=1 in the vicinity of \partial\mathcal{E} and that supp(χ)𝒱d\operatorname{supp}(\chi_{\partial\mathcal{E}})\subset\mathcal{V}_{d^{*}}. Furthermore, in view of (2.4), the gradient of χ\chi_{\partial\mathcal{E}} in \mathcal{E} can be calculated as

(χ)(𝒙)=(ddsψd)(φ(𝒙))φ(𝒙)=(ddsψd)(φ(𝒙))𝒏(𝒙).\left(\bm{\mathrm{\nabla}}\chi_{\partial\mathcal{E}}\right)(\bm{x})=\left(\frac{{\rm d}}{{\rm d}s}\psi_{d^{*}}\right)(\varphi_{\mathcal{E}}(\bm{x}))\bm{\mathrm{\nabla}}\varphi_{\mathcal{E}}(\bm{x})=-\left(\frac{{\rm d}}{{\rm d}s}\psi_{d^{*}}\right)(\varphi_{\mathcal{E}}(\bm{x}))\bm{n}(\bm{x}). (3.32)
Remark 3.10.

The property (3.32) of χ\chi_{\partial\mathcal{E}} is employed later on for stating a condition under which the profiles 𝝁±\bm{\mu}^{\pm} in (3.8) can be chosen with 𝝁+=𝝁\bm{\mathrm{\nabla}}\cdot{\bm{\mu}^{+}}=\bm{\mathrm{\nabla}}\cdot{\bm{\mu}^{-}}.

3.4.1 Boundary layer equations

Our definition of the boundary layer correctors is motivated by [CoronMarbachSueur2020, IftimieSueur2011]. After plugging the relations (3.7) and (3.8) into (3.5), there appears a term at order O(1)O(1) that is not absorbed by (3.9). However, resorting to the idea from [IftimieSueur2011] of writing

(𝒛0𝒏)z𝒗±ϵ=ϵ𝒛0𝒏φzz𝒗±ϵ,\left\llbracket(\bm{z}^{0}\cdot\bm{n})\partial_{z}\bm{v}^{\pm}\right\rrbracket_{\epsilon}=\sqrt{\epsilon}\left\llbracket\frac{\bm{z}^{0}\cdot\bm{n}}{\varphi_{\mathcal{E}}}z\partial_{z}\bm{v}^{\pm}\right\rrbracket_{\epsilon},

this contribution is seen to behave as O(ϵ)O(\sqrt{\epsilon}). In order to also offset the mismatching boundary values 𝓝±(𝒛0,𝒛0)𝟎\bm{\mathcal{N}}^{\pm}(\bm{z}^{0},\bm{z}^{0})\neq\bm{0}, the boundary layer profiles (𝒗+,𝒗)(\bm{v}^{+},\bm{v}^{-}) in (3.7) are introduced in ¯×+×+\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+} as the solution to the coupled linear problem

t𝒗±zz(λ±𝒗++λ𝒗)+[(𝒛0)𝒗±+(𝒗)𝒛0]tan+𝔣zz𝒗±=𝝁±\partial_{t}\bm{v}^{\pm}-\partial_{zz}(\lambda^{\pm}\bm{v}^{+}+\lambda^{\mp}\bm{v}^{-})+\left[(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{v}^{\pm}+(\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\right]_{\operatorname{tan}}+\mathfrak{f}z\partial_{z}\bm{v}^{\pm}=\bm{\bm{\mu}}^{\pm} (3.33)

with boundary and initial conditions

{z𝒗±(𝒙,t,0)=𝖌±(𝒙,t),𝒙¯,t+,𝒗±(𝒙,t,z)𝟎, as z+,𝒙¯,t+,𝒗±(𝒙,0,z)=𝟎,𝒙¯,z+.\begin{cases}\partial_{z}\bm{v}^{\pm}(\bm{x},t,0)=\bm{\mathfrak{g}}^{\pm}(\bm{x},t),&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \bm{v}^{\pm}(\bm{x},t,z)\longrightarrow\bm{0},\mbox{ as }z\longrightarrow+\infty,&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \bm{v}^{\pm}(\bm{x},0,z)=\bm{0},&\bm{x}\in\overline{\mathcal{E}},z\in\mathbb{R}_{+}.\end{cases} (3.34)

Above, the functions 𝔣\mathfrak{f} and 𝖌±\bm{\mathfrak{g}}^{\pm} are for all (𝒙,t)¯×+(\bm{x},t)\in\overline{\mathcal{E}}\times\mathbb{R}_{+} given by

𝔣(𝒙,t)𝒛0(𝒙,t)𝒏(𝒙)φ(𝒙),𝖌±(𝒙,t)2χ(𝒙)𝓝±(𝒛0,𝒛0)(𝒙,t).\begin{gathered}\mathfrak{f}(\bm{x},t)\coloneqq-\frac{\bm{z}^{0}(\bm{x},t)\cdot\bm{n}(\bm{x})}{\varphi_{\mathcal{E}}(\bm{x})},\quad\bm{\mathfrak{g}}^{\pm}(\bm{x},t)\coloneqq 2\chi_{\partial\mathcal{E}}(\bm{x})\bm{\mathcal{N}}^{\pm}(\bm{z}^{0},\bm{z}^{0})(\bm{x},t).\end{gathered} (3.35)

Since 𝒛0𝒏=0\bm{z}^{0}\cdot\bm{n}=0 on \partial\mathcal{E} and φ=𝒏\bm{\mathrm{\nabla}}\varphi_{\mathcal{E}}=-\bm{n} in \mathcal{E}, the function 𝔣\mathfrak{f} is smooth (cf. [IftimieSueur2011, Lemma 4]). Like 𝒛0\bm{z}^{0} and φ\varphi_{\mathcal{E}}, the functions 𝖌±\bm{\mathfrak{g}}^{\pm} are smooth as well.

Remark 3.11.

It would be sufficient for our purpose to define 𝒗±\bm{v}^{\pm} only on the time interval [0,T/ϵ][0,T/\epsilon]. By stating (3.33) and (3.34) for all t+t\in\mathbb{R}_{+}, it is emphasized that 𝒗±\bm{v}^{\pm} are independent of ϵ\epsilon.

Now, several properties of the solutions to 3.33 and (3.34) are summarized; recall that Hk,m,p{\rm H}^{k,m,p}_{\mathcal{E}} is the weighted space defined in Section 2.2 via

Hk,m,p={fL2(×+)|(r=0p|β|m+(1+z2k)|𝒙βzrf|2dzd𝒙)12<+}.{\rm H}^{k,m,p}_{\mathcal{E}}=\left\{f\in{\rm L}^{2}(\mathcal{E}\times\mathbb{R}_{+})\,\left|\,\left(\sum\limits_{r=0}^{p}\sum\limits_{|\beta|\leq m}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{\bm{x}}^{\beta}\partial_{z}^{r}f|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}\right)^{\frac{1}{2}}<+\infty\right.\right\}.
Lemma 3.12.

Assume that 𝛍±:×+×+N\bm{\mu}^{\pm}\colon\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R}_{+}\longrightarrow\mathbb{R}^{N} are smooth and satisfy 𝛍±𝐧=0\bm{\mu}^{\pm}\cdot\bm{n}=0. There exists a unique solution (𝐯+,𝐯)(\bm{v}^{+},\bm{v}^{-}) to (3.33) and (3.34) which possesses for all k,l,r,s0k,l,r,s\in\mathbb{N}_{0}, and any T>0T^{*}>0, the regularity

ts𝒗±L((0,T);Hk,l,r)L2((0,T);Hk,l,r+1).\displaystyle\partial_{t}^{s}\bm{v}^{\pm}\in{\rm L}^{\infty}((0,T^{*});{\rm H}^{k,l,r}_{\mathcal{E}})\cap{\rm L}^{2}((0,T^{*});{\rm H}^{k,l,r+1}_{\mathcal{E}}). (3.36)

In addition, for each (𝐱,t,z)¯×+×+(\bm{x},t,z)\in\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+} the profiles 𝐯±\bm{v}^{\pm} verify the orthogonality relation

𝒗±(𝒙,t,z)𝒏(𝒙)=0.\bm{v}^{\pm}(\bm{x},t,z)\cdot\bm{n}(\bm{x})=0. (3.37)
Proof.

The well-posedness of the linear problem (3.33), (3.34) is analogous to that of the Navier slip-with-friction boundary layers for the Navier–Stokes equations (cf. [IftimieSueur2011, CoronMarbachSueur2020]). Since 𝝁±\bm{\bm{\mu}}^{\pm} are assumed smooth, the regularity stated in (3.36) is obtained from A.1. The relation (3.37) follows by multiplying in (3.33) with 𝒏\bm{n}, which leads to a priori estimates for (𝒗+±𝒗)𝒏(\bm{v}^{+}\pm\bm{v}^{-})\cdot\bm{n} similar to that given in [IftimieSueur2011, Section 5]. ∎

3.4.2 Technical profiles

For the sake of having 𝒗±𝒏=0\bm{v}^{\pm}\cdot\bm{n}=0 in ¯×+×+\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+}, the normal contributions of (𝒛0)𝒗±+(𝒗)𝒛0(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{v}^{\pm}+(\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}, which appear at O(ϵ)O(\sqrt{\epsilon}) when inserting (3.7) into (3.5), have been omitted in (3.33). This and the commutation formula

q±ϵ=q±ϵ1ϵzq±ϵ𝒏\bm{\mathrm{\nabla}}\llbracket q^{\pm}\rrbracket_{\epsilon}=\llbracket\bm{\mathrm{\nabla}}q^{\pm}\rrbracket_{\epsilon}-\frac{1}{\sqrt{\epsilon}}\llbracket\partial_{z}q^{\pm}\rrbracket_{\epsilon}\bm{n}

motivate introducing the profiles q±q^{\pm} in (3.7) as the solutions to

{zq±=[(𝒛0𝒗±)+(𝒗)𝒛0]𝒏in ¯×+×+,limz+q±(𝒙,t,z)=0,𝒙,t(0,T).\begin{cases}\partial_{z}q^{\pm}=\left[(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}}\bm{v}^{\pm})+(\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\right]\cdot\bm{n}&\mbox{in }\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+},\\ \lim\limits_{z\longrightarrow+\infty}q^{\pm}(\bm{x},t,z)=0,&\bm{x}\in\mathcal{E},t\in(0,T).\end{cases} (3.38)

Next, let us define the second boundary layer correctors 𝒘±\bm{w}^{\pm}. The normal parts of 𝒘±\bm{w}^{\pm} will compensate for the non-vanishing divergence of 𝒗±\bm{v}^{\pm}, while their tangential parts constitute a lifting for 𝓝±(𝒗+,𝒗)(𝒙,t,0)\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})(\bm{x},t,0) and later on enable sufficient remainder estimates. Namely,

𝒘±(𝒙,t,z)\displaystyle\bm{w}^{\pm}(\bm{x},t,z) w¯±(𝒙,t,z)𝒏(𝒙)2ez𝓝±(𝒗+,𝒗)(𝒙,t,0),\displaystyle\coloneqq\overline{w}^{\pm}(\bm{x},t,z)\bm{n}(\bm{x})-2\operatorname{e}^{-z}\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})(\bm{x},t,0), 𝒙¯,t+,z+,\displaystyle\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},z\in\mathbb{R}_{+}, (3.39)
w¯±(𝒙,t,z)\displaystyle\overline{w}^{\pm}(\bm{x},t,z) z+𝒗±(𝒙,t,s)ds,\displaystyle\coloneqq-\int_{z}^{+\infty}\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm}(\bm{x},t,s)\,{{\rm d}s}, 𝒙¯,t+,z+,\displaystyle\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},z\in\mathbb{R}_{+},

noting that 𝒘±\bm{w}^{\pm} satisfy under the assumption supp(𝒗±(,t,z))𝒱\operatorname{supp}(\bm{v}^{\pm}(\cdot,t,z))\subset\mathcal{V} the relations

𝒗±\displaystyle\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm} =𝒏z𝒘±\displaystyle=\bm{n}\cdot\partial_{z}\bm{w}^{\pm} in ¯×+×+,\displaystyle\mbox{in }\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+}, (3.40)
𝓝±(𝒗+,𝒗)(𝒙,t,0)\displaystyle\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})(\bm{x},t,0) =12[z𝒘±]tan(𝒙,t,0),\displaystyle=\frac{1}{2}\left[\partial_{z}\bm{w}^{\pm}\right]_{\operatorname{tan}}(\bm{x},t,0), 𝒙,t(0,T).\displaystyle\bm{x}\in\mathcal{E},t\in(0,T).
Remark 3.13.

The constructions in 3.38 and 3.39 only serve their purpose, if the extended normal vector 𝒏\bm{n} is nonzero in the 𝒙\bm{x}-support of 𝒗±\bm{v}^{\pm}. Therefore, by means of a sufficiently small choice for d>0d^{*}>0 in the definition of χ\chi_{\partial\mathcal{E}}, it will be ensured that supp(𝒗±(,t,z))𝒱\operatorname{supp}(\bm{v}^{\pm}(\cdot,t,z))\subset\mathcal{V} (cf. 3.19).

In order to balance the nonzero divergence contributions and normal fluxes generated by 𝒘±\bm{w}^{\pm}, the correctors θ±,ϵ\theta^{\pm,\epsilon} are introduced as solutions to

{Δθ±,ϵ=𝒘±ϵin ×+,𝒏θ±,ϵ=𝒘±(𝒙,t,0)𝒏(𝒙),𝒙×+.\begin{cases}\Delta\theta^{\pm,\epsilon}=-\left\llbracket\bm{\mathrm{\nabla}}\cdot\bm{w}^{\pm}\right\rrbracket_{\epsilon}&\mbox{in }\mathcal{E}\times\mathbb{R}_{+},\\ \partial_{\bm{n}}\theta^{\pm,\epsilon}=-\bm{w}^{\pm}(\bm{x},t,0)\cdot\bm{n}(\bm{x}),&\bm{x}\in\partial\mathcal{E}\times\mathbb{R}_{+}.\end{cases} (3.41)

For each t+t\in\mathbb{R}_{+}, the corresponding Neumann problem in (3.41) is well-posed; see 3.24 below.

It remains to specify the profiles ϑ±,ϵ\vartheta^{\pm,\epsilon} and the forces 𝜻~±,ϵ\widetilde{\bm{\zeta}}^{\pm,\epsilon}. Inserting the ansatz (3.7) into (3.5) gives at the order O(ϵ)O(\epsilon) rise to the terms

tθ±,ϵ+(𝒛0)θ±,ϵ+(θ,ϵ)𝒛0,\partial_{t}\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}, (3.42)

which are not behaving well regarding the remainder estimates in Section 3.5. In particular, the L2(){\rm L}^{2}(\partial\mathcal{E}) norms of the boundary data in 3.41 are of order O(1)O(1). For this reason, the pressure correctors ϑ±,ϵ\vartheta^{\pm,\epsilon} are defined by

ϑ±,ϵtθ±,ϵ𝒛0θ±,ϵ\vartheta^{\pm,\epsilon}\coloneqq-\partial_{t}\theta^{\pm,\epsilon}-\bm{z}^{0}\cdot\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}

such that one has the representations

tθ±,ϵ+(𝒛0)θ±,ϵ+(θ,ϵ)𝒛0+ϑ±,ϵ=((θ,ϵθ±,ϵ))𝒛0\partial_{t}\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\bm{\mathrm{\nabla}}\vartheta^{\pm,\epsilon}=(\bm{\mathrm{\nabla}}(\theta^{\mp,\epsilon}-\theta^{\pm,\epsilon})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0} (3.43)

at all points where ×𝒛0=𝟎\bm{\mathrm{\nabla}}\times{\bm{z}^{0}}=\bm{0}. Consequentially, in view of Lemmas 3.2 and 3.5, or by 3.4, the relations in (3.43) are always true in Ω¯×+\overline{\Omega}\times\mathbb{R}_{+}. However, in (¯Ω¯)×(0,T)(\overline{\mathcal{E}}\setminus\overline{\Omega})\times(0,T) this might not be the case; but 𝜻~±,ϵ\widetilde{\bm{\zeta}}^{\pm,\epsilon} can be utilized to improve the remainder estimates. More precisely, motivated by the desired estimate (3.83) in Section 3.5.1 below, we shall define 𝜻~±,ϵ\widetilde{\bm{\zeta}}^{\pm,\epsilon} either via (3.44) or by means of (3.45), as explained next.

The first case of the definition for 𝜻~±,ϵ\widetilde{\bm{\zeta}}^{\pm,\epsilon}.

When (𝒘+𝒘)|z=0𝒏=0(\bm{w}^{+}-\bm{w}^{-})_{|_{z=0}}\cdot\bm{n}=0 is satisfied at ΣT\Sigma_{T}, 3.24 will provide good estimates for θ+,ϵθ,ϵ\theta^{+,\epsilon}-\theta^{-,\epsilon}, allowing us to choose

𝜻~±,ϵ(𝒛0)θ±,ϵ+(θ,ϵ)𝒛0(𝒛0θ±,ϵ)((θ,ϵθ±,ϵ))𝒛0.\widetilde{\bm{\zeta}}^{\pm,\epsilon}\coloneqq(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}-\bm{\mathrm{\nabla}}(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon})-(\bm{\mathrm{\nabla}}(\theta^{\mp,\epsilon}-\theta^{\pm,\epsilon})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}. (3.44)

There are at least two situations with (𝒘+𝒘)|z=0𝒏=0(\bm{w}^{+}-\bm{w}^{-})_{|_{z=0}}\cdot\bm{n}=0 at ΣT=×(0,T)\Sigma_{T}=\partial\mathcal{E}\times(0,T).

  • If 𝒗+𝒗=𝟎\bm{v}^{+}-\bm{v}^{-}=\bm{0} in ×+×+\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R}_{+}, then also (𝒘+𝒘)𝒏=0(\bm{w}^{+}-\bm{w}^{-})\cdot\bm{n}=0. This happens, for instance, when 𝑴2=𝟎\bm{M}_{2}=\bm{0} and 𝝁±\bm{\mu}^{\pm} are determined such that 𝝁+𝝁=𝟎\bm{\mu}^{+}-\bm{\mu}^{-}=\bm{0} (cf. 3.15 and 3.18).

  • In the case of 2.5, where the definition of 𝒛0\bm{z}^{0} from (3.12) ensures (𝒘+𝒘)𝒏=0(\bm{w}^{+}-\bm{w}^{-})\cdot\bm{n}=0. To see this, the proof of 3.18 below provides (𝒗+𝒗)=0\bm{\mathrm{\nabla}}\cdot{(\bm{v}^{+}-\bm{v}^{-})}=0 and (𝝁+𝝁)=0\bm{\mathrm{\nabla}}\cdot{(\bm{\mu}^{+}-\bm{\mu}^{-})}=0.

Given the assumptions of 1.2 or 2.5, one can conclude also the additional properties

(𝜻~+,ϵ𝜻~,ϵ)=0 in T,(𝜻~+,ϵ𝜻~,ϵ)𝒏=0 on ΣT.\bm{\mathrm{\nabla}}\cdot{(\widetilde{\bm{\zeta}}^{+,\epsilon}-\widetilde{\bm{\zeta}}^{-,\epsilon})}=0\,\mbox{ in }\mathcal{E}_{T},\quad(\widetilde{\bm{\zeta}}^{+,\epsilon}-\widetilde{\bm{\zeta}}^{-,\epsilon})\cdot\bm{n}=0\,\mbox{ on }\Sigma_{T}.

Indeed, either 𝑴2=𝟎\bm{M}_{2}=\bm{0} implies that (θ+,ϵθ,ϵ)=𝟎\bm{\mathrm{\nabla}}(\theta^{+,\epsilon}-\theta^{-,\epsilon})=\bm{0}, hence 𝜻~+,ϵ𝜻~,ϵ=𝟎\widetilde{\bm{\zeta}}^{+,\epsilon}-\widetilde{\bm{\zeta}}^{-,\epsilon}=\bm{0}, or, if 𝑴2=ρ𝑰\bm{M}_{2}=\rho\bm{I} in the case of 2.5, one has 𝒛0=0\bm{\mathrm{\nabla}}\wedge{\bm{z}}^{0}=0 by means of (3.12), which even provides 𝜻~±,ϵ=𝟎\widetilde{\bm{\zeta}}^{\pm,\epsilon}=\bm{0}.

The second case of the definition for 𝜻~±,ϵ\widetilde{\bm{\zeta}}^{\pm,\epsilon}.

When ×𝒛0=𝟎\bm{\mathrm{\nabla}}\times{\bm{z}^{0}}=\bm{0} in T¯\overline{\mathcal{E}_{T}} and (𝒘+𝒘)|z=0𝒏0(\bm{w}^{+}-\bm{w}^{-})_{|_{z=0}}\cdot\bm{n}\neq 0 at some points of ΣT\Sigma_{T}, then we define

𝜻~±,ϵ((θ,ϵθ±,ϵ))𝒛0.\widetilde{\bm{\zeta}}^{\pm,\epsilon}\coloneqq(\bm{\mathrm{\nabla}}(\theta^{\mp,\epsilon}-\theta^{\pm,\epsilon})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}. (3.45)

This applies to the general situation of 1.5, where 𝒛0\bm{z}^{0} is obtained from 3.2.

Remark 3.14.

In the special case of 1.6, see also 3.4, one has 𝜻~±,ϵ=𝟎\widetilde{\bm{\zeta}}^{\pm,\epsilon}=\bm{0} in Ω¯×[0,T]\overline{\Omega}\times[0,T], since in Ω¯×[0,T]\overline{\Omega}\times[0,T] the vector field 𝒛0\bm{z}^{0} is constant with respect to the spatial variables.

When 𝑴2=𝟎\bm{M}_{2}=\bm{0}, magnetic field boundary layers cannot arise, as emphasized by the following lemma.

Lemma 3.15.

𝑴2=𝟎\bm{M}_{2}=\bm{0} and 𝛍+𝛍=𝟎\bm{\mu}^{+}-\bm{\mu}^{-}=\bm{0} imply 𝐯+𝐯=𝟎\bm{v}^{+}-\bm{v}^{-}=\bm{0}.

Proof.

𝑴2=𝟎\bm{M}_{2}=\bm{0} implies 𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0)=[2𝑴2𝒛0]tan=𝟎\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0})=[2\bm{M}_{2}\bm{z}^{0}]_{\operatorname{tan}}=\bm{0}. Since 𝝁+𝝁=𝟎\bm{\mu}^{+}-\bm{\mu}^{-}=\bm{0}, if 𝒗±\bm{v}^{\pm} are obtained from (3.33) and (3.34), then their difference 𝑾\bm{W} obeys

t𝑾(λ+λ)zz𝑾+[(𝒛0)𝑾(𝑾)𝒛0]tan+𝔣zz𝑾=𝟎,\partial_{t}\bm{W}-(\lambda^{+}-\lambda^{-})\partial_{zz}\bm{W}+\left[(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{W}-(\bm{W}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\right]_{\operatorname{tan}}+\mathfrak{f}z\partial_{z}\bm{W}=\bm{0}, (3.46)

with vanishing boundary and initial conditions

{z𝑾(𝒙,t,0)=𝟎,𝒙¯,t+,𝑾(𝒙,t,z)𝟎, as z+,𝒙¯,t+,𝑾(𝒙,0,z)=𝟎,𝒙¯,z+.\begin{cases}\partial_{z}\bm{W}(\bm{x},t,0)=\bm{0},&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \bm{W}(\bm{x},t,z)\longrightarrow\bm{0},\mbox{ as }z\longrightarrow+\infty,&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \bm{W}(\bm{x},0,z)=\bm{0},&\bm{x}\in\overline{\mathcal{E}},z\in\mathbb{R}_{+}.\end{cases} (3.47)

Due to 𝑾𝒏=0\bm{W}\cdot\bm{n}=0 in ¯×+×+\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+} (see (3.37)), one can show by means of direct energy estimates that 𝑾\bm{W} must be the unique solution to (3.46) and (3.47). Thus 𝑾=𝟎\bm{W}=\bm{0}. ∎

3.4.3 Boundary layer dissipation via vanishing moment conditions

The boundary layer controls 𝝁±\bm{\mu}^{\pm} appearing in (3.33) are now determined. For large times tTt\geq T, in Section 3.1 we already fixed

𝝁±(𝒙,t,z)=𝟎,(𝒙,t,z)¯×[T,+)×+.\bm{\mu}^{\pm}(\bm{x},t,z)=\bm{0},\quad(\bm{x},t,z)\in\overline{\mathcal{E}}\times[T,+\infty)\times\mathbb{R}_{+}.

For all t[0,T)t\in[0,T), the controls 𝝁±(,t)\bm{\mu}^{\pm}(\cdot,t) will be chosen such that  𝒗±\bm{v}^{\pm} admit improved decay rates as t+t\longrightarrow+\infty. To this end, we implement the well-prepared dissipation method, described in [CoronMarbachSueur2020] for the Navier–Stokes equations and previously in [Marbach2014] for a viscous Burgers’ equation. Here, two different constructions for 𝝁±\bm{\mu}^{\pm} will be given: the first one, namely 3.17, follows closely the known results and is suitable for showing 1.5 with nonzero 𝜻\bm{\zeta}; the second one, namely 3.18, allows concluding Theorems 1.2, 2.5, and the assertion for 𝑴2=𝟎\bm{M}_{2}=\bm{0} of 1.5. To begin with, we state a direct modification of [CoronMarbachSueur2020, Lemma 6], which involves the space (cf. Section 2.2)

Hk,s~()={fL2()|(l=0s(1+z2k)|zlf(z)|2dz)12<+}.\widetilde{{\rm H}^{k,s}}(\mathbb{R})=\left\{f\in{\rm L}^{2}(\mathbb{R})\,\left|\,\left(\sum\limits_{l=0}^{s}\int_{\mathbb{R}}(1+z^{2k})|\partial^{l}_{z}f(z)|^{2}\,{{\rm d}z}\right)^{\frac{1}{2}}<+\infty\right.\right\}.
Lemma 3.16.

Let s,rs,r\in\mathbb{N} and suppose that f0±Hr+1,s~()f^{\pm}_{0}\in\widetilde{{\rm H}^{r+1,s}}(\mathbb{R}) satisfy for all integers 0k<r0\leq k<r the vanishing moment conditions

zkf0±dz=0.\int_{\mathbb{R}}z^{k}f^{\pm}_{0}\,{{\rm d}z}=0. (3.48)

Furthermore, assume that (z,t)f±(z,t)(z,t)\longmapsto f^{\pm}(z,t) solve the coupled parabolic system

{tf±zz(λ±f++λf)=0 in ×+,f±(,0)=f0± in .\begin{cases}\partial_{t}f^{\pm}-\partial_{zz}(\lambda^{\pm}f^{+}+\lambda^{\mp}f^{-})=0&\mbox{ in }\mathbb{R}\times\mathbb{R}_{+},\\ f^{\pm}(\cdot,0)=f^{\pm}_{0}&\mbox{ in }\mathbb{R}.\end{cases}

Then, for all k{0,,r}k\in\{0,\dots,r\} one has the decay estimate

f±(,t)Hk,s~()Cmax,{+,}f0Hr+1,s~()2|ln(2+(λ+λ)t)2+(λ+λ)t|14+r2k2,\|f^{\pm}(\cdot,t)\|_{\widetilde{{\rm H}^{k,s}}(\mathbb{R})}\leq C\max_{\triangle,\square\in\{+,-\}}\|f^{\triangle}_{0}\|_{\widetilde{{\rm H}^{r+1,s}}(\mathbb{R})}^{2}\left|\frac{\ln(2+(\lambda^{+}\square\,\lambda^{-})t)}{2+(\lambda^{+}\square\,\lambda^{-})t}\right|^{\frac{1}{4}+\frac{r}{2}-\frac{k}{2}}, (3.49)

where C=C(s,r)C=C(s,r) is a constant independent of t0t\geq 0 and the initial data f0±f^{\pm}_{0}.

Proof.

