This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) is not purely matricial field

Michael Magee and Mikael de la Salle
Abstract

We prove that every finite dimensional unitary representation of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) contains a non-zero SL2​(𝐙)\mathrm{SL}_{2}(\mathbf{Z})-invariant vector. As a consequence, there is no sequence of finite-dimensional representations of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) that gives rise to an embedding of its reduced Cβˆ—C^{*}-algebra into an ultraproduct of matrix algebras.

1 Statement of results

We view SL2​(𝐙)\mathrm{SL}_{2}(\mathbf{Z}) as the subgroup of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) consisting of matrices of the form (βˆ—βˆ—00βˆ—0000100001)\left(\begin{array}[]{cccc}*&*&0&0\\ &*&0&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right). The point of this note is to prove the following theorem.

Theorem 1.1.

Every finite dimensional unitary representation of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) contains a non-zero SL2​(𝐙)\mathrm{SL}_{2}(\mathbf{Z})-invariant vector.

We now explain some consequences of this theorem.

Definition 1.2.

If {ρi}i=1∞\{\rho_{i}\}_{i=1}^{\infty} is a sequence of finite dimensional unitary representations of a discrete group Ξ“\Gamma, say {ρi}i=1∞\{\rho_{i}\}_{i=1}^{\infty} strongly converges to the regular representation if for any zβˆˆβ„‚β€‹[Ξ“]z\in\mathbb{C}[\Gamma],

limiβ†’βˆžβ€–Οi​(z)β€–=‖λΓ​(z)β€–,\lim_{i\to\infty}\|\rho_{i}(z)\|=\|\lambda_{\Gamma}(z)\|,

where λΓ:Ξ“β†’U​(β„“2​(Ξ“))\lambda_{\Gamma}:\Gamma\to U(\ell^{2}(\Gamma)) is the left regular representation. The norms above are operator norms. We write ρiβ†’strongλΓ\rho_{i}\xrightarrow{\mathrm{strong}}\lambda_{\Gamma} in this event.111Some authors include weak convergence β€” that is, pointwise convergence of normalized traces to the canonical tracial state on the reduced group Cβˆ—C^{*}-algebra β€” in the definition of strong convergence. In the case of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}), these definitions agree.

If Ξ“\Gamma is a discrete group, we say that Ξ“\Gamma is purely matricial field if there is a sequence {ρi}i=1∞\{\rho_{i}\}_{i=1}^{\infty} of finite dimensional unitary representations of Ξ“\Gamma such that ρiβ†’strongλΓ\rho_{i}\xrightarrow{\mathrm{strong}}\lambda_{\Gamma}. In this case, if 𝒰\mathcal{U} is any free ultrafilter on β„•\mathbb{N}, not only does the sequence {ρi:Ξ“β†’U​(Ni)}i=1∞\{\rho_{i}:\Gamma\to U(N_{i})\}_{i=1}^{\infty} induce an embedding

Crβˆ—β€‹(Ξ“)β†’πœ‘βˆπ’°MatNiΓ—NiC_{r}^{*}(\Gamma)\xrightarrow{\varphi}\prod_{\mathcal{U}}\mathrm{Mat}_{N_{i}\times N_{i}}

into the Cβˆ—C^{*}-ultraproduct of matrix algebras, in which case Crβˆ—β€‹(Ξ“)C_{r}^{*}(\Gamma) is matricial field in the sense of Blackadar and Kirchberg [BK97], but also, there is a β€˜lifting’ of the embedding restricted to the group algebra of the form

ℂ​[Ξ“]{\mathbb{C}[\Gamma]}β„“βˆžβ€‹(∏iβˆˆβ„•MatNiΓ—Ni){\ell^{\infty}(\prod_{i\in\mathbb{N}}\mathrm{Mat}_{N_{i}\times N_{i}})}βˆπ’°MatNiΓ—Ni{\prod_{\mathcal{U}}\mathrm{Mat}_{N_{i}\times N_{i}}}Ο†\scriptstyle{\varphi}

See [BO08, Appendix A] for background on ultraproducts. Here β„“βˆž\ell^{\infty}(∏iβˆˆβ„•MatNiΓ—Ni\prod_{i\in\mathbb{N}}\mathrm{Mat}_{N_{i}\times N_{i}}) is the collection of bounded sequences with respect to the Cβˆ—C^{*}-norms. See Schafhauser [Sch23] for a current overview of MF reduced Cβˆ—C^{*}-algebras of groups.

Corollary 1.3.

SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) is not purely matricial field.

This appears to be the first example of a finitely generated residually finite group that is not purely matricial field. Groups that are known to be purely MF include free groups [HT05], limit groups and surface groups [LM23], and right-angled Artin groups, Coxeter groups, and hyperbolic three manifold groups [MT23].

