This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Single crystal growth, chemical defects, magnetic and transport properties of antiferromagnetic topological insulators (Ge1-δ-xMnx)2Bi2Te5 (x0.47x\leq 0.47, 0.11δ0.200.11\leq\delta\leq 0.20)

Tiema Qian Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA    Chaowei Hu Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA    Jazmine C. Green Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA    Erxi Feng Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    Huibo Cao Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    Ni Ni Corresponding author: [email protected] Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
(February 10, 2025)
Abstract

Magnetic topological insulators provide a platform for emergent phenomena arising from the interplay between magnetism and band topology. Here we report the single crystal growth, crystal structure, magnetic and transport properties, as well as the neutron scattering studies of topological insulator series (Ge1-δ-xMnx)2Bi2Te5 (x0.47x\leq 0.47, 0.11δ0.200.11\leq\delta\leq 0.20). Upon doping up to x=0.47x=0.47, the lattice parameter cc decreases by 0.8%, while the lattice parameter aa remains nearly unchanged. Significant Ge vacancies and Ge/Bi site mixing are revealed via elemental analysis as well as refinements of the neutron and X-ray diffraction data, resulting in holes dominating the charge transport. At x=0.47x=0.47, below 10.8 K, a bilayer A-type antiferromagnetic ordered state emerges, featuring an ordered moment of 3.0(3) μB\mu_{B}/Mn at 5 K, with the cc axis as the easy axis. Magnetization data unveil a much stronger interlayer antiferromagnetic exchange interaction and a much smaller uniaxial anisotropy compared to MnBi2Te4. We attribute the former to the shorter superexchange path and the latter to the smaller ligand-field splitting in (Ge1-δ-xMnx)2Bi2Te5. Our study demonstrates that this series of materials holds promise for the investigation of the Layer Hall effect and quantum metric nonlinear Hall effect.

I Introduction

The discovery of magnetic topological insulators (TIs) marks an important breakthrough in condensed matter physics in the past decade. When magnetism is introduced in TIs and breaks the time-reversal symmetry that protects the gapless Dirac surface states, a gapped surface state and dissipationless quantized edge conduction may appear. Therefore magnetic TIs can host a set of emergent phenomena such as quantum anomalous Hall effect, Axion insulating state and quantum magnetoelectric effectTokura et al. (2019); He et al. (2018); Liu et al. (2016); Wang et al. (2015). Among the magnetic TIs, MnBi2nTe3n+1 family with alternating [MnBi2Te4] septuple layer (SL), and (n1)(n-1)[Bi2Te3] quintuple layer (QL) is the first family that hosts intrinsic magnetism rather than introduced by doping Lee et al. (2013); Rienks et al. (2019); Zhang et al. (2019); Li et al. (2019); Otrokov et al. (2019a); Gong et al. (2019); Lee et al. (2019); Yan et al. (2019); Zeugner et al. (2019); Otrokov et al. (2019b); Aliev et al. (2019); Hu et al. (2020a); Ding et al. (2020); Wu et al. (2019); Shi et al. (2019); Tian et al. (2020); Yan et al. (2020); Gordon et al. (2019); Deng et al. (2020a). MnBi2nTe3n+1 goes from an A-type antiferromagnetic (AFM) state (n3n\leq 3) to a ferromagnetic state (n4n\geq 4), with magnetic moment pointing out-of-plane. The van der Waals nature makes it easy to exfoliate a bulk crystal into a thin-film device, in which quantized anomalous Hall conductance Liu et al. (2020); Deng et al. (2020b) and electric-field tuned Layer Hall effect Gao et al. (2021) are experimentally achieved in odd-layer and even-layer MnBi2Te4 devices, respectively.

The discovery of MnBi2nTe3n+1 was inspired by the existence of the nonmagnetic XBi2nTe3n+1 (X = Ge, Sn, Pb) series which have already been synthesized for decades Shelimova et al. (2004). XBi2nTe3n+1 are previously known thermoelectric materials, and recently attracted research interest due to their non-trivial band topology Neupane et al. (2012); Okamoto et al. (2012); Kuroda et al. (2012). When nonmagnetic X atoms are replaced by Mn, the quasi-metastable MnBi2nTe3n+1 compounds can be made in a very narrow temperature region Hu et al. (2020b). To the XTe-rich end of the XTe-Bi2Te3 phase diagram, besides XBi2nTe3n+1, thicker layered structures with more X in one building block exist. For example, X2Bi2Te5 (X = Ge, Sn, Pb), abbreviated as the 225 phase, is made of nonuple layers (NL) while X3Bi2Te6 (X = Ge, Sn, Pb) phase consists of undecuple layersShelimova et al. (2004); Kuropatwa and Kleinke (2012); Chatterjee and Biswas (2015); Matsunaga et al. (2007). The NL of X2Bi2Te5 can be seen as inserting an additional XTe layer into XBi2Te4 SL, as shown in Fig. 1(a). Given the close structural correspondence between MnBi2Te4 and XBi2Te4, one may suspect Mn2Bi2Te5 (Mn225) and Mn3Bi2Te6 to exist, being potential candidates of intrinsic magnetic topological insulators. Indeed theoretical calculation has indicated Mn225 to be an intrinsic magnetic topological insulator that could host dynamical axion field Li et al. (2020); Zhang et al. (2020); Eremeev et al. (2022); Li et al. (2023); Tang et al. (2023). However, the successful growth of pure Mn225 phase is very challenging, hindering the investigation of its intrinsic physical properties Yan et al. (2022); Cao et al. (2021). For example, only a few layers of Mn225 phase were found embedded inside the MnBi2Te4 pieces in chemical vapor transport (CVT) growths while the Mn225 single crystals obtained via the self-flux growth might show significant contamination from the MnBi2Te4 phase.

In this paper, we report the growth, crystal and magnetic structures, as well as the transport and thermodynamic properties of high quality (Ge1-δ-xMnx)2Bi2Te5 (x0.47x\leq 0.47, 0.11δ0.200.11\leq\delta\leq 0.20) single crystals. While our attempt to grow pure Mn225 single crystals is not successful using both the CVT and flux growth methods, pure (Ge1-δ)2Bi2Te5 (Ge225) single crystals were made by the flux method using Te as the self flux while (Ge1-δ-xMnx)2Bi2Te5 (GeMn225) with x0.47x\leq 0.47 can be grown by the CVT method Hu et al. (2021a); Yan et al. (2022). The wavelength-dispersive X- ray spectroscopy (WDS) measurements as well as the refinements of the powder X-ray diffraction (PXRD) and single-crystal neutron diffraction data indicate the presence of significant Ge vacancies of 0.11δ0.200.11\leq\delta\leq 0.20, leading to holes dominating the electrical transport. We find that GeMn225 shows a TN=10.8T_{N}=10.8 K at x=0.47x=0.47 with a spin flop transition at 2.0 T when HcH\parallel c. Our neutron analysis of the x=0.47x=0.47 compound suggests negligible amount of MnBi antisite formation and a bilayer A-type AFM with a refined Mn moment of 3.0(3) μB\mu_{B} at 5 K.