We define the functions F±f+±fF^{\pm}\coloneqq f^{+}\pm f^{-} and introduce for λ1,λ2\lambda_{1},\lambda_{2} from (2.17) the scaled versions Fλ1,λ2±(z,t)F±(z,(λ+±λ)1t)F^{\pm}_{\lambda_{1},\lambda_{2}}(z,t)\coloneqq F^{\pm}(z,(\lambda^{+}\pm\lambda^{-})^{-1}t), which obey the uncoupled heat equations

{tFλ1,λ2±zzFλ1,λ2±=0 in ×+,Fλ1,λ2±(,0)=f0+±f0 in .\begin{cases}\partial_{t}F^{\pm}_{\lambda_{1},\lambda_{2}}-\partial_{zz}F^{\pm}_{\lambda_{1},\lambda_{2}}=0&\mbox{ in }\mathbb{R}\times\mathbb{R}_{+},\\ F^{\pm}_{\lambda_{1},\lambda_{2}}(\cdot,0)=f^{+}_{0}\pm f^{-}_{0}&\mbox{ in }\mathbb{R}.\end{cases} (3.50)

By applying [CoronMarbachSueur2020, Lemma 6] to (3.50), the bound (3.49) follows first for F±F^{\pm} and then by the triangle inequality also for f±f^{\pm}. ∎

The following result, which is a consequence of 3.16 and [CoronMarbachSueur2020, Lemma 7], provides the controls 𝝁±\bm{\mu}^{\pm} on the time interval [0,T][0,T]. It will be applied in the general situation of 1.5.

Lemma 3.17.

For any rr\in\mathbb{N}, there exist 𝛍±C(¯×[0,T]×+;N)\bm{\bm{\mu}}^{\pm}\in{\rm C}^{\infty}(\overline{\mathcal{E}}\times[0,T]\times\mathbb{R}_{+};\mathbb{R}^{N}) satisfying

(𝒙,t,z)×+×+:𝝁±(𝒙,t,z)𝒏(𝒙)=0,\displaystyle\forall(\bm{x},t,z)\in\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R}_{+}\colon\bm{\bm{\mu}}^{\pm}(\bm{x},t,z)\cdot\bm{n}(\bm{x})=0,
z+:supp(𝝁±(,,z))(¯Ω¯)×(0,T)\displaystyle\forall z\in\mathbb{R}_{+}\colon\operatorname{supp}(\bm{\bm{\mu}}^{\pm}(\cdot,\cdot,z))\subset\left(\overline{\mathcal{E}}\setminus\overline{\Omega}\right)\times(0,T)

such that 𝐯±\bm{v}^{\pm} obey the decay rate

𝒗±(,t,)Hk,p,s2Cmax{+,}|ln(2+(λ+λ)t)2+(λ+λ)t|14+r2k2,\|\bm{v}^{\pm}(\cdot,t,\cdot)\|_{{\rm H}^{k,p,s}_{\mathcal{E}}}^{2}\leq C\max_{\square\in\{+,-\}}\left|\frac{\ln(2+(\lambda^{+}\square\,\lambda^{-})t)}{2+(\lambda^{+}\square\,\lambda^{-})t}\right|^{\frac{1}{4}+\frac{r}{2}-\frac{k}{2}}, (3.51)

for all 0kr0\leq k\leq r and s,p,k0s,p,k\in\mathbb{N}_{0}, with a constant C=C(s,r,p,k)>0C=C(s,r,p,k)>0 not depending on the time tt.

Proof.

Consider the even extensions of 𝒗±\bm{v}^{\pm} to ¯×+×\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R} plus lifted boundary data, defined via

𝑽±(𝒙,t,z)𝒗±(𝒙,t,|z|)+𝖌±(𝒙,t)e|z|,(𝒙,t,z)¯×+×.\bm{V}^{\pm}(\bm{x},t,z)\coloneqq\bm{v}^{\pm}(\bm{x},t,|z|)+\bm{\mathfrak{g}}^{\pm}(\bm{x},t)\operatorname{e}^{-|z|},\quad(\bm{x},t,z)\in\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}. (3.52)

For tTt\geq T, one has by construction

𝒛0(,t)=𝟎,𝖌±(,t)=𝟎,𝝁±(,t,)=𝟎.\bm{z}^{0}(\cdot,t)=\bm{0},\quad\bm{\mathfrak{g}}^{\pm}(\cdot,t)=\bm{0},\quad\bm{\mu}^{\pm}(\cdot,t,\cdot)=\bm{0}.

Thus, 𝑽±\bm{V}^{\pm} are governed by the parabolic system

t𝑽±zz(λ±𝑽++λ𝑽)=𝟎in ¯×[T,+)×,\partial_{t}\bm{V}^{\pm}-\partial_{zz}(\lambda^{\pm}\bm{V}^{+}+\lambda^{\mp}\bm{V}^{-})=\bm{0}\quad\mbox{in }\overline{\mathcal{E}}\times[T,+\infty)\times\mathbb{R}, (3.53)

where 𝒙¯\bm{x}\in\overline{\mathcal{E}} is a parameter. Therefore, in view of 3.16 and (3.52), the decay estimate (3.51) follows if enough vanishing moment conditions of the type (3.48) are satisfied. To see this, the proof of [CoronMarbachSueur2020, Lemma 7] can be applied individually to the equations satisfied by 𝑽++𝑽\bm{V}^{+}+\bm{V}^{-} and 𝑽+𝑽\bm{V}^{+}-\bm{V}^{-}. This provides controls 𝝁+±𝝁\bm{\mu}^{+}\pm\bm{\mu}^{-} such that for each k{1,,r1}k\in\{1,\dots,r-1\} the Fourier transformed functions

𝑽^±(,,ζ)eiζz𝑽±(,,z)dz\widehat{\bm{V}}^{\pm}(\cdot,\cdot,\zeta)\coloneqq\int_{\mathbb{R}}\operatorname{e}^{-i\zeta z}\bm{V}^{\pm}(\cdot,\cdot,z)\,{{\rm d}z}

obey the relations

ζk𝑽^+(,T,ζ)|ζ=0±ζk𝑽^(,T,ζ)|ζ=0=𝟎.\partial_{\zeta}^{k}\widehat{\bm{V}}^{+}(\cdot,T,\zeta)_{|_{\zeta=0}}\pm\partial_{\zeta}^{k}\widehat{\bm{V}}^{-}(\cdot,T,\zeta)_{|_{\zeta=0}}=\bm{0}. (3.54)

Since (3.54) implies sufficient vanishing moment conditions and 3.12 provides uniform bounds for 𝒗±\bm{v}^{\pm} on the time interval [0,T][0,T], the proof is complete. ∎

The next lemma provides magnetic field boundary layer controls that are not only tangential at \partial\mathcal{E}, but also divergence-free in ×(0,T)×+\mathcal{E}\times(0,T)\times\mathbb{R}_{+}; this is required for showing 2.5. Also regarding 1.2, and 1.5 with 𝑴2=𝟎\bm{M}_{2}=\bm{0}, the proof below will explain how 𝝁±\bm{\mu}^{\pm} can be selected with 𝝁+𝝁=𝟎\bm{\mu}^{+}-\bm{\mu}^{-}=\bm{0}. The approach is based on ideas from [CoronMarbachSueur2020, Lemma 7].

Lemma 3.18.

Given any rr\in\mathbb{N}, the controls 𝛍±\bm{\mu}^{\pm} with the properties from 3.17 can under additional assumptions be chosen as follows.

  1. 1)

    When 𝓝+(𝒛0,𝒛0)(𝒙,t)=𝓝(𝒛0,𝒛0)(𝒙,t)\bm{\mathcal{\mathcal{N}}}^{+}(\bm{z}^{0},\bm{z}^{0})(\bm{x},t)=\bm{\mathcal{\mathcal{N}}}^{-}(\bm{z}^{0},\bm{z}^{0})(\bm{x},t) is valid for all (𝒙,t)supp(χ)×(0,T)(\bm{x},t)\in\operatorname{supp}(\chi_{\partial\mathcal{E}})\times(0,T), then 𝝁±\bm{\mu}^{\pm} can be fixed with

    𝝁+𝝁=𝟎.\bm{\mu}^{+}-\bm{\mu}^{-}=\bm{0}.
  2. 2)

    When the profile 𝒛0\bm{z}^{0} selected in Section 3.1 satisfies

    (𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0))=0\displaystyle\bm{\mathrm{\nabla}}\cdot{(\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}))}=0 in (𝒱¯)×(0,T),\displaystyle\mbox{ in }(\mathcal{V}\cap\overline{\mathcal{E}})\times(0,T), (3.55)
    𝒛0𝒏=0\displaystyle\bm{z}^{0}\cdot\bm{n}=0 in (𝒱¯)×(0,T),\displaystyle\mbox{ in }(\mathcal{V}\cap\overline{\mathcal{E}})\times(0,T),
    𝒛0=0\displaystyle\bm{\mathrm{\nabla}}\cdot{\bm{z}^{0}}=0 in T,\displaystyle\mbox{ in }\mathcal{E}_{T},

    then after fixing the number d(0,d)d^{*}\in(0,d) from the definition of χ\chi_{\partial\mathcal{E}} sufficiently small, one can construct 𝝁±\bm{\mu}^{\pm} with

    (𝝁+𝝁)=0,(𝒙,t,z)×+×+.\bm{\mathrm{\nabla}}\cdot{(\bm{\mu}^{+}-\bm{\mu}^{-})}=0,\quad(\bm{x},t,z)\in\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R}_{+}. (3.56)
  3. 3)

    If in addition to the conditions in (3.55) one has 𝒛0𝒏=0\bm{z}^{0}\cdot\bm{n}=0 in T\mathcal{E}_{T}, then 𝝁±\bm{\mu}^{\pm} can be chosen with (3.56) for any choice d(0,d)d^{*}\in(0,d).

Proof.

If 𝓝+(𝒛0,𝒛0)=𝓝(𝒛0,𝒛0)\bm{\mathcal{\mathcal{N}}}^{+}(\bm{z}^{0},\bm{z}^{0})=\bm{\mathcal{\mathcal{N}}}^{-}(\bm{z}^{0},\bm{z}^{0}) in supp(χ)×(0,T)\operatorname{supp}(\chi_{\partial\mathcal{E}})\times(0,T), one may take 𝝁+𝝁=𝟎\bm{\mu}^{+}-\bm{\mu}^{-}=\bm{0}. Indeed, the magnetic field boundary layer 𝒗+𝒗\bm{v}^{+}-\bm{v}^{-} solves in that case a well-posed linear problem with zero data, which yields 𝒗+𝒗=𝟎\bm{v}^{+}-\bm{v}^{-}=\bm{0} in ¯×+×+\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+} as shown by 3.15. In any case, we apply the arguments from the proof of 3.17 for determining 𝝁++𝝁\bm{\mu}^{+}+\bm{\mu}^{-} such that

ζk𝑽^+(,T,ζ)|ζ=0+ζk𝑽^(,T,ζ)|ζ=0=𝟎,k{1,,r1}.\partial_{\zeta}^{k}\widehat{\bm{V}}^{+}(\cdot,T,\zeta)_{|_{\zeta=0}}+\partial_{\zeta}^{k}\widehat{\bm{V}}^{-}(\cdot,T,\zeta)_{|_{\zeta=0}}=\bm{0},\quad k\in\{1,\dots,r-1\}.

Thus, to show 2) and 3), it remains to identify a suitable control 𝝁+𝝁\bm{\mu}^{+}-\bm{\mu}^{-} (having the desired properties), which acts in the equation satisfied by 𝒗+𝒗\bm{v}^{+}-\bm{v}^{-} in a way that

ζk𝑽^+(,T,ζ)|ζ=0ζk𝑽^(,T,ζ)|ζ=0=𝟎,k{1,,r1}.\partial_{\zeta}^{k}\widehat{\bm{V}}^{+}(\cdot,T,\zeta)_{|_{\zeta=0}}-\partial_{\zeta}^{k}\widehat{\bm{V}}^{-}(\cdot,T,\zeta)_{|_{\zeta=0}}=\bm{0},\quad k\in\{1,\dots,r-1\}.
Step 1. Preliminaries.

In view of (3.52), the vector field 𝑾𝑽+𝑽\bm{W}\coloneqq\bm{V}^{+}-\bm{V}^{-} can with 𝖌𝖌+𝖌\bm{\mathfrak{g}}\coloneqq\bm{\mathfrak{g}}^{+}-\bm{\mathfrak{g}}^{-} be written as

𝑾(𝒙,t,z)=𝒗+(𝒙,t,|z|)𝒗(𝒙,t,|z|)+𝖌(𝒙,t)e|z|.\bm{W}(\bm{x},t,z)=\bm{v}^{+}(\bm{x},t,|z|)-\bm{v}^{-}(\bm{x},t,|z|)+\bm{\mathfrak{g}}(\bm{x},t)\operatorname{e}^{-|z|}. (3.57)

Under the assumption 𝝁±𝒏=0\bm{\mu}^{\pm}\cdot\bm{n}=0, noting that 𝖌±𝒏=0\bm{\mathfrak{g}}^{\pm}\cdot\bm{n}=0 is true by construction, it follows from (3.37) that 𝑾𝒏=0\bm{W}\cdot\bm{n}=0 holds as well. Also, 3.32 and 3.55 imply 𝖌=0\bm{\mathrm{\nabla}}\cdot{\bm{\mathfrak{g}}}=0 by means of

(𝖌+𝖌)\displaystyle\bm{\mathrm{\nabla}}\cdot{(\bm{\mathfrak{g}}^{+}-\bm{\mathfrak{g}}^{-})} =2χ(𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0))\displaystyle=2\chi_{\partial\mathcal{E}}\bm{\mathrm{\nabla}}\cdot{(\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}))} (3.58)
2[(ddsψd)φ]𝒏(𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0))\displaystyle\quad-2\left[\left(\frac{{\rm d}}{{\rm d}s}\psi_{d^{*}}\right)\circ\varphi_{\mathcal{E}}\right]\bm{n}\cdot(\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}))
=2χ(𝓝+(𝒛0,𝒛0)𝓝(𝒛0,𝒛0))\displaystyle=2\chi_{\partial\mathcal{E}}\bm{\mathrm{\nabla}}\cdot{(\bm{\mathcal{N}}^{+}(\bm{z}^{0},\bm{z}^{0})-\bm{\mathcal{N}}^{-}(\bm{z}^{0},\bm{z}^{0}))}
=0.\displaystyle=0.

Even more, 𝒏=φ\bm{n}=-\bm{\mathrm{\nabla}}\varphi_{\mathcal{E}} being a gradient, hence ×𝒏=𝟎\bm{\mathrm{\nabla}}\times{\bm{n}}=\bm{0}, ensures for two vector fields 𝒉1\bm{h}_{1} and 𝒉2\bm{h}_{2} defined in \mathcal{E} that

(𝒉1𝒏=0 and 𝒉2𝒏=0)((𝒉1)𝒉2(𝒉2)𝒉1)𝒏=0.\left(\bm{h}_{1}\cdot\bm{n}=0\mbox{ and }\bm{h}_{2}\cdot\bm{n}=0\right)\,\Longrightarrow\,\left((\bm{h}_{1}\cdot\bm{\mathrm{\nabla}})\bm{h}_{2}-(\bm{h}_{2}\cdot\bm{\mathrm{\nabla}})\bm{h}_{1}\right)\cdot\bm{n}=0.

Therefore, one can infer at all points where 𝒛0𝒏=0\bm{z}^{0}\cdot\bm{n}=0 holds the relation

[(𝒛0)(𝒗+𝒗)((𝒗+𝒗))𝒛0]tan=(𝒛0)(𝒗+𝒗)((𝒗+𝒗))𝒛0.\displaystyle\left[(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})(\bm{v}^{+}-\bm{v}^{-})-((\bm{v}^{+}-\bm{v}^{-})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\right]_{\operatorname{tan}}=(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})(\bm{v}^{+}-\bm{v}^{-})-((\bm{v}^{+}-\bm{v}^{-})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}.

Next, while from (3.55) it only follows that 𝔣=0\mathfrak{f}=0 in (𝒱¯)×+(\mathcal{V}\cap\overline{\mathcal{E}})\times\mathbb{R}_{+}, we temporarily guarantee that 𝔣=0\mathfrak{f}=0 in all of ¯×+\overline{\mathcal{E}}\times\mathbb{R}_{+} by means of the artificially strong assumption, which will be removed in the last step by choosing d(0,d)d^{*}\in(0,d) small222In this article, (3.59) is always satisfied when we employ 3.18 with the hypotheses in (3.55); see (3.13).:

𝒛0(𝒙,t)𝒏(𝒙)=0 in ¯×+.\bm{z}^{0}(\bm{x},t)\cdot\bm{n}(\bm{x})=0\mbox{ in }\overline{\mathcal{E}}\times\mathbb{R}_{+}. (3.59)

As a result of the foregoing considerations, and by understanding the yet unspecified controls 𝝁±\bm{\mu}^{\pm} as extended evenly to all zz\in\mathbb{R}, the function 𝑾(x,t,z)\bm{W}(x,t,z) satisfies the following problem:

{t𝑾zz(λ+λ)𝑾+(𝒛0)𝑾(𝑾)𝒛0=𝕲e|z|+𝝁 in ¯×+×,𝑾|t=0=𝟎 in ¯×,\begin{cases}\partial_{t}\bm{W}-\partial_{zz}(\lambda^{+}-\lambda^{-})\bm{W}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{W}-(\bm{W}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}=\bm{\mathfrak{G}}\operatorname{e}^{-|z|}+\bm{{{\mu}}}&\mbox{ in }\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R},\\ \bm{W}|_{t=0}=\bm{0}&\mbox{ in }\overline{\mathcal{E}}\times\mathbb{R},\end{cases} (3.60)

where

𝕲t𝖌(λ+λ)𝖌+(𝒛0)𝖌(𝖌)𝒛0,𝝁𝝁+𝝁.\bm{\mathfrak{G}}\coloneqq\partial_{t}\bm{\mathfrak{g}}-(\lambda^{+}-\lambda^{-})\bm{\mathfrak{g}}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{\mathfrak{g}}-(\bm{\mathfrak{g}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0},\quad\bm{{{\mu}}}\coloneqq\bm{\mu}^{+}-\bm{\mu}^{-}.

Consequently, the partial Fourier transform

𝑾^(𝒙,t,ζ)𝑾(𝒙,t,z)eiζzdz\widehat{\bm{W}}(\bm{x},t,\zeta)\coloneqq\int_{\mathbb{R}}\bm{W}(\bm{x},t,z)\operatorname{e}^{-i\zeta z}\,{{\rm d}z}

satisfies the problem

{t𝑾^+ζ2(λ+λ)𝑾^+(𝒛0)𝑾^(𝑾^)𝒛0=21+ζ2𝕲+𝝁^ in ×+×,𝑾^|t=0=𝟎 in ×.\begin{cases}\partial_{t}\widehat{\bm{W}}+\zeta^{2}(\lambda^{+}-\lambda^{-})\widehat{\bm{W}}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\widehat{\bm{W}}-(\widehat{\bm{W}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}=\frac{2}{1+\zeta^{2}}\bm{\mathfrak{G}}+\widehat{\bm{{{\mu}}}}&\mbox{ in }\mathcal{E}\times\mathbb{R}_{+}\times\mathbb{R},\\ \widehat{\bm{W}}|_{t=0}=\bm{0}&\mbox{ in }\mathcal{E}\times\mathbb{R}.\end{cases} (3.61)

Therefore, during the time interval [0,T][0,T], for each k0k\in\mathbb{N}_{0} the evolution of the evaluated derivatives

𝑸k(𝒙,t)ζk𝑾^(𝒙,t,ζ)|ζ=0\bm{Q}^{k}(\bm{x},t)\coloneqq\partial_{\zeta}^{k}\widehat{\bm{W}}(\bm{x},t,\zeta)_{|_{\zeta=0}}

is governed by the transport equation

{t𝑸k+(𝒛0)𝑸k(𝑸k)𝒛0=𝑷k in T,𝑸k(,0)=𝟎 in ¯,\begin{cases}\partial_{t}\bm{Q}^{k}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{Q}^{k}-(\bm{Q}^{k}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}=\bm{P}^{k}&\mbox{ in }\mathcal{E}_{T},\\ \bm{Q}^{k}(\cdot,0)=\bm{0}&\mbox{ in }\overline{\mathcal{E}},\end{cases} (3.62)

which contains the source term

𝑷kζk(𝝁^+2𝕲1+ζ2)|ζ=0k(k1)(λ+λ)𝑸max{0,k2}.\displaystyle\bm{P}^{k}\coloneqq\partial_{\zeta}^{k}\left(\widehat{\bm{{{\mu}}}}+\frac{2\bm{\mathfrak{G}}}{1+\zeta^{2}}\right)\Big{|}_{\zeta=0}-k(k-1)(\lambda^{+}-\lambda^{-})\bm{Q}^{\max\{0,k-2\}}. (3.63)
Step 2. Determining 𝝁+𝝁\bm{\bm{\mu}}^{+}-\bm{\bm{\mu}}^{-}.

Let r~\widetilde{r}\in\mathbb{N} denote the integer part of (r1)/2(r-1)/2. Since 𝑾\bm{W} is symmetric about the z=0z=0 axis, it remains to steer for l{0,,r~}l\in\{0,\dots,\widetilde{r}\} the even moments 𝑸2l\bm{Q}^{2l} to zero. Hereto, we make for 𝝁\bm{{{\mu}}} the ansatz

𝝁(𝒙,t,z)=i=0r~𝝁i(𝒙,t)ϕi(z),\bm{{{\mu}}}(\bm{x},t,z)=\sum\limits_{i=0}^{\widetilde{r}}\bm{{{\mu}}}^{i}(\bm{x},t)\phi_{i}(z), (3.64)

where the even functions (ϕj)j{0,,r~}C()L2()(\phi_{j})_{j\in\{0,\dots,\widetilde{r}\}}\subset{\rm C}^{\infty}(\mathbb{R})\cap{\rm L}^{2}(\mathbb{R}) are chosen such that

ϕ^j(ζ)ϕj(z)eiζzdz,l{0,,r~}\widehat{\phi}_{j}(\zeta)\coloneqq\int_{\mathbb{R}}\phi_{j}(z)\operatorname{e}^{-i\zeta z}\,{{\rm d}z},\quad l\in\{0,\dots,\widetilde{r}\}

obey the relations

ζ2lϕ^j(0){1 if j=l,0 otherwise. \partial_{\zeta}^{2l}\widehat{\phi}_{j}(0)\coloneqq\begin{cases}1&\mbox{ if }j=l,\\ 0&\mbox{ otherwise. }\end{cases}

For instance, for any even smooth cutoff φ~C0()\widetilde{\varphi}\in{\rm C}^{\infty}_{0}(\mathbb{R}) with φ~=1\widetilde{\varphi}=1 in a neighborhood of the origin one may take as ϕ0,,ϕr~\phi_{0},\dots,\phi_{\widetilde{r}} the inverse Fourier transforms of the functions

φ~,12ζ2φ~,,1(2r~)!ζ2r~φ~.\widetilde{\varphi},\frac{1}{2}\zeta^{2}\widetilde{\varphi},\dots,\frac{1}{(2\widetilde{r})!}\zeta^{2\widetilde{r}}\widetilde{\varphi}.

Subsequently, inserting the ansatz (3.64) for each even choice k{1,,r1}k\in\{1,\dots,r-1\} into (3.62) provides the cascade system of transport equations

{t𝑸0+(𝒛0)𝑸0(𝑸0)𝒛0=𝝁0+2𝕲,t𝑸2+(𝒛0)𝑸2(𝑸2)𝒛0=𝝁14𝕲2(λ+λ)𝑸0,t𝑸2r~+(𝒛0)𝑸2r~(𝑸2r~)𝒛0=𝝁r~+2(2r~)!(1)r~𝕲(4r~22r~)(λ+λ)𝑸2r~2\begin{cases}\partial_{t}\bm{Q}^{0}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{Q}^{0}-(\bm{Q}^{0}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}&=\bm{{{\mu}}}^{0}+2\bm{\mathfrak{G}},\\ \partial_{t}\bm{Q}^{2}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{Q}^{2}-(\bm{Q}^{2}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}&=\bm{{{\mu}}}^{1}-4\bm{\mathfrak{G}}-2(\lambda^{+}-\lambda^{-})\bm{Q}^{0},\\ &\,\,\,\vdots\\ \partial_{t}\bm{Q}^{2\widetilde{r}}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{Q}^{2\widetilde{r}}-(\bm{Q}^{2\widetilde{r}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}&=\bm{{{\mu}}}^{\widetilde{r}}+\frac{2(2\widetilde{r})!}{(-1)^{\widetilde{r}}}\bm{\mathfrak{G}}-(4\widetilde{r}^{2}-2\widetilde{r})(\lambda^{+}-\lambda^{-})\bm{Q}^{2\widetilde{r}-2}\end{cases} (3.65)

with zero initial conditions

𝑸0(,0)=𝑸2(,0)==𝑸2r~(,0)=𝟎.\bm{Q}^{0}(\cdot,0)=\bm{Q}^{2}(\cdot,0)=\dots=\bm{Q}^{2\widetilde{r}}(\cdot,0)=\bm{0}.

Let us begin with determining the control 𝝁0\bm{{{\mu}}}^{0} in (3.65). Hereto, the auxiliary function 𝑸¯0\overline{\bm{Q}}^{0} is taken as the unique solution to

{t𝑸¯0+(𝒛0)𝑸¯0(𝑸¯0)𝒛0=2𝕲 in T,𝑸¯0(,0)=𝟎 in .\begin{cases}\partial_{t}\overline{\bm{Q}}^{0}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\overline{\bm{Q}}^{0}-(\overline{\bm{Q}}^{0}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}=2\bm{\mathfrak{G}}&\mbox{ in }\mathcal{E}_{T},\\ \overline{\bm{Q}}^{0}(\cdot,0)=\bm{0}&\mbox{ in }\mathcal{E}.\end{cases} (3.66)

Since 𝕲=0\bm{\mathrm{\nabla}}\cdot{\bm{\mathfrak{G}}}=0 holds in T\mathcal{E}_{T} by (3.58), and 𝕲𝒏=0\bm{\mathfrak{G}}\cdot\bm{n}=0 is true in T\mathcal{E}_{T} as well, for all (𝒙,t)T(\bm{x},t)\in\mathcal{E}_{T} one may observe that

𝑸¯0(𝒙,t)=0,𝑸¯0(𝒙,t)𝒏(𝒙)=0.\bm{\mathrm{\nabla}}\cdot{\overline{\bm{Q}}^{0}}(\bm{x},t)=0,\quad\overline{\bm{Q}}^{0}(\bm{x},t)\cdot\bm{n}(\bm{x})=0.

Furthermore, the profile z~0(t)𝒛0(Tt)\widetilde{z}^{0}(t)\coloneqq-\bm{z}^{0}(T-t) is without loss of generality assumed to satisfy a flushing property of the type (3.11). Indeed, when 𝒛0\bm{z}^{0} is defined via (3.12), one notices that the flow associated with z~0\widetilde{z}^{0} simply moves particles around the annulus in the opposite direction. More generally, the flushing property of z~0\widetilde{z}^{0} can be ensured by constructing 𝒛0\bm{z}^{0} with TT replaced by T/2T/2, followed by gluing the resulting profile at the time t=T/2t=T/2 to a time-reversed version. Now, we take 𝑸~0\widetilde{\bm{Q}}^{0} as the unique solution to

{t𝑸~0+(𝒛~0)𝑸~0(𝑸~0)𝒛~0=𝝁~0 in T,𝑸~0(,0)=𝑸¯0(,T) in ,\begin{cases}\partial_{t}\widetilde{\bm{Q}}^{0}+(\widetilde{\bm{z}}^{0}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{Q}}^{0}-(\widetilde{\bm{Q}}^{0}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{z}}^{0}=\widetilde{\bm{{{\mu}}}}^{0}&\mbox{ in }\mathcal{E}_{T},\\ \widetilde{\bm{Q}}^{0}(\cdot,0)=\overline{\bm{Q}}^{0}(\cdot,T)&\mbox{ in }\mathcal{E},\end{cases} (3.67)

where the control 𝝁~0C(¯×[0,T];N)\widetilde{\bm{{{\mu}}}}^{0}\in{\rm C}^{\infty}(\overline{\mathcal{E}}\times[0,T];\mathbb{R}^{N}) is chosen such that

𝑸~0(,T)=𝟎,(𝒙,t)T:𝑸~0(𝒙,t)=0,(𝒙,t)ΣT:𝑸~0(𝒙,t)𝒏(𝒙)=0,\displaystyle\widetilde{\bm{Q}}^{0}(\cdot,T)=\bm{0},\quad\forall(\bm{x},t)\in\mathcal{E}_{T}\colon\bm{\mathrm{\nabla}}\cdot{\widetilde{\bm{Q}}^{0}}(\bm{x},t)=0,\quad\forall(\bm{x},t)\in\Sigma_{T}\colon\widetilde{\bm{Q}}^{0}(\bm{x},t)\cdot\bm{n}(\bm{x})=0,
(𝒙,t)T:𝝁~0(𝒙,t)=0,(𝒙,t)ΣT:𝝁~0(𝒙,t)𝒏(𝒙)=0,\displaystyle\forall(\bm{x},t)\in\mathcal{E}_{T}\colon\bm{\mathrm{\nabla}}\cdot{\widetilde{\bm{{{\mu}}}}^{0}}(\bm{x},t)=0,\quad\forall(\bm{x},t)\in\Sigma_{T}\colon\widetilde{\bm{{{\mu}}}}^{0}(\bm{x},t)\cdot\bm{n}(\bm{x})=0,
supp(𝝁~0)(¯Ω¯)×(0,T).\displaystyle\operatorname{supp}(\widetilde{\bm{{{\mu}}}}^{0})\subset\left(\overline{\mathcal{E}}\setminus\overline{\Omega}\right)\times(0,T).

