This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Simulations of spin/polarization-resolved laser-plasma interactions in the nonlinear QED regime

Feng Wan Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Chong Lv Department of Nuclear Physics, China Institute of Atomic Energy, P. O. Box 275(7), Beijing 102413, China    Kun Xue Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Zhen-Ke Dou Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Qian Zhao Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Mamutjan Ababekri Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Wen-Qing Wei Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Zhong-Peng Li Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Yong-Tao Zhao Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Jian-Xing Li [email protected] Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
(February 9, 2025)
Abstract

Strong-field quantum electrodynamics (SF-QED) plays a crucial role in ultraintense laser-matter interactions, and demands sophisticated techniques to understand the related physics with new degrees of freedom, including spin angular momentum. To investigate the impact of SF-QED processes, we have introduced spin/polarization-resolved nonlinear Compton scattering, nonlinear Breit-Wheeler and vacuum birefringence processes into our particle-in-cell (PIC) code. In this article, we will provide details of the implementation of these SF-QED modules and share known results that demonstrate exact agreement with existing single particle codes. By coupling normal PIC with spin/polarization-resolved SF-QED processes, we create a new theoretical platform to study strong field physics in currently running or planned petawatt or multi-petawatt laser facilities.

preprint: AIP/123-QED

I Introduction

Laser-matter interactions can trigger strong-field quantum-electrodynamics (SF-QED) processes when the laser intensity I0I_{0} reaches or exceeds 1022W/cm210^{22}\leavevmode\nobreak\ \mathrm{W/cm^{2}} Piazza et al. (2012); Bell and Kirk (2008). For example, when the laser intensity is in the order of 102110^{21}-1022W/cm210^{22}\leavevmode\nobreak\ \mathrm{W/cm^{2}}, i.e., the normalized peak laser field strength parameter a0eE0/mecω010a_{0}\equiv eE_{0}/m_{e}c\omega_{0}\sim 10, electrons can be accelerated to GeV energies Gonsalves et al. (2019); Esarey, Schroeder, and Leemans (2009) (with Lorentz factor γe103\gamma_{e}\sim 10^{3} or higher) in a centimeter-long gas plasma, where e,me-e,m_{e} are the charge and mass of the electron, respectively, E0,ω0E_{0},\omega_{0} are the field strength and angular frequency of the laser, respectively, and cc is the light speed in vacuum (here, for convenience, ω0=2πcλ0\omega_{0}=\frac{2\pi c}{\lambda_{0}} and the wavelength of the laser λ0=1μm\lambda_{0}=1\mu\mathrm{m} are assumed). When the laser is reflected by a plasma mirror and collides with the accelerated electron bunch, the transverse electromagnetic (EM) field in the electron’s instantaneous frame can reach the order of a2γa0104a^{\prime}\simeq 2\gamma a_{0}\sim 10^{4}-10510^{5}. Such a field strength is close to the QED critical field strength (Schwinger critical field strength) ESchme2c3eE_{\mathrm{Sch}}\equiv\frac{m_{e}^{2}c^{3}}{e\hbar}, i.e., aSch=mec2ω04.1×105a_{\mathrm{Sch}}=\frac{m_{e}c^{2}}{\hbar\omega_{0}}\simeq 4.1\times 10^{5}, within one or two orders of magnitude. In this regime, the probabilities of nonlinear QED processes are comparable to those of linear ones, and depend on three parameters as W(χ,f,g)W(\chi,f,g), with χe(Fμνpμ)2m3a/aSch\chi\equiv\frac{e\sqrt{(F_{\mu\nu}p^{\mu})^{2}}}{m^{3}}\sim a^{\prime}/a_{\mathrm{Sch}}, fe2FμνFμν4m4(𝒂E2𝒂B2)4aSch2f\equiv\frac{e^{2}F_{\mu\nu}F^{\mu\nu}}{4m^{4}}\sim\frac{(\bm{a}_{E}^{2}-\bm{a}_{B}^{2})}{4a^{2}_{\mathrm{Sch}}} and ge2FμνFμν4m4𝒂E𝒂B4aSch2g\equiv\frac{e^{2}F_{\mu\nu}F^{\mu\nu*}}{4m^{4}}\sim\frac{\bm{a}_{E}\cdot\bm{a}_{B}}{4a^{2}_{\mathrm{Sch}}} (here, 𝒂E,B\bm{a}_{E,B} denote the normalized field strength of electric and magnetic component, respectively) Ritus (1985); Baier, Katkov, and Strakhovenko (1998). For most cases of weak field (a0aScha_{0}\ll a_{\mathrm{Sch}}) condition, f,gχ2f,g\ll\chi^{2}, and W(χ,f,g)W(χ)W(\chi,f,g)\sim W(\chi), i.e., the probability only depends on a single parameter χ\chi. For electrons/positrons, the nonlinear Compton scattering (NCS, e+nωLe+ωγe+n\omega_{L}\rightarrow e^{\prime}+\omega_{\gamma}) is the dominant nonlinear QED process in the strong field regime, and for photons, the nonlinear Breit-Wheeler pair production (NBW, ωγ+nωLe++e\omega_{\gamma}+n\omega_{L}\rightarrow e^{+}+e^{-}) is the dominant one, where ωL,ωγ\omega_{L},\omega_{\gamma} denote the laser photon and the emitted γ\gamma photon, respectively, and nn is the photon absorption number.

Apart from these kinetic effects, the spin/polarization effects also arise with the possibility of generating polarized high-energy particle beams or when particles traverse large-scale intense transient fields in laser-plasma interactions. Classically, the spin of a charged particle will precess around the instantaneous magnetic field, i.e. d𝐬/dt𝐁×𝐬\mathrm{d}{\bf s}/\mathrm{d}t\propto{\bf B}\times{\bf s}, where 𝐬\bf{s} denotes the classical spin vector Jackson (2021). In storage rings, due to the radiation reaction, the spin of an electron/positron will flip to the direction parallel/antiparallel to the external magnetic field, i.e., the Sokolov-Ternov effect (an unpolarized electron beam will be polarized to a degree of 92.5%\sim 92.5\%) A. A. Sokolov , and a similar process also occurs in the NCS Del Sorbo et al. (2017); Li et al. (2019); King and Tang (2020). Some recent studies have shown that with specific configurations, for example, when elliptically or linearly polarized lasers scatter with high-energy electron bunches (or plasmas), the polarization degree of the electrons can reach 90%90\% and be used to diagnose the transient fields in plasmas Li et al. (2020); Gong, Hatsagortsyan, and Keitel (2021). Meanwhile, the photons created by NCS can be polarized, and when these polarized photons decay into electron/positron pairs, the contribution to the probability from polarization can reach 30%\sim 30\% Wan et al. (2020a), and will be inherited by the subsequent QED cascade. For example, in the laser-plasma/beam interactions, the polarization degree for linearly polarized (LP) photons is about 60%60\% or higher and for circular polarized (CP) γ\gamma photons can reach 59% when employing longitudinally polarized primariesXue et al. (2020); King and Tang (2020); Tang, King, and Hu (2020); Song, Wang, and Li (2022).

Analytical solutions in ultraintense laser-matter interactions are scarce due to the high nonlinearity and complexity of the problem. Moreover, the micro-level processes such as ionization, recombination and Coulomb collisions, etc., coupled with the complicated configurations of lasers and plasmas make the explicit derivation almost impossible. Fortunately, computer simulation methods provide alternative and more robust tools to study those unsolvable processes even in more realistic situations Arber et al. (2015). In general, simulation methods for laser-plasma (ionized matter) interactions can be categorized as kinetic or fluid simulations, and specifically kinetic methods include the Fokker-Planck equation (F-P) (or the Vlasov equation for the collisionless case) and the particle-in-cell (PIC) method, and the fluid method mainly uses the magnetohydrodynamic equations (MHD) Birdsall and Langdon (2018). Among these methods, both F-P and MHD discretize the momentum space of particles and are prone to the nonphysical multi-stream instability, which may obscure the real physics, such as the emergence of turbulence, physical instabilities, etc. In comparison, the PIC method can provide much more detailed information on the discrete nature and intrinsic statistical fluctuations of the system, regardless of the stiffness of the problem. Therefore, the PIC method has been widely used in the simulation of ultraintense laser-plasma interactions Arber et al. (2015); Birdsall and Langdon (2018); Gonoskov et al. (2015).

Thanks to the emerging PIC simulation methods, the development of parallelism and large-scale cluster deployment, simulations of laser-plasma wakefield acceleration, laser-ion acceleration, THz radiation and also SF-QED, etc., have become accessible for general laser-plasma scientists Fonseca et al. (2002); Burau et al. (2010); Arber et al. (2015); Derouillat et al. (2018a); Wu et al. (2020). However, the spin and polarization properties of the plasma particles and QED products are not widely introduced to the mainstream due to the lack of appropriate algorithms. In some recent studies, the spin and polarization resolved SF-QED processes have been investigated in the laser-beam colliding configurations and have shown that these processes are prominent in generating polarized beams Wan et al. (2020a); King and Tang (2020); Tang, King, and Hu (2020); Song, Wang, and Li (2022); Li et al. (2019, 2022). And these local-constant-approximated version of these probabilities can be readily introduced into any PIC code.

In this paper, we briefly review the common PIC simulation algorithms and present some recent implementations in spin/polarization averaged/summed QED. The formulas and algorithms for the spin/polarization-dependent SF-QED processes are given in detail and have been coded into our PIC code SLIPs (which stands for “Spin-resolved Laser Interaction with Plasma simulation code”). These formulas and algorithms presented in this paper, especially the polarized version, can be easily adopted by any other PIC code and used to simulate the ultraintense laser-matter interactions that are already available or will be achievable in the near future multi-petawatt (PW) to exawatt (EW) laser facilities Danson et al. (2015), such as Apollo Apo ; Zou et al. (2015), ELI ELI , SULF Gan et al. (2021) and SEL, etc. Throughout the paper, Gaussian units will be adopted, and all quantities are normalized as follows: time tt with 1/ω1/\omega (i.e., tt/(1/ω)=ωtt^{\prime}\equiv t/(1/\omega)=\omega t), position xx with 1/k=λ2π1/k=\frac{\lambda}{2\pi}, momentum pp with mecm_{e}c, velocity vv with cc, energy ε\varepsilon with mec2m_{e}c^{2}, EM field E,BE,B with mecωe\frac{m_{e}c\omega}{e}, force FF with mecωm_{e}c\omega, charge qq with ee, charge density ρ\rho with k3ek^{3}e, current density JJ to k3eck^{3}ec, where λ\lambda and ω=2πcλ\omega=\frac{2\pi c}{\lambda} are the reference wavelength and frequency, respectively.

II PIC Algorithm

The simulation of laser-plasma interactions requires two essential components: the evolution of the EM field and the motion of particles. The corresponding governing equations are the Maxwell equations (either with 𝐀\bf{A}-ϕ\phi or 𝐄\bf{E}-𝐁\bf{B} formulations) and the Newton-Lorentz equations. Therefore, the fundamentals of PIC codes consist of four kernel parts: force depositing to particles, particle pushing, particles depositing to charge and current densities, and solving Maxwell equations; see Figure. 1. Here, we review each part briefly (these algorithms are used in the SLIPs) and refer to the standard literature or textbooks for more details Arber et al. (2015); Birdsall and Langdon (2018).

Refer to caption
Figure 1: Standard particle-in-cell (PIC) loop with four kernel parts.

II.1 Particle pushing

When radiation reaction is weak (the radiation power is much smaller than the energy gain power), the motion of charged particles is governed by the Newton-Lorentz equation:

d𝐩dt\displaystyle\frac{d{\mathbf{p}}}{dt} =\displaystyle= qm(𝐄+𝜷×𝐁),\displaystyle\frac{q}{m}(\mathbf{E}+\bm{\beta}\times\mathbf{B}), (1)
d𝐱dt\displaystyle\frac{d\mathbf{x}}{dt} =\displaystyle= 𝐩γ,\displaystyle\frac{\mathbf{p}}{\gamma}, (2)

where 𝐩γm𝐯\mathbf{p}\equiv\gamma m\mathbf{v}, 𝐱\mathbf{x}, qq, mm, γ\gamma, 𝐯\mathbf{v}, and 𝜷𝐯/c\bm{\beta}\equiv\mathbf{v}/c are the momentum, position, charge, mass, Lorentz factor, velocity, and normalized velocity of the particle, respectively. These coupled equations are discretized using a leapfrog algorithm as

𝐩n+1/2𝐩n1/2Δt\displaystyle\frac{\mathbf{p}^{n+1/2}-\mathbf{p}^{n-1/2}}{\Delta t} =\displaystyle= qm(𝐄n+𝐩nγn×𝐁n),\displaystyle\frac{q}{m}\left(\mathbf{E}^{n}+\frac{\mathbf{p}^{n}}{\gamma^{n}}\times\mathbf{B}^{n}\right), (3)
𝐱n+1𝐱nΔt\displaystyle\frac{\mathbf{x}^{n+1}-\mathbf{x}^{n}}{\Delta t} =\displaystyle= 𝐯n+1/2,\displaystyle\mathbf{v}^{n+1/2}, (4)

and solved using the standard Boris rotation Buneman (1967); Boris and Shanny (1971); Qin et al. (2013):

𝐩n1/2\displaystyle\mathbf{p}^{n-1/2} =\displaystyle= 𝐩qΔt2m𝐄n,\displaystyle\mathbf{p}^{-}-\frac{q\Delta t}{2m}\mathbf{E}^{n}, (5)
𝐩n+1/2\displaystyle\mathbf{p}^{n+1/2} =\displaystyle= 𝐩++qΔt2m𝐄n,\displaystyle\mathbf{p}^{+}+\frac{q\Delta t}{2m}\mathbf{E}^{n}, (6)
𝐩\displaystyle\mathbf{p}^{\prime} =\displaystyle= 𝐩+𝐩×𝝉,\displaystyle\mathbf{p}^{-}+\mathbf{p}^{-}\times\bm{\tau}, (7)
𝐩+\displaystyle\mathbf{p}^{+} =\displaystyle= 𝐩+𝐩×𝝇,\displaystyle\mathbf{p}^{-}+\mathbf{p}^{\prime}\times\bm{\varsigma}, (8)
𝝉\displaystyle\bm{\tau} =\displaystyle= qΔt2mγn𝐁n,\displaystyle\frac{q\Delta t}{2m\gamma^{n}}\mathbf{B}^{n}, (9)
𝝇\displaystyle\bm{\varsigma} =\displaystyle= 2𝝉1+𝝉2,\displaystyle\frac{2\bm{\tau}}{1+\bm{\tau}^{2}}, (10)

where γn=1+(𝐩)2=1+(𝐩+)2\gamma^{n}=\sqrt{1+(\mathbf{p}^{-})^{2}}=\sqrt{1+(\mathbf{p}^{+})^{2}}. The update in momentum and position are asynchronized by half a time step, i.e., a leapfrog algorithm is used here. This leapfrog algorithm ensures the self-consistency of the momentum and position evolution.

II.2 Field solving

In the ultraintense laser-plasma interactions, the plasma particles are assumed to be distributed in the vacuum and immersed in the EM field. Therefore, the field evolution is governed by the Maxwell equations in vacuum with sources. After normalization, the Maxwell equations in differential form are given by

𝐄\displaystyle\nabla\cdot\mathbf{E} =\displaystyle= ρ\displaystyle\rho (11)
𝐁\displaystyle\nabla\cdot\mathbf{B} =\displaystyle= 0\displaystyle 0 (12)
×𝐄\displaystyle\nabla\times\mathbf{E} =\displaystyle= 𝐁t\displaystyle-\frac{\partial\mathbf{B}}{\partial t} (13)
×𝐁\displaystyle\nabla\times\mathbf{B} =\displaystyle= 𝐄t+𝐉.\displaystyle\frac{\partial\mathbf{E}}{\partial t}+\mathbf{J}. (14)

The standard finite-difference method in the time domain for the Maxwell equations is to discretize field variables on the spatial grid and advance forward in time. Here, following the well-known Yee-grid Kane Yee (1966), we put 𝐄,𝐁\bf{E},\bf{B} as in Figure. 2 (a), which automatically satisfies the two curl equations. For lower-dimension simulations, extra dimensions are squeezed, as shown in a 2D example in Figure. 2 (b). In the dimension-reduced simulations, field components in the disappeared dimension can be seen as uniform, i.e., the gradient is 0.

Refer to caption
Figure 2: (a) and (b): Yee-grid and position of each field component in 3D and 2D case, respectively. In (b), the zz direction is squeezed.

