Simplicial sets, Postnikov systems,
and bounded cohomology
Nikolai V. Ivanov
Contents
A. 1. Introduction 2
A. 2. Simplicial sets and Δ \Delta -sets 5
A. 3. Postnikov systems and minimality 9
A. 4. Classifying spaces of categories and groups 11
A. 5. Bundles with Eilenberg–MacLane fibers 14
A. 6. Unraveling simplicial sets 22
A. 7. Isometric isomorphisms in bounded cohomology 28
Appendices
A. A.1. The constructions of Milnor and Segal 33
A. A.2. Few technical lemmas 35
References 39
Bounded cohomology of topological spaces.
The bounded cohomology groups H ^ ∗ ( X ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt)
of a topological space X X were introduced by Gromov [Gr ] . The definition of H ^ ∗ ( X ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt)
is almost the same as the definition of the singular
cohomology H ∗ ( X , 𝐑 ) H^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt)
of X X with real coefficients. Namely, in order to define H ^ ∗ ( X ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt) one needs only to replace
arbitrary singular n n -cochains by singular n n -cochains
which are bounded as real-valued functions on the set of singular n n -simplices. The effect of this change is rather dramatic. It turns out that H ^ ∗ ( X ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt)
depends only on the fundamental group of X X , or , what is the same, H ^ ∗ ( X ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt)
does not depend on the higher homotopy groups of X X . At the same time H ^ ∗ ( X ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt)
carries an additional structure, a canonical semi-norm, and this semi-norm is the raison d’être of the theory.
Gromov’s exposition [Gr ] of the bounded cohomology theory is rather cryptic. For more than three decades the only available detailed proofs
of the main results of the bounded cohomology theory were author’s proofs [I 1 I_{\hskip 0.35002pt1} ] , under a technical assumption removed in [I 2 I_{\hskip 0.35002pt2} ] . Only recently R. Frigerio and M. Moraschini [F M ] reconstructed Gromov’s proofs and provided a detailed exposition
of the theory following Gromov’s outline.
Simplicial sets and Postnikov systems.
The modern singular homology and cohomology theory was
created by S. Eilenberg in his paper [E ] . Later on Eilenberg, in collaboration with S. MacLane and J. Zilber, undertook a detailed analysis of this theory. In particular , Eilenberg and MacLane [E M 1 E{\hskip 0.50003pt}M_{\hskip 0.35002pt1} ] , [E M 2 E{\hskip 0.50003pt}M_{\hskip 0.35002pt2} ] studied the influence of the homotopy groups of spaces on their homology and cohomology groups. The second paper [E M 2 E{\hskip 0.50003pt}M_{\hskip 0.35002pt2} ] in this series relied on the notion of complete semi-simplicial complexes just introduced by Eilenberg and Zilber [E Z ] . Nowadays complete semi-simplicial complexes are known as simplicial sets .
The problem of influence of homotopy groups on homology and cohomology groups was addressed by Eilenberg and MacLane only in fairly special cases. Their results were subsumed by the theory of natural systems of M.M. Postnikov [P 1 P_{\hskip 0.35002pt1} ] , [P 2 P_{\hskip 0.35002pt2} ] . Natural systems were quickly renamed into Postnikov systems . The theory of Postnikov systems allows, at least in principle, to determine the homology and cohomology groups
of a space starting with its homotopy groups
and some additional invariants, known as Postnikov invariants . Simplicial sets served as the natural framework for Postnikov’s theory [P 2 P_{\hskip 0.35002pt2} ] .
Simplicial sets and bounded cohomology theory.
The bounded cohomology groups H ^ ∗ ( K ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt) of a simplicial set K K are defined in an obvious manner . Namely, the simplicial n n -cochains of K K with real coefficients
are the real-valued functions on the set K n K_{\hskip 0.70004ptn}
of n n -simplices of K K . A simplicial n n -cochain is bounded if it is bounded as a real-valued function on K n K_{\hskip 0.70004ptn} , and the coboundary of a bounded cochain is obviously bounded. The bounded cohomology H ^ ∗ ( K ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt) are defined as the
cohomology of the cochain complex of bounded cochains. Homotopies of simplicial maps lead to cochain homotopies
of complexes of bounded cochains and, similarly to the case of spaces, H ^ ∗ ( K ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt)
depends only on the homotopy type of K K .
It is only natural to expect that the theories of simplicial sets and Postnikov systems
can be adapted to the bounded version of the cohomology theory and, in particular , used to prove that the bounded cohomology groups H ^ ∗ ( K ) \widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt) do not depend on the higher homotopy groups of K K . The goal of the present paper is to show that this is indeed the case and, moreover , that the tools provided by the theories of simplicial sets and Postnikov systems
are nearly ready for using in the bounded cohomology theory.
Kan extension property.
It is well known that in the the theory
of simplicial sets the internal notions of homotopy, homotopy type, and homotopy groups
are reasonable only for simplicial sets satisfying an additional condition known as the Kan extension property. Such simplicial sets are called Kan simplicial sets , or , more recently, fibrant simplicial sets . The need to restrict the class of considered simplicial sets is clear in the bounded cohomology theory. Indeed, the bounded cohomology groups of simplicial sets arising from finite simplicial complexes are the same as the usual real cohomology groups. It turns out the Kan extensions condition is exactly what is needed for the bounded cohomology theory.
The main theorems.
The first main theorem of this paper is concerned with locally trivial bundles of simplicial sets. The above notwithstanding, the base is allowed to be
an arbitrary simplicial set. In this theorem K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) denotes the Eilenberg–MacLane simplicial set, as in the classical papers of Eilenberg and MacLane. See Section Simplicial sets, Postnikov systems, and bounded cohomology for the details.
Theorem A.
Let E , B E\hskip 0.50003pt,\hskip 3.00003ptB be simplicial sets, and let p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a locally trivial bundle with the Eilenberg–MacLane simplicial set K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) as the fiber . If n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 , then the map induced by p p in bounded cohomology is an isometric isomorphism.
See Theorem Simplicial sets, Postnikov systems, and bounded cohomology . This result should be considered as a relative property of E E with respect to B B . Since K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)
has the Kan extension property, the latter is present, albeit implicitly.
The second main theorem is concerned with the “classifying spaces” B π \mathit{B}\hskip 1.49994pt\pi of discrete groups π \pi , which are actually not spaces, but another incarnation of simplicial sets K ( π , 1 ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt) . See Section Simplicial sets, Postnikov systems, and bounded cohomology for a discussion of classifying spaces.
Theorem B.
Let π \pi be a discrete group
and κ ⊂ π \kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi be a normal amenable subgroup of π \pi . Let p : π ⟶ π / κ p\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi/\kappa be the quotient homomorphism. Then B p : B π ⟶ B ( π / κ ) \mathit{B}\hskip 0.50003ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt) induces isometric isomorphism in bounded cohomology.
See Theorem Simplicial sets, Postnikov systems, and bounded cohomology . Note that the classifying spaces B π \mathit{B}\hskip 1.49994pt\pi are Kan simplicial sets.
In addition to the classical theory of simplicial sets, the proofs of these theorems involve the notion of Δ \Delta -sets , introduced under the name semi-simplicial complexes by Eilenberg and Zilber in the same paper [E Z ] in which they introduced simplicial sets. The Δ \Delta -sets differ from simplicial sets by the lack of degeneracy operators. See Section Simplicial sets, Postnikov systems, and bounded cohomology for the details. The modern term “Δ \Delta -set ” goes back to C. Rourke and B. Sanderson [RS ] . Our main example of a Δ \Delta -set is the
infinitely dimensional simplex Δ [ ∞ ] \Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] , the union over n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} of the standard n n -dimensional simplices
Δ [ n ] \Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] considered as Δ \Delta -sets. Again, see Section Simplicial sets, Postnikov systems, and bounded cohomology for the details. The Δ \Delta -sets are used to construct unravelings of simplicial sets. The idea of the unraveling goes back to G. Segal [S ] and J. Milnor’s construction of classifying spaces [Mi ] . The unraveling of a simplicial set K K is simply the Δ \Delta -set K × Δ [ ∞ ] K\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . In this product the degeneracy operators of K K
are ignored and the product is taken dimension-wise , exactly as the products of simplicial sets. The main result about unravelings is the following.
Theorem C.
Let K K be a simplicial set. The projection p : K × Δ [ ∞ ] ⟶ K p\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK induces isometric isomorphisms in the
bounded cohomology groups.
See Theorem Simplicial sets, Postnikov systems, and bounded cohomology . The proof is based on a modification of the method of acyclic models.
Applications.
When combined with the basic facts of the theory of Postnikov systems, Theorem A easily implies the following theorem.
Theorem D.
Let K K be a connected Kan simplicial set and f : K ⟶ B π 1 ( K , v ) f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) , where v v is a vertex of K K , be a simplicial map inducing isomorphism of fundamental groups. Then f f induces
an isomorphism in bounded cohomology.
See Theorem Simplicial sets, Postnikov systems, and bounded cohomology . This theorem together with Theorem B easily implies the following.
Theorem E.
Let K , L K\hskip 0.50003pt,\hskip 3.00003ptL be connected Kan simplicial sets
and let v v be a vertex of K K . Let f : K ⟶ L f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL be a simplicial map. If f ∗ : π 1 ( K , v ) ⟶ π 1 ( L , f ( v ) ) f_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptL\hskip 0.50003pt,\hskip 1.99997ptf\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.49994pt) is surjective and has amenable kernel, then f f induces an isometric isomorphisms in bounded cohomology.
See Theorem Simplicial sets, Postnikov systems, and bounded cohomology . When applied to the singular simplicial sets of topological spaces, Theorems E and D turn into Gromov’s Mapping theorem and its Corollary (A) respectively. See [Gr ] , p. 40. In fact, Gromov deduces his Mapping theorem from his Corollary (A). Observing some similarity between this deduction (see [Gr ] , the top of p. 47) and Segal’s unraveling of categories [S ] was the starting point of the present paper .
The structure of the paper .
Sections Simplicial sets, Postnikov systems, and bounded cohomology , Simplicial sets, Postnikov systems, and bounded cohomology , and the first half of Section Simplicial sets, Postnikov systems, and bounded cohomology are devoted to the basic definitions and a review of theories used in the paper . The second half of Section Simplicial sets, Postnikov systems, and bounded cohomology introduces some ideas behind the proof of Theorem B and the definition of unravelings. Appendix Simplicial sets, Postnikov systems, and bounded cohomology provides additional motivation, but is not used in the main part of the paper . Section Simplicial sets, Postnikov systems, and bounded cohomology is the technical heart of the paper , laying the groundwork for the proof of Theorem A. Theorem C is proved in Section Simplicial sets, Postnikov systems, and bounded cohomology , which does not depends on the rest of the paper. Section Simplicial sets, Postnikov systems, and bounded cohomology is devoted to the proofs of Theorems A and B and deducing Theorems D and E from them. Appendix Simplicial sets, Postnikov systems, and bounded cohomology is devoted to the proofs
of several technical lemmas.
2. Simplicial sets and Δ \Delta -sets
The categories 𝚫 \bm{\Delta} and Δ \Delta .
We will include 0 in the set 𝐍 \mathbf{N} of natural numbers. For every n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} let [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] be the set { 0 , 1 , … , n } \{\hskip 1.49994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn\hskip 1.49994pt\} . The category 𝚫 \bm{\Delta} has sets [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] as objects and non-decreasing maps [ m ] ⟶ [ n ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] as morphisms from [ m ] [\hskip 0.24994ptm\hskip 1.00006pt] to [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] , with the composition being the composition of maps. The category Δ \Delta is the subcategory of 𝚫 \bm{\Delta} having the same objects and strictly increasing maps [ m ] ⟶ [ n ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] as morphisms from [ m ] [\hskip 0.24994ptm\hskip 1.00006pt] to [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] .
Simplicial sets and Δ \Delta -sets.
A simplicial set is a contravariant functor from 𝚫 \bm{\Delta} to the category of sets. Similarly , a Δ \Delta -set is a contravariant functor from Δ \Delta to the category of sets. So, a simplicial set K K consists of a set K n K_{\hskip 0.70004ptn} for every n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} and a map θ ∗ : K n ⟶ K m \theta^{\hskip 0.35002pt*}\hskip 1.00006pt\colon\hskip 1.00006ptK_{\hskip 0.70004ptn}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK_{\hskip 0.70004ptm} for every non-decreasing map θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] . For Δ \Delta -set K K the map θ ∗ \theta^{\hskip 0.35002pt*} is defined
only if θ \theta is strictly increasing. If K K is a simplicial set , then the restriction of the functor K K to the subcategory Δ \Delta of 𝚫 \bm{\Delta} is a Δ \Delta -set , which we will denote by Δ K \Delta\hskip 1.00006ptK or simply by K K .
The elements of K n K_{\hskip 0.70004ptn} are called n n -simplices , or simplices of dimension n n of K K , and the maps θ ∗ \theta^{\hskip 0.35002pt*} the structure maps of K K . The 0 -simplices are also called vertices and if σ ∈ K n \sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn} , then the vertices of σ \sigma are 0 -simplices of the form θ ∗ ( σ ) \theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)
with θ \theta being a map [ 0 ] ⟶ [ n ] [\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] .
If K , L K\hskip 0.50003pt,\hskip 3.00003ptL are either
simplicial or Δ \Delta -sets, then a simplicial map K ⟶ L K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL is a natural transformation of functors, i.e. as a sequence of maps K n ⟶ L n K_{\hskip 0.70004ptn}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL_{\hskip 0.70004ptn} such that
K n {K_{\hskip 0.70004ptn}} L n {L_{\hskip 0.70004ptn}} K m {K_{\hskip 0.70004ptm}} L m {L_{\hskip 0.70004ptm}} θ ∗ \scriptstyle{\displaystyle\theta^{\hskip 0.35002pt*}} θ ∗ \scriptstyle{\displaystyle\theta^{\hskip 0.35002pt*}}
is a commutative diagram for every morphism θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] of 𝚫 \bm{\Delta} or Δ \Delta respectively.
The face and degeneracy operators.
For every n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} and i ∈ [ n ] i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] there is a unique surjective non-decreasing map
s ( i ) : [ n + 1 ] ⟶ [ n ] s\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] taking the value i i twice. If n > 0 n\hskip 1.99997pt>\hskip 1.99997pt0 , then
then there is a unique strictly increasing map
d ( i ) : [ n − 1 ] ⟶ [ n ] d\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] not taking the value i i . The structure maps s i = s ( i ) ∗ s_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pts\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)^{\hskip 0.35002pt*} and ∂ i = d ( i ) ∗ \partial_{\hskip 0.35002pti}\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)^{\hskip 0.35002pt*} are called the i i th degeneracy and face operators respectively . If σ \sigma is a simplex of K K , then ∂ i σ \partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma is called the i i th face of σ \sigma .
Clearly, every non-decreasing map [ m ] ⟶ [ n ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] admits a unique presentation as a composition [ m ] ⟶ [ k ] ⟶ [ n ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptk\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] of a surjective non-decreasing map [ m ] ⟶ [ k ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptk\hskip 1.00006pt] and a strictly increasing map [ k ] ⟶ [ n ] [\hskip 0.50003ptk\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] . On the other hand, every strictly increasing map is a composition of several maps of the form d ( i ) d\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt) , and every surjective non-decreasing map is a composition of several maps of the form s ( i ) s\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt) .
It follows that every structure map is a composition of several face and degeneracy operators. These operators satisfy some simple and well known relations implied by relations between maps s ( i ) , d ( j ) s\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.49994ptj\hskip 1.49994pt) , which we do not reproduce here. Conversely , the face and degeneracy operators ∂ j , s i \partial_{\hskip 0.35002ptj}\hskip 1.99997pt,\hskip 3.99994pts_{\hskip 0.70004pti} satisfying these relations can be extended to a contravariant functor from 𝚫 \bm{\Delta} to the category of sets, i.e. to a simplicial set . Similarly, face operators ∂ j \partial_{\hskip 0.35002ptj} satisfying the relations involving only face operators can be extended to a functor from Δ \Delta to the category of sets, i.e. to a Δ \Delta -set . If K K is a simplicial set , then the Δ \Delta -set Δ K \Delta\hskip 1.00006ptK is the result of ignoring the degeneracy operators
of K K .
Non-degenerate simplices.
A simplex σ \sigma of a simplicial set K K
is said to be degenerate if it belongs to the image of some s i s_{\hskip 0.70004pti} , and non-degenerate otherwise. An n n -simplex σ \sigma
is degenerate if and only if σ = θ ∗ ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) for an m m -simplex τ \tau with m < n m\hskip 1.99997pt<\hskip 1.99997ptn
and a surjective non-decreasing θ : [ n ] ⟶ [ m ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptm\hskip 1.00006pt] . By a lemma of Eilenberg and Zilber [E Z ] , if τ \tau is required to be non-degenerate, then the presentation σ = θ ∗ ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) is unique. See Lemma Simplicial sets, Postnikov systems, and bounded cohomology .
Simplicial sets from Δ \Delta -sets.
Let D D be a Δ \Delta -set . It gives rise to simplicial set
𝚫 D \bm{\Delta}\hskip 1.00006ptD defined as follows. The n n -simplices of 𝚫 D \bm{\Delta}\hskip 1.00006ptD are the pairs ( σ , ρ ) (\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.49994pt) such that σ \sigma is an l l -simplex of D D for some l ⩽ n l\hskip 1.99997pt\leqslant\hskip 1.99997ptn and ρ : [ n ] ⟶ [ l ] \rho\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptl\hskip 1.99997pt] is a surjective non-decreasing map. In order to define θ ∗ \theta^{\hskip 0.70004pt*} for a non-decreasing map θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] , we represent θ \theta as the composition θ = τ ∘ φ \theta\hskip 3.99994pt=\hskip 3.99994pt\tau\hskip 1.00006pt\circ\hskip 1.49994pt\varphi , where τ \tau is a strictly increasing map and φ \varphi is a surjective non-decreasing map, and set θ ∗ ( σ , ρ ) = ( τ ∗ ( σ ) , φ ) \theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\tau^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt\varphi\hskip 1.49994pt) . One can easily check that ( θ ∘ η ) ∗ = θ ∗ ∘ η ∗ (\hskip 1.00006pt\theta\hskip 1.00006pt\circ\hskip 1.49994pt\eta\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 0.50003pt\circ\hskip 1.99997pt\hskip 0.50003pt\eta^{\hskip 0.70004pt*} and hence 𝚫 K \bm{\Delta}\hskip 0.50003ptK is indeed a simplicial set . The correspondence D ⟼ 𝚫 D D\hskip 3.99994pt\longmapsto\hskip 3.99994pt\bm{\Delta}\hskip 1.00006ptD naturally extends to simplicial maps, i.e. leads to a functor from the category of Δ \Delta -sets to the category of simplicial sets.
Simplicial sets and Δ \Delta -sets from simplicial complexes.
Recall that a simplicial complex S S is a set of vertices V = V S V\hskip 3.99994pt=\hskip 3.99994ptV_{\hskip 0.70004ptS} together with a collection of finite subsets of V V , called simplices of S S , subject to the condition that a subset of a simplex is also a simplex. Elements of a simplex σ ⊂ V \sigma\hskip 1.99997pt\subset\hskip 1.99997ptV are called the vertices of σ \sigma . A simplex τ \tau is said to be a face of a simplex σ \sigma if τ ⊂ σ \tau\hskip 1.99997pt\subset\hskip 1.99997pt\sigma . A local order on a simplicial complex S S is an assignment of a linear order < σ <_{\hskip 0.70004pt\sigma} on σ \sigma for each simplex σ \sigma . These orders are required to agree in the sense that < τ <_{\hskip 0.70004pt\tau} is the restriction of < σ <_{\hskip 0.70004pt\sigma} if τ \tau is a face of σ \sigma . For example, if < < is a linear order on V S V_{\hskip 0.70004ptS} , then the restrictions of < < to simplices form a local order on S S . The simplest examples of simplicial sets and Δ \Delta -sets are provided by the following construction.
A locally ordered simplicial complex S S gives rise to a Δ \Delta -set Δ S \Delta\hskip 0.50003ptS and a
simplicial set 𝚫 S \bm{\Delta}\hskip 0.50003ptS . The n n -simplices of Δ S \Delta\hskip 0.50003ptS are injective maps σ : [ n ] ⟶ V \sigma\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptV such that the image σ ( [ n ] ) \sigma\hskip 1.00006pt(\hskip 1.49994pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.49994pt) is a simplex of S S and σ \sigma is order-preserving. Of course, the sets [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] are considered with their natural order induced from 𝐍 \mathbf{N} . The n n -simplices of 𝚫 S \bm{\Delta}\hskip 0.50003ptS are maps σ : [ n ] ⟶ V \sigma\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptV such that σ ( [ n ] ) \sigma\hskip 1.00006pt(\hskip 1.49994pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.49994pt) is a simplex of S S and σ \sigma in non-decreasing with respect to the orders on [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] and this simplex. In both cases the structure maps θ ∗ \theta^{\hskip 0.35002pt*} are defined by θ ∗ ( σ ) = σ ∘ θ \theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma\hskip 1.00006pt\circ\hskip 1.49994pt\theta . An easy check shows that 𝚫 S = 𝚫 Δ S \bm{\Delta}\hskip 0.50003ptS\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt\Delta\hskip 0.50003ptS . The local order involved in this construction almost never matters and is rarely mentioned.
Basic examples.
For n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} the set [ n ] [\hskip 0.24994ptn\hskip 1.00006pt]
can be considered as a simplicial complex having [ n ] [\hskip 0.24994ptn\hskip 1.00006pt]
as its set of vertices and all subsets of [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] as simplices. The usual order on 𝐍 \mathbf{N} turns [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] into
a locally ordered simplicial complex. The Δ \Delta -set Δ [ n ] \Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] has as k k -simplices strictly increasing maps [ k ] ⟶ [ n ] [\hskip 1.00006ptk\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] , and the simplicial set 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] has as k k -simplices non-decreasing maps [ k ] ⟶ [ n ] [\hskip 1.00006ptk\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] . Clearly, 𝚫 [ n ] = 𝚫 Δ [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] . We will need also the simplicial complex [ ∞ ] [\hskip 1.00006pt\infty\hskip 1.00006pt] having 𝐍 \mathbf{N} as its set of vertices
and all finite subsets of 𝐍 \mathbf{N} as simplices, as also the Δ \Delta -set Δ [ ∞ ] \Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] and the simplicial set 𝚫 [ ∞ ] = 𝚫 Δ [ ∞ ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] .