II Experimental methods

Ge225 single crystals were grown using the self-flux method with Te as the flux. Ge chunks, Bi chunks and Te chunks were mixed at the ratio of Ge : Bi : Te = 2 : 2 : 8 in an alumina crucible and sealed in an evacuated quartz tube. The ampule was first heated to 1000 C overnight, then quickly cooled to 600 C before it was slowly cooled to 520 C in 3 days. At last, single crystals were separated from the flux by a centrifuge. Large and shiny mm-sized single crystals were obtained using this method.

Refer to caption
Figure 1: (a) Crystal structures of Bi2Te3 QL, XBi2Te4 SL and X2Bi2Te5 NL. (b) (0 0 LL) Bragg peaks of different X-Bi-Te series. Inset: an as-grown hexagonal single crystal of GeMn225 (x=0.47x=0.47) against a mm-grid. (c) PXRD of (Ge1-δ-xMnx)2Bi2Te5. (d) xnominalx_{\rm{nominal}} vs. xWDSx_{\rm{WDS}} when growing GeMn225. (e) Lattice parameters aa and cc of (Ge1-δ-xMnx)2Bi2Te5, dashed line shows the linear fit of lattice parameters.

Our flux-growth trials of the Mn-doping series using Te self flux did not yield the 225 phase. However, our CVT growth trials using MnI2 as the transport agent resulted in high quality GeMn225 single crystals. Mn pieces, Ge chunks, Bi chunks, Te chunks and I2 pieces were mixed at the ratio given in Table I, loaded and sealed in a quartz tube under vacuum. The tube was placed vertically in a box furnace and slowly heated to 1000 C overnight. It was then moved to a horizontal tube furnace where the low-temperature and high-temperature were set to be 520C and 540C, with the starting material on the high-temperature end. The cold-end temperature was selected as 520 C since it was the synthesis temperature reported for pure Ge225 in solid-state reaction Kuropatwa and Kleinke (2012). After two weeks, GeMn225 single crystals were taken out and rinsed with distilled water to remove the iodide impurities.

Table 1: Summary of the (Ge1-δ-xMnx)2Bi2Te5 series. All doped compounds are grown by the CVT method with MnI2 as the transport agent while the parent compound is made by the flux method as discussed in the text. : the ratio of Ge1-xMnxTe : Bi2Te3 : MnI2. aa and cc are the lattice parameters. TNT_{N} is the AFM transition temperature. p1p_{1} is the charge carrier density calculated from Hall measurements via p1=B/eρyxp_{1}=B/e\rho_{yx}, p2p_{2} is the charge carrier density estimated by p2=2δ/Ap_{2}=2\delta/A, where AA is the unit cell volume in cm3.
xxnominal ratio WDS xx δ\delta aa (Å) cc (Å) TNT_{N} (K) p1p_{1}(cm-3) p2p_{2}(cm-3)
0 (Flux) Ge1.59(3)Bi1.94(2)Te5 0 0.20(2) 4.283(1) 17.352(1) NA 9.2×1020\times 10^{20} 2.9×1021\times 10^{21}
0.3 2:1:1 Mn0.65(1)Ge1.07(1)Bi1.99(2)Te5 0.33(1) 0.14(1) 4.286(1) 17.263(1) 6.0 4.7×1020\times 10^{20} 1.7×1021\times 10^{21}
0.5 2:1:1 Mn0.94(1)Ge0.82(3)Bi2.02(2)Te5 0.47(1) 0.12(2) 4.284(1) 17.223(1) 10.8 1.6×1020\times 10^{20} 1.3×1021\times 10^{21}
0.6 3:1:1 Mn0.83(1)Ge0.93(2)Bi1.99(2)Te5 0.41(1) 0.12(1) 4.284(1) 17.225(1) 10.0
0.8 5:1:1 Mn0.94(3)Ge0.85(1)Bi1.99(2)Te5 0.47(1) 0.11(2) 4.285(1) 17.238(1) 11.0

To identify the pieces of the 225 phase, (0 0 LL) reflections were collected on both the top and bottom surfaces of single crystals using a PANalytical Empyrean diffractometer equipped with Cu Kα\alpha radiation. Following this, we performed PXRD for further impurity checking and structural refinement. Then WDS measurements were conducted to obtain the elemental analysis of the samples, specifically the Mn level xx. Magnetization data were collected in a Quantum Design (QD) Magnetic Properties Measurement System (MPMS). Specific heat and electrical transport measurements were made inside a QD DynaCool Physical Properties Measurement System (PPMS). Electrical contacts were made to the sample using Dupont 4922N silver paste to attach Pt wires in a six-probe configuration. To eliminate unwanted contributions from mixed transport channels, electrical resistivity (ρxx\rho_{xx}) and Hall (ρyx\rho_{yx}) data were collected while sweeping the magnetic field from -9 T to 9 T. The data were then symmetrized to obtain ρxx(H)\rho_{xx}(H) using ρxx(H)=(ρxx(H)+ρxx(H))/2\rho_{xx}(H)=(\rho_{xx}(H)+\rho_{xx}(-H))/2 and antisymmetrized to get ρyx(H)\rho_{yx}(H) using ρyx(H)=(ρyx(H)ρyx(H))/2\rho_{yx}(H)=(\rho_{yx}(H)-\rho_{yx}(-H))/2. The magnetoresistance is defined as MR =(ρxx(H)ρxx(0))/ρxx(0)=(\rho_{xx}(H)-\rho_{xx}(0))/\rho_{xx}(0). In our measurement geometry, the positive slope of ρyx(H)\rho_{yx}(H) suggests hole carriers dominate the transport. Single-crystal neutron diffraction was performed for the xx = 0.47 sample at 5 K and 0 T on the HB-3A DEMAND single-crystal neutron diffractometer located at Oak Ridge National LaboratoryChakoumakos et al. (2011). Both the neutron and X-ray diffraction data were refined using the Fullprof suit Rodríguez-Carvajal (1993).