By using Esierkepov’s method of current deposition Esirkepov (2001a), the current is calculated from the charge density via charge conservation, i.e., tρ+𝐉=0\partial_{t}\rho+\nabla\cdot{\bf J}=0. Once the initial condition obeys Gauss’s law, 𝐄=ρ\nabla\cdot{\bf E}=\rho, Gauss’s law is automatically embedded. This can be verified with a gradient on Eq. (14) 0=(×𝐁)=t(𝐄)+𝐉=t(𝐄ρ)0=\nabla\cdot(\nabla\times{\bf B})=\partial_{t}(\nabla\cdot{\bf E})+\nabla\cdot{\bf J}=\partial_{t}(\nabla\cdot{\bf E}-\rho), i.e., the temporal variation in the violation of Gauss’s law is 0. Therefore, in the field solver, only the two curl equations are solved. Here, we take the EyE_{y} and BzB_{z} components as examples:
1D case (squeezing the y,zy,z directions):

Eyn+1EynΔt|i+1/2=Bi+1BiΔx|zn+1/2Jy,i+1/2n+1/2Bzn+1/2Bzn1/2Δt|i=Ei+1/2Ei1/2Δx|yn\displaystyle\begin{split}\frac{E_{y}^{n+1}-E_{y}^{n}}{\Delta t}\bigg{|}_{i+1/2}=&-\frac{B_{i+1}-B_{i}}{\Delta x}\bigg{|}_{z}^{n+1/2}-J_{y,i+1/2}^{n+1/2}\\ \frac{B_{z}^{n+1/2}-B_{z}^{n-1/2}}{\Delta t}\bigg{|}_{i}=&-\frac{E_{i+1/2}-E_{i-1/2}}{\Delta x}\bigg{|}^{n}_{y}\end{split} (15)

2D case (squeezing the zz direction):

Eyn+1EynΔt|i+1/2,j=Bi+1,jBi,jΔx|zn+1/2Jy,i+1/2,jn+1/2Bzn+1/2Bzn1/2Δt|i+1/2,j=Ei+1/2,jEi+1/2,jΔx|yn+Ei+1/2,j+1/2Ei+1/2,j1/2Δy|xn+1/2\displaystyle\begin{split}\frac{E_{y}^{n+1}-E_{y}^{n}}{\Delta t}\bigg{|}_{i+1/2,j}=&-\frac{B_{i+1,j}-B_{i,j}}{\Delta x}\bigg{|}_{z}^{n+1/2}-J^{n+1/2}_{y,i+1/2,j}\\ \frac{B_{z}^{n+1/2}-B_{z}^{n-1/2}}{\Delta t}\bigg{|}_{i+1/2,j}=&-\frac{E_{i+1/2,j}-E_{i+1/2,j}}{\Delta x}\bigg{|}_{y}^{n}+\\ &\frac{E_{i+1/2,j+1/2}-E_{i+1/2,j-1/2}}{\Delta y}\bigg{|}_{x}^{n+1/2}\end{split} (16)

3D case:

Eyn+1EynΔt|i+1/2,j,k+1/2=Bi+1,j,k+1/2Bi,j,k+1/2Δx|zn+1/2+Bi+1/2,j,k+1Bi+1/2,j,kΔz|xn+1/2Jy,i+1/2,j,k+1/2n+1/2Bzn+1/2Bzn1/2Δt|i,j,k+1/2=Ei+1/2,j,kEi1/2,j,kΔx|yn+Ei+1/2,j+1,kEi+1/2,j,kΔy|xn,\displaystyle\begin{split}\frac{E_{y}^{n+1}-E_{y}^{n}}{\Delta t}\bigg{|}_{i+1/2,j,k+1/2}=&-\frac{B_{i+1,j,k+1/2}-B_{i,j,k+1/2}}{\Delta x}\bigg{|}_{z}^{n+1/2}+\\ &\frac{B_{i+1/2,j,k+1}-B_{i+1/2,j,k}}{\Delta z}\bigg{|}_{x}^{n+1/2}-J_{y,i+1/2,j,k+1/2}^{n+1/2}\\ \frac{B_{z}^{n+1/2}-B_{z}^{n-1/2}}{\Delta t}\bigg{|}_{i,j,k+1/2}=&-\frac{E_{i+1/2,j,k}-E_{i-1/2,j,k}}{\Delta x}\bigg{|}_{y}^{n}+\\ &\frac{E_{i+1/2,j+1,k}-E_{i+1/2,j,k}}{\Delta y}\bigg{|}_{x}^{n}\end{split}, (17)

where the lower indices with i,j,ki,j,k denote the spatial discretization and upper indices with nn indicate the time discretization. The time indices are assigned using the leapfrog algorithm; see Sec. II.6.

II.3 Current deposition

We calculate the charge current density using Esirkepov’s method, which conserves charge by satisfying the Gauss law Esirkepov (2001b)

tρ+𝐉=0,\partial_{t}\rho+\nabla\cdot\mathbf{J}=0, (18)

and removes the need for Coulomb correction Birdsall and Langdon (2018). This algorithm computes the charge density at time step t12Δtt-\frac{1}{2}\Delta t and t+12Δtt+\frac{1}{2}\Delta t on each grid cell from the particle positions and velocities, i.e.,

ρi,j,kn+1/2\displaystyle\rho^{n+1/2}_{i,j,k} =\displaystyle= 1ΔVrW(𝐱rn+12𝐯n+1/2Δt)qr,\displaystyle\frac{1}{\Delta V}\sum_{r}W(\mathbf{x}^{n}_{r}+\frac{1}{2}\mathbf{v}^{n+1/2}\Delta t)q_{r}, (19)
ρi,j,kn1/2\displaystyle\rho^{n-1/2}_{i,j,k} =\displaystyle= 1ΔVrW(𝐱rn12𝐯nΔt)qr,\displaystyle\frac{1}{\Delta V}\sum_{r}W(\mathbf{x}^{n}_{r}-\frac{1}{2}\mathbf{v}^{n}\Delta t)q_{r}, (20)
δnρ\displaystyle\delta^{n}\rho =\displaystyle= ρn+1/2ρn1/2\displaystyle\rho^{n+1/2}-\rho^{n-1/2} (21)

where rr denotes the particle index, |𝐱r𝐱i,j,k|(Δx,Δy,Δz)|{\bf x}_{r}-{\bf x}_{i,j,k}|\leq(\Delta x,\Delta y,\Delta z), and ΔV=ΔxΔyΔz\Delta V=\Delta x\Delta y\Delta z is the cell volume. We then interpolate the charge density to the current grid to obtain the current density; see Ref. Esirkepov (2001b) for more details.

II.4 Force deposition

We deposit the updated field variables from the Maxwell solver to the particles for calculating acceleration or further SF-QED processes. The field deposition to the particles follows a similar procedure as the charge density deposition. For each particle at position 𝐱r\mathbf{x}_{r}, we find its nearest grid point (i,j,k)g=floor(𝐱rΔ𝐱+12)(i,j,k)^{g}=\mathrm{floor}\left(\frac{\mathbf{x}_{r}}{\Delta\mathbf{x}}+\frac{1}{2}\right) and its nearest half grid point (i,j,k)h=floor(𝐱rΔ𝐱)(i,j,k)^{h}=\mathrm{floor}\left(\frac{\mathbf{x}_{r}}{\Delta\mathbf{x}}\right), where Δ𝐱=(Δx,Δy,Δz)\Delta\mathbf{x}=(\Delta x,\Delta y,\Delta z) is the spatial grid size. We then weight the field to the particle by summing over all nontrivial terms of W(i,j,k)F(i,j,k)W(i,j,k)\cdot F(i,j,k), where W(i,j,k)W(i,j,k) is the particle weighting function (see Sec. II.5 for more details) on the grid (half grid) (i,j,k)(i,j,k) and F(i,j,k)F(i,j,k) is the field component of 𝐄\bf{E} or 𝐁\bf{B} on the spatial grid with proper staggering according to Figure. 2.

II.5 Particle shape function

The weighting function WW in the current and force deposition is determined by the form factor (shape factor) of the macro-particle, which is a key concept in modern PIC code algorithms. The form factor gives the macro-particle a finite size (composed of thousands of real particles) and reduces the nonphysical collisions Birdsall and Langdon (2018). Various particle shape function models have been proposed, such as the Nearest Grid Point (NGP) and Cloud-in-Cell (CIC) methods. The NGP and CIC methods use the nearest one and two grid fields as the full contribution, respectively. Higher orders of particle shape function can suppress the unphysical noise and produce smoother results. We use the triangle shape function (triangular shape cloud, TSC) in each dimension Esirkepov (2001b)

Wspline={34δ2,forj12(12±δ),forj±1,\displaystyle W_{\rm spline}=\Bigg{\{}\begin{array}[]{ll}\frac{3}{4}-{\delta}^{2},&\mathrm{for}j\\ \frac{1}{2}\left(\frac{1}{2}\pm\delta\right),&\mathrm{for}j\pm 1\end{array}, (24)

where δ=xXjΔx\delta=\frac{x-X_{j}}{\Delta x}, xx is the particle position, jj the nearest grid/half grid number and XjjΔxX_{j}\equiv j\Delta x. We obtain higher dimension functions by multiplying 1D shape function in each dimension: W2D(i,j)=Wx(i)Wy(j)W_{\mathrm{2D}}(i,j)=W_{x}(i)W_{y}(j) and W3D(i,j,k)=Wx(i)Wy(j)Wz(k)W_{\mathrm{3D}}(i,j,k)=W_{x}(i)W_{y}(j)W_{z}(k).

II.6 Time ordering

Refer to caption
Figure 3: Leap-frog algorithm of particle pushing and field advancing.

In SLIPs, the simplest forward method is used to discretize all differential equations that are reduced to first order with respect to time Arber et al. (2015). To minimize the errors introduced by the discretization, some variables are updated at integer time steps and others at half-integer time steps. For example, the EM field variables 𝐄\bf{E} and 𝐁\bf{B} are updated alternately at integer and half-integer time steps; and the position 𝐱\bf{x} and momentum 𝐩\bf{p} of particles are updated alternately as well; see Figure. 3. The leapfrog updating is also applied to the current deposition and field interpolation.

III QED Algorithm

This section presents some SF-QED processes (with unpolarized/polarized version) that are relevant for laser-plasma interactions. The classical and quantum radiation correction to the Newton-Lorentz equations, namely the Laudau-Lifshitz (LL) equation and the modified Landau-Lifshitz (MLL) equation; and their discretized algorithms are reviewed first. The classical and quantum corrected equations of motion (EOM) for the spin, namely the Thomas-Bargmann-Michel-Telegdi (T-BMT) equation and the Radiative T-BMT equation; and their discretized algorithms are reviewed next. NCS with unpolarized and polarized version and their Monte-Carlo (MC) algorithms are reviewed. NBW with unpolarized and polarized version and their MC implementations are presented as well. Finally, the implementations of high-energy bremsstralung and vacuum birefringence in the conditions of weak pair productions (χγ0.1\chi_{\gamma}\lesssim 0.1) are briefly discussed.

III.1 Radiative particle pusher

Charged particles moving in strong fields can emit either classical fields or quantum photons. This leads to energy/momentum loss and braking of the particles, i.e., radiation reaction. A well-known radiative equation of motion (EOM) for charged particles is the Lorentz-Abraham-Dirac (LAD) equation Dirac (1938). However, this equation suffers from the runaway problem, as the radiation reaction terms involve the derivative of the acceleration. To overcome this issue, several alternative formalisms have been proposed, among which the Landau-Lifshitz (LL) version is widely adopted Landau and Lifshitz (1999). The LL equation can be obtained from the LAD equation by applying iterative and order-reduction procedures Ekman, Heinzl, and Ilderton (2021); Ekman (2022), which are valid when the radiation force is much smaller than the Lorentz force. More importantly, in the limit of 0\hbar\rightarrow 0, the QED results in the planewave background field are consistent with both the LAD equation and LL equation Ilderton and Torgrimsson (2013); Seipt and Thomas (2023). Depending on the value of the quantum nonlinear parameter χe\chi_{e} (defined in Sec. III.1.1), the particle dynamics can be governed by either the LL equation or its quantum-corrected version Piazza et al. (2012); Landau and Lifshitz (1999); Neitz and Di Piazza (2014); Derouillat et al. (2018a).

III.1.1 Landau-Lifshitz equation

The Landau-Lifshitz equation can be employed when the radiation is relatively weak (weak radiation reaction, χe102\chi_{e}\ll 10^{-2}) Landau and Lifshitz (1999):

𝐅RR,classical=2e33mc3{γ[(t+𝐩γm)𝐄+𝐩γmc×(t+𝐩γm)𝐁]+emc[𝐄×𝐁+1γmc𝐁×(𝐁×𝐩)+1γmc𝐄(𝐩𝐄)]eγm2c2𝐩[(𝐄+𝐩γmc×𝐁)21γ2m2c2(𝐄𝐩)2]},\begin{split}\mathbf{F}_{\mathrm{RR,classical}}&=\frac{2e^{3}}{3mc^{3}}\bigg{\{}\gamma\bigg{[}\bigg{(}\frac{\partial}{\partial t}+\frac{\mathbf{p}}{\gamma m}\cdot\nabla\bigg{)}\mathbf{E}+\frac{\mathbf{p}}{\gamma mc}\times\bigg{(}\frac{\partial}{\partial t}+\frac{\mathbf{p}}{\gamma m}\cdot\nabla\bigg{)}\mathbf{B}\bigg{]}\\ &+\frac{e}{mc}\bigg{[}\mathbf{E}\times\mathbf{B}+\frac{1}{\gamma mc}\mathbf{B}\times(\mathbf{B}\times\mathbf{p})+\frac{1}{\gamma mc}\mathbf{E}(\mathbf{p\cdot E})\bigg{]}\\ &-\frac{e\gamma}{m^{2}c^{2}}\mathbf{p}\bigg{[}\bigg{(}\mathbf{E}+\frac{\mathbf{p}}{\gamma mc}\times\mathbf{B}\bigg{)}^{2}-\frac{1}{\gamma^{2}m^{2}c^{2}}(\mathbf{E\cdot p})^{2}\bigg{]}\bigg{\}},\end{split} (25)

where all quantities are given in Gaussian units, and the dimensionless one is

𝐅RR,classical=23αfξL{γ[(t+𝐩γ)𝐄+𝐩γ×(t+𝐩γ)𝐁]+[𝐄×𝐁+1γ𝐁×(𝐁×𝐩)+𝐄(𝐩𝐄)]γ𝐩[(𝐄+𝐩γ×𝐁)21γ2(𝐄𝐩)2]},\begin{split}\mathbf{F}_{\mathrm{RR,classical}}&=\frac{2}{3}\alpha_{f}\xi_{L}\bigg{\{}\gamma\bigg{[}\bigg{(}\frac{\partial}{\partial t}+\frac{\mathbf{p}}{\gamma}\cdot\nabla\bigg{)}\mathbf{E}+\frac{\mathbf{p}}{\gamma}\times\bigg{(}\frac{\partial}{\partial t}+\frac{\mathbf{p}}{\gamma}\cdot\nabla\bigg{)}\mathbf{B}\bigg{]}\\ &+\bigg{[}\mathbf{E}\times\mathbf{B}+\frac{1}{\gamma}\mathbf{B}\times(\mathbf{B}\times\mathbf{p})+\mathbf{E}(\mathbf{p\cdot E})\bigg{]}\\ &-\gamma\mathbf{p}\bigg{[}\bigg{(}\mathbf{E}+\frac{\mathbf{p}}{\gamma}\times\mathbf{B}\bigg{)}^{2}-\frac{1}{\gamma^{2}}(\mathbf{E\cdot p})^{2}\bigg{]}\bigg{\}},\end{split} (26)

with αf=e2c\alpha_{f}=\frac{e^{2}}{c\hbar} is the fine structure constant and ξL=ωmec2\xi_{L}=\frac{\hbar\omega}{m_{e}c^{2}} is the normalized reference photon energy. In the ultra-intense laser interacting with plasmas, the dominant contribution comes from the last two terms Tamburini et al. (2010). In the ultrarelativisitc limits, only the third term dominates the contribution, and the radiation reaction force can be simplified as

𝐅RR,cl23αfχe2ξL𝜷,\mathbf{F}_{\mathrm{RR,cl}}\simeq\frac{2}{3}\alpha_{f}\frac{\chi^{2}_{e}}{\xi_{L}}\bm{\beta}, (27)

where χe=em3c4|Fμνpν|2ξLγe(𝐄+𝜷×𝐁)2(𝜷(𝜷𝐄))2γeEξL(1cosθ)\chi_{e}=\frac{e\hbar}{m^{3}c^{4}}\sqrt{|F^{\mu\nu}p_{\nu}|^{2}}\equiv\xi_{L}\gamma_{e}\sqrt{(\mathbf{E}+\bm{\beta}\times\mathbf{B})^{2}-(\bm{\beta}\cdot(\bm{\beta}\cdot\mathbf{E}))^{2}}\simeq\gamma_{e}E_{\perp}\xi_{L}(1-\cos\theta) is a nonlinear quantum parameter signifies the strength of the NCS, with θ\theta denote the angle between electron momentum and EM field wavevector, and EE_{\perp} denotes the perpendicular component of electric field. This reduced form gives the importance of the radiation reaction when one estimates the ratio between FRRF_{\mathrm{RR}} and Lorentz force FLF_{L}:

|FRR|/|FL|23αfγeχe2×108a0γe2(forwavelength=1μm),\mathcal{R}\equiv|F_{\mathrm{RR}}|/|F_{\mathrm{L}}|\sim\frac{2}{3}\alpha_{f}\gamma_{e}\chi_{e}\simeq 2\times 10^{-8}a_{0}\gamma_{e}^{2}\leavevmode\nobreak\ (\mathrm{for\leavevmode\nobreak\ wavelength=1\leavevmode\nobreak\ \mu m}), (28)

apparently, once γe2a0106\gamma_{e}^{2}a_{0}\gtrsim 10^{6}, the radiation reaction force should be considered.