In order to find 𝝁~0\widetilde{\bm{{{\mu}}}}^{0}, we proceed analogously to the constructions of controlled solutions to (3.19) in the proof of 3.8, noting that the problems (3.19) and (3.67) are of the same type. As a result, we can define in T\mathcal{E}_{T} the vector field

𝑸0(𝒙,t)𝑸¯0(𝒙,t)𝑸~0(𝒙,Tt),\bm{Q}^{0}(\bm{x},t)\coloneqq\overline{\bm{Q}}^{0}(\bm{x},t)-\widetilde{\bm{Q}}^{0}(\bm{x},T-t),

which solves the first equation in (3.65) with 𝝁0(,t)𝝁~0(Tt)\bm{{{\mu}}}^{0}(\cdot,t)\coloneqq\widetilde{\bm{{{\mu}}}}^{0}(T-t) and obeys the desired initial and terminal conditions

𝑸0(,0)=𝟎,𝑸0(,T)=𝟎.\bm{Q}^{0}(\cdot,0)=\bm{0},\quad\bm{Q}^{0}(\cdot,T)=\bm{0}.

To determine 𝝁1\bm{{{\mu}}}^{1}, the same arguments as for finding 𝝁0\bm{{{\mu}}}^{0} can be repeated, but now with the known source term 4𝕲2(λ+λ)𝑸0-4\bm{\mathfrak{G}}-2(\lambda^{+}-\lambda^{-})\bm{Q}^{0}. Due to the cascade structure of (3.65), all controls (𝝁j)j{1,,r~}(\bm{{{\mu}}}^{j})_{j\in\{1,\dots,\widetilde{r}\}} are obtained in this way. Finally, 𝝁=𝝁+𝝁\bm{{{\mu}}}=\bm{\mu}^{+}-\bm{\mu}^{-} is constructed via (3.64) and obeys (3.56).

Step 3. Removing the assumption (3.59).

Without assuming (3.59), the equation (3.60) for 𝑾\bm{W} might not be correct in (¯𝒱)×+×(\overline{\mathcal{E}}\setminus\mathcal{V})\times\mathbb{R}_{+}\times\mathbb{R}, since (3.33) contains the terms 𝔣zz𝒗±\mathfrak{f}z\partial_{z}\bm{v}^{\pm}. However, for small d(0,d)d^{*}\in(0,d) it will be shown below that the control 𝝁\bm{{{\mu}}} obtained in the previous step already ensures

𝒗~=𝟎 in (¯𝒱)×+×+\widetilde{\bm{v}}=\bm{0}\mbox{ in }(\overline{\mathcal{E}}\setminus\mathcal{V})\times\mathbb{R}_{+}\times\mathbb{R}_{+} (3.68)

for the solution to

{t𝒗~ν2zz𝒗~+(𝒛0)𝒗~(𝒗~)𝒛0=𝝁in ¯×+×+,z𝒗~(𝒙,t,0)=𝖌(𝒙,t),𝒙¯,t+,𝒗~(𝒙,t,z)𝟎, as z+,𝒙¯,t+,𝒗~(𝒙,0,z)=𝟎,𝒙¯,z+.\begin{cases}\partial_{t}\widetilde{\bm{v}}-\nu_{2}\partial_{zz}\widetilde{\bm{v}}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{v}}-(\widetilde{\bm{v}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}=\bm{{{\mu}}}&\mbox{in }\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+},\\ \partial_{z}\widetilde{\bm{v}}(\bm{x},t,0)=\bm{\mathfrak{g}}(\bm{x},t),&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \widetilde{\bm{v}}(\bm{x},t,z)\longrightarrow\bm{0},\mbox{ as }z\longrightarrow+\infty,&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \widetilde{\bm{v}}(\bm{x},0,z)=\bm{0},&\bm{x}\in\overline{\mathcal{E}},z\in\mathbb{R}_{+}.\end{cases} (3.69)

Then, because the assumptions in (3.55) together with (3.68) imply

[(𝒛0)𝒗~(𝒗~)𝒛0]tan=(𝒛0)𝒗~(𝒗~)𝒛0,𝔣zz𝒗~=𝟎\left[(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{v}}-(\widetilde{\bm{v}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\right]_{\operatorname{tan}}=(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{v}}-(\widetilde{\bm{v}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0},\quad\mathfrak{f}z\partial_{z}\widetilde{\bm{v}}=\bm{0}

in all of ¯×+×+\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+}, it follows that 𝒗~\widetilde{\bm{v}} satisfies a version of (3.69) where the first line is replaced by

t𝒗~ν2zz𝒗~+[(𝒛0)𝒗~(𝒗~)𝒛0]tan+𝔣zz𝒗~=𝝁in ¯×+×+,\partial_{t}\widetilde{\bm{v}}-\nu_{2}\partial_{zz}\widetilde{\bm{v}}+\left[(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\widetilde{\bm{v}}-(\widetilde{\bm{v}}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\right]_{\operatorname{tan}}+\mathfrak{f}z\partial_{z}\widetilde{\bm{v}}=\bm{{{\mu}}}\quad\mbox{in }\overline{\mathcal{E}}\times\mathbb{R}_{+}\times\mathbb{R}_{+},

which corresponds to the equation for 𝒗+𝒗\bm{v}^{+}-\bm{v}^{-} derived from (3.33). Thus, after verifying (3.68) for some d(0,d)d^{*}\in(0,d), it follows retrospectively that the equation (3.60) for 𝑾\bm{W} is correct even without assuming (3.59).

To show (3.68), we apply the ideas from [CoronMarbachSueur2020, Section 3.4]. Hereto, for any ϱ(0,d)\varrho\in(0,d), consider the tube 𝒱ϱ¯={0φϱ}\overline{\mathcal{V}_{\varrho}}=\{0\leq\varphi_{\mathcal{E}}\leq\varrho\} and define its maximal distance of influence during the time interval [0,T][0,T] under the flow 𝓩0\bm{\mathcal{Z}}^{0} via

𝒥(ϱ)max𝒙𝒱ϱ¯s,t[0,T]φ(𝓩0(𝒙,s,t)).\mathcal{J}(\varrho)\coloneqq\max\limits_{\stackrel{{\scriptstyle s,t\in[0,T]}}{{\bm{x}\in\overline{\mathcal{V}_{\varrho}}}}}\varphi_{\mathcal{E}}\left(\bm{\mathcal{Z}}^{0}(\bm{x},s,t)\right).

The controls 𝝁k\bm{{{\mu}}}^{k} in (3.65) only act where pollution, caused by 𝕲\bm{\mathfrak{G}}, 𝝁l\bm{{{\mu}}}^{l}, or 𝑸2l2\bm{Q}^{2l-2}, arrives via the flow 𝓩0\bm{\mathcal{Z}}^{0} associated with 𝒛0\bm{z}^{0}. Thus, 𝝁0\bm{{{\mu}}}^{0} is supported in 𝒱𝒥(𝒥(d))\mathcal{V}_{\mathcal{J}(\mathcal{J}(d^{*}))} and its action travels at most into 𝒱𝒥(𝒥(𝒥(d)))\mathcal{V}_{\mathcal{J}(\mathcal{J}(\mathcal{J}(d^{*})))}. Consequently, the effects of 𝝁r~\bm{{{\mu}}}^{\widetilde{r}} are propagated into 𝒱𝒥3r~(r1)\mathcal{V}_{\mathcal{J}^{3\widetilde{r}}(r_{1})}. Since the 𝒙\bm{x}-support of 𝕲\bm{\mathfrak{G}} is contained in 𝒱d\mathcal{V}_{d^{*}} by the definition of χ\chi_{\partial\mathcal{E}}, and in view of (3.57), maintaining the 𝒙\bm{x}-support of 𝒗~\widetilde{\bm{v}} within 𝒱\mathcal{V} is achieved by adjusting the support of χ\chi_{\partial\mathcal{E}}. Indeed, 𝒥\mathcal{J} is continuous and one has 𝒥(0)=0\mathcal{J}(0)~{}=~{}0 because 𝒛0\bm{z}^{0} is tangential to \partial\mathcal{E}, which yields the existence of d0(0,d)d^{*}_{0}\in(0,d) with 𝒥3r~(d0)<d\mathcal{J}^{3\widetilde{r}}(d^{*}_{0})<d. Then, every choice d(0,d0)d^{*}\in(0,d^{*}_{0}) is suitable. ∎

The last part of the proof of 3.18 shows why one can take d(0,d)d^{*}\in(0,d) in the definition of χ\chi_{\partial\mathcal{E}} such that |𝒏|=1|\bm{n}|=1 in the 𝒙\bm{x}-support of 𝒗+𝒗\bm{v}^{+}-\bm{v}^{-}. A similar argument ensures such a property for 𝒗++𝒗\bm{v}^{+}+\bm{v}^{-} and is valid for the general situation of 3.17 (cf. [CoronMarbachSueur2020, Section 3.4]).

Lemma 3.19.

Let 𝛍±\bm{\mu}^{\pm} be obtained by 3.17 or 3.18. There exists d0(0,d)d_{0}\in(0,d) for which any choice d(0,d0)d^{*}\in(0,d_{0}) guarantees that the 𝐱\bm{x}-supports of 𝐯±\bm{v}^{\pm} are included in 𝒱\mathcal{V}.

Now, on the unbounded time interval tTt\geq T either 3.17 or 3.18 is employed with k=4k=4, p=5p=5, s=3s=3 and r=6r=6 in order to fix 𝝁±\bm{\mu}^{\pm}. Subsequently, in order to fix χ\chi_{\partial\mathcal{E}} in (3.31), any d(0,d0)d^{*}\in(0,d_{0}) is selected, where d0d_{0} is the one determined in 3.19.

Remark 3.20.

When 𝑴2=𝟎\bm{M}_{2}=\bm{0} in (1.4), then, as seen in 3.15, the first case of 3.18 can be applied. In the case of 2.5 we have (3.13), which allows to employ the third part of 3.18.

3.4.4 Properties of the boundary layers and technical profiles

Due to the fast variable scaling for the boundary layer profiles 𝒗±\bm{v}^{\pm}, 𝒘±\bm{w}^{\pm}, and q±q^{\pm}, several estimates will profit from a gain of order O(ϵ1/4)O(\epsilon^{1/4}) as stated below.

Lemma 3.21 ([IftimieSueur2011, Lemma 3]).

There exists a constant C>0C>0 such that, for all ϵ>0\epsilon>0 and functions h=h(𝐱,z)h=h(\bm{x},z) in Lz2(+;H𝐱1()){\rm L}^{2}_{z}(\mathbb{R}_{+};{\rm H}^{1}_{\bm{x}}(\mathcal{E})) with z+supp(h(,z))𝒱\cup_{z\in\mathbb{R}_{+}}\operatorname{supp}(h(\cdot,z))\subset\mathcal{V}, it holds

h(,φ()ϵ)L2()Cϵ14hLz2(+;H𝒙1()).\|h\left(\cdot,\frac{\varphi_{\mathcal{E}}(\cdot)}{\sqrt{\epsilon}}\right)\|_{{\rm L}^{2}(\mathcal{E})}\leq C\epsilon^{\frac{1}{4}}\|h\|_{{\rm L}^{2}_{z}(\mathbb{R}_{+};{\rm H}^{1}_{\bm{x}}(\mathcal{E}))}.
Lemma 3.22.

The functions q±q^{\pm} from (3.38) satisfy supp(q±(,,z))supp(𝐳0)\operatorname{supp}(q^{\pm}(\cdot,\cdot,z))\subset\operatorname{supp}(\bm{z}^{0}) for all z+z\in\mathbb{R}_{+}. In addition, there exists a constant C>0C>0 independent of ϵ>0\epsilon>0 such that

q±ϵ(,t)L2()ϵ14C{+,}𝒗(,t,)H1,3,0.\|\left\llbracket\bm{\mathrm{\nabla}}q^{\pm}\right\rrbracket_{\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{1,3,0}_{\mathcal{E}}}. (3.70)
Proof.

One utilizes the properties of q±q^{\pm} observed from (3.38), the ϵ1/4\epsilon^{1/4} gain due to the fast variable scaling (cf. 3.21), and integration by parts. Indeed, for C>0C>0 and small (0,1)\ell\in(0,1), both independent of ϵ>0\epsilon>0, one has

q±ϵ(,t)L2()2\displaystyle\|\left\llbracket\bm{\mathrm{\nabla}}q^{\pm}\right\rrbracket_{\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2} ϵ12Cq±(,t)Lz2(𝑹+;H1())2\displaystyle\leq\epsilon^{\frac{1}{2}}C\|\bm{\mathrm{\nabla}}q^{\pm}(\cdot,t)\|_{{\rm L}^{2}_{z}(\bm{R}_{+};{\rm H}^{1}(\mathcal{E}))}^{2}
ϵ12C|𝜶|1+|𝒙𝜶q±|2zzd𝒙dz\displaystyle\leq\epsilon^{\frac{1}{2}}C\sum\limits_{|\bm{\alpha}|\leq 1}\int_{\mathbb{R}_{+}}\int_{\mathcal{E}}|\partial_{\bm{x}}^{\bm{\alpha}}\bm{\mathrm{\nabla}}q^{\pm}|^{2}\partial_{z}z\,{{\rm d}\bm{x}}{{\rm d}z}
ϵ12C()|𝜶|1+(1+z2)|𝒙𝜶zq±|2d𝒙dz\displaystyle\leq\epsilon^{\frac{1}{2}}C(\ell)\sum\limits_{|\bm{\alpha}|\leq 1}\int_{\mathbb{R}_{+}}\int_{\mathcal{E}}(1+z^{2})|\partial_{\bm{x}}^{\bm{\alpha}}\bm{\mathrm{\nabla}}\partial_{z}q^{\pm}|^{2}\,{{\rm d}\bm{x}}{{\rm d}z}
+ϵ12|𝜶|1+|𝒙𝜶q±|2d𝒙dz,\displaystyle\quad+\epsilon^{\frac{1}{2}}\ell\sum\limits_{|\bm{\alpha}|\leq 1}\int_{\mathbb{R}_{+}}\int_{\mathcal{E}}|\partial_{\bm{x}}^{\bm{\alpha}}\bm{\mathrm{\nabla}}q^{\pm}|^{2}\,{{\rm d}\bm{x}}{{\rm d}z},

which implies that

q±ϵ(,t)L2()2\displaystyle\|\left\llbracket\bm{\mathrm{\nabla}}q^{\pm}\right\rrbracket_{\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2} ϵ12C1|𝜶|1+(1+z2)|𝒙𝜶zq±|2d𝒙dz\displaystyle\leq\epsilon^{\frac{1}{2}}C_{1}\sum\limits_{|\bm{\alpha}|\leq 1}\int_{\mathbb{R}_{+}}\int_{\mathcal{E}}(1+z^{2})|\partial_{\bm{x}}^{\bm{\alpha}}\bm{\mathrm{\nabla}}\partial_{z}q^{\pm}|^{2}\,{{\rm d}\bm{x}}{{\rm d}z}
ϵ12C2{+,}𝒗(,t,)H1,3,02\displaystyle\leq\epsilon^{\frac{1}{2}}C_{2}\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{1,3,0}_{\mathcal{E}}}^{2}

for two constants C1,C2C_{1},C_{2}, by using (3.38). ∎

Lemma 3.23.

For all k,m,sk,m,s\in\mathbb{N}, the profiles 𝐰±\bm{w}^{\pm} determined in (3.39) satisfy

𝒘±(,t,)Hk,m,s\displaystyle\|\bm{w}^{\pm}(\cdot,t,\cdot)\|_{{\rm H}^{k,m,s}_{\mathcal{E}}} C{+,}𝒗(,t,)Hk+1,m+1,max{1,s1},\displaystyle\leq C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{k+1,m+1,\max\{1,s-1\}}_{\mathcal{E}}}, (3.71)
z2𝒘±ϵ(,t)L2()\displaystyle\|\left\llbracket\partial_{z}^{2}\bm{w}^{\pm}\right\rrbracket_{\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})} ϵ14C{+,}𝒗(,t,)H1,2,1,\displaystyle\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{1,2,1}_{\mathcal{E}}}, (3.72)
t𝒘±ϵ(,t)L2()\displaystyle\|\left\llbracket\partial_{t}\bm{w}^{\pm}\right\rrbracket_{\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})} ϵ14C{+,}𝒗(,t,)H2,3,3+C𝝁±(,t,)H1,2,1.\displaystyle\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{2,3,3}_{\mathcal{E}}}+C\|\bm{\bm{\mu}}^{\pm}(\cdot,t,\cdot)\|_{{\rm H}^{1,2,1}_{\mathcal{E}}}. (3.73)
Proof.

One can show (3.71) by separately estimating the tangential and normal parts

𝒘T±(𝒙,t,z)\displaystyle\bm{w}^{\pm}_{T}(\bm{x},t,z) 2ez𝓝±(𝒗+,𝒗)(𝒙,t,0),\displaystyle\coloneqq-2\operatorname{e}^{-z}\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})(\bm{x},t,0),
𝒘N±(𝒙,t,z)\displaystyle\bm{w}^{\pm}_{N}(\bm{x},t,z) 𝒏(𝒙)z+𝒗±(𝒙,t,s)ds.\displaystyle\coloneqq-\bm{n}(\bm{x})\int_{z}^{+\infty}\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm}(\bm{x},t,s)\,{{\rm d}s}.

For instance, integration by parts yields

𝒘N±(,t,z)Hk,m,02C|β|m+z(z+z2k+1)|z+𝒙β(𝒗±)(𝒙,t,s)ds|2dzd𝒙C|β|m+|(z+z2k+1)𝒙β(𝒗±)(𝒙,t,z)(z+𝒙β(𝒗±)(𝒙,t,s)ds)|dzd𝒙.\|\bm{w}^{\pm}_{N}(\cdot,t,z)\|_{{\rm H}^{k,m,0}_{\mathcal{E}}}^{2}\leq C\sum\limits_{|\beta|\leq m}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}\partial_{z}(z+z^{2k+1})\left|\int_{z}^{+\infty}\partial_{\bm{x}}^{\beta}(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})(\bm{x},t,s)\,{{\rm d}s}\right|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}\\ \leq C\sum\limits_{|\beta|\leq m}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}\Bigg{|}(z+z^{2k+1})\partial_{\bm{x}}^{\beta}(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})(\bm{x},t,z)\left(\int_{z}^{+\infty}\partial_{\bm{x}}^{\beta}(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})(\bm{x},t,s)\,{{\rm d}s}\right)\Bigg{|}\,{{\rm d}z}{{\rm d}\bm{x}}.

Hence, for arbitrary >0\ell>0 one has

𝒘N±(,t,z)Hk,m,02C()|β|m+1+(1+z2k+2)|𝒙β𝒗±(𝒙,t,z)|2dzd𝒙+|β|m+z(z+z2k+1)|z+𝒙β(𝒗±)(𝒙,t,s)ds|2dzd𝒙.\begin{multlined}\|\bm{w}^{\pm}_{N}(\cdot,t,z)\|_{{\rm H}^{k,m,0}_{\mathcal{E}}}^{2}\leq C(\ell)\sum\limits_{|\beta|\leq m+1}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k+2})|\partial_{\bm{x}}^{\beta}\bm{v}^{\pm}(\bm{x},t,z)|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}\\ +\ell\sum\limits_{|\beta|\leq m}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}\partial_{z}(z+z^{2k+1})\left|\int_{z}^{+\infty}\partial_{\bm{x}}^{\beta}(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})(\bm{x},t,s)\,{{\rm d}s}\right|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}.\end{multlined}\|\bm{w}^{\pm}_{N}(\cdot,t,z)\|_{{\rm H}^{k,m,0}_{\mathcal{E}}}^{2}\leq C(\ell)\sum\limits_{|\beta|\leq m+1}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k+2})|\partial_{\bm{x}}^{\beta}\bm{v}^{\pm}(\bm{x},t,z)|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}\\ +\ell\sum\limits_{|\beta|\leq m}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}\partial_{z}(z+z^{2k+1})\left|\int_{z}^{+\infty}\partial_{\bm{x}}^{\beta}(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})(\bm{x},t,s)\,{{\rm d}s}\right|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}.

Thus, by choosing small >0\ell>0 and a new constant C=C()>0C=C(\ell)>0, one obtains

𝒘N±(,t)Hk,m,0C𝒗±(,t,)Hk+1,m+1,0.\|\bm{w}^{\pm}_{N}(\cdot,t\cdot)\|_{{\rm H}^{k,m,0}_{\mathcal{E}}}\leq C\|\bm{v}^{\pm}(\cdot,t,\cdot)\|_{{\rm H}^{k+1,m+1,0}_{\mathcal{E}}}.

The other aspects of (3.71) are along the same lines, noting that estimating 𝒘T±\bm{w}^{\pm}_{T} costs one regularity level in zz due the application of a trace theorem. The estimate (3.72) follows from a combination of 3.21, the above idea for showing (3.71) and the identity

z2𝒘±=(z𝒗±)𝒏2ez[𝓝±(𝒗+,𝒗)]|z=0.\partial_{z}^{2}\bm{w}^{\pm}=(\bm{\mathrm{\nabla}}\cdot{\partial_{z}\bm{v}^{\pm}})\bm{n}-2\operatorname{e}^{-z}\left[\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})\right]_{|_{z=0}}.

Regarding (3.73), the starting point is to derive from (3.39) the representation

t𝒘±=tw¯±𝒏2ez[𝓝±(t𝒗+,t𝒗)]|z=0,\partial_{t}\bm{w}^{\pm}=\partial_{t}\overline{w}^{\pm}\bm{n}-2\operatorname{e}^{-z}\left[\bm{\mathcal{N}}^{\pm}(\partial_{t}\bm{v}^{+},\partial_{t}\bm{v}^{-})\right]_{|_{z=0}},

into which one can subsequently insert the equation (3.33) and proceed as before. ∎

Lemma 3.24.

The Neumann problems (3.41) are well-posed, with uniqueness of solutions up to a constant, and all solutions θ±,ϵ\theta^{\pm,\epsilon} obey for l{0,1,2}l\in\{0,1,2\} the estimates

θ±,ϵ(,t)H2+l()ϵ14l2C𝒘±(,t,)H0,2+l,l+C{+,}𝒗(,t,)H1,1+l,0.\displaystyle\|\theta^{\pm,\epsilon}(\cdot,t)\|_{{\rm H}^{2+l}(\mathcal{E})}\leq\epsilon^{\frac{1}{4}-\frac{l}{2}}C\|\bm{w}^{\pm}(\cdot,t,\cdot)\|_{{\rm H}^{0,2+l,l}_{\mathcal{E}}}+C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{1,1+l,0}_{\mathcal{E}}}. (3.74)

If (𝐰+(𝐱,t,)𝐰(𝐱,t,))𝐧=0(\bm{w}^{+}(\bm{x},t,\cdot)-\bm{w}^{-}(\bm{x},t,\cdot))\cdot\bm{n}=0 for all 𝐱\bm{x}\in\partial\mathcal{E}, it additionally holds

θ+,ϵ(,t)θ,ϵ(,t)H2()ϵ14C{+,}𝒗(,t,)H1,3,1.\displaystyle\|\theta^{+,\epsilon}(\cdot,t)-\theta^{-,\epsilon}(\cdot,t)\|_{{\rm H}^{2}(\mathcal{E})}\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{1,3,1}_{\mathcal{E}}}. (3.75)

Furthermore, for all t[0,T/ϵ]t\in[0,T/\epsilon], one has

Δθ±,ϵ(,t)L2()ϵ14C{+,}𝒗(,t,)H2,4,2.\displaystyle\|\Delta\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}\leq\epsilon^{-\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}(\cdot,t,\cdot)\|_{{\rm H}^{2,4,2}_{\mathcal{E}}}. (3.76)
Proof.

In (3.41), there is no coupling between ±\pm superscribed functions. Thus, the well-posedness of (3.41) together with (3.74) and (3.76) can be established by analysis similar to [CoronMarbachSueur2020, Equations (4.29), (4.31)–(4.33) and (4.58)]. In particular, by employing (2.5), (3.37), (3.39), and (3.40), one can verify the necessary compatibility conditions for (3.41) via

𝒘±(𝒙,t,0)𝒏(𝒙)dS(𝒙)=𝒘±ϵ(𝒙,t)𝒏(𝒙)dS(𝒙)=𝒘±ϵ(𝒙,t)d𝒙=(𝒘±ϵ1ϵ𝒏z𝒘±ϵ)(𝒙,t)d𝒙=(𝒘±ϵ1ϵ𝒗±ϵ1ϵ𝒏z𝒗±ϵ)(𝒙,t)d𝒙=𝒘±ϵ(𝒙,t)d𝒙.\int_{\partial\mathcal{E}}\bm{w}^{\pm}(\bm{x},t,0)\cdot\bm{n}(\bm{x})\,{{\rm d}S(\bm{x})}=\int_{\partial\mathcal{E}}\left\llbracket\bm{w}^{\pm}\right\rrbracket_{\epsilon}(\bm{x},t)\cdot\bm{n}(\bm{x})\,{{\rm d}S(\bm{x})}=\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\cdot{\left\llbracket\bm{w}^{\pm}\right\rrbracket_{\epsilon}}(\bm{x},t)\,{{\rm d}\bm{x}}\\ \begin{aligned} &=\int_{\mathcal{E}}\left(\left\llbracket\bm{\mathrm{\nabla}}\cdot{\bm{w}^{\pm}}\right\rrbracket_{\epsilon}-\frac{1}{\sqrt{\epsilon}}\bm{n}\cdot\left\llbracket\partial_{z}\bm{w}^{\pm}\right\rrbracket_{\epsilon}\right)(\bm{x},t)\,{{\rm d}\bm{x}}\\ &=\int_{\mathcal{E}}\left(\left\llbracket\bm{\mathrm{\nabla}}\cdot{\bm{w}^{\pm}}\right\rrbracket_{\epsilon}-\frac{1}{\sqrt{\epsilon}}\bm{\mathrm{\nabla}}\cdot{\left\llbracket\bm{v}^{\pm}\right\rrbracket_{\epsilon}}-\frac{1}{\epsilon}\bm{n}\cdot\left\llbracket\partial_{z}\bm{v}^{\pm}\right\rrbracket_{\epsilon}\right)(\bm{x},t)\,{{\rm d}\bm{x}}\\ &=\int_{\mathcal{E}}\left\llbracket\bm{\mathrm{\nabla}}\cdot{\bm{w}^{\pm}}\right\rrbracket_{\epsilon}(\bm{x},t)\,{{\rm d}\bm{x}}.\end{aligned}

It remains to show (3.75) when (𝒘+𝒘)𝒏=0(\bm{w}^{+}-\bm{w}^{-})\cdot\bm{n}=0 at \partial\mathcal{E}. By elliptic regularity for weak solutions to the Laplace equation (3.41), 3.21, and (3.71) one obtains

(θ+,ϵθ,ϵ)(,t)H2()C(𝒘+𝒘)(,t,)ϵL2()ϵ14C{+,}𝒗H1,3,1.\|(\theta^{+,\epsilon}-\theta^{-,\epsilon})(\cdot,t)\|_{{\rm H}^{2}(\mathcal{E})}\\ \leq C\|\left\llbracket\bm{\mathrm{\nabla}}\cdot{(\bm{w}^{+}-\bm{w}^{-})}(\cdot,t,\cdot)\right\rrbracket_{\epsilon}\|_{{\rm L}^{2}(\mathcal{E})}\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}\|_{{\rm H}^{1,3,1}_{\mathcal{E}}}.

Finally, several properties of the remainder terms 𝒓±,ϵ\bm{r}^{\pm,\epsilon} in the ansatz (3.7) are summarized.

Lemma 3.25.