It does not seem to be known whether Crβˆ—β€‹(SL3​(𝐙))C^{*}_{r}(\mathrm{SL}_{3}(\mathbf{Z})) or Crβˆ—β€‹(SL4​(𝐙))C^{*}_{r}(\mathrm{SL}_{4}(\mathbf{Z})) is MF in the sense of Blackadar and Kirchberg.

The property of a group being purely MF was historically relevant to the β€˜Ext​(Crβˆ—β€‹(F2))\mathrm{Ext}(C^{*}_{r}(F_{2})) is not a group’ problem (see [Voi93, Section 5.12]) and more recently a strong form of purely MF for free groups, due to Bordenave and Collins [BC19], was used to prove Buser’s conjecture on the bottom of the spectrum of hyperbolic surfaces in two different ways [HM23, LM23].

Proof of Corollary 1.3.

Let SS and TT denote standard generators of SL2​(𝐙)\mathrm{SL}_{2}(\mathbf{Z}). Theorem 1.1 implies that for any finite dimensional representation ρ\rho of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}),

‖ρ​(S+Sβˆ’1+T+Tβˆ’1)β€–=4.\|\rho(S+S^{-1}+T+T^{-1})\|=4.

On the other hand, as an SL2​(𝐙)\mathrm{SL}_{2}(\mathbf{Z})-module, β„“2​(SL4​(𝐙))\ell^{2}(\mathrm{SL}_{4}(\mathbf{Z})) breaks up into a direct sum of copies of β„“2​(SL2​(𝐙))\ell^{2}(\mathrm{SL}_{2}(\mathbf{Z})). Since SL2​(𝐙)\mathrm{SL}_{2}(\mathbf{Z}) is not amenable, we have

β€–Ξ»SL4​(𝐙)​(S+Sβˆ’1+T+Tβˆ’1)β€–=β€–Ξ»SL2​(𝐙)​(S+Sβˆ’1+T+Tβˆ’1)β€–<4.∎\|\lambda_{\mathrm{SL}_{4}(\mathbf{Z})}(S+S^{-1}+T+T^{-1})\|=\|\lambda_{\mathrm{SL}_{2}(\mathbf{Z})}(S+S^{-1}+T+T^{-1})\|<4.\qed

Theorem 1.1 does not hold with β€˜four’ replaced by β€˜three’, since for primes pp there are nontrivial irreducible representations of SL3​(𝐙/p​𝐙)\mathrm{SL}_{3}(\mathbf{Z}/p\mathbf{Z}) without non-zero SL2​(𝐙/p​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/p\mathbf{Z})-invariant vectors (P. Deligne, private communication, see ExampleΒ 2.2). Nevertheless it could still be the case that SL3​(𝐙)\mathrm{SL}_{3}(\mathbf{Z}) is not purely MF and we would be very interested to know the answer of this question. It would perhaps clarify the relation between property (T) and purely MF β€” as far as we know there is no direct relation. Property (T) says that it is difficult to approach finite dimensional representations by arbitrary ones whereas the group not being purely matricial field says that it is difficult to approach the regular representation by finite-dimensional ones.

Acknowledgments

We thank Pierre Deligne for explaining to us the above mentioned fact about representations of SL3​(𝐙/p​𝐙)\mathrm{SL}_{3}(\mathbf{Z}/p\mathbf{Z}). We thank Kevin Boucher, Yves de Cornulier and Olivier Dudas for comments and conversations about this project.

Funding:

M. M. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1926686. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 949143).

M. S. Research supported by the Charles Simonyi Endowment at the Institute for Advanced Study, and the ANR project ANCG Project-ANR-19-CE40-0002.

2 Proofs of results

It is an elementary consequence of work of Bass-Milnor-Serre on the congruence subgroup property [BMS67] (e.g. [Bek07, Β§5]) that every finite dimensional unitary representation of SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) arises from a composition of homomorphisms

SL4​(𝐙)β†’SL4​(𝐙/N​𝐙)β†’Ο•U​(M)\mathrm{SL}_{4}(\mathbf{Z})\to\mathrm{SL}_{4}(\mathbf{Z}/N\mathbf{Z})\xrightarrow{\phi}U(M)

for some Nβˆˆβ„•N\in\mathbb{N}. To prove Theorem 1.1 it therefore suffices to prove the following.

Proposition 2.1.

For all Nβˆˆβ„•N\in\mathbb{N}, every non-trivial finite dimensional representation Ο•\phi of SL4​(𝐙/N​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/N\mathbf{Z}) has a non-zero SL2​(𝐙/N​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/N\mathbf{Z})-invariant vector.