Every non-decreasing map θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] defines a simplicial map θ ∗ : 𝚫 [ m ] ⟶ 𝚫 [ n ] \theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] by the rule θ ∗ ( σ ) = θ ∘ σ \theta_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\sigma . Clearly, ( θ ∘ η ) ∗ = θ ∗ ∘ η ∗ (\hskip 1.49994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\eta\hskip 1.99997pt)_{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\theta_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004pt*} and the assignments
n ⟼ 𝚫 [ n ] n\hskip 3.99994pt\longmapsto\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] and θ ⟼ θ ∗ \theta\hskip 3.99994pt\longmapsto\hskip 3.99994pt\theta_{\hskip 0.70004pt*} define a covariant functor from 𝚫 \bm{\Delta}
to the category of simplicial sets. Similarly, strictly increasing maps θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] define simplicial maps θ ∗ : Δ [ m ] ⟶ Δ [ n ] \theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] and lead to a functor from Δ \Delta to Δ \Delta -sets.
Kan extension and lifting properties.
Let n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} and k ∈ [ n ] k\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] . The k k -horn of [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] is the simplicial complex [ n ] k [\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.35002ptk}
having [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] as the set of vertices and
subsets of [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] not containing [ n ] ∖ { k } [\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\{\hskip 1.49994ptk\hskip 1.99997pt\}
as simplices. Equivalently , [ n ] k [\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.70004ptk} is obtained from
[ n ] [\hskip 0.24994ptn\hskip 1.00006pt] by removing simplices [ n ] [\hskip 0.24994ptn\hskip 1.00006pt]
and [ n ] ∖ { k } [\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\{\hskip 1.49994ptk\hskip 1.99997pt\} . The k k -horn [ n ] k [\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.35002ptk} of [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] leads to the k k -horn 𝚲 k [ n ] = 𝚫 [ n ] k \bm{\Lambda}_{\hskip 0.35002ptk}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.35002ptk} of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] .
A simplicial set K K is said to have the Kan extension property , or to be a Kan simplicial set , if every simplicial map 𝚲 k [ n ] ⟶ K \bm{\Lambda}_{\hskip 0.35002ptk}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK can be extended to a simplicial map 𝚫 [ n ] ⟶ K \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK . Let E , B E\hskip 0.50003pt,\hskip 3.00003ptB be simplicial sets. A simplicial map p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB is said to have Kan lifting property , or to be a Kan fibration if every commutative diagram of solid arrows
of the form
𝚲 k [ n ] {\displaystyle\bm{\Lambda}_{\hskip 0.35002ptk}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]} E {E} 𝚫 [ n ] {\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]} B , {B\hskip 0.50003pt,} i \scriptstyle{\displaystyle i\hskip 1.00006pt} p \scriptstyle{\displaystyle p}
where i i is the inclusion, can be completed by a dashed arrow to a commutative diagram. A simplicial set K K is Kan if and only if the unique map K ⟶ 𝚫 [ 0 ] K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt] is a Kan fibration.
Simplices and simplicial maps.
Let 𝜾 n \bm{\iota}_{\hskip 0.70004ptn} be the identity map [ n ] ⟶ [ n ] [\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] considered as an n n -simplex of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] . Then every m m -simplex of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] is equal to θ ∗ ( 𝜾 n ) \theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.49994pt) for a unique non-decreasing map θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] . It follows that for every simplicial set K K simplicial maps f : 𝚫 [ n ] ⟶ K f\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK
are uniquely determined by the images
f ( 𝜾 n ) f\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.00006pt) . Conversely, if σ ∈ K n \sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn} , then there is a unique simplicial map
i σ : 𝚫 [ n ] ⟶ K \quad i_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK
such that σ = i σ ( 𝜾 n ) \sigma\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\sigma}\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.00006pt) .
Skeletons.
Let n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} . If D D is a Δ \Delta -set, then the n n th skeleton sk n D \operatorname{sk}_{\hskip 0.70004ptn}\hskip 0.50003ptD of D D is the Δ \Delta -subset of D D consisting of all k k -simplices
with k ⩽ n k\hskip 1.99997pt\leqslant\hskip 1.99997ptn . If K K is a simplicial set, then sk n K \operatorname{sk}_{\hskip 0.70004ptn}\hskip 0.50003ptK consists of all simplices of the form θ ∗ ( σ ) \theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) , where σ \sigma is a k k -simplex for some k ⩽ n k\hskip 1.99997pt\leqslant\hskip 1.99997ptn . The boundary ∂ 𝚫 [ n ] \partial{\hskip 0.50003pt}\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]
of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]
is defined as the skeleton
sk n − 1 𝚫 [ n ] \operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] . The simplicial set ∂ 𝚫 [ n ] \partial{\hskip 0.50003pt}\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]
has as simplices non-decreasing maps [ m ] ⟶ [ n ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]
with the image ≠ [ n ] \neq\hskip 3.99994pt[\hskip 0.24994ptn\hskip 1.00006pt] .
Products.
The product K × L K\hskip 1.00006pt\times\hskip 1.00006ptL of simplicial sets and Δ \Delta -sets K , L K\hskip 0.50003pt,\hskip 3.00003ptL is defined dimension-wise. In more details, ( K × L ) n = K n × L n (\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006ptL\hskip 1.49994pt)_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptK_{\hskip 0.70004ptn}\hskip 1.00006pt\times\hskip 1.49994ptL_{\hskip 0.70004ptn} and the structure maps of K × L K\hskip 1.00006pt\times\hskip 1.00006ptL are the products of the structure maps of K K and L L . This dimension-wise product is hardly natural for finite Δ \Delta -sets, but products with Δ [ ∞ ] \Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt]
play a key role in our theory.
Homotopies.
The maps d ( 0 ) , d ( 1 ) : [ 0 ] ⟶ [ 1 ] d\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt),\hskip 3.00003ptd\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt\colon\hskip 1.99997pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006pt1\hskip 1.00006pt] take 0 to 1 1 and 0 respectively. Let i ( 0 ) = d ( 1 ) ∗ i\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)_{\hskip 0.70004pt*} and i ( 1 ) = d ( 0 ) ∗ i\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)_{\hskip 0.70004pt*} be the corresponding maps 𝚫 [ 0 ] ⟶ 𝚫 [ 1 ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt] . Suppose that K , L K\hskip 0.50003pt,\hskip 3.00003ptL are simplicial sets and f , g : K ⟶ L f,\hskip 3.00003ptg\hskip 1.99997pt\colon\hskip 1.49994ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL are simplicial maps. A homotopy between f f and g g is a simplicial map h : K × 𝚫 [ 1 ] ⟶ L h\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL such that
f = k ∘ ( id K × i ( 0 ) ) and g = k ∘ ( id K × i ( 1 ) ) , \quad f\hskip 3.99994pt=\hskip 3.99994ptk\hskip 1.00006pt\circ\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\operatorname{id}_{\hskip 1.04996ptK}\hskip 1.00006pt\times\hskip 1.00006pti\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.99997pt\bigr{)}\quad\ \mbox{and}\quad\ g\hskip 3.99994pt=\hskip 3.99994ptk\hskip 1.00006pt\circ\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\operatorname{id}_{\hskip 1.04996ptK}\hskip 1.00006pt\times\hskip 1.00006pti\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
where K K is identified with K × 𝚫 [ 0 ] K\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt] . Homotopy equivalences are defined in terms of homotopies
in the usual manner . A simplicial set K K is said to be contractible if K K is homotopy equivalent to 𝚫 [ 0 ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt] . In this case id K \operatorname{id}_{\hskip 1.04996ptK} is homotopic to the composition K ⟶ 𝚫 [ 0 ] ⟶ K K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK of the unique map K ⟶ 𝚫 [ 0 ] K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt] with i v : 𝚫 [ n ] ⟶ K i_{\hskip 0.70004ptv}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK for some v ∈ K 0 v\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 1.04996pt0} . If K K is contractible, then the projection K × L ⟶ L K\hskip 1.00006pt\times\hskip 1.00006ptL\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL is a homotopy equivalence for every L L .
Local systems of coefficients.
Let K K be either a simplicial or a Δ \Delta -set. Let ε \varepsilon be a 1 1 -simplex of K K and v , w v\hskip 0.50003pt,\hskip 3.00003ptw are vertices of K K . We say that ε \varepsilon connects v v with w w if ∂ 1 ε = v \partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptv and ∂ 0 ε = w \partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptw . A local system of coefficients , or simply a local system π \pi on K K is an assignment of a group π v \pi_{\hskip 0.70004ptv} to every vertex v v of K K and an isomorphism ε ∗ : π w ⟶ π v \varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv} to every 1 1 -simplex ε \varepsilon
connecting v v with w w . These groups and isomorphisms are subject to the following condition : if ω ∈ K 2 \omega\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 1.04996pt2} and ρ = ∂ 2 ω , σ = ∂ 0 ω , τ = ∂ 1 ω \rho\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt2}\hskip 1.00006pt\omega\hskip 0.50003pt,\hskip 3.99994pt\ \sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt0}\hskip 1.00006pt\omega\hskip 0.50003pt,\hskip 3.99994pt\ \tau\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\omega , then τ ∗ = ρ ∗ ∘ σ ∗ \tau^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\rho^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pt\sigma^{\hskip 0.70004pt*} . A local system of coefficients π \pi is said to be abelian if all groups π v \pi_{\hskip 0.70004ptv} are abelian.
The leading vertex of an n n -simplex σ \sigma is the vertex v σ = θ ∗ ( σ ) v_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.00006pt\sigma\hskip 1.00006pt) , where θ : [ 0 ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] is the inclusion, and the leading edge of an n n -simplex σ \sigma is the 1 1 -simplex ε σ = η ∗ ( σ ) \varepsilon_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pt\eta^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.00006pt\sigma\hskip 1.00006pt) , where η : [ 1 ] ⟶ [ n ] \eta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] is the inclusion. An n n -cochain of K K with coefficients in the local system π \pi is a map c c assigning every σ ∈ K n \sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn} an element c ( v ) ∈ π v c\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003pt\pi_{\hskip 0.70004ptv} , where v = v σ v\hskip 3.99994pt=\hskip 3.99994ptv_{\hskip 0.70004pt\sigma} is the leading vertex of σ \sigma . The group of such cochains is denoted by C n ( K , π ) C^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) . For abelian π \pi the coboundary operators ∂ ∗ : C n ( K , π ) ⟶ C n + 1 ( K , π ) \partial^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptC^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) are defined by the formula
∂ ∗ c ( σ ) = ε σ ∗ ( c ( ∂ 0 σ ) ) + ∑ i = 1 n + 1 ( − 1 ) i c ( ∂ i σ ) ∈ π v σ . \quad\partial^{\hskip 0.70004pt*}\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\varepsilon_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.49994ptc\hskip 1.49994pt\bigl{(}\hskip 1.99997pt\partial_{\hskip 1.04996pt0}\hskip 1.00006pt\sigma\hskip 1.49994pt\bigr{)}\hskip 1.99997pt\bigr{)}\hskip 3.99994pt+\hskip 3.99994pt\sum\nolimits_{\hskip 0.70004pti\hskip 1.39998pt=\hskip 1.39998pt1}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)^{\hskip 0.70004pti}\hskip 3.00003ptc\hskip 1.49994pt\bigl{(}\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\in\hskip 3.99994pt\pi_{\hskip 0.70004ptv_{\hskip 0.50003pt\sigma}}\hskip 3.99994pt.
The cocycles and coboundaries are defined in terms ∂ ∗ \partial^{\hskip 0.70004pt*} in the usual manner .
3. Postnikov systems and minimality
Comparing simplices.
Let K K be a simplicial set and q ∈ 𝐍 q\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} . Recall that for every σ ∈ K q \sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq}
there exists a unique simplicial map
i σ : 𝚫 [ q ] ⟶ K i_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK
such that i σ ( 𝜾 q ) = σ i_{\hskip 1.04996pt\sigma}\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma . Two simplices σ , τ ∈ K q \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq} are said to be n n -equivalent if the restrictions of the maps
i σ , i τ : 𝚫 [ q ] ⟶ K \quad i_{\hskip 1.04996pt\sigma}\hskip 1.49994pt,\hskip 3.99994pti_{\hskip 1.04996pt\tau}\hskip 1.99997pt\colon\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptK
to sk n 𝚫 [ q ] \operatorname{sk}_{\hskip 0.70004ptn}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt] are equal, or , equivalently , if θ ∗ ( σ ) = θ ∗ ( τ ) \theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) for every non-decreasing map θ : [ n ] ⟶ [ q ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptq\hskip 1.00006pt] . We write σ ∼ n τ \sigma\hskip 3.99994pt\sim_{\hskip 0.70004ptn}\hskip 3.99994pt\tau if σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau are n n -equivalent. Obviously, if q ⩽ n q\hskip 1.99997pt\leqslant\hskip 1.99997ptn , then σ ∼ n τ \sigma\hskip 3.99994pt\sim_{\hskip 0.70004ptn}\hskip 3.99994pt\tau if and only if σ = τ \sigma\hskip 3.99994pt=\hskip 3.99994pt\tau .
Clearly, ∼ n \sim_{\hskip 0.70004ptn} is an equivalence
relation on the set of simplices. If σ , τ ∈ K q \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq} and σ ∼ n τ \sigma\hskip 1.99997pt\sim_{\hskip 0.70004ptn}\hskip 1.99997pt\tau , then θ ∗ ( σ ) ∼ n θ ∗ ( τ ) \theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 1.99997pt\sim_{\hskip 0.70004ptn}\hskip 1.99997pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) for every non-decreasing map θ : [ m ] ⟶ [ q ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptq\hskip 1.00006pt] . Therefore the structural maps θ ∗ \theta^{\hskip 0.70004pt*} of K K induce maps between sets of equivalence classes of ∼ n \sim_{\hskip 0.70004ptn} . These induced maps are the structure maps
of a canonical structure of a simplicial set on the set K ( n ) K\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) of equivalence classes with respect to ∼ n \sim_{\hskip 0.70004ptn} . Clearly, there is a canonical simplicial map
p n : K ⟶ K ( n ) . \quad p_{\hskip 0.35002ptn}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.00003pt.
Also, if n ⩽ m n\hskip 1.99997pt\leqslant\hskip 1.99997ptm and σ ∼ m τ \sigma\hskip 1.99997pt\sim_{\hskip 0.70004ptm}\hskip 1.99997pt\tau , then σ ∼ n τ \sigma\hskip 1.99997pt\sim_{\hskip 0.70004ptn}\hskip 1.99997pt\tau , and hence there is a canonical simplicial map
p m , n : K ( m ) ⟶ K ( n ) . \quad p_{\hskip 0.35002ptm,\hskip 0.70004ptn}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006ptm\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.00003pt.
Clearly, the maps p n p_{\hskip 0.35002ptn} and p m , n p_{\hskip 0.35002ptm,\hskip 0.70004ptn} induce isomorphisms of n n th skeletons. When there is no danger of confusion, we denote maps p n p_{\hskip 0.35002ptn} and p m , n p_{\hskip 0.35002ptm,\hskip 0.70004ptn} simply by p p .
Let M M be a simplicial subset of K K . Clearly, for simplices σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau of M M the relation σ ∼ n τ \sigma\hskip 3.99994pt\sim_{\hskip 0.70004ptn}\hskip 3.99994pt\tau holds in M M if and only if it holds in K K . Therefore there is a canonical injective map M ( n ) ⟶ K ( n ) M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) . In such a situation we will identify M ( n ) M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)
with its image in K ( n ) K\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) .
Two simplices σ , τ ∈ K q \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq} are said to be homotopic if the maps i σ i_{\hskip 1.04996pt\sigma} and i τ i_{\hskip 1.04996pt\tau} are homotopic
relatively to ∂ 𝚫 [ q ] \partial\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt] . We write σ ∼ τ \sigma\hskip 3.99994pt\sim\hskip 3.99994pt\tau if σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau are homotopic. If K K is a Kan simplicial set , then ∼ \sim is an equivalence
relation on the set of simplices.
Postnikov systems.
The sequence of simplicial sets K ( 0 ) , K ( 1 ) , … , K ( n ) , … K\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003ptK\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots together with the maps p n p_{\hskip 0.35002ptn} and p m , n p_{\hskip 0.35002ptm,\hskip 0.70004ptn} is called Postnikov or Moore-Postnikov system of K K . More precisely, this definition is the
version of the original construction of Postnikov [P 1 P_{\hskip 0.35002pt1} ] , [P 2 P_{\hskip 0.35002pt2} ] due to Moore [Mo ] . This construction and the notion of homotopic simplices
are useful only for Kan simplicial sets. If K K is Kan, then every term K ( n ) K\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) of the Postnikov system is also Kan, and all maps p n p_{\hskip 0.35002ptn} and p m , n p_{\hskip 0.35002ptm,\hskip 0.70004ptn} are Kan fibrations. See [Ma ] , Proposition 8.2.
Minimality.
Postnikov systems are especially powerful when K K is minimal in the following sense. A Kan simplicial set K K is said to be minimal if every two homotopic simplices of K K are equal, i.e. that σ ∼ τ \sigma\hskip 3.99994pt\sim\hskip 3.99994pt\tau implies σ = τ \sigma\hskip 3.99994pt=\hskip 3.99994pt\tau for every two simplices σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau of M M . This notion is going back to Eilenberg and Zilber [E Z ] and Postnikov [P 1 P_{\hskip 0.35002pt1} ] . Every Kan simplicial set K K contains a minimal Kan simplicial subset M M as a strong deformation retract. Moreover , every two such simplicial subsets M M are isomorphic. See [Ma ] , Theorems 9.5 and 9.8.
Let E , B E\hskip 0.50003pt,\hskip 3.00003ptB be simplicial sets
and p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a Kan fibration. Two simplices σ , τ ∈ E q \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptE_{\hskip 0.70004ptq} are fiberwise homotopic if p ( σ ) = p ( τ ) p\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) and there exists a relative to ∂ 𝚫 [ q ] \partial\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt] homotopy
h : 𝚫 [ q ] × 𝚫 [ 1 ] ⟶ E \quad h\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE
between the maps i σ i_{\hskip 1.04996pt\sigma} and i τ i_{\hskip 1.04996pt\tau} such that the diagram
𝚫 [ q ] × 𝚫 [ 1 ] {\displaystyle\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]} E {{\phantom{,}}E} 𝚫 [ q ] {\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]} B , {{\phantom{,}}B\hskip 1.00006pt,} h \scriptstyle{\displaystyle h} p r \scriptstyle{\displaystyle\operatorname{p{\hskip 0.50003pt}r}} p \scriptstyle{\displaystyle p} i ρ \scriptstyle{\displaystyle i_{\hskip 1.04996pt\rho}}
where ρ = p ( σ ) = p ( τ ) \rho\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) and p r \operatorname{p{\hskip 0.50003pt}r} is the projection, is commutative. In particular , if σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau are fiberwise homotopic, then σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau are homotopic. A Kan fibration p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB is said to be minimal if every two fiberwise homotopic simplices are equal. For every Kan fibration p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB there exists a simplicial subset M M of E E such that p | M : E ⟶ B p\hskip 1.00006pt|\hskip 1.49994ptM\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB is a minimal Kan fibration and M M is a fiberwise strong deformation retract of E E in a natural sense. See [G J ] , Chapter I, Proposition 10.3, or [Ma ] , Theorem 10.9.
3.1. Theorem.
Every minimal Kan fibration with connected base is a locally trivial bundle.
Proof . See [G Z ] , Section VI.5.4, or [Ma ] , Theorem 11.11. ■ \blacksquare
Postnikov systems and locally trivial bundles.
If K K is a minimal Kan simplicial set, then all maps p n p_{\hskip 0.35002ptn} and p m , n p_{\hskip 0.35002ptm,\hskip 0.70004ptn} are minimal Kan fibrations. See [Ma ] , Lemma 12.1. Therefore, Theorem Simplicial sets, Postnikov systems, and bounded cohomology implies that these maps
are locally trivial bundles. In particular ,
p = p n , n − 1 : K ( n ) ⟶ K ( n − 1 ) \quad p\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.35002ptn,\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)
is a locally trivial bundle. Its fiber is the Eilenberg–MacLane simplicial set K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) , where π = π n ( K , v ) \pi\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) is the n n th homotopy groups of K K . See [Ma ] , the beginning of Section 25. For our purposes it is sufficient to know that for n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 the fiber is an Eilenberg–MacLane simplicial set K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) with an abelian group π \pi , and to identify the simplicial set K ( 1 ) K\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt) . See Lemma Simplicial sets, Postnikov systems, and bounded cohomology for the latter .
4. Classifying spaces of categories and groups
Classifying spaces of categories.
This section is devoted to
some classical constructions of Milnor [Mi ] and Segal [S ] (who attributed some of the ideas of [S ] to Grothendieck ).
A set S S with a partial order ⩽ \leqslant defines a category having S S as its set of objects. For a , b ∈ S a\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt\in\hskip 1.99997ptS there is exactly one morphisms a ⟶ b a\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptb if a ⩽ b a\hskip 1.99997pt\leqslant\hskip 1.99997ptb , an none otherwise. In particular , sets [ n ] [\hskip 0.24994ptn\hskip 1.00006pt] together with their natural order can be considered as categories. From this point of view non-decreasing maps θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] are nothing else but functors [ m ] ⟶ [ n ] [\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] .