The remainder terms 𝐫±,ϵ\bm{r}^{\pm,\epsilon} given in (3.7) satisfy the conditions

𝒓±,ϵ(,0)=𝟎\displaystyle\bm{r}^{\pm,\epsilon}(\cdot,0)=\bm{0} in ,\displaystyle\mbox{ in }\mathcal{E}, (3.77)
𝒓±,ϵ=0\displaystyle\bm{\mathrm{\nabla}}\cdot\bm{r}^{\pm,\epsilon}=0 in ×+,\displaystyle\mbox{ in }\mathcal{E}\times\mathbb{R}_{+},
𝒓±,ϵ𝒏=0\displaystyle\bm{r}^{\pm,\epsilon}\cdot\bm{n}=0 on ×+,\displaystyle\mbox{ on }\partial\mathcal{E}\times\mathbb{R}_{+},
𝓝±(𝒓+,ϵ,𝒓,ϵ)=𝖌±,ϵ\displaystyle\bm{\mathcal{N}}^{\pm}(\bm{r}^{+,\epsilon},\bm{r}^{-,\epsilon})=\bm{\mathfrak{g}}^{\pm,\epsilon} on ×+,\displaystyle\mbox{ on }\partial\mathcal{E}\times\mathbb{R}_{+},

where

𝖌±,ϵ𝓝±(𝒛+,1,𝒛,1)𝓝±(θ+,ϵ,θ,ϵ)𝓝±(𝒘+,𝒘)|z=0.\bm{\mathfrak{g}}^{\pm,\epsilon}\coloneqq-\bm{\mathcal{N}}^{\pm}(\bm{z}^{+,1},\bm{z}^{-,1})-\bm{\mathcal{N}}^{\pm}(\bm{\mathrm{\nabla}}\theta^{+,\epsilon},\bm{\mathrm{\nabla}}\theta^{-,\epsilon})-\bm{\mathcal{N}}^{\pm}(\bm{w}^{+},\bm{w}^{-})_{|_{z=0}}.

Moreover, for a constant C>0C>0 independent of ϵ>0\epsilon>0, the boundary data 𝖌±,ϵ\bm{\mathfrak{g}}^{\pm,\epsilon} can be estimated by

𝖌±,ϵL2((0,T/ϵ);H1())2C{+,}(𝒛,1L2((0,T);H2())2+ϵ12𝒗L2((0,T);H3,4,2)2).\|\bm{\mathfrak{g}}^{\pm,\epsilon}\|_{{\rm L}^{2}((0,T/\epsilon);{\rm H}^{1}(\mathcal{E}))}^{2}\leq C\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square,1}\|_{{\rm L}^{2}((0,T);{\rm H}^{2}(\mathcal{E}))}^{2}+\epsilon^{-\frac{1}{2}}\|\bm{v}^{\square}\|_{{\rm L}^{2}((0,T);{\rm H}^{3,4,2}_{\mathcal{E}})}^{2}\right). (3.78)
Proof.

The assertions in (3.77) are a consequence of the definitions for the functions in (3.7)–(3.8) studied in Subsections  3.2, 3.3 and 3.4. Particularly, in view of 3.13, 3.19, the relations in (3.40), and the boundary conditions (3.34), one has

2𝓝±(𝒛0,𝒛0)=[z𝒗±]tan|z=0,\displaystyle 2\bm{\mathrm{\mathcal{N}^{\pm}}}(\bm{z}^{0},\bm{z}^{0})=\left[\partial_{z}\bm{v}^{\pm}\right]_{\operatorname{tan}}|_{z=0}, 2𝓝±(𝒗+,𝒗)|z=0=[z𝒘±]tan|z=0.\displaystyle 2\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})|_{z=0}=\left[\partial_{z}\bm{w}^{\pm}\right]_{\operatorname{tan}}|_{z=0}.

3.5 Remainder estimates

The goal is now to show that 𝒛±,ϵ(,T/ϵ)L2()=O(ϵ9/8)\|\bm{z}^{\pm,\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}=O(\epsilon^{9/8}) as ϵ0\epsilon\longrightarrow 0. As various estimates are similar to those for the Navier–Stokes problem in [CoronMarbachSueur2020], we place emphasis on the arguments that are specific for the current MHD problem.

3.5.1 Equations satisfied by the remainders

In order to derive the equations satisfied by the remainders 𝒓±,ϵ\bm{r}^{\pm,\epsilon}, the definitions of q±q^{\pm} given in (3.38) are employed for rewriting (3.33) in the form

t𝒗±zz(λ±𝒗++λ𝒗)+(𝒛0)𝒗±+(𝒗)𝒛0+𝔣zz𝒗±𝒏zq±=𝝁±.\partial_{t}\bm{v}^{\pm}-\partial_{zz}(\lambda^{\pm}\bm{v}^{+}+\lambda^{\mp}\bm{v}^{-})+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{v}^{\pm}+(\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\mathfrak{f}z\partial_{z}\bm{v}^{\pm}-\bm{n}\partial_{z}q^{\pm}=\bm{\bm{\mu}}^{\pm}. (3.79)

Then, (3.7)–(3.8) are inserted into (3.5) while using (2.5), (3.79) and 3.25. Since the terms (𝒗𝒏)z𝒗±ϵ\llbracket(\bm{v}^{\mp}\cdot\bm{n})\partial_{z}\bm{v}^{\pm}\rrbracket_{\epsilon} and (𝒗𝒏)z𝒘±ϵ\llbracket(\bm{v}^{\mp}\cdot\bm{n})\partial_{z}\bm{w}^{\pm}\rrbracket_{\epsilon} vanish, the remainders 𝒓±,ϵ\bm{r}^{\pm,\epsilon} satisfy the following problem

{t𝒓±,ϵϵΔ(λ±𝒓+,ϵ+λ𝒓,ϵ)+(𝒛,ϵ)𝒓±,ϵ+π±,ϵ=𝒉±,ϵAϵ,±𝒓,ϵϵ in T/ϵ,𝒓±,ϵ=0 in T/ϵ,𝒓±,ϵ𝒏=0 on ΣT/ϵ,𝓝±(𝒓+,ϵ,𝒓,ϵ)=𝖌±,ϵ on ΣT/ϵ,𝒓±,ϵ(,0)=𝟎 in ,\begin{cases}\partial_{t}\bm{r}^{\pm,\epsilon}-\epsilon\Delta(\lambda^{\pm}\bm{r}^{+,\epsilon}+\lambda^{\mp}\bm{r}^{-,\epsilon})+(\bm{z}^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{r}^{\pm,\epsilon}+\bm{\mathrm{\nabla}}\pi^{\pm,\epsilon}\!=\!\left\llbracket\bm{h}^{\pm,\epsilon}-A^{\epsilon,\pm}\bm{r}^{\mp,\epsilon}\right\rrbracket_{\epsilon}&\!\!\!\!\!\!\mbox{ in }\mathcal{E}_{T/\epsilon},\\ \bm{\mathrm{\nabla}}\cdot\bm{r}^{\pm,\epsilon}=0&\!\!\!\!\!\!\mbox{ in }\mathcal{E}_{T/\epsilon},\\ \bm{r}^{\pm,\epsilon}\cdot\bm{n}=0&\!\!\!\!\!\!\mbox{ on }\Sigma_{T/\epsilon},\\ \bm{\mathcal{N}}^{\pm}(\bm{r}^{+,\epsilon},\bm{r}^{-,\epsilon})=\bm{\mathfrak{g}}^{\pm,\epsilon}&\!\!\!\!\!\!\mbox{ on }\Sigma_{T/\epsilon},\\ \bm{r}^{\pm,\epsilon}(\cdot,0)=\bm{0}&\!\!\!\!\!\!\mbox{ in }\mathcal{E},\end{cases} (3.80)

where the amplification terms Aϵ,±𝒓,ϵA^{\epsilon,\pm}\bm{r}^{\mp,\epsilon} are given by

Aϵ,±𝒓,ϵ(𝒓,ϵ)(𝒛0+ϵ𝒗±+ϵ𝒛±,1+ϵθ±,ϵ+ϵ𝒘±)(𝒓,ϵ𝒏)(z𝒗±+ϵz𝒘±),A^{\epsilon,\pm}\bm{r}^{\mp,\epsilon}\!\coloneqq\!(\bm{r}^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\!\left(\bm{z}^{0}+\sqrt{\epsilon}\bm{v}^{\pm}+\epsilon\bm{z}^{\pm,1}+\epsilon\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+\epsilon\bm{w}^{\pm}\right)-(\bm{r}^{\mp,\epsilon}\cdot\bm{n})\!\left(\partial_{z}\bm{v}^{\pm}+\sqrt{\epsilon}\partial_{z}\bm{w}^{\pm}\right),

and the remaining terms

𝒉±,ϵλ±𝒉+,ϵ,1+λ𝒉,ϵ,1+𝒉±,ϵ,2t𝒘±q±,\bm{h}^{\pm,\epsilon}\coloneqq\lambda^{\pm}\bm{h}^{+,\epsilon,1}+\lambda^{\mp}\bm{h}^{-,\epsilon,1}+\bm{h}^{\pm,\epsilon,2}-\partial_{t}\bm{w}^{\pm}-\bm{\mathrm{\nabla}}q^{\pm},

contain

𝒉±,ϵ,1\displaystyle\bm{h}^{\pm,\epsilon,1} (z2𝒘±+Δφz𝒗±2(𝒏)z𝒗±)+ϵ(Δ𝒘±+Δ𝒛±,1+Δθ±,ϵ)\displaystyle\coloneqq\left(\partial_{z}^{2}\bm{w}^{\pm}+\Delta\varphi_{\mathcal{E}}\partial_{z}\bm{v}^{\pm}-2(\bm{n}\cdot\bm{\mathrm{\nabla}})\partial_{z}\bm{v}^{\pm}\right)+\epsilon\left(\Delta\bm{w}^{\pm}+\Delta\bm{z}^{\pm,1}+\Delta\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}\right)
+ϵ(Δ𝒗±+Δφz𝒘±2(𝒏)z𝒘±),\displaystyle\quad\,+\sqrt{\epsilon}\left(\Delta\bm{v}^{\pm}+\Delta\varphi_{\mathcal{E}}\partial_{z}\bm{w}^{\pm}-2(\bm{n}\cdot\bm{\mathrm{\nabla}})\partial_{z}\bm{w}^{\pm}\right),

and

𝒉±,ϵ,2\displaystyle\bm{h}^{\pm,\epsilon,2} {[𝒗+ϵ(𝒘+𝒛,1+θ,ϵ)]}[𝒗±+ϵ(𝒘±+𝒛±,1+θ±,ϵ)]\displaystyle\coloneqq-\left\{\left[\bm{v}^{\mp}+\sqrt{\epsilon}\left(\bm{w}^{\mp}+\bm{z}^{\mp,1}+\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\right)\right]\cdot\bm{\mathrm{\nabla}}\right\}\left[\bm{v}^{\pm}+\sqrt{\epsilon}\left(\bm{w}^{\pm}+\bm{z}^{\pm,1}+\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}\right)\right]
(𝒛0)𝒘±(𝒘)𝒛0+[(𝒘+𝒛,1+θ,ϵ)𝒏]z(𝒗±+ϵ𝒘±)\displaystyle\quad\,-(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{w}^{\pm}-(\bm{w}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+\left[\left(\bm{w}^{\mp}+\bm{z}^{\mp,1}+\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\right)\cdot\bm{n}\right]\partial_{z}\left(\bm{v}^{\pm}+\sqrt{\epsilon}\bm{w}^{\pm}\right)
+𝜻~±,ϵ((𝒛0)θ±,ϵ+(θ,ϵ)𝒛0(𝒛0θ±,ϵ))+1ϵ𝒛0𝒏z𝒘±.\displaystyle\quad\,+\widetilde{\bm{\zeta}}^{\pm,\epsilon}-\left((\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}-\bm{\mathrm{\nabla}}(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon})\right)+\frac{1}{\sqrt{\epsilon}}\bm{z}^{0}\cdot\bm{n}\partial_{z}\bm{w}^{\pm}.

Before deriving energy estimates for 𝒓±,ϵ\bm{r}^{\pm,\epsilon}, several asymptotic properties of the right-hand side terms in 3.80 are summarized.

Lemma 3.26.

For all t[0,T/ϵ]t\in[0,T/\epsilon], one has

Aϵ,±𝒓±,ϵ𝒓,ϵϵL1(×(0,t))C(𝒓+,ϵL2(×(0,t))2+𝒓,ϵL2(×(0,t))2)\displaystyle\|\left\llbracket A^{\epsilon,\pm}\bm{r}^{\pm,\epsilon}\cdot\bm{r}^{\mp,\epsilon}\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}(\mathcal{E}\times(0,t))}\leq C\left(\|\bm{r}^{+,\epsilon}\|^{2}_{{\rm L}^{2}(\mathcal{E}\times(0,t))}+\|\bm{r}^{-,\epsilon}\|^{2}_{{\rm L}^{2}(\mathcal{E}\times(0,t))}\right) (3.81)

with a constant C>0C>0 independent of tt, ϵ\epsilon and 𝐫±,ϵ\bm{r}^{\pm,\epsilon}. Furthermore, as ϵ0\epsilon\longrightarrow 0, it holds

𝖌±,ϵL2((0,T/ϵ);H1())2=O(ϵ12),𝒉±,ϵϵL1((0,T/ϵ);L2())2=O(ϵ12).\displaystyle\|\bm{\mathfrak{g}}^{\pm,\epsilon}\|_{{\rm L}^{2}((0,T/\epsilon);{\rm H}^{1}(\mathcal{E}))}^{2}=O(\epsilon^{-\frac{1}{2}}),\quad\|\left\llbracket\bm{h}^{\pm,\epsilon}\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}^{2}=O(\epsilon^{\frac{1}{2}}). (3.82)
Proof.

Throughout, it will be used that 𝝁±\bm{\mu}^{\pm} have been fixed in Section 3.4.3 either by 3.17 (or 3.18) applied with k=4k=4, p=5p=5, s=3s=3 and r=6r=6. This provides bounds for 𝒗±\bm{v}^{\pm} in L1((0,T/ϵ);Hk,p,s){\rm L}^{1}((0,T/\epsilon);{\rm H}^{k,p,s}_{\mathcal{E}}) which are uniform in ϵ\epsilon, since for >0\ell>0 and a(1,+)a\in(1,+\infty) one has the convergence of the integral

0(ln(2+s)2+s)adsC=C(λ,a)<+.\int_{0}^{\infty}\left(\frac{\ln(2+\ell s)}{2+\ell s}\right)^{a}\,{{\rm d}s}\leq C=C(\lambda,a)<+\infty.

In order to show (3.81), let 𝑨±,ϵ\bm{A}^{\pm,\epsilon} denote the functions

𝑨±,ϵ(𝒛0+ϵ𝒗±+ϵ𝒛±,1+ϵθ±,ϵ+ϵ𝒘±)(z𝒗±+ϵz𝒘±)𝒏.\bm{A}^{\pm,\epsilon}\coloneqq\bm{\mathrm{\nabla}}\left(\bm{z}^{0}+\sqrt{\epsilon}\bm{v}^{\pm}+\epsilon\bm{z}^{\pm,1}+\epsilon\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+\epsilon\bm{w}^{\pm}\right)-\left(\partial_{z}\bm{v}^{\pm}+\sqrt{\epsilon}\partial_{z}\bm{w}^{\pm}\right)\bm{n}^{\top}.

From 3.8 one knows that 𝒛±,1\bm{z}^{\pm,1} are bounded in L((0,T);H3()){\rm L}^{\infty}((0,T);{\rm H}^{3}(\mathcal{E})) as long as the initial data satisfy 𝒛±0H3()H()\bm{z}^{\pm}_{0}\in{\rm H}^{3}(\mathcal{E})\cap{\rm H}(\mathcal{E}). Hence, combining Sobolev embeddings with 3.24 allows to infer

𝑨±,ϵϵL(×(0,T/ϵ))C{+,}(𝒛0L((0,T);H3())+ϵ𝒛,1L((0,T);H3())+𝒗L((0,T);H2,5,3)).\|\left\llbracket\bm{A}^{\pm,\epsilon}\right\rrbracket_{\epsilon}\|_{{\rm L}^{\infty}(\mathcal{E}\times(0,T/\epsilon))}\\ \leq C\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{0}\|_{{\rm L}^{\infty}((0,T);{\rm H}^{3}(\mathcal{E}))}+\epsilon\|\bm{z}^{\square,1}\|_{{\rm L}^{\infty}((0,T);{\rm H}^{3}(\mathcal{E}))}+\|\bm{v}^{\square}\|_{{\rm L}^{\infty}((0,T);{\rm H}^{2,5,3}_{\mathcal{E}})}\right).

Moreover, by 3.17 or 3.18 one finds a constant C>0C>0 independent of ϵ\epsilon with

𝒗±L((0,T);H2,5,3)C,\|\bm{v}^{\pm}\|_{{\rm L}^{\infty}((0,T);{\rm H}^{2,5,3}_{\mathcal{E}})}\leq C,

which eventually implies (3.81).

The bounds for 𝖌±,ϵ\bm{\mathfrak{g}}^{\pm,\epsilon} in (3.82) follow from (3.78) and 3.17 (or 3.17) such that it remains to establish the estimates for 𝒉±,ϵ\bm{h}^{\pm,\epsilon} in (3.82). We begin with the terms

𝒂±𝜻~±,ϵ((𝒛0)θ±,ϵ+(θ,ϵ)𝒛0(𝒛0θ±,ϵ)).\bm{a}^{\pm}\coloneqq\widetilde{\bm{\zeta}}^{\pm,\epsilon}-\left((\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+(\bm{\mathrm{\nabla}}\theta^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}-\bm{\mathrm{\nabla}}(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon})\right).

According to the definition of 𝜻~±,ϵ\widetilde{\bm{\zeta}}^{\pm,\epsilon} in Section 3.4.2, the terms 𝒂±\bm{a}^{\pm} vanish when ×𝒛0=𝟎\bm{\mathrm{\nabla}}\times{\bm{z}^{0}}=\bm{0} in T{\mathcal{E}_{T}} and (𝒘+𝒘)|z=0𝒏0(\bm{w}^{+}-\bm{w}^{-})_{|_{z=0}}\cdot\bm{n}\neq 0 at some points of ΣT\Sigma_{T}. When (𝒘+𝒘)|z=0𝒏=0(\bm{w}^{+}-\bm{w}^{-})_{|_{z=0}}\cdot\bm{n}=0 is satisfied at ΣT\Sigma_{T}, then

𝒂±=((θ,ϵθ±,ϵ))𝒛0.\bm{a}^{\pm}=-(\bm{\mathrm{\nabla}}(\theta^{\mp,\epsilon}-\theta^{\pm,\epsilon})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}.

Concerning the latter case, the estimate (3.75) implies

((θ,ϵθ±,ϵ))𝒛0L1((0,T/ϵ);L2())ϵ14C{+,}𝒗L1((0,T);H1,3,1)\displaystyle\|(\bm{\mathrm{\nabla}}(\theta^{\mp,\epsilon}-\theta^{\pm,\epsilon})\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}\|_{{\rm L}^{1}((0,T);{\rm H}^{1,3,1}_{\mathcal{E}})}

and an invocation of 3.17 or 3.18 yields

𝒂±L1((0,T/ϵ);L2())=O(ϵ14).\|\bm{a}^{\pm}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}=O(\epsilon^{\frac{1}{4}}). (3.83)

In order to treat the terms which appear with a factor ϵ1/2\epsilon^{-1/2} in 𝒉±,ϵ,2\bm{h}^{\pm,\epsilon,2}, we resort to a trick similar to [IftimieSueur2011, Equation (69)]. Indeed, the definitions for 𝒘±\bm{w}^{\pm} in (3.39) provide

(𝒛0𝒏)ϵz𝒘±ϵ=z𝔣((𝒗±)𝒏+2ez(𝓝±(𝒗+,𝒗)|z=0))ϵ,\displaystyle\left\llbracket\frac{(\bm{z}^{0}\cdot\bm{n})}{\sqrt{\epsilon}}\partial_{z}\bm{w}^{\pm}\right\rrbracket_{\epsilon}=-\left\llbracket z\mathfrak{f}\left((\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})\bm{n}+2\operatorname{e}^{-z}\left(\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})_{|_{z=0}}\right)\right)\right\rrbracket_{\epsilon},

which due to 𝔣\mathfrak{f} being bounded leads to

(𝒛0𝒏)ϵz𝒘±ϵL1((0,T/ϵ);L2())Cz[(𝒗±)𝒏+2ez(𝓝±(𝒗+,𝒗)|z=0)]ϵL1((0,T/ϵ);L2())I1±+2I2±,\|\left\llbracket\frac{(\bm{z}^{0}\cdot\bm{n})}{\sqrt{\epsilon}}\partial_{z}\bm{w}^{\pm}\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}\\ \leq C\|\left\llbracket z\left[(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})\bm{n}+2\operatorname{e}^{-z}\left(\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})_{|_{z=0}}\right)\right]\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}\leq I_{1}^{\pm}+2I_{2}^{\pm},

where

I1±\displaystyle I_{1}^{\pm} Cz(𝒗±)𝒏ϵL1((0,T/ϵ);L2()),\displaystyle\coloneqq C\|\left\llbracket z(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})\bm{n}\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))},
I2±\displaystyle I_{2}^{\pm} Czez(𝓝±(𝒗+,𝒗)|z=0)ϵL1((0,T/ϵ);L2()).\displaystyle\coloneqq C\|\left\llbracket z\operatorname{e}^{-z}\left(\bm{\mathcal{N}}^{\pm}(\bm{v}^{+},\bm{v}^{-})_{|_{z=0}}\right)\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}.

Since z(𝒗±)𝒏L2z(;H1𝒙())z(\bm{\mathrm{\nabla}}\cdot\bm{v}^{\pm})\bm{n}\in{\rm L}^{2}_{z}(\mathbb{R};{\rm H}^{1}_{\bm{x}}(\mathcal{E})), 3.21 can be applied to I1±I_{1}^{\pm} and, by similar analysis for I2±I_{2}^{\pm}, there exists a constant C>0C>0 independent of ϵ\epsilon such that

I1±+I2±ϵ14C{+,}𝒗L1((0,T);H1,2,0).\displaystyle I_{1}^{\pm}+I_{2}^{\pm}\leq\epsilon^{\frac{1}{4}}C\sum\limits_{\square\in\{+,-\}}\|\bm{v}^{\square}\|_{{\rm L}^{1}((0,T);{\rm H}^{1,2,0}_{\mathcal{E}})}.

As a result, 3.17 (respectively 3.18) allows to infer

(𝒛0𝒏)ϵz𝒘±ϵL1((0,T/ϵ);L2())=O(ϵ14).\|\left\llbracket\frac{(\bm{z}^{0}\cdot\bm{n})}{\sqrt{\epsilon}}\partial_{z}\bm{w}^{\pm}\right\rrbracket_{\epsilon}\|_{{\rm L}^{1}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}=O(\epsilon^{\frac{1}{4}}).

The remaining terms contained in 𝒉+,ϵ\bm{h}^{+,\epsilon} and 𝒉,ϵ\bm{h}^{-,\epsilon} behave as in the Navier–Stokes case treated in [CoronMarbachSueur2020, Section 4.4]. Carrying out these details involves the estimates (3.70), (3.72), (3.73), and (3.76). In particular, for estimating t𝒘±\partial_{t}\bm{w}^{\pm}, several norms of 𝝁±\bm{\mu}^{\pm} enter through (3.73) with O(ϵ1/4)O(\epsilon^{1/4}) coefficients. Since 𝝁±\bm{\mu}^{\pm} are supported in [0,T][0,T] and smooth, there are O(ϵ1/4)O(\epsilon^{1/4}) bounds for these terms. ∎

3.5.2 Energy estimates

The desired asymptotic behavior in (3.6) is now obtained as a consequence of the next proposition.

Proposition 3.27.

The functions 𝐫±,ϵ\bm{r}^{\pm,\epsilon} determined from (3.7) by means of Subsections 3.2, 3.3 and 3.4 satisfy

𝒓±,ϵL((0,T/ϵ);L2())2+ϵ𝒓±,ϵL2((0,T/ϵ);H1())2=O(ϵ14).\displaystyle\|\bm{r}^{\pm,\epsilon}\|_{{\rm L}^{\infty}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E}))}^{2}+\epsilon\|\bm{r}^{\pm,\epsilon}\|_{{\rm L}^{2}((0,T/\epsilon);{\rm H}^{1}(\mathcal{E}))}^{2}=O(\epsilon^{\frac{1}{4}}). (3.84)
Proof.

The idea is to multiply the equations in the first line of (3.80) by 𝒓±,ϵ\bm{r}^{\pm,\epsilon} respectively, followed by integrating over ×(0,t)\mathcal{E}\times(0,t) for t(0,T/ϵ)t\in(0,T/\epsilon), which however is not justified. Indeed, the regularity of 𝒛±,ϵ,𝒓±,ϵ𝒳T/ϵ\bm{z}^{\pm,\epsilon},\bm{r}^{\pm,\epsilon}\in\mathscr{X}_{T/\epsilon} does not guarantee the convergence of the integrals

0t(𝒛,ϵ(𝒙,s))𝒓±,ϵ(𝒙,s)𝒓±,ϵ(𝒙,s)d𝒙ds.\int_{0}^{t}\int_{\mathcal{E}}(\bm{z}^{\mp,\epsilon}(\bm{x},s)\cdot\bm{\mathrm{\nabla}})\bm{r}^{\pm,\epsilon}(\bm{x},s)\cdot\bm{r}^{\pm,\epsilon}(\bm{x},s)\,{{\rm d}\bm{x}}{{\rm d}s}.

Since (3.7)–(3.8) imply that the term ϵ𝒓±,ϵ=𝒛±,ϵ𝒔±,ϵ\epsilon\bm{r}^{\pm,\epsilon}=\bm{z}^{\pm,\epsilon}-\bm{s}^{\pm,\epsilon}, where 𝒔±,ϵ\bm{s}^{\pm,\epsilon} is bounded in L((0,T/ϵ);H3()){\rm L}^{\infty}((0,T/\epsilon);{\rm H}^{3}(\mathcal{E})) and the temporal derivatives obey t𝒔±,ϵL2((0,T/ϵ);L2())\partial_{t}\bm{s}^{\pm,\epsilon}\in{\rm L}^{2}((0,T/\epsilon);{\rm L}^{2}(\mathcal{E})), the above mentioned convergence issue can be avoided by using the strong energy inequality as explained in [IftimieSueur2011, Page 167-168].

Step 1. Employing the energy inequality.

Let us sketch the aforementioned approach of utilizing the energy inequality. For the sake of simplicity, we carry out the steps for the case from Section 2.4.1 where σ0=0\sigma^{0}=0. First, from (3.80) and (3.5), one observes that 𝒔±,ϵ\bm{s}^{\pm,\epsilon} satisfy a weak formulation for the problem

{t𝒔±,ϵϵΔ(λ±𝒔+,ϵ+λ𝒔,ϵ)+(𝒛,ϵ)𝒔±,ϵ+o±,ϵ=𝚵±,ϵ in T/ϵ,𝒔±,ϵ=0 in T/ϵ,𝒔±,ϵ𝒏=0 on ΣT/ϵ,(×𝒔±,ϵ)×𝒏=𝝆±(𝒔+,ϵ,𝒔,ϵ)ε𝖌±,ϵ on ΣT/ϵ,𝒔±,ϵ(,0)=ϵ𝒛±0 in ,\begin{cases}\partial_{t}\bm{s}^{\pm,\epsilon}-\epsilon\Delta(\lambda^{\pm}\bm{s}^{+,\epsilon}+\lambda^{\mp}\bm{s}^{-,\epsilon})+(\bm{z}^{\mp,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{s}^{\pm,\epsilon}+\bm{\mathrm{\nabla}}o^{\pm,\epsilon}=\bm{\Xi}^{\pm,\epsilon}&\mbox{ in }\mathcal{E}_{T/\epsilon},\\ \bm{\mathrm{\nabla}}\cdot\bm{s}^{\pm,\epsilon}=0&\mbox{ in }\mathcal{E}_{T/\epsilon},\\ \bm{s}^{\pm,\epsilon}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T/\epsilon},\\ (\bm{\mathrm{\nabla}}\times{\bm{s}^{\pm,\epsilon}})\times\bm{n}=\bm{\rho}^{\pm}(\bm{s}^{+,\epsilon},\bm{s}^{-,\epsilon})-\varepsilon\bm{\mathfrak{g}}^{\pm,\epsilon}&\mbox{ on }\Sigma_{T/\epsilon},\\ \bm{s}^{\pm,\epsilon}(\cdot,0)=\epsilon\bm{z}^{\pm}_{0}&\mbox{ in }\mathcal{E},\end{cases} (3.85)

where

o±,ϵp±,ϵϵπ±,ϵ,𝚵±,ϵ𝝃±ϵ𝒉±,ϵAϵ,±𝒓,ϵϵ.o^{\pm,\epsilon}\coloneqq p^{\pm,\epsilon}-\epsilon\pi^{\pm,\epsilon},\quad\bm{\Xi}^{\pm,\epsilon}\coloneqq\bm{\xi}^{\pm}-\epsilon\left\llbracket\bm{h}^{\pm,\epsilon}-A^{\epsilon,\pm}\bm{r}^{\mp,\epsilon}\right\rrbracket_{\epsilon}.