III.1.2 Modified Landau-Lifshitz equation

The LL equation is only applicable when the radiation reaction force is much weaker than the Lorentz force, or, the radiation per laser period is much smaller than mec2m_{e}c^{2} Bulanov et al. (2013a). Once χe\chi_{e} is larger than 10210^{-2} and above, the quantum nature of the radiation dominates the process. On one hand, the radiation spectra will be suppressed and deviate from the radiation force in LL equation; on the other hand, the radiation will be stochastic and discontinuous. However, when the stochasticity is not relevance for the detection and one only cares about the average effect (integrated spectra), a correction to the radiation force can be made, i.e., quantum correction Nikishov and Ritus (1964); Sokolov et al. (2009); Piazza, Hatsagortsyan, and Keitel (2010); Thomas et al. (2012)

𝐅RR,quantum=q(χ)𝐅RR,classical,\mathbf{F}_{\mathrm{RR,quantum}}=q(\chi)\mathbf{F}_{\mathrm{RR,classical}}, (29)

where

q(χ)\displaystyle q(\chi) =\displaystyle= IQEDIC,\displaystyle\frac{I_{\mathrm{QED}}}{I_{\mathrm{C}}}, (30)
IQED\displaystyle I_{\mathrm{QED}} =\displaystyle= mc2c(kk)dWfidηdr0𝑑r0,\displaystyle mc^{2}\int c(k\cdot k^{\prime})\frac{dW_{fi}}{d\eta dr_{0}}dr_{0}, (31)
IC\displaystyle I_{\mathrm{C}} =\displaystyle= 2e4E23m2c3,\displaystyle\frac{2e^{4}E^{\prime 2}}{3m^{2}c^{3}}, (32)

with WfiW_{fi} being the radiation probability Sokolov et al. (2010), η=k0zω0t\eta=k_{0}z-\omega_{0}t, r0=2(kk)3χ(kpi)r_{0}=\frac{2\left(k\cdot k^{\prime}\right)}{3\chi\left(k\cdot p_{i}\right)}, and EE^{\prime} the electric fields in the instantaneous frame of the electron. pip_{i} is the four-momentum of the electron before radiation. kk and kk^{\prime} are the four-wavevector of local EM field, and the radiated photon, respectively. See q(χ)q(\chi) in Figure. 4. Here, the ratio between the QED radiation power and the classical one, i.e., the re-scaling factor q(χ)q(\chi), is the same with the factor in Ref. Bulanov et al. (2013b):

q(χe)1[1+4.8(1+χe)ln(1+1.7χe)+2.44χe2]2/3,q(\chi_{e})\approx\frac{1}{\left[1+4.8(1+\chi_{e})\ln(1+1.7\chi_{e})+2.44\chi_{e}^{2}\right]^{2/3}}, (33)

or

q(χe)1(1+8.93χe+2.41χe2)2/3.q(\chi_{e})\approx\frac{1}{(1+8.93\chi_{e}+2.41\chi_{e}^{2})^{2/3}}. (34)
Refer to caption
Figure 4: q(χ)q(\chi) vs χ\chi.

In the ultrarelativistic limit, an alternative formula can be employed as Niel et al. (2018); Derouillat et al. (2018b)

𝐅RR,quantum=q(χ)Pclχe2𝜷/𝜷2c.\mathbf{F}_{\mathrm{RR,quantum}}=q(\chi)P_{\mathrm{cl}}\chi^{2}_{e}\bm{\beta}/\bm{\beta}^{2}c. (35)

Apparently, once χ102\chi\gtrsim 10^{-2}, the quantum corrected version should be used.

III.1.3 Algorithms of the Radiative Pusher

Here, we plug the radiative correction (either classical or quantum corrected version) into the standard Boris pusher as follows Tamburini et al. (2010):

𝐩n+1/2𝐩n1/2Δt=𝐅n=𝐅Ln+𝐅Rn.\frac{\mathbf{p}^{n+1/2}-\mathbf{p}^{n-1/2}}{\Delta t}=\mathbf{F}^{n}=\mathbf{F}^{n}_{L}+\mathbf{F}^{n}_{R}. (36)

First we use the Boris step

𝐩Ln+1/2𝐩Ln1/2Δt=𝐅Ln,\frac{\mathbf{p}_{L}^{n+1/2}-\mathbf{p}_{L}^{n-1/2}}{\Delta t}=\mathbf{F}_{L}^{n}, (37)

and then use the radiative correction push

𝐩Rn+1/2𝐩Rn1/2Δt=𝐅Rn,\frac{\mathbf{p}^{n+1/2}_{R}-\mathbf{p}^{n-1/2}_{R}}{\Delta t}=\mathbf{F}_{R}^{n}, (38)

where 𝐩Ln1/2=𝐩Rn1/2=𝐩n1/2\mathbf{p}^{n-1/2}_{L}=\mathbf{p}^{n-1/2}_{R}=\mathbf{p}^{n-1/2}, and the final momentum is given by

𝐩n+1/2=𝐩Ln+1/2+𝐩Rn+1/2𝐩n1/2=𝐩Ln+1/2+𝐅RnΔt.\mathbf{p}^{n+1/2}=\mathbf{p}^{n+1/2}_{L}+\mathbf{p}^{n+1/2}_{R}-\mathbf{p}^{n-1/2}=\mathbf{p}^{n+1/2}_{L}+\mathbf{F}_{R}^{n}\Delta t. (39)

With this algorithm, the Boris pusher is attained.

See a comparison between different solver calculated dynamics in Figure. 5. For the Lorentz equation without radiation, the particle momentum and energy are analytically given by Avetissian (2015)

𝐩(τ)\displaystyle{\bf p}(\tau) =\displaystyle= 𝐩0𝐀(τ)+k^𝐀2(τ)2𝐩0𝐀(τ)2(γ0𝐩0k^)\displaystyle{\bf p}_{0}-{\bf A}(\tau)+\hat{k}\frac{{\bf A}^{2}(\tau)-2{\bf p}_{0}\cdot{\bf A}(\tau)}{2(\gamma_{0}-{\bf p}_{0}\cdot\hat{k})} (40)
γ(τ)\displaystyle\gamma(\tau) =\displaystyle= γ0+𝐀2(τ)2𝐩0𝐀(τ)2(γ0𝐩0k^)\displaystyle\gamma_{0}+\frac{{\bf A}^{2}(\tau)-2{\bf p}_{0}\cdot{\bf A}(\tau)}{2(\gamma_{0}-{\bf p}_{0}\cdot\hat{k})} (41)

where 𝐀(τ)=τ0τ𝐄(τ)𝑑τ{\bf A}(\tau)=-\int{\tau_{0}}^{\tau}{\bf E(\tau)}d\tau is the external field vector potential, τ\tau is the proper time, k^\hat{k} is the normalized wavevector of the field, γ,𝐩\gamma,{\bf p}, and γ0,𝐩0\gamma_{0},{\bf p}_{0} the instantaneous and initial (with notation of 0) Lorentz factor and momentum of the particle, respectively. For a planewave with a temporal profile, the momentum and energy gain vanish as 𝐀()=𝐀()=0{\bf A}(\infty)={\bf A}(-\infty)=0. The planewave solution with radiation reaction can be found in Ref. Piazza (2008). However, no explicit solution exists when the quantum correction term is included, as shown in Fig. 5.

Refer to caption
Figure 5: Dynamics of an electron (𝐩0=(4000,0,0)\mathbf{p}_{0}=(4000,0,0)) scattering with an ultraintense linearly polarized laser pulse of Ey=100exp[(ϕ10010π)2]cosϕE_{y}=100\exp\left[-\left(\frac{\phi-100}{10\pi}\right)^{2}\right]\cos\phi with ϕt+x\phi\equiv t+x. Here, “Lo.”, “LL.”, and “MLL.” denote results calculated from Lorentz, LL and modified LL equations, respectively.

III.2 Spin dynamics

The consideration of electron/positron spin becomes crucial in addition to the kinetics when plasma electrons are polarized or when there is an ultrastrong EM field interacting with electron/positron and γ\gamma photons. The significance of this aspect has been highlighted in recent literature, particularly in the context of relativistic charged particles in EM waves and laser-matter interactions Hu and Keitel (1999); Walser et al. (2002). This issue can be addressed either by employing the computational Dirac solver Mocken and Keitel (2008) or by utilizing the Foldy-Wouthuysen transformation and the quantum operator formalism, such as the reduction of the Heisenberg equation to a classical precession equation Bauke et al. (2014); Wen, Keitel, and Bauke (2017). However, these approaches are not directly applicable to many-particle systems. Here and throughout this paper, the spin is defined as a unit vector 𝐒\mathbf{S}. In the absence of radiation, the electron/positron spin precesses around the magnetic field in the rest frame and can be described by the classical Thomas-Bargmann-Michel-Telegdi (T-BMT) equation. This equation is equivalent to the quantum-mechanical Heisenberg equation of motion for the spin operator or the polarization vector of the system Bauke et al. (2014); Wen, Keitel, and Bauke (2017); Jackson (2021). When radiation becomes significant, the electron/positron spin also undergoes flipping to quantized axes, typically aligned with the magnetic field in the rest frame. By neglecting stochasticity, this effect can be appropriately accounted for by incorporating the radiative correction to the T-BMT equation, which is analogous to the quantum correction to the Landau-Lifshitz equation.

III.2.1 T-BMT equation

The non-radiative spin dynamics of an electron is given by

(d𝐒dt)T=𝐒×𝛀𝐒×[(g21)γeγe+1(𝜷𝐁)𝜷+(g21+1γe)𝐁(g2γeγe+1)𝜷×𝐄],\begin{split}\left(\frac{{\rm d}{\bf S}}{{\rm d}t}\right)_{T}=\leavevmode\nobreak\ &\mathbf{S}\times\mathbf{\Omega}\equiv{\bf S}\times\left[-\left(\frac{g}{2}-1\right)\frac{\gamma_{e}}{\gamma_{e}+1}\left({\bm{\beta}}\cdot{\bf B}\right)\cdot{\bm{\beta}}\right.\\ &\left.+\left(\frac{g}{2}-1+\frac{1}{\gamma_{e}}\right){\bf B}-\left(\frac{g}{2}-\frac{\gamma_{e}}{\gamma_{e}+1}\right)\bm{\beta}\times{\bf E}\right],\end{split} (42)

where 𝐄{\bf E} and 𝐁{\bf B} are the normalized electric and magnetic fields, respectively, and gg is the electron Landé factor, respectively. Since this equation is a pure rotation around the precession frequency of 𝛀\mathbf{\Omega}, the Boris rotation is much more preferable than other solver for ordinary differential equations (for instance, the Runge-Kutta, etc.). Here, 𝛀\mathbf{\Omega} plays the role of 𝐁/γ\mathbf{B}/\gamma in the Eqs. (3) and (5-10). For other particle species, both the charge, mass and Landé factor for that species should be employed.

III.2.2 Radiative T-BMT equation

When the radiation damping is no longer negligible, the radiation can also affect the spin dynamics. In the weakly radiation regime, this radiation induced modification of the spin dynamics can be handled with a similar way as in the Landau-Lifshitz equation. Here, the modified version of T-BMT equation or the radiative T-BMT equation is thus given by

d𝐒dt=(d𝐒dt)T+(d𝐒dt)R,\frac{{\rm d}{\bf S}}{{\rm d}t}=\left(\frac{{\rm d}{\bf S}}{{\rm d}t}\right)_{T}+\left(\frac{{\rm d}{\bf S}}{{\rm d}t}\right)_{R}, (43)

with the first (labeled with “T”) and second (labeled with “R”) terms denote the non-radiative precession in Eq. (42), and radiative correction, respectively. The radiative term is given by

(d𝐒dt)R=P[ψ1(χ)𝐒+ψ2(χ)(𝐒𝜷)𝜷+ψ3(χ)𝐧^B],\left(\frac{{\rm d}{\bf S}}{{\rm d}t}\right)_{R}=-P\left[\psi_{1}(\chi){\bf S}+\psi_{2}(\chi)({\bf S}\cdot{\bm{\beta}}){\bm{\beta}}+\psi_{3}(\chi){\hat{\bf n}}_{B}\right], (44)

where, P=αf3πγeξLP=\frac{\alpha_{f}}{\sqrt{3}\pi\gamma_{e}\xi_{L}}, ψ1(χe)\psi_{1}(\chi_{e}) = 0u′′duK23(u)\int_{0}^{\infty}u^{\prime\prime}{\rm d}u{\rm K}_{\frac{2}{3}}(u^{\prime}), ψ2(χe)\psi_{2}(\chi_{e}) = 0u′′duudxK13(x)\int_{0}^{\infty}u^{\prime\prime}{\rm d}u\int_{u^{\prime}}^{\infty}{\rm d}x{\rm K}_{\frac{1}{3}}(x)-ψ1(χe)\psi_{1}(\chi_{e}), ψ3(χ)\psi_{3}(\chi) = 0u′′duK13(u)\int_{0}^{\infty}u^{\prime\prime}{\rm d}u{\rm K}_{\frac{1}{3}}(u^{\prime}), u=2u/3χeu^{\prime}=2u/3\chi_{e}, u′′=u2/(1+u)3u^{\prime\prime}=u^{2}/(1+u)^{3}, and Kn{\rm K}_{n} is the nnth-order modified Bessel function of the second kind, 𝐧^B=𝜷×𝐚^\hat{{\bf n}}_{B}={\bm{\beta}}\times\hat{{\bf a}}, 𝜷{\bm{\beta}} and 𝐚^\hat{{\bf a}} denote the normalized velocity and acceleration vector Baĭer (1972); Guo et al. (2020).

III.2.3 Algorithms of simulating the spin precession

The simulation algorithms of spin precession are quite similar to the cases of EOM, i.e., Lorentz equation and radiative EOM, i.e., LL/MLL equations. Therefore, the T-BMT equation is simulated via the Boris rotation without the pre- and post- acceleration term, but with only the rotation term 𝛀\mathbf{\Omega}. In SLIPs, a standard Boris algorithm is used

𝐒\displaystyle\mathbf{S}^{\prime} =\displaystyle= 𝐒n1/2+𝐒n1/2×𝐭,\displaystyle\mathbf{S}^{n-1/2}+\mathbf{S}^{n-1/2}\times\mathbf{t}, (45)
𝐒n+1/2\displaystyle\mathbf{S}^{n+1/2} =\displaystyle= 𝐒n1/2+𝐒×𝐨,\displaystyle\mathbf{S}^{n-1/2}+\mathbf{S}^{\prime}\times\mathbf{o}, (46)
𝐭\displaystyle\mathbf{t} =\displaystyle= qΔt2𝛀n,\displaystyle\frac{q\Delta t}{2}\mathbf{\Omega}^{n}, (47)
𝐨\displaystyle\mathbf{o} =\displaystyle= 2𝐭1+t2.\displaystyle\frac{2\mathbf{t}}{1+t^{2}}. (48)

For the radiative T-BMT equation, there will be an extra term (d𝐒dt)R\left(\frac{d\mathbf{S}}{dt}\right)_{R} which is equivalent to the electric field term in the Lorentz equation. Therefore, the straightforward algorithm is given by

𝐒Tn1/2=𝐒n1/2+Δt2(d𝐒dt)R,\mathbf{S}^{n-1/2}_{T}=\mathbf{S}^{n-1/2}+\frac{\Delta t}{2}\left(\frac{d\mathbf{S}}{dt}\right)_{R}, (49)

Boris T-BMT Eqs. (45-48),

𝐒n+1/2=𝐒Tn+1/2+Δt2(d𝐒dt)R.\mathbf{S}^{n+1/2}=\mathbf{S}^{n+1/2}_{T}+\frac{\Delta t}{2}\left(\frac{d\mathbf{S}}{dt}\right)_{R}. (50)
Refer to caption
Figure 6: Spin dynamics of an electron [𝐩0=(4000,0,0)\mathbf{p}_{0}=(4000,0,0), 𝐬0=(1,0,0)\mathbf{s}_{0}=(1,0,0)] scattering with an ultraintense linearly polarized laser pulse of Ey=100exp[(ϕ10010π)2]cosϕE_{y}=100\exp\left[-\left(\frac{\phi-100}{10\pi}\right)^{2}\right]\cos\phi with ϕt+x\phi\equiv t+x. Here, “A”, “B”, “C”, and “D” denote calculated via equations of Lorentz + BMT, Lorentz + M-BMT, LL + M-BMT, and MLL + M-BMT.

Figure. 6 shows the comparison between the T-BMT and radiative T-BMT equations for different cases: Lorentz equation + BMT equation (“A”), Lorentz equation + M-BMT equation (“B”), LL equation + M-BMT equation (“C”), and MLL equation + M-BMT equation (“D”). The evolution of each spin component depends on different terms. In our setup, the magnetic field is along the zz direction, so the spin precession occurs in the xx-yy plane, affecting SxS_{x} and SyS_{y}. The radiation reaction mainly affects SzS_{z}. In the case without radiation reaction, case “A”, SxS_{x} and SyS_{y} oscillate due to the precession and are conserved in Fig. 6(d). In the case with only the spin radiation reaction, case “B”, SxS_{x} is strongly damped by the term (d𝐒dt)R\left(\frac{d{\bf S}}{dt}\right)_{R}. SyS_{y} and SzS_{z} oscillate due to the combined effects of precession and radiation reaction, as shown in Figs. 6(a) and (b). When both spin and momentum radiation reactions are included, case “C” (LL equation), the particle’s momentum and energy decrease, i.e., γe\gamma_{e} decreases, which lowers the spin radiation reaction term (d𝐒dt)R(χe)\left(\frac{d{\bf S}}{dt}\right)_{R}(\chi_{e}) and the damping of SxS_{x} and SzS_{z} (see Fig. 6(c) for the comparison of “B”, “D” and “C” in terms of SzS_{z} amplitude). Simultaneously, the precession term (d𝐒dt)TB/γe\left(\frac{d{\bf S}}{dt}\right)_{T}\propto B/\gamma_{e} grows with decreasing γe\gamma_{e}, which amplifies the oscillation of SyS_{y}, as shown by the contrast of “B” (Lorentz), “D” (MLL) and “C” (LL) in Fig. 6(b).