Every small category 𝒞 \mathcal{C} defines
a simplicial set B 𝒞 \mathit{B}\hskip 1.99997pt\mathcal{C} , its nerve in the sense of G. Segal [S ] , often called also the classifying space of 𝒞 \mathcal{C} . The vertices of B 𝒞 \mathit{B}\hskip 1.99997pt\mathcal{C} are the objects
of 𝒞 \mathcal{C} , and the n n -simplices are functors σ : [ n ] ⟶ 𝒞 \sigma\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{C} . As usual, the structure maps are defined as compositions. Namely, if θ : [ m ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] is a non-decreasing map, then θ ∗ ( σ ) = σ ∘ θ \theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma\hskip 1.00006pt\circ\hskip 1.49994pt\theta , where in the right hand side θ \theta is considered as a functor. Clearly, a functor [ n ] ⟶ 𝒞 [\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{C} is determined by its values on objects
and on morphisms i ⟶ i + 1 i\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti\hskip 1.99997pt+\hskip 1.99997pt1 , where i ∈ [ n − 1 ] i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt] . Therefore n n -simplices of B 𝒞 \mathit{B}\hskip 1.99997pt\mathcal{C}
correspond to sequences of morphisms of the form
(4.1)
v 0 {\displaystyle v_{\hskip 1.04996pt0}} v 1 {v_{\hskip 0.70004pt1}} … {\ldots} v n , {v_{\hskip 0.70004ptn}\hskip 3.00003pt,} p 1 \scriptstyle{\displaystyle p_{\hskip 1.04996pt1}} p 2 \scriptstyle{\displaystyle p_{\hskip 1.04996pt2}} p n \scriptstyle{\displaystyle p_{\hskip 0.70004ptn}}
where each v i v_{\hskip 0.70004pti} is an object of 𝒞 \mathcal{C} and each p i p_{\hskip 0.70004pti} is a morphism v i − 1 ⟶ v i v_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptv_{\hskip 0.70004pti} . Of course, the objects v i v_{\hskip 0.70004pti} are determined by the morphisms p k p_{\hskip 0.70004ptk} and hence n n -simplices
correspond to sequences ( p 1 , p 2 , … , p n ) (\hskip 1.49994ptp_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 0.70004ptn}\hskip 1.49994pt) of morphisms such that the composition p i + 1 ∘ p i p_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptp_{\hskip 0.70004pti} is defined for each i i between 1 1 and n − 1 n\hskip 1.99997pt-\hskip 1.99997pt1 . For 0 < i < n 0\hskip 1.99997pt<\hskip 1.99997pti\hskip 1.99997pt<\hskip 1.99997ptn the boundary operators ∂ i \partial_{\hskip 0.70004pti} acts by replacing v i v_{\hskip 0.70004pti} and morphisms p i , p i + 1 p_{\hskip 0.70004pti}\hskip 0.50003pt,\hskip 3.00003ptp_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} by the composition p i + 1 ∘ p i p_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptp_{\hskip 0.70004pti} . The boundary operators ∂ 0 \partial_{\hskip 1.04996pt0} and ∂ n \partial_{\hskip 0.70004ptn} act by simply removing v 0 , p 1 v_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptp_{\hskip 0.70004pt1} and p n − 1 , v n p_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003ptv_{\hskip 0.70004ptn} respectively. The degeneracy operator s i s_{\hskip 0.70004pti} acts by inserting the identity morphism v i ⟶ v i v_{\hskip 0.70004pti}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptv_{\hskip 0.70004pti} . Cf. [G J ] , Example I.1.4.
Let 𝒞 , 𝒟 \mathcal{C}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{D} be two categories. A functor f : 𝒞 ⟶ 𝒟 f\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{C}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D} defines, in an obvious way, a simplicial map B f : B 𝒞 ⟶ B 𝒟 \mathit{B}\hskip 0.50003ptf\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\mathcal{D} . Given two functors f , g : 𝒞 ⟶ 𝒟 f,\hskip 3.00003ptg\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{C}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D} , a natural transformation f ⟶ g f\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptg defines a homotopy between B f \mathit{B}\hskip 0.50003ptf and B g \mathit{B}\hskip 1.00006ptg . Indeed, a natural transformation t : f ⟶ g t\hskip 1.00006pt\colon\hskip 1.00006ptf\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptg can be considered as a functor 𝒞 × [ 1 ] ⟶ 𝒟 \mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D} , where [ 1 ] [\hskip 1.00006pt1\hskip 1.00006pt] is considered as a category. One can easily see that the operation 𝒞 ⟼ B 𝒞 \mathcal{C}\hskip 3.99994pt\longmapsto\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\mathcal{C} commutes with the products. Since, obviously, B [ 1 ] = 𝚫 [ 1 ] \mathit{B}\hskip 1.99997pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt] , the natural transformation t t defines a simplicial map B t : B 𝒞 × 𝚫 [ 1 ] ⟶ B 𝒟 \mathit{B}\hskip 1.00006ptt\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\mathcal{D} , i.e. a homotopy. We leave to the reader the verification that this is a homotopy between B f \mathit{B}\hskip 0.50003ptf and B g \mathit{B}\hskip 1.00006ptg .
A discrete group π \pi can be considered as a category with a single object and π \pi being the set of morphisms from this object to itself , with the composition being the group multiplication. The classifying space B π \mathit{B}\hskip 1.49994pt\pi is a Kan simplicial set. See [G J ] , Lemma I.3.5. Comparing the definitions shows that the usual and the bounded cohomology of the group π \pi are, in fact, cohomology of the classifying space B π \mathit{B}\hskip 1.49994pt\pi .
Milnor’s classifying spaces.
Another classical construction of classifying spaces of groups is due to Milnor [Mi ] . While we will not use it directly, it serves as a motivation for the definitions of unravelings of classifying spaces and simplicial sets below
and in Section Simplicial sets, Postnikov systems, and bounded cohomology .
For a discrete group π \pi let ℰ π \mathcal{E}\hskip 0.50003pt\pi be the simplicial complex having the product π × 𝐍 \pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N} as the set of vertices
and as simplices finite subsets σ ⊂ π × 𝐍 \sigma\hskip 1.99997pt\subset\hskip 1.99997pt\hskip 0.50003pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N} such that the projection π × 𝐍 ⟶ 𝐍 \pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{N} is injective on σ \sigma . There is a left action π × ℰ π ⟶ ℰ π \pi\hskip 1.00006pt\times\hskip 1.00006pt\mathcal{E}\hskip 0.50003pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{E}\hskip 0.50003pt\pi of the group π \pi on ℰ π \mathcal{E}\hskip 0.50003pt\pi by the rule
h ⋅ ( g , k ) = ( h ⋅ g , k ) , \quad h\hskip 1.00006pt\cdot\hskip 1.49994pt(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997pth\hskip 0.50003pt\cdot\hskip 0.50003ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.00003pt,
where h ∈ π h\hskip 1.99997pt\in\hskip 1.99997pt\pi and ( g , k ) ∈ π × 𝐍 (\hskip 1.99997ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N} is a vertex of ℰ π \mathcal{E}\hskip 0.50003pt\pi . The quotient ℬ π = π \ ℰ π \mathcal{B}\hskip 1.00006pt\pi\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 0.50003pt\backslash\hskip 1.00006pt\mathcal{E}\hskip 0.50003pt\pi of the simplicial complex ℰ π \mathcal{E}\hskip 0.50003pt\pi by this action is a well-defined simplicial complex. We will call ℬ π \mathcal{B}\hskip 1.00006pt\pi the Milnor’ classifying space of π \pi . Milnor defined directly the geometric realization
| ℬ π | |\hskip 1.99997pt\mathcal{B}\hskip 1.00006pt\pi\hskip 1.99997pt|
for arbitrary topological group π \pi . By this reason his construction is different from ours one.
It is convenient to enhance the structure of Milnor’s classifying space to a Δ \Delta -set. The natural order on 𝐍 \mathbf{N} defines local orders on the
simplicial set ℰ π \mathcal{E}\hskip 0.50003pt\pi
and ℬ π \mathcal{B}\hskip 1.00006pt\pi and allows to turn them into Δ \Delta -sets, which we will still denote by ℰ π \mathcal{E}\hskip 1.00006pt\pi and ℬ π \mathcal{B}\hskip 1.00006pt\pi . The local order on ℰ π \mathcal{E}\hskip 1.00006pt\pi is invariant under the left action of π \pi , and ℬ π = π \ ℰ π \mathcal{B}\hskip 1.00006pt\pi\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 0.50003pt\backslash\hskip 1.00006pt\mathcal{E}\hskip 0.50003pt\pi as Δ \Delta -sets also.
One of advantages of ℬ π \mathcal{B}\hskip 1.00006pt\pi is the existence of many automorphisms. Let C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) be the group of all maps 𝐍 ⟶ π \mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi . Let us define a right action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) on ℰ π \mathcal{E}\hskip 0.50003pt\pi by the rule
( g , k ) ⟼ ( g ⋅ c ( k ) , k ) , \quad(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994pt\left(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptk\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt\right)\hskip 1.00006pt,
where c ∈ C 0 ( 𝐍 , π ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) and ( g , k ) ∈ π × 𝐍 (\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N} is a vertex of ℰ π \mathcal{E}\hskip 0.50003pt\pi . Clearly, the right action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) on ℰ π \mathcal{E}\hskip 0.50003pt\pi preserves the order of vertices
and commutes with the left action of π \pi . Hence this action leads to a right action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)
on ℬ π \mathcal{B}\hskip 1.00006pt\pi . If κ ⊂ π \kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi is a
subgroup of π \pi , then C 0 ( 𝐍 , κ ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt) is a subgroup of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) , and if κ \kappa is a normal subgroup, then
(4.2)
ℬ ( π / κ ) = ℬ π / C 0 ( 𝐍 , κ ) . \quad\mathcal{B}\hskip 1.00006pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 1.00006pt\pi\left/\hskip 1.00006ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)\right.\hskip 1.00006pt.
This obvious property is the main reason of our interest in ℬ π \mathcal{B}\hskip 1.00006pt\pi . This property strongly contracts with the properties of the classifying spaces B π \mathit{B}\hskip 1.49994pt\pi . Namely, the classifying space B ( π / κ ) \mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt) is not a quotient of B π \mathit{B}\hskip 1.49994pt\pi , at least not in any natural way.
Unravelings of classifying spaces of groups.
The Δ \Delta -set ℬ π \mathcal{B}\hskip 1.00006pt\pi is isomorphic to B π × Δ [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . See Lemma Simplicial sets, Postnikov systems, and bounded cohomology . While we are not going to use this result, it motivates our interest to the Δ \Delta -set B π × Δ [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] , which we will call the unraveling of B π \mathit{B}\hskip 1.49994pt\pi .
As we will see in a moment, the action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) can be defined directly for B π × Δ [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . In fact, it is easier and more useful to define an action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) on the simplicial set B π × 𝚫 [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] first. The latter is the classifying space of a category. Indeed, the simplicial set
𝚫 [ ∞ ] \bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]
has non-decreasing maps [ n ] ⟶ 𝐍 [\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{N} as n n -simplices, with the usual structure maps. Let 𝒏 \bm{n} be the category having 𝐍 \mathbf{N} as its set of objects, exactly one morphism n ⟶ m n\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm when n ⩽ m n\hskip 1.99997pt\leqslant\hskip 1.99997ptm , and no morphisms n ⟶ m n\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm when n > m n\hskip 1.99997pt>\hskip 1.99997ptm . Clearly, 𝚫 [ ∞ ] = B 𝒏 \bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.00006pt\bm{n} . It follows that
B π × 𝚫 [ ∞ ] = B π × B 𝒏 = B ( π × 𝒏 ) . \quad\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathit{B}\hskip 1.00006pt\bm{n}\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)\hskip 3.00003pt.
The category π × 𝒏 \pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n} has 𝐍 \mathbf{N} as the set of objects. The set of morphisms n ⟶ m n\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm is a copy of π \pi if n ⩽ m n\hskip 1.99997pt\leqslant\hskip 1.99997ptm , and is empty if n > m n\hskip 1.99997pt>\hskip 1.99997ptm . Given c ∈ C 0 ( 𝐍 , π ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) , let a ( c ) : π × 𝒏 ⟶ π × 𝒏 a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n} be the functor equal to the identity on objects and and acting on morphisms n ⟶ m n\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm identified with elements of the group π \pi by the rule
g ⟼ c ( n ) − 1 ⋅ g ⋅ c ( m ) . \quad g\hskip 3.99994pt\longmapsto\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptg\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptm\hskip 1.49994pt)\hskip 3.00003pt.
Clearly, a ( c ) a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) is an automorphism of π × 𝒏 \pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}
and even an automorphism over 𝒏 \bm{n} , in the sense that p r ∘ a ( c ) = p r \operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\circ\hskip 1.99997pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{p{\hskip 0.50003pt}r} , where p r : π × 𝒏 ⟶ 𝒏 \operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{n} is the projection. Also, all diagrams
n {\displaystyle n} n {n} n {n} m {m} g \scriptstyle{\displaystyle g} c ( n ) \scriptstyle{\displaystyle c\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)} c ( m ) \scriptstyle{\displaystyle c\hskip 1.49994pt(\hskip 1.00006ptm\hskip 1.49994pt)} a ( c ) ( g ) \scriptstyle{\displaystyle a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 0.50003pt(\hskip 1.00006ptg\hskip 1.00006pt)}
are commutative and hence morphisms c ( n ) : n ⟶ n c\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptn\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptn form a natural transformation from the identity functor to a ( c ) a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) . It follows that the simplicial map
B a ( c ) : B ( π × 𝒏 ) ⟶ B ( π × 𝒏 ) \quad\mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)
is an automorphism of B ( π × 𝒏 ) \mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt) homotopic to the identity. The map c ⟼ B a ( c ) c\hskip 3.99994pt\longmapsto\hskip 3.99994pt\mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) defines an action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)
on B ( π × 𝒏 ) = B π × 𝚫 [ ∞ ] \mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . Since the functors a ( c ) a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) are automorphisms over 𝒏 \bm{n} , the simplicial maps B a ( c ) \mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) are automorphisms of B π × 𝚫 [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] over 𝚫 [ ∞ ] \bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . It follows that maps B a ( c ) \mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) leave the Δ \Delta -subset B π × Δ [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] of B π × 𝚫 [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] invariant. By restricting these maps to B π × Δ [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] we get an action of C 0 ( 𝐍 , π ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)
on B π × Δ [ ∞ ] \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . If κ ⊂ π \kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi is a normal subgroup of π \pi , then a direct verification shows that
B ( π / κ ) × Δ [ ∞ ] = B π × Δ [ ∞ ] / C 0 ( 𝐍 , κ ) . \quad\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\left/\hskip 1.00006ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)\right.\hskip 1.00006pt.
Of course, this is simply another form of the property (4.2 ). We will need a slightly stronger , but still obvious, form of this property. Let 1 ∈ π 1\hskip 1.99997pt\in\hskip 1.99997pt\pi be the unit of π \pi , and let C 0 ( 𝐍 , π ) C_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) be the group of maps c : 𝐍 ⟶ π c\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi such that c ( n ) = 1 c\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 for almost every n n . Then
(4.3)
B ( π / κ ) × Δ [ ∞ ] = B π × Δ [ ∞ ] / C 0 ( 𝐍 , κ ) . \quad\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\left/\hskip 1.00006ptC_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)\right.\hskip 1.00006pt.
5. Bundles with Eilenberg–MacLane fibers
Locally trivial bundles.
Let p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a simplicial map thought as a bundle, and let i : A ⟶ B i\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB a simplicial map. Let i ∗ E ⊂ E × A i^{\hskip 0.70004pt*}\hskip 0.50003ptE\hskip 1.99997pt\subset\hskip 3.00003ptE\hskip 1.00006pt\times\hskip 1.00006ptA be the simplicial subset of E × A E\hskip 1.00006pt\times\hskip 1.00006ptA having as n n -simplices pairs ( σ , τ ) (\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.49994pt) such that σ ∈ E n \sigma\hskip 1.99997pt\in\hskip 3.00003ptE_{\hskip 0.70004ptn} , τ ∈ A n \tau\hskip 1.99997pt\in\hskip 1.99997ptA_{\hskip 0.70004ptn} , and p ( σ ) = i ( τ ) p\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) . In other terms,
( i ∗ E ) n = { ( σ , τ ) ∈ E n × A n | p ( σ ) = i ( τ ) } . \quad(\hskip 1.49994pti^{\hskip 0.70004pt*}\hskip 0.50003ptE\hskip 1.49994pt)_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt\left\{\hskip 3.00003pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003ptE_{\hskip 0.70004ptn}\hskip 1.00006pt\times\hskip 1.00006ptA_{\hskip 0.70004ptn}\hskip 3.99994pt\bigl{|}\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.00003pt\right\}\hskip 3.00003pt.
The restriction i ∗ p : i ∗ E ⟶ A i^{\hskip 0.70004pt*}p\hskip 1.00006pt\colon\hskip 1.00006pti^{\hskip 0.70004pt*}\hskip 0.50003ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA of the projection E × A ⟶ A E\hskip 1.00006pt\times\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA to i ∗ E i^{\hskip 0.70004pt*}\hskip 0.50003ptE is called the pull-back of p p by i i , or the bundle induced from the bundle p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB by i i . The bundle i ∗ p i^{\hskip 0.70004pt*}p has the usual universal properties of pull-backs. A simplicial map p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB is said to be a trivial bundle with the fiber F F if there exists a commutative diagram
B × F {\displaystyle B\hskip 1.00006pt\times\hskip 1.00006ptF} E {E} B {B} B , {B\hskip 0.50003pt,} t \scriptstyle{\displaystyle t\hskip 1.00006pt} p r \scriptstyle{\displaystyle\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt} p \scriptstyle{\displaystyle p} = \scriptstyle{\displaystyle=}
such that t : B × F ⟶ E t\hskip 1.00006pt\colon\hskip 1.00006pt\ B\hskip 1.00006pt\times\hskip 1.00006ptF\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE is an isomorphism. Such t t is called a trivialization of p p . A map p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB is a locally trivial bundle with the fiber F F if for every simplex σ \sigma of B B the pull-back i σ ∗ p i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006ptp is a trivial bundle
with the fiber F F . In this case E E is called the total space and B B the base of p p . Clearly, if p p is a locally trivial bundle, then p p is surjective.
Normalized and non-abelian cochains.
Let n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} , n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 , and let π \pi be an abelian group. A cochain of a simplicial set K K is said to be normalized if it is equal to 0 on degenerate simplices. We will denote by 𝒞 n ( K , π ) \mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) the group of normalized n n -cochains of K K with coefficients in π \pi
and by 𝒵 n ( K , π ) \mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) the subgroup of normalized cocycles.
Eilenberg–MacLane simplicial sets K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) .
For every q ∈ 𝐍 q\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} let us consider the groups
𝒞 n ( 𝚫 [ q ] , π ) \mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) and 𝒵 n ( 𝚫 [ q ] , π ) \mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) . Every non-decreasing map θ : [ r ] ⟶ [ q ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006ptr\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptq\hskip 1.49994pt] induces a simplicial map θ ∗ : 𝚫 [ r ] ⟶ 𝚫 [ q ] \theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptr\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] , which, in turn, induces homomorphisms
θ ∗ : 𝒞 n ( 𝚫 [ q ] , π ) ⟶ 𝒞 n ( 𝚫 [ r ] , π ) and \quad\theta^{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptr\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\quad\ \mbox{and}\quad\
θ ∗ : 𝒵 n ( 𝚫 [ q ] , π ) ⟶ 𝒵 n ( 𝚫 [ r ] , π ) . \quad\theta^{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptr\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt.
Eilenberg–MacLane simplicial set K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) is defined as follows. Its set of q q -simplices is
K ( π , n ) q = 𝒵 n ( 𝚫 [ q ] , π ) , \quad K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptq}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt,
and the structural maps θ ∗ : K ( π , n ) q ⟶ K ( π , n ) r \theta^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptq}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptr} are the above induced homomorphisms θ ∗ \theta^{\hskip 0.70004pt*} . Let 0 q ∈ 𝒵 n ( 𝚫 [ q ] , π ) = K ( π , n ) q 0_{\hskip 0.35002ptq}\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptq} be the zero cocycle.
The n n -cocycles of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) .
Every normalized n n -cochain
of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] is a cocycle, i.e.
𝒵 n ( 𝚫 [ n ] , π ) = 𝒞 n ( 𝚫 [ n ] , π ) . \quad\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt.
Clearly, a normalized n n -cochain c c of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] is determined by its value c ( 𝜾 n ) c\hskip 1.49994pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.49994pt) on the unique non-degenerate n n -simplex 𝜾 n \bm{\iota}_{\hskip 0.70004ptn} of 𝚫 [ n ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] . Therefore we can identity K ( π , n ) n K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn} with π \pi .
A n n -cochain of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) with coefficients in π \pi
is a map K ( π , n ) n ⟶ π K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi , and hence can be thought as a map c : π ⟶ π c\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi . Clearly, the zero cocycle 0 n ∈ 𝒵 n ( 𝚫 [ n ] , π ) 0_{\hskip 0.35002ptn}\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) is the only degenerate
n n -simplex of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . Therefore we can identify normalized n n -cochains c c of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) with maps c : π ⟶ π c\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi subject only to the condition c ( 0 ) = 0 c\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0 . It turns out that c c is a cocycle if and only if c c is a homomorphisms π ⟶ π \pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi . See Lemma Simplicial sets, Postnikov systems, and bounded cohomology for a proof . In particular , the identity map id π : π ⟶ π \operatorname{id}_{\hskip 1.04996pt\pi}\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi is an n n -cocycle of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) .
Simplicial maps to K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) .
Let K K be a simplicial set. Let us assign to every simplicial map f : K ⟶ K ( π , n ) f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) the n n -cocycle
z ( f ) = f ∗ ( id π ) ∈ 𝒵 n ( K , π ) \quad z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\operatorname{id}_{\hskip 1.04996pt\pi}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt
( the cochain z ( f ) z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt) is a normalized cocycle because id π \operatorname{id}_{\hskip 1.04996pt\pi} is). Unraveling the definitions shows that f f is uniquely determined by z ( f ) z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt) and for every z ∈ 𝒵 n ( K , π ) z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) there is a map f : K ⟶ K ( π , n ) f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) such that z ( f ) = z z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz . One can say that the definition of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) is dictated by this property. If π \pi is abelian, then two maps f , g : K ⟶ K ( π , n ) f,\hskip 3.00003ptg\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) are homotopic if and only if z ( f ) − z ( g ) z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptz\hskip 1.49994pt(\hskip 1.49994ptg\hskip 1.49994pt) is a coboundary of a normalized ( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochain. See, for example, [Ma ] , Lemma 24.3 and Theorem 24.4, or [E M 3 E{\hskip 0.50003pt}M_{\hskip 0.35002pt3} ] , Theorems 5.1 and 5.2.
In the case of K = K ( π ′ , n ) K\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) , we see that every homomorphism h : π ′ ⟶ π h\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi defines a map K ( π ′ , n ) ⟶ K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . We will denote this map by 𝒔 ( h ) \bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt) . There are no other simplicial maps K ( π ′ , n ) ⟶ K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) , and 𝒔 ( h ) \bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt) is an isomorphisms if and only if h h is.