III Experimental Results

III.1 Growth optimization and phase characterization

Our CVT growth trials of the GeMn225 phase started with an elemental ratio such that XTe : Bi2Te3 : MnI2 = m:1:1m:1:1, where X = (Ge1-xMnx). As we increased the Mn concentration in X, higher mm for extra XTe became necessary to yield the 225 phase. Our optimal trials that gave high quality GeMn225 single crystals are listed in Table 1. Ge225 and GeMn225 crystals can grow up to a lateral size of several mm with a thickness about a hundred micron in two weeks. All crystals obtained from the CVT growth process exhibit a hexagonal-plate shape, with clearly defined edges indicating the as-grown aa and bb axes. In the inset of Fig. 1 (b), an image of a (Mn0.47Ge0.41)2Bi2Te5 single crystal against the mm-grid is shown .

The GeMn225 phase was first confirmed by checking the (0 0 LL) reflections in the surface XRD patterns. Because the (0 0 LL) spectrum depends solely on the periodic unit along cc axis, i.e.i.e., the thickness of the NL layer, it can be well distinguished from that of [MnBi2Te4] SL, [Bi2Te3] QL or their combinations. A comparison of the (0 0 LL) reflections of various materials is shown in Fig. 1(b), revealing the increasing thickness of the repeating layer(s) from QL, SL, NL to QL+SL. The PXRD patterns are shown and indexed in Fig. 1(c). No clear impurity phases were identified.

The Mn doping levels obtained via the WDS measurements are summarized in Table I. These values suggest the highest doping level of Mn remains to be around x=0.47x=0.47 in GeMn225 despite the nominal xx in the starting materials being much higher than 0.47. Based on the experience stated above, we also attempted pure Mn225 growth with extra MnTe. High-mm trials such as Mn : Bi : Te : I = 11 : 2 : 13 : 2 at various growth temperatures yield only MnBi2Te4 and/or Bi2Te3. Via both flux and CVT methods, we were unable to obtain pure Mn225 single crystals. So for this GeMn225 phase to appear stably in CVT growth, we conclude that there exists a substitution limit of Mn on Ge as indicated in Fig. 1(d).

The refined lattice parameters aa and cc are plotted in Fig. 1(e) against the xx values that are determined by WDS. The lattice parameter aa remains almost unchanged while the lattice parameter cc decreases by 0.8% from x=0x=0 to x=0.47x=0.47. Assuming the Vegard’s law, the extrapolation of the lattice parameters with xx allows us to predict the lattice parameters for pure Mn225. The data suggest Mn225 has a=4.27Åa=4.27\AA and c=17.1Åc=17.1\AA, which is consistent with the previous report Cao et al. (2021).

III.2 Magnetic and Transport properties of (Ge1-δ-xMnx)2Bi2Te5 single crystals

To investigate the effect of Mn doping, we conducted thermodynamic and transport measurements. The Mn concentrations measured via WDS are utilized in the analysis of the magnetic and specific heat data and will be referenced throughout the paper. In Fig. 2 (a), the temperature-dependent magnetic susceptibility, χ(T)\chi(T), measured at 0.1 T, reveals a kink feature at 6.0 K and 10.8 K for the x=0.33x=0.33 and x=0.47x=0.47 samples, respectively, indicating magnetic ordering at low temperatures. As the temperature decreases, χ(T)\chi(T) continues to rise below the ordering temperature for HabH\parallel ab, while it decreases for HcH\parallel c, indicating AFM ordering with the easy axis along the cc direction. The Curie-Weiss fit of the inverse susceptibility measured at 1 T (inset of Fig. 2 (a)) yields a Curie temperature of -12 K that suggests strong in-plane ferromagnetic fluctuation and an effective moment of 6.0 μB\mu_{B}/Mn that is consistent with Mn2+’s effective moment. Figure 2 (b) presents the normalized temperature-dependent longitudinal resistivity with the current along the abab plane, ρxx(T)/ρxx\rho_{xx}(T)/\rho_{xx}(2 K). While the resistivity in the undoped one exhibits a monotonic decrease upon cooling, the sharp drop in resistivity for the x=0.33x=0.33 and 0.470.47 samples suggests suppressed spin scattering upon entering the ordered state, implying parallel in-plane spin alignment. The inset of Fig. 2 (b) presents the specific heat data of the x=0.47x=0.47 compound, revealing an anomaly associates with the AFM transition emerging at 10.8 K, in line with other measurements.

Refer to caption
Figure 2: Thermodynamic and transport properties of GeMn225. (a) Temperature-dependent magnetic susceptibility under 0.1 T for different doping levels and direction. Inset: inverse magnetic susceptibility measured at 1 T above TNT_{N}. Curie-Weiss fit is shown in solid line. (b) Normalized temperature-dependent electrical resistivity with current along the abab plane for different doping levels. Inset: temperature-dependence of specific heat of the x=0.47x=0.47 sample with the criterion to determine TNT_{N}.
Refer to caption
Figure 3: (a) Isothermal magnetization at 2 K of GeMn225 with HcH\parallel c. (b) Isothermal magnetization measured at 2 K up to 14 T for the x=0.47x=0.47 sample with HabH\parallel ab and HcH\parallel c. (c) Field-dependence of MR of GeMn225. (d) MR at various temperatures for the x=0.47x=0.47 sample. (e) Field-dependence of Hall resistivity. Dotted lines refer to HsfH_{sf} in the x=0.33x=0.33 and 0.47 samples.

The evolution of magnetism under external fields and its coupling with charge carriers are presented in Fig. 3. Figure 3 (a) shows their isothermal magnetization for HcH\parallel c. While both curves exhibit AFM behavior, a clear spin-flop transition feature appears in the x=0.47x=0.47 sample at about Hsf=2.0H_{\rm{sf}}=2.0 T. This value is lower than that of 3.3 T in MnBi2Te4, yet significantly higher than the 0.2 T observed in MnBi4Te7. No sign of spin-flop transition is observed for HabH\parallel ab (Fig. 3 (b)), indicating the cc-axis as the easy axis. Magnetization in both doped samples is about 1.8 μB\mu_{B}/Mn at 7 T. For the x=0.47x=0.47 sample, MM reaches to 2.4 μB\mu_{B}/Mn at 14 T with no sign of saturation, as shown in Fig. 3(b). This value is less than half of the expected Mn moment of 5 μB\mu_{B}/Mn, suggesting that the saturation field is much higher than 14 T.