Multiplying the equations (3.85) with 𝒛±,ϵ𝒔±,ϵ𝒳T/ϵ\bm{z}^{\pm,\epsilon}-\bm{s}^{\pm,\epsilon}\in\mathcal{X}_{T/\epsilon}, integrating over ×(0,t)\mathcal{E}\times(0,t), and summing up the results, leads to

{+,}0tt𝒔,ϵ(𝒛,ϵ𝒔,ϵ)d𝒙dr\displaystyle\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\partial_{t}\bm{s}^{\square,\epsilon}\cdot(\bm{z}^{\square,\epsilon}-\bm{s}^{\square,\epsilon})\,{{\rm d}\bm{x}}{{\rm d}r}
+{+,}ϵλ+0t×𝒔,ϵ×(𝒛,ϵ𝒔,ϵ)d𝒙dr\displaystyle+\sum\limits_{\square\in\{+,-\}}\epsilon\lambda^{+}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{s}^{\square,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{(\bm{z}^{\square,\epsilon}-\bm{s}^{\square,\epsilon})}\,{{\rm d}\bm{x}}{{\rm d}r}
+ϵλ(,){(+,),(,+)}0t×𝒔,ϵ×(𝒛,ϵ𝒔,ϵ)d𝒙dr\displaystyle+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{s}^{\circ,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{(\bm{z}^{\triangle,\epsilon}-\bm{s}^{\triangle,\epsilon})}\,{{\rm d}\bm{x}}{{\rm d}r}
+(,){(+,),(,+)}0t(𝒛,ϵ)𝒔,ϵ𝒛,ϵd𝒙dr\displaystyle+\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}(\bm{z}^{\circ,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{s}^{\triangle,\epsilon}\cdot\bm{z}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}
=(,){(+,),(,+)}0t(𝝃,ϵϵ𝒉,ϵϵ+ϵA,ϵ𝒓,ϵϵ)(𝒛,ϵ𝒔,ϵ)d𝒙dr\displaystyle=\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\left(\bm{\xi}^{\triangle,\epsilon}-\epsilon\llbracket\bm{h}^{\triangle,\epsilon}\rrbracket_{\epsilon}+\epsilon\llbracket A^{\triangle,\epsilon}\bm{r}^{\circ,\epsilon}\rrbracket_{\epsilon}\right)\cdot(\bm{z}^{\triangle,\epsilon}-\bm{s}^{\triangle,\epsilon})\,{{\rm d}\bm{x}}{{\rm d}r} (3.86)
+ϵλ+{+,}0t(𝝆(𝒔+,ϵ,𝒔,ϵ)ϵ𝖌,ϵ)(𝒛,ϵ𝒔,ϵ)dSdr\displaystyle+\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\partial\mathcal{E}}\left(\bm{\rho}^{\square}(\bm{s}^{+,\epsilon},\bm{s}^{-,\epsilon})-\epsilon\bm{\mathfrak{g}}^{\square,\epsilon}\right)\cdot(\bm{z}^{\square,\epsilon}-\bm{s}^{\square,\epsilon})\,{{\rm d}S}{{\rm d}r}
+ϵλ(,){(+,),(,+)}0t(𝝆(𝒔+,ϵ,𝒔,ϵ)ϵ𝖌,ϵ)(𝒛,ϵ𝒔,ϵ)dSdr.\displaystyle+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\partial\mathcal{E}}\left(\bm{\rho}^{\circ}(\bm{s}^{+,\epsilon},\bm{s}^{-,\epsilon})-\epsilon\bm{\mathfrak{g}}^{\circ,\epsilon}\right)\cdot(\bm{z}^{\triangle,\epsilon}-\bm{s}^{\triangle,\epsilon})\,{{\rm d}S}{{\rm d}r}.

In (3.86), the following cancellations, which are justified via integration by parts and by using the regularity of 𝒔±,ϵ\bm{s}^{\pm,\epsilon}, have been taken into account:

(,){(+,),(,+)}0t(𝒛,ϵ)𝒔,ϵ𝒔,ϵd𝒙dr=0.\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}(\bm{z}^{\circ,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{s}^{\triangle,\epsilon}\cdot\bm{s}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}=0.

Second, taking the test function 𝒔±,ϵ\bm{s}^{\pm,\epsilon} in the weak formulation for 𝒛±,ϵ\bm{z}^{\pm,\epsilon}, which is justified thanks to the regularity of 𝒔±,ϵ\bm{s}^{\pm,\epsilon}, yields

{+,}𝒛,ϵ(𝒙,t)𝒔,ϵ(𝒙,t)d𝒙{+,}𝒛,ϵ(𝒙,0)𝒔,ϵ(𝒙,0)d𝒙\displaystyle\sum\limits_{\square\in\{+,-\}}\int_{\mathcal{E}}\bm{z}^{\square,\epsilon}(\bm{x},t)\cdot\bm{s}^{\square,\epsilon}(\bm{x},t)\,{{\rm d}\bm{x}}-\sum\limits_{\square\in\{+,-\}}\int_{\mathcal{E}}\bm{z}^{\square,\epsilon}(\bm{x},0)\cdot\bm{s}^{\square,\epsilon}(\bm{x},0)\,{{\rm d}\bm{x}}
{+,}0t𝒛,ϵt𝒔,ϵd𝒙dr+ϵλ+{+,}0t×𝒛,ϵ×𝒔,ϵd𝒙dr\displaystyle-\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\bm{z}^{\square,\epsilon}\cdot\partial_{t}\bm{s}^{\square,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}+\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\square,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{\bm{s}^{\square,\epsilon}}\,{{\rm d}\bm{x}}{{\rm d}r}
+(,){(+,),(,+)}0t(ϵλ×𝒛,ϵ×𝒔,ϵ+(𝒛,ϵ)𝒛,ϵ𝒔,ϵ)d𝒙dr\displaystyle+\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\left(\epsilon\lambda^{-}\bm{\mathrm{\nabla}}\times{\bm{z}^{\circ,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{\bm{s}^{\triangle,\epsilon}}+(\bm{z}^{\circ,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\triangle,\epsilon}\cdot\bm{s}^{\triangle,\epsilon}\right)\,{{\rm d}\bm{x}}{{\rm d}r} (3.87)
={+,}(0t𝝃,ϵ𝒔,ϵd𝒙dr+ϵλ+0t𝝆,ϵ(𝒛+,ϵ,𝒛,ϵ)𝒔,ϵdSdr)\displaystyle=\sum\limits_{\square\in\{+,-\}}\left(\int_{0}^{t}\int_{\mathcal{E}}\bm{\xi}^{\square,\epsilon}\cdot\bm{s}^{\square,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}+\epsilon\lambda^{+}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\square,\epsilon}(\bm{z}^{+,\epsilon},\bm{z}^{-,\epsilon})\cdot\bm{s}^{\square,\epsilon}\,{{\rm d}S}{{\rm d}r}\right)
+ϵλ(,){(+,),(,+)}0t𝝆,ϵ(𝒛+,ϵ,𝒛,ϵ)𝒔,ϵdSdr.\displaystyle+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\circ,\epsilon}(\bm{z}^{+,\epsilon},\bm{z}^{-,\epsilon})\cdot\bm{s}^{\triangle,\epsilon}\,{{\rm d}S}{{\rm d}r}.

Third, multiplying the energy inequality (2.19) with ϵ2\epsilon^{2}, followed by evaluation at s=0s=0 and ϵt\epsilon t for t[0,T/ϵ]t\in[0,T/\epsilon], while performing the change of variables rϵrr\to\epsilon r, one has

12{+,}𝒛,ϵ(,t)L2()2+ϵλ+{+,}0t×𝒛,ϵ×𝒛,ϵd𝒙dr\displaystyle\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\square,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{\bm{z}^{\square,\epsilon}}\,{{\rm d}\bm{x}}{{\rm d}r}
+ϵλ(,){(+,),(,+)}0t×𝒛,ϵ×𝒛,ϵd𝒙dr\displaystyle+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{z}^{\triangle,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{\bm{z}^{\circ,\epsilon}}\,{{\rm d}\bm{x}}{{\rm d}r}
12{+,}𝒛,ϵ(,0)L2()2+ϵλ+{+,}0t𝝆(𝒛+,ϵ,𝒛,ϵ)𝒛,ϵdSdr\displaystyle\leq\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square,\epsilon}(\cdot,0)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\square}(\bm{z}^{+,\epsilon},\bm{z}^{-,\epsilon})\cdot\bm{z}^{\square,\epsilon}\,{{\rm d}S}{{\rm d}r} (3.88)
+ϵλ(,){(+,),(,+)}0t𝝆(𝒛+,ϵ,𝒛,ϵ)𝒛,ϵdSdr\displaystyle+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\partial\mathcal{E}}\bm{\rho}^{\triangle}(\bm{z}^{+,\epsilon},\bm{z}^{-,\epsilon})\cdot\bm{z}^{\circ,\epsilon}\,{{\rm d}S}{{\rm d}r}
+{+,}0t𝝃,ϵ𝒛,ϵd𝒙dr.\displaystyle+\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\xi}^{\square,\epsilon}\cdot\bm{z}^{\square,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}.
Step 2. Conclusion.

By subtracting from (3.88) the equations 3.86 and 3.87, while considering for the general case σ00\sigma^{0}\neq 0 the identity

0t(𝒛,ϵ)𝒛,ϵ𝒔,ϵd𝒙dr=0t(𝒛,ϵ)𝒔,ϵ𝒛,ϵd𝒙dr0tσ0𝒔,ϵ𝒛,ϵd𝒙dr,\int_{0}^{t}\int_{\mathcal{E}}(\bm{z}^{\circ,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\triangle,\epsilon}\cdot\bm{s}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}\\ =-\int_{0}^{t}\int_{\mathcal{E}}(\bm{z}^{\circ,\epsilon}\cdot\bm{\mathrm{\nabla}})\bm{s}^{\triangle,\epsilon}\cdot\bm{z}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}-\int_{0}^{t}\int_{\mathcal{E}}\sigma^{0}\bm{s}^{\triangle,\epsilon}\cdot\bm{z}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r},

where (,){(+,),(,+)}(\triangle,\circ)\in\{(+,-),(-,+)\}, one arrives at the inequality

12{+,}𝒓,ϵ(,t)L2()2+ϵλ+{+,}0t×𝒓,ϵ×𝒓,ϵd𝒙dr\displaystyle\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\|\bm{r}^{\square,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{r}^{\square,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{\bm{r}^{\square,\epsilon}}\,{{\rm d}\bm{x}}{{\rm d}r}
+ϵλ(,){(+,),(,+)}0t×𝒓,ϵ×𝒓,ϵd𝒙dr\displaystyle+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\bm{\mathrm{\nabla}}\times{\bm{r}^{\triangle,\epsilon}}\cdot\bm{\mathrm{\nabla}}\times{\bm{r}^{\circ,\epsilon}}\,{{\rm d}\bm{x}}{{\rm d}r}
(,){(+,),(,+)}0t(𝒉,ϵϵA,ϵ𝒓,ϵϵ)𝒓,ϵd𝒙dr\displaystyle\leq\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\left(\llbracket\bm{h}^{\triangle,\epsilon}\rrbracket_{\epsilon}-\llbracket A^{\triangle,\epsilon}\bm{r}^{\circ,\epsilon}\rrbracket_{\epsilon}\right)\cdot\bm{r}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}
+ϵλ+{+,}0tJ,dSdr+ϵλ(,){(+,),(,+)}0tJ,dSdr\displaystyle+\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\partial\mathcal{E}}J^{\square,\square}\,{{\rm d}S}{{\rm d}r}+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\partial\mathcal{E}}J^{\triangle,\circ}\,{{\rm d}S}{{\rm d}r}
+12{+,}0tσ0|𝒓,ϵ|2d𝒙dr,\displaystyle+\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\mathcal{E}}\sigma^{0}|\bm{r}^{\square,\epsilon}|^{2}\,{{\rm d}\bm{x}}{{\rm d}r},

with

J,(𝝆(𝒓+,ϵ,𝒓,ϵ)+𝖌,ϵ)𝒓,ϵ.J^{\square,\triangle}\coloneqq\left(\bm{\rho}^{\triangle}(\bm{r}^{+,\epsilon},\bm{r}^{-,\epsilon})+\bm{\mathfrak{g}}^{\triangle,\epsilon}\right)\cdot\bm{r}^{\square,\epsilon}.

Since 𝒓±,ϵ=0\bm{\mathrm{\nabla}}\cdot{\bm{r}^{\pm,\epsilon}}=0 in \mathcal{E} and 𝒓±,ϵ𝒏=0\bm{r}^{\pm,\epsilon}\cdot\bm{n}=0 on \partial\mathcal{E}, the inequality (2.1) provides

𝒓±,ϵH1()C(×𝒓±,ϵL2()+𝒓±,ϵL2()),\|\bm{r}^{\pm,\epsilon}\|_{{\rm H}^{1}(\mathcal{E})}\leq C\left(\|\bm{\mathrm{\nabla}}\times{\bm{r}^{\pm,\epsilon}}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{r}^{\pm,\epsilon}\|_{{\rm L}^{2}(\mathcal{E})}\right),

which in turn yields

12{+,}𝒓,ϵ(,t)L2()2+ϵ2{+,}(λ+λ)0t(𝒓+,ϵ𝒓,ϵ)(,r)H1()2dr(,){(+,),(,+)}0t(𝒉,ϵϵA,ϵ𝒓,ϵϵ)𝒓,ϵd𝒙dr+ϵλ+{+,}0tJ,dSdr+ϵλ(,){(+,),(,+)}0tJ,dSdr+ϵC{+,}λ+λ20t𝒓,ϵ(,r)L2()2dr,\begin{gathered}\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\|\bm{r}^{\square,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\frac{\epsilon}{2}\sum\limits_{\square\in\{+,-\}}(\lambda^{+}\square\,\lambda^{-})\int_{0}^{t}\|(\bm{r}^{+,\epsilon}\square\,\bm{r}^{-,\epsilon})(\cdot,r)\|_{{\rm H}^{1}(\mathcal{E})}^{2}{{\rm d}r}\\ \leq\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\mathcal{E}}\left(\llbracket\bm{h}^{\triangle,\epsilon}\rrbracket_{\epsilon}-\llbracket A^{\triangle,\epsilon}\bm{r}^{\circ,\epsilon}\rrbracket_{\epsilon}\right)\cdot\bm{r}^{\triangle,\epsilon}\,{{\rm d}\bm{x}}{{\rm d}r}\\ +\epsilon\lambda^{+}\sum\limits_{\square\in\{+,-\}}\int_{0}^{t}\int_{\partial\mathcal{E}}J^{\square,\square}\,{{\rm d}S}{{\rm d}r}+\epsilon\lambda^{-}\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\partial\mathcal{E}}J^{\triangle,\circ}\,{{\rm d}S}{{\rm d}r}\\ +\epsilon C\sum\limits_{\square\in\{+,-\}}\frac{\lambda^{+}\square\lambda^{-}}{2}\int_{0}^{t}\|\bm{r}^{\square,\epsilon}(\cdot,r)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\,{{\rm d}r},\end{gathered} (3.89)

where C>0C>0 depends on λ±\lambda^{\pm} and the fixed quantity max(𝒙,𝒔)¯×[0,T]|σ0(𝒙,s)|\max_{(\bm{x,s})\in\overline{\mathcal{E}}\times[0,T]}|\sigma^{0}(\bm{x},s)|. The boundary integrals containing J,J^{\square,\triangle} are treated by applying for 𝒇,𝒉H1()\bm{f},\bm{h}\in{\rm H}^{1}(\mathcal{E}) and >0\ell>0 the estimate

|𝒇𝒉dS|C()(𝒇L2()2+𝒉L2()2)+(𝒇H1()2+𝒉H1()2).\left|\int_{\partial\mathcal{E}}\bm{f}\cdot\bm{h}\,{{\rm d}S}\right|\leq C(\ell)(\|\bm{f}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{h}\|_{{\rm L}^{2}(\mathcal{E})}^{2})+\ell(\|\bm{f}\|_{{\rm H}^{1}(\mathcal{E})}^{2}+\|\bm{h}\|_{{\rm H}^{1}(\mathcal{E})}^{2}).

Thus, for t[0,T/ϵ]t\in[0,T/\epsilon] and arbitrary >0\ell>0 one has

|J,(𝒙,t)dS(𝒙)|(𝖌,ϵ(,t)H1()2+𝒓+,ϵ(,t)H1()2+𝒓,ϵ(,t)H1()2)+C()(𝖌,ϵ(,t)L2()2+𝒓+,ϵ(,t)L2()2+𝒓,ϵ(,t)L2()2).\left|\int_{\partial\mathcal{E}}J^{\square,\triangle}(\bm{x},t)\,{{\rm d}S(\bm{x})}\right|\\ \begin{aligned} &\leq\ell\left(\|\bm{\mathfrak{g}}^{\triangle,\epsilon}(\cdot,t)\|_{{\rm H}^{1}(\mathcal{E})}^{2}+\|\bm{r}^{+,\epsilon}(\cdot,t)\|_{{\rm H}^{1}(\mathcal{E})}^{2}+\|\bm{r}^{-,\epsilon}(\cdot,t)\|_{{\rm H}^{1}(\mathcal{E})}^{2}\right)\\ &\quad+C(\ell)\left(\|\bm{\mathfrak{g}}^{\triangle,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{r}^{+,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{r}^{-,\epsilon}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right).\end{aligned}

Consequently, by selecting >0\ell>0 small, employing 3.26, and applying Grönwall’s inequality in (3.89), one arrives at (3.84). ∎

Corollary 3.28.

The functions 𝐳±,ϵ\bm{z}^{\pm,\epsilon} fixed in the beginning of Section 3 satisfy

𝒛±,ϵ(,T/ϵ)L2()=O(ϵ98).\displaystyle\|\bm{z}^{\pm,\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}=O(\epsilon^{\frac{9}{8}}).
Proof.

We remind that 𝝁±\bm{\mu}^{\pm} has been fixed via 3.17 (or 3.18) with r=6r=6 and k=4k=4, while noting that lima+a1/2ln(a)=0\lim_{a\longrightarrow+\infty}a^{-1/2}\ln(a)=0. Therefore, by combining (3.84) with (3.7), 3.21 and 3.23, one arrives at

𝒛±,ϵ(,T/ϵ)L2()\displaystyle\|\bm{z}^{\pm,\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})} ϵ𝒗±ϵ(,T/ϵ)L2()+ϵ𝒘±ϵ(,T/ϵ)L2()\displaystyle\leq\sqrt{\epsilon}\|\left\llbracket\bm{v}^{\pm}\right\rrbracket_{\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}+\epsilon\|\left\llbracket\bm{w}^{\pm}\right\rrbracket_{\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}
ϵθ±,ϵ(,T/ϵ)L2()+ϵ𝒓±,ϵ(,T/ϵ)L2()\displaystyle\quad\epsilon\|\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}+\epsilon\|\bm{r}^{\pm,\epsilon}(\cdot,T/\epsilon)\|_{{\rm L}^{2}(\mathcal{E})}
ϵ34ϵ12ϵ12𝒗±(,T/ϵ)H1,1,0+ϵ54𝒘±(,T/ϵ)H0,2,0+O(ϵ98)\displaystyle\leq\epsilon^{\frac{3}{4}}\epsilon^{\frac{1}{2}}\epsilon^{-\frac{1}{2}}\|\bm{v}^{\pm}(\cdot,T/\epsilon)\|_{{\rm H}^{1,1,0}_{\mathcal{E}}}+\epsilon^{\frac{5}{4}}\|\bm{w}^{\pm}(\cdot,T/\epsilon)\|_{{\rm H}^{0,2,0}_{\mathcal{E}}}+O(\epsilon^{\frac{9}{8}})
=O(ϵ98).\displaystyle=O(\epsilon^{\frac{9}{8}}).

3.6 Controlling towards arbitrary smooth states

Let 𝒛¯±1C(¯;N)H()\overline{\bm{z}}^{\pm}_{1}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N})\cap{\rm H}(\mathcal{E}) be arbitrarily fixed. The previous arguments for approximate null controllability can be modified for the target 𝒛¯±1\overline{\bm{z}}^{\pm}_{1}. The idea is similar to that described in [CoronMarbachSueur2020, Section 5] for a Navier–Stokes problem. First, the ansatz (3.7) is modified such that for 𝒛±,ϵ\bm{z}^{\pm,\epsilon} on the time interval [0,T][0,T] one chooses an expansion of the form

𝒛±,ϵ=𝒛0+ϵ𝒗±ϵ+ϵ𝒛¯±,1+ϵθ±,ϵ+ϵ𝒘±ϵ+ϵ𝒓±,ϵ,\begin{gathered}\bm{z}^{\pm,\epsilon}=\bm{z}^{0}+\sqrt{\epsilon}\left\llbracket\bm{v}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\overline{\bm{z}}^{\pm,1}+\epsilon\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+\epsilon\left\llbracket\bm{w}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\bm{r}^{\pm,\epsilon},\\ \end{gathered} (3.90)

while on [T,T/ϵ][T,T/\epsilon] it is assumed that

𝒛±,ϵ\displaystyle\bm{z}^{\pm,\epsilon} =ϵ𝒗±ϵ+ϵ𝒛¯±1+ϵθ±,ϵ+ϵ𝒘±ϵ+ϵ𝒓±,ϵ.\displaystyle=\sqrt{\epsilon}\left\llbracket\bm{v}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\overline{\bm{z}}^{\pm}_{1}+\epsilon\bm{\mathrm{\nabla}}\theta^{\pm,\epsilon}+\epsilon\left\llbracket\bm{w}^{\pm}\right\rrbracket_{\epsilon}+\epsilon\bm{r}^{\pm,\epsilon}. (3.91)

The profiles 𝒛¯±,1\overline{\bm{z}}^{\pm,1} in (3.90) belong to L((0,T);H3()){\rm L}^{\infty}((0,T);{\rm H}^{3}(\mathcal{E})) and, by adopting the constructions from 3.8’s proof, there exist 𝝃±,1C0([0,T];H2(;N))\bm{\xi}^{\pm,1}\in{\rm C}^{0}([0,T];{\rm H}^{2}(\mathcal{E};\mathbb{R}^{N})) with supp(𝝃±,1)(¯Ω¯)×[0,T]\operatorname{supp}(\bm{\xi}^{\pm,1})\subset(\overline{\mathcal{E}}\setminus\overline{\Omega})\times[0,T] such that (𝒛¯±,1,𝝃±,1)(\overline{\bm{z}}^{\pm,1},\bm{\xi}^{\pm,1}) solve the controllability problem

{t𝒛¯±,1+(𝒛¯,1)𝒛0+(𝒛0)𝒛¯±,1+p±,1=𝝃±,1+(λ±+λ)Δ𝒛0 in T,𝒛¯±,1=0 in T,𝒛¯±,1𝒏=0 on ΣT,𝒛¯±,1(,0)=𝒛0± in ,𝒛¯±,1(,T)=𝒛¯±1 in .\begin{cases}\partial_{t}\overline{\bm{z}}^{\pm,1}+(\overline{\bm{z}}^{\mp,1}\cdot\bm{\mathrm{\nabla}})\bm{z}^{0}+(\bm{z}^{0}\cdot\bm{\mathrm{\nabla}})\overline{\bm{z}}^{\pm,1}+\bm{\mathrm{\nabla}}p^{\pm,1}=\bm{\xi}^{\pm,1}+(\lambda^{\pm}+\lambda^{\mp})\Delta\bm{z}^{0}&\mbox{ in }\mathcal{E}_{T},\\ \bm{\mathrm{\nabla}}\cdot\overline{\bm{z}}^{\pm,1}=0&\mbox{ in }\mathcal{E}_{T},\\ \overline{\bm{z}}^{\pm,1}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T},\\ \overline{\bm{z}}^{\pm,1}(\cdot,0)=\bm{z}_{0}^{\pm}&\mbox{ in }\mathcal{E},\\ \overline{\bm{z}}^{\pm,1}(\cdot,T)=\overline{\bm{z}}^{\pm}_{1}&\mbox{ in }\mathcal{E}.\end{cases} (3.92)

In particular, all bounds for 𝒛¯±,1\overline{\bm{z}}^{\pm,1} and 𝝃±,1\bm{\xi}^{\pm,1} are independent of ϵ>0\epsilon>0, as this parameter does not appear in (3.92). Because 𝒛¯±1\overline{\bm{z}}^{\pm}_{1} are smooth and independent of time, by analysis similar to Section 3.5, one can infer 𝒓±,ϵ(,T/ϵ)=O(ϵ18)\|\bm{r}^{\pm,\epsilon}(\cdot,T/\epsilon)\|=O(\epsilon^{\frac{1}{8}}). As a result, the rescaled functions 𝒛±,(ϵ)(𝒙,t)ϵ1𝒛±,ϵ(𝒙,ϵ1t)\bm{z}^{\pm,(\epsilon)}(\bm{x},t)\coloneqq\epsilon^{-1}\bm{z}^{\pm,\epsilon}\left(\bm{x},\epsilon^{-1}t\right) satisfy

𝒛±,(ϵ)(𝒙,T)𝒛¯±1L2()=O(ϵ18).\displaystyle\|\bm{z}^{\pm,(\epsilon)}(\bm{x},T)-\overline{\bm{z}}^{\pm}_{1}\|_{{\rm L}^{2}(\mathcal{E})}=O(\epsilon^{\frac{1}{8}}).

4 Conclusion of the main results

In order to relax the assumption 𝒖0,𝑩0H3()W()\bm{u}_{0},\bm{B}_{0}\in{\rm H}^{3}(\mathcal{E})\cap{\rm W}(\mathcal{E}) employed in Section 3, we connect initial data from H(){\rm H}(\mathcal{E}) by a weak controlled trajectory to a state which belongs to H3W(){\rm H}^{3}\cap{\rm W}(\mathcal{E}). This is done via 4.1 below, and a proof of this argument, which is a modification of [CoronMarbachSueur2020, Lemma 9], will be outlined in Appendix B.

Lemma 4.1.

When N=3N=3, assume that 𝐌1\bm{M}_{1} and 𝐋2\bm{L}_{2} are symmetric, 𝐋1=𝐌2=𝟎\bm{L}_{1}=\bm{M}_{2}=\bm{0}, and that Ω\Omega is simply-connected. For any given T>0T^{*}>0 and 𝐮0,𝐁0H()\bm{u}_{0},\bm{B}_{0}\in{\rm H}(\mathcal{E}), there exists a smooth function CT>0C_{T^{*}}>0 with CT(0)=0C_{T^{*}}(0)=0 such that a Leray–Hopf weak solution (𝐮,𝐁)𝒳T2(\bm{u},\bm{B})\in\mathscr{X}_{T^{*}}^{2} to (2.8) obeys for some treg[0,T]t_{\operatorname{reg}}\in[0,T^{*}] the estimate

𝒖(,treg)H3()+𝑩(,treg)H3()CT(𝒖0L2()+𝑩0L2()).\|\bm{u}(\cdot,t_{\operatorname{reg}})\|_{{\rm H}^{3}(\mathcal{E})}+\|\bm{B}(\cdot,t_{\operatorname{reg}})\|_{{\rm H}^{3}(\mathcal{E})}\leq C_{T^{*}}\left(\|\bm{u}_{0}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{B}_{0}\|_{{\rm L}^{2}(\mathcal{E})}\right).

Let the control time Tctrl>0T_{\operatorname{ctrl}}>0, the states 𝒖0,𝑩0,𝒖1,𝑩1L2c(Ω)\bm{u}_{0},\bm{B}_{0},\bm{u}_{1},\bm{B}_{1}\in{\rm L}^{2}_{\operatorname{c}}(\Omega), and any δ>0\delta>0 be arbitrarily fixed. Then, the proof of 1.2 is completed by means of the ensuing steps.