III.3 Nonlinear Compton scattering

When the radiation is strong (χe0.1\chi_{e}\gtrsim 0.1), the stochastic nature of the radiation can no longer be neglected in the laser-beam/plasma interactions. And the photon dynamics should be taken into account. In this regime, the full stochastic quantum process is required to describe the strong radiation, i.e., the nonlinear Compton scattering (NCS) Bell and Kirk (2008); Kirk, Bell, and Arka (2009); Ridgers et al. (2014). Therefore, the radiation reaction and photon emission process will be calculated via the MC simulation based on the NCS probabilities. Besides, the spin of electron/positron and polarization of the NCS photons will be also included in the MC simulations.

III.3.1 Spin-resolved/summed nonlinear Compton scattering

When the laser intensity a0a_{0} and the electron energy γe\gamma_{e} permits the local-constant-cross field approximate (LCFA), i.e., a01a_{0}\gg 1, χe1\chi_{e}\gtrsim 1, the polarization- and spin-resolved emission rate for the NCS is given by Li et al. (2020); Xue et al. (2020); Liu et al. (2022)

d2Wfidudt=WR2(F0+ξ1F1+ξ2F2+ξ3F3),\frac{{\rm d^{2}}W_{fi}}{{\rm d}u{\rm d}t}=\frac{W_{R}}{2}\left(F_{0}+\xi_{1}F_{1}+\xi_{2}F_{2}+\xi_{3}F_{3}\right), (51)

where, the photon polarization is represented by the Stokes parameters (ξ1\xi_{1}, ξ2\xi_{2}, ξ3\xi_{3}), defined with respect to the axes 𝐏^1=𝐚^𝐧^(𝐧^𝐚^)\hat{{\bf P}}_{1}=\hat{\bf a}-\hat{\bf n}(\hat{\bf n}\cdot\hat{\bf a}) and 𝐏^2=𝐧^×𝐏^1\hat{{\bf P}}_{2}=\hat{\bf n}\times\hat{\bf P}_{1} Green and Harvey (2015), with the photon emission direction 𝐧^=𝐩e/|𝐩e|\hat{\bf n}={\bf p}_{e}/|{\bf p}_{e}| along the momentum 𝐩e{\bf p}_{e} of the ultrarelativistic electron. The variables introduced in Eq. (51) read:

F0\displaystyle F_{0} =\displaystyle= (2+u)2[IntK13(u)2K23(u)](1+Sif)+u2(1Sif)\displaystyle-(2+u)^{2}\left[{\rm IntK}_{\frac{1}{3}}(u^{\prime})-2{\rm K}_{\frac{2}{3}}(u^{\prime})\right](1+{S}_{if})+u^{2}(1-{S}_{if}) (52)
[IntK13(u)+2K23(u)]+2u2SifIntK13(u)(4u+2u2)\displaystyle\left[{\rm IntK}_{\frac{1}{3}}(u^{\prime})+2{\rm K}_{\frac{2}{3}}(u^{\prime})\right]+2u^{2}{S}_{if}{\rm IntK}_{\frac{1}{3}}(u^{\prime})-(4u+2u^{2})
(𝐒f+𝐒i)[𝐧^×𝐚^]K13(u)2u2(𝐒f𝐒i)[𝐧^×𝐚^]K13(u)\displaystyle({\bf S}_{f}+{\bf S}_{i})\cdot\left[\hat{\bf n}\times\hat{{\bf a}}\right]{\rm K}_{\frac{1}{3}}(u^{\prime})-2u^{2}({\bf S}_{f}-{\bf S}_{i})\cdot\left[\hat{\bf n}\times\hat{{\bf a}}\right]{\rm K}_{\frac{1}{3}}(u^{\prime})
4u2[IntK13(u)K23(u)](𝐒i𝐧^)(𝐒f𝐧^),\displaystyle-4u^{2}\left[{\rm IntK}_{\frac{1}{3}}(u^{\prime})-{\rm K}_{\frac{2}{3}}(u^{\prime})\right]({\bf S}_{i}\cdot\hat{\bf n})({\bf S}_{f}\cdot\hat{\bf n}),
F1\displaystyle F_{1} =\displaystyle= 2u2IntK13(u){(𝐒i𝐚^)𝐒f[𝐧^×𝐚^]+(𝐒f𝐚^)𝐒i[𝐧^×𝐚^]}+\displaystyle-2u^{2}{\rm IntK}_{\frac{1}{3}}(u^{\prime})\left\{({\bf S}_{i}\cdot\hat{\bf a}){\bf S}_{f}\cdot\left[\hat{\bf n}\times\hat{\bf a}\right]+({\bf S}_{f}\cdot\hat{\bf a}){\bf S}_{i}\cdot\left[\hat{\bf n}\times\hat{\bf a}\right]\right\}+ (53)
4u[(𝐒i𝐚^)(1+u)+(𝐒f𝐚^)]K13(u)+\displaystyle 4u\left[({\bf S}_{i}\cdot\hat{\bf a})(1+u)+({\bf S}_{f}\cdot\hat{\bf a})\right]{\rm K}_{\frac{1}{3}}(u^{\prime})+
2u(2+u)𝐧^[𝐒f×𝐒i]K23(u),\displaystyle 2u(2+u)\hat{\bf n}\cdot[{\bf S}_{f}\times{\bf S}_{i}]{\rm K}_{\frac{2}{3}}(u^{\prime}),
F2\displaystyle F_{2} =\displaystyle= {2u2{(𝐒i𝐧^)𝐒f[𝐧^×𝐚^]+(𝐒f𝐧^)𝐒i[𝐧^×𝐚^]}+2u(2+u)\displaystyle-\left\{2u^{2}\left\{({\bf S}_{i}\cdot\hat{\bf n}){\bf S}_{f}\cdot\left[\hat{\bf n}\times\hat{\bf a}\right]+({\bf S}_{f}\cdot\hat{\bf n}){\bf S}_{i}\cdot\left[\hat{\bf n}\times\hat{\bf a}\right]\right\}+2u(2+u)\right. (54)
𝐚^[𝐒f×𝐒i]}K13(u)4u[(𝐒i𝐧^)+(𝐒f𝐧^)(1+u)]\displaystyle\left.\hat{\bf a}\cdot[{\bf S}_{f}\times{\bf S}_{i}]\right\}{\rm K}_{\frac{1}{3}}(u^{\prime})-4u\left[({\bf S}_{i}\cdot\hat{\bf n})+({\bf S}_{f}\cdot\hat{\bf n})(1+u)\right]
IntK13(u)+4u(2+u)[(𝐒i𝐧^)+(𝐒f𝐧^)]K23(u),\displaystyle{\rm IntK}_{\frac{1}{3}}(u^{\prime})+4u(2+u)\left[({\bf S}_{i}\cdot\hat{\bf n})+({\bf S}_{f}\cdot\hat{\bf n})\right]{\rm K}_{\frac{2}{3}}(u^{\prime}),
F3\displaystyle F_{3} =\displaystyle= 4[1+u+(1+u+u22)Sifu22(𝐒i𝐧^)(𝐒f𝐧^)]K23(u)\displaystyle 4\left[1+u+(1+u+\frac{u^{2}}{2}){S}_{if}-\frac{u^{2}}{2}({\bf S}_{i}\cdot\hat{\bf n})({\bf S}_{f}\cdot\hat{\bf n})\right]{\rm K}_{\frac{2}{3}}(u^{\prime}) (55)
+2u2{𝐒i[𝐧^×𝐚^]𝐒f[𝐧^×𝐚^](𝐒i𝐚^)(𝐒f𝐚^)}IntK13(u)\displaystyle+2u^{2}\left\{{\bf S}_{i}\cdot\left[\hat{\bf n}\times\hat{\bf a}\right]{\bf S}_{f}\cdot\left[\hat{\bf n}\times\hat{\bf a}\right]-({\bf S}_{i}\cdot\hat{\bf a})({\bf S}_{f}\cdot\hat{\bf a})\right\}{\rm IntK}_{\frac{1}{3}}(u^{\prime})
4u[(1+u)𝐒i[𝐧^×𝐚^]+𝐒f[𝐧^×𝐚^]]K13(u),\displaystyle-4u\left[(1+u){\bf S}_{i}\left[\hat{\bf n}\times\hat{\bf a}\right]+{\bf S}_{f}\left[\hat{\bf n}\times\hat{\bf a}\right]\right]{\rm K}_{\frac{1}{3}}(u^{\prime}),

where WR=αf/[83πξL(1+u)3]W_{R}=\alpha_{f}/\left[8\sqrt{3}\pi\xi_{L}{\left(1+u\right)^{3}}\right], u=2u/3χu^{\prime}=2u/3\chi, u=ωγ/(εiωγ)u=\omega_{\gamma}/\left(\varepsilon_{i}-\omega_{\gamma}\right), IntK13(u)udzK13(z){\rm IntK}_{\frac{1}{3}}(u^{\prime})\equiv\int_{u^{\prime}}^{\infty}{\rm d}z{\rm K}_{\frac{1}{3}}(z), ωγ\omega_{\gamma} the emitted photon energy, εi\varepsilon_{i} the electron energy before radiation, 𝐚^=𝐚/|𝐚|\hat{{\bf a}}={\bf a}/|{\bf a}| the direction of the electron acceleration 𝐚{\bf a}, 𝐒i{\bf S}_{i} and 𝐒f{\bf S}_{f} denote the electron spin vectors before and after radiation, respectively, |𝐒i,f|=1|{\bf S}_{i,f}|=1, and Sif𝐒i𝐒f{S}_{if}\equiv{\bf S}_{i}\cdot{\bf S}_{f}.

Summing over the photon polarization, the electron spin-resolved emission probability can be written as Li et al. (2020); Wan et al. (2020b); Xue et al. (2020):

d2Wfidudt=WR{(2+u)2[IntK13(u)2K23(u)](1+Sif)+\displaystyle\frac{{\rm d}^{2}W_{fi}}{{\rm d}u{\rm d}t}=W_{R}\left\{-(2+u)^{2}\left[{\rm IntK}_{\frac{1}{3}}(u^{\prime})-2{\rm K}_{\frac{2}{3}}(u^{\prime})\right](1+{S}_{if})+\right.
u2[IntK13(u)+2K23(u)](1𝐒if)+2u2SifIntK13(u)\displaystyle\left.u^{2}\left[{\rm IntK}_{\frac{1}{3}}(u^{\prime})+2{\rm K}_{\frac{2}{3}}(u^{\prime})\right](1-{\bf S}_{if})+2u^{2}{S}_{if}{\rm IntK}_{\frac{1}{3}}(u^{\prime})-\right.
(4u+2u2)(𝐒f+𝐒i)[𝐧×𝐚^]K13(u)2u2(𝐒f𝐒i)[𝐧×𝐚^]\displaystyle\left.(4u+2u^{2})({\bf S}_{f}+{\bf S}_{i})\left[{\bf n}\times\hat{{\bf a}}\right]{\rm K}_{\frac{1}{3}}(u^{\prime})-2u^{2}({\bf S}_{f}-{\bf S}_{i})\left[{\bf n}\times\hat{{\bf a}}\right]\right.
K13(u)4u2[IntK13(u)K23(u)](𝐒i𝐧)(𝐒f𝐧)}.\displaystyle\left.{\rm K}_{\frac{1}{3}}(u^{\prime})-4u^{2}\left[{\rm IntK}_{\frac{1}{3}}(u^{\prime})-{\rm K}_{\frac{2}{3}}(u^{\prime})\right]({\bf S}_{i}\cdot{\bf n})({\bf S}_{f}\cdot{\bf n})\right\}. (56)

Summing over the final states 𝐒f{\bf S}_{f}, the initial spin-resolved radiation probability is obtained:

d2W¯fidudt\displaystyle\frac{{\rm d}^{2}{\overline{W}}_{fi}}{{\rm d}u{\rm d}t} =\displaystyle= 8WR{(1+u)IntK13(u)+(2+2u+u2)K23(u)\displaystyle 8W_{R}\left\{-(1+u){\rm IntK}_{\frac{1}{3}}(u^{\prime})+(2+2u+u^{2}){\rm K}_{\frac{2}{3}}(u^{\prime})\right. (57)
u𝐒i[𝐧×𝐚^]K13(u)}.\displaystyle\left.-u{\bf S}_{i}\cdot\left[{\bf n}\times\hat{{\bf a}}\right]{\rm K}_{\frac{1}{3}}(u^{\prime})\right\}.

And by averaging the electron initial spin, one obtains the widely used radiation probability for the unpolarized initial particles Ritus (1979); Nikishov and Ritus (1964); Ritus (1985).

During the photon emission simulation, electron/positron spin transitions to either a parallel or antiparallel orientation with respect to the spin quantized axis (SQA), depending on the occurrence of emission. Upon photon emission, the SQA is choosen to obtains the maximum transition probabily, which is along the energy-resolved average polarization

𝐒fR=𝐠(w+𝐟𝐒i).\displaystyle\mathbf{S}_{\rm f}^{\rm R}=\frac{\mathbf{g}}{(w+\mathbf{f}\cdot\mathbf{S}_{i})}. (58)

These are obtained by summing over the photon polarization and keeps the dependence on initial and final spin of electrons:

d2Wraddudt\displaystyle\frac{{\rm d}^{2}W_{\rm rad}}{{\rm d}u{\rm d}t} =\displaystyle= Wr(w+𝐟𝐒i+𝐠𝐒f),\displaystyle{W_{\rm r}}(w+\mathbf{f}\cdot\mathbf{S}_{i}+\mathbf{g}\cdot\mathbf{S}_{f}), (59)

where

w\displaystyle w =\displaystyle= (1+u)K13(ρ)+(2+2u+u2)K23(ρ),\displaystyle-(1+u){\rm K}_{\frac{1}{3}}(\rho^{\prime})+(2+2u+u^{2}){\rm K}_{\frac{2}{3}}(\rho^{\prime}),
𝐟\displaystyle\mathbf{f} =\displaystyle= uIntK13(ρ)𝐯^×𝐚^,\displaystyle u{\rm IntK}_{\frac{1}{3}}(\rho^{\prime})\hat{{\mathbf{v}}}\times\hat{{\mathbf{a}}},
𝐠\displaystyle\mathbf{g} =\displaystyle= (1+u)[K13(ρ)2K23(ρ)]𝐒i(1+u)u\displaystyle-(1+u)\left[{\rm K}_{\frac{1}{3}}(\rho^{\prime})-2{\rm K}_{\frac{2}{3}}(\rho^{\prime})\right]\mathbf{S}_{i}-(1+u)u
×IntK13(ρ)𝐯^×𝐚^u2[K13(ρ)K23(ρ)](𝐒i𝐯^)𝐯^.\displaystyle\times{\rm IntK}_{\frac{1}{3}}(\rho^{\prime})\hat{{\mathbf{v}}}\times\hat{{\mathbf{a}}}-u^{2}\left[{\rm K}_{\frac{1}{3}}(\rho^{\prime})-{\rm K}_{\frac{2}{3}}(\rho^{\prime})\right](\mathbf{S}_{i}\cdot\hat{{\mathbf{v}}})\hat{{\mathbf{v}}}.

Conversely, without emission, the SQA aligns with another SQA Li et al. (2020); Yokoya et al. (2011). In both cases, the final spin is determined by assessing the probability density for alignment, either parallel or antiparallel, with the SQA. We account for the stochastic spin flip during photon emission using four random numbers r1,2,3,4[0,1)r_{1,2,3,4}\in[0,1). The procedure is as follows: First, at each simulation time step Δt\Delta t, a photon with energy ωγ=r1γe\omega_{\gamma}=r_{1}\gamma_{e} is emitted if the spin-dependent radiation probability in Eq.(57), Pd2W¯fi(χe,r1,γe,𝐒i)/dudtΔtP\equiv\mathrm{d}^{2}\overline{W}_{fi}(\chi_{e},r_{1},\gamma_{e},{\bf S}_{i})/\mathrm{d}u\mathrm{d}t\cdot\Delta t, meets or exceeds r2r_{2}, following the “von Neumann’s rejection method”. The final momentum for the electron and photon is given by 𝐩f=(1r1)𝐩i{\bf p}_{f}=(1-r_{1}){\bf p}_{i} and 𝐤=r1𝐩i\hbar{\bf k}=r_{1}{\bf p}_{i}, respectively. Next, the electron spin flips either parallel (spin-up) or antiparallel (spin-down) to the SQA with probabilities of PflipWfi/PP_{\mathrm{flip}}\equiv W_{fi}^{\uparrow}/P and Wfi/PW_{fi}^{\downarrow}/P, respectively, where Wfi,d2Wfi,/dudtΔtW_{fi}^{\uparrow,\downarrow}\equiv\mathrm{d^{2}}W_{fi}^{\uparrow,\downarrow}/\mathrm{d}u\mathrm{d}t\cdot\Delta t from Eq. (59). In other words, the final spin 𝐒f{\bf S}_{f} will flip parallel to the SQA if r3<Pflipr_{3}<P_{\mathrm{flip}}, and vice versa; see the flow chart of the NCS in Figure. 7. In the alternative scenario, i.e., no photon is emitted, the average final spin is given by 𝐒¯f=𝐒i(1WΔt)𝐟Δt1(W+𝐟𝐒i)Δt\overline{\bf S}_{f}=\frac{{\bf S}_{i}(1-W\Delta t)-{\bf f}\Delta t}{1-(W+{\bf f}\cdot{\bf S}_{i})\Delta t}, where, W16WR((1+u)IntK1/3(u)+(2+2u+u2)K2/3(u))W\equiv 16W_{R}(-(1+u)\mathrm{IntK}_{1/3}(u^{\prime})+(2+2u+u^{2})\mathrm{K}_{2/3}(u^{\prime})), and 𝐟16WR(𝐧×𝐚^K1/3(u)){\bf f}\equiv-16W_{R}({\bf n}\times{\bf\hat{a}}\mathrm{K}_{1/3}(u^{\prime})) Yokoya et al. (2011); Li et al. (2020). Then the SQA is given by 𝐒¯f/|𝐒¯f|\overline{\bf S}_{f}/|\overline{\bf S}_{f}|, and the probability for the aligned case is given by |𝐒¯f||\overline{\bf S}_{f}|, and 1|𝐒¯f|1-|\overline{\bf S}_{f}| for the anti-parallel case.