Figures 3 (c) and (d) depict the MR data. The MR of the x=0x=0 sample exhibits a parabolic field dependence while it peaks at Hsf=0.7H_{\rm{sf}}=0.7 T and Hsf=2.0H_{\rm{sf}}=2.0 T for the x=0.33x=0.33 and 0.470.47 compounds, respectively. Above HsfH_{\rm{sf}}, the MR displays a negative slope as the spin disorder scattering gradually diminishes with increasing field. This negative slope in MR persists at elevated temperatures up to 30 K, as illustrated in Fig. 3 (d), suggesting significant spin fluctuation above the ordering temperature in this doping series. Figure 3 (e) presents the field-dependent Hall resistivity. Its positive slope with magnetic field suggests holes dominate the transport. The carrier concentrations are in the order of 1020 cm-3 and decrease with higher Mn doping, as summarized in Table I. This is in sharp contrast with the previous report on Mn225 where electrons dominate the transport Cao et al. (2021).

III.3 Crystal and Magnetic Structure

If free of defects, the stoichiometry of Ge : Bi : Te would be 2 : 2 : 5 for Ge225. However, as indicated in Table I, WDS measurements reveal a deficiency of Ge, with only 1.59 Ge atoms present in Ge225. Meanwhile, a (Ge+Mn) deficiency in Mn-doped samples also exists, where (Ge+Mn) \sim 1.7. In order to better understand the crystal and magnetic structure of this family, particularly regrading the types of defects present and the specific sites where Mn is doped, we have performed both single crystal neutron diffraction for the x=0.47x=0.47 sample and PXRD for the Ge225 sample. The 2d2d and 2c2c sites are where (Mn/Ge/Bi) cations can reside, forming four cation layers. In each NL, atoms on the 2d2d site make the inner two cation layers, while those on the 2c2c site constitute the outer two cation layers.

III.3.1 Magnetic structure revealed through Neutron Diffraction Analysis

Since neutron diffraction is quite sensitive to Mn atoms in the Mn-Bi-Te systems due to the negative scattering length of MnDing et al. (2020, 2021), we first measure the x=0.47x=0.47 crystal using neutron diffraction to determine the magnetic structure and whether Mn is doped onto the 2d2d or 2c2c site.

No additional Bragg peaks are observed below TNT_{N}, indicating a magnetic propagation vector of (0 0 0). The right inset of Fig. 4 shows the intensity of the (0 1 0) and (0 0 4) peaks below and above TNT_{N}. Upon entering the ordered state, the (0 1 0) peak increases, indicating formation of spin order perpendicular to bb axis. An unchanged intensity in (0 0 4) peak, on the other hand, indicates likely no spin component perpendicular to cc axis. This points to an easy axis along cc axis without spin tilting, consistent with our magnetic property measurements. So given its AFM nature and the crystal space group P3¯m1P\overline{3}m1 (No. 164), the highest magnetic symmetry P3¯m1P\overline{3}^{\prime}m^{\prime}1 with the ordered moment along cc can be concluded and used to fit the collected neutron data. Because Ge and Bi have similar scattering lengths for neutrons, it is difficult to differentiate Ge and Bi on the same site. For simplicity, in our refinement, we assume Ge and Bi each occupy either 2d2d or 2c2c site, with our primary focus being on Mn distributions. Note in reality Ge and Bi mixing is expected, which we will discuss later through X-ray diffraction analysis. We examine three possible scenarios, stacking A with Mn on the 2d2d site, stacking B with Mn on the 2c2c site, and a mixed stacking where Mn can go into either site (Table S1 - S3) sup . In all three scenarios, we refine the occupancy of Ge and Mn, as well as the moment of Mn. Our refinement demonstrates that the scenario where all Mn atoms reside on the 2d2d site yields the highest goodness-of-fit value. Therefore, within the resolution of our measurement, we conclude that Mn is doped onto the 2d2d site, with Mn residing on the inner two layers, as shown in the left inset of Fig. 4. Our refinement indicates parallel alignment of spins within the abab plane, with spins in adjacent layers being antiparallel to each other sup .

Table 2: Refined crystal structural parameters for the parent compound Ge225 based on the PXRD data measured at 300 K. The refinement is constrained by the WDS result. Number of reflections: 6474; RF=8.42%R_{F}=8.42\%; χ2=46.4\chi^{2}=46.4.
Atom site xx yy zz occ.
Ge1 2d2d 1/3 2/3 0.1043(3) 0.640(6)
Bi1 2d2d 1/3 2/3 0.1043(3) 0.361(6)
Ge2 2c2c 0 0 0.3260(2) 0.161(6)
Bi2 2c2c 0 0 0.3260(2) 0.639(6)
Te1 1a1a 0 0 0 1
Te2 2d2d 1/3 2/3 0.2037(3) 1
Te3 2d2d 1/3 2/3 0.4243(2) 1
Table 3: Refined magnetic and crystal structural parameters for the x=x=0.47 sample based on the single crystal neutron diffraction data measured at 5 K. The refinement is constrained by the WDS result. Number of reflections: 38; RF=12.8%R_{F}=12.8\%; χ2=7.12\chi^{2}=7.12.
Atom site xx yy zz occ. Moment at 5 K
Ge1 2d2d 1/3 2/3 0.099(6) 0.17
Mn1 2d2d 1/3 2/3 0.099(6) 0.47 3.0(3) μB\mu_{B}/Mn
Bi1 2d2d 1/3 2/3 0.099(6) 0.36
Ge2 2c2c 0 0 0.316(2) 0.23
Bi2 2c2c 0 0 0.316(2) 0.64
Te1 1a1a 0 0 0 1
Te2 2d2d 1/3 2/3 0.792(3) 1
Te3 2d2d 1/3 2/3 0.426(3) 1

III.3.2 Vacancies and Bi/Ge site mixing in Ge225

According to the WDS measurements, Ge225 samples may exhibit vacancies. If we assume the presence of vacancies and Bi/Ge site mixing, we can write down:

f2d=Ge2doccfGe+Bi2doccfBi+V2d×0\displaystyle f_{2d}=\mbox{Ge}^{occ}_{2d}f_{\rm{Ge}}+\mbox{Bi}^{occ}_{2d}f_{\rm{Bi}}+V_{2d}\times 0 (1)
f2c=Ge2coccfGe+Bi2coccfBi+V2c×0.\displaystyle\leavevmode\nobreak\ f_{2c}=\mbox{Ge}^{occ}_{2c}f_{\rm{Ge}}+\mbox{Bi}^{occ}_{2c}f_{\rm{Bi}}+V_{2c}\times 0. (2)

Here, ff is the atomic scattering factor, occ refers to the element occupancy, VV is the amount of vacancy.