As before SL2​(𝐙/N​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/N\mathbf{Z}) is the collection of matrices of the form (βˆ—βˆ—00βˆ—0000100001)\left(\begin{array}[]{cccc}*&*&0&0\\ &*&0&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right) in SL4​(𝐙/N​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/N\mathbf{Z}). The rest of the paper proves Proposition 2.1. We may assume that Ο•\phi is irreducible and moreover that it is new, meaning that it does not factor through reduction modulo Nβ€²N^{\prime}

SL4​(𝐙/N​𝐙)β†’SL4​(𝐙/N′​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/N\mathbf{Z})\to\mathrm{SL}_{4}(\mathbf{Z}/N^{\prime}\mathbf{Z})

for any Nβ€²<NN^{\prime}<N dividing NN. (Or else we replace NN by Nβ€²N^{\prime}.)

2.1 Reduction to prime powers

Let

N=∏pΒ primepe​(p)N=\prod_{\text{$p$ prime}}p^{e(p)}

be the prime factorization of NN. By the Chinese remainder theorem

SL4​(𝐙/N​𝐙)β‰…βˆpΒ prime,​e​(p)>0SL4​(𝐙/pe​(p)​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/N\mathbf{Z})\cong\prod_{\text{$p$ prime,}e(p)>0}\mathrm{SL}_{4}(\mathbf{Z}/p^{e(p)}\mathbf{Z})

and this induces a splitting

ϕ≅⨂pΒ prime,​e​(p)>0Ο•p\phi\cong\bigotimes_{\text{$p$ prime,}e(p)>0}\phi_{p}

where Ο•p\phi_{p} are irreducible representations of SL4​(𝐙/pe​(p)​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/p^{e(p)}\mathbf{Z}). The assumption that Ο•\phi is new implies that each Ο•p\phi_{p} is new. If we can prove all the Ο•p\phi_{p} have non-zero SL2​(𝐙/pe​(p)​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/p^{e(p)}\mathbf{Z})-invariant vectors vpv_{p}, then

v=⨂pΒ prime,​e​(p)>0vpv=\bigotimes_{\text{$p$ prime,}e(p)>0}v_{p}

will be the required non-zero invariant vector for SL2​(𝐙/N​𝐙)β‰…βˆpΒ prime,​e​(p)>0SL2​(𝐙/pe​(p)​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/N\mathbf{Z})\cong\prod_{\text{$p$ prime,}e(p)>0}\mathrm{SL}_{2}(\mathbf{Z}/p^{e(p)}\mathbf{Z}) β€” the inclusion of SL2\mathrm{SL}_{2} in SL4\mathrm{SL}_{4} that we use commutes with our applications of the Chinese remainder theorem.

The strategy of the proof is the following:

StepΒ 1:

We prove the representation is non-trivial when restricted to all elementary cyclic subgroups of level prβˆ’1p^{r-1}.

StepΒ 2:

We use Step 1 to prove that on restriction to a particular copy of the Heisenberg group modulo prp^{r}, we find a particular type of character, namely, the one described in (2.4).

StepΒ 3:

We take a non-zero vector in the isotypic subspace of the character of the Heisenberg group found in Step 2. By averaging this vector over a copy of SL2(𝐙/pr𝐙\mathrm{SL}_{2}(\mathbf{Z}/p^{r}\mathbf{Z}) we find a non-zero SL2​(𝐙/pr​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/p^{r}\mathbf{Z})-invariant vector. Here, the form of the Heisenberg group character we found in the previous step is important to make sure that this average is non-zero.

2.2 Prime powers: step 1

It therefore now suffices to prove Proposition 2.1 when N=prN=p^{r}, rβ‰₯1r\geq 1. Let Ο•\phi denote the irreducible representation. For 1≀iβ‰ j≀41\leq i\neq j\leq 4 let Ξ΅i​j\varepsilon_{ij} denote the matrix with one in the i,ji,j entry and zeros elsewhere. The first step is to find a non-trivial subrepresentation of some

Ci​j=def⟨I+prβˆ’1​Ρi​j⟩.C_{ij}\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\langle I+p^{r-1}\varepsilon_{ij}\rangle.

As Ci​jC_{ij} is abelian, by further passing to a subrepresentation, we may assume the non-trivial subrepresentation is irreducible and hence a character.

If r=1r=1 SL4​(𝐙/p​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/p\mathbf{Z}) is generated by such cyclic subgroups. So suppose for this step that r>1r>1.

We could proceed by using a result of Bass–Milnor–Serre [BMS67, Cor. 4.3.b] β€” stating that the principal congruence subgroup of level prp^{r} in SL4​(𝐙)\mathrm{SL}_{4}(\mathbf{Z}) is normally generated by elementary matrices. For completeness, below we give a simple self-contained proof of what we need.