Refer to caption
Figure 7: Flowchart of the spin- and polarization-resolved NCS

Finally, the polarization of the emitted photon is determined by considering that the average polarization is in a mixed state. The basis for the emitted photon is chosen as two orthogonal pure states with the Stokes parameters 𝝃^±±\hat{\bm{\xi}}^{\pm}\equiv\pm(ξ¯1\overline{\xi}_{1}, ξ¯2\overline{\xi}_{2}, ξ¯3\overline{\xi}_{3})/ξ¯0\overline{\xi}_{0}, where ξ¯0(ξ¯1)2+(ξ¯2)2+(ξ¯3)2\overline{\xi}_{0}\equiv\sqrt{(\overline{\xi}_{1})^{2}+(\overline{\xi}_{2})^{2}+(\overline{\xi}_{3})^{2}}. The probabilities for the photon emission in these states Wfi±W_{fi}^{\pm} are given by Eq. (51). A stochastic procedure is defined using the 4th random number r4r_{4}: if Wfi+/W¯fir4W_{fi}^{+}/\overline{W}_{fi}\geq r_{4}, the polarization state 𝝃^+\hat{\bm{\xi}}^{+} will be chosen; otherwise, the polarization state will be assigned as 𝝃^\hat{\bm{\xi}}^{-}. Here, W¯fiWRF0\overline{W}_{fi}\equiv W_{R}F_{0} and Wfi±WR(F0+j=1,3ξj±Fj)W^{\pm}_{fi}\equiv W_{R}(F_{0}+\sum_{j=1,3}\xi^{\pm}_{j}F_{j}).

Between photon emissions, the electron dynamics in the external laser field are described by the Lorentz equations, d𝐩/dt=e(𝐄+𝜷×𝐁)d{\bf p}/dt=-e(\bf{E}+\bm{\beta}\times\bf{B}), and are simulated using the Boris rotation method, as shown in Eqs. (5-10). Due to the small emission angle for an ultrarelativistic electron, the photon is assumed to be emitted along the parental electron velocity, i.e., 𝐩f(1ωγ/|𝐩i|)𝐩i{\bf p}_{f}\approx(1-\omega{\gamma}/|{\bf p}_{i}|){\bf p}i. Besides, in this simulation, interference effects between emissions in adjacent coherent lengths (lfλL/a0l_{f}\simeq\lambda_{L}/a_{0}) are negligible when the employed laser intensity is ultrastrong, i.e., a01a_{0}\gg 1. Therefore, the photon emissions happening in each coherent length are independent of each other.

Examples of the electron dynamics and spin can be seen in Figure.8, apparently, the average value matches the MLL equations for dynamics and MLL + M-BMT equation for spins. Besides, the beam evolution is shown in Figure. 9. The energy spectra of electrons and photons, as well as the photon polarization, can be observed in Figure. 10.

Refer to caption
Figure 8: Dynamics of 1000 electrons via the stochastic NCS with the simulation parameters as those in Figure. 6. Blue lines are 10 sampled electrons, and black ones are the average value over 1000 sample particles.
Refer to caption
Figure 9: Dynamics of an electron beam (particle number Ne=104N_{e}=10^{4}) with colors denote the number density in arbitrary units and logarithm scale (a. u.), other parameters are the same as those in Figure. 6.

III.3.2 Definition and Transformation of Stokes Parameters

In the context of NCS and the subsequent nonlinear Breit-Wheeler (NBW) pair production, the polarization state of a photon can be characterized by the polarization unit vector 𝐏^\hat{\bf P}, which functions as the spin component of the photon wave function. An arbitrary polarization 𝐏^\hat{\bf P} can be represented as a superposition of two orthogonal basis vectors Berestetskii, Lifshitz, and Pitaevskii (1982):

𝐏^=cos(θα)𝐏^1+sin(θα)𝐏^2eiθβ,\displaystyle\hat{\bf P}=\cos(\theta_{\alpha})\hat{\bf P}_{1}+\sin(\theta_{\alpha})\hat{\bf P}_{2}\cdot e^{i\theta_{\beta}}, (60)

here, θα\theta_{\alpha} denotes the angle between 𝐏{\bf P} and 𝐏^1\hat{{\bf P}}_{1}, while θβ\theta_{\beta} represents the absolute phase. In quantum mechanics, the photon polarization state corresponding to P can be described by the density matrix:

ρ=12(1+𝝃𝝈)=12(1+ξ3ξ1iξ2ξ1+iξ21ξ3)\displaystyle\rho=\frac{1}{2}\left(1+{\bm{\xi}\cdot\bm{\sigma}}\right)=\frac{1}{2}\left(\begin{matrix}1+\xi_{3}&\xi_{1}-i\xi_{2}\\ \xi_{1}+i\xi_{2}&1-\xi_{3}\end{matrix}\right) (61)

where 𝝈\bm{\sigma} represents the Pauli matrix, and 𝝃=(ξ1,ξ2,ξ3)\bm{\xi}=(\xi_{1},\xi_{2},\xi_{3}) denotes the Stokes parameters, with ξ1=sin(2θα)cos(θβ)\xi_{1}=\sin(2\theta_{\alpha})\cos(\theta_{\beta}), ξ2=sin(2θα)sin(θβ)\xi_{2}=\sin(2\theta_{\alpha})\sin(\theta_{\beta}), ξ3=cos(2θα)\xi_{3}=\cos(2\theta_{\alpha}).

The calculation of the probability of pair creation requires the transformation of the Stokes parameters from the initial frame of the photon (𝐏^1\hat{{\bf P}}_{1}, 𝐏^2\hat{{\bf P}}_{2}, 𝐧^\hat{\bf n}) to the frame of pair production (𝐏^1\hat{{\bf P}}_{1}^{\prime}, 𝐏^2\hat{{\bf P}}_{2}^{\prime}, 𝐧^\hat{\bf n}). The vector 𝐏^1\hat{{\bf P}}_{1}^{\prime} is given by [𝐄𝐧^(𝐧^𝐄)+𝐧^×𝐁{\bf E}-\hat{\bf n}\cdot(\hat{\bf n}\cdot{\bf E})+\hat{\bf n}\times{\bf B}]/|𝐄𝐧^(𝐧^𝐄)+𝐧^×𝐁||{\bf E}-\hat{\bf n}\cdot(\hat{\bf n}\cdot{\bf E})+\hat{\bf n}\times{\bf B}|, and the vector 𝐏^2\hat{{\bf P}}_{2}^{\prime} is obtained by taking the cross product of 𝐧^\hat{\bf n} and 𝐏^1\hat{{\bf P}}_{1}^{\prime}. Here, 𝐧^\hat{\bf n} represents the direction of propagation of the photon, and 𝐄{\bf E} and 𝐁{\bf B} denote the electric and magnetic fields, respectively. Two groups of polarization vector are connected via a rotation of angle ψ\psi:

𝐏^1\displaystyle\hat{\bf P}_{1}^{{}^{\prime}} =\displaystyle= 𝐏^1cos(ψ)+𝐏^2sin(ψ),\displaystyle\hat{{\bf P}}_{1}{\rm cos}(\psi)+\hat{{\bf P}}_{2}{\rm sin}(\psi), (62)
𝐏^2\displaystyle\hat{\bf P}_{2}^{{}^{\prime}} =\displaystyle= 𝐏^1sin(ψ)+𝐏^2cos(ψ).\displaystyle-\hat{{\bf P}}_{1}{\rm sin}(\psi)+\hat{{\bf P}}_{2}{\rm cos}(\psi). (63)

Thus, the Stokes parameters with respect to the vectors 𝐏^1\hat{\bf P}_{1}^{{}^{\prime}}, 𝐏^2\hat{\bf P}_{2}^{{}^{\prime}} and 𝐧^\hat{\bf n} are the follows:

ξ1\displaystyle\xi_{1}^{{}^{\prime}} =\displaystyle= ξ1cos(2ψ)ξ3sin(2ψ),\displaystyle\xi_{1}{\rm cos}(2\psi)-\xi_{3}{\rm sin}(2\psi),
ξ2\displaystyle\xi_{2}^{{}^{\prime}} =\displaystyle= ξ2,\displaystyle\xi_{2},
ξ3\displaystyle\xi_{3}^{{}^{\prime}} =\displaystyle= ξ1sin(2ψ)+ξ3cos(2ψ),\displaystyle\xi_{1}{\rm sin}(2\psi)+\xi_{3}{\rm cos}(2\psi), (64)

which is equivalent to a rotation Wistisen and Uggerhøj (2013); Bragin et al. (2017):

(ξ1ξ2ξ3)=(cos2ψ0sin2ψ010sin2ψ0cos2ψ)(ξ1ξ2ξ3)ROT(ψ)𝝃.\left(\begin{array}[]{l}\xi^{\prime}_{1}\\ \xi^{\prime}_{2}\\ \xi^{\prime}_{3}\end{array}\right)=\left(\begin{array}[]{ccc}\cos 2\psi&0&-\sin 2\psi\\ 0&1&0\\ \sin 2\psi&0&\cos 2\psi\end{array}\right)\left(\begin{array}[]{l}\xi_{1}\\ \xi_{2}\\ \xi_{3}\end{array}\right)\equiv{\mathrm{ROT}}(\psi)\cdot\bm{\xi}. (65)
Refer to caption
Figure 10: (a) Energy spectra of the scattered electrons (black line) and generated photons (red line), respectively. (b) Energy-dependent Stokes parameter ξ¯2,ξ3¯\bar{\xi}_{2},\bar{\xi_{3}}, i.e., circular and linear polarization with respect to yy-zz axis. Simulation parameters are the same as those in Figure. 6.

III.4 Nonlinear Breit-Wheeler pair production

When the energy of a photon exceeds the rest mass of an electron-positron pair, i.e., ωγ2mec2\omega_{\gamma}\geq 2m_{e}c^{2}, and is subjected to an ultraintense field of a01a_{0}\gg 1, the related nonlinear quantum parameter χγ\chi_{\gamma} can reach unity. Here, χγem2c3|Fμνkν|2\chi_{\gamma}\equiv\frac{e\hbar}{m^{2}c^{3}}\sqrt{|F^{\mu\nu}k_{\nu}|^{2}} and is approximately equal to 2ωγa0/me22\omega_{\gamma}a_{0}/m^{2}_{e} in the colliding geometry. In this scenario, the photon can decay into an electron-positron pair through the nonlinear Breit-Wheeler pair production (NBW) process (ωγ+nωLe++e\omega_{\gamma}+n\omega_{L}\rightarrow e^{+}+e^{-}) Bell and Kirk (2008). Refs. Chen et al. (2019); Wan et al. (2020b); Xue et al. (2022); Li et al. (2022); Chen et al. (2022) proposed the spin- and polarization-resolved NBW MC method, and we followed the detailed methods in Ref. Xue et al. (2022).

III.4.1 NBW Probability

The polarization-resolved NBW probability rate with dependence on the positron energy is given by

d2Wpair±dε+dt=12(G0+ξ1G1+ξ2G2+ξ3G3),\displaystyle\frac{{\rm d}^{2}W^{\pm}_{\rm pair}}{{\rm d}\varepsilon_{+}{\rm d}t}=\frac{1}{2}(G_{0}+\xi_{1}G_{1}+\xi_{2}G_{2}+\xi_{3}G_{3}), (66)

where the polarization-independent term G0G_{0} and polarization-related terms G1,2,3G_{1,2,3} are given by

G0\displaystyle G_{0} =\displaystyle= W02{IntK13(ρ)+ε2+ε+2εε+K23(ρ)+[IntK13(ρ)2K23(ρ)](𝐒𝐒+)+\displaystyle\frac{W_{0}}{2}\left\{{\rm IntK}_{\frac{1}{3}}(\rho)+{\frac{\varepsilon_{-}^{2}+\varepsilon_{+}^{2}}{\varepsilon_{-}\varepsilon_{+}}}{\rm K}_{\frac{2}{3}}(\rho)+\left[{\rm IntK}_{\frac{1}{3}}(\rho)-2{\rm K}_{\frac{2}{3}}(\rho)\right]\left({\bf S}_{-}\cdot{\bf S}_{+}\right)+\right. (67)
K13(ρ)[εγε+(𝐒+𝐛^+)+εγε(𝐒𝐛^+)]+[ε2+ε+2εε+IntK13(ρ)\displaystyle\left.{\rm K}_{\frac{1}{3}}(\rho)\left[-\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}\left({\bf S}_{+}\cdot\hat{{\bf b}}_{+}\right)+\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}\left({\bf S}_{-}\cdot\hat{{\bf b}}_{+}\right)\right]+\left[\frac{\varepsilon_{-}^{2}+\varepsilon_{+}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm IntK}_{\frac{1}{3}}(\rho)\right.\right.
(ε+ε)2εε+K23(ρ)](𝐒+𝐯^+)(𝐒𝐯^+)},\displaystyle\left.\left.-\frac{(\varepsilon_{+}-\varepsilon_{-})^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)\right]({\bf S}_{+}\cdot\hat{\bf v}_{+})({\bf S}_{-}\cdot\hat{\bf v}_{+})\right\},
G1\displaystyle G_{1} =\displaystyle= W02{K13(ρ)[εγε(𝐒+𝐚^+)+εγε+(𝐒𝐚^+)]+ε+2ε22εε+K23(ρ)(𝐒×𝐒+)𝐯^+\displaystyle\frac{W_{0}}{2}\left\{{\rm K}_{\frac{1}{3}}(\rho)\left[-\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}({\bf S}_{+}\cdot\hat{{\bf a}}_{+})+\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}({\bf S}_{-}\cdot\hat{{\bf a}}_{+})\right]+\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)({\bf S}_{-}\times{\bf S}_{+})\cdot\hat{\bf v}_{+}\right. (68)
εγ22εε+IntK13(ρ)[(𝐒+𝐚^)(𝐒𝐛^)+(𝐒𝐚^+)(𝐒+𝐛^+)]},\displaystyle\left.-\frac{\varepsilon_{\gamma}^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm IntK}_{\frac{1}{3}}(\rho)\left[({\bf S}_{+}\cdot\hat{{\bf a}})({\bf S}_{-}\cdot\hat{{\bf b}})+({\bf S}_{-}\cdot\hat{{\bf a}}_{+})({\bf S}_{+}\cdot\hat{{\bf b}}_{+})\right]\right\},
G2\displaystyle G_{2} =\displaystyle= W02{εγ22εε+K13(ρ)(𝐒×𝐒+)𝐚^++\displaystyle\frac{W_{0}}{2}\left\{\frac{\varepsilon_{\gamma}^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{1}{3}}(\rho)({\bf S}_{-}\times{\bf S}_{+})\cdot\hat{{\bf a}}_{+}+\right. (69)
ε+2ε22εε+K13(ρ)[(𝐒𝐯^+)(𝑺+𝐛^+)+(𝐒+𝐯^+)(𝐒𝐛^+)]+\displaystyle\left.\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{1}{3}}(\rho)\left[({\bf S}_{-}\cdot\hat{\bf v}_{+})({\bm{S}}_{+}\cdot\hat{{\bf b}}_{+})+({\bf S}_{+}\cdot\hat{\bf v}_{+})({\bf S}_{-}\cdot\hat{{\bf b}}_{+})\right]+\right.
[εγεIntK13(ρ)ε+2ε2εε+K23(ρ)](𝐒𝐯^+)+\displaystyle\left.\left[\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}{\rm IntK}_{\frac{1}{3}}(\rho)-\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)\right]({\bf S}_{-}\cdot\hat{\bf v}_{+})+\right.
[εγε+IntK13(ρ)+ε+2ε2εε+K23(ρ)](𝐒+𝐯^+)},\displaystyle\left.\left[\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}{\rm IntK}_{\frac{1}{3}}(\rho)+\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)\right]({\bf S}_{+}\cdot\hat{\bf v}_{+})\right\},
G3\displaystyle G_{3} =\displaystyle= W02{K23(ρ)+ε2+ε+22εε+K23(ρ)(𝐒𝐒+)\displaystyle\frac{W_{0}}{2}\left\{-{\rm K}_{\frac{2}{3}}(\rho)+\frac{\varepsilon_{-}^{2}+\varepsilon_{+}^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)({\bf S}_{-}\cdot{\bf S}_{+})-\right. (70)
K13(ρ)[εγε+(𝐒𝐛^+)εγε(𝐒+𝐛^+)]+\displaystyle\left.{\rm K}_{\frac{1}{3}}(\rho)\left[\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}({\bf S}_{-}\cdot\hat{{\bf b}}_{+})-\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}({\bf S}_{+}\cdot\hat{{\bf b}}_{+})\right]+\right.
εγ22εε+IntK13(ρ)[(𝐒+𝐛^+)(𝐒𝐛^+)\displaystyle\left.\frac{\varepsilon_{\gamma}^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm IntK}_{\frac{1}{3}}(\rho)\bigg{[}({\bf S}_{+}\cdot\hat{{\bf b}}_{+})({\bf S}_{-}\cdot\hat{{\bf b}}_{+})\right.-
(𝐒+𝐚^+)(𝐒𝐚^+)](ε+ε)22εε+K23(ρ)(𝐒+𝐯^+)(𝐒𝐯^+)},\displaystyle\left.({\bf S}_{+}\cdot\hat{{\bf a}}_{+})({\bf S}_{-}\cdot\hat{{\bf a}}_{+})\bigg{]}-\frac{(\varepsilon_{+}-\varepsilon_{-})^{2}}{2\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)({\bf S}_{+}\cdot\hat{\bf v}_{+})({\bf S}_{-}\cdot\hat{\bf v}_{+})\right\},