Maps over the base.
Let p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a simplicial map thought of as a bundle. A simplicial map f : E ⟶ E f\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE is said to be a map over the base , or a map over B B , if p ∘ f = f p\hskip 1.49994pt\circ\hskip 1.00006ptf\hskip 3.99994pt=\hskip 3.99994ptf . For example, the identity map id E : E ⟶ E \operatorname{id}_{\hskip 1.04996ptE}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE is a map over the base.
Simplicial groups.
A simplicial group is a contravariant functor from 𝚫 \bm{\Delta} to the category of groups. In other words, a simplicial group is a simplicial set G G together with group structures on sets G n G_{\hskip 0.70004ptn} , n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} , such that the structural maps θ ∗ \theta^{\hskip 0.70004pt*} are homomorphisms. Let G G be a simplicial group. Then for every q ∈ 𝐍 q\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} there is a natural action of the group G q G_{\hskip 0.70004ptq} on 𝚫 [ q ] × G \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG defined as follows. Let g ∈ G q g\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004ptq} . The m m -simplices of 𝚫 [ q ] × G \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG are the pairs ( θ , τ ) (\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt) , where τ ∈ G m \tau\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004ptm} and θ : [ m ] ⟶ [ q ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptq\hskip 1.49994pt] is a q q -simplex of 𝚫 [ q ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] . Let
g ⋅ ( θ , τ ) = ( θ , θ ∗ ( g ) ⋅ τ ) , \quad g\hskip 1.00006pt\cdot\hskip 1.00006pt(\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\theta\hskip 0.50003pt,\hskip 3.00003pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\tau\hskip 1.99997pt\right)\hskip 3.00003pt,
where the product in the right hand side is taken in G q G_{\hskip 0.70004ptq} . A routine check shows that the map ( θ , τ ) ⟼ g ⋅ ( θ , τ ) (\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt(\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt) is a simplicial map 𝚫 [ q ] × G ⟶ 𝚫 [ q ] × G \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG . We will denote this map by 𝒕 ( g ) \bm{t}\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt) . Clearly, 𝒕 ( g ) \bm{t}\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt) is an automorphism of the bundle p r : 𝚫 [ q ] × G ⟶ 𝚫 [ q ] \operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] over the base. Another routine check shows that g ⟼ 𝒕 ( g ) g\hskip 3.99994pt\longmapsto\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt) is an action.
The addition of normalized cocycles turns K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) into a simplicial group. In the case of G = K ( π , n ) G\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) we get an automorphism
(5.1)
𝒕 ( c ) : 𝚫 [ q ] × K ( π , n ) ⟶ 𝚫 [ q ] × K ( π , n ) \quad\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 3.00003pt
of the bundle
(5.2)
p r : 𝚫 [ q ] × K ( π , n ) ⟶ 𝚫 [ q ] . \quad\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 3.00003pt.
over the base for every normalized cocycle c ∈ 𝒵 n ( 𝚫 [ q ] , π ) c\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) .
5.1. Theorem.
Every automorphism of (5.2 ) over the base
is equal to the composition
( id 𝚫 [ q ] × 𝒔 ( h ) ) ∘ 𝒕 ( c ) , \quad\left(\hskip 1.49994pt\operatorname{id}_{\hskip 0.70004pt\bm{\Delta}\hskip 0.35002pt[\hskip 0.70004ptq\hskip 1.04996pt]}\hskip 1.00006pt\times\hskip 1.99997pt\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.00003pt\circ\hskip 3.00003pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.00003pt,
where h : π ⟶ π h\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi is an automorphism and c ∈ 𝒵 n ( 𝚫 [ q ] , π ) c\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) . Both h h and c c are uniquely determined by the automorphism.
Proof . See [Ma ] , Propositions 25.2 and 25.3. ■ \blacksquare
Translations of trivial bundles.
Let p : E ⟶ 𝚫 [ q ] p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] be a trivial bundle with the fiber K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) , n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 , and let f : E ⟶ E f\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE be an automorphism over the base. We will say that f f is a translation if f = t ∘ 𝒕 ( c ) ∘ t − 1 f\hskip 3.99994pt=\hskip 3.99994ptt\hskip 1.00006pt\circ\hskip 1.00006pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006ptt^{\hskip 0.70004pt-\hskip 0.70004pt1} for some trivialization t : 𝚫 [ q ] × K ( π , n ) ⟶ E t\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE and some normalized cocycle c ∈ 𝒵 n ( 𝚫 [ q ] , π ) c\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt) .
Theorem Simplicial sets, Postnikov systems, and bounded cohomology implies that if f f has the form t ∘ 𝒕 ( c ) ∘ t − 1 t\hskip 1.00006pt\circ\hskip 1.00006pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006ptt^{\hskip 0.70004pt-\hskip 0.70004pt1} for some trivialization t t , then f f has such form for every trivialization. But the cocycle c c depends on the choice of t t because (5.2 ) has automorphisms of the form id 𝚫 [ q ] × 𝒔 ( h ) \operatorname{id}_{\hskip 0.70004pt\bm{\Delta}\hskip 0.35002pt[\hskip 0.70004ptq\hskip 1.04996pt]}\hskip 1.00006pt\times\hskip 1.99997pt\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt) . Still, there is a way to make c c to be uniquely determined by f f .
Let i 0 : 𝚫 [ 0 ] ⟶ 𝚫 [ q ] i_{\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] be the map defined by the inclusion [ 0 ] ⟶ [ q ] [\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptq\hskip 1.49994pt] . The total space F F of the pull-back bundle i 0 ∗ p i_{\hskip 1.04996pt0}^{\hskip 0.70004pt*}\hskip 1.00006ptp is isomorphic to K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . Any two isomorphisms differ by an automorphism of the form 𝒔 ( h ) \bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt) , where h h is an automorphism of π \pi . Therefore F F is a simplicial group
isomorphic to K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . In particular , the set F n F_{\hskip 0.70004ptn} of n n -simplices of F F is a group isomorphic to π \pi . Let us denote this group by π 0 \pi_{\hskip 1.04996pt0} . Then p p is also a trivial bundle with the fiber canonically isomorphic to K ( π 0 , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . Let us call a
trivialization t : 𝚫 [ q ] × K ( π 0 , n ) ⟶ E t\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE special if the induced map K ( π 0 , n ) ⟶ F K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF is the canonical isomorphism. By Theorem Simplicial sets, Postnikov systems, and bounded cohomology two special trivializations differ by a translation. But, if
g : 𝚫 [ q ] × K ( π 0 , n ) ⟶ 𝚫 [ q ] × K ( π 0 , n ) \quad g\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)
is a translation, then g ∘ 𝒕 ( c ) ∘ g − 1 = 𝒕 ( c ) g\hskip 1.00006pt\circ\hskip 1.00006pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt) . It follows that for every translation f f of the bundle p p there is a well defined cocycle
d ( f ) ∈ 𝒵 n ( 𝚫 [ q ] , π 0 ) \quad d\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 1.04996pt0}\hskip 1.49994pt)
such that t − 1 ∘ f ∘ t = 𝒕 ( d ( f ) ) t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptf\hskip 1.00006pt\circ\hskip 1.49994ptt\hskip 3.99994pt=\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.49994ptd\hskip 1.49994pt(\hskip 1.00006ptf\hskip 1.49994pt)\hskip 1.49994pt) for every special trivialization t t .
The canonical local system.
Let p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a locally trivial bundle with the fiber K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) and n ⩾ 1 n\hskip 1.99997pt\geqslant\hskip 1.99997pt1 . The above discussion of translations suggests to associate with
each vertex v ∈ B 0 v\hskip 1.99997pt\in\hskip 3.00003ptB_{\hskip 0.70004pt0} a group π v \pi_{\hskip 0.70004ptv} isomorphic to π \pi . Namely, the total space F v F_{\hskip 0.35002ptv} of the pull-back bundle i v ∗ p i_{\hskip 0.70004ptv}^{\hskip 0.70004pt*}\hskip 1.49994ptp is a simplicial group
isomorphic to K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . Let π v \pi_{\hskip 0.70004ptv} be the group of n n -simplices of F v F_{\hskip 0.35002ptv} . Then F v F_{\hskip 0.35002ptv} is canonically isomorphic to K ( π v , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) .
Suppose that v , w ∈ B 0 v\hskip 0.50003pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 3.00003ptB_{\hskip 0.70004pt0} and ε \varepsilon is a 1 1 -simplex of B B such that ∂ 1 ε = v \partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptv , ∂ 0 ε = w \partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptw . Let E ε E_{\hskip 0.70004pt\varepsilon} be the total space
of the pull-back bundle i ε ∗ p i_{\hskip 0.70004pt\varepsilon}^{\hskip 0.70004pt*}\hskip 1.49994ptp , and let t : 𝚫 [ 1 ] × K ( π v , n ) ⟶ E ε t\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004pt\varepsilon} be a special trivialization. Recall that two special trivializations differ by a translation. Since n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 , every normalized n n -chain of 𝚫 [ 1 ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt] is equal to 0 . It follows that every translation is equal to the identity and hence t t is uniquely determined. Therefore, the isomorphism
K ( π v , n ) ⟶ F w = K ( π w , n ) \quad K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)
induced by t t depends only on ε \varepsilon . Let ε ( p ) \varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt) be its inverse, and let ε ∗ : π w ⟶ π v \varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv} be the unique isomorphism such that ε ( p ) = 𝒔 ( ε ∗ ) \varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bm{s}\hskip 1.49994pt(\hskip 1.00006pt\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt) . By using trivializations of the pull-back bundles i σ ∗ p i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp for 2 2 -simplices σ \sigma of B B one can easily check that the groups π v \pi_{\hskip 0.70004ptv} together with isomorphisms ε ∗ \varepsilon^{\hskip 0.70004pt*} form a local system of coefficients on B B , which we will denote by π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) .
Translations of locally trivial bundles.
Let p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a locally trivial bundle with the fiber K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) , n ⩾ 1 n\hskip 1.99997pt\geqslant\hskip 1.99997pt1 . Let f : E ⟶ E f\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE be an automorphism over the base. For every q q -simplex σ \sigma of B B the automorphism f f induces an automorphism f σ f_{\hskip 0.70004pt\sigma} of the pull-back bundle i σ ∗ p i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp over the base. Since the bundle i σ ∗ p i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp is trivial, it make sense to ask if f σ f_{\hskip 0.70004pt\sigma} is a translation
and to call f f a translation if f σ f_{\hskip 0.70004pt\sigma} is a translation for every simplex σ \sigma of B B . Suppose that f : E ⟶ E f\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE is a translation. Let σ \sigma be an n n -simplex of B B , and let π σ = π v \pi_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004ptv} , where v = v σ v\hskip 3.99994pt=\hskip 3.99994ptv_{\hskip 0.70004pt\sigma} is the leading vertex of σ \sigma . Then
d ( f σ ) ∈ 𝒵 n ( 𝚫 [ n ] , π σ ) . \quad d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.00003pt.
The group 𝒵 n ( 𝚫 [ n ] , π σ ) \mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt\sigma}\hskip 1.49994pt) is canonically isomorphic to π σ \pi_{\hskip 0.70004pt\sigma} and hence we can consider d ( f σ ) d\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt) as an elements of π σ \pi_{\hskip 0.70004pt\sigma} . The map
D f : σ ⟼ d ( f σ ) \quad D_{\hskip 0.35002ptf}\hskip 1.00006pt\colon\hskip 1.00006pt\sigma\hskip 3.99994pt\longmapsto\hskip 3.99994ptd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)
is an n n -cochain of B B with coefficients in the local system π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) .
5.2. Lemma.
The n n -cochain D f D_{\hskip 0.35002ptf} is a normalized cocycle.
Proof . If σ \sigma is a degenerate n n -simplex of B B , then σ = θ ∗ ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)
for an m m -simplex τ \tau such that m < n m\hskip 1.99997pt<\hskip 1.99997ptn and a non-decreasing map θ : [ n ] ⟶ [ m ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptm\hskip 1.00006pt] . Therefore
i σ = i τ ∘ θ ∗ i_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\tau}\hskip 1.00006pt\circ\hskip 1.00006pt\theta_{\hskip 0.70004pt*} , where θ ∗ : 𝚫 [ n ] ⟶ 𝚫 [ m ] \theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt] is induced by θ \theta , and hence
(5.3)
i σ ∗ p = θ ∗ ∗ ( i τ ∗ p ) \quad i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 3.99994pt=\hskip 3.99994pt\theta_{\hskip 0.70004pt*}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997pti_{\hskip 1.04996pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 1.99997pt\right)
If t t be a special trivialization of i τ ∗ p i_{\hskip 1.04996pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptp , then
t − 1 ∘ f τ ∘ t = 𝒕 ( d ( f τ ) ) t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptf_{\hskip 1.04996pt\tau}\hskip 1.00006pt\circ\hskip 1.49994ptt\hskip 3.99994pt=\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.49994ptd\hskip 1.49994pt(\hskip 1.00006ptf_{\hskip 0.70004pt\tau}\hskip 1.49994pt)\hskip 1.49994pt) . But d ( f τ ) d\hskip 1.49994pt(\hskip 1.00006ptf_{\hskip 1.04996pt\tau}\hskip 1.49994pt) is a normalized m m -cochain
of 𝚫 [ m ] \bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt] . Therefore m < n m\hskip 1.99997pt<\hskip 1.99997ptn implies that d ( f τ ) = 0 d\hskip 1.49994pt(\hskip 1.00006ptf_{\hskip 1.04996pt\tau}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 and hence f τ f_{\hskip 1.04996pt\tau} is equal to the identity. In view of (5.3 ) this implies that f σ f_{\hskip 0.70004pt\sigma} is equal to the identity and hence d ( f σ ) = 0 d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 . It follows that D f D_{\hskip 0.35002ptf} is normalized.
Let ρ \rho be an ( n + 1 ) (\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt) -simplex of B B , and let ε = θ ∗ ( ρ ) \varepsilon\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt) , where θ : [ 1 ] ⟶ [ n ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] is the inclusion. Then v = ∂ 1 ε v\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon is the leading vertex of ρ \rho
and each face ∂ i ρ \partial_{\hskip 0.70004pti}\hskip 1.49994pt\rho with i > 0 i\hskip 1.99997pt>\hskip 1.99997pt0 , and w = ∂ 0 ε w\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon is the leading vertex of τ = ∂ 0 ρ \tau\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt0}\hskip 1.49994pt\rho . Let t t be a special trivialization of i ρ ∗ p i_{\hskip 1.04996pt\rho}^{\hskip 0.70004pt*}\hskip 1.49994ptp . Then t t induces a trivialization
of i σ ∗ p i_{\hskip 1.04996pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp for every face σ = ∂ i ρ \sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}\hskip 1.49994pt\rho . If i > 0 i\hskip 1.99997pt>\hskip 1.99997pt0 , then the induced trivialization is special. If i = 0 i\hskip 3.99994pt=\hskip 3.99994pt0 , it differs from a special trivialization
by the isomorphism
ε ( p ) : K ( π w , n ) ⟶ K ( π v , n ) \quad\varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)
corresponding to the isomorphism ε ∗ : π w ⟶ π v \varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv} . It follows that
d ( f ρ ) ( ∂ i 𝜾 n + 1 ) = D f ( ∂ i ρ ) if i > 0 and \quad d\hskip 1.49994pt\left(\hskip 1.49994ptf_{\hskip 1.04996pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptD_{\hskip 0.35002ptf}\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.49994pt\rho\hskip 1.49994pt\right)\quad\ \mbox{if}\quad\ i\hskip 1.99997pt>\hskip 1.99997pt0\quad\ \mbox{and}\quad\
d ( f ρ ) ( ∂ 0 𝜾 n + 1 ) = ε ∗ ( D f ( τ ) ) . \quad d\hskip 1.49994pt\left(\hskip 1.49994ptf_{\hskip 1.04996pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial_{\hskip 1.04996pt0}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptD_{\hskip 0.35002ptf}\hskip 1.00006pt\left(\hskip 1.49994pt\tau\hskip 1.49994pt\right)\hskip 1.49994pt\right)\hskip 3.00003pt.
Since d ( f ρ ) d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 1.04996pt\rho}\hskip 1.49994pt) is a cocycle with coefficients in π ρ = π v \pi_{\hskip 1.04996pt\rho}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004ptv} , this implies that D f D_{\hskip 0.35002ptf} is a cocycle
with coefficients in the local system π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) . ■ \blacksquare
5.3. Lemma.
For every normalized n n -cocycle
c ∈ 𝒵 n ( B , π ( p ) ) c\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)
there exists a unique translation
f = f ( c ) : E ⟶ E f\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE
such that D f = c D_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994ptc .
Proof . Let σ \sigma be a q q -simplex of B B , and let t t be a special trivialization of i σ ∗ p i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp . Then t t induces a trivialization
of i τ ∗ p i_{\hskip 1.04996pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptp for every simplex τ \tau of the form τ = θ ∗ ( σ ) \tau\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\hskip 1.00006pt\sigma\hskip 1.49994pt) . In general, the induced trivialization is not special, but differs from a special one
by the isomorphism
ε ( p ) : K ( π w , n ) ⟶ K ( π v , n ) \quad\varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)
where v , w v\hskip 0.50003pt,\hskip 3.00003ptw are the leading vertices of σ , τ \hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau respectively, and ε \varepsilon is the unique 1 1 -simplex of the form ε = η ∗ ( ρ ) \varepsilon\hskip 3.99994pt=\hskip 3.99994pt\eta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt) such that ∂ 1 ε = v \partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptv , ∂ 0 ε = w \partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptw . It follows that
θ ∗ ∗ ( d ( f σ ) ) = ε ∗ ( d ( f τ ) ) , \quad\theta_{\hskip 0.70004pt*}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997ptd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997ptd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\tau}\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.00003pt,
where the isomorphism ε ∗ : π w ⟶ π v \varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv} is applied to the coefficients of d ( f τ ) d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\tau}\hskip 1.49994pt) . By applying this observation to n n -simplices τ \tau
we see that d ( f σ ) d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt) is determined by D f D_{\hskip 0.35002ptf} , and hence
f σ : i σ ∗ p ⟶ i σ ∗ p \quad f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp
is also determined by D f D_{\hskip 0.35002ptf} . Since this is true for every simplex σ \sigma of B B , the translation f f is determined by D f D_{\hskip 0.35002ptf} . This proves the uniqueness. To prove the existence, suppose that
c ∈ 𝒵 n ( B , π ( p ) ) c\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)
is given. Let σ \sigma be a q q -simplex of B B . The isomorphisms ε ∗ \varepsilon^{\hskip 0.70004pt*} from the first part of the proof establish an isomorphism between the induced local system i σ ∗ π ( p ) i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) and the constant coefficients system π v \pi_{\hskip 0.70004ptv} . This isomorphism turns the n n -cochain i σ ∗ ( c ) i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) of 𝚫 [ q ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]
with coefficients in i σ ∗ π ( p ) i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) into an n n -cochain
c ( σ ) ∈ 𝒵 n ( 𝚫 [ q ] , π v ) . \quad c\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.70004ptv}\hskip 1.49994pt)\hskip 3.00003pt.
There is a unique translation f σ : i σ ∗ p ⟶ i σ ∗ p f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp
such that d ( f σ ) = c ( v ) d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.49994pt) . Since the cochains c ( σ ) c\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) result from a single cochain c c , the translations f σ f_{\hskip 0.70004pt\sigma} agree with each other in the sense that if τ = θ ∗ ( σ ) \tau\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) , then the diagram
i τ ∗ E {\displaystyle i_{\hskip 0.70004pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptE} i σ ∗ E {i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptE} i τ ∗ E {i_{\hskip 0.70004pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptE} i σ ∗ E {i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptE} θ ∗ \scriptstyle{\displaystyle\theta_{\hskip 0.70004pt*}\hskip 1.00006pt} f τ \scriptstyle{\displaystyle f_{\hskip 0.70004pt\tau}\hskip 1.00006pt} f σ \scriptstyle{\displaystyle\hskip 1.00006ptf_{\hskip 0.70004pt\sigma}} θ ∗ \scriptstyle{\displaystyle\theta_{\hskip 0.70004pt*}}
is commutative. It follows that the maps f σ f_{\hskip 0.70004pt\sigma} together define a translation f : E ⟶ E f\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE . By the construction, D f = c D_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994ptc . This proves the existence. ■ \blacksquare
5.4. Lemma.
Let f , g : E ⟶ E f,\hskip 3.00003ptg\hskip 1.99997pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE be two translations. Then
D f ∘ g = D f + D g . \quad D_{\hskip 0.35002ptf\hskip 0.70004pt\circ\hskip 1.04996ptg}\hskip 3.99994pt=\hskip 3.99994ptD_{\hskip 0.35002ptf}\hskip 3.99994pt+\hskip 3.99994ptD_{\hskip 0.70004ptg}\hskip 3.00003pt.
If c , d ∈ 𝒵 n ( B , π ( p ) ) c\hskip 0.50003pt,\hskip 3.00003ptd\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) , then f ( c + d ) = f ( c ) ∘ f ( d ) f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.99997pt+\hskip 1.99997ptd\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.00006ptf\hskip 1.00006pt(\hskip 1.00006ptd\hskip 1.99997pt) .
Proof . The first part of the lemma follows directly from the definitions. In view of Lemma Simplicial sets, Postnikov systems, and bounded cohomology the second part follows from the first one. ■ \blacksquare
5.5. Lemma.
Let c , d ∈ 𝒵 n ( B , π ( p ) ) c\hskip 0.50003pt,\hskip 3.00003ptd\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) . If c − d c\hskip 1.99997pt-\hskip 1.99997ptd is equal to the coboundary of a normalized
cochain, then the maps f ( c ) f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) and f ( d ) f\hskip 1.00006pt(\hskip 1.00006ptd\hskip 1.99997pt) are homotopic.