Let G​(prβˆ’1)G(p^{r-1}) denote the kernel of reduction mod prβˆ’1p^{r-1} on SL4(𝐙/pr𝐙\mathrm{SL}_{4}(\mathbf{Z}/p^{r}\mathbf{Z}). Since we assume Ο•\phi is new, we know G​(prβˆ’1)G(p^{r-1}) is not contained in the kernel of Ο•\phi. Let Mat4Γ—40​(𝐙/p​𝐙)\mathrm{Mat}_{4\times 4}^{0}(\mathbf{Z}/p\mathbf{Z}) denote the four by four matrices with entries in 𝐙/p​𝐙\mathbf{Z}/p\mathbf{Z} and zero trace. The map

A∈Mat4Γ—40​(𝐙/p​𝐙)↦I+prβˆ’1​A∈G​(prβˆ’1)A\in\mathrm{Mat}_{4\times 4}^{0}(\mathbf{Z}/p\mathbf{Z})\mapsto I+p^{r-1}A\in G(p^{r-1}) (2.1)

is easily seen to be an isomorphism of groups, where the group law on Mat4Γ—40​(𝐙/p​𝐙)\mathrm{Mat}_{4\times 4}^{0}(\mathbf{Z}/p\mathbf{Z}) is addition.

We want to first show that some Ci​jC_{ij} acts non-trivially in the representation.

Suppose for a contradiction that we do not find a non-trivial irreducible subrepresentation of some Ci​jC_{ij}, so that all 1+prβˆ’1​B1+p^{r-1}B with BB zero on the diagonal are in ker⁑(Ο•)\ker(\phi). Using (2.1), this assumption implies that Ο•\phi restricted to G​(prβˆ’1)G(p^{r-1}) is equivalent to a non-trivial representation of

Mat4Γ—40(𝐙/p𝐙)/{elements ofΒ Mat4Γ—40​(𝐙/p​𝐙)Β that are zero on the diagonal}.\mathrm{Mat}_{4\times 4}^{0}(\mathbf{Z}/p\mathbf{Z})/\{\text{elements of $\mathrm{Mat}_{4\times 4}^{0}(\mathbf{Z}/p\mathbf{Z})$ that are zero on the diagonal\}.}

But this is spanned by equivalence classes of diagonal elements. Thus there is necessarily a diagonal matrix AA such that I+prβˆ’1​AI+p^{r-1}A is not in the kernel of Ο•\phi, without loss of generality (choosing a basis for the diagonal trace zero matrices) A=(10000βˆ’10000000000).A=\left(\begin{array}[]{cccc}1&0&0&0\\ 0&-1&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right).

We calculate

(1000110000100001)​(I+prβˆ’1​(0100000000000000))​(1000βˆ’110000100001)\displaystyle\left(\begin{array}[]{cccc}1&0&0&0\\ 1&1&0&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)\left(I+p^{r-1}\left(\begin{array}[]{cccc}0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right)\right)\left(\begin{array}[]{cccc}1&0&0&0\\ -1&1&0&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)
=I+prβˆ’1​(βˆ’1100βˆ’110000000000)∈ker⁑(Ο•).\displaystyle=I+p^{r-1}\left(\begin{array}[]{cccc}-1&1&0&0\\ -1&1&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right)\in\ker(\phi).

Then also

(I+prβˆ’1​(βˆ’1100βˆ’110000000000))​(I+prβˆ’1​(0βˆ’100100000000000))\displaystyle\left(I+p^{r-1}\left(\begin{array}[]{cccc}-1&1&0&0\\ -1&1&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right)\right)\left(I+p^{r-1}\left(\begin{array}[]{cccc}0&-1&0&0\\ 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right)\right)
=I+prβˆ’1​(βˆ’1000010000000000)∈ker⁑(Ο•),\displaystyle=I+p^{r-1}\left(\begin{array}[]{cccc}-1&0&0&0\\ 0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\end{array}\right)\in\ker(\phi),

a contradiction. The conclusion of this step is no matter rβ‰₯1r\geq 1, we find iβ‰ ji\neq j such that Ci​jβˆ‰ker⁑(Ο•)C_{ij}\notin\ker(\phi). But in fact, since all Ci​jC_{ij} are conjugate in SL4​(𝐙/p​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/p\mathbf{Z}), this means that:

No Ci​jC_{ij} is contained in the kernel of Ο•\phi.

2.3 Prime powers: step 2

Let U1U_{1} denote the group

U1=def{Ξ₯​(u1,u2,u3)=def(100u1010u2001u30001)}≀SL4​(𝐙/pr​𝐙).U_{1}\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left\{\Upsilon(u_{1},u_{2},u_{3})\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left(\begin{array}[]{cccc}1&0&0&u_{1}\\ 0&1&0&u_{2}\\ 0&0&1&u_{3}\\ 0&0&0&1\end{array}\right)\right\}\leq\mathrm{SL}_{4}(\mathbf{Z}/p^{r}\mathbf{Z}).