where W0=α/(3πωγ2)W_{0}=\alpha/\left(\sqrt{3}\pi\omega^{\prime 2}_{\gamma}\right), ωγ=εγ/mec2\omega^{\prime}_{\gamma}=\varepsilon_{\gamma}/m_{e}c^{2}, ρ=2εγ2/(3χγεε+)=2/[3δ(1δ)]\rho=2\varepsilon_{\gamma}^{2}/\left(3\chi_{\gamma}\varepsilon_{-}\varepsilon_{+}\right)=2/\left[3\delta(1-\delta)\right], δ=ε+/εγ\delta=\varepsilon_{+}/\varepsilon_{\gamma}, IntK13(ρ)ρdzK13(z){\rm IntK}_{\frac{1}{3}}(\rho)\equiv\int_{\rho}^{\infty}{\rm d}z{\rm K}_{\frac{1}{3}}(z), Kn{\rm K}_{n} is the nn-order modified Bessel function of the second kind, α\alpha the fine structure constant, εγ\varepsilon_{\gamma}, ε\varepsilon_{-} and ε+\varepsilon_{+} the energies of parent photon, created electron and positron, respectively, 𝐯^+=𝐯+/|𝐯+|\hat{\bf v}_{+}={\bf v}_{+}/|{\bf v}_{+}| with the positron velocity 𝐯+{\bf v}_{+}, 𝐚^+=𝐚+/|𝐚+|\hat{{\bf a}}_{+}={\bf a}_{+}/|{\bf a}_{+}| with the positron acceleration 𝐚+{\bf a}_{+} in the rest frame of positron, 𝐛^+=𝐯+×𝐚+/|𝐯+×𝐚+|\hat{{\bf b}}_{+}={\bf v}_{+}\times{\bf a}_{+}/|{\bf v}_{+}\times{\bf a}_{+}|, ξ1\xi_{1}, ξ2\xi_{2} and ξ3\xi_{3} are the Stokes parameters of γ\gamma photon, and 𝐒+{\bf S}_{+} (𝐒{\bf S}_{-}) denotes the positron (electron) spin vector. Note that the Stokes parameters must be transformed from the photon initial frame (𝐏^1\hat{{\bf P}}_{1}, 𝐏^2\hat{{\bf P}}_{2}, 𝐧^\hat{\bf n}) to the pair production frame (𝐏^1\hat{{\bf P}}_{1}^{\prime}, 𝐏^2\hat{{\bf P}}_{2}^{\prime}, 𝐧^\hat{\bf n}); see transformations of the Stokes parameters in Sec. III.3.2.

Summing over the electron spin, the pair production depending on the positron spin 𝐒+{\bf S}_{+} and the photon polarization 𝝃\bm{\xi} is obtained:

d2Wpair+dε+dt=W0{IntK13(ρ)+ε2+ε+2εε+K23(ρ)εγε+K13(ρ)(𝐒+𝐛^+)\displaystyle\frac{{\rm d}^{2}W_{\rm pair}^{+}}{{\rm d}\varepsilon_{+}{\rm d}t}=W_{0}\bigg{\{}{\rm IntK}_{\frac{1}{3}}(\rho)+\frac{\varepsilon_{-}^{2}+\varepsilon_{+}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)-\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}{\rm K}_{\frac{1}{3}}(\rho)({\bf S}_{+}\cdot\hat{{\bf b}}_{+})
ξ1[εγεK13(ρ)(𝐒+𝐚^+)]+ξ2[ε+2ε2εε+K23(ρ)+εγε+IntK13(ρ)]×\displaystyle-\xi_{1}\bigg{[}\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}{\rm K}_{\frac{1}{3}}(\rho)({\bf S}_{+}\cdot\hat{{\bf a}}_{+})\bigg{]}+\xi_{2}\left[\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)+\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}{\rm IntK}_{\frac{1}{3}}(\rho)\right]\times
(𝐒+𝐯^+)]ξ3[K23(ρ)εγεK13(ρ)(𝐒+𝐛^+)]}.\displaystyle\left.({\bf S}_{+}\cdot\hat{\bf v}_{+})\right]-\xi_{3}\left[{\rm K}_{\frac{2}{3}}(\rho)-\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}{\rm K}_{\frac{1}{3}}(\rho)({\bf S}_{+}\cdot\hat{{\bf b}}_{+})\right]\bigg{\}}. (71)

It can be rewritten as:

d2Wpair+dε+dt\displaystyle\frac{{\rm d}^{2}W_{\rm pair}^{+}}{{\rm d}\varepsilon_{+}{\rm d}t} =\displaystyle= W0(C+𝐒+𝐃),\displaystyle W_{0}(C+{\bf S}_{+}\cdot{\bf D}), (72)

where

C\displaystyle C =\displaystyle= IntK13(ρ)+ε2+ε+2εε+K23(ρ)ξ3K23(ρ),\displaystyle{\rm IntK}_{\frac{1}{3}}(\rho)+\frac{\varepsilon_{-}^{2}+\varepsilon_{+}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)-\xi_{3}{\rm K}_{\frac{2}{3}}(\rho), (73)
𝐃\displaystyle{\bf D} =\displaystyle= (εγε+ξ3εγε)K13(ρ)𝐛^+ξ1εγεK13(ρ)𝐚^++\displaystyle-\left(\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}-\xi_{3}\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}\right){\rm K}_{\frac{1}{3}}(\rho)\hat{{\bf b}}_{+}-\xi_{1}\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}{\rm K}_{\frac{1}{3}}(\rho)\hat{{\bf a}}_{+}+ (74)
ξ2[ε+2ε2εε+K23(ρ)+εγε+IntK13(ρ)]𝐯^+.\displaystyle\xi_{2}\bigg{[}\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)+\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}{\rm IntK}_{\frac{1}{3}}(\rho)\bigg{]}\hat{\bf v}_{+}.

When a photon decays to pair, the positron spin state is instantaneously collapsed into one of its basis states defined by the instantaneous SQA, along the energy-resolved average polarization 𝐒+(ε+)=𝐃/C{\bf S}_{+}^{(\varepsilon_{+})}={\bf D}/C.

Similarly, summing over the positron spin, the pair production probability depending on the electron spin 𝐒{\bf S}_{-} and the photon polarization is obtained:

d2Wpairdε+dt=W0(C+𝐒𝐃),\displaystyle\frac{{\rm d}^{2}W_{\rm pair}^{-}}{{\rm d}\varepsilon_{+}{\rm d}t}=W_{0}(C+{\bf S}_{-}\cdot{\bf D}^{{}^{\prime}}), (75)
𝐃=(εγεξ3εγε+)K13(ρ)𝐛^++ξ1εγε+K13(ρ)𝐚^+\displaystyle{\bf D}^{{}^{\prime}}=\left(\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}-\xi_{3}\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}\right){\rm K}_{\frac{1}{3}}(\rho)\hat{{\bf b}}_{+}+\xi_{1}\frac{\varepsilon_{\gamma}}{\varepsilon_{+}}{\rm K}_{\frac{1}{3}}(\rho)\hat{{\bf a}}_{+}
ξ2[ε+2ε2εε+K23(ρ)εγεIntK13(ρ)]𝐯^+.\displaystyle-\xi_{2}\bigg{[}\frac{\varepsilon_{+}^{2}-\varepsilon_{-}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)-\frac{\varepsilon_{\gamma}}{\varepsilon_{-}}{\rm IntK}_{\frac{1}{3}}(\rho)\bigg{]}\hat{\bf v}_{+}. (76)

The pair production probability, relying solely on photon polarization, is determined by summing over both positron and electron spins:

d2Wpairdε+dt=2W0{IntK13(ρ)+ε2+ε+2εε+K23(ρ)ξ3K23(ρ)}.\frac{{\rm d}^{2}W_{\rm pair}}{{\rm d}\varepsilon_{+}{\rm d}t}=2W_{0}\left\{{\rm IntK}_{\frac{1}{3}}(\rho)+\frac{\varepsilon_{-}^{2}+\varepsilon_{+}^{2}}{\varepsilon_{-}\varepsilon_{+}}{\rm K}_{\frac{2}{3}}(\rho)-\xi_{3}{\rm K}_{\frac{2}{3}}(\rho)\right\}. (77)

III.4.2 MC algorithm

Refer to caption
Figure 11: Flowchart of the spin- and polarization-resolved nonlinear Breit-Wheeler (NBW) pair production process.

The algorithm for simulating pair creation with polarization is illustrated in Figure. 11. At every simulation step Δt\Delta t, a pair is generated with positron energy ε+=r1εγ\varepsilon_{+}=r_{1}\varepsilon_{\gamma} when the probability density Pd2Wpair/dε+dtΔtP\equiv{\rm d^{2}}W_{\rm pair}/{\rm d}\varepsilon_{+}{\rm d}t\cdot\Delta t of pair production is greater than or equal to a random number r2r_{2} within the range [0,1). Here, d2Wpair/dε+dt{\rm d^{2}}W_{\rm pair}/{\rm d}\varepsilon_{+}{\rm d}t is computed using Equation (77). The momentum of the created positron (electron) is parallel to that of the parent photon, and the energy of the electron ε\varepsilon_{-} is determined as εγε+\varepsilon_{\gamma}-\varepsilon_{+}. The final spin states of the electron and positron are determined by the four probability densities P1,2,3,4P_{1,2,3,4}, each representing spin parallel or antiparallel to SQA, where P1,2,3,4P_{1,2,3,4} is computed from Equation (66). Finally, a random number r3r_{3} is used to sample the final spin states for the electron and positron. Note that, here all random numbers are sampled uniformly from [0,1)[0,1) as in the NCS algorithm. An example of the production of secondary electrons and positrons resulting from a collision between a laser and an electron beam is illustrated in Figure. 12.

Refer to caption
Figure 12: (a) Normalized energy spectra (black solid line) and energy-resolved longitudinal spin polarization (red solid line) of positrons. (b) Statistics of the longitudinally spin components of generated positrons. The laser and electron beam parameters are consistent with those in Figure. 9.

III.5 High-energy bremsstrahlung

The high energy bremsstrahlung is another important emission mechanism, which can also be modeled using a MC collision model Wan et al. (2017). The MC collision model was tested using the Geant4 code Agostinelli and et al. (2003), and the results are presented in the following section. The bremsstrahlung emission is described as described by the cross-section in Ref. Tsai (1974)

dσeZdω(ω,y)=\displaystyle\frac{d\sigma_{eZ}}{d\omega}(\omega,y)= αr02ω{(4343y+y2)\displaystyle\frac{\alpha r_{0}^{2}}{\omega}\{(\frac{4}{3}-\frac{4}{3}y+y^{2}) (78)
×[Z2(ϕ143lnZ4f)+Z(ψ183lnZ)]\displaystyle\times[Z^{2}(\phi_{1}-\frac{4}{3}\mathrm{ln}Z-4f)+Z(\psi_{1}-\frac{8}{3}\mathrm{ln}Z)]
+23(1y)[Z2(ϕ1ϕ2)+Z(ψ1ψ2)]},\displaystyle+\frac{2}{3}(1-y)[Z^{2}(\phi_{1}-\phi_{2})+Z(\psi_{1}-\psi_{2})]\},

where y=ω/Eey=\hbar\omega/E_{e} is the energy ratio of the emitted photon to the incident electron, r0r_{0} is the classical electron radius, functions ϕ1,2\phi_{1,2} and ψ1,2\psi_{1,2} depend on the screening potential by atomic electrons, while the Coulomb correction term is denoted by ff. When the atomic number of the target is greater than 55, we use Eqs. (3.38-3.41) from Ref. Tsai (1974) to calculate these functions. However, for targets with Z<5Z<5, the approximated screen functions are unsuitable and require modification.

The PENELOPE code PEN utilizes another method that involves tabulated data from Ref. Seltzer and Berger (1986). This method transforms the “scaled” bremsstrahlung differential cross-section (DCS) to differential cross-section by using the following equation PEN :

dσbrdω=Z2β21ωχ(Z,Ee,y),\frac{d\sigma_{br}}{d\omega}=\frac{Z^{2}}{\beta^{2}}\frac{1}{\omega}\chi(Z,E_{e},y), (79)

where β=v/c\beta=v/c is the normalized electron velocity. Integrating this expression over the photon frequencies yields a tabulated total cross-section σbr(Ee,y)\sigma_{br}(E_{e},y) MC simulation, i.e, the direct sampling method can be used.

The DCS for electron and positron are related by the equation

dσbr+dω=Fp(Z,Ee)dσbrdω,\frac{d\sigma_{br}^{+}}{d\omega}=F_{p}(Z,E_{e})\frac{d\sigma_{br}^{-}}{d\omega}, (80)

where Fp(Z,Ee)F_{p}(Z,E_{e}) is an analytical approximation factor that can be found in Ref. PEN . This reference demonstrates a high level of accuracy, with a difference of only approximately 0.5%0.5\% compared to Ref. Kim et al. (1986).

The bremsstrahlung implementation is based on a direct MC sampling. Given an incident electron with energy EeE_{e} and velocity vv, the probability of triggering a bremsstrahlung event is calculated as Pbr=1eΔs/λP_{br}=1-e^{\Delta s/\lambda}, where Δs=vΔt\Delta s=v\Delta t, v=|v|v=|\vec{v}| is the incident particle velocity, Δt\Delta t is the time interval, λ=1/nσ(Ee)\lambda=1/n\sigma(E_{e}), nn represents the target particle density and σ(Ee)\sigma(E_{e}) is the total cross-section, respectively. A random number r1r_{1} is then generated and compared to PbrP_{br}. If r1<Pbrr_{1}<P_{br}, a bremsstrahlung event is triggered. The energy of the resulting photon is determined by generating another random number r2r_{2}, which is then multiplied by σbr(Ee)\sigma_{br}(E_{e}) to obtain the energy ratio yy through σ(y,Ee)=σ(Ee)r2\sigma(y,E_{e})=\sigma(E_{e})r_{2}. Finally, a photon with energy ω=Eey\hbar\omega=E_{e}y and momentum direction k/|k|=𝐯/|𝐯|\vec{k}/|\vec{k}|=\mathbf{v}/|\mathbf{v}| is generated. To improve computational efficiency, low energy photons are discarded by setting a minimum energy threshold. This probabilistic approach is similar to the method used to calculate the random free path PEN . The implementation of Bethe-Heitler pair production follows a similar process.

The implementation of Bremsstrahlung emission was tested using the Geant4 software Agostinelli and et al. (2003), which is widely used for modeling high-energy particle scattering with detectors. In this study, we utilized electron bunches of 1 GeV and 100 MeV with 10510^{5} primaries to collide with a 5 mm Au target with Z=79Z=79, ρ=19.3\rho=19.3 g/cm3\mathrm{g/cm^{3}} and a 5 mm Al target with Z=13Z=13, ρ=2.7\rho=2.7 g/cm3\mathrm{g/cm^{3}}. We disabled the field updater and weighting procedure in the PIC code, and only enabled the particle pusher and Bremsstrahlung MC module. The electron and photon spectra were found to be in good agreement with the Geant4 results, except for a slightly higher photon emission in the high energy tail (which is due to the difference in the cross-section data). Figure. 13 displays the spectra of electrons and photons from a 100 MeV\mathrm{MeV} electron bunch normally incident onto the aluminum and gold slabs, while similar distributions for a 1 GeV\mathrm{GeV} electron bunch are shown in Figure. 14.

Refer to caption
Figure 13: (color online). Bremsstrahlung of 100 MeV electrons. (a) for the scattered electron spectra, and (b) for the yield photon spectra. Solid lines represent PIC results and dashed lines represent Geant4 results. These figures are obtained from Ref. Wan et al. (2017)
Refer to caption
Figure 14: (color online). Bremsstrahlung of 1 GeV electrons. (a) for the scattered electron spectra, and (b) for the yield photon spectra. Solid lines represent PIC results and dashed lines represent Geant4 results. These figures are obtained from Ref. Wan et al. (2017).