Proof . In view of Lemma Simplicial sets, Postnikov systems, and bounded cohomology it is sufficient to consider the case when d = 0 d\hskip 3.99994pt=\hskip 3.99994pt0 . Suppose that b ∈ 𝒞 n − 1 ( B , π ( p ) ) b\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) and c = ∂ ∗ b c\hskip 3.99994pt=\hskip 3.99994pt\hskip 0.50003pt\partial^{\hskip 0.70004pt*}\hskip 0.50003ptb . In this case we need to prove that f ( c ) f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) is homotopic to the identity. Let us consider the bundle
p 1 = p × id 𝚫 [ 1 ] : E × 𝚫 [ 1 ] ⟶ B × 𝚫 [ 1 ] . \quad p_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}_{\hskip 0.70004pt\bm{\Delta}\hskip 0.35002pt[\hskip 0.70004pt1\hskip 0.70004pt]}\hskip 1.99997pt\colon\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt.
Equivalently, p 1 p_{\hskip 0.70004pt1} is induced from p p by the projection p r B : B × 𝚫 [ 1 ] ⟶ B \operatorname{p{\hskip 0.50003pt}r}_{\hskip 0.70004ptB}\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB . Clearly, the local system π ( p 1 ) \pi\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt1}\hskip 1.49994pt) is induced from π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) by the same projection. Recall the simplicial maps i ( e ) : 𝚫 [ 0 ] ⟶ 𝚫 [ 1 ] i\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt)\hskip 1.99997pt\colon\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt] , where e = 0 e\hskip 3.99994pt=\hskip 3.99994pt0 or 1 1 , from the definition of homotopies. These maps lead to the maps
id B × i ( e ) : B × 𝚫 [ 0 ] ⟶ B × 𝚫 [ 1 ] . \quad\operatorname{id}_{\hskip 1.04996ptB}\hskip 1.00006pt\times\hskip 1.99997pti\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt)\hskip 1.99997pt\colon\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt.
Let B e B_{\hskip 0.70004pte} be the image of id B × i ( e ) \operatorname{id}_{\hskip 1.04996ptB}\hskip 1.00006pt\times\hskip 1.99997pti\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt) . Similarly, let E e E_{\hskip 0.70004pte} be the image of id E × i ( e ) \operatorname{id}_{\hskip 1.04996ptE}\hskip 1.00006pt\times\hskip 1.99997pti\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt) . Let us identify B 0 B_{\hskip 1.04996pt0} with B B and consider the ( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochain
b 0 ∈ 𝒞 n − 1 ( B × 𝚫 [ 1 ] , π ( p 1 ) ) \quad b_{\hskip 1.04996pt0}\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt)
equal to b b on B 0 = B B_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptB and to 0 on all ( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -simplices of B × 𝚫 [ 1 ] B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt] not in B 0 B_{\hskip 1.04996pt0} . Let
c 0 = ∂ ∗ b 0 and \quad c_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\hskip 0.50003ptb_{\hskip 1.04996pt0}\quad\ \mbox{and}\quad\
h = f ( c 0 ) : E × 𝚫 [ 1 ] ⟶ E × 𝚫 [ 1 ] . \quad h\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptc_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 1.99997pt\colon\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt.
Then h h is a translation of p 1 p_{\hskip 0.70004pt1} . Clearly, the map E 0 ⟶ E 0 E_{\hskip 1.04996pt0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 1.04996pt0} induced by h h
can be identified with f ( c ) f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) , and the map E 1 ⟶ E 1 E_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004pt1} induced by h h is equal to the identity. Therefore, the composition of h h with the projection E × 𝚫 [ 1 ] ⟶ E E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE is a homotopy between f ( c ) f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) and the identity. The lemma follows. ■ \blacksquare
Remark.
Since 𝒵 n ( 𝚫 [ q ] , π 0 ) = 0 \mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 if q < n q\hskip 1.99997pt<\hskip 1.99997ptn , every translation f : E ⟶ E f\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE is equal to the identity over sk n − 1 B \operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003ptB . By the same reason the homotopy constructed in Lemma Simplicial sets, Postnikov systems, and bounded cohomology is constant over sk n − 2 B \operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt2}\hskip 0.50003ptB .
Remark.
If p p is the trivial bundle B × K ( π , n ) ⟶ B B\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB , then the translations of p p correspond to
maps B ⟶ K ( π , n ) B\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . So, Lemmas Simplicial sets, Postnikov systems, and bounded cohomology and Simplicial sets, Postnikov systems, and bounded cohomology provide a “twisted” version of the classification of maps f : K ⟶ K ( π , n ) f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) in terms of cocycles z ( f ) z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt) .
A group acting on E E .
Let G = 𝒞 n − 1 ( B , π ( p ) ) G\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)
be the group of normalized ( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochains of B B with coefficients in the local system π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) . By Lemma Simplicial sets, Postnikov systems, and bounded cohomology for every g ∈ G g\hskip 1.99997pt\in\hskip 1.99997ptG there exists a unique automorphism
a ( c ) = f ( ∂ ∗ c ) : E ⟶ E \quad a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.49994pt\partial^{\hskip 0.70004pt*}c\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE
over B B
such that D a ( c ) = ∂ ∗ c D_{\hskip 0.35002pta\hskip 0.70004pt(\hskip 0.70004ptc\hskip 1.04996pt)}\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\hskip 1.00006ptc . By Lemma Simplicial sets, Postnikov systems, and bounded cohomology the map c ⟼ a ( c ) c\hskip 3.99994pt\longmapsto\hskip 3.99994pta\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt) is a homomorphism. Hence this map defines an action of G G on E E . By Lemma Simplicial sets, Postnikov systems, and bounded cohomology every automorphism a ( c ) a\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt) is homotopic to the identity. Moreover , by the remark after the proof of Lemma Simplicial sets, Postnikov systems, and bounded cohomology the homotopy can be chosen to be constant over sk n − 2 B \operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt2}\hskip 0.50003ptB . Therefore, the group G G acts on E E by automorphisms homotopic to the identity by homotopies constant over sk n − 2 B \operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt2}\hskip 0.50003ptB .
Free simplices.
Let us say that a q q -simplex σ \sigma is free in dimension m m if the restriction of the simplicial map i σ : 𝚫 [ q ] ⟶ K i_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK to sk m 𝚫 [ q ] \operatorname{sk}_{\hskip 0.70004ptm}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt] is an isomorphism onto its image.
5.6. Lemma.
Suppose that τ , τ ′ \tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime} are q q -simplices of E E such that p ( τ ) = p ( τ ′ ) p\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau^{\prime}\hskip 1.49994pt) . If p ( τ ) p\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) is free in dimension n − 1 n\hskip 1.99997pt-\hskip 1.99997pt1 , then there exists c ∈ G c\hskip 1.99997pt\in\hskip 1.00006ptG such that a ( c ) ( τ ) = τ ′ a\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\tau^{\prime} .
Proof . Let σ = p ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) and v v be the leading vertex of σ \sigma . Let
t : 𝚫 [ q ] × K ( π v , n ) ⟶ i σ ∗ E \quad t\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.35002ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.99997ptE
be a special trivialization of the pull-back bundle i σ ∗ p i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006ptp . Then
t − 1 ( τ ) = ( 𝜾 q , z ) and t − 1 ( τ ′ ) = ( 𝜾 q , z ′ ) . \quad t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.99997pt\right)\quad\ \mbox{and}\quad\ t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz^{\prime}\hskip 1.99997pt\right)\hskip 3.00003pt.
for some q q -simplices z , z ′ z\hskip 0.50003pt,\hskip 3.00003ptz^{\prime} of K ( π v , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.35002ptv}\hskip 1.00006pt,\hskip 1.99997ptn\hskip 1.49994pt) , i.e. for some z , z ′ ∈ 𝒵 n ( 𝚫 [ q ] , π v ) z\hskip 0.50003pt,\hskip 3.00003ptz^{\prime}\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.35002ptv}\hskip 1.49994pt) . Clearly,
𝒕 ( z ′ − z ) ( 𝜾 q , z ) = ( 𝜾 q , z ′ ) . \quad\bm{t}\hskip 1.49994pt(\hskip 1.00006ptz^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz\hskip 1.49994pt)\hskip 1.00006pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz^{\prime}\hskip 1.99997pt\right)\hskip 3.00003pt.
Since the cohomology of 𝚫 [ q ] \bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] vanish, the cocycle z ′ − z z^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz is the coboundary of some normalized
( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochain d d . Since σ \sigma is free in dimension n − 1 n\hskip 1.99997pt-\hskip 1.99997pt1 , there exists a normalized ( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochain c c
of B B such that d = i σ ∗ ( c ) d\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) ( the values of c c on non-degenerate ( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -simplices
not belonging to the image of i σ i_{\hskip 1.04996pt\sigma} are arbitrary) and hence
z ′ − z = ∂ ∗ d = i σ ∗ ( ∂ ∗ c ) . \quad z^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}d\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}c\hskip 1.49994pt)\hskip 3.00003pt.
Let f = a ( c ) = f ( ∂ ∗ c ) f\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}c\hskip 1.49994pt) . Then D f = ∂ ∗ c D_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}c and hence d ( f σ ) = z ′ − z d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz . It follows that
a ( c ) ( τ ) = f ( τ ) = τ ′ . \quad a\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\tau^{\prime}\hskip 3.00003pt.
This completes the proof . ■ \blacksquare
6. Unraveling simplicial sets
The unraveling.
Let Γ = Δ [ ∞ ] \Gamma\hskip 3.99994pt=\hskip 3.99994pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . As usual, we will denote by Γ n \Gamma_{n} the
set of n n -simplices of Γ \Gamma . The unravelling of a simplicial set K K is the dimension-wise product Δ K × Γ \Delta\hskip 0.50003ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma . We will denote this Δ \Delta -set simply by K × Γ K\hskip 1.00006pt\times\hskip 1.00006pt\Gamma . The goal of this section is to prove that the projection p : K × Γ ⟶ K p\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK induces isomorphisms in bounded cohomology.
Averaging operators.
An averaging operator on Γ n \Gamma_{n} is a bounded linear functional
m n : B ( Γ n ) ⟶ 𝐑 , \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994pt\Gamma_{n}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}\hskip 3.00003pt,
of the norm 1 1 equal to the identity on constant functions. More precisely, if f ( n ) = a f\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta for all n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} , then it is required that m n ( f ) = a m_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta . A family of averaging operators m n m_{\hskip 0.70004ptn} , where n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} , is said to be coherent if the operators m n m_{\hskip 0.70004ptn} commute with the adjoints
of the face operators ∂ i : Γ n ⟶ Γ n − 1 \partial_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006pt\Gamma_{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\Gamma_{n\hskip 0.70004pt-\hskip 0.70004pt1} , i.e. if
m n ∘ ∂ i ∗ = m n − 1 \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\circ\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptm_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}
for every n ⩾ 1 n\hskip 1.99997pt\geqslant\hskip 1.99997pt1 and i ∈ 𝐍 i\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} . Such a family defines a graded map of degree 0
m ∗ : B ∗ ( K × Γ ) ⟶ B ∗ ( K ) \quad m_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 3.00003pt
by averaging cochains over preimages in K × Γ K\hskip 1.00006pt\times\hskip 1.00006pt\Gamma of simplices of K K . In fact , m ∗ m_{\hskip 0.70004pt*} is a cochain map. See Lemma Simplicial sets, Postnikov systems, and bounded cohomology . Clearly, m ∗ ∘ p ∗ = id m_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id} .
Banach limits.
Given a function f : 𝐍 ⟶ 𝐑 f\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} , let s f sf be the function 𝐍 ⟶ 𝐑 \mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} defined by s f ( n ) = f ( n + 1 ) sf\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt) . A Banach limit is a linear functional l : B ( 𝐍 ) ⟶ 𝐑 l\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} such that its norm is equal to 1 1 , l ( f ) = a l\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta if f f is the constant function with the value a ∈ 𝐑 a\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{R} , and l ( s f ) = l ( f ) l\hskip 1.49994pt(\hskip 1.49994ptsf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt) for all f f . It is well known that Banach limits exist. See, for example, [R ] , Exercise 4 to Chapter 3. Let us fix a Banach limit and denote it by lim \lim .
Suppose now that f ( n ) f\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) is a bounded real-valued function of the natural argument n n defined only for sufficiently large
numbers n n . If N N is sufficiently large, then the function f N ( n ) = f ( n + N ) f_{\hskip 1.39998ptN}\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997ptN\hskip 1.49994pt) is defined for all n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} . Clearly, f N + 1 = s f N f_{\hskip 1.39998ptN\hskip 1.39998pt+\hskip 1.39998pt1}\hskip 3.99994pt=\hskip 3.99994ptsf_{\hskip 1.39998ptN} . Therefore we can define lim f \lim\hskip 1.00006ptf as the common values of lim f N \lim\hskip 1.00006ptf_{\hskip 1.39998ptN} for sufficiently large natural numbers N N .
Suppose now that f ( a , b , … , z ) f\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003ptb\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz\hskip 1.49994pt) is a bounded real-valued function of several natural variable a , b , … , z a\hskip 0.50003pt,\hskip 3.00003ptb\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz and that k k is one of these variables. By fixing values of other variables and applying lim \lim to the resulting function of k k we will get a bounded function of the other variables a , … , k ^ … , z a\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003pt\widehat{k}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz , which we will denote by lim k f ( a , … , k ^ … , z ) \lim_{\hskip 0.70004ptk}\hskip 1.00006ptf\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003pt\widehat{k}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz\hskip 1.49994pt) . As above, this operation applies even if f ( a , b , … , z ) f\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003ptb\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz\hskip 1.49994pt) is defined only for sufficiently large k k .
6.1. Lemma.
Coherent families of averaging operators exist .
Proof . The n n -simplices of Γ \Gamma can be identified with the sequences
( k 0 , k 1 , … , k n ) ∈ 𝐍 n + 1 (\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.49994pt\in\hskip 1.49994pt\mathbf{N}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1} such that k 0 < k 1 < … < k n k_{\hskip 1.04996pt0}\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004pt1}\hskip 1.99997pt<\hskip 1.99997pt\ldots\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004ptn} . Given a bounded function f : Γ n ⟶ 𝐑 f\hskip 1.00006pt\colon\hskip 1.00006pt\Gamma_{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} , let f ( 1 ) f^{\hskip 1.04996pt(\hskip 0.70004pt1\hskip 0.70004pt)} be the function Γ n − 1 ⟶ 𝐑 \Gamma_{n\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} defined by
f ( 1 ) ( k 0 , k 1 , … , k n − 1 ) = lim k n f ( k 0 , k 1 , … , k n ) . \quad f^{\hskip 1.04996pt(\hskip 0.70004pt1\hskip 0.70004pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\lim\nolimits_{\hskip 1.39998ptk_{\hskip 0.50003ptn}}\hskip 1.99997ptf\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.
For 0 ⩽ m ⩽ n + 1 0\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt+\hskip 1.99997pt1 let us define f ( m ) f^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 1.04996pt)} recursively by f ( 0 ) = f f^{\hskip 1.04996pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 3.99994pt=\hskip 3.99994ptf and
f ( m + 1 ) = ( f ( m ) ) ( 1 ) . \quad f^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1\hskip 1.04996pt)}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997ptf^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 1.04996pt)}\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004pt1\hskip 0.70004pt)}\hskip 3.00003pt.
Then f ( m ) f^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 1.04996pt)} is a function of n + 1 − m n\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.99997pt-\hskip 1.99997ptm natural variables. In particular , f ( n + 1 ) f^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt)} is a function of zero variables, i.e. is a constant. Let m n ( f ) m_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) be this constant. Clearly, each m n m_{\hskip 0.70004ptn} is an averaging operator. We claim that the family of these operators is coherent, i.e. that
(6.1)
( ∂ i ∗ f ) ( n + 2 ) = f ( n + 1 ) \quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt2\hskip 0.70004pt)}\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt)}
for every i ∈ [ n + 1 ] i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.50003ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt] . By the definition,
∂ i ∗ f ( k 0 , k 1 , … , k n + 1 ) = f ( k 0 , … , k i ^ … , k n + 1 ) \quad\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994pt\widehat{k_{\hskip 0.70004pti}}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)
is a function independent of k i k_{\hskip 0.70004pti} . By consecutively taking limits we see that
( ∂ i ∗ f ) ( m ) ( k 0 , k 1 , … , k n + 1 − m ) = f ( m ) ( k 0 , … , k i ^ … , k n + 1 − m ) \quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 0.70004pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004ptm}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 0.70004pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994pt\widehat{k_{\hskip 0.70004pti}}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004ptm}\hskip 1.49994pt)
for n + 1 − m ⩾ i n\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.99997pt-\hskip 1.99997ptm\hskip 1.99997pt\geqslant\hskip 1.99997pti , i.e. for m ⩽ n + 1 − i m\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.99997pt-\hskip 1.99997pti . In particular ,
( ∂ i ∗ f ) ( n + 1 − i ) ( k 0 , k 1 , … , k i ) = f ( n + 1 − i ) ( k 0 , … , k i − 1 ) . \quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994ptk_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.00003pt.
By taking the limit of the left hand side, which is independent of k i k_{\hskip 0.70004pti} , we see that
( ∂ i ∗ f ) ( n + 2 − i ) ( k 0 , k 1 , … , k i − 1 ) = f ( n + 1 − i ) ( k 0 , … , k i − 1 ) . \quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 1.39998pt2\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994ptk_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.00003pt.
Taking the limits i i more times shows that the equality (6.1 ) holds. Therefore our family of averaging operators is indeed coherent. ■ \blacksquare
Acyclicity of 𝚫 [ n ] × Γ \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma .
Recall that an m m -chain of a Δ \Delta -set D D is a finite formal sum of m m -simplices of D D with coefficients in some abelian group. A vertex of a chain is defined as a vertex of some simplex entering into this sum with non-zero coefficient. If an m m -chain c c of 𝚫 [ n ] × Γ \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma is a cycle, then c c is a boundary in 𝚫 [ n ] × Γ \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma . Indeed, since c c is a finite sum, there exists m ∈ 𝐍 m\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} such that for every vertex ( v , k ) (\hskip 1.00006ptv\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt) of c c the inequality k < m k\hskip 1.99997pt<\hskip 1.99997ptm holds. Let w w be a vertex of 𝚫 [ n ] \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt] , and let us consider the cone b b over c c with the apex ( w , m ) (\hskip 1.00006ptw\hskip 0.50003pt,\hskip 3.00003ptm\hskip 1.49994pt) . In order to ensure that this cone is indeed
a chain of 𝚫 [ n ] × Γ \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma one needs to build the cone by adding the apex
as the last vertex of every simplex of c c . Then
c = ( − 1 ) m + 1 ∂ b . \quad c\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)^{\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\partial\hskip 1.00006ptb\hskip 3.00003pt.
The sign is caused by adding the apex as the last vertex.
The method of acyclic models.
For a simplicial or Δ \Delta -set K K let C ∗ ( K ) C_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) be the complex of chains in K K with coefficients in some abelian group. The method of acyclic models applied to the functors
K ⟼ C ∗ ( K ) K\hskip 3.99994pt\longmapsto\hskip 3.99994ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)
and
K ⟼ C ∗ ( K × Γ ) K\hskip 3.99994pt\longmapsto\hskip 3.99994ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
from simplicial sets to chain complexes implies that p ∗ : C ∗ ( K × Γ ) ⟶ C ∗ ( K ) p_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) is a chain homotopy equivalence.
We will adapt the method of acyclic models to prove that p ∗ : B ∗ ( K ) ⟶ B ∗ ( K × Γ ) p^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) is a cochain homotopy equivalence. Let m n m_{\hskip 0.70004ptn} be a coherent family of averaging operators. Since m ∗ ∘ p ∗ = id m_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id} , it is sufficient to prove that
p ∗ ∘ m ∗ : B ∗ ( K × Γ ) ⟶ B ∗ ( K × Γ ) p^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
is cochain homotopic to the identity.
Some special chains.
Recall that d ( i ) : [ n − 1 ] ⟶ [ n ] d\hskip 1.49994pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] is the unique strictly increasing map not having i i as a value. Let δ i = d ( i ) ∗ : 𝚫 [ n − 1 ] ⟶ 𝚫 [ n ] \delta_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.49994pt(\hskip 1.00006pti\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt] be the simplicial map induced by d ( i ) d\hskip 1.49994pt(\hskip 1.00006pti\hskip 1.49994pt) . We will use the following abbreviated notation for sums :
∑ i ′ ∙ = ∑ i ( − 1 ) i ∙ . \quad\sum\nolimits_{\hskip 1.39998pti}^{\prime}\hskip 3.99994pt\bullet\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pti}\hskip 1.99997pt(\hskip 1.49994pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 3.99994pt\bullet\hskip 3.99994pt\hskip 3.99994pt.
For every two simplices τ , τ ′ ∈ Γ n \tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime}\hskip 1.99997pt\in\hskip 3.00003pt\Gamma_{n} we are going to define an
( n + 1 ) (\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt) -chain c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) of 𝚫 [ n ] × Γ \bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma with integer coefficients in such a way that
(6.2)
∂ c n ( τ , τ ′ ) = ( 𝜾 n , τ ) − ( 𝜾 n , τ ′ ) − ∑ i ′ ( δ i × id Γ ) ∗ ( c n − 1 ( ∂ i τ , ∂ i τ ′ ) ) . \quad\partial\hskip 1.00006ptc_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)\hskip 3.00003pt.
In addition, we will require that the
l 1 l_{\hskip 0.70004pt1} -norm of c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) ( i.e. the sum of the absolute values of the coefficients) can be bounded by constants
depending only on n n . For n = 0 n\hskip 3.99994pt=\hskip 3.99994pt0 the condition (6.2 ) simplifies to
∂ c 0 ( τ , τ ′ ) = ( 𝜾 0 , τ ) − ( 𝜾 0 , τ ′ ) . \quad\partial\hskip 1.00006ptc_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.
We will construct such chains using a recursion by n n . The chain ( 𝜾 0 , τ ) − ( 𝜾 0 , τ ′ ) (\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) has the augmentation 0 and is a boundary in 𝚫 [ 0 ] × Γ \bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma if N ⩾ 2 N\hskip 1.99997pt\geqslant 2 . Assuming that N ⩾ 2 N\hskip 1.99997pt\geqslant\hskip 1.99997pt2 , let us choose a vertex v v of Γ \Gamma strictly larger that τ , τ ′ \tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime} in the natural order (recall that Γ 0 = 𝐍 \Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\mathbf{N} ) and take as c 0 ( τ , τ ′ ) c_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) the cone with the apex ( 𝜾 0 , v ) (\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) over the cycle ( 𝜾 0 , τ ) − ( 𝜾 0 , τ ′ ) (\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) . Then the
l 1 l_{\hskip 0.70004pt1} -norm of c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) is ⩽ 2 \leqslant\hskip 1.99997pt2 .