The group U1U_{1} is isomorphic to (𝐙/pr​𝐙,+)3(\mathbf{Z}/p^{r}\mathbf{Z},+)^{3} so the restriction of Ο•\phi to U1U_{1} breaks into a direct sum of one-dimensional subspaces where U1U_{1} acts by a character. Moreover, SL3​(𝐙/pr​𝐙)\mathrm{SL}_{3}(\mathbf{Z}/p^{r}\mathbf{Z}) normalizes U1U_{1} so it acts on the characters of U1U_{1} appearing like this by g​χ=χ​(gβˆ’1β‹…g)g\chi=\chi(g^{-1}\cdot g). This action is called the dual action. Every such character is of the form

Ο‡:Ξ₯​(u1,u2,u3)↦exp⁑(2​π​i​(ΞΎ1​u1+ΞΎ2​u2+ΞΎ3​u3)pr)\chi\colon\Upsilon(u_{1},u_{2},u_{3})\mapsto\exp\left(2\pi i\frac{(\xi_{1}u_{1}+\xi_{2}u_{2}+\xi_{3}u_{3})}{p^{r}}\right) (2.2)

for (ΞΎ1,ΞΎ2,ΞΎ3)∈(𝐙/pr​𝐙)3(\xi_{1},\xi_{2},\xi_{3})\in(\mathbf{Z}/p^{r}\mathbf{Z})^{3} and the dual action corresponds to (ΞΎ1,ΞΎ2,ΞΎ3)↦(ΞΎ1,ΞΎ2,ΞΎ3)​gβˆ’1(\xi_{1},\xi_{2},\xi_{3})\mapsto(\xi_{1},\xi_{2},\xi_{3})g^{-1}. If (ΞΎ1,ΞΎ2,ΞΎ3)≑0modp(\xi_{1},\xi_{2},\xi_{3})\equiv 0\bmod p then all Ξ₯​(u1,u2,u3)\Upsilon(u_{1},u_{2},u_{3}) with prβˆ’1|u1,u2,u3p^{r-1}|u_{1},u_{2},u_{3} are in the kernel of the character. If all obtained characters satisfy this condition, then Ο•\phi restricted to U1U_{1} has U1∩G​(prβˆ’1)U_{1}\cap G(p^{r-1}) in its kernel. But by Step 1, C14C_{14} is not contained in the kernel of Ο•\phi. Hence in the restriction of Ο•\phi to U1U_{1} there must be a character of the form (2.2) where (ΞΎ1,ΞΎ2,ΞΎ3)β‰’0modp(\xi_{1},\xi_{2},\xi_{3})\not\equiv 0\bmod p. Since SL3​(𝐙/pr​𝐙)\mathrm{SL}_{3}(\mathbf{Z}/p^{r}\mathbf{Z}) acts transitively on the vectors in (𝐙/pr​𝐙)3(\mathbf{Z}/p^{r}\mathbf{Z})^{3} satisfying (ΞΎ1,ΞΎ2,ΞΎ3)β‰’0modp(\xi_{1},\xi_{2},\xi_{3})\not\equiv 0\bmod p, by considering the dual action we may assume

(ΞΎ1,ΞΎ2,ΞΎ3)=(0,0,1).(\xi_{1},\xi_{2},\xi_{3})=(0,0,1).

Let VχV_{\chi} be the χ\chi-isotypic space for the restriction of ϕ\phi to U1U_{1}, where χ\chi and ξ\xi are as above.

The group

G1=def{(βˆ—βˆ—βˆ—0βˆ—βˆ—000100001)}≀SL4​(𝐙/pr​𝐙)G_{1}\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left\{\left(\begin{array}[]{cccc}*&*&*&0\\ &*&*&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)\right\}\leq\mathrm{SL}_{4}(\mathbf{Z}/p^{r}\mathbf{Z})

normalizes U1U_{1} and fixes χ\chi under the dual action. Hence VχV_{\chi} is an invariant subspace for G1G_{1}. Now restrict VχV_{\chi} to the group

U2=def{[v1;v2]=def(10v1001v2000100001)}≀G1U_{2}\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left\{[v_{1};v_{2}]\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left(\begin{array}[]{cccc}1&0&v_{1}&0\\ 0&1&v_{2}&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)\right\}\leq G_{1}

and we will decompose this into characters θ\theta of U2U_{2}; let Vχ,θV_{\chi,\theta} denote the corresponding isotypic subspace.

Consider now the group

H=def{[x;y;z]=def(100001xz001y0001)}≀SL4​(𝐙/pr​𝐙).H\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left\{[x;y;z]\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left(\begin{array}[]{cccc}1&0&0&0\\ 0&1&x&z\\ 0&0&1&y\\ 0&0&0&1\end{array}\right)\right\}\leq\mathrm{SL}_{4}(\mathbf{Z}/p^{r}\mathbf{Z}).