III.6 Vacuum birefringence

Another important process for polarized photons in ultraintense laser matter interactions is vacuum birefringence (VB), in addition to the NBW processes. In this paper, we utilize Eq.(4.26) from Ref. Shore (2007) to calculate the refractive index nn for a photon with arbitrary energy ω\omega (wavelength λ\lambda) in a constant weak EM field [|E|(|B|)Ecr|E|(|B|)\ll E_{cr}]. We include the electric field and assume relativistic units c==1c=\hbar=1. The resulting expression is:

n1αχγ2m216πω211𝑑υ(1υ2){12(1+13υ2)113υ2}[πx4/3Gi(x2/3)ix23K2/3(23x)],n\approx 1-\frac{\alpha\chi_{\gamma}^{2}m^{2}}{16\pi\omega^{2}}\int_{-1}^{1}d\upsilon(1-\upsilon^{2})\left\{\begin{matrix}\frac{1}{2}(1+\frac{1}{3}\upsilon^{2})\\ 1-\frac{1}{3}\upsilon^{2}\end{matrix}\right\}\left[\pi x^{4/3}\mathrm{Gi}^{\prime}(x^{2/3})-i\frac{x^{2}}{\sqrt{3}}\mathrm{K}_{2/3}\left(\frac{2}{3}x\right)\right], (81)

where α\alpha is the fine structure constant, mm is the electron mass, χγ\chi_{\gamma} is the nonlinear quantum parameter as defined before, x=4(1υ2)χγx=\frac{4}{(1-\upsilon^{2})\chi_{\gamma}}, Gi(x){\rm Gi}^{\prime}(x) is the derivative of the Scorer’s function, and Kn(x){\rm K}_{n}(x) is the nnth-order modified Bessel function of the second kind [38]. 𝐄red,=𝐄+k^×𝐁{\bf E}_{\rm red,\perp}={\bf E}_{\perp}+\hat{k}\times{\bf B}_{\perp} is the transverse reduced field (acceleration field for electrons). The first and second columns correspond to the eigenmodes parallel and perpendicular to the reduced field, respectively. By extracting a factor of

𝒟=α90π(e|𝐄red|m2)2α90πχγ2ω2/m2.\mathcal{D}=\frac{\alpha}{90\pi}\left(\frac{e|{\bf E}_{\rm red\perp}|}{m^{2}}\right)^{2}\equiv\frac{\alpha}{90\pi}\frac{\chi_{\gamma}^{2}}{\omega^{2}/m^{2}}.

Eq. (81) arrives at

Re(n)\displaystyle\mathrm{Re}(n) =\displaystyle= 1454𝒟01𝑑υ(1υ2){12(1+13υ2)113υ2}[πx4/3Gi(x2/3)],\displaystyle 1-\frac{45}{4}\mathcal{D}\int_{0}^{1}d\upsilon(1-\upsilon^{2})\left\{\begin{matrix}\frac{1}{2}(1+\frac{1}{3}\upsilon^{2})\\ 1-\frac{1}{3}\upsilon^{2}\end{matrix}\right\}\left[\pi x^{4/3}\mathrm{Gi}^{\prime}(x^{2/3})\right], (82)
Im(n)\displaystyle\mathrm{Im}(n) =\displaystyle= 454𝒟01𝑑υ(1υ2){12(1+13υ2)113υ2}[x23K2/3(23x)].\displaystyle\frac{45}{4}\mathcal{D}\int_{0}^{1}d\upsilon(1-\upsilon^{2})\left\{\begin{matrix}\frac{1}{2}(1+\frac{1}{3}\upsilon^{2})\\ 1-\frac{1}{3}\upsilon^{2}\end{matrix}\right\}\left[\frac{x^{2}}{\sqrt{3}}\mathrm{K}_{2/3}\left(\frac{2}{3}x\right)\right]. (83)

In the weak field limit of χγ1\chi_{\gamma}\ll 1, the imaginary part associated with pair production, is negligible. Now we define

M(χγ)=45401𝑑υ(1υ2){12(1+13υ2)113υ2}[πx4/3Gi(x2/3)],yieldingRe(n)=1+M(χγ)𝒟1+M(χγ)α90πχγ2ω2/m2.\begin{array}[]{l}M(\chi_{\gamma})=-\frac{45}{4}\int_{0}^{1}d\upsilon(1-\upsilon^{2})\left\{\begin{matrix}\frac{1}{2}(1+\frac{1}{3}\upsilon^{2})\\ 1-\frac{1}{3}\upsilon^{2}\end{matrix}\right\}\left[\pi x^{4/3}\mathrm{Gi}^{\prime}(x^{2/3})\right],\leavevmode\nobreak\ \mathrm{yielding}\\ \mathrm{Re}(n)=1+M(\chi_{\gamma})\mathcal{D}\equiv 1+M(\chi_{\gamma})\frac{\alpha}{90\pi}\frac{\chi_{\gamma}^{2}}{\omega^{2}/m^{2}}.\end{array} (84)

The numerical results of M(χγ)M(\chi_{\gamma}) and comparisons with the low-energy-limit (ωγm\omega_{\gamma}\ll m) constants are given in Figure. 15.

Refer to caption
Figure 15: (a): M(χγ)M(\chi_{\gamma}) and the corresponding low-energy-limit constant with red and blue dash-dotted lines equal to 4 and 7, respectively. (b): Relative error between M(χγ)M(\chi_{\gamma}) and the low-energy-limit constant.

While, in the limit of χγ1\chi_{\gamma}\ll 1, the real part simplifies to

Re(n)=1+𝒟{4+7},\displaystyle\mathrm{Re}(n)=1+\mathcal{D}\left\{\begin{matrix}4_{+}\\ 7_{-}\end{matrix}\right\}, (85)

and can be used to simulate the vacuum birefringence (VB) effect with good accuracy for χγ1\chi_{\gamma}\ll 1. Note that these results are identical to those in Refs. Shore (2007); Karbstein (2013); Dinu et al. (2014). For large χγ\chi_{\gamma}, two interpolated refractive indexes are used.

The phase retardation between two orthogonal components is given by δϕ=ϕ+ϕ=Δn2πlλ=3𝒟2πlλ\delta\phi=\phi_{+}-\phi_{-}=\Delta n\frac{2\pi l}{\lambda}=-3\mathcal{D}\frac{2\pi l}{\lambda} with ll denotes the propagation length, and the VB effect is equivalent to a rotation of the Stokes parameters:

(ξ1ξ2ξ3)=(cosδϕsinδϕ0sinδϕcosδϕ0001)(ξ1ξ2ξ3)QED(δϕ)𝝃.\left(\begin{array}[]{l}\xi^{\prime}_{1}\\ \xi^{\prime}_{2}\\ \xi^{\prime}_{3}\end{array}\right)=\left(\begin{array}[]{ccc}\cos\delta\phi&-\sin\delta\phi&0\\ \sin\delta\phi&\cos\delta\phi&0\\ 0&0&1\end{array}\right)\left(\begin{array}[]{l}\xi_{1}\\ \xi_{2}\\ \xi_{3}\end{array}\right)\equiv{\mathrm{QED}}(\delta\phi)\cdot\bm{\xi}. (86)

The VB effect of the probe photons in the Particle-In-Cell code is simulated with the following algorithms Wan et al. (2022):

1 Initialization part;
2 PIC initialization;
3 foreach photon in photonList do
4       photon.𝝃\bm{\xi} = 𝝃0\bm{\xi}_{0};
5       photon.a^±\hat{a}_{\pm} = (x^,y^\hat{x},\hat{y});
6      
7 end foreach
8evolution part;
9 while not final step do
10       do PIC loop …;
11       foreach photon do
12             get 𝐄,𝐁\mathbf{E},\mathbf{B};
13             get θ\theta, and a^+(θ)𝐄red,a^(θ)=k^×a^(θ)+\hat{a}_{+}(\theta)\parallel\mathbf{E}_{\rm red\perp},\hat{a}_{-}(\theta)=\hat{k}\times\hat{a}(\theta)_{+};
14             rotate 𝝃\bm{\xi} from a^±\hat{a}_{\pm} to a^±(θ)\hat{a}_{\pm}(\theta) via Eqs. (65);
15             calculate new 𝝃\bm{\xi} via Eq. (86) ;
16             update the polarization basis: photon.a^±=a^±(θ)\hat{a}_{\pm}=\hat{a}_{\pm}(\theta).
17       end foreach
18      
19 end while
20Post-processing;
21 select a detection plane (polarization basis), for instance x^,y^\hat{x},\hat{y};
22 foreach x,yx,y in the detector do
23       foreach photon in this area do
24             rotate 𝝃\bm{\xi} from a^±\hat{a}_{\pm} to (x^,y^)(\hat{x},\hat{y}) via Eqs. (65);
25             average all 𝝃\bm{\xi}.
26       end foreach
27      
28 end foreach
Algorithm 1 VB effect in SLIPs

See an example of VB effect in Figure. 16.

Refer to caption
Figure 16: VB effect of a γ\gamma-photon [εγ=1\varepsilon_{\gamma}=1 GeV, ξ=(1,0,0)\xi=(1,0,0)] propagating through a (a) static crossed field with Ey=Bz=100E_{y}=-B_{z}=100 and (b) laser field (same as those in Figure. 6).

IV Framework of SLIPs

These physical processes have been incorporated into the spin-resolved laser-plasma interaction simulation code, known as SLIPs. The data structure and framework layout are illustrated in Figs. 17 and 18.

Refer to caption
Figure 17: Data structure of the SLIPs.

As depicted in Figure. 17, SLIPs utilize a toml file to store simulation information, which is then parsed into a SimInfo structure that includes domainInfo, speciesInfo, boundaryInfo, laserInfo, pusherInfo, and other metadata. Subsequently, this metadata is employed to generate a SimBox that comprises all ParticleList and Fields, and define the FieldSolver, EOMSolver and initialize QED processes.

The internal data structure of SLIPs is constructed using the open-source numerical library, Armadillo C++ Sanderson and Curtin (2016, 2018). String expressions are parsed using the Exprtk library exp . The data is then dumped using serial-hdf5 and merged with external Python scripts to remove ghost cells.

Refer to caption
Figure 18: Framework of the SLIPs.

The spin-resolved processes, i.e., tagged as Spin-QED in the diagram in Figure. 18, are implemented in conjunction with the Lorentz equation. In the coding, the Spin-QED part is arranged as a sequential series of processes. For example, Lorentz and T-BMT are followed by radiative correction, VB, NBW, and NCS with Bremsstrahlung: Lorentz & T-BMTRadiative correctionVBNBWNCS & Bremss\texttt{Lorentz \& T-BMT}\Rightarrow\texttt{Radiative correction}\Rightarrow\texttt{VB}\Rightarrow\texttt{NBW}\Rightarrow\texttt{NCS \& Bremss}.

V Polarized particles simulations

In this section, we present known results that were calculated from the single-particle mode using the SLIPs. The spin-resolved NCS/NBW are evaluated by generating spin-polarized electrons/positrons. The simulation setups used in this study are identical to those described in Refs. Li et al. (2019) and Wan et al. (2020b).

V.1 Polarized electron/positron simulation

Refer to caption
Figure 19: Generation of polarized electrons: (a) number density dN/dθxdθydN/d\theta_{x}d\theta_{y}, (b) spin polarization SxS_{x}.

To simulate the generation of spin-polarized electrons, we utilized an elliptically polarized laser with an intensity of a0=30a_{0}=30, a wavelength of λ0=1μm\lambda_{0}=1\mathrm{\mu m}, and an ellipticity of ay,0/ax,0=3%a_{y,0}/a_{x,0}=3\%. This laser was directed towards an ultrarelativistic electron bunch with an energy of 10 GeV, which was produced through laser-wakefield acceleration. The resulting polarized electrons are depicted in Figure. 19, and shows good agreement with the previously published results in Ref. Li et al. (2022).

V.2 Polarized γ\gamma-photons via NCS

The polarization state of emitted photons can be determined in the spin/polarization-resolved NCS. Here, follow Ref. Li et al. (2022), we utilized a linearly polarized (LP) laser to collide with an unpolarized electron bunch to generate LP γ\gamma-photons. Additionally, we used an LP laser to collide with a longitudinally polarized electron bunch to generate circularly polarized (CP) γ\gamma-photons, which were also observed in a previous study (Ref. Li et al. (2020)). The final polarization states of LP and CP γ\gamma-photons are presented in Figs. 20 and 21, respectively.

Refer to caption
Figure 20: Generation of LP γ\gamma-photons: (a) number density log10(d2N/dθxdθy)\log_{10}(d^{2}N/d\theta_{x}d\theta_{y}) (a.u.), (b) linear polarization ξ3\xi_{3}.
Refer to caption
Figure 21: Generation of CP γ\gamma-photons with longitudinally polarized electrons: (a) number density log10(d2N/dθxdθy)\log_{10}(d^{2}N/d\theta_{x}d\theta_{y}) (a.u.), (b) circular polarization |ξ2||\xi_{2}|.

V.3 Laser-plasma interactions

Finally, we present a simulation result demonstrating the interaction between an ultra-intense laser with a normalized intensity of a0=1000a_{0}=1000 and a fully ionized 2μm2\mathrm{\mu m}-thick aluminum target. Note, this configuration, previously examined in Ref. Ridgers et al. (2012) with a thickness of 1μm1\mathrm{\mu m}, employs a thicker target in the present study to enhance the SF-QED processes. When the laser is directed towards a solid target, the electrons experience acceleration and heating due to the laser and plasma fields. As high-energy electrons travel through the background field, they can emit γ\gamma photons via NCS. The EM field distribution and number density of target electrons, NBW positrons, and NCS γ\gamma photons are shown in Figure. 22, both of which show good consistency with Ref. Ridgers et al. (2012). The laser is linearly polarized along the yy direction, indicating that the polarization frame is mainly in the yy-zz plane with two polarization bases, 𝒆1𝜷×𝜷˙\bm{e}_{1}\equiv\bm{\beta}\times\bm{\dot{\beta}} and 𝒆2𝐧^×𝒆1\bm{e}_{2}\equiv\hat{\bf n}\times\bm{e}_{1}, where 𝐧^\hat{\bf n} denotes the momentum direction of the photon. The polarization angle-dependence observed in this study is consistent with prior literature. However, the average linear polarization degree is approximately 60% (ξ3¯0.6\bar{\xi_{3}}\simeq 0.6), as illustrated in Figs. 23(b) and (d). Notably, low-energy photons contribute primarily to the polarization, as demonstrated in Figs. 23(a) and (c). Additionally, during the subsequent NBW process, the self-generated strong magnetic field couples with the laser field dominate the positrons’ SQA. As a result, the positrons’ polarization is aligned with the zz direction, contingent on their momentum direction, as shown in Figure. 24. These findings constitute a novel contribution to the investigation of polarization-resolved laser-plasma interactions.

Refer to caption
Figure 22: The laser plasma interaction via 2D simulation: spatial distribution of (a) ExE_{x}, (b) EyE_{y} and (c) BzB_{z}; and the target electron distribution (d), generated NBW positron (e) and NCS γ\gamma photon (f).
Refer to caption
Figure 23: The laser plasma interaction generated photons: (a) number density with respect to energy and angle distribution, i.e., log10\log_{10}(dN2N^{2}/dγγ\gamma_{\gamma}dθ\theta) with γγγ/mec2\gamma_{\gamma}\equiv\mathcal{E}_{\gamma}/m_{e}c^{2} and θpy/px\theta\equiv p_{y}/p_{x}, (b) energy and angle resolved linear polarization degree ξ3¯\bar{\xi_{3}}, (c) energy-resolved number and polarization distribution, (d) angle-resolved number and polarization distribution.
Refer to caption
Figure 24: The laser plasma interaction generated positrons: (a) number density with respect to energy and angle distribution, i.e., dN2N^{2}/dγ+\gamma_{+}dθ\theta (in arbitrary units, arb. units) with γ+ε+/mec2\gamma_{+}\equiv\varepsilon_{+}/m_{e}c^{2} and θarctan(py/px)\theta\equiv\arctan(p_{y}/p_{x}), (b) energy and angle resolved spin component S¯z\overline{S}_{z}, (c) normalized angular distribution n(θ)dN/dθn(\theta)\equiv\mathrm{d}N/\mathrm{d}\theta, (d) angular distribution of S¯z\overline{S}_{z}, i.e., energy averaged and (e) normalized energy distribution n(ε+)dN/dε+n(\varepsilon_{+})\equiv\mathrm{d}N/\mathrm{d}\varepsilon_{+}.

VI Outlook

Computer simulation techniques for laser and plasma interactions are constantly evolving, not only in the accuracy of high-order or explicit/implicit algorithms but also in the complexity of new physics with more degrees of freedom. The rapid development of ultraintense techniques not only provides opportunities for experimental verification of SF-QED processes in the high-energy density regime (which serves as a micro-astrophysics lab) but also presents challenges in theoretical analysis. The introduction of Spin-QED into widely accepted PIC algorithms may address this urgent demand and pave the way for studies in laser-QED physics, laser-nuclear physics (astrophysics), and even physics beyond the standard model.