Two extreme structural models are used to obtain f2df_{2d} and f2cf_{2c}. In model 1, Ge occupies both 2d2d and 2c2c sites while in model 2, Bi occupies both. The refinements show that in model 1, Ge2docc1\mbox{Ge}_{2d}^{occ1} and Ge2cocc1\mbox{Ge}_{2c}^{occ1} equals 1.59 and 1.79, and in model 2, Bi2docc2\mbox{Bi}_{2d}^{occ2} and Bi2cocc2\mbox{Bi}_{2c}^{occ2} equals 0.58 and 0.66 sup . Since regardless of the occupancy model employed, the scattering cross section of an individual site should be the same, we can write down:

Site 2d:f2d=1.59fGe=0.58fBi\displaystyle\mbox{Site}\leavevmode\nobreak\ 2d:f_{2d}=1.59f_{\rm{Ge}}=0.58f_{\rm{Bi}} (3)
Site 2c:f2c=1.79fGe=0.66fBi,\displaystyle\mbox{Site}\leavevmode\nobreak\ 2c:f_{2c}=1.79f_{\rm{Ge}}=0.66f_{\rm{Bi}}, (4)

which lead to fBi/fGe=2.7f_{\rm{Bi}}/f_{\rm{Ge}}=2.7. This number is close to the atomic number ratio between Bi and Ge, 2.6. By plugging this ratio into Eq. (1), we obtain :

Ge2docc+2.7Bi2docc=1.59\displaystyle\mbox{Ge}^{occ}_{2d}+2.7\mbox{Bi}^{occ}_{2d}=1.59 (5)

By plugging the ratio into Eq. (2) and with Ge2cocc=1VGeGe2docc\mbox{Ge}^{occ}_{2c}=1-V_{\rm{Ge}}-\mbox{Ge}^{occ}_{2d} and Bi2cocc=1VBiBi2docc\mbox{Bi}^{occ}_{2c}=1-V_{\rm{Bi}}-\mbox{Bi}^{occ}_{2d} where VGeV_{\rm{Ge}} and VBiV_{\rm{Bi}} refer to the amount of vacancies for Ge or Bi, we get:

(1VGeGe2docc)+2.7(1VBiBi2docc)=1.79,\displaystyle(1-V_{\rm{Ge}}-\mbox{Ge}^{occ}_{2d})+2.7(1-V_{\rm{Bi}}-\mbox{Bi}^{occ}_{2d})=1.79, (6)

From Eqs. (5) and (6), we get :

VGe+2.7VBi=0.32\displaystyle V_{\rm{Ge}}+2.7V_{\rm{Bi}}=0.32 (7)

Therefore, PXRD also suggests vacancies in the compound. WDS measurements show VGeV_{\rm{Ge}} to be 0.20(2) and VBiV_{\rm{Bi}} is 0.03(1), which is consistent with Eq. (7).

Utilizing the aforementioned constraint and with the total amount of Ge and Bi set to their WDS values, the occupancy of Ge and Bi on each site is refined. The refinement returns the same goodnss-of-fit when assuming all vacancies on the 2d2d site (Table S6), 2c2c site (Table II), or distributed on both 2d2d and 2c2c sites (Table S7) sup . Based on the refinement of our neutron diffraction data, which suggests that Mn is doped on the 2d2d site, and considering the WDS measurements indicating that Mn atoms solely substitute Ge atoms, it is reasonable to infer that most Ge atoms occupy the 2d2d site. Our refinement shows that Ge atoms predominantly occupy site 2d2d when vacancies concentrate on site 2c2c. The refined crystal structure is thus finalized in Table II.

III.3.3 Neutron Refinement of the x=0.47x=0.47 Sample

With a better understanding of the crystal structure of Ge225, we turn back to the neutron diffraction data to work out the crystal and magnetic structure for the doped sample. Now we force the WDS values of Mn with Mn only replacing Ge on site 2d2d, and set the distribution of Bi on both sites identical to that of the parent compound with all vacancies concentrating on site 2c2c. The refined structure is shown in Table III. The ordered Mn moment at 5 K is refined to be 3.0(3) μB\mu_{B}.

Figure 4 shows the magnetic order parameter, measured on the (0 1 1) refection up to 15 K for (Mn0.47Ge0.41)2Bi2Te5. The solid line represents the fit to the mean-field power-law,

I=A(TNTTN)2β+BI=A\left(\frac{T_{N}-T}{T_{N}}\right)^{2\beta}+B (8)

where AA is a constant, BB is the background and β\beta is the order parameter critical exponent. The best fit yields a Neél temperature of TNT_{N} = 9.5 K and a critical exponent of β\beta = 0.32(7), which is similar to that of MnBi2Te4 Ding et al. (2020). Based on the fitting, we estimate the ordered moment at 0 K to be 4.5(7) μB\mu_{B} per Mn, close to the expected value for Mn2+.

Refer to caption
Figure 4: Magnetic order parameter at magnetic reflection (0 1 1) for the x=0.47x=0.47 sample measured at DEMAND. The blue line depicts the best fit using the mean-field power law, see text. Left inset: the magnetic structure. Right inset: the intensity of the (0 1 0) and (0 0 4) peak above and below TNT_{N}.
Refer to caption
Figure 5: (a) Isothermal magnetization of the x=0.47x=0.47 sample at 2 K. The red line is the experimental curve and the black dashed line is a linear extrapolation of the magnetization at 2 K, it reaches to 4.5 μB\mu_{B}/Mn at around 30 T. (b) Crystal structure of X225 (X = GeMn) and X124 (X = Mn). The superexchanges are indicated with red arrows, the nearest-neighbor Mn-Mn distances are highlighted with olive lines. (c) Distorted MnTe6 octahedron, the building blocks of the magnetic layer in the 124 and 225 phases. The Mn atom in the center refers to the circled one in (b). Different Te-Mn-Te bond angels are shown, the asymmetry in GeMn225 arises from its asymmetric next-nearest-neighbor environment.
Table 4: Comparison in Mn-Bi-Te family. SJcSJ_{c} is the interlayer exchange coupling per Mn and SKSK is the uniaxial magnetic anisotropy. L1L_{1} and L2L_{2} refer to the nearest-neighbor Mn-Mn interlayer distances shown in Fig. 5 (b). α\alpha and β\beta are the bond angles of the distorted MnTe6 octahedron shown in the inset of Fig 5 (c).
Component SJc1SJ_{c1} (meV) SKSK (meV) L1L_{1} (Å) L2L_{2} (Å) α\alpha (°) β\beta (°)
(Mn0.47Ge0.41)2Bi2Te5 1.8 0.008 13.96 4.39 86.7/90.5 52.4/55.1
(Mn0.6Pb0.4)Bi2Te4Qian et al. (2022) 0.24 0.03 13.93 4.53 93.5 57.3
MnBi2Te4 Lai et al. (2021) 0.26 0.09 13.64 4.51 93.5 57.3
MnBi4Te7 Hu et al. (2024) 0.03 0.10 23.71 93.5 57.3
MnBi6Te10 Hu et al. (2024) 0.01 0.10 34.00 93.2 57.0