As we already mentioned, G1G_{1} preserves VΟ‡V_{\chi}. Obviously U1U_{1} fixes all its characters under the dual action induced by conjugation, hence all (βˆ—βˆ—βˆ—βˆ—βˆ—βˆ—βˆ—001βˆ—0001)\left(\begin{array}[]{cccc}*&*&*&*\\ &*&*&*\\ 0&0&1&*\\ 0&0&0&1\end{array}\right) fix our chosen Ο‡\chi under the dual action, or in other words, leave VΟ‡V_{\chi} invariant. Hence the space VΟ‡V_{\chi} is invariant by HH.

We have [0;0;z]=Ξ₯​(0,z,0)∈U1[0;0;z]=\Upsilon(0,z,0)\in U_{1} and for v∈VΟ‡v\in V_{\chi}

Ξ₯​(0,z,0)​v=exp⁑(2​π​i​(0β‹…0+0β‹…z+1β‹…0)pr)​v=v.\Upsilon(0,z,0)v=\exp\left(2\pi i\frac{(0\cdot 0+0\cdot z+1\cdot 0)}{p^{r}}\right)v=v.

Hence the action of HH on VΟ‡V_{\chi} has kernel that contains the subgroup with x=y=0x=y=0, which is isomorphic to 𝐙/pr​𝐙\mathbf{Z}/p^{r}\mathbf{Z}. Hence the action of HH on VΟ‡V_{\chi} factors through an action of

H/(𝐙/pr​𝐙)β‰…(𝐙/pr​𝐙)2.H/(\mathbf{Z}/p^{r}\mathbf{Z})\cong(\mathbf{Z}/p^{r}\mathbf{Z})^{2}.

We want to find a particular character of HH and to do so we split into the following cases.

Case 1. VχV_{\chi} restricted to U2U_{2} is trivial. Then obviously HH acts on all of VχV_{\chi} by

[x;y;z]↦exp⁑(2​π​i​ypr).[x;y;z]\mapsto\exp\left(2\pi i\frac{y}{p^{r}}\right). (2.3)

Case 2. Otherwise, we find a character θ\theta in VχV_{\chi} of the form

ΞΈ:[v1;v2]↦exp⁑(2​π​i​(ΞΆ1​v1+ΞΆ2​v2)pr)\theta:[v_{1};v_{2}]\mapsto\exp\left(2\pi i\frac{(\zeta_{1}v_{1}+\zeta_{2}v_{2})}{p^{r}}\right)

with (ΞΆ1,ΞΆ2)β‰’(0,0)modpr(\zeta_{1},\zeta_{2})\not\equiv(0,0)\bmod p^{r}. Write (ΞΆ1,ΞΆ2)=pR​(z1,z2)(\zeta_{1},\zeta_{2})=p^{R}(z_{1},z_{2}) with (z1,z2)β‰ (0,0)modp(z_{1},z_{2})\neq(0,0)\bmod p. By conjugation in SL2​(𝐙/pr​𝐙)≀G1\mathrm{SL}_{2}(\mathbf{Z}/p^{r}\mathbf{Z})\leq G_{1} β€” which normalizes U2U_{2} β€” we can find a new ΞΈβ€²\theta^{\prime} with corresponding z1=1,z2=0z_{1}=1,z_{2}=0 so that

ΞΈβ€²:[v1;v2]↦exp⁑(2​π​i​v1prβˆ’R).\theta^{\prime}:[v_{1};v_{2}]\mapsto\exp\left(2\pi i\frac{v_{1}}{p^{r-R}}\right).

In particular, on Vχ,θ′V_{\chi,\theta^{\prime}} HH acts by the character (2.3).

To summarize, in any case, there exists a non-zero vector v∈VΟ‡v\in V_{\chi} such that

ϕ​([x;y;z])​v=exp⁑(2​π​i​ypr)​v.\phi([x;y;z])v=\exp\left(2\pi i\frac{y}{p^{r}}\right)v. (2.4)

2.4 Prime powers: step 3

Now let

G2=def{(10000ab00cd00001)}≀SL4​(𝐙/pr​𝐙).G_{2}\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left\{\left(\begin{array}[]{cccc}1&0&0&0\\ 0&a&b&0\\ 0&c&d&0\\ 0&0&0&1\end{array}\right)\right\}\leq\mathrm{SL}_{4}(\mathbf{Z}/p^{r}\mathbf{Z}).

From (2.4), vv is fixed by the subgroup

N=def{(100001n000100001)}≀G2.N\stackrel{{\scriptstyle\mathrm{def}}}{{=}}\left\{\left(\begin{array}[]{cccc}1&0&0&0\\ 0&1&n&0\\ 0&0&1&0\\ 0&0&0&1\end{array}\right)\right\}\leq G_{2}.