Suppose that the chains c m ( τ , τ ′ ) c_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) are already defined for m ⩽ n − 1 m\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt-\hskip 1.99997pt1 , the condition (6.2 ) holds for them, and there are required bounds
on the l 1 l_{\hskip 0.70004pt1} -norms. In order to define the chains c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) we need to verify that the right hand side of (6.2 ) is a cycle. The boundary of the right hand side is
∂ ( 𝜾 n , τ ) − ∂ ( 𝜾 n , τ ′ ) − ∑ i ′ ∂ ( δ i × id Γ ) ∗ ( c n − 1 ( ∂ i τ , ∂ i τ ′ ) ) \quad\partial\hskip 1.00006pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\partial\hskip 1.99997pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)
= ∑ i ′ ( ∂ i 𝜾 n , ∂ i τ ) − ( ∂ i 𝜾 n , ∂ i τ ′ ) − ( δ i × id Γ ) ∗ ( ∂ c n − 1 ( ∂ i τ , ∂ i τ ′ ) ) \quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt\bigr{)}\hskip 3.99994pt-\hskip 3.99994pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 3.99994pt-\hskip 3.99994pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.99997pt\partial\hskip 1.00006ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)
= ∑ i ′ ( δ i × id Γ ) ∗ ( ( 𝜾 n − 1 , ∂ i τ ) − ( 𝜾 n − 1 , ∂ i τ ′ ) − ∂ c n − 1 ( ∂ i τ , ∂ i τ ′ ) ) . \quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\Bigl{(}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt\bigr{)}\hskip 3.00003pt-\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt-\hskip 3.00003pt\partial\hskip 1.00006ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\Bigr{)}\hskip 3.99994pt.
By applying (6.2 ) with n − 1 n\hskip 1.99997pt-\hskip 1.99997pt1 in the role of n n and cancelling two occurrences of
( 𝜾 n − 1 , ∂ i τ ) − ( 𝜾 n − 1 , ∂ i τ ′ ) \quad\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt\bigr{)}\hskip 3.00003pt-\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\bigr{)}
we conclude that the boundary of the right hand side of (6.2 ) is equal to
∑ i ′ ( δ i × id Γ ) ∗ ( ∑ k ′ ( δ k × id Γ ) ∗ ( c n − 1 ( ∂ k ∂ i τ , ∂ k ∂ i τ ′ ) ) ) \quad\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998ptk}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004ptk}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)\hskip 1.99997pt\right)
= ∑ i ′ ∑ k ′ ( δ i × id Γ ) ∗ ∘ ( δ k × id Γ ) ∗ ( c n − 1 ( ∂ k ∂ i τ , ∂ k ∂ i τ ′ ) ) \quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\sum^{\prime}\nolimits_{\hskip 1.39998ptk}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\circ\hskip 1.49994pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004ptk}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)
= ∑ i ′ ∑ k ′ ( δ i ∘ δ k × id Γ ) ∗ ( c n − 1 ( ∂ k ∂ i τ , ∂ k ∂ i τ ′ ) ) . \quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\sum^{\prime}\nolimits_{\hskip 1.39998ptk}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\circ\hskip 1.00006pt\delta_{\hskip 0.70004ptk}\hskip 1.49994pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)\hskip 3.99994pt.
As in the proof of the identity ∂ ∘ ∂ = 0 \partial\hskip 1.00006pt\circ\hskip 1.00006pt\partial\hskip 3.99994pt=\hskip 3.99994pt0 , all summands in the last double sum cancel (recall that ∑ ′ \sum^{\prime} denotes an alternating sum). It follows that the right hand side
of (6.2 ) is a cycle. Clearly, the l 1 l_{\hskip 0.70004pt1} -norm of the right hand side can be bounded in terms of n n and the l 1 l_{\hskip 0.70004pt1} -norm of c n − 1 ( ρ , ρ ′ ) c_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\rho\hskip 0.50003pt,\hskip 1.99997pt\rho^{\prime}\hskip 1.49994pt) . By the inductive assumption this implies that these norms
can bounded in terms of n n only. Hence one can take as c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) the cone over the right hand side with an appropriate apex. Then the l 1 l_{\hskip 0.70004pt1} -norms of c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) and of the right hand side are equal and can be bounded in terms of n n . This completes the construction of the chains c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) .
Partial averaging.
We will deal with the functions of several variables such as bounded cochains ( σ , τ , τ ′ ) ⟼ g ( σ , τ , τ ′ ) (\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) and apply the averaging operators to only one of the variables. If , say, τ ′ \tau^{\prime} runs over Γ n \Gamma_{n} , we will denote by
( σ , τ ) ⟼ m n ⟨ τ ′ ⟩ g ( σ , τ , τ ′ ) \quad(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt
the function of variables ( σ , τ ) (\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)
resulting from applying m n m_{\hskip 0.70004ptn} to functions
τ ′ ⟼ g ( σ , τ , τ ′ ) . \quad\tau^{\prime}\hskip 3.00003pt\longmapsto\hskip 3.00003ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.
With these notations the coherence condition takes the form
m n ⟨ τ ′ ⟩ g ( σ , τ , ∂ i τ ′ ) = m n − 1 ⟨ ρ ⟩ g ( σ , τ , ρ ) , \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\langle\hskip 1.00006pt\hskip 0.50003pt\rho\hskip 1.00006pt\rangle\hskip 1.49994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.49994pt)\hskip 3.00003pt,
where τ ′ \tau^{\prime} runs over Γ n \Gamma_{n} and ρ \rho runs over Γ n − 1 \Gamma_{n\hskip 0.70004pt-\hskip 0.70004pt1} .
Constructing cochain homotopies.
Let K K be a simplicial set. Every n n -simplex of K × Γ × Γ K\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.00006pt\times\hskip 1.00006pt\Gamma has the form ( σ , τ , τ ′ ) (\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) , where σ ∈ K n \sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn} and τ , τ ′ ∈ Γ n \tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime}\hskip 1.99997pt\in\hskip 3.00003pt\Gamma_{n} . Clearly,
( σ , τ , τ ′ ) = ( i σ × id Γ × Γ ) ∗ ( 𝜾 n , τ , τ ′ ) . \quad(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pti_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma\hskip 0.70004pt\times\hskip 0.70004pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.
Let k n : C n ( K × Γ × Γ ) ⟶ C n ( K × Γ ) k_{\hskip 0.70004ptn}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) be the unique homomorphism such that
k n ( σ , τ , τ ′ ) = ( i σ × id Γ × Γ ) ∗ ( c n ( τ , τ ′ ) ) . \quad k_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pti_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma\hskip 0.70004pt\times\hskip 0.70004pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.00003pt.
for every n n -simplex ( σ , τ , τ ′ ) (\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) . The condition (6.2 ) implies that
(6.3)
∂ k n ( σ , τ , τ ′ ) = ( σ , τ ) − ( σ , τ ′ ) − ∑ i ′ k n − 1 ( ∂ i σ , ∂ i τ , ∂ i τ ′ ) . \quad\partial\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 3.00003pt.
The next step is to apply the averaging operators m n m_{\hskip 0.70004ptn} . If f ∈ B n + 1 ( K × Γ ) f\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) , then
( σ , τ , τ ′ ) ⟼ f ( k n ( σ , τ , τ ′ ) ) \quad(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}
is a bounded function because, together with the l 1 l_{\hskip 0.70004pt1} -norm of c n ( τ , τ ′ ) c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) , the l 1 l_{\hskip 0.70004pt1} -norm of k n ( σ , τ , τ ′ ) k_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt) can be bounded in terms of n n only. Let
h n + 1 ( f ) ( σ , τ ) = m n ⟨ τ ′ ⟩ f ( k n ( σ , τ , τ ′ ) ) . \quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
Then h n + 1 ( f ) ∈ B n ( K × Γ ) h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) and, moreover ,
h n + 1 : B n + 1 ( K × Γ ) ⟶ B n ( K × Γ ) \quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
6.2. Lemma.
The operators h n h_{\hskip 0.70004ptn} form a cochain homotopy between p ∗ ∘ m ∗ p^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}
and the identity.
Proof . Let f ∈ B n ( K × Γ ) f\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) . By appling f f to (6.3 ) we see that
f ( ∂ k n ( σ , τ , τ ′ ) ) = f ( σ , τ ) − f ( σ , τ ′ ) − ∑ i ′ f ( k n − 1 ( ∂ i σ , ∂ i τ , ∂ i τ ′ ) ) , \quad f\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\partial\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
or , equivalently,
∂ ∗ f ( k n ( σ , τ , τ ′ ) ) = f ( σ , τ ) − f ( σ , τ ′ ) − ∑ i ′ f ( k n − 1 ( ∂ i σ , ∂ i τ , ∂ i τ ′ ) ) . \quad\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
Next, let us apply m n ⟨ τ ′ ⟩ m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle to the terms of this equality. By the definition of h n + 1 h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1} ,
m n ⟨ τ ′ ⟩ ∂ ∗ f ( k n ( σ , τ , τ ′ ) ) = h n + 1 ( ∂ ∗ f ) ( σ , τ ) . \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.99997pt\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigr{)}\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.00003pt.
Since f ( σ , τ ) f\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt) does not depend
on τ ′ \tau^{\prime} ,
m n ⟨ τ ′ ⟩ f ( σ , τ ) = f ( σ , τ ) . \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.00003pt.
By the definition of m ∗ ( f ) m^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) ,
m n ⟨ τ ′ ⟩ f ( σ , τ ′ ) = m ∗ ( f ) ( σ ) = p ∗ ∘ m ∗ ( f ) ( σ , τ ) . \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.00003pt.
Finally, the coherence of the family m n m_{\hskip 0.70004ptn} implies that
m n ⟨ τ ′ ⟩ ∑ i ′ f ( k n − 1 ( ∂ i σ , ∂ i τ , ∂ i τ ′ ) ) = ∑ i ′ m n ⟨ τ ′ ⟩ f ( k n − 1 ( ∂ i σ , ∂ i τ , ∂ i τ ′ ) ) \quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt
= ∑ i ′ m n − 1 ⟨ ρ ⟩ f ( k n − 1 ( ∂ i σ , ∂ i τ , ρ ) ) \quad\hskip 3.99994pt=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptm_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\langle\hskip 1.00006pt\hskip 0.50003pt\rho\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt
= ∑ i ′ h n ( f ) ( ∂ i σ , ∂ i τ ) = ∂ ∗ ( h n ( f ) ) ( σ , τ ) . \quad\hskip 3.99994pt=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pth_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.99997pth_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 1.49994pt(\hskip 1.99997pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.99997pt)\hskip 3.00003pt.
By collecting all these observations together , we see that
h n + 1 ( ∂ ∗ f ) = f − p ∗ ∘ m ∗ ( f ) − ∂ ∗ ( h n ( f ) ) \quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.99997pt-\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.99997pth_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}
for every f ∈ B n ( K × Γ ) f\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) and hence
h n + 1 ∘ ∂ ∗ = id − p ∗ ∘ m ∗ − ∂ ∗ ∘ h n , \quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.99997pt\operatorname{id}\hskip 3.00003pt-\hskip 3.00003ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 3.00003pt-\hskip 3.00003pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pth_{\hskip 0.70004ptn}\hskip 3.00003pt,
or , equivalently, id − p ∗ ∘ m ∗ = h n + 1 ∘ ∂ ∗ + ∂ ∗ ∘ h n \operatorname{id}\hskip 3.00003pt-\hskip 3.00003ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 3.00003pt+\hskip 3.00003pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pth_{\hskip 0.70004ptn} . ■ \blacksquare
6.3. Theorem.
The projection p : K × Γ ⟶ K p\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK induces isometric isomorphisms in the
bounded cohomology groups.
Proof . Lemma Simplicial sets, Postnikov systems, and bounded cohomology together with m ∗ ∘ p ∗ = id m^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id} implies that the induced homomorphisms are isomorphisms. Since the norms of m ∗ m^{\hskip 0.70004pt*} and p ∗ p^{\hskip 0.70004pt*}
are ⩽ 1 \leqslant\hskip 1.99997pt1 , these induced homomorphisms are isometries. ■ \blacksquare
7. Isometric isomorphisms in bounded cohomology
7.1. Theorem.
Let p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be a locally trivial bundle with the fiber K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) . If n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 , then the map induced by p p in bounded cohomology is an isometric isomorphism.
Proof . Let 𝚪 = 𝚫 [ ∞ ] \bm{\Gamma}\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . Let us consider the diagram
E {\displaystyle E} E × Γ {E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma} E × 𝚪 {E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\phantom{\hskip 1.00006pt,}} B {B} B × Γ {B\hskip 1.00006pt\times\hskip 1.00006pt\Gamma} B × 𝚪 , {B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.00006pt,} p \scriptstyle{\displaystyle p\phantom{\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}}} p × id \scriptstyle{\displaystyle p\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}} p × id \scriptstyle{\displaystyle p\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}}
where the left horizontal arrows are projections, and the right horizontal arrows are inclusions. The unravellings E × Γ E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma and B × Γ B\hskip 1.00006pt\times\hskip 1.00006pt\Gamma are only Δ \Delta -sets, and the arrows of this diagram are simplicial maps of Δ \Delta -sets, except of p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB and p × id : E × 𝚪 ⟶ B × 𝚪 p\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} , which are maps of simplicial sets. Clearly, this diagram is commutative. By Theorem Simplicial sets, Postnikov systems, and bounded cohomology the left horizontal arrows induce isometric isomorphisms in bounded cohomology. Therefore, it is sufficient to prove that the simplicial map q = p × id : E × Γ ⟶ B × Γ q\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma induces isometric isomorphisms in bounded cohomology. Since 𝚪 \bm{\Gamma} is contractible, the projections E × 𝚪 ⟶ E E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE and B × 𝚪 ⟶ B B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB are homotopy equivalences. In particular , these projections induce isometric isomorphisms in bounded cohomology. It follows that the right horizontal arrows
of the diagram induce isometric isomorphisms in bounded cohomology.
Clearly, the simplicial map 𝒒 = p × id : E × 𝚪 ⟶ B × 𝚪 \bm{q}\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} is a locally trivial bundle. The main part of the proof is an application of the theory developed in Section Simplicial sets, Postnikov systems, and bounded cohomology to 𝒒 \bm{q} in the role of p p . Let G = 𝒞 n − 1 ( B × 𝚪 , π ( 𝒒 ) ) G\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006pt\bm{q}\hskip 1.49994pt)\hskip 1.49994pt)
be the group of normalized
( n − 1 ) (\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochains of B × 𝚪 B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} with coefficients in the local system π ( 𝒒 ) \pi\hskip 1.49994pt(\hskip 1.00006pt\bm{q}\hskip 1.49994pt) . The group G G acts on E × 𝚪 E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} by homotopic to the identity automorphisms
over B × 𝚪 B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} . The group G G is abelian and hence is amenable.
Clearly, a simplex of E × 𝚪 E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} belongs to E × Γ E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma if and only if its image in B × 𝚪 B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} belongs to B × Γ B\hskip 1.00006pt\times\hskip 1.00006pt\Gamma . It follows that the action of G G leaves the Δ \Delta -subset E × Γ E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma invariant. Obviously, every simplex of Γ \Gamma is free in every dimension. It follows that every simplex of B × Γ B\hskip 1.00006pt\times\hskip 1.00006pt\Gamma is free in every dimension. Hence Lemma Simplicial sets, Postnikov systems, and bounded cohomology implies that E × Γ / G = B × Γ E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma/\hskip 0.50003ptG\hskip 3.99994pt=\hskip 3.99994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma and
q ∗ : B ∗ ( B × Γ ) ⟶ B ∗ ( E × Γ ) \quad q^{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.49994ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
induces isomorphism from
B ∗ ( B × Γ ) B^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
to the space G G -invariant cochains in B ∗ ( E × Γ ) B^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) . Let
q ∗ ∗ : H ^ ∗ ( B × Γ ) ⟶ H ^ ∗ ( E × Γ ) \quad q^{\hskip 0.70004pt**}\hskip 1.99997pt\colon\hskip 1.49994pt\widehat{H}^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\widehat{H}^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
be the map induced by q ∗ q^{\hskip 0.70004pt*} . Let us prove that q ∗ ∗ q^{\hskip 0.70004pt**} is surjective. Let
γ ∈ B m ( E × Γ ) \gamma\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
be a cocycle. Since
E × Γ ⟶ E × 𝚪 E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} induces isomorphisms in bounded cohomology, there exists
a cocycle
c ∈ B m ( E × 𝚪 ) c\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.49994pt)
such that the restriction of c c to
E × Γ E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma is cohomologous to γ \gamma . Since G G is amenable
and acts on E E by automorphisms homotopic to the identity, the cocycle c c is cohomologous to a G G -invariant bounded cocycle b b . See Lemma Simplicial sets, Postnikov systems, and bounded cohomology . Let β \beta be the restriction of b b to E × 𝚪 E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} . Then β \beta is cohomologous to γ \gamma
and is G G -invariant. Since β \beta is G G -invariant, β = q ∗ ( α ) \beta\hskip 3.99994pt=\hskip 3.99994ptq^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\alpha\hskip 1.49994pt) for some α ∈ B m ( B × 𝚪 ) \alpha\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.49994pt) . It follows that q ∗ ∗ q^{\hskip 0.70004pt**} is surjective.
Let us prove now that q ∗ ∗ q^{\hskip 0.70004pt**} is injective. Since G G is amenable, there exists a G G -invariant mean μ : B ( G ) ⟶ 𝐑 \mu\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} . For each m ∈ 𝐍 m\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} let us define a map
μ ∗ : B m ( E × Γ ) ⟶ B m ( B × Γ ) \quad\mu_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
as follows. Let c ∈ B m ( E × Γ ) c\hskip 1.99997pt\in\hskip 1.99997ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)
and σ \sigma is an m m -simplex of B × Γ B\hskip 1.00006pt\times\hskip 1.00006pt\Gamma . Let us choose an m m -simplex σ ′ \sigma\hskip 0.50003pt^{\prime} of E × Γ E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma
such that p ( σ ′ ) = σ p\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma and consider the function g ⟼ c ( g ⋅ σ ′ ) g\hskip 3.99994pt\longmapsto\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\sigma\hskip 0.50003pt^{\prime}\hskip 1.49994pt) on G G . Let the value of the cochain μ ∗ ( c ) \mu_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) on σ \sigma be equal to the value of μ \mu on this function. Since μ \mu is G G -invariant, this value is independent on the choice of σ ′ \sigma\hskip 0.50003pt^{\prime} . Therefore μ ∗ \mu_{\hskip 0.70004pt*} is well-defined. Clearly, the composition μ ∗ ∘ q ∗ \mu_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptq^{\hskip 0.70004pt*} is equal to the identity. Since G G acts by automorphisms, μ ∗ \mu_{\hskip 0.70004pt*} commutes with the duals ∂ i ∗ \partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*} of the face operators ∂ i \partial_{\hskip 0.70004pti} and hence with the coboundary operator ∂ ∗ \partial^{\hskip 0.70004pt*} . Hence μ ∗ \mu_{\hskip 0.70004pt*} leads to maps
μ ∗ ∗ : H ^ m ( E × Γ ) ⟶ H ^ m ( B × Γ ) . \quad\mu_{\hskip 0.70004pt**}\hskip 1.00006pt\colon\hskip 1.00006pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt.
Since the composition μ ∗ ∘ q ∗ \mu_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptq^{\hskip 0.70004pt*} is equal to the identity, the composition μ ∗ ∗ ∘ q ∗ ∗ \mu_{\hskip 0.70004pt**}\hskip 1.00006pt\circ\hskip 1.99997ptq^{\hskip 0.70004pt**} is also equal to the identity. It follows that q ∗ ∗ q^{\hskip 0.70004pt**} is injective.
We see that q ∗ ∗ q^{\hskip 0.70004pt**} is an isomorphism. It remains to prove that q ∗ ∗ q^{\hskip 0.70004pt**} is an isometric isomorphism. Since q ∗ ∗ q^{\hskip 0.70004pt**} is induced by a simplicial map, the norm of q ∗ ∗ q^{\hskip 0.70004pt**} is ⩽ 1 \leqslant\hskip 1.99997pt1 . On the other hand, the norm of μ \mu is ⩽ 1 \leqslant\hskip 1.99997pt1 and hence the norms of μ ∗ \mu_{\hskip 0.70004pt*} and μ ∗ ∗ \mu_{\hskip 0.70004pt**} are also ⩽ 1 \leqslant\hskip 1.99997pt1 . Since q ∗ ∗ q^{\hskip 0.70004pt**} is an isomorphism
and μ ∗ ∗ ∘ q ∗ ∗ \mu_{\hskip 0.70004pt**}\hskip 1.00006pt\circ\hskip 1.00006ptq^{\hskip 0.70004pt**} is the identity, μ ∗ ∗ \mu_{\hskip 0.70004pt**} is the inverse of q ∗ ∗ q^{\hskip 0.70004pt**} . So, the norms of q ∗ ∗ q^{\hskip 0.70004pt**} and of its inverse
are ⩽ 1 \leqslant\hskip 1.99997pt1 . It follows that q ∗ ∗ q^{\hskip 0.70004pt**} is an isometry. ■ \blacksquare
Remark.