IV Discussion

The presence of vacancies has profound impact in the transport properties of the 225 compounds. Research on Mn-Bi-Te systems indicates that defect-free compounds are charge-neutral, with carriers in actual samples being contributed by various defects Hu et al. (2021b). Mainly, electron carriers are contributed by BiMn/Ge and Te vacancies, whereas hole carriers are contributed by (Mn/Ge)Bi and cation vacancies. This can be seen in the following defect chemistry for native Ge225:

Ge2Bi2Te5GeBi+h+BiGe+e\displaystyle\rm{Ge_{2}Bi_{2}Te_{5}}\rightleftharpoons\rm{Ge}_{\rm{Bi}}^{\prime}+\textit{h}^{\bullet}+\rm{Bi}_{\rm{Ge}}^{\bullet}+\textit{e}^{\prime} (9)

Indeed one GeBi produces one hole while one BiGe creates one electron. In the presence of Ge vacancies, we can write

(Ge1δ)2Bi2Te4δVGe′′+2δh\displaystyle\rm{(Ge_{1-\delta})_{2}Bi_{2}Te_{4}}\rightleftharpoons\delta\rm{V}_{\rm{Ge}}^{\prime\prime}+2\delta\textit{h}^{\bullet} (10)

Therefore, the hole carrier density can be estimated by calculating 2δ/A2\delta/A, where AA represents the unit cell volume with cm3 as the unit. The carrier densities calculated through this defect analysis are denoted as p2p_{2} and are summarized in Table I. As observed, the correspondence between p1p_{1} and p2p_{2} is reasonably good, especially for the x=0x=0 and 0.33 samples.

We may tentatively estimate the saturation field of the x=0.47x=0.47 sample by assuming linear field dependence of MM above 14 T. The interpolation is shown in Fig. 5 (a). When the magnetization at 2 K reaches 4.5 μB\mu_{B}/Mn, the saturation field is estimated to be around 30 T. For a uniaxial antiferromagnet, long-range order requires either interlayer coupling, or uniaxial magnetic anisotropy. Due to the bilayer nature of 225, there exist two interlayer exchange couplings, as depicted in Fig. 5(b): one is Jc1J_{c1}, representing the interlayer AFM coupling within each NL per Mn, the other is Jc2J_{c2}, denoting the interlayer coupling between adjacent NL per Mn. We can write down the full Hamiltonian in the ordered state, per Mn, asQian et al. (2022):

E\displaystyle E =E0+12x2Jc1𝐒i𝐒i+1+12x2Jc2𝐒i𝐒i1\displaystyle=E_{0}+\frac{1}{2}x^{2}J_{c1}\mathbf{S}_{i}\cdot\mathbf{S}_{i+1}+\frac{1}{2}x^{2}J_{c2}\mathbf{S}_{i}\cdot\mathbf{S}_{i-1} (11)
xKSz2xgμB𝐒i𝐇,\displaystyle-xKS_{z}^{2}-xg\mu_{B}\mathbf{S}_{i}\cdot\mathbf{H},

where gg is the Lande factor, 𝐒i\mathbf{S}_{i} represents the Mn spin under investigation, 𝐒i+1\mathbf{S}_{i+1} is the Mn in the same NL as 𝐒i\mathbf{S}_{i} while 𝐒i1\mathbf{S}_{i-1} is the Mn in the adjacent NL, KK is the magnetic anisotropy parameter per Mn and S=5/2S=5/2. Since 𝐒i+1\mathbf{S}_{i+1} and 𝐒i1\mathbf{S}_{i-1} represent identical spin, we can combine two exchange coupling as Jc=1/2(Jc1+Jc2)J_{c}=1/2(J_{c1}+J_{c2}). The relationship between JcJ_{c} and KK is then,

SK\displaystyle SK =(gμB/2)(Hsf2/Hsc)\displaystyle=(g\mu_{B}/2)(H_{sf}^{2}/H_{s}^{\parallel c}) (12)
SJc\displaystyle SJ_{c} =(gμB/4x)(Hsc+Hsf2/Hsc),\displaystyle=(g\mu_{B}/4x)\left(H_{s}^{\parallel c}+H_{sf}^{2}\right/H_{s}^{\parallel c}), (13)

Where HsfH_{sf} and HsH_{s} is the spin flop field and saturation field. Using critical fields obtained above, we can get SKSK = 8.0 μ\mueV and SJcSJ_{c} = 1.8 meV. Table IV summarizes SJcSJ_{c}, KK, Mn-Mn distances and bond angles in Mn-Bi-Te family for comparison. Since Jc1Jc2J_{c1}\gg J_{c2} owing to the much shorter superexchange path of Jc1J_{c1} compared to Jc2J_{c2}, Jc1J_{c1} can be approximated as JcJ_{c}. Jc1J_{c1} of (Mn0.47Ge0.41)2Bi2Te5 is much larger than that of the MnBi2nTe3n+1 series. This is reasonable, given the much shorter Mn-Mn nearest-neighbor interlayer distance of 4.39 Å\rm{\AA} in GeMn225 (L2L_{2}) compared to 13.86 Å\rm{\AA} in MnBi2Te4 (L1L_{1}) or other Mn-Bi-Te compounds. Meanwhile, owing to a similar exchange path, Jc1J_{c1} should be comparable to the coupling between the primary Mn site and the MnBi antisite in MnBi2Te4. Indeed, the latter is responsible for the high full saturation field in MnBi2Te4 Lai et al. (2021). A much smaller magnetic anisotropy is obtained for (Mn0.47Ge0.41)2Bi2Te5, compared to (Mn0.6Pb0.4)Bi2Te4, despite both have similar Mn occupancy and ordering temperature. This can be understood qualitatively by the bond angle analysis. As depicted in Table IV, both the Te-Mn-Te (α\alpha) and Te-Mn-zz (β\beta) angles exhibit a significant decrease in (Mn0.47Ge0.41)2Bi2Te5 compared to MnBi2nTe3n+1. When the bond angles decrease, the ligand-field splitting will also become smaller due to a less overlap of wavefunctions, leading to a reduced magnetic anisotropy Huisman et al. (1971); Yan et al. (2021). This also explains why SKSK remains similar across the MnBi2nTe3n+1 series (refer to Table IV), as the lattice environment of Mn remains consistent in these compounds.