This implies that if WW denotes the representation of G2β‰…SL2​(𝐙/pr​𝐙)G_{2}\cong\mathrm{SL}_{2}(\mathbf{Z}/p^{r}\mathbf{Z}) generated by vv, that WW is a quotient of the induced representation

IndNG2​triv=ℂ​[G2]βŠ—Nβ„‚.\mathrm{Ind}_{N}^{G_{2}}\mathrm{triv}=\mathbb{C}[G_{2}]\otimes_{N}\mathbb{C}.

Suppose g∈G2g\in G_{2}, with a,b,c,da,b,c,d as above in 𝐙/pr​𝐙\mathbf{Z}/p^{r}\mathbf{Z}. We have

ϕ​([0;y;z])​ϕ​(gβˆ’1)​v\displaystyle\phi([0;y;z])\phi(g^{-1})v =ϕ​(gβˆ’1)​ϕ​(g​[0;y;z]​gβˆ’1)​v\displaystyle=\phi(g^{-1})\phi(g[0;y;z]g^{-1})v
=ϕ​(gβˆ’1)​ϕ​([0;c​z+d​y;a​z+b​y])​v\displaystyle=\phi(g^{-1})\phi([0;cz+dy;az+by])v
=ϕ​(gβˆ’1)​exp⁑(2​π​i​(d​y+c​z)pr)​v.\displaystyle=\phi(g^{-1})\exp\text{$\left(2\pi i\frac{(dy+cz)}{p^{r}}\right)$}v.

This means, in this co-adjoint action of G2G_{2} on characters of the group ⟨[0;y;z]⟩\langle[0;y;z]\rangle, NN is precisely the stabilizer of the character of vv, and hence

dimW=|G2|/|N|=dimIndNG2​triv,\dim W=|G_{2}|/|N|=\dim\mathrm{Ind}_{N}^{G_{2}}\mathrm{triv},

so in fact, Wβ‰…IndNG2​trivW\cong\mathrm{Ind}_{N}^{G_{2}}\mathrm{triv} as a G2G_{2} representation. By Frobenius reciprocity, this contains the trivial representation of G2G_{2}. Finally, G2G_{2} and the upper left copy of SL2​(𝐙/pr​𝐙)\mathrm{SL}_{2}(\mathbf{Z}/p^{r}\mathbf{Z}) are conjugate in SL4​(𝐙/pr​𝐙)\mathrm{SL}_{4}(\mathbf{Z}/p^{r}\mathbf{Z}). This concludes the proof.

2.5 Representations of SL3​(𝐙/p​𝐙)\mathrm{SL}_{3}(\mathbf{Z}/p\mathbf{Z})

The character tables of SL3​(𝐅)\mathrm{SL}_{3}(\mathbf{F}) for finite fields 𝐅\mathbf{F} have been computed in [SF73]. In particular, if we view SL2​(𝐅)\mathrm{SL}_{2}(\mathbf{F}) as the subgroup of SL3​(𝐅)\mathrm{SL}_{3}(\mathbf{F}) consisting of matrices of the form (βˆ—βˆ—0βˆ—0001)\left(\begin{array}[]{ccc}*&*&0\\ &*&0\\ 0&0&1\\ \end{array}\right), we obtain the following example, explained to us by Deligne:

Example 2.2.

For every prime power qq, SL3​(𝐅q)\mathrm{SL}_{3}(\mathbf{F}_{q}) has an irreducible representation such that, for every g∈SL2​(𝐅q)g\in\mathrm{SL}_{2}(\mathbf{F}_{q}),

Tr​(π​(g))={(qβˆ’1)​(q2βˆ’1)if ​g=11βˆ’qif ​(gβˆ’1)2=0β‰ gβˆ’10if ​(gβˆ’1)2β‰ 0.\mathrm{Tr}(\pi(g))=\begin{cases}(q-1)(q^{2}-1)&\textrm{if }g=1\\ 1-q&\textrm{if }(g-1)^{2}=0\neq g-1\\ 0&\textrm{if }(g-1)^{2}\neq 0.\end{cases}

This representation does not have a non-zero SL2​(𝐅q)\mathrm{SL}_{2}(\mathbf{F}_{q})-invariant vector.

The representations are any of those denoted Ο‡r2​s​(u)\chi_{r^{2}s}(u) in [SF73, Table 1b] (that are associated with tori of split rank 0 in the Deligne-Lusztig theory [Hum81]). The properties of Tr​(π​(g))\mathrm{Tr}(\pi(g)) follow readily from this table and the description of the conjugacy classes in SL2​(𝐅q)\mathrm{SL}_{2}(\mathbf{F}_{q}) (e.g. [Bon11, Section 1.3]).