VII Acknowlegement

The work is supported by the National Natural Science Foundation of China (Grants No. 12275209, 12022506, and U2267204), Open Foundation of Key Laboratory of High Power Laser and Physics, Chinese Academy of Sciences (SGKF202101), the Foundation of Science and Technology on Plasma Physics Laboratory (No. JCKYS2021212008), and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSY014).

References

  • Piazza et al. (2012) A. D. Piazza, C. Müller, K. Z. Hatsagortsyan,  and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).
  • Bell and Kirk (2008) A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).
  • Gonsalves et al. (2019) A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov,  and W. P. Leemans, “Petawatt laser guiding and electron beam acceleration to 8 gev in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).
  • Esarey, Schroeder, and Leemans (2009) E. Esarey, C. B. Schroeder,  and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
  • Ritus (1985) V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Russ. Laser Res. 6, 497–617 (1985).
  • Baier, Katkov, and Strakhovenko (1998) V. N. Baier, V. M. Katkov,  and V. M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, 1998).
  • Jackson (2021) J. D. Jackson, Classical electrodynamics (John Wiley & Sons, 2021).
  • (8) I. M. T. A. A. Sokolov, Radiation from Relativistic Electrons, American Institute of Physics Translation Series (American Institute of Physics).
  • Del Sorbo et al. (2017) D. Del Sorbo, D. Seipt, T. G. Blackburn, A. G. R. Thomas, C. D. Murphy, J. G. Kirk,  and C. P. Ridgers, “Spin polarization of electrons by ultraintense lasers,” Phys. Rev. A 96, 043407 (2017).
  • Li et al. (2019) Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel,  and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).
  • King and Tang (2020) B. King and S. Tang, “Nonlinear compton scattering of polarized photons in plane-wave backgrounds,” Phys. Rev. A 102, 022809 (2020).
  • Li et al. (2020) Y.-F. Li, R. Shaisultanov, Y.-Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “Polarized Ultrashort Brilliant Multi-GeV γ\gamma-Rays via Single-Shot Laser-Electron Interaction,” Phys. Rev. Lett. 124, 014801 (2020).
  • Gong, Hatsagortsyan, and Keitel (2021) Z. Gong, K. Z. Hatsagortsyan,  and C. H. Keitel, “Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization,” Phys. Rev. Lett. 127, 165002 (2021).
  • Wan et al. (2020a) F. Wan, Y. Wang, R.-T. Guo, Y.-Y. Chen, R. Shaisultanov, Z.-F. Xu, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “High-energy γ\gamma-photon polarization in nonlinear breit-wheeler pair production and γ\gamma polarimetry,” Phys. Rev. Research 2, 032049 (2020a).
  • Xue et al. (2020) K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang, J.-R. Ren, Q. Zhao, Y.-T. Zhao, Z.-F. Xu,  and J.-X. Li, “Generation of highly-polarized high-energy brilliant γ\gamma-rays via laser-plasma interaction,” Matter Radiat. Extremes 5, 054402 (2020).
  • Tang, King, and Hu (2020) S. Tang, B. King,  and H. Hu, “Highly polarised gamma photons from electron-laser collisions,” Phys. Lett. B 809, 135701 (2020).
  • Song, Wang, and Li (2022) H.-H. Song, W.-M. Wang,  and Y.-T. Li, “Dense polarized positrons from laser-irradiated foil targets in the QED regime,” Phys. Rev. Lett. 129, 035001 (2022).
  • Arber et al. (2015) T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell,  and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).
  • Birdsall and Langdon (2018) C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation (CRC Press, 2018).
  • Gonoskov et al. (2015) A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin,  and E. Wallin, “Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments,” Phys. Rev. E 92, 023305 (2015).
  • Fonseca et al. (2002) R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas,  and J. C. Adam, “Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators,” in Computational Science — ICCS 2002, edited by P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan,  and J. J. Dongarra (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002) pp. 342–351.
  • Burau et al. (2010) H. Burau, R. Widera, W. Hönig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T. E. Cowan, R. Sauerbrey,  and M. Bussmann, “Picongpu: A fully relativistic particle-in-cell code for a gpu cluster,” IEEE Transactions on Plasma Science 38, 2831–2839 (2010).
  • Derouillat et al. (2018a) J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda,  and M. Grech, “Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018a).
  • Wu et al. (2020) D. Wu, W. Yu, S. Fritzsche,  and X. T. He, “Particle-in-cell simulation method for macroscopic degenerate plasmas,” Phys. Rev. E 102, 033312 (2020).
  • Li et al. (2022) Y.-F. Li, Y.-Y. Chen, K. Z. Hatsagortsyan,  and C. H. Keitel, “Helicity transfer in strong laser fields via the electron anomalous magnetic moment,” Phys. Rev. Lett. 128, 174801 (2022).
  • Danson et al. (2015) C. Danson, D. Hillier, N. Hopps,  and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
  • (27) “Apollon multi-PW laser Users Facility,” http://www.polytechnique.edu.
  • Zou et al. (2015) J. Zou, C. Le Blanc, D. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez,  and et al., “Design and current progress of the apollon 10 pw project,” High Power Laser Sci. Eng. 3, e2 (2015).
  • (29) “The Extreme Light Infrastructure (ELI),” http://www.eli-beams.eu/en/facility/lasers/.
  • Gan et al. (2021) Z. Gan, L. Yu, C. Wang, Y. Liu, Y. Xu, W. Li, S. Li, L. Yu, X. Wang, X. Liu, J. Chen, Y. Peng, L. Xu, B. Yao, X. Zhang, L. Chen, Y. Tang, X. Wang, D. Yin, X. Liang, Y. Leng, R. Li,  and Z. Xu, “The Shanghai Superintense Ultrafast Laser Facility (SULF) Project,” in Progress in Ultrafast Intense Laser Science XVI, edited by K. Yamanouchi, K. Midorikawa,  and L. Roso (Springer International Publishing, Cham, 2021) pp. 199–217.
  • Buneman (1967) O. Buneman, “Time-reversible difference procedures,” J. Comput. Phys. 1, 517–535 (1967).
  • Boris and Shanny (1971) J. P. Boris and R. A. Shanny, “Proceedings of the conference on the numerical simulation of plasmas (4th) held at the naval research laboratory, washington, d.c. on 2, 3 november 1970,”   (1971), 10.21236/ada023511.
  • Qin et al. (2013) H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun,  and W. M. Tang, “Why is boris algorithm so good?” Phys. Plasmas 20, 084503 (2013).
  • Kane Yee (1966) Kane Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1966).
  • Esirkepov (2001a) T. Esirkepov, “Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor,” Computer Physics Communications 135, 144–153 (2001a).
  • Esirkepov (2001b) T. Esirkepov, “Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor,” Comput. Phys. Commun. 135, 144–153 (2001b).
  • Dirac (1938) P. A. M. Dirac, “Classical theory of radiating electrons,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 167, 148–169 (1938)https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1938.0124 .
  • Landau and Lifshitz (1999) L. D. Landau and E. Lifshitz, The classical theory of fields (1999).
  • Ekman, Heinzl, and Ilderton (2021) R. Ekman, T. Heinzl,  and A. Ilderton, “Reduction of order, resummation, and radiation reaction,” Phys. Rev. D 104, 036002 (2021).
  • Ekman (2022) R. Ekman, “Reduction of order and transseries structure of radiation reaction,” Phys. Rev. D 105, 056016 (2022).
  • Ilderton and Torgrimsson (2013) A. Ilderton and G. Torgrimsson, “Radiation reaction in strong field qed,” Physics Letters B 725, 481–486 (2013).
  • Seipt and Thomas (2023) D. Seipt and A. G. R. Thomas, “Kinetic theory for spin-polarized relativistic plasmas,”  (2023), arXiv:2307.02114 [physics.plasm-ph] .
  • Neitz and Di Piazza (2014) N. Neitz and A. Di Piazza, “Electron-beam dynamics in a strong laser field including quantum radiation reaction,” Phys. Rev. A 90, 022102 (2014).
  • Tamburini et al. (2010) M. Tamburini, F. Pegoraro, A. D. Piazza, C. H. Keitel,  and A. Macchi, “Radiation reaction effects on radiation pressure acceleration,” New J. Phys. 12, 123005 (2010).
  • Bulanov et al. (2013a) S. V. Bulanov, T. Z. Esirkepov, M. Kando, J. K. Koga, T. Nakamura, S. S. Bulanov, A. G. Zhidkov, Y. Kato,  and G. Korn, “On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons,” in High-Power, High-Energy, and High-Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers, edited by J. Hein, G. Korn,  and L. O. Silva (SPIE, 2013).
  • Nikishov and Ritus (1964) A. I. Nikishov and V. I. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field,” Sov. Phys. JETP 19, 529–541 (1964).
  • Sokolov et al. (2009) I. V. Sokolov, N. M. Naumova, J. A. Nees, G. A. Mourou,  and V. P. Yanovsky, “Dynamics of emitting electrons in strong laser fields,” Phys. Plasmas 16, 093115 (2009).
  • Piazza, Hatsagortsyan, and Keitel (2010) A. D. Piazza, K. Z. Hatsagortsyan,  and C. H. Keitel, “Quantum radiation reaction effects in multiphoton compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
  • Thomas et al. (2012) A. G. R. Thomas, C. P. Ridgers, S. S. Bulanov, B. J. Griffin,  and S. P. D. Mangles, “Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam,” Phys. Rev. X 2, 041004 (2012).
  • Sokolov et al. (2010) I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova,  and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81, 036412 (2010).
  • Bulanov et al. (2013b) S. V. Bulanov, T. Z. Esirkepov, M. Kando, J. K. Koga, T. Nakamura, S. S. Bulanov, A. G. Zhidkov, Y. Kato,  and G. Korn, “On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons,” in High-Power, High-Energy, and High-Intensity Laser Technology and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers, edited by J. Hein, G. Korn,  and L. O. Silva (SPIE, 2013).
  • Niel et al. (2018) F. Niel, C. Riconda, F. Amiranoff, R. Duclous,  and M. Grech, “From quantum to classical modeling of radiation reaction: A focus on stochasticity effects,” Phys. Rev. E 97, 043209 (2018).
  • Derouillat et al. (2018b) J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda,  and M. Grech, “Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Computer Physics Communications 222, 351–373 (2018b).
  • Avetissian (2015) H. K. Avetissian, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields, Vol. 88 (Springer, 2015).
  • Piazza (2008) A. D. Piazza, “Exact solution of the landau-lifshitz equation in a plane wave,” Letters in Mathematical Physics 83, 305–313 (2008).
  • Hu and Keitel (1999) S. X. Hu and C. H. Keitel, “Spin signatures in intense laser-ion interaction,” Phys. Rev. Lett. 83, 4709–4712 (1999).
  • Walser et al. (2002) M. W. Walser, D. J. Urbach, K. Z. Hatsagortsyan, S. X. Hu,  and C. H. Keitel, “Spin and radiation in intense laser fields,” Phys. Rev. A 65, 043410 (2002).
  • Mocken and Keitel (2008) G. R. Mocken and C. H. Keitel, “Fft-split-operator code for solving the dirac equation in 2+1 dimensions,” Computer Physics Communications 178, 868–882 (2008).
  • Bauke et al. (2014) H. Bauke, S. Ahrens, C. H. Keitel,  and R. Grobe, “Relativistic spin operators in various electromagnetic environments,” Phys. Rev. A 89, 052101 (2014).
  • Wen, Keitel, and Bauke (2017) M. Wen, C. H. Keitel,  and H. Bauke, “Spin-one-half particles in strong electromagnetic fields: Spin effects and radiation reaction,” Phys. Rev. A 95, 042102 (2017).
  • Baĭer (1972) V. N. Baĭer, “Radiative polarization of electron in storage rings,” Soviet Physics Uspekhi 14, 695–714 (1972).
  • Guo et al. (2020) R.-T. Guo, Y. Wang, R. Shaisultanov, F. Wan, Z.-F. Xu, Y.-Y. Chen, K. Z. Hatsagortsyan,  and J.-X. Li, “Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse,” Phys. Rev. Research 2, 033483 (2020).
  • Kirk, Bell, and Arka (2009) J. G. Kirk, A. R. Bell,  and I. Arka, “Pair production in counter-propagating laser beams,” Plasma Phys. Controlled Fusion 51, 085008 (2009).
  • Ridgers et al. (2014) C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber,  and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions,” J. Comput. Phys. 260, 273–285 (2014).
  • Liu et al. (2022) W.-Y. Liu, K. Xue, F. Wan, M. Chen, J.-X. Li, F. Liu, S.-M. Weng, Z.-M. Sheng,  and J. Zhang, “Trapping and acceleration of spin-polarized positrons from γ\gamma photon splitting in wakefields,” Phys. Rev. Research 4, l022028 (2022).
  • Green and Harvey (2015) D. Green and C. Harvey, “Simla: Simulating particle dynamics in intense laser and other electromagnetic fields via classical and quantum electrodynamics,” Comput. Phys. Commun. 192, 313 – 321 (2015).
  • Wan et al. (2020b) F. Wan, R. Shaisultanov, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams,” Phys. Lett. B 800, 135120 (2020b).
  • Ritus (1979) V. Ritus, Tr. Fiz. Inst. Akad. Nauk SSSR 111, 6 (1979).
  • Yokoya et al. (2011) K. Yokoya et al., “Cain, version 2.42,” KEK, Tsukuba, Japan  (2011).
  • Berestetskii, Lifshitz, and Pitaevskii (1982) V. B. Berestetskii, E. M. Lifshitz,  and L. P. Pitaevskii, Quantum Electrodynamics: Volume 4, Vol. 4 (Butterworth-Heinemann, 1982).
  • Wistisen and Uggerhøj (2013) T. N. Wistisen and U. I. Uggerhøj, “Vacuum birefringence by compton backscattering through a strong field,” Phys. Rev. D 88, 053009 (2013).
  • Bragin et al. (2017) S. Bragin, S. Meuren, C. H. Keitel,  and A. D. Piazza, “High-energy vacuum birefringence and dichroism in an ultrastrong laser field,” Phys. Rev. Lett. 119, 250403 (2017).
  • Chen et al. (2019) Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan,  and C. H. Keitel, “Polarized positron beams via intense two-color laser pulses,” Phys. Rev. Lett. 123, 174801 (2019).
  • Xue et al. (2022) K. Xue, R.-T. Guo, F. Wan, R. Shaisultanov, Y.-Y. Chen, Z.-F. Xu, X.-G. Ren, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “Generation of arbitrarily polarized GeV lepton beams via nonlinear breit-wheeler process,” Fundamental Research 2, 539–545 (2022).
  • Chen et al. (2022) Y.-Y. Chen, K. Z. Hatsagortsyan, C. H. Keitel,  and R. Shaisultanov, “Electron spin- and photon polarization-resolved probabilities of strong-field qed processes,” Phys. Rev. D 105, 116013 (2022).
  • Wan et al. (2017) F. Wan, C. Lv, M. Jia, H. Sang,  and B. Xie, “Photon emission by bremsstrahlung and nonlinear compton scattering in the interaction of ultraintense laser with plasmas,” EUROPEAN PHYSICAL JOURNAL D 71 (2017), 10.1140/epjd/e2017-70805-7.
  • Agostinelli and et al. (2003) S. Agostinelli and et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Meth. A. 506, 250–303 (2003).
  • Tsai (1974) Y.-S. Tsai, “Pair production and bremsstrahlung of charged leptons,” Rev. Mod. Phys. 46, 815–851 (1974).
  • (79) “PENELOPE 2018: A code system for Monte Carlo simulation of electron and photon transport,” in Workshop Proceedings, Barcelona, Spain, 28 January – 1 February 2019 (OECD).
  • Seltzer and Berger (1986) S. M. Seltzer and M. J. Berger, “Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100,” Atom. Data Nucl. Data 35, 345–418 (1986).
  • Kim et al. (1986) L. Kim, R. H. Pratt, S. M. Seltzer,  and M. J. Berger, “Ratio of positron to electron bremsstrahlung energy loss: An approximate scaling law,” Phys. Rev. A 33, 3002–3009 (1986).
  • Shore (2007) G. M. Shore, “Superluminality and UV completion,” Nucl. Phys. B 778, 219–258 (2007).
  • Karbstein (2013) F. Karbstein, “Photon polarization tensor in a homogeneous magnetic or electric field,” Phys. Rev. D 88, 085033 (2013).
  • Dinu et al. (2014) V. Dinu, T. Heinzl, A. Ilderton, M. Marklund,  and G. Torgrimsson, “Vacuum refractive indices and helicity flip in strong-field QED,” Phys. Rev. D 89, 125003 (2014).
  • Wan et al. (2022) F. Wan, T. Sun, B.-F. Shen, C. Lv, Q. Zhao, M. Ababekri, Y.-T. Zhao, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “Enhanced signature of vacuum birefringence in a plasma wakefield,”  (2022), arXiv:2206.10792 [physics.plasm-ph] .
  • Sanderson and Curtin (2016) C. Sanderson and R. Curtin, “Armadillo: a template-based c++ library for linear algebra,” The Journal of Open Source Software 1, 26 (2016).
  • Sanderson and Curtin (2018) C. Sanderson and R. Curtin, “A user friendly hybrid sparse matrix class in c++,” in Mathematical Software – ICMS 2018 (Springer International Publishing, 2018) pp. 422–430.
  • (88) “C++ mathematical expression library,” .
  • Ridgers et al. (2012) C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson,  and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ\gamma rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).