When GeMn225 is exfoliated into even-NL or odd-NL thin flakes, both the inversion symmetry 𝒫\mathcal{P} and time reversal symmetry 𝒯\mathcal{T} are broken, while the combined 𝒫𝒯\mathcal{PT} symmetry is preserved. This symmetry condition is the same as the even-layer MnBi2Te4 device, where the Layer Hall effect Gao et al. (2021) and quantum metric nonlinear Hall effect Gao et al. (2023) are discovered. Therefore, the bilayer A-type AFM and the non-trivial band topology nature of GeMn225 Li et al. (2023); Zhang et al. (2020) make it an excellent system for probing these emergent phenomena, eliminating the need to differentiate between even-NL or odd-NL devices.

V Conclusion

In summary, we have grown high-quality single crystals of (Ge1-δ-xMnx)2Bi2Te5 with the doping level xx up to 0.47. Elemental analysis and diffraction techniques not only suggest Ge/Bi mixing, but also reveal the presence of significant Ge vacancies of 0.11δ0.200.11\leq\delta\leq 0.20, being responsible for the holes dominating the charge transport. As xx increases, long-range AFM order with the easy axis along cc emerges at 6.0 K for the x=0.33x=0.33 sample and at 10.8 K for the x=0.47x=0.47 sample. Spin-flop transitions observed at 0.7 T for x=0.33x=0.33 and 2.0 T for x=0.47x=0.47. Our refinement of the neutron diffraction data of the x=0.47x=0.47 sample suggests a bilayer A-type AFM structure with the ordered moment of 3.0(3) μB\mu_{B}/Mn at 5 K. Our analysis of the magnetization data reveals a much stronger interlayer AFM exchange interaction and a much reduced uniaxial magnetic anisotropy when contrasted with MnBi2Te4. We argue the former arises from the shorter superexchange path and the latter to be linked to the smaller ligand-field splitting in (Ge1-δ-xMnx)2Bi2Te5. Our study illustrates that this series of materials always exhibit broken 𝒫\mathcal{P} and broken 𝒯\mathcal{T} symmetries yet preserved 𝒫𝒯\mathcal{PT} symmetry upon exfoliation into thin flakes, providing a platform to explore the Layer Hall effect and quantum metric nonlinear Hall effect.

Acknowledgments

We thank Randy Dumas at Quantum Design for high field magnetization measurements. Work at UCLA was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021117. E. F. and H.C. acknowledges the support from U.S. DOE BES Early Career Award KC0402010 under contract No. DE-AC05-00OR22725. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract No. DE-AC02-05CH11231.