One can prove that q ∗ ∗ q^{\hskip 0.70004pt**} is an isometry in a different way. Let us return to the proof of the surjectivity of q ∗ ∗ q^{\hskip 0.70004pt**} . Since
E × Γ ⟶ E × 𝚪 E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma} induces isometric isomorphisms in bounded cohomology, one can choose c c in such a way that ‖ γ ‖ ⩾ ‖ c ‖ \|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997ptc\hskip 1.99997pt\| . By Lemma Simplicial sets, Postnikov systems, and bounded cohomology one can choose b b in such a way that ‖ c ‖ ⩾ ‖ b ‖ \|\hskip 1.99997ptc\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997ptb\hskip 1.99997pt\| . Clearly, ‖ b ‖ ⩾ ‖ β ‖ \|\hskip 1.99997ptb\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997pt\beta\hskip 1.99997pt\| and ‖ β ‖ = ‖ α ‖ \|\hskip 1.99997pt\beta\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997pt\alpha\hskip 1.99997pt\| . It follows that ‖ γ ‖ ⩾ ‖ α ‖ \|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997pt\alpha\hskip 1.99997pt\| . Therefore
for every cohomology class 𝜸 ∈ H ^ m ( E × Γ ) \bm{\gamma}\hskip 1.99997pt\in\hskip 3.00003pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) there exists a cohomology class 𝜶 ∈ H ^ m ( B × Γ ) \bm{\alpha}\hskip 1.99997pt\in\hskip 3.00003pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) such that 𝜸 = q ∗ ∗ ( 𝜶 ) \bm{\gamma}\hskip 3.99994pt=\hskip 3.99994ptq^{\hskip 0.70004pt**}\hskip 1.00006pt(\hskip 1.00006pt\bm{\alpha}\hskip 1.49994pt) and ‖ 𝜶 ‖ ⩽ ‖ 𝜸 ‖ \|\hskip 1.99997pt\bm{\alpha}\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\bm{\gamma}\hskip 1.99997pt\| . Since, at the same time, ‖ q ∗ ∗ ( 𝜶 ) ‖ ⩽ ‖ 𝜶 ‖ \|\hskip 1.99997ptq^{\hskip 0.70004pt**}\hskip 1.00006pt(\hskip 1.00006pt\bm{\alpha}\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\bm{\alpha}\hskip 1.99997pt\| , the isomorphism q ∗ ∗ q^{\hskip 0.70004pt**} is an isometric isomorphism.
7.2. Theorem.
Let π \pi be a discrete group
and κ ⊂ π \kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi be a normal amenable subgroup of π \pi . Let p : π ⟶ π / κ p\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi/\kappa be the quotient homomorphism. Then B p : B π ⟶ B ( π / κ ) \mathit{B}\hskip 0.50003ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt) induces isometric isomorphism in bounded cohomology.
Proof . The proof is completely similar to the proof of Theorem Simplicial sets, Postnikov systems, and bounded cohomology , with the map
B p : B π ⟶ B ( π / κ ) \quad\mathit{B}\hskip 0.50003ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)
playing the role of p : E ⟶ B p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB . As we saw in Section Simplicial sets, Postnikov systems, and bounded cohomology , the group G = C 0 ( 𝐍 , κ ) G\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt) acts on B π × Γ \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Gamma and B π × Γ / G = B ( π / κ ) × Γ \mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 0.24994pt/\hskip 0.24994ptG\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 1.00006pt\times\hskip 1.00006pt\Gamma . See (4.3 ). While, to the best of author’s knowledge, the group
C 0 ( V , κ ) C^{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)
is not known to be amenable, the group
C 0 ( V , κ ) C_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 1.99997pt\kappa\hskip 1.49994pt)
is a direct sum
of copies of κ \kappa
and hence is amenable. Hence one can argue as in the proof of Theorem Simplicial sets, Postnikov systems, and bounded cohomology and conclude that B p \mathit{B}\hskip 0.50003ptp induces isometric isomorphism
in bounded cohomology. ■ \blacksquare
The fundamental group.
Let K K be a connected Kan simplicial set. Suppose that K K has only one vertex, which we will denote by v v . Let us interpret a 1 1 -simplex σ ∈ K 1 \sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004pt1}
as a loop based at v v . The Kan extension property implies that for every two 1 1 -simplices ρ , σ \rho\hskip 0.50003pt,\hskip 3.00003pt\sigma there exists a 2 2 -simplex ω \omega such that ρ = ∂ 2 ω \rho\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt2}\hskip 1.00006pt\omega and σ = ∂ 0 ω \sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt0}\hskip 1.00006pt\omega . One can easily check that up to homotopy τ = ∂ 1 ω \tau\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\omega does not depends on the choice of ω \omega , and, moreover , up to homotopy τ \tau depends only on the homotopy classes of σ , τ \sigma\hskip 0.50003pt,\hskip 3.00003pt\tau . One can take the homotopy class of τ \tau as the product r ⋅ s r\hskip 1.00006pt\cdot\hskip 1.00006pts of the homotopy classes r , s r\hskip 0.50003pt,\hskip 3.00003pts of ρ , σ \rho\hskip 0.50003pt,\hskip 3.00003pt\sigma respectively. The set of homotopy classes of 1 1 -simplicies together with this product is the fundamental group π 1 ( K , v ) \pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) of K K . If , in addition, K K is minimal, then every two homotopic 1 1 -simplices are equal. In this case π 1 ( K , v ) \pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) can be identified with K 1 K_{\hskip 0.70004pt1} as a set.
7.3. Lemma.
Suppose that K K is a connected minimal Kan simplicial set. Then K ( 1 ) K\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)
is canonically isomorphic to B π 1 ( K , v ) \mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) , where v v is the unique vertex of K K .
Proof . For i , j , n ∈ 𝐍 i\hskip 0.50003pt,\hskip 3.00003ptj\hskip 0.50003pt,\hskip 3.00003ptn\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} such that 0 ⩽ i < j ⩽ n 0\hskip 1.99997pt\leqslant\hskip 1.99997pti\hskip 1.99997pt<\hskip 1.99997ptj\hskip 1.99997pt\leqslant\hskip 1.99997ptn let θ i , j : [ 1 ] ⟶ [ n ] \theta_{\hskip 0.70004pti\hskip 0.35002pt,\hskip 0.70004ptj}\hskip 1.99997pt\colon\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] be the map
θ i , j : 0 ⟼ i , 1 ⟼ j . \quad\theta_{\hskip 0.70004pti\hskip 0.35002pt,\hskip 0.70004ptj}\hskip 1.00006pt\colon\hskip 1.00006pt0\hskip 3.99994pt\longmapsto\hskip 3.99994pti\hskip 1.99997pt,\quad\ 1\hskip 3.99994pt\longmapsto\hskip 3.99994ptj\hskip 3.00003pt.
Suppose that ρ 1 , ρ 2 , … , ρ n \rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn} are 1 1 -simplices of K K . If
θ i − 1 , i ∗ ( σ ) = ρ i \quad\theta^{\hskip 0.70004pt*}_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1\hskip 0.35002pt,\hskip 0.70004pti}\hskip 1.99997pt(\hskip 1.49994pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004pti}
for some n n -simplex σ \sigma of K K
and every i i between 1 1 and n n , then
θ i , j ∗ ( σ ) = ρ i ⋅ … ⋅ ρ j \quad\theta^{\hskip 0.70004pt*}_{\hskip 0.70004pti\hskip 0.35002pt,\hskip 0.70004ptj}\hskip 1.99997pt(\hskip 1.49994pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 3.99994pt\ldots\hskip 3.99994pt\cdot\hskip 1.00006pt\rho_{\hskip 0.70004ptj}
for every i < j i\hskip 1.99997pt<\hskip 1.99997ptj . This follows from the definition of the product together with an induction by j − i j\hskip 1.99997pt-\hskip 1.99997pti . In turn, this implies that the restriction of i σ i_{\hskip 0.70004pt\sigma} to sk 1 𝚫 [ n ] \operatorname{sk}_{\hskip 1.04996pt1}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] is uniquely determined by ρ 1 , ρ 2 , … , ρ n \rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn} . On the other hand, Kan extension property implies that such a simplex σ \sigma exists for every
n n -tuple ρ 1 , ρ 2 , … , ρ n \rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn} . It follows that one can identify n n -simplices of K ( 1 ) K\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt) with sequences ( ρ 1 , ρ 2 , … , ρ n ) (\hskip 1.49994pt\rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn}\hskip 1.49994pt) of elements of π 1 ( K , v ) \pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) , i.e. with n n -simplices of B π 1 ( K , v ) \mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) . A direct check shows that this identification respects the boundary and degeneracy operators. The lemma follows. ■ \blacksquare
7.4. Theorem.
Let K K be a connected Kan simplicial set and f : K ⟶ B π 1 ( K , v ) f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) , where v v is a vertex of K K , be a simplicial map inducing isomorphism of fundamental groups. Then f f induces an isomorphism in bounded cohomology.
Proof . The proof is based on the theory of Postnikov systems. See Section Simplicial sets, Postnikov systems, and bounded cohomology for a review of the definitions and the theorems used in this proof .
Let π 1 \pi_{\hskip 0.70004pt1} be the fundamental group of K K . Since B π 1 \mathit{B}\hskip 1.99997pt\pi_{\hskip 0.70004pt1} is a Kan simplicial set, every two map K ⟶ B π 1 K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.70004pt1} inducing isomorphism of the fundamental groups are homotopic. Hence it is sufficient to prove to prove the theorem for one such map. Let M M be a minimal Kan simplicial subset of K K which is a strong deformation retract of K K . Since M M is minimal and connected, M M has only one vertex, which we denote by v v . Let M ( 0 ) , M ( 1 ) , … , M ( n ) , … M\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots and the maps p n p_{\hskip 0.35002ptn} and p m , n p_{\hskip 0.35002ptm,\hskip 0.70004ptn} be the Postnikov system of M M . Then every map
p n , n − 1 : M ( n ) ⟶ M ( n − 1 ) \quad p_{\hskip 0.35002ptn,\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)
is a locally trivial bundle with the fiber K ( π n , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptn}\hskip 1.00006pt,\hskip 1.99997ptn\hskip 1.49994pt) , where π n = π n ( M , v ) \pi_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) is the n n th homotopy group of M M . If n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 , then p n , n − 1 p_{\hskip 0.35002ptn,\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1} induces isometric isomorphism in bounded cohomology. It follows that for every n > 1 n\hskip 1.99997pt>\hskip 1.99997pt1 the map
p n , 1 : M ( n ) ⟶ M ( 1 ) \quad p_{\hskip 0.35002ptn,\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)
induces isometric isomorphism in bounded cohomology. On the other hand, for n ⩾ m n\hskip 1.99997pt\geqslant\hskip 1.99997ptm the m m th skeletons of M M and M ( n ) M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)
are the same by the very definition of M ( n ) M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) . By the definition, the bounded cohomology group H ^ m ( M ) \widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.49994pt) depends only on the
( m + 1 ) (\hskip 1.00006ptm\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt) th skeleton sk m + 1 M \operatorname{sk}_{\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003ptM of M M . It follows that the map
p 1 : M ⟶ M ( 1 ) \quad p_{\hskip 0.35002pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)\hskip 3.00003pt
induces isometric isomorphism in bounded cohomology. By Lemma Simplicial sets, Postnikov systems, and bounded cohomology the simplicial set M ( 1 ) M\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)
is canonically isomorphic to B π 1 \mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1} . Moreover , the description of fundamental groups preceding Lemma Simplicial sets, Postnikov systems, and bounded cohomology shows that p 1 : M ⟶ M ( 1 ) p_{\hskip 0.35002pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt) induces isomorphism of fundamental groups. If r : K ⟶ M r\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM is a strong deformation retraction, then r r induces isomorphism of fundamental groups
and isometric isomorphism in bounded cohomology. It follows that
p 1 ∘ r : K ⟶ M ( 1 ) = B π 1 \quad p_{\hskip 0.35002pt1}\hskip 1.00006pt\circ\hskip 1.49994ptr\hskip 1.49994pt\colon\hskip 1.49994ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}
also has this property. This proves the theorem for f = p 1 ∘ r f\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.35002pt1}\hskip 1.00006pt\circ\hskip 1.49994ptr . As was pointed out above, any special case of the theorem implies the general one. This completes the proof . ■ \blacksquare
7.5. Corollary.
Let K , L K\hskip 0.50003pt,\hskip 3.00003ptL be connected Kan simplicial sets. If f : K ⟶ L f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL is a simplicial map
inducing isomorphism of fundamental groups, then f f induces isomorphism in bounded cohomology. ■ \blacksquare
7.6. Theorem.
Let K , L K\hskip 0.50003pt,\hskip 3.00003ptL be connected Kan simplicial sets
and let v v be a vertex of K K . Let f : K ⟶ L f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL be a simplicial map. If f ∗ : π 1 ( K , v ) ⟶ π 1 ( L , f ( v ) ) f_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptL\hskip 0.50003pt,\hskip 1.99997ptf\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.49994pt) is surjective and has amenable kernel, then f f induces an isometric isomorphism in bounded cohomology.
Proof . In order not to clutter the notations, we will not mention the base points v , f ( v ) v\hskip 0.50003pt,\hskip 3.00003ptf\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt) anymore. Let us consider the diagram
K {\displaystyle K} L {L} B π 1 ( K ) {\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)} B π 1 ( L ) , {\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptL\hskip 1.49994pt)\hskip 1.00006pt,} f \scriptstyle{\displaystyle f\hskip 1.00006pt} p K \scriptstyle{\displaystyle p_{\hskip 1.04996ptK}\hskip 1.00006pt} p L \scriptstyle{\displaystyle\hskip 1.00006ptp_{\hskip 1.04996ptL}} B f ∗ \scriptstyle{\displaystyle\mathit{B}\hskip 0.50003ptf_{\hskip 0.70004pt*}}
where p K , p L p_{\hskip 1.04996ptK}\hskip 1.00006pt,\hskip 3.00003ptp_{\hskip 1.04996ptL} are some maps inducing isomorphisms of fundamental groups. By Theorem Simplicial sets, Postnikov systems, and bounded cohomology the map B f ∗ \mathit{B}\hskip 0.50003ptf_{\hskip 0.70004pt*} induces isometric isomorphism in bounded cohomology. By Theorem Simplicial sets, Postnikov systems, and bounded cohomology the maps p K , p L p_{\hskip 1.04996ptK}\hskip 1.00006pt,\hskip 3.00003ptp_{\hskip 1.04996ptL} induce isometric isomorphisms in bounded cohomology. Since the above diagram is commutative up to homotopy, it follows that f f induces isometric isomorphism in bounded cohomology. ■ \blacksquare
A .1. The constructions of Milnor and Segal
A . 1.1. Lemma.
The Δ \Delta -set ℬ π \mathcal{B}\hskip 1.00006pt\pi is canonically isomorphic to the product B π × Δ [ ∞ ] \mathit{B}\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] .
Proof . To begin with, we will give an explicit description of simplices of ℬ π \mathcal{B}\hskip 1.00006pt\pi . The n n -simplices of ℰ π \mathcal{E}\hskip 1.00006pt\pi can be identified with pairs of sequences
( g 0 , g 1 , … , g n ) ∈ π n + 1 , ( k 0 , k 1 , … , k n ) ∈ 𝐍 n + 1 , \quad(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\pi^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt,\quad(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{N}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt,
such that k 0 < k 1 < … < k n k_{\hskip 1.04996pt0}\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004pt1}\hskip 1.99997pt<\hskip 1.99997pt\ldots\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004ptn} , and g ∈ π g\hskip 1.99997pt\in\hskip 1.99997pt\pi acts by the rules
g ⋅ ( g 0 , g 1 , … , g n ) = ( g g 0 , g g 1 , … , g g n ) and \quad g\hskip 1.00006pt\cdot\hskip 1.49994pt(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptg\hskip 1.00006ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg\hskip 1.00006ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\quad\ \mbox{and}\quad\
g ⋅ ( k 0 , k 1 , … , k n ) = ( k 0 , k 1 , … , k n ) . \quad g\hskip 1.00006pt\cdot\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.
In order to give a direct description of simplices
of ℬ π \mathcal{B}\hskip 1.00006pt\pi , let us set
use the bar notations
g 0 [ g 1 ∣ g 2 ∣ … ∣ g n ] = ( g 0 , g 0 g 1 , … , g 0 g 1 … g n ) . \quad g_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 1.04996pt0}\hskip 1.00006ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 1.04996pt0}\hskip 1.00006ptg_{\hskip 0.70004pt1}\hskip 1.00006pt\ldots\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.
In these notations the action of π \pi takes the form
g ⋅ ( g 0 [ g 1 ∣ g 2 ∣ … ∣ g n ] ) = g g 0 [ g 1 ∣ g 2 ∣ … ∣ g n ] . \quad g\hskip 1.00006pt\cdot\hskip 1.49994pt\left(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptg\hskip 1.00006ptg_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.00003pt.
Therefore n n -simplices of ℬ π \mathcal{B}\hskip 1.00006pt\pi can be identified with pairs of sequences
[ g 1 ∣ g 2 ∣ … ∣ g n ] ∈ π n , ( k 0 , k 1 , … , k n ) ∈ 𝐍 n + 1 , \quad[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 1.99997pt\in\hskip 1.99997pt\pi^{\hskip 0.70004ptn}\hskip 1.00006pt,\quad(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{N}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt,
such that k 0 < k 1 < … < k n k_{\hskip 1.04996pt0}\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004pt1}\hskip 1.99997pt<\hskip 1.99997pt\ldots\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004ptn} .
The boundary operators act independently on these sequences. Namely, the action of the boundary operator ∂ i \partial_{\hskip 0.70004pti} on the sequences ( k 0 , k 1 , … , k n ) (\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt) is the same as in Δ [ ∞ ] \Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] , and the action on the sequences [ g 1 ∣ g 2 ∣ … ∣ g n ] [\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt] is given by the rules
∂ 0 [ g 1 ∣ g 2 ∣ … ∣ g n ] = [ g 2 ∣ g 3 ∣ … ∣ g n ] , \quad\partial_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.49994ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt3}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 1.99997pt,
∂ n [ g 1 ∣ g 2 ∣ … ∣ g n ] = [ g 1 ∣ g 2 ∣ … ∣ g n − 1 ] , and \quad\partial_{\hskip 0.70004ptn}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt]\hskip 1.99997pt,\quad\mbox{and}\hskip 3.00003pt
∂ i [ g 1 ∣ g 2 ∣ … ∣ g n ] = [ g 1 ∣ … ∣ g i g i + 1 ∣ … ∣ g n ] for 0 < i < n . \quad\partial_{\hskip 0.70004pti}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid g_{\hskip 0.70004pti}\hskip 1.00006ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\quad\mbox{for}\quad 0\hskip 1.99997pt<\hskip 1.99997pti\hskip 1.99997pt<\hskip 1.99997ptn\hskip 3.00003pt.
This differs from the definition of ∂ i \partial_{\hskip 0.70004pti} for
B π \mathit{B}\hskip 1.49994pt\pi only in notations ( the product g i g i + 1 g_{\hskip 0.70004pti}\hskip 1.00006ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}
is interpreted as the composition g i + 1 ∘ g i g_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptg_{\hskip 0.70004pti} ). It follows that ℬ π = B π × Δ [ ∞ ] \mathcal{B}\hskip 1.00006pt\pi\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] . ■ \blacksquare
Unravelings of classifying spaces of categories.
For a category 𝒞 \mathcal{C} let 𝒞 𝒏 \mathcal{C}_{\hskip 0.70004pt\bm{n}} be the subcategory of 𝒞 × 𝒏 \mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\bm{n} obtained by deleting all morphisms of the form ( c , n ) ⟶ ( c ′ , n ) (\hskip 1.00006ptc\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt(\hskip 1.00006ptc^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) where c , c ′ c\hskip 0.50003pt,\hskip 3.00003ptc^{\prime} are objects of 𝒞 \mathcal{C} and
n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} , except identity morphisms. This construction is due to Segal [S ] , who called 𝒞 𝒏 \mathcal{C}_{\hskip 0.70004pt\bm{n}} the unraveling of 𝒞 \mathcal{C} over the ordered set 𝐍 \mathbf{N} and pointed out that for a group π \pi the geometric realizations of ℬ π \mathcal{B}\hskip 1.00006pt\pi and B π 𝒏 \mathit{B}\hskip 1.49994pt\pi_{\hskip 0.70004pt\bm{n}} are homeomorphic.
This result can be interpreted in terms
of simplicial sets and extended to arbitrary categories. Namely, Lemma Simplicial sets, Postnikov systems, and bounded cohomology suggests that the Δ \Delta -set ℬ 𝒞 = B 𝒞 × Δ [ ∞ ] \mathcal{B}\hskip 0.50003pt\mathcal{C}\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] is an analogue of ℬ π \mathcal{B}\hskip 1.00006pt\pi . In contrast with the case groups, in general ℬ 𝒞 \mathcal{B}\hskip 0.50003pt\mathcal{C} is not arising from a simplicial complex. It turns out that the simplicial set 𝚫 ℬ 𝒞 \bm{\Delta}\hskip 1.00006pt\mathcal{B}\hskip 0.50003pt\mathcal{C} is isomorphic to B 𝒞 𝒏 \mathit{B}\hskip 1.49994pt\mathcal{C}_{\hskip 0.70004pt\bm{n}} . Before proving this, it is convenient to introduce the notion of the core of a simplicial set.
The core of a simplicial set.
Following Rourke and Sanderson [RS ] , let us define the core of a simplicial set K K as the Δ \Delta -subset core ( K ) \operatorname{core}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt) of K K consisting of simplices of the form
θ ∗ ( σ ) \theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)
with non-degenerate σ \sigma and strictly increasing θ \theta . The simplicial set K K is said to have non-degenerate core if non-degenerate simplices of K K
form a Δ \Delta -subset of K K . Clearly, this Δ \Delta -subset is equal to core ( K ) \operatorname{core}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt) . There is a canonical simplicial map
Θ : 𝚫 core ( K ) ⟶ K \Theta\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\operatorname{core}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK defined by Θ ( σ , ρ ) = ρ ∗ ( σ ) \Theta\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) .
A . 1.2. Lemma.
If K K has non-degenerate core, then Θ \Theta is an isomorphism.
Proof . Every simplex σ \sigma of a simplicial set admits a unique presentation σ = θ ∗ ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) with non-degenerate τ \tau and surjective θ \theta . See Lemma Simplicial sets, Postnikov systems, and bounded cohomology . This implies that Θ \Theta is surjective. If K K has non-degenerate core and Θ ( σ 1 , ρ 1 ) = Θ ( σ 2 , ρ 2 ) \Theta\hskip 1.49994pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Theta\hskip 1.49994pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt2}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt2}\hskip 1.49994pt) , then ρ 1 ∗ ( σ 1 ) = ρ 2 ∗ ( σ 2 ) \rho_{\hskip 0.70004pt1}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004pt2}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt2}\hskip 1.49994pt) and σ 1 , σ 2 \sigma_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\sigma_{\hskip 0.70004pt2} are non-degenerate. Therefore the uniqueness part of Lemma Simplicial sets, Postnikov systems, and bounded cohomology implies that ( σ 1 , ρ 1 ) = ( σ 2 , ρ 2 ) (\hskip 1.00006pt\sigma_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt2}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt2}\hskip 1.49994pt) . ■ \blacksquare
A . 1.3. Theorem.