  1. 1)

    The physical domain Ω\Omega is extended to \mathcal{E}, as explained in Section 2, and the weak formulation given in Section 2.4.1 is chosen.

  2. 2)

    By 4.1, there exists T1[0,Tctrl/4)T_{1}\in[0,T_{\operatorname{ctrl}}/4) such that a Leray–Hopf weak solution (𝒖,𝑩)(\bm{u},\bm{B}) to (2.8) with initial data (𝒖0,𝑩0)(\bm{u}_{0},\bm{B}_{0}) and zero forces 𝝃=𝜼=𝟎\bm{\xi}=\bm{\eta}=\bm{0} obeys 𝒖(,T1),𝑩(,T1)H3()H()\bm{u}(\cdot,T_{1}),\bm{B}(\cdot,T_{1})\in{\rm H}^{3}(\mathcal{E})\cap{\rm H}(\mathcal{E}).

  3. 3)

    By a density argument, one can select states 𝒖¯1,𝑩¯1C(¯;N)W()\overline{\bm{u}}_{1},\overline{\bm{B}}_{1}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N})\cap{\rm W}(\mathcal{E}) with

    𝒖¯1𝒖1L2(Ω)+𝑩¯1𝑩1L2(Ω)<δ/2.\|\overline{{\bm{u}}}_{1}-\bm{u}_{1}\|_{{\rm L}^{2}(\Omega)}+\|\overline{\bm{B}}_{1}-\bm{B}_{1}\|_{{\rm L}^{2}(\Omega)}<\delta/2.
  4. 4)

    The arguments in Section 3 are carried out with T=TctrlT1T=T_{\operatorname{ctrl}}-T_{1}, initial data 𝒖(,T1)\bm{u}(\cdot,T_{1}), 𝑩(,T1)\bm{B}(\cdot,T_{1}) and target states 𝒖¯1,𝑩¯1\overline{\bm{u}}_{1},\overline{\bm{B}}_{1}. This provides controls 𝝃,𝜼\bm{\xi},\bm{\eta} such that all Leray–Hopf weak solutions (𝒖¯,𝑩¯)(\overline{\bm{u}},\overline{\bm{B}}) to (2.8) with initial data 𝒖(,T1)\bm{u}(\cdot,T_{1}) and 𝑩(,T1)\bm{B}(\cdot,T_{1}) satisfy

    𝒖¯(,TctrlT1)𝒖¯1L2()+𝑩¯(,TctrlT1)𝑩¯1L2()<δ/2.\|\overline{\bm{u}}(\cdot,T_{\operatorname{ctrl}}-T_{1})-\overline{\bm{u}}_{1}\|_{{\rm L}^{2}(\mathcal{E})}+\|\overline{\bm{B}}(\cdot,T_{\operatorname{ctrl}}-T_{1})-\overline{\bm{B}}_{1}\|_{{\rm L}^{2}(\mathcal{E})}<\delta/2.
  5. 5)

    At t=T1t=T_{1}, a Leray–Hopf weak solution (𝒖¯,𝑩¯)(\overline{\bm{u}},\overline{\bm{B}}) chosen via Step 4 is glued to a Leray–Hopf weak solution (𝒖,𝑩)(\bm{u},\bm{B}) from Step 2. After renaming, one obtains a Leray–Hopf weak solution (𝒖,𝑩)(\bm{u},\bm{B}) to (2.8), defined on the whole time interval [0,Tctrl][0,T_{\operatorname{ctrl}}], which starts from the initial data (𝒖0,𝑩0)(\bm{u}_{0},\bm{B}_{0}) and satisfies

    𝒖(,Tctrl)𝒖1L2(Ω)+𝑩(,Tctrl)𝑩1L2(Ω)<δ.\|{\bm{u}}(\cdot,T_{\operatorname{ctrl}})-\bm{u}_{1}\|_{{\rm L}^{2}(\Omega)}+\|{\bm{B}}(\cdot,T_{\operatorname{ctrl}})-\bm{B}_{1}\|_{{\rm L}^{2}(\Omega)}<\delta.

The previous arguments, while skipping the initial data extension and regularization steps, also yield 2.5. In order to conclude 1.5, we proceed as follows.

  1. 1)

    The physical domain Ω\Omega is extended to \mathcal{E} as described in Section 2, but now the weak formulation in Section 2.4.4 is considered. When 4.1 cannot be applied, the extended initial data are chosen with 𝒖0,𝑩0W()H3()\bm{u}_{0},\bm{B}_{0}\in{\rm W}(\mathcal{E})\cap{\rm H}^{3}(\mathcal{E}). Otherwise, in order to reach a divergence-free state, one defines σ±(𝒙,t)β(t)(𝒛±0)(𝒙)\sigma^{\pm}(\bm{x},t)\coloneqq\beta(t)(\bm{\mathrm{\nabla}}\cdot\bm{z}^{\pm}_{0})(\bm{x}), with βC(;)\beta\in{\rm C}^{\infty}(\mathbb{R};\mathbb{R}) obeying β(0)=1\beta(0)=1 and β(t)=0\beta(t)=0 for all tT^Tctrl/8t\geq\widehat{T}\coloneqq T_{\operatorname{ctrl}}/8. A corresponding weak solution to (2.20) on [0,T^][0,\widehat{T}] with zero forces 𝝃=𝜼=𝟎\bm{\xi}=\bm{\eta}=\bm{0} is denoted by (𝒛^+,𝒛^+)(\widehat{\bm{z}}^{+},\widehat{\bm{z}}^{+}) and it follows that 𝒛^±(,T^)H()\widehat{\bm{z}}^{\pm}(\cdot,\widehat{T})\in{\rm H}(\mathcal{E}).

  2. 2)

    Any Leray–Hopf weak solution (𝒛+,𝒛)(\bm{z}^{+},\bm{z}^{-}) to (2.20) with σ±=0\sigma^{\pm}=0 and zero forces 𝝃=𝜼=𝟎\bm{\xi}=\bm{\eta}=\bm{0} also obeys, by means of the transformation

    (𝒖,𝑩)=12(𝒛++𝒛,1μ(𝒛+𝒛)),(\bm{u},\bm{B})=\frac{1}{2}\left(\bm{z}^{+}+\bm{z}^{-},\frac{1}{\sqrt{\mu}}(\bm{z}^{+}-\bm{z}^{-})\right),

    the weak form introduced for (2.8), and vice versa. Therefore, either one can take T1=0T_{1}=0, or 4.1 provides a time T1[T^,Tctrl/4)T_{1}\in[\widehat{T},T_{\operatorname{ctrl}}/4) such that a Leray–Hopf weak solution (𝒛+,𝒛)(\bm{z}^{+},\bm{z}^{-}) to (2.20) with initial data 𝒛^±(T^)\widehat{\bm{z}}^{\pm}(\widehat{T}) and zero forces 𝝃=𝜼=𝟎\bm{\xi}=\bm{\eta}=\bm{0} obeys 𝒛±(,T1)H3()H()\bm{z}^{\pm}(\cdot,T_{1})\in{\rm H}^{3}(\mathcal{E})\cap{\rm H}(\mathcal{E}).

  3. 3)

    As before, by density, one can choose regular states 𝒛¯±1C0(¯;N)H()\overline{\bm{z}}^{\pm}_{1}\in{\rm C}^{\infty}_{0}(\overline{\mathcal{E}};\mathbb{R}^{N})\cap{\rm H}(\mathcal{E}) with

    𝒛¯±1(𝒖1±μ𝑩1)L2(Ω)<δ/4.\|{\overline{\bm{z}}^{\pm}_{1}}-(\bm{u}_{1}\pm\sqrt{\mu}\bm{B}_{1})\|_{{\rm L}^{2}(\Omega)}<\delta/4.
  4. 4)

    Now, Section 3 is applied with T=TctrlT1T=T_{\operatorname{ctrl}}-T_{1}, initial data 𝒛±(,T1)\bm{z}^{\pm}(\cdot,T_{1}), and target states 𝒛¯±1\overline{\bm{z}}^{\pm}_{1}. As a result, there are controls 𝝃,𝜼\bm{\xi},\bm{\eta} such that all corresponding Leray–Hopf weak solutions (𝒛¯+,𝒛¯)(\overline{\bm{z}}^{+},\overline{\bm{z}}^{-}) to (2.20) satisfy

    𝒛¯±(,TctrlT1)𝒛¯±1L2()<δ/4.\|\overline{\bm{z}}^{\pm}(\cdot,T_{\operatorname{ctrl}}-T_{1})-\overline{\bm{z}}^{\pm}_{1}\|_{{\rm L}^{2}(\mathcal{E})}<\delta/4.
  5. 5)

    By a gluing argument, one obtains a Leray–Hopf weak solution (𝒛+,𝒛)(\bm{z}^{+},\bm{z}^{-}) to (2.20) on [0,Tctrl][0,T_{\operatorname{ctrl}}], starting from the initial data 𝒛±0\bm{z}^{\pm}_{0} and satisfying

    𝒛±(,Tctrl)(𝒖1±μ𝑩1)L2(Ω)<δ/2.\|{\bm{z}^{\pm}}(\cdot,T_{\operatorname{ctrl}})-(\bm{u}_{1}\pm\sqrt{\mu}\bm{B}_{1})\|_{{\rm L}^{2}(\Omega)}<\delta/2.

Appendix A Boundary layer estimates

The estimates used in the proof of 3.12 are outlined; more general than there, we take now 𝒛±,0C(¯×[0,T];N)\bm{z}^{\pm,0}\in{\rm C}^{\infty}(\overline{\mathcal{E}}\times[0,T];\mathbb{R}^{N}) with 𝒛±,0𝒏=0\bm{z}^{\pm,0}\cdot\bm{n}=0 along \partial\mathcal{E} and supp(𝒛±,0(𝒙,))(0,T]\operatorname{supp}(\bm{z}^{\pm,0}(\bm{x},\cdot))\subset(0,T] for all 𝒙¯\bm{x}\in\overline{\mathcal{E}}. In 3.12, it is 𝒛0=𝒛+,0=𝒛,0\bm{z}^{0}=\bm{z}^{+,0}=\bm{z}^{-,0}. We now consider in ×(0,T)×+\mathcal{E}\times(0,T)\times\mathbb{R}_{+} the equations (cf. (3.33))

t𝒗±zz(λ±𝒗++λ𝒗)+[(𝒛,0)𝒗±+(𝒗)𝒛±,0]tan+𝔣±zz𝒗±=𝟎\partial_{t}\bm{v}^{\pm}-\partial_{zz}(\lambda^{\pm}\bm{v}^{+}+\lambda^{\mp}\bm{v}^{-})+\left[(\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\bm{v}^{\pm}+(\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm,0}\right]_{\operatorname{tan}}+\mathfrak{f}^{\pm}z\partial_{z}\bm{v}^{\pm}=\bm{0} (A.1)

together with the initial and boundary conditions (cf. (3.34))

{z𝒗±(𝒙,t,0)[z𝒗±(𝒙,t,0)𝒏(𝒙)]𝒏(𝒙)=𝖌±(𝒙,t),𝒙¯,t(0,T),𝒗±(𝒙,t,0)𝒏(𝒙)=0,𝒙¯,t(0,T),𝒗±(𝒙,t,z)𝟎, as z+,𝒙¯,t+,𝒗±(𝒙,0,z)=𝟎,𝒙¯,z>0.\begin{cases}\partial_{z}\bm{v}^{\pm}(\bm{x},t,0)-\left[\partial_{z}\bm{v}^{\pm}(\bm{x},t,0)\cdot\bm{n}(\bm{x})\right]\bm{n}(\bm{x})=\bm{\mathfrak{g}}^{\pm}(\bm{x},t),&\bm{x}\in\overline{\mathcal{E}},t\in(0,T),\\ \bm{v}^{\pm}(\bm{x},t,0)\cdot\bm{n}(\bm{x})=0,&\bm{x}\in\overline{\mathcal{E}},t\in(0,T),\\ \bm{v}^{\pm}(\bm{x},t,z)\longrightarrow\bm{0},\mbox{ as }z\longrightarrow+\infty,&\bm{x}\in\overline{\mathcal{E}},t\in\mathbb{R}_{+},\\ \bm{v}^{\pm}(\bm{x},0,z)=\bm{0},&\bm{x}\in\overline{\mathcal{E}},z>0.\end{cases} (A.2)

While also more general data could be chosen, here we take the cutoff χ\chi_{\partial\mathcal{E}} defined in (3.31) and consider

𝔣±(𝒙,t)=𝒛,0(𝒙,t)𝒏(𝒙)φ(𝒙),𝖌±(𝒙,t)=2χ𝓝±(𝒛+,0,𝒛,0)(𝒙,t).\mathfrak{f}^{\pm}(\bm{x},t)=-\frac{\bm{z}^{\mp,0}(\bm{x},t)\cdot\bm{n}(\bm{x})}{\varphi_{\mathcal{E}}(\bm{x})},\quad\bm{\mathfrak{g}}^{\pm}(\bm{x},t)=2\chi_{\partial\mathcal{E}}\bm{\mathcal{N}}^{\pm}(\bm{z}^{+,0},\bm{z}^{-,0})(\bm{x},t).

Due to the support of 𝒛±,0\bm{z}^{\pm,0}, compatibility conditions up to all orders are satisfied by the initial and boundary data in (A.2). Multiplying in (A.1) with 𝒏\bm{n}, one may similarly to [IftimieSueur2011, Section 5] establish energy estimates which imply for all (𝒙,t,z)¯×[0,T]×+(\bm{x},t,z)\in\overline{\mathcal{E}}\times[0,T]\times\mathbb{R}_{+} that

[𝒗+(𝒙,t,z)±𝒗(𝒙,t,z)]𝒏(𝒙)=0.\displaystyle\left[\bm{v}^{+}(\bm{x},t,z)\pm\bm{v}^{-}(\bm{x},t,z)\right]\cdot\bm{n}(\bm{x})=0.

The goal consists now of showing the following lemma.

Lemma A.1.

For any choice of k,m1,m2,m30k,m_{1},m_{2},m_{3}\in\mathbb{N}_{0}, there exists a constant

C=C(,λ±,k,m1,m2,m3,T,𝒛±,0,𝑴±,𝑳±)>0C=C(\mathcal{E},\lambda^{\pm},k,m_{1},m_{2},m_{3},T,\bm{z}^{\pm,0},\bm{M}^{\pm},\bm{L}^{\pm})>0 (A.3)

such that every smooth solution (𝐯+,𝐯)(\bm{v}^{+},\bm{v}^{-}) to (A.1) and (A.2) obeys

𝒗±Wm2,((0,T);Hk,m1,m3)+𝒗±Hm2((0,T);Hk,m1,m3+1)C,\|\bm{v}^{\pm}\|_{{\rm W}^{m_{2},\infty}((0,T);{\rm H}^{k,m_{1},m_{3}}_{\mathcal{E}})}+\|\bm{v}^{\pm}\|_{{\rm H}^{m_{2}}((0,T);{\rm H}^{k,m_{1},m_{3}+1}_{\mathcal{E}})}\leq C, (A.4)

with C=0C=0 when 𝖌±=𝟎\bm{\mathfrak{g}}^{\pm}=\bm{0}.

Proof.

The ideas and arguments for proving A.1 are based on [IftimieSueur2011]. All constants C>0C>0 which appear during the estimates can depend on \mathcal{E}, λ±\lambda^{\pm}, kk, m1m_{1}, m2m_{2}, m3m_{3}, TT, 𝒛±,0\bm{z}^{\pm,0}, and 𝝆±\bm{\rho}^{\pm}.

Step 1. Estimates for 𝒙𝜶tγ𝒗±\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}.

We take in (A.1) the partial derivatives 𝒙𝜶tγ\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma} for γ0\gamma\in\mathbb{N}_{0} and 𝜶0N\bm{\alpha}\in\mathbb{N}_{0}^{N}. As a result,

t(𝒙𝜶tγ𝒗±)\displaystyle\partial_{t}(\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}) =zz𝒙𝜶tγ(λ±𝒗++λ𝒗)z𝒙𝜶l=0γ(γl)tl𝔣±tγlz𝒗±\displaystyle=\partial_{zz}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\lambda^{\pm}\bm{v}^{+}+\lambda^{\mp}\bm{v}^{-})-z\partial_{\bm{x}}^{\bm{\alpha}}\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\partial_{t}^{l}\mathfrak{f}^{\pm}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm} (A.5)
𝒙𝜶l=0γ(γl)[(tl𝒛,0)tγl𝒗±+(tl𝒗)tγl𝒛±,0]tan.\displaystyle\quad-\partial_{\bm{x}}^{\bm{\alpha}}\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\left[(\partial_{t}^{l}\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{t}^{\gamma-l}\bm{v}^{\pm}+(\partial_{t}^{l}\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\partial_{t}^{\gamma-l}\bm{z}^{\pm,0}\right]_{\operatorname{tan}}.

Furthermore, multiplying (A.5) for arbitrary kk\in\mathbb{N} with (1+z2k)𝒙𝜶tγ𝒗±(1+z^{2k})\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm} and integrating in (𝒙,z)(\bm{x},z) over ×+\mathcal{E}\times\mathbb{R}_{+} yields

12ddt+(1+z2k)|𝒙𝜶tγ𝒗±(𝒙,t,z)|2dzd𝒙=I1±(t)I2±(t)I3±,a(t)I3±,b(t)\begin{gathered}\frac{1}{2}\frac{d}{dt}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}(\bm{x},t,z)|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}=I_{1}^{\pm}(t)-I_{2}^{\pm}(t)-I_{3}^{\pm,a}(t)-I_{3}^{\pm,b}(t)\end{gathered}

with the right-hand side being given by

I1±\displaystyle I_{1}^{\pm} +(1+z2k)zz𝒙𝜶tγ(λ±𝒗++λ𝒗)𝒙𝜶tγ𝒗±dzd𝒙,\displaystyle\coloneqq\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})\partial_{zz}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\lambda^{\pm}\bm{v}^{+}+\lambda^{\mp}\bm{v}^{-})\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}, (A.6)
I2±\displaystyle I_{2}^{\pm} +(z+z2k+1)𝒙𝜶l=0γ(γl)tl𝔣±tγlz𝒗±𝒙𝜶tγ𝒗±dzd𝒙,\displaystyle\coloneqq\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(z+z^{2k+1})\partial_{\bm{x}}^{\bm{\alpha}}\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\partial_{t}^{l}\mathfrak{f}^{\pm}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}},
I3±,a\displaystyle I_{3}^{\pm,a} +(1+z2k)𝒙𝜶l=0γ(γl)[(tl𝒛,0)tγl𝒗±]tan𝒙𝜶tγ𝒗±dzd𝒙,\displaystyle\coloneqq\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})\partial_{\bm{x}}^{\bm{\alpha}}\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\left[(\partial_{t}^{l}\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{t}^{\gamma-l}\bm{v}^{\pm}\right]_{\operatorname{tan}}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}},
I3±,b\displaystyle I_{3}^{\pm,b} +(1+z2k)𝒙𝜶l=0γ(γl)[(tl𝒗)tγl𝒛±,0]tan𝒙𝜶tγ𝒗±dzd𝒙.\displaystyle\coloneqq\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})\partial_{\bm{x}}^{\bm{\alpha}}\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\left[(\partial_{t}^{l}\bm{v}^{\mp}\cdot\bm{\mathrm{\nabla}})\partial_{t}^{\gamma-l}\bm{z}^{\pm,0}\right]_{\operatorname{tan}}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}.

We focus now on the situations where γ>0\gamma>0 and |𝜶|>0|\bm{\alpha}|>0. For the terms I±1I^{\pm}_{1}, integration by parts in zz leads to

I1±\displaystyle I_{1}^{\pm} =+(1+z2k)(λ±z𝒙𝜶tγ𝒗++λz𝒙𝜶tγ𝒗)z𝒙𝜶tγ𝒗±dzd𝒙\displaystyle=-\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})\left(\lambda^{\pm}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{+}+\lambda^{\mp}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{-}\right)\cdot\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}} (A.7)
2k+z2k1(λ±z𝒙𝜶tγ𝒗++λz𝒙𝜶tγ𝒗)𝒙𝜶tγ𝒗±dzd𝒙\displaystyle\quad-2k\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}z^{2k-1}\left(\lambda^{\pm}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{+}+\lambda^{\mp}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{-}\right)\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}
(λ±z𝒙𝜶tγ𝒗++λz𝒙𝜶tγ𝒗)(𝒙,t,0)𝒙𝜶tγ𝒗±(𝒙,t,0)d𝒙\displaystyle\quad-\int_{\mathcal{E}}\left(\lambda^{\pm}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{+}+\lambda^{\mp}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{-}\right)(\bm{x},t,0)\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}(\bm{x},t,0)\,{{\rm d}\bm{x}}
=+(1+z2k)(λ±z𝒙𝜶tγ𝒗++λz𝒙𝜶tγ𝒗)z𝒙𝜶tγ𝒗±dzd𝒙\displaystyle=-\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})\left(\lambda^{\pm}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{+}+\lambda^{\mp}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{-}\right)\cdot\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}
I11±I12±.\displaystyle\quad-I_{11}^{\pm}-I_{12}^{\pm}.

By means of Young’s inequality and the identities 2𝒗±=(𝒗++𝒗)±(𝒗+𝒗)2\bm{v}^{\pm}=(\bm{v}^{+}+\bm{v}^{-})\pm(\bm{v}^{+}-\bm{v}^{-}), one obtains

|I11±|\displaystyle|I_{11}^{\pm}| {+,}λ+λ8+(1+z2k)|z𝒙𝜶tγ(𝒗+𝒗)|2dzd𝒙\displaystyle\leq\sum\limits_{\square\in\{+,-\}}\frac{\lambda^{+}\square\lambda^{-}}{8}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\bm{v}^{+}\square\,\bm{v}^{-})|^{2}\,{{\rm d}z}{{\rm d}\bm{x}} (A.8)
+C+(1+z2k)|𝒙𝜶tγ𝒗±|2dzd𝒙.\displaystyle\quad+C\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}.

For a constant C0>0C_{0}>0 which vanishes when 𝖌±=𝟎\bm{\mathfrak{g}}^{\pm}=\bm{0}, one can infer

|I12±||𝒙𝜶tγ(λ±𝖌++λ𝖌)(𝒙,t)[+z𝒙𝜶tγ𝒗±(𝒙,t,z)dz]d𝒙|+|(1+z2k)12𝒙𝜶tγ(λ±𝖌++λ𝖌)(𝒙,t)(1+z2k)12z𝒙𝜶tγ𝒗±(𝒙,t,z)|dzd𝒙{+,}λ+λ8+(1+z2k)|z𝒙𝜶tγ(𝒗+𝒗)|2dzd𝒙+C0.|I_{12}^{\pm}|\leq\left|\int_{\mathcal{E}}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\lambda^{\pm}\bm{\mathfrak{g}}^{+}+\lambda^{\mp}\bm{\mathfrak{g}}^{-})(\bm{x},t)\cdot\left[\int_{\mathbb{R}_{+}}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}(\bm{x},t,z)\,{{\rm d}z}\right]\,{{\rm d}\bm{x}}\right|\\ \begin{aligned} &\leq\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}\left|(1+z^{2k})^{-\frac{1}{2}}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\lambda^{\pm}\bm{\mathfrak{g}}^{+}+\lambda^{\mp}\bm{\mathfrak{g}}^{-})(\bm{x},t)\cdot(1+z^{2k})^{\frac{1}{2}}\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}(\bm{x},t,z)\right|\,{{\rm d}z}{{\rm d}\bm{x}}\\ &\leq\sum\limits_{\square\in\{+,-\}}\frac{\lambda^{+}\square\lambda^{-}}{8}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\bm{v}^{+}\square\,\bm{v}^{-})|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}+C_{0}.\end{aligned} (A.9)

Thus, after collecting A.7, A.8, and A.9, one obtains the bound

{+,}(|I1|+λ+λ4+(1+z2k)|z𝒙𝜶tγ(𝒗+𝒗)|2dzd𝒙)C{+,}tγ𝒗±k,|𝜶|,0,2+C0.\sum\limits_{\square\in\{+,-\}}\left(|I_{1}^{\square}|+\frac{\lambda^{+}\square\,\lambda^{-}}{4}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{z}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}(\bm{v}^{+}\square\,\bm{v}^{-})|^{2}\,{{\rm d}z}{{\rm d}\bm{x}}\right)\\ \leq C\sum\limits_{\square\in\{+,-\}}\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}+C_{0}. (A.10)

Concerning I2±I_{2}^{\pm}, expanding the derivatives leads to

|I2±|\displaystyle|I_{2}^{\pm}| |l=0γ𝟎<𝜿𝜶(γl)(𝜶𝜿)+(z+z2k+1)𝒙𝜿tl𝔣±𝒙𝜶𝜿tγlz𝒗±𝒙𝜶tγ𝒗±dzd𝒙|\displaystyle\leq\left|\sum\limits_{l=0}^{\gamma}\sum\limits_{\bm{0}<\bm{\kappa}\leq\bm{\alpha}}\binom{\gamma}{l}\binom{\bm{\alpha}}{\bm{\kappa}}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(z+z^{2k+1})\partial_{\bm{x}}^{\bm{\kappa}}\partial_{t}^{l}\mathfrak{f}^{\pm}\partial_{\bm{x}}^{\bm{\alpha}-\bm{\kappa}}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}\right|
+|l=0γ(γl)+(z+z2k+1)tl𝔣±𝒙𝜶tγlz𝒗±𝒙𝜶tγ𝒗±dzd𝒙|,\displaystyle\quad+\left|\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(z+z^{2k+1})\partial_{t}^{l}\mathfrak{f}^{\pm}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}\right|,

which implies that |I2±||I_{2}^{\pm}| is less than or equal to

Cl=0γ𝟎<𝜿𝜶+(z+z2k+1)𝒙𝜿tl𝔣±L6()𝒙𝜶𝜿tγlz𝒗±L3()𝒙𝜶tγ𝒗±L2()dz+Cl=1γ+(z+z2k+1)𝒙𝜶tγlz𝒗±L2()𝒙𝜶tγ𝒗±L2()dz+C+(1+(2k+1)z2k)𝒙𝜶tγ𝒗±L2()2dz.C\sum\limits_{l=0}^{\gamma}\sum\limits_{\bm{0}<\bm{\kappa}\leq\bm{\alpha}}\int_{\mathbb{R}_{+}}(z+z^{2k+1})\|\partial_{\bm{x}}^{\bm{\kappa}}\partial_{t}^{l}\mathfrak{f}^{\pm}\|_{{\rm L}^{6}(\mathcal{E})}\|\partial_{\bm{x}}^{\bm{\alpha}-\bm{\kappa}}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\|_{{\rm L}^{3}(\mathcal{E})}\|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}\,{{\rm d}z}\\ \begin{aligned} &\quad+C\sum\limits_{l=1}^{\gamma}\int_{\mathbb{R}_{+}}(z+z^{2k+1})\|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}\|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}\,{{\rm d}z}\\ &\quad+C\int_{\mathbb{R}_{+}}(1+(2k+1)z^{2k})\|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\,{{\rm d}z}.\end{aligned} (A.11)

Hence, the interpolation inequality L3()CL2()1/2H1()1/2\|\cdot\|_{{\rm L}^{3}(\mathcal{E})}\leq C\|\cdot\|_{{\rm L}^{2}(\mathcal{E})}^{1/2}\|\cdot\|_{{\rm H}^{1}(\mathcal{E})}^{1/2} and (A.11) yield for arbitrary >0\ell>0 that

|I2±|\displaystyle|I_{2}^{\pm}| Cl=0γ𝟎<𝜿𝜶+{(1+z2k)12𝒙𝜶tγ𝒗±L2()(1+z2k+4)12𝒙𝜶𝜿tγlz𝒗±L2()12\displaystyle\leq C\sum\limits_{l=0}^{\gamma}\sum\limits_{\bm{0}<\bm{\kappa}\leq\bm{\alpha}}\int_{\mathbb{R}_{+}}\Big{\{}\|(1+z^{2k})^{\frac{1}{2}}\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}\|(1+z^{2k+4})^{\frac{1}{2}}\partial_{\bm{x}}^{\bm{\alpha}-\bm{\kappa}}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}^{\frac{1}{2}} (A.12)
×(1+z2k)12𝒙𝜶𝜿tγlz𝒗±H1()12}dz\displaystyle\quad\times\|(1+z^{2k})^{\frac{1}{2}}\partial_{\bm{x}}^{\bm{\alpha}-\bm{\kappa}}\partial_{t}^{\gamma-l}\partial_{z}\bm{v}^{\pm}\|_{{\rm H}^{1}(\mathcal{E})}^{\frac{1}{2}}\Big{\}}\,{{\rm d}z}
+l=1γtγl𝒗±k+1,|𝜶|,1,2+C()tγ𝒗±k,|𝜶|,0,2+Ctγ𝒗±k,|𝜶|,0,2\displaystyle\quad+\ell\sum\limits_{l=1}^{\gamma}\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+1,|\bm{\alpha}|,1,\mathcal{E}}^{2}+C(\ell)\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}+C\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}
l=0γ𝟎<𝜿𝜶Ctγl𝒗±k+2,|𝜶𝜿|,1,12tγl𝒗±k,|𝜶𝜿|+1,1,12tγ𝒗±k,|𝜶|,0,\displaystyle\leq\sum\limits_{l=0}^{\gamma}\sum\limits_{\bm{0}<\bm{\kappa}\leq\bm{\alpha}}C\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+2,|\bm{\alpha}-\bm{\kappa}|,1,\mathcal{E}}^{\frac{1}{2}}\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k,|\bm{\alpha}-\bm{\kappa}|+1,1,\mathcal{E}}^{\frac{1}{2}}\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}
+l=1γtγl𝒗±k+1,|𝜶|,1,2+C()tγ𝒗±k,|𝜶|,0,2.\displaystyle\quad+\ell\sum\limits_{l=1}^{\gamma}\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+1,|\bm{\alpha}|,1,\mathcal{E}}^{2}+C(\ell)\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}.