References

  • Tokura et al. (2019) Y. Tokura, K. Yasuda,  and A. Tsukazaki, Nature Reviews Physics 1, 126 (2019).
  • He et al. (2018) K. He, Y. Wang,  and Q.-K. Xue, Annual Review of Condensed Matter Physics 9, 329 (2018).
  • Liu et al. (2016) C.-X. Liu, S.-C. Zhang,  and X.-L. Qi, Annual Review of Condensed Matter Physics 7, 301 (2016).
  • Wang et al. (2015) J. Wang, B. Lian, X.-L. Qi,  and S.-C. Zhang, Physical Review B 92, 081107 (2015).
  • Lee et al. (2013) D. S. Lee, T.-H. Kim, C.-H. Park, C.-Y. Chung, Y. S. Lim, W.-S. Seo,  and H.-H. Park, CrystEngComm 15, 5532 (2013).
  • Rienks et al. (2019) E. Rienks, S. Wimmer, J. Sánchez Barriga, O. Caha, P. Mandal, J. Růžička, A. Ney, H. Steiner, V. Volobuev, H. Groiss, et al., Nature 576, 423 (2019).
  • Zhang et al. (2019) D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang,  and J. Wang, Physical review letters 122, 206401 (2019).
  • Li et al. (2019) J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan,  and Y. Xu, Science Advances 5, eaaw5685 (2019).
  • Otrokov et al. (2019a) M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. Wolter, A. Koroleva, A. M. Shikin, et al., Nature 576, 416 (2019a).
  • Gong et al. (2019) Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, et al., Chinese Physics Letters 36, 076801 (2019).
  • Lee et al. (2019) S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi, S. Kempinger, J. Hu, C. A. Heikes, P. Quarterman, et al., Physical Review Research 1, 012011 (2019).
  • Yan et al. (2019) J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Chen, J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales,  and R. J. McQueeney, Physical Review Materials 3, 064202 (2019).
  • Zeugner et al. (2019) A. Zeugner, F. Nietschke, A. U. Wolter, S. Gaß, R. C. Vidal, T. R. Peixoto, D. Pohl, C. Damm, A. Lubk, R. Hentrich, et al., Chemistry of Materials 31, 2795 (2019).
  • Otrokov et al. (2019b) M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau,  and E. V. Chulkov, Physical Review Letters 122, 107202 (2019b).
  • Aliev et al. (2019) Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova, A. V. Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, et al., Journal of Alloys and Compounds 789, 443 (2019).
  • Hu et al. (2020a) C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao, D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu, et al., Nature communications 11, 1 (2020a).
  • Ding et al. (2020) L. Ding, C. Hu, F. Ye, E. Feng, N. Ni,  and H. Cao, Physical Review B 101, 020412 (2020).
  • Wu et al. (2019) J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita, et al., Science advances 5, eaax9989 (2019).
  • Shi et al. (2019) M. Shi, B. Lei, C. Zhu, D. Ma, J. Cui, Z. Sun, J. Ying,  and X. Chen, Physical Review B 100, 155144 (2019).
  • Tian et al. (2020) S. Tian, S. Gao, S. Nie, Y. Qian, C. Gong, Y. Fu, H. Li, W. Fan, P. Zhang, T. Kondo, S. Shin, J. Adell, H. Fedderwitz, H. Ding, Z. Wang, T. Qian,  and H. Lei, Phys. Rev. B 102, 035144 (2020).
  • Yan et al. (2020) J.-Q. Yan, Y. Liu, D. Parker, Y. Wu, A. Aczel, M. Matsuda, M. McGuire,  and B. Sales, Physical Review Materials 4, 054202 (2020).
  • Gordon et al. (2019) K. N. Gordon, H. Sun, C. Hu, A. G. Linn, H. Li, Y. Liu, P. Liu, S. Mackey, Q. Liu, N. Ni, et al., arXiv preprint arXiv:1910.13943  (2019).
  • Deng et al. (2020a) H. Deng, Z. Chen, A. Wołloś, M. Konczykowski, K. Sobczak, J. Sitnicka, I. V. Fedorchenko, J. Borysiuk, T. Heider, łL. Pluciński, K. Park, A. B. Georgescu, J. Cano,  and L. Krusin Elbaum, Nature Physics  (2020a), 10.1038/s41567-020-0998-2.
  • Liu et al. (2020) C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang,  and Y. Wang, Nature Materials 19, 522 (2020).
  • Deng et al. (2020b) Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen,  and Y. Zhang, Science 367, 895 (2020b).
  • Gao et al. (2021) A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh, S.-C. Ho, D. Bérubé, R. Chen, H. Sun, et al., Nature 595, 521 (2021).
  • Shelimova et al. (2004) L. Shelimova, O. Karpinskii, P. Konstantinov, E. Avilov, M. Kretova,  and V. Zemskov, Inorganic Materials 40, 451 (2004).
  • Neupane et al. (2012) M. Neupane, S.-Y. Xu, L. A. Wray, A. Petersen, R. Shankar, N. Alidoust, C. Liu, A. Fedorov, H. Ji, J. M. Allred, et al., Physical Review B 85, 235406 (2012).
  • Okamoto et al. (2012) K. Okamoto, K. Kuroda, H. Miyahara, K. Miyamoto, T. Okuda, Z. Aliev, M. Babanly, I. Amiraslanov, K. Shimada, H. Namatame, et al., Physical Review B 86, 195304 (2012).
  • Kuroda et al. (2012) K. Kuroda, H. Miyahara, M. Ye, S. Eremeev, Y. M. Koroteev, E. Krasovskii, E. Chulkov, S. Hiramoto, C. Moriyoshi, Y. Kuroiwa, et al., Physical review letters 108, 206803 (2012).
  • Hu et al. (2020b) C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H.-J. Tien, H. Li, A. G. Linn, S.-W. Lien, C.-Y. Huang, S. Mackey, et al., Science Advances 6, eaba4275 (2020b).
  • Kuropatwa and Kleinke (2012) B. A. Kuropatwa and H. Kleinke, Zeitschrift für anorganische und allgemeine Chemie 638, 2640 (2012).
  • Chatterjee and Biswas (2015) A. Chatterjee and K. Biswas, Angewandte Chemie 127, 5715 (2015).
  • Matsunaga et al. (2007) T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota,  and M. Takata, Acta Crystallographica Section B: Structural Science 63, 346 (2007).
  • Li et al. (2020) Y. Li, Y. Jiang, J. Zhang, Z. Liu, Z. Yang,  and J. Wang, Physical Review B 102, 121107 (2020).
  • Zhang et al. (2020) J. Zhang, D. Wang, M. Shi, T. Zhu, H. Zhang,  and J. Wang, Chinese Physics Letters 37, 077304 (2020).
  • Eremeev et al. (2022) S. Eremeev, M. Otrokov, A. Ernst,  and E. V. Chulkov, Physical Review B 105, 195105 (2022).
  • Li et al. (2023) Y. Li, Y. Jia, B. Zhao, H. Bao, H. Huan, H. Weng,  and Z. Yang, Physical Review B 108, 085428 (2023).
  • Tang et al. (2023) X.-Y. Tang, Z. Li, F. Xue, P. Ji, Z. Zhang, X. Feng, Y. Xu, Q. Wu,  and K. He, Physical Review B 108, 075117 (2023).
  • Yan et al. (2022) J.-Q. Yan, Z. Huang, W. Wu,  and A. F. May, Journal of Alloys and Compounds 906, 164327 (2022).
  • Cao et al. (2021) L. Cao, S. Han, Y.-Y. Lv, D. Wang, Y.-C. Luo, Y.-Y. Zhang, S.-H. Yao, J. Zhou, Y. Chen, H. Zhang, et al., Physical Review B 104, 054421 (2021).
  • Hu et al. (2021a) C. Hu, A. Gao, B. S. Berggren, H. Li, R. Kurleto, D. Narayan, I. Zeljkovic, D. Dessau, S. Xu,  and N. Ni, Physical Review Materials 5, 124206 (2021a).
  • Chakoumakos et al. (2011) B. C. Chakoumakos, H. Cao, F. Ye, A. D. Stoica, M. Popovici, M. Sundaram, W. Zhou, J. S. Hicks, G. W. Lynn,  and R. A. Riedel, Journal of Applied Crystallography 44, 655 (2011).
  • Rodríguez-Carvajal (1993) J. Rodríguez-Carvajal, Physica B: Condensed Matter 192, 55 (1993).
  • Ding et al. (2021) L. Ding, C. Hu, E. Feng, C. Jiang, I. A. Kibalin, A. Gukasov, M. Chi, N. Ni,  and H. Cao, Journal of Physics D: Applied Physics 54, 174003 (2021).
  • (46) See Supplemental Material .
  • Qian et al. (2022) T. Qian, Y.-T. Yao, C. Hu, E. Feng, H. Cao, I. I. Mazin, T.-R. Chang,  and N. Ni, Physical Review B 106, 045121 (2022).
  • Lai et al. (2021) Y. Lai, L. Ke, J. Yan, R. D. McDonald,  and R. J. McQueeney, Physical Review B 103, 184429 (2021).
  • Hu et al. (2024) C. Hu, T. Qian,  and N. Ni, National Science Review 11, nwad282 (2024).
  • Hu et al. (2021b) C. Hu, A. Gao, B. S. Berggren, H. Li, R. Kurleto, D. Narayan, I. Zeljkovic, D. Dessau, S. Xu,  and N. Ni, Physical Review Materials 5, 124206 (2021b).
  • Huisman et al. (1971) R. Huisman, R. De Jonge, C. Haas,  and F. Jellinek, Journal of Solid State Chemistry 3, 56 (1971).
  • Yan et al. (2021) S. Yan, W. Qiao, D. Jin, X. Xu, W. Mi,  and D. Wang, Physical Review B 103, 224432 (2021).
  • Gao et al. (2023) A. Gao, Y.-F. Liu, J.-X. Qiu, B. Ghosh, T. V. Trevisan, Y. Onishi, C. Hu, T. Qian, H.-J. Tien, S.-W. Chen, et al., Science 381, 181 (2023).