Such a representation does not have non-zero SL2​(𝐅q)\mathrm{SL}_{2}(\mathbf{F}_{q})-invariant vectors because, using that there are exactly q2βˆ’1q^{2}-1 unipotent matrices in SL2​(𝐅q)βˆ–{1}\mathrm{SL}_{2}(\mathbf{F}_{q})\setminus\{1\} [Bon11, Section 1.3], we can compute that the trace of the projection on the SL2​(𝐅q)\mathrm{SL}_{2}(\mathbf{F}_{q})-invariant vectors is 0:

Tr​(βˆ‘g∈SL2​(𝐅q)π​(g))=1β‹…(qβˆ’1)​(q2βˆ’1)+(q2βˆ’1)β‹…(1βˆ’q)=0.\mathrm{Tr}\Big{(}\sum_{g\in\mathrm{SL}_{2}(\mathbf{F}_{q})}\pi(g)\Big{)}=1\cdot(q-1)(q^{2}-1)+(q^{2}-1)\cdot(1-q)=0.

References

  • [BC19] C.Β Bordenave and B.Β Collins, Eigenvalues of random lifts and polynomials of random permutation matrices, Ann. of Math. (2) 190 (2019), no.Β 3, 811–875. MR 4024563
  • [Bek07] Bachir Bekka, Operator-algebraic superridigity for SLn​(β„€){\rm SL}_{n}(\mathbb{Z}), nβ‰₯3n\geq 3, Invent. Math. 169 (2007), no.Β 2, 401–425. MR 2318561
  • [BK97] Bruce Blackadar and Eberhard Kirchberg, Generalized inductive limits of finite-dimensional Cβˆ—C^{*}-algebras, Math. Ann. 307 (1997), no.Β 3, 343–380 (English).
  • [BMS67] H.Β Bass, JohnΒ W. Milnor, and Jean-Pierre Serre, Solution of the congruence subgroup problem for SLn\mathrm{SL}_{n} (nβ‰₯3)(n\geq 3) and Sp2​n\mathrm{Sp}_{2n} (nβ‰₯2)(n\geq 2), Publ. Math., Inst. Hautes Γ‰tud. Sci. 33 (1967), 59–137 (English).
  • [BO08] NathanialΒ P. Brown and Narutaka Ozawa, Cβˆ—C^{*}-algebras and finite-dimensional approximations, Grad. Stud. Math., vol.Β 88, Providence, RI: American Mathematical Society (AMS), 2008 (English).
  • [Bon11] CΓ©dric BonnafΓ©, Representations of SL2​(𝔽q){\rm SL}_{2}(\mathbb{F}_{q}), Algebra and Applications, vol.Β 13, Springer-Verlag London, Ltd., London, 2011. MR 2732651
  • [HM23] Will Hide and Michael Magee, Near optimal spectral gaps for hyperbolic surfaces, Ann. Math. (2) 198 (2023), no.Β 2, 791–824 (English).
  • [HT05] U.Β Haagerup and S.Β ThorbjΓΈrnsen, A new application of random matrices: Ext​(Credβˆ—β€‹(F2)){\rm Ext}(C^{*}_{\rm red}(F_{2})) is not a group, Ann. of Math. (2) 162 (2005), no.Β 2, 711–775. MR 2183281
  • [Hum81] J.Β E. Humphreys, Ordinary and modular characters of SL​(3,p){\rm SL}(3,\,p), J. Algebra 72 (1981), no.Β 1, 8–16. MR 634614
  • [LM23] Larsen Louder and Michael Magee, Strongly convergent unitary representations of limit groups, 2023, arXiv:2210.08953 with Appendix by Will Hide and Michael Magee.
  • [MT23] Michael Magee and Joe Thomas, Strongly convergent unitary representations of right-angled artin groups, 2023, arXiv:2308.00863.
  • [Sch23] Christopher Schafhauser, Finite dimensional approximations of certain amalgamated free products of groups, 2023, arXiv:2306.02498.
  • [SF73] WilliamΒ A. Simpson and J.Β Sutherland Frame, The character tables for SL​(3,q){\rm SL}(3,\,q), SU​(3,q2){\rm SU}(3,\,q^{2}), PSL​(3,q){\rm PSL}(3,\,q), PSU​(3,q2){\rm PSU}(3,\,q^{2}), Canadian J. Math. 25 (1973), 486–494. MR 335618
  • [Voi93] Dan Voiculescu, Around quasidiagonal operators, Integral Equations Operator Theory 17 (1993), no.Β 1, 137–149. MR 1220578

Michael Magee,
Department of Mathematical Sciences, Durham University, Lower Mountjoy, DH1 3LE Durham, UK
IAS Princeton, School of Mathematics, 1 Einstein Drive, Princeton 08540, USA
[email protected]Β 

Mikael de la Salle,
Institut Camille Jordan, CNRS, UniversitΓ© Lyon 1, France
IAS Princeton, School of Mathematics, 1 Einstein Drive, Princeton 08540, USA
[email protected]