In (A.12), we used the elementary inequality z+z2k+1(1+zk)(1+zk+1)z+z^{2k+1}\leq(1+z^{k})(1+z^{k+1}). Then, the number |I2±||I_{2}^{\pm}| is less than or equal to

l=0γ𝟎<𝜿𝜶(C()(tγl𝒗±k+2,|𝜶𝜿|,1,2+tγ𝒗±k,𝜶,0,2)+tγl𝒗±k,|𝜶𝜿|+1,1,2)+l=1γtγl𝒗±k+1,|𝜶|,1,2+C()tγ𝒗±k,|𝜶|,0,2.\begin{multlined}\sum\limits_{l=0}^{\gamma}\sum\limits_{\bm{0}<\bm{\kappa}\leq\bm{\alpha}}\left(C(\ell)\left(\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+2,|\bm{\alpha}-\bm{\kappa}|,1,\mathcal{E}}^{2}+\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,\bm{\alpha},0,\mathcal{E}}^{2}\right)+\ell\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k,|\bm{\alpha}-\bm{\kappa}|+1,1,\mathcal{E}}^{2}\right)\\ +\ell\sum\limits_{l=1}^{\gamma}\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+1,|\bm{\alpha}|,1,\mathcal{E}}^{2}+C(\ell)\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}.\end{multlined}\sum\limits_{l=0}^{\gamma}\sum\limits_{\bm{0}<\bm{\kappa}\leq\bm{\alpha}}\left(C(\ell)\left(\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+2,|\bm{\alpha}-\bm{\kappa}|,1,\mathcal{E}}^{2}+\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,\bm{\alpha},0,\mathcal{E}}^{2}\right)+\ell\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k,|\bm{\alpha}-\bm{\kappa}|+1,1,\mathcal{E}}^{2}\right)\\ +\ell\sum\limits_{l=1}^{\gamma}\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k+1,|\bm{\alpha}|,1,\mathcal{E}}^{2}+C(\ell)\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}. (A.13)

It remains treating I3±,aI_{3}^{\pm,a} and I3±,bI_{3}^{\pm,b}. For a vector field 𝒛~\widetilde{\bm{z}} on \mathcal{E}, we denote by Dm(𝒛~){\rm D}^{m}(\widetilde{\bm{z}}) arbitrary linear combinations of components of 𝒛~\widetilde{\bm{z}} and derivatives of such, which are taken in 𝒙\bm{x} and are of order m\leq~{}m, while the coefficients can depend on 𝒏\bm{n}. Given a multi-index 𝜶~\widetilde{\bm{\alpha}} with |𝜶~|=m~|\widetilde{\bm{\alpha}}|=\widetilde{m}\in\mathbb{N}, the relations 𝒗±𝒏=0\bm{v}^{\pm}\cdot\bm{n}=0 imply

𝒏tl𝒙𝜶~𝒗±=Dm~1(tl𝒗±)=tlDm~1(𝒗±).\bm{n}\cdot\partial_{t}^{l}\partial_{\bm{x}}^{\widetilde{\bm{\alpha}}}\bm{v}^{\pm}={\rm D}^{\widetilde{m}-1}(\partial_{t}^{l}\bm{v}^{\pm})=\partial_{t}^{l}{\rm D}^{\widetilde{m}-1}(\bm{v}^{\pm}). (A.14)

Therefore, in view of (A.14) and the definition of the tangential part []tan[\cdot]_{\operatorname{tan}}, one may write

I3±,a\displaystyle I_{3}^{\pm,a} =l=0γ(γl)+(1+z2k)D|𝜶|(tl𝒛,0)D|𝜶|(tγl𝒗±)D|𝜶|(tγ𝒗±)dzd𝒙\displaystyle=\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k}){\rm D}^{|\bm{\alpha}|}(\partial_{t}^{l}\bm{z}^{\mp,0}){\rm D}^{|\bm{\alpha}|}(\partial_{t}^{\gamma-l}\bm{v}^{\pm}){\rm D}^{|\bm{\alpha}|}(\partial_{t}^{\gamma}\bm{v}^{\pm})\,{{\rm d}z}{{\rm d}\bm{x}}
+l=0γ(γl)+(1+z2k)((tl𝒛,0)𝒙𝜶tγl𝒗±𝒏)D|𝜶|1(tγ𝒗±)dzd𝒙\displaystyle\quad+\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})\left((\partial_{t}^{l}\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma-l}\bm{v}^{\pm}\cdot\bm{n}\right){\rm D}^{|\bm{\alpha}|-1}\left(\partial_{t}^{\gamma}\bm{v}^{\pm}\right)\,{{\rm d}z}{{\rm d}\bm{x}}
+l=0γ(γl)+(1+z2k)(tl𝒛,0)𝒙𝜶tγl𝒗±𝒙𝜶tγ𝒗±dzd𝒙,\displaystyle\quad+\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})(\partial_{t}^{l}\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma-l}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}},

and integration by parts implies that the second line is of the same type as the first one. Thus,

I3±,a\displaystyle I_{3}^{\pm,a} =l=0γ(γl)+(1+z2k)D|𝜶|(tl𝒛,0)D|𝜶|(tγl𝒗±)D|𝜶|(tγ𝒗±)dzd𝒙\displaystyle=\sum\limits_{l=0}^{\gamma}\binom{\gamma}{l}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k}){\rm D}^{|\bm{\alpha}|}(\partial_{t}^{l}\bm{z}^{\mp,0}){\rm D}^{|\bm{\alpha}|}(\partial_{t}^{\gamma-l}\bm{v}^{\pm}){\rm D}^{|\bm{\alpha}|}(\partial_{t}^{\gamma}\bm{v}^{\pm})\,{{\rm d}z}{{\rm d}\bm{x}} (A.15)
+l=1γ(γl)+(1+z2k)(tl𝒛,0)𝒙𝜶tγl𝒗±𝒙𝜶tγ𝒗±dzd𝒙\displaystyle\quad+\sum\limits_{l=1}^{\gamma}\binom{\gamma}{l}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})(\partial_{t}^{l}\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma-l}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}
++(1+z2k)(𝒛,0)𝒙𝜶tγ𝒗±𝒙𝜶tγ𝒗±dzd𝒙.\displaystyle\quad+\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})(\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}.

Due to 𝒛,0𝒏=0\bm{z}^{\mp,0}\cdot\bm{n}=0 on \partial\mathcal{E}, the last integral in (A.15) reads

+(1+z2k)(𝒛,0)𝒙𝜶tγ𝒗±𝒙𝜶tγ𝒗±dzd𝒙=12+(1+z2k)|𝒙𝜶tγ𝒗±|2(𝒛,0)dzd𝒙\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})(\bm{z}^{\mp,0}\cdot\bm{\mathrm{\nabla}})\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\cdot\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}\,{{\rm d}z}{{\rm d}\bm{x}}\\ =-\frac{1}{2}\int_{\mathcal{E}}\int_{\mathbb{R}_{+}}(1+z^{2k})|\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\bm{v}^{\pm}|^{2}(\bm{\mathrm{\nabla}}\cdot{\bm{z}^{\mp,0}})\,{{\rm d}z}{{\rm d}\bm{x}}

such that (A.15) eventually implies the bound

|I3±,a|Cl=1γtγl𝒗±k,|𝜶|+1,0,2+Ctγ𝒗±k,|𝜶|,0,2.\begin{gathered}|I_{3}^{\pm,a}|\leq C\sum\limits_{l=1}^{\gamma}\|\partial_{t}^{\gamma-l}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|+1,0,\mathcal{E}}^{2}+C\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}.\end{gathered} (A.16)

When it comes to I3±,bI_{3}^{\pm,b}, the corresponding estimates are less demanding compared to those for I3±,aI_{3}^{\pm,a} and one finds

|I3±,a|+|I3±,b|\displaystyle|I_{3}^{\pm,a}|+|I_{3}^{\pm,b}| C(tγ𝒗+k,|𝜶|,0,2+tγ𝒗k,|𝜶|,0,2)\displaystyle\leq C\left(\|\partial_{t}^{\gamma}\bm{v}^{+}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}+\|\partial_{t}^{\gamma}\bm{v}^{-}\|_{k,|\bm{\alpha}|,0,\mathcal{E}}^{2}\right) (A.17)
+Cl=0γ1(tl𝒗+k,|𝜶|+1,0,2+tl𝒗k,|𝜶|+1,0,2).\displaystyle\quad+C\sum\limits_{l=0}^{\gamma-1}\left(\|\partial_{t}^{l}\bm{v}^{+}\|_{k,|\bm{\alpha}|+1,0,\mathcal{E}}^{2}+\|\partial_{t}^{l}\bm{v}^{-}\|_{k,|\bm{\alpha}|+1,0,\mathcal{E}}^{2}\right).

In order to collect the previous estimates, for fixed m1,m20m_{1},m_{2}\in\mathbb{N}_{0}, we sum in A.10, A.13, A.16, and A.17 over all |𝜶|m1|\bm{\alpha}|\leq m_{1} and γm2\gamma\leq m_{2}. Moreover, we denote

Φ±\displaystyle\varPhi^{\pm} C()γ=0m2(δ0,m1tγ𝒗±Hk+2,max{m11,0},12+tγ𝒗±Hk,m1,02)+γ=0m2tγ𝒗±Hk,m1,12\displaystyle\coloneqq C(\ell)\sum\limits_{\gamma=0}^{m_{2}}\left(\delta_{0,m_{1}}^{\dagger}\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm H}^{k+2,\max\{m_{1}-1,0\},1}_{\mathcal{E}}}^{2}+\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm H}^{k,m_{1},0}_{\mathcal{E}}}^{2}\right)+\ell\sum\limits_{\gamma=0}^{m_{2}}\|\partial_{t}^{\gamma}\bm{v}^{\pm}\|_{{\rm H}^{k,m_{1},1}_{\mathcal{E}}}^{2}
+C()γ=0m2δ0,γ(tmax{γ1,0}𝒗±Hk+1,m1,12+tmax{γ1,0}𝒗±Hk,m1+1,02)+C0,\displaystyle\quad+C(\ell)\sum\limits_{\gamma=0}^{m_{2}}\delta_{0,\gamma}^{\dagger}\left(\|\partial_{t}^{\max\{\gamma-1,0\}}\bm{v}^{\pm}\|_{{\rm H}^{k+1,m_{1},1}_{\mathcal{E}}}^{2}+\|\partial_{t}^{\max\{\gamma-1,0\}}\bm{v}^{\pm}\|_{{\rm H}^{k,m_{1}+1,0}_{\mathcal{E}}}^{2}\right)+C_{0},

with

δa,b{0 if a=b,1 otherwise.\delta_{a,b}^{\dagger}\coloneqq\begin{cases}0&\mbox{ if }a=b,\\ 1&\mbox{ otherwise}.\end{cases}

As a result, one obtains the estimate

{+,}(tγ=0m2tγ𝒗Hk,m1,02+γ=0m2λ+λ2tγ(𝒗+𝒗)Hk,m1,12)2(Φ++Φ).\sum\limits_{\square\in\{+,-\}}\left(\partial_{t}\sum\limits_{\gamma=0}^{m_{2}}\|\partial_{t}^{\gamma}\bm{v}^{\square}\|_{{\rm H}^{k,m_{1},0}_{\mathcal{E}}}^{2}+\sum\limits_{\gamma=0}^{m_{2}}\frac{\lambda^{+}\square\,\lambda^{-}}{2}\|\partial_{t}^{\gamma}(\bm{v}^{+}\square\,\bm{v}^{-})\|_{{\rm H}^{k,m_{1},1}_{\mathcal{E}}}^{2}\right)\leq 2\left(\varPhi^{+}+\varPhi^{-}\right). (A.18)

On the right-hand side of (A.18), all terms containing norms of the spaces

Hk+2,max{m11,0},1,Hk+1,m1,1,Hk,m1+1,1{\rm H}^{k+2,\max\{m_{1}-1,0\},1}_{\mathcal{E}},\quad{\rm H}^{k+1,m_{1},1}_{\mathcal{E}},\quad{\rm H}^{k,m_{1}+1,1}_{\mathcal{E}}

disappear in the respective base cases when m1=0m_{1}=0 or m2=0m_{2}=0. Thus, inductively with respect to m1m_{1} and m2m_{2}, and by using a Grönwall argument for (A.18) with >0\ell>0 sufficiently small, one can obtain

tγ𝒗±L((0,T);Hk,m1,0)L2((0,T);Hk,m1,1),γ{0,,m2}\partial_{t}^{\gamma}\bm{v}^{\pm}\in{\rm L}^{\infty}((0,T);H^{{k,m_{1},0}}_{\mathcal{E}})\cap{\rm L}^{2}((0,T);{\rm H}^{k,m_{1},1}_{\mathcal{E}}),\quad\gamma\in\{0,\dots,m_{2}\}

and the estimate (A.4) when m3=0m_{3}=0.

Step 2. Estimates for 𝒙𝜶tγzβ𝒗±\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\partial_{z}^{\beta}\bm{v}^{\pm}.

From (A.2) and the regularity obtained in Step 1, one can estimate the boundary values of 𝒙𝜶tγz2𝒗±\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\partial_{z}^{2}\bm{v}^{\pm} at z=0z=0 in L((0,T);Hm()){\rm L}^{\infty}((0,T);{\rm H}^{m}(\mathcal{E})) for any mm\in\mathbb{N} by a constant C>0C>0 of the type stated in (A.3). Therefore, by acting on (A.2) with z\partial_{z}, one obtains the Wm2,((0,T);Hk,m1,1)Hm2((0,T);Hk,m1,2){\rm W}^{m_{2},\infty}((0,T);{\rm H}^{k,m_{1},1}_{\mathcal{E}})\cap{\rm H}^{m_{2}}((0,T);{\rm H}^{k,m_{1},2}_{\mathcal{E}}) estimates for 𝒗±\bm{v}^{\pm} by analysis similar to Step 1. The boundary values of 𝒙𝜶tγz3𝒗±\partial_{\bm{x}}^{\bm{\alpha}}\partial_{t}^{\gamma}\partial_{z}^{3}\bm{v}^{\pm} at z=0z=0 are then again bounded via (A.2) and Step 1. After acting with z2\partial_{z}^{2} on (A.2), one can derive the Wm2,((0,T);Hk,m1,2)Hm2((0,T);Hk,m1,3){\rm W}^{m_{2},\infty}((0,T);{\rm H}^{k,m_{1},2}_{\mathcal{E}})\cap{\rm H}^{m_{2}}((0,T);{\rm H}^{k,m_{1},3}_{\mathcal{E}}) estimates for 𝒗±\bm{v}^{\pm}. By induction over m3m_{3}, the proof of A.1 is concluded. ∎

Appendix B Proof of 4.1

To prove 4.1, we proceed essentially along the lines of [CoronMarbachSueur2020, Lemma 9] and [ChavesSilva2020SmalltimeGE, Lemma 2.1], where Navier–Stokes and Boussinesq systems have been considered. That is, in Section B.1 below, assuming N{2,3}N\in\{2,3\} and 𝑴1,𝑴2,𝑳1,𝑳2C(¯;N×N)\bm{M}_{1},\bm{M}_{2},\bm{L}_{1},\bm{L}_{2}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N\times N}), we obtain a priori estimates that are valid for smooth solutions. To conclude 4.1 from there, it seems the existing literature does not provide a suitable theory of strong solutions under general coupled Navier slip-with-friction boundary conditions for MHD. In particular, since the boundary conditions in (2.8) are generally non-symmetric, we are unaware of eigenvector bases for respectively coupled Stokes type problems, preventing us to employ usual Galerkin method arguments, e.g., as in [Temam2001], to obtain the L((0,T);H1()){\rm L}^{\infty}((0,T);{\rm H}^{1}(\mathcal{E})) and L((0,T);H2()){\rm L}^{\infty}((0,T);{\rm H}^{2}(\mathcal{E})) strong solutions to (2.8). When the domain is simply-connected, 𝑴1=𝑳2=𝑴\bm{M}_{1}=\bm{L}_{2}=\bm{M} with 𝑴\bm{M} being positive symmetric, and 𝑴2=𝑳𝟏=𝟎\bm{M}_{2}=\bm{L_{1}}=\bm{0}, such a basis of eigenvectors is available in [GuoWang2016]. If 𝑳1=𝑴𝟐=𝟎\bm{L}_{1}=\bm{M_{2}}=\bm{0}, the argument from [XiaoXin2013] also allow taking symmetric matrices 𝑴1\bm{M}_{1} and 𝑳2\bm{L}_{2} with 𝑴1𝑳2\bm{M}_{1}\neq\bm{L}_{2}; these references apparently do not provide eigenvector bases under general symmetric boundary conditions, where 𝑴1\bm{M}_{1}, 𝑳2\bm{L}_{2} are symmetric and ν1𝑳1=ν2𝑴2\nu_{1}\bm{L}_{1}=\nu_{2}\bm{M}_{2}^{\top}.

In 22D, 4.1 follows from the estimates in Section B.1 by a different approach. First, the initial data are approximated, similarly to [Kelliher2006, Appendix], in L2(){\rm L}^{2}(\mathcal{E}) by W()H2(){\rm W}(\mathcal{E})\cap{\rm H}^{2}(\mathcal{E}) functions satisfying the Navier slip-with-friction boundary conditions. Then, a Leray–Hopf weak solution is constructed as the limit of a sequence of L((0,T);H2()W()){\rm L}^{\infty}((0,T);{\rm H}^{2}(\mathcal{E})\cap{\rm W}(\mathcal{E})) solutions. This idea relies on the assumption N=2N=2, which guarantees that the sequence of strong solutions is defined on a fixed time interval [0,T][0,T].

B.1 Estimates for sufficiently regular solutions

To display the estimates for 𝒖\bm{u} and 𝑩\bm{B} simultaneously, the symmetric notations from Section 2.4.3 are employed. If (𝒖,𝑩)𝒳T×𝒳T(\bm{u},\bm{B})\in\mathscr{X}_{T^{*}}\times\mathscr{X}_{T^{*}} is a Leray–Hopf weak solution to (2.8), then the functions 𝒛±=𝒖±μ𝑩\bm{z}^{\pm}=\bm{u}\pm\sqrt{\mu}\bm{B} obey the energy inequality (2.19) and a corresponding weak formulation for the Elsasser system

{t𝒛±Δ(λ±𝒛++λ𝒛)+(𝒛)𝒛±+p±=𝟎 in T,𝒛±=0 in T,𝒛±𝒏=0 on ΣT,(×𝒛±)×𝒏=𝝆±(𝒛+,𝒛) on ΣT,𝒛±(,0)=𝒛0± in .\begin{cases}\partial_{t}\bm{z}^{\pm}-\Delta(\lambda^{\pm}\bm{z}^{+}+\lambda^{\mp}\bm{z}^{-})+(\bm{z}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm}+\bm{\mathrm{\nabla}}p^{\pm}=\bm{0}&\mbox{ in }\mathcal{E}_{T^{*}},\\ \bm{\mathrm{\nabla}}\cdot\bm{z}^{\pm}=0&\mbox{ in }\mathcal{E}_{T^{*}},\\ \bm{z}^{\pm}\cdot\bm{n}=0&\mbox{ on }\Sigma_{T^{*}},\\ (\bm{\mathrm{\nabla}}\times{\bm{z}^{\pm}})\times\bm{n}=\bm{\rho}^{\pm}(\bm{z}^{+},\bm{z}^{-})&\mbox{ on }\Sigma_{T^{*}},\\ \bm{z}^{\pm}(\cdot,0)=\bm{z}_{0}^{\pm}&\mbox{ in }\mathcal{E}.\end{cases} (B.1)

To begin with, a priori estimates for a related stationary problem are shown based on known results for the Navier–Stokes equations.

Lemma B.1.

Let k0k\in\mathbb{N}_{0}, forces 𝐟±Hk()\bm{f}^{\pm}\in{\rm H}^{k}(\mathcal{E}), a vector 𝐛±Hk+1/2()\bm{b}^{\pm}\in{\rm H}^{k+1/2}(\partial\mathcal{E}) tangential to \partial\mathcal{E}, and friction operators 𝐌±,𝐋±C(;N×N)\bm{M}^{\pm},\bm{L}^{\pm}\in{\rm C}^{\infty}(\partial\mathcal{E};\mathbb{R}^{N\times N}) be arbitrary. Then, every solution (𝐙+,𝐙,P+,P)(\bm{Z}^{+},\bm{Z}^{-},P^{+},P^{-}) with 𝐙±Hk+1()\bm{Z}^{\pm}\in{\rm H}^{k+1}(\mathcal{E}) to the coupled Stokes type system

{Δ(λ±𝒁++λ𝒁)+P±=𝒇± in ,𝒁±=0 in ,𝒁±𝒏=0 on ,(×𝒁±)×𝒏+[𝑴±𝒁++𝑳±𝒁]tan=𝒃± on \begin{cases}-\Delta(\lambda^{\pm}\bm{Z}^{+}+\lambda^{\mp}\bm{Z}^{-})+\bm{\mathrm{\nabla}}P^{\pm}=\bm{f}^{\pm}&\mbox{ in }\mathcal{E},\\ \,\bm{\mathrm{\nabla}}\cdot{\bm{Z}^{\pm}}=0&\mbox{ in }\mathcal{E},\\ \bm{Z}^{\pm}\cdot\bm{n}=0&\mbox{ on }\partial\mathcal{E},\\ \,(\bm{\mathrm{\nabla}}\times{\bm{Z}}^{\pm})\times\bm{n}+\left[\bm{M}^{\pm}\bm{Z}^{+}+\bm{L}^{\pm}\bm{Z}^{-}\right]_{\operatorname{tan}}=\bm{b}^{\pm}&\mbox{ on }\partial\mathcal{E}\end{cases} (B.2)

obeys the estimate

{+,}(𝒁Hk+2()+PHk+1())C{+,}(𝒇Hk()+𝒃Hk+1/2()+𝒁Hk+1()).\sum\limits_{\square\in\{+,-\}}\left(\|\bm{Z}^{\square}\|_{{\rm H}^{k+2}(\mathcal{E})}+\|P^{\square}\|_{{\rm H}^{k+1}(\mathcal{E})}\right)\\ \leq C\sum\limits_{\square\in\{+,-\}}\left(\|\bm{f}^{\square}\|_{{\rm H}^{k}(\mathcal{E})}+\|\bm{b}^{\square}\|_{{\rm H}^{k+1/2}(\partial\mathcal{E})}+\|\bm{Z}^{\square}\|_{{\rm H}^{k+1}(\mathcal{E})}\right). (B.3)
Proof.

In the case of uncoupled boundary conditions, where 𝑴±=𝑳±=𝟎\bm{M}^{\pm}=\bm{L}^{\pm}=\bm{0}, the functions 𝑼𝒁++𝒁\bm{U}\coloneqq\bm{Z}^{+}+\bm{Z}^{-} and 𝑽𝒁+𝒁\bm{V}\coloneqq\bm{Z}^{+}-\bm{Z}^{-} both obey independent Stokes problems under Navier slip-with-friction boundary conditions. Thus, from [Guerrero2006, Pages 90-94], one has for each k0k\geq 0 the estimates

𝑼Hk+2()+P++PHk+1()C(𝒇++𝒇Hk()+𝒃++𝒃Hk+1/2()+𝑼Hk+1())\|\bm{U}\|_{{\rm H}^{k+2}(\mathcal{E})}+\|P^{+}+P^{-}\|_{{\rm H}^{k+1}(\mathcal{E})}\\ \leq C\left(\|\bm{f}^{+}+\bm{f}^{-}\|_{{\rm H}^{k}(\mathcal{E})}+\|\bm{b}^{+}+\bm{b}^{-}\|_{{\rm H}^{k+1/2}(\partial\mathcal{E})}+\|\bm{U}\|_{{\rm H}^{k+1}(\mathcal{E})}\right)

and

𝑽Hk+2()+P+PHk+1()C(𝒇+𝒇Hk()+𝒃+𝒃Hk+1/2()+𝑽Hk+1()),\|\bm{V}\|_{{\rm H}^{k+2}(\mathcal{E})}+\|P^{+}-P^{-}\|_{{\rm H}^{k+1}(\mathcal{E})}\\ \leq C\left(\|\bm{f}^{+}-\bm{f}^{-}\|_{{\rm H}^{k}(\mathcal{E})}+\|\bm{b}^{+}-\bm{b}^{-}\|_{{\rm H}^{k+1/2}(\partial\mathcal{E})}+\|\bm{V}\|_{{\rm H}^{k+1}(\mathcal{E})}\right),

which imply (B.3) by means of the triangle inequality. For the general case, we start with k=0k=0 and observe that every solution (𝒁+,𝒁,P+,P)(\bm{Z}^{+},\bm{Z}^{-},P^{+},P^{-}) to (B.2) satisfies

{Δ(λ±𝒁++λ𝒁)+P±=𝒇± in ,𝒁±=0 in ,𝒁±𝒏=0 on ,(×𝒁±)×𝒏=𝒃~± on ,\begin{cases}-\Delta(\lambda^{\pm}\bm{Z}^{+}+\lambda^{\mp}\bm{Z}^{-})+\bm{\mathrm{\nabla}}P^{\pm}=\bm{f}^{\pm}&\mbox{ in }\mathcal{E},\\ \bm{\mathrm{\nabla}}\cdot{\bm{Z}^{\pm}}=0&\mbox{ in }\mathcal{E},\\ \bm{Z}^{\pm}\cdot\bm{n}=0&\mbox{ on }\partial\mathcal{E},\\ (\bm{\mathrm{\nabla}}\times{\bm{Z}}^{\pm})\times\bm{n}=\widetilde{\bm{b}}^{\pm}&\mbox{ on }\partial\mathcal{E},\end{cases} (B.4)

with

𝒃~+𝒃+[𝑴+𝒁++𝑳+𝒁]tan,𝒃~𝒃[𝑴𝒁++𝑳𝒁]tan.\displaystyle\widetilde{\bm{b}}^{+}\coloneqq\bm{b}^{+}-\left[\bm{M}^{+}\bm{Z}^{+}+\bm{L}^{+}\bm{Z}^{-}\right]_{\operatorname{tan}},\quad\widetilde{\bm{b}}^{-}\coloneqq\bm{b}^{-}-\left[\bm{M}^{-}\bm{Z}^{+}+\bm{L}^{-}\bm{Z}^{-}\right]_{\operatorname{tan}}.

Since 𝒃~±H1/2()\widetilde{\bm{b}}^{\pm}\in{\rm H}^{1/2}(\partial\mathcal{E}), after applying to (B.4) the result for uncoupled boundary conditions explained above, one finds

{+,}(𝒁H2()+PH1())C{+,}(𝒇L2()+𝒃H1/2()+𝒁H1()).\sum\limits_{\square\in\{+,-\}}\left(\|\bm{Z}^{\square}\|_{{\rm H}^{2}(\mathcal{E})}+\|P^{\square}\|_{{\rm H}^{1}(\mathcal{E})}\right)\\ \leq C\sum\limits_{\square\in\{+,-\}}\left(\|\bm{f}^{\square}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{b}^{\square}\|_{{\rm H}^{1/2}(\partial\mathcal{E})}+\|\bm{Z}^{\square}\|_{{\rm H}^{1}(\mathcal{E})}\right).