The simplicial set 𝚫 ℬ 𝒞 \bm{\Delta}\hskip 1.00006pt\mathcal{B}\hskip 0.50003pt\mathcal{C} is isomorphic to B 𝒞 𝐧 \mathit{B}\hskip 1.49994pt\mathcal{C}_{\hskip 0.70004pt\bm{n}} .
Proof . By restricting the projection 𝒞 × 𝒏 ⟶ 𝒏 \mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{n} to the subcategory 𝒞 𝒏 \mathcal{C}_{\hskip 0.70004pt\bm{n}} we get a functor p : 𝒞 𝒏 ⟶ 𝒏 p\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{n} . This functor induces a simplicial map
B p : B 𝒞 𝒏 ⟶ B 𝒏 = 𝚫 [ ∞ ] . \quad\mathit{B}\hskip 1.00006ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.00006pt\bm{n}\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.00003pt.
By the definition of the category 𝒞 𝒏 \mathcal{C}_{\hskip 0.70004pt\bm{n}} a morphism f f of this category is an identity morphism if and only if p ( f ) p\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt) is an identity morphism. It follows that a simplex σ \sigma of B 𝒞 𝒏 \mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}} is non-degenerate if and only if B p ( σ ) \mathit{B}\hskip 1.00006ptp\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.00006pt) is non-degenerate. This implies that
core ( B 𝒞 𝒏 ) = B 𝒞 × core 𝚫 [ ∞ ] = B 𝒞 × Δ [ ∞ ] = ℬ 𝒞 , \quad\operatorname{core}\hskip 1.49994pt(\hskip 1.49994pt\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{core}\hskip 1.49994pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 0.50003pt\mathcal{C},
where B 𝒞 \mathit{B}\hskip 1.99997pt\mathcal{C} is considered as a Δ \Delta -set. Also, since 𝚫 [ ∞ ] \bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] has non-degenerate core, this implies that B 𝒞 𝒏 \mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}
has non-degenerate core. Therefore B 𝒞 𝒏 = 𝚫 core ( B 𝒞 𝒏 ) = 𝚫 ℬ 𝒞 \mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\operatorname{core}\hskip 1.49994pt(\hskip 1.49994pt\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt\mathcal{B}\hskip 0.50003pt\mathcal{C} . ■ \blacksquare
A .2. Few technical lemmas
A . 2.1. Lemma.
If the averaging maps m n m_{\hskip 0.70004ptn} , n ∈ 𝐍 n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} form a coherent family, then m ∗ m_{\hskip 0.70004pt*} is a cochain map.
Proof . For an n n -cochain f ∈ B n ( K × Γ ) f\hskip 1.99997pt\in\hskip 1.99997ptB^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) and an n n -simplex σ ∈ K n \sigma\hskip 1.99997pt\in\hskip 1.99997ptK_{\hskip 0.70004ptn} let f σ : Γ n ⟶ 𝐑 f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\Gamma_{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} be defined by f σ ( τ ) = f ( σ , τ ) f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt) . Then m ∗ ( f ) ( σ ) = m n ( f σ ) m_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt) .
Suppose that f ∈ B n ( K × Γ ) f\hskip 1.99997pt\in\hskip 1.99997ptB^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) and ρ ∈ K n + 1 \rho\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1} . Then
∂ ∗ ( m ∗ ( f ) ) ( ρ ) = ∑ i = 0 n + 1 ( − 1 ) i m ∗ ( f ) ( ∂ i ρ ) \quad\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\rho\hskip 1.49994pt\right)
= ∑ i = 0 n + 1 ( − 1 ) i m n ( f ∂ i ρ ) \quad\phantom{\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)
= ∑ i = 0 n + 1 ( − 1 ) i m n + 1 ( ∂ i ∗ ( f ∂ i ρ ) ) \quad\phantom{\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.49994pt\right)\hskip 3.00003pt
because m n = m n + 1 ∘ ∂ i m_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\partial_{\hskip 0.70004pti} . If τ ∈ Γ n + 1 \tau\hskip 1.99997pt\in\hskip 1.99997pt\Gamma_{n\hskip 0.70004pt+\hskip 0.70004pt1} , then
∂ i ∗ ( f ∂ i ρ ) ( τ ) = f ( ∂ i ρ , ∂ i τ ) \quad\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\rho\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.49994pt\right)
= f ( ∂ i ( ρ , τ ) ) \quad\phantom{\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptf\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.49994pt)\hskip 1.49994pt\right)
= ∂ i ∗ ( f ) ( ρ , τ ) = ∂ i ∗ ( f ) ρ ( τ ) \quad\phantom{\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)
It follows that ∂ i ∗ ( f ∂ i ρ ) = ∂ i ∗ ( f ) ρ \partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho} and hence
∂ ∗ ( m ∗ ( f ) ) ( ρ ) = ∑ i = 0 n ( − 1 ) i m n + 1 ( ∂ i ∗ ( f ) ρ ) . \quad\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pti\hskip 1.39998pt=\hskip 1.39998pt0}^{\hskip 1.39998ptn}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 3.00003pt.
Since the maps m n + 1 m_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1} and h ⟼ h ρ h\hskip 3.99994pt\longmapsto\hskip 3.99994pth_{\hskip 1.04996pt\rho} are linear , it follows that
∂ ∗ ( m ∗ ( f ) ) ( ρ ) = m n + 1 ( ∑ i = 0 n + 1 ( − 1 ) i ∂ i ∗ ( f ) ρ ) \quad\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 3.00003pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}\hskip 1.99997pt\right)
= m n + 1 ( ∂ ∗ f ) ( ρ ) \quad\phantom{\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}f\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)
and hence ∂ ∗ ( m ∗ ( f ) ) = m ∗ ( ∂ ∗ f ) \partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.49994pt\right) . ■ \blacksquare
A . 2.2. Lemma.
Suppose that n ⩾ 1 n\hskip 1.99997pt\geqslant\hskip 1.99997pt1 . A normalized n n -cochain c : π ⟶ π c\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi of K ( π , n ) K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) is a cocycle if and only if c c is a homomorphism π ⟶ π \pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi .
Proof . An n n -cochain u u of 𝚫 n + 1 \bm{\Delta}^{n\hskip 0.70004pt+\hskip 0.70004pt1} is determined by its values u i = u ( ∂ i 𝜾 n + 1 ) u_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt) on the non-degenerate n n -simplices of 𝚫 n + 1 \bm{\Delta}^{n\hskip 0.70004pt+\hskip 0.70004pt1} . Therefore, one can identify u u with the
( n + 2 ) (\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt) -tuple
( u 0 , u 1 , … , u n + 1 ) \quad(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.00003pt
of elements of π \pi . The boundary operators ∂ i \partial_{\hskip 0.70004pti} are given by the restrictions to faces, i.e.
∂ i ( u 0 , u 1 , … , u n + 1 ) = u i \quad\partial_{\hskip 0.70004pti}\hskip 1.49994pt(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu_{\hskip 0.70004pti}
Suppose that π \pi is abelian. Then u u is cocycle, i.e. belongs to K ( π , n ) n + 1 K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1} , if and only if
∑ i = 0 n + 1 ( − 1 ) i u i = 0 . \quad\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997ptu_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.
An n n -cochain c : π ⟶ π c\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi is a cocycle if and only if ∂ ∗ c ( u ) = 0 \partial^{\hskip 0.70004pt*}\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 for every simplex u ∈ K ( π , n ) n + 1 u\hskip 1.99997pt\in\hskip 3.00003ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1} , i.e. if and only if the last equality implies
∑ i = 0 n + 1 ( − 1 ) i c ( u i ) = 0 \quad\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0
for every ( n + 2 ) (\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt) -tuple u u . Clearly, this is the case when c c is a homomorphism. Conversely, if c c is a cocycle, then the last equality for the
( n + 2 ) (\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt) -tuples
( u 0 , u 1 , … , u n + 1 ) = ( v , v + w , w , 0 , … , 0 ) , \quad(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptv\hskip 1.00006pt,\hskip 3.99994ptv\hskip 1.99997pt+\hskip 1.99997ptw\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.00006pt,\hskip 3.99994pt0\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt0\hskip 1.49994pt)\hskip 3.00003pt,
where v , w ∈ π v\hskip 0.50003pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997pt\pi , together with the fact that c ( 0 ) = 0 c\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0 implies that
c ( v ) − c ( v + w ) + c ( w ) = 0 \quad c\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.99997pt+\hskip 1.99997ptw\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0
for every v , w ∈ π v\hskip 0.50003pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997pt\pi . This proves that c c is a homomorphism when π \pi is abelian.
If π \pi is not abelian, then n = 1 n\hskip 3.99994pt=\hskip 3.99994pt1 and a triple u = ( u 0 , u 1 , u 2 ) u\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.00003ptu_{\hskip 1.04996pt2}\hskip 1.49994pt) is a cocycle if and only if u 1 = u 2 ⋅ u 0 u_{\hskip 1.04996pt1}\hskip 3.99994pt=\hskip 3.99994ptu_{\hskip 1.04996pt2}\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 1.04996pt0} . It follows that c c is a cocycle if and only if c ( u 2 ⋅ u 0 ) = c ( u 2 ) ⋅ c ( u 0 ) c\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 1.04996pt2}\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 1.04996pt0}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 1.04996pt2}\hskip 1.00006pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 1.04996pt0}\hskip 1.00006pt)
for every pair u 2 , u 0 ∈ π u_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.00003ptu_{\hskip 1.04996pt0}\hskip 1.99997pt\in\hskip 1.99997pt\pi , i.e. if and only if c c is a homomorphism. In addition, we see that when n = 1 n\hskip 3.99994pt=\hskip 3.99994pt1 , every cocycle is automatically normalized. ■ \blacksquare
A . 2.3. Lemma.
Suppose that K K is a simplicial set and G G is an amenable group acting on K K on the left by automorphisms homotopic to the identity. Then every bounded cocycle c c of K K is boundedly cohomologous to a G G -invariant bounded cocycle
with the norm ⩽ ‖ c ‖ \leqslant\hskip 1.99997pt\|\hskip 1.99997ptc\hskip 1.99997pt\| .
Proof . We will denote the action by ( g , σ ) ⟼ g ⋅ σ (\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997pt\sigma\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\sigma , where g ∈ G g\hskip 1.99997pt\in\hskip 1.99997ptG and σ \sigma is a simplex of K K . Let B ( G ) B\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt) be the space of bounded real-valued functions on G G . For g ∈ G g\hskip 1.99997pt\in\hskip 1.99997ptG and f ∈ B ( G ) f\hskip 1.99997pt\in\hskip 3.00003ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt) let g ⋅ f g\hskip 1.00006pt\cdot\hskip 1.00006ptf be the function h ⟼ f ( h g ) h\hskip 3.99994pt\longmapsto\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.49994pthg\hskip 1.49994pt) . This defines an action of G G on B ( G ) B\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt) .
Since G G is amenable, there exists a G G -invariant mean on B ( G ) B\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt) , i.e. a linear functional μ : B ( G ) ⟶ 𝐑 \mu\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R} such that the norm of μ \mu is ⩽ 1 \leqslant\hskip 1.99997pt1 , μ \mu takes a constant function to its value, and μ ( g ⋅ f ) = μ ( f ) \mu\hskip 1.00006pt(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) for every g ∈ G g\hskip 1.99997pt\in\hskip 1.99997ptG and f ∈ B ( G ) f\hskip 1.99997pt\in\hskip 3.00003ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt) .
For g ∈ G g\hskip 1.99997pt\in\hskip 1.99997ptG let a ( g ) : K ⟶ K a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK be the automorphism defined by g g . Since a ( g ) a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt) is homotopic to the identity, there exists a cochain homotopy between a ( g ) ∗ : B ∗ ( K ) ⟶ B ∗ ( K ) a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) and the identity. In other words, for each m > 0 m\hskip 1.99997pt>\hskip 1.99997pt0 a homomorphism
k m ( g ) : B m ( K ) ⟶ B m − 1 ( K ) \quad k_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002ptm\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)
is defined, and
a ( g ) ∗ ( c ) − c = k m + 1 ( g ) ∘ ∂ ∗ ( c ) + ∂ ∗ ∘ k m ( g ) ( c ) \quad a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 0.50003pt\circ\hskip 1.00006pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt+\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\circ\hskip 1.00006ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)
for every c ∈ B m ( K ) c\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) . Suppose that c c is a cocycle. Then this identity simplifies to
a ( g ) ∗ ( c ) − c = ∂ ∗ ∘ k m ( g ) ( c ) . \quad a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\circ\hskip 1.00006ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.00003pt.
By applying this equality to an m m -simplex σ \sigma of K K using the definition of ∂ ∗ \partial^{\hskip 0.70004pt*} , we get
(7.1)
a ( g ) ∗ ( c ) ( σ ) − c ( σ ) = k m ( g ) ( c ) ( ∂ σ ) . \quad a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.49994pt\partial\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt.
We would like to consider all terms of this equality as functions of g g and apply μ \mu to them.
To begin with, let γ ( σ ) \gamma\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) be the result of applying μ \mu to the function
g ⟼ a ( g ) ∗ ( c ) ( σ ) = c ( g ⋅ σ ) . \quad g\hskip 3.99994pt\longmapsto\hskip 3.99994pta\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt.
The map γ : σ ⟼ γ ( σ ) \gamma\hskip 1.00006pt\colon\hskip 1.00006pt\sigma\hskip 3.99994pt\longmapsto\hskip 3.99994pt\gamma\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) is a bounded m m -cochain of K K and ‖ γ ‖ ⩽ ‖ c ‖ \|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt\|\hskip 1.99997ptc\hskip 1.99997pt\| . Since μ \mu is G G -invariant, γ \gamma is also G G -invariant. Next, the result of applying μ \mu to the constant map g ⟼ c ( σ ) g\hskip 3.99994pt\longmapsto\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) is c ( σ ) c\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) . Let τ \tau be an ( m − 1 ) (\hskip 1.00006ptm\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -simplex
of K K and consider the function
g ⟼ k m ( g ) ( c ) ( τ ) . \quad g\hskip 3.99994pt\longmapsto\hskip 3.99994ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.00003pt.
Let κ m ( c ) ( τ ) ∈ 𝐑 \kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R} be the result of applying μ \mu to this function. The map
κ m ( c ) : τ ⟼ κ m ( c ) ( τ ) \quad\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\tau\hskip 3.99994pt\longmapsto\hskip 3.99994pt\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\tau\hskip 1.49994pt)
is a bounded ( m − 1 ) (\hskip 1.00006ptm\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt) -cochain of K K . i.e. κ m ( c ) ∈ B m − 1 ( K ) \kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) . In terms of γ \gamma and κ m ( c ) \kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) the result of applying μ \mu to (7.1 ) can be written as follows :
γ ( σ ) − c ( σ ) = κ m ( c ) ( ∂ σ ) . \quad\gamma\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.49994pt\partial\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt.
Therefore γ − c = ∂ ∗ κ m ( c ) \gamma\hskip 1.99997pt-\hskip 1.99997ptc\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\hskip 0.50003pt\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) . The lemma follows. ■ \blacksquare
A . 2.4. Lemma.
Every n n -simplex σ \sigma of a simplicial set K K admits a unique presentation of the form σ = θ ∗ ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) with a surjective non-decreasing map θ \theta and a non-degenerate simplex τ \tau .
Proof . This is a well known lemma of Eilenberg and Zilber [E Z ] . See [E Z ] , (8.3).
Let us choose among all presentations σ = θ ∗ ( τ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) with surjective θ : [ n ] ⟶ [ m ] \theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptm\hskip 1.00006pt] and an m m -simplex τ \tau some presentation with minimal possible m m . Clearly, the minimality of m m implies that τ \tau is non-degenerate. This proves the existence. Suppose that also σ = η ∗ ( ρ ) \sigma\hskip 3.99994pt=\hskip 3.99994pt\eta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt) , where η : [ n ] ⟶ [ k ] \eta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptk\hskip 1.00006pt] is surjective and ρ \rho is a k k -simplex. Since θ , η \theta\hskip 0.50003pt,\hskip 3.00003pt\eta are surjective non-decreasing maps, there exist strictly increasing maps α : [ m ] ⟶ [ n ] \alpha\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] and β : [ k ] ⟶ [ n ] \beta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.50003ptk\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] such that θ ∘ α \theta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha and η ∘ β \eta\hskip 1.00006pt\circ\hskip 1.00006pt\beta are the identity maps. Then
( η ∘ α ) ∗ ( ρ ) = α ∗ ( η ∗ ( ρ ) ) = α ∗ ( θ ∗ ( τ ) ) = ( θ ∘ α ) ∗ ( τ ) = τ . \quad(\hskip 1.49994pt\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.49994pt)^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\alpha^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994pt\eta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt\alpha^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.49994pt)^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\tau\hskip 3.00003pt.
Similarly, ( θ ∘ β ) ∗ ( τ ) = ρ (\hskip 1.49994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\beta\hskip 1.49994pt)^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho . Since τ \tau and ρ \rho are both non-degenerate, both η ∘ α \eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha and θ ∘ β \theta\hskip 1.00006pt\circ\hskip 1.00006pt\beta are strictly injective. It follows that m = k m\hskip 3.99994pt=\hskip 3.99994ptk and both η ∘ α \eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha and θ ∘ β \theta\hskip 1.00006pt\circ\hskip 1.00006pt\beta are equal to the identity. In turn, this implies that τ = ρ \tau\hskip 3.99994pt=\hskip 3.99994pt\rho . Suppose that θ ( i ) ≠ η ( i ) \theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.99994pt\neq\hskip 3.99994pt\eta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt) for some i ∈ [ n ] i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] . One can choose the map α \alpha in such a way that α ( θ ( i ) ) = i \alpha\hskip 1.00006pt(\hskip 1.49994pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti . Then
( η ∘ α ) ( θ ( i ) ) = η ∘ α ∘ θ ( i ) = η ( i ) ≠ θ ( i ) , \quad(\hskip 1.49994pt\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.49994pt)\hskip 1.49994pt\bigl{(}\hskip 1.49994pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.00006pt\circ\hskip 1.00006pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\eta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.99994pt\neq\hskip 3.99994pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.00003pt,
contrary to η ∘ α \eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha being equal to the identity. Hence θ = η \theta\hskip 3.99994pt=\hskip 3.99994pt\eta . The uniqueness follows. ■ \blacksquare
References
[E]
S. Eilenberg, Singular homology theory, Annals of Mathematics , V. 45, No. 3 (1944), 407 – 447.
[E M 1 E{\hskip 0.50003pt}M_{\hskip 0.35002pt1} ]
S. Eilenberg, S. MacLane, Relations between homology and homotopy groups of spaces, Annals of Mathematics , V. 46, No. 3 (1945), 480 – 509.
[E M 2 E{\hskip 0.50003pt}M_{\hskip 0.35002pt2} ]
S. Eilenberg, S. MacLane, Relations between homology and homotopy groups of spaces. II, Annals of Mathematics , V. 51, No. 3 (1950), 514 – 533.
[E M 3 E{\hskip 0.50003pt}M_{\hskip 0.35002pt3} ]
S. Eilenberg, S. MacLane, On the groups H ( Π , n ) H\hskip 1.00006pt(\hskip 1.49994pt\Pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) , III, Annals of Mathematics , V. 60, No. 3 (1954), 513 – 557.
[E Z]
S. Eilenberg, J. Zilber , Semi-simplicial complexes and singular homology, Annals of Mathematics , V. 51, No. 3 (1950), 499 – 513.
[F M]
R. Frigerio, M. Moraschini, Gromov’s theory of multicomplexes with applications to
bounded cohomology and simplicial volume, 2018, 150 pp. ArXiv : 1808.07307v3.
[G Z]
P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag New York Inc., 1967, x, 168 pp.
[G J]
P.G. Goerss, J.F. Jardine, Simplicial homotopy theory , Springer , 1999, xv, 510 pp.
[Gr ]
M. Gromov, Volume and bounded cohomology, Publ. Mathematiques IHES , V. 56, (1982), pp. 5 – 99.
[I 1 I_{\hskip 0.35002pt1} ]
N.V. Ivanov, Foundations of the bounded cohomology theory, Research in topology, 5, Notes of LOMI scientific seminars , V. 143 (1985), pp. 69 – 109. English translation : J. Soviet Math., V. 37 (1987), pp. 1090 – 1114.
[I 2 I_{\hskip 0.35002pt2} ]
N.V. Ivanov, Notes on the bounded cohomology theory, 2017, 94 pp.
ArXiv : 1708.05150.
[Ma]
J.P. May , Simplicial objects in algebraic topology , The University of Chicago Press, Chicago and London, 1967, viii, 161 pp.
[Mi ]
J.W. Milnor , Construction of universal bundles, II, Annals of Mathematics , V. 63, No. 3 (1956), pp. 430 – 436.
[Mo]
J.C. Moore, Semi-simplicial complexes and Postnikov systems, 1958 Symposium internacional de topología algebraica , Universidad Nacional Autónoma de México and UNESCO, Mexico City, pp. 232 – 247.
[P 1 P_{\hskip 0.35002pt1} ]
M.M. Postnikov, Determination of the homology groups of a space by means of the homotopy invariants, Doklady Akad. Nauk SSSR, V. 76, No. 8 (1951), pp. 359 – 362.
[P 2 P_{\hskip 0.35002pt2} ]
M.M. Postnikov, Investigations in homotopy theory of continuous mappings, Trudy Mat. Inst. Steklov, V. 46, Izdat. Akad. Nauk SSSR, Moscow, 1955. 158 pp. English translation : Investigations in the homotopy theory of continuous mappings. I. The algebraic theory of systems. II. The natural system and homotopy type.
American Mathematical Society Translations – Series 2, V. 7, 1957, pp. 1 – 134.
[R]
W. Rudin, Functional analysis , McGraw-Hill, New York, 1973, xiii, 397 pp.
[RS]
C.P. Rourke, B.J. Sanderson, Δ \Delta -sets I : Homotopy theory, The Quarterly Journal of Mathematics. Oxford. Second Series , V. 22, No. 3 (1971), pp. 321 – 338.
[S]
G. Segal, Classifying spaces and spectral sequences, Publicationes Mathematiques IHES , V. 34, (1968), pp. 105 – 112.
October 10, 2020
https ://nikolaivivanov.com
E-mail : nikolai.v.ivanov @ icloud.com