Inductively, if (B.3) is true for a fixed kk\in\mathbb{N}, one has 𝒃~±Hk+3/2()\widetilde{\bm{b}}^{\pm}\in{\rm H}^{k+3/2}(\partial\mathcal{E}) and the known estimates for (B.4) lead to (B.3) with kk being replaced by k+1k+1. ∎

Remark B.2.

The statement of B.1 remains valid in Wk,p(){\rm W}^{k,p}(\mathcal{E}) spaces. For instance, if 𝒁±W1,p()\bm{Z}^{\pm}\in{\rm W}^{1,p}(\mathcal{E}) and 𝒃±W11p,p()\bm{b}^{\pm}\in{\rm W}^{1-\frac{1}{p},p}(\partial\mathcal{E}), then 𝒃~±W11p,p()\widetilde{\bm{b}}^{\pm}\in{\rm W}^{1-\frac{1}{p},p}(\partial\mathcal{E}) in (B.4) and one can apply [AmroucheRejaiba2014, Theorem 4.1] instead of [Guerrero2006, Pages 90-94].

In what follows, the operator \mathbb{P} denotes the Leray projector in L2(){\rm L}^{2}(\mathcal{E}) onto H(){\rm H}(\mathcal{E}) and thus, for any selection 𝒉+,𝒉H()H2()\bm{h}^{+},\bm{h}^{-}\in{\rm H}(\mathcal{E})\cap{\rm H}^{2}(\mathcal{E}) with 𝓝±(𝒉+,𝒉)=𝟎\bm{\mathcal{N}}^{\pm}(\bm{h}^{+},\bm{h}^{-})=\bm{0}, B.1 provides

𝒉±H2()2C({+,}Δ(λ±𝒉++λ𝒉)L2()2+𝒉H1()2).\displaystyle\|\bm{h}^{\pm}\|_{{\rm H}^{2}(\mathcal{E})}^{2}\leq C\left(\sum\limits_{\square\in\{+,-\}}\|\mathbb{P}\Delta(\lambda^{\pm}\bm{h}^{+}+\lambda^{\mp}\bm{h}^{-})\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{h}^{\square}\|_{{\rm H}^{1}(\mathcal{E})}^{2}\right). (B.5)

The proof of 4.1 is now completed by means of the following steps.

Step 1. Basic energy estimates when t(0,T/3)t\in(0,T^{*}/3).

We introduce for a positive parameter ϰ>0\varkappa>0 the quantity

Fϰ(t)12{+,}(ddt𝒛(,t)L2()2+ϰ(λ+λ)×(𝒛+𝒛)(,t)L2()2).F^{\varkappa}(t)\coloneqq\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\left(\frac{d}{dt}\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\varkappa(\lambda^{+}\square\,\lambda^{-})\|\bm{\mathrm{\nabla}}\times{(\bm{z}^{+}\square\,\bm{z}^{-})}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right).

Then, the strong energy inequality (2.19) with 𝝃±=0\bm{\xi}^{\pm}=0 provides

0tF1(s)ds(,){(+,),(,+)}0t(λ+𝝆(𝒛+,𝒛)+λ𝝆(𝒛+,𝒛))𝒛dSds.\displaystyle\int_{0}^{t}F^{1}(s)\,{{\rm d}s}\leq\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{0}^{t}\int_{\partial\mathcal{E}}\left(\lambda^{+}\bm{\rho}^{\circ}(\bm{z}^{+},\bm{z}^{-})+\lambda^{-}\bm{\rho}^{\triangle}(\bm{z}^{+},\bm{z}^{-})\right)\cdot\bm{z}^{\circ}\,{{\rm d}S}{{\rm d}s}.

Furthermore, by (2.1) and trace estimates, together with 𝝆±C(;N×2N)\bm{\rho}^{\pm}\in{\rm C}^{\infty}(\partial\mathcal{E};\mathbb{R}^{N\times 2N}) being fixed, one has for small >0\ell>0 and ,{+,}\square,\triangle\in\{+,-\} the bound

𝝆(𝒛+,𝒛)𝒛dS\displaystyle\int_{\partial\mathcal{E}}\bm{\rho}^{\square}(\bm{z}^{+},\bm{z}^{-})\cdot\bm{z}^{\triangle}\,{{\rm d}S} C,{+,}𝒛H1()𝒛L2()\displaystyle\leq C\sum\limits_{\diamond,\circ\in\{+,-\}}\|\bm{z}^{\diamond}\|_{{\rm H}^{1}(\mathcal{E})}\|\bm{z}^{\circ}\|_{{\rm L}^{2}(\mathcal{E})}
,{+,}(×𝒛L2()2+C()𝒛L2()2).\displaystyle\leq\sum\limits_{\diamond,\circ\in\{+,-\}}\left(\ell\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\diamond}}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+C(\ell)\|\bm{z}^{\circ}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right).

Thus, for >0\ell>0 sufficiently small it follows

0tF1/2(s)dsC()0t(𝒛+(,s)L2()2+𝒛(,s)L2()2)ds.\displaystyle\int_{0}^{t}F^{1/2}(s)\,{{\rm d}s}\leq C(\ell)\int_{0}^{t}\left(\|\bm{z}^{+}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{z}^{-}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)\,{{\rm d}s}.

As a result, by employing (2.1) similarly as in Section 3.5.2 and further utilizing Grönwall’s inequality, one obtains for t(0,T)t\in(0,T^{*}) the energy estimate

{+,}(𝒛(,t)L2()2+(λ+λ)20t(𝒛+𝒛)(,s)H1()2ds)C{+,}𝒛0L2()2.\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\frac{(\lambda^{+}\square\,\lambda^{-})}{2}\int_{0}^{t}\|(\bm{z}^{+}\square\,\bm{z}^{-})(\cdot,s)\|_{{\rm H}^{1}(\mathcal{E})}^{2}\,{{\rm d}s}\right)\\ \leq C\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}. (B.6)

Therefore, by a contradiction argument, there exists C1>0C_{1}>0 and a possibly small time t1[0,T/3]t_{1}\in[0,T^{*}/3] for which

𝒛±(,t1)H1()3C1T(𝒛+0L2()2+𝒛0L2()2).\begin{gathered}\|\bm{z}^{\pm}(\cdot,t_{1})\|_{{\rm H}^{1}(\mathcal{E})}\leq\sqrt{\frac{3C_{1}}{T^{*}}\left(\|\bm{z}^{+}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{z}^{-}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)}.\end{gathered}
Step 2. Higher order a priori estimates when t(t1,2T/3)t\in(t_{1},2T^{*}/3).

We apply the Leray projector \mathbb{P} in (B.1) and multiply with Δ𝒛±\mathbb{P}\Delta\bm{z}^{\pm}. Subsequently, the results are added up and integrated over \mathcal{E}. Hereto, we denote for δ>0\delta>0 the auxiliary function

Gδ(t)\displaystyle G^{\delta}(t) 12{+,}(ddt×𝒛(,t)L2()2+δ(λ+λ)Δ(𝒛+𝒛)(,t)L2()2),\displaystyle\coloneqq\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\left(\frac{d}{dt}\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\delta(\lambda^{+}\square\,\lambda^{-})\|\Delta(\bm{z}^{+}\square\,\bm{z}^{-})(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right),

and the nonlinear terms

J±(s)|(𝒛(𝒙,s))𝒛±(𝒙,s)Δ𝒛±(𝒙,s)|d𝒙.J^{\pm}(s)\coloneqq\int_{\mathcal{E}}\left|\mathbb{P}(\bm{z}^{\mp}(\bm{x},s)\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm}(\bm{x},s)\cdot\mathbb{P}\Delta\bm{z}^{\pm}(\bm{x},s)\right|\,{{\rm d}\bm{x}}.
Lemma B.3.

Assume that 𝐌1\bm{M}_{1}, 𝐋2\bm{L}_{2} are symmetric and ν1𝐋1=ν2𝐌2\nu_{1}\bm{L}_{1}=\nu_{2}\bm{M}_{2}^{\top}. For any small >0\ell>0, and a constant C=C()C=C(\ell) which is reciprocal to \ell, it holds

t1tG1/2(s)dst1tJ+(s)ds+t1tJ(s)ds+{+,}(×𝒛(,t)L2()2+C(C1,)𝒛0L2()2).\begin{multlined}\int_{t_{1}}^{t}G^{1/2}(s)\,{{\rm d}s}\leq\int_{t_{1}}^{t}J^{+}(s)\,{{\rm d}s}+\int_{t_{1}}^{t}J^{-}(s)\,{{\rm d}s}\\ +\sum\limits_{\square\in\{+,-\}}\left(\ell\|\bm{\mathrm{\nabla}}\times{\bm{z}}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+C(C_{1},\ell)\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right).\end{multlined}\int_{t_{1}}^{t}G^{1/2}(s)\,{{\rm d}s}\leq\int_{t_{1}}^{t}J^{+}(s)\,{{\rm d}s}+\int_{t_{1}}^{t}J^{-}(s)\,{{\rm d}s}\\ +\sum\limits_{\square\in\{+,-\}}\left(\ell\|\bm{\mathrm{\nabla}}\times{\bm{z}}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+C(C_{1},\ell)\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right). (B.7)
Proof.

One has to estimate several boundary integrals of the form

t1tt𝒛𝑴~,𝒛dSds,\int_{t_{1}}^{t}\int_{\partial\mathcal{E}}\partial_{t}\bm{z}^{\square}\cdot\widetilde{\bm{M}}^{\square,\triangle}\bm{z}^{\triangle}\,{{\rm d}S}{{\rm d}s},

with 𝑴~,C(¯;N×N)\widetilde{\bm{M}}^{\square,\triangle}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N\times N}) and ,{+,}\square,\triangle\in\{+,-\}. Thanks to the symmetry assumptions, it follows that

t1t(ν1𝑴1𝒖t𝒖+ν2𝑳2𝑩t𝑩)dSds12t1tt(ν1𝑴1𝒖𝒖+ν2𝑳2𝑩𝑩)dSds(𝒖(,t)H1()2+𝑩(,t)H1()2)+C()(𝒖(,t)L2()2+𝑩(,t)L2()2)+C(𝒖(,t1)H1()2+𝑩(,t1)H1()2),\int_{t_{1}}^{t}\int_{\partial\mathcal{E}}\left(\nu_{1}\bm{M}_{1}\bm{u}\cdot\partial_{t}\bm{u}+\nu_{2}\bm{L}_{2}\bm{B}\cdot\partial_{t}\bm{B}\right)\,{{\rm d}S}{{\rm d}s}\\ \begin{aligned} &\leq\frac{1}{2}\int_{t_{1}}^{t}\partial_{t}\int_{\partial\mathcal{E}}\left(\nu_{1}\bm{M}_{1}\bm{u}\cdot\bm{u}+\nu_{2}\bm{L}_{2}\bm{B}\cdot\bm{B}\right)\,{{\rm d}S}{{\rm d}s}\\ &\leq\ell\left(\|\bm{u}(\cdot,t)\|_{{\rm H}^{1}(\mathcal{E})}^{2}+\|\bm{B}(\cdot,t)\|_{{\rm H}^{1}(\mathcal{E})}^{2}\right)+C(\ell)\left(\|\bm{u}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{B}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)\\ &\quad+C\left(\|\bm{u}(\cdot,t_{1})\|_{{\rm H}^{1}(\mathcal{E})}^{2}+\|\bm{B}(\cdot,t_{1})\|_{{\rm H}^{1}(\mathcal{E})}^{2}\right),\end{aligned}

for arbitrary >0\ell>0, and similarly one can treat

t1t(ν2𝑴2𝒖t𝑩+ν1𝑳1𝑩t𝒖)dSds=ν1t1tt𝑳1𝑩𝒖dSds.\int_{t_{1}}^{t}\int_{\partial\mathcal{E}}\left(\nu_{2}\bm{M}_{2}\bm{u}\cdot\partial_{t}\bm{B}+\nu_{1}\bm{L}_{1}\bm{B}\cdot\partial_{t}\bm{u}\right)\,{{\rm d}S}{{\rm d}s}=\nu_{1}\int_{t_{1}}^{t}\partial_{t}\int_{\partial\mathcal{E}}\bm{L}_{1}\bm{B}\cdot\bm{u}\,{{\rm d}S}{{\rm d}s}.

Therefore, the inequality (B.7) can be inferred from (2.1), the transformations provided in Section 2.4.3, and the basic energy estimate (B.6). ∎

Remark B.4.

When 𝑴1,𝑴2,𝑳1,𝑳2C(¯;N×N)\bm{M}_{1},\bm{M}_{2},\bm{L}_{1},\bm{L}_{2}\in{\rm C}^{\infty}(\overline{\mathcal{E}};\mathbb{R}^{N\times N}) are arbitrary, one can resort to parallel energy estimates as used in [CoronMarbachSueur2020, Lemma 9] for the Navier–Stokes equations. Hereto, one additionally multiplies in (B.1) with t𝒛±\partial_{t}\bm{z}^{\pm}, which, in combination with the estimates that arise from multiplying (B.1) with Δ𝒛±\mathbb{P}\Delta\bm{z}^{\pm}, allows to absorb norms of the form 𝒛±Y\|\bm{z}^{\pm}\|_{{\rm Y}}, where

YH1((t1,t);L2())L2((t1,t);H2()).{\rm Y}\coloneqq{\rm H}^{1}((t_{1},t);{\rm L}^{2}(\mathcal{E}))\cap{\rm L}^{2}((t_{1},t);{\rm H}^{2}(\mathcal{E})).

Thus, similarly to [Guerrero2006, Page 995], one can use interpolation arguments to draw a conclusion as in B.3.

It remains to further bound the integrals J±J^{\pm} in (B.7). Applying embedding and interpolation inequalities, one obtains for any small constant >0\ell>0 the bound

J±\displaystyle J^{\pm} (𝒛)𝒛±L2()Δ𝒛±L2()\displaystyle\leq\|(\bm{z}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}\|\mathbb{P}\Delta\bm{z}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})} (B.8)
C𝒛H1()12𝒛H2()12𝒛±L2()Δ𝒛±L2()\displaystyle\leq C\|\bm{z}^{\mp}\|_{{\rm H}^{1}(\mathcal{E})}^{\frac{1}{2}}\|\bm{z}^{\mp}\|_{{\rm H}^{2}(\mathcal{E})}^{\frac{1}{2}}\|\bm{\mathrm{\nabla}}\bm{z}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}\|\mathbb{P}\Delta\bm{z}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}
C()𝒛H1()𝒛H2()𝒛±H1()2+Δ𝒛±L2()2\displaystyle\leq C(\ell)\|\bm{z}^{\mp}\|_{{\rm H}^{1}(\mathcal{E})}\|\bm{z}^{\mp}\|_{{\rm H}^{2}(\mathcal{E})}\|\bm{z}^{\pm}\|_{{\rm H}^{1}(\mathcal{E})}^{2}+\ell\|\mathbb{P}\Delta\bm{z}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}^{2}
C()𝒛H1()2𝒛±H1()4+(𝒛H2()2+Δ𝒛±L2()2).\displaystyle\leq C(\ell)\|\bm{z}^{\mp}\|_{{\rm H}^{1}(\mathcal{E})}^{2}\|\bm{z}^{\pm}\|_{{\rm H}^{1}(\mathcal{E})}^{4}+\ell\left(\|\bm{z}^{\mp}\|_{{\rm H}^{2}(\mathcal{E})}^{2}+\|\mathbb{P}\Delta\bm{z}^{\pm}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right).

Moreover, the estimate (2.1) and Young’s inequality with 1/3+4/6=11/3+4/6=1 provide

𝒛H1()2𝒛±H1()4C{+,}(𝒛L2()+×𝒛L2())6,\displaystyle\|\bm{z}^{\mp}\|_{{\rm H}^{1}(\mathcal{E})}^{2}\|\bm{z}^{\pm}\|_{{\rm H}^{1}(\mathcal{E})}^{4}\leq C\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}\|_{{\rm L}^{2}(\mathcal{E})}\right)^{6}, (B.9)

while (B.5) allows to infer

𝒛H2()2C{+,}(Δ𝒛L2()2+×𝒛L2()2+𝒛L2()2).\displaystyle\|\bm{z}^{\mp}\|_{{\rm H}^{2}(\mathcal{E})}^{2}\leq C\sum\limits_{\square\in\{+,-\}}\left(\|\mathbb{P}\Delta\bm{z}^{\square}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{z}^{\square}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right). (B.10)

Thus, by combining B.6, B.7, B.8, B.9, and B.10, one obtains

t1tG1/2(s)ds\displaystyle\int_{t_{1}}^{t}G^{1/2}(s)\,{{\rm d}s} C(){+,}t1t(𝒛(,s)L2()+×𝒛(,s)L2())6ds\displaystyle\leq C(\ell)\sum\limits_{\square\in\{+,-\}}\int_{t_{1}}^{t}\left(\|\bm{z}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}\right)^{6}\,{{\rm d}s}
+{+,}t1t(Δ𝒛(,s)L2()2+C×𝒛(,s)L2()2)ds\displaystyle\quad+\sum\limits_{\square\in\{+,-\}}\int_{t_{1}}^{t}\left(\ell\|\mathbb{P}\Delta\bm{z}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+C\|\bm{\mathrm{\nabla}}\times{\bm{z}}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)\,{{\rm d}s}
+{+,}(×𝒛(,t)L2()2+C(C1,)𝒛0L2()2).\displaystyle\quad+\sum\limits_{\square\in\{+,-\}}\left(\ell\|\bm{\mathrm{\nabla}}\times{\bm{z}}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+C(C_{1},\ell)\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right).

Therefore, for sufficiently small parameters δ1,δ2(0,1)\delta_{1},\delta_{2}\in(0,1), one arrives at

t1tFδ1(s)+Gδ2(s)ds\displaystyle\int_{t_{1}}^{t}F^{\delta_{1}}(s)+G^{\delta_{2}}(s)\,{{\rm d}s} C{+,}t1t(𝒛(,s)L2()+×𝒛(,s)L2())6ds\displaystyle\leq C\sum\limits_{\square\in\{+,-\}}\int_{t_{1}}^{t}\left(\|\bm{z}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}\right)^{6}\,{{\rm d}s} (B.11)
+C{+,}t1t×𝒛(,s)L2()2ds\displaystyle\quad+C\sum\limits_{\square\in\{+,-\}}\int_{t_{1}}^{t}\|\bm{\mathrm{\nabla}}\times{\bm{z}}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\,{{\rm d}s}
+C(C1,δ1,δ2){+,}𝒛0L2()2.\displaystyle\quad+C(C_{1},\delta_{1},\delta_{2})\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}.

In order to apply Grönwall’s lemma in (B.11), first one utilizes the elementary inequality

{+,}(𝒛(,t)L2()+×𝒛(,t)L2())22{+,}(𝒛(,t)L2()2+×𝒛(,t)L2()2),\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}\right)^{2}\\ \leq 2\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right),

such that for t>t1t>t_{1} and sufficiently small c1>0c_{1}>0 one has the estimate

{+,}(𝒛(,t)L2()+×𝒛(,t)L2())2+c1{+,}t1t𝒛(,s)H2()2ds{+,}(C(C1,)𝒛0L2()2+Ct1t(𝒛(,s)L2()+×𝒛(,s)L2())6ds).\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}\right)^{2}+c_{1}\sum\limits_{\square\in\{+,-\}}\int_{t_{1}}^{t}\|\bm{z}^{\square}(\cdot,s)\|_{{\rm H}^{2}(\mathcal{E})}^{2}\,{{\rm d}s}\\ \begin{aligned} &\leq\sum\limits_{\square\in\{+,-\}}\left(C(C_{1},\ell)\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+C\int_{t_{1}}^{t}\left(\|\bm{z}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}\right)^{6}\,{{\rm d}s}\right).\end{aligned}

Thus, for a generic constant C=C(C1,)>0C=C(C_{1},\ell)>0, the function

Φ(t)\displaystyle\Phi(t) C{+,}(𝒛0L2()2+t1t(𝒛(,s)L2()+×𝒛(,s)L2())6ds),\displaystyle\coloneqq C\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\int_{t_{1}}^{t}\left(\|\bm{z}^{\square}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}+\|\bm{\mathrm{\nabla}}\times{\bm{z}^{\square}}(\cdot,s)\|_{{\rm L}^{2}(\mathcal{E})}\right)^{6}\,{{\rm d}s}\right),

obeys Φ˙/Φ3C\dot{\Phi}/\Phi^{3}\leq C, where Φ˙=dΦdt\dot{\Phi}=\frac{{\rm d}\Phi}{{\rm d}t}. Taking s1>0s_{1}>0 small enough and integrating the latter differential inequality leads for t[t1,t1+s1]t\in[t_{1},t_{1}+s_{1}] to

Φ(t)2C2({+,}𝒛0L2()2)212(tt1)C3({+,}𝒛0L2()2)2.\Phi(t)^{2}\leq\frac{C^{2}\left(\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)^{2}}{1-2(t-t_{1})C^{3}\left(\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)^{2}}.

Consequently, for some constant C2>0C_{2}>0 and all t[t1,t1+s1]t\in[t_{1},t_{1}+s_{1}] one has the estimate

{+,}(𝒛(,t)H1()2+c1t1t𝒛(,s)H2()2ds)C2{+,}𝒛0L2()2.\begin{gathered}\sum\limits_{\square\in\{+,-\}}\left(\|\bm{z}^{\square}(\cdot,t)\|_{{\rm H}^{1}(\mathcal{E})}^{2}+c_{1}\int_{t_{1}}^{t}\|\bm{z}^{\square}(\cdot,s)\|_{{\rm H}^{2}(\mathcal{E})}^{2}\,{{\rm d}s}\right)\leq C_{2}\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}.\end{gathered}

Therefore, there exists t2(t1,2T/3)t_{2}\in(t_{1},2T^{*}/3) and C3>0C_{3}>0 such that

𝒛±(,t2)H2()C3s1(𝒛+0L2()2+𝒛0L2()2)12.\begin{gathered}\|\bm{z}^{\pm}(\cdot,t_{2})\|_{{\rm H}^{2}(\mathcal{E})}\leq\sqrt{\frac{C_{3}}{s_{1}}}\left(\|\bm{z}^{+}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{z}^{-}_{0}\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)^{\frac{1}{2}}.\end{gathered}
Step 3. Additional estimates for t𝒛±\partial_{t}\bm{z}^{\pm} when t(t2,T)t\in(t_{2},T^{*}).

By taking t\partial_{t} in (B.1), multiplying the resulting equations with t𝒛±\partial_{t}\bm{z}^{\pm} respectively, and integrating over \mathcal{E}, one obtains for

H(t)12{+,}(ddtt𝒛±(,t)L2()2+(λ+λ)×(t𝒛+t𝒛)(,t)L2()2)H(t)\coloneqq\frac{1}{2}\sum\limits_{\square\in\{+,-\}}\left(\frac{d}{dt}\|\partial_{t}\bm{z}^{\pm}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+(\lambda^{+}\square\,\lambda^{-})\|\bm{\mathrm{\nabla}}\times{(\partial_{t}\bm{z}^{+}\square\,\partial_{t}\bm{z}^{-})}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}\right)

the estimate

H\displaystyle H (t𝒛)𝒛+t𝒛+d𝐱(t𝒛+)𝒛t𝒛d𝐱\displaystyle\leq-\int_{\mathcal{E}}(\partial_{t}\bm{z}^{-}\cdot\bm{\mathrm{\nabla}})\bm{z}^{+}\cdot\partial_{t}\bm{z}^{+}\,d\mathbf{x}-\int_{\mathcal{E}}(\partial_{t}\bm{z}^{+}\cdot\bm{\mathrm{\nabla}})\bm{z}^{-}\cdot\partial_{t}\bm{z}^{-}\,d\mathbf{x}
+(,){(+,),(,+)}(λ+𝝆(t𝒛+,t𝒛)+λ𝝆(t𝒛+,t𝒛))t𝒛dS.\displaystyle\quad+\sum\limits_{\begin{subarray}{c}(\triangle,\circ)\in\\ \{(+,-),(-,+)\}\end{subarray}}\int_{\partial\mathcal{E}}\left(\lambda^{+}\bm{\rho}^{\circ}(\partial_{t}\bm{z}^{+},\partial_{t}\bm{z}^{-})+\lambda^{-}\bm{\rho}^{\triangle}(\partial_{t}\bm{z}^{+},\partial_{t}\bm{z}^{-})\right)\cdot\partial_{t}\bm{z}^{\circ}\,{{\rm d}S}.

Therefore, considerations similar to the previous steps lead for some constants C4>0C_{4}>0 and c2(0,1)c_{2}\in(0,1), a possibly small time s2(0,T/3)s_{2}\in(0,T^{*}/3) and all t[t2,t2+s2]t\in[t_{2},t_{2}+s_{2}], to the bound

t𝒛±(,t)L2()2+c2t2tt𝒛±(,s)H1(Ω)dsC4{+,}t𝒛(,t2)L2()2,\displaystyle\|\partial_{t}\bm{z}^{\pm}(\cdot,t)\|_{{\rm L}^{2}(\mathcal{E})}^{2}+c_{2}\int_{t_{2}}^{t}\|\partial_{t}\bm{z}^{\pm}(\cdot,s)\|_{{\rm H}^{1}(\Omega)}\,{{\rm d}s}\leq C_{4}\sum\limits_{\square\in\{+,-\}}\|\partial_{t}\bm{z}^{\square}(\cdot,t_{2})\|_{{\rm L}^{2}(\mathcal{E})}^{2},

noting that

t𝒛±(,t2)L2()2\displaystyle\|\partial_{t}\bm{z}^{\pm}(\cdot,t_{2})\|_{{\rm L}^{2}(\mathcal{E})}^{2} (𝒛)𝒛±(,t2)L2()2+p±(,t2)L2()2\displaystyle\leq\|(\bm{z}^{\mp}\cdot\bm{\mathrm{\nabla}})\bm{z}^{\pm}(\cdot,t_{2})\|_{{\rm L}^{2}(\mathcal{E})}^{2}+\|\bm{\mathrm{\nabla}}p^{\pm}(\cdot,t_{2})\|_{{\rm L}^{2}(\mathcal{E})}^{2}
+Δ(λ±𝒛++λ𝒛)(,t2)L2()2\displaystyle\quad+\|\Delta(\lambda^{\pm}\bm{z}^{+}+\lambda^{\mp}\bm{z}^{-})(\cdot,t_{2})\|_{{\rm L}^{2}(\mathcal{E})}^{2}
C{+,}𝒛(,t2)H2()2.\displaystyle\leq C\sum\limits_{\square\in\{+,-\}}\|\bm{z}^{\square}(\cdot,t_{2})\|_{{\rm H}^{2}(\mathcal{E})}^{2}.

Hence, there exists a time t3[t2,t2+s2]t_{3}\in[t_{2},t_{2}+s_{2}] and a constant C5>0C_{5}>0 such that

t𝒛±(,t3)H1()C5s2{+,}t𝒛(,t2)L2()2.\displaystyle\|\partial_{t}\bm{z}^{\pm}(\cdot,t_{3})\|_{{\rm H}^{1}(\mathcal{E})}\leq\sqrt{\frac{C_{5}}{s_{2}}\sum\limits_{\square\in\{+,-\}}\|\partial_{t}\bm{z}^{\square}(\cdot,t_{2})\|_{{\rm L}^{2}(\mathcal{E})}^{2}}.
Step 4. Conclusion.

The proof of 4.1 is concluded by shifting the time derivative and the nonlinear terms in (B.1) to the right-hand side, followed by multiple applications of B.1 and B.2. This first provides L([t2,t2+s2];H2()){\rm L}^{\infty}([t_{2},t_{2}+s_{2}];{\rm H}^{2}(\mathcal{E})) bounds for 𝒛±\bm{z}^{\pm} and subsequently H3(){\rm H}^{3}(\mathcal{E}) bounds for 𝒛±(,t3)\bm{z}^{\pm}(\cdot,t_{3}).

Acknowledgments

Funding: This research was partially supported by National Key R&D Program of China under Grant No. 2020YFA0712000, National Natural Science Foundation of China under Grant No. 12171317, Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDA25010402, and Shanghai Municipal Education Commission under Grant No. 2021-01-07-00-02-E00087.

References