This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

footnotetext: ©   Nikolai  V.  Ivanov,   2020.  Neither  the work reported  in  the present paper ,  nor  its preparation were supported  by  any corporate entity.

Simplicial  sets,   Postnikov  systems,
and  bounded  cohomology

Nikolai  V.  Ivanov

Contents
A.1.   Introduction 2  
A.2.   Simplicial  sets and Δ\Delta-sets 5  
A.3.   Postnikov  systems  and  minimality 9  
A.4.   Classifying  spaces of  categories and  groups 11  
A.5.   Bundles  with  Eilenberg–MacLane  fibers 14  
A.6.   Unraveling  simplicial  sets 22  
A.7.   Isometric  isomorphisms  in  bounded cohomology 28  
Appendices     
A.A.1.   The constructions of  Milnor  and  Segal 33  
A.A.2.   Few  technical  lemmas 35  
References   39

1. Introduction

Bounded cohomology  of  topological  spaces.   The bounded cohomology  groups  H^(X)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt) of  a  topological  space  XX  were  introduced  by  Gromov  [Gr].   The definition of  H^(X)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt) is  almost  the same as  the definition of  the singular cohomology  H(X,𝐑)H^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt) of  XX  with  real  coefficients.   Namely,   in order  to define  H^(X)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt)  one needs only  to replace arbitrary  singular nn-cochains by  singular nn-cochains which are  bounded as real-valued  functions on  the set  of  singular nn-simplices.   The effect  of  this change  is  rather dramatic.   It  turns out  that  H^(X)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt) depends only  on  the fundamental  group of  XX,   or ,   what  is  the same,  H^(X)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt) does not  depend on  the higher  homotopy  groups of  XX.   At  the same  time H^(X)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptX\hskip 1.49994pt) carries an additional  structure,  a canonical  semi-norm,   and  this semi-norm  is  the  raison  d’être  of  the  theory.

Gromov’s  exposition  [Gr]  of  the bounded cohomology  theory  is  rather cryptic.   For more  than  three decades  the only  available detailed  proofs of  the main  results of  the bounded cohomology  theory  were author’s  proofs  [I1I_{\hskip 0.35002pt1}],   under a  technical  assumption  removed  in  [I2I_{\hskip 0.35002pt2}].   Only  recently  R.  Frigerio  and  M.  Moraschini  [F M]  reconstructed  Gromov’s  proofs and  provided a detailed  exposition of  the  theory  following  Gromov’s  outline.

Simplicial  sets and  Postnikov  systems.   The modern singular  homology and cohomology  theory  was created  by  S.  Eilenberg  in  his paper  [E].   Later on  Eilenberg,   in collaboration  with  S.  MacLane  and  J.  Zilber,   undertook a detailed analysis of  this  theory.   In  particular ,   Eilenberg  and  MacLane  [EM1E{\hskip 0.50003pt}M_{\hskip 0.35002pt1}],  [EM2E{\hskip 0.50003pt}M_{\hskip 0.35002pt2}]  studied  the influence of  the homotopy  groups of  spaces on  their  homology  and cohomology  groups.   The second  paper  [EM2E{\hskip 0.50003pt}M_{\hskip 0.35002pt2}]  in  this series relied  on  the notion of  complete semi-simplicial  complexes  just  introduced  by  Eilenberg  and  Zilber  [E Z].   Nowadays  complete semi-simplicial  complexes are known as  simplicial  sets.

The problem of  influence of  homotopy  groups on  homology  and cohomology  groups was addressed  by  Eilenberg  and  MacLane  only  in  fairly  special  cases.   Their  results were subsumed  by  the  theory of  natural  systems  of  M.M.  Postnikov  [P1P_{\hskip 0.35002pt1}],  [P2P_{\hskip 0.35002pt2}].   Natural  systems were quickly  renamed  into  Postnikov  systems.   The  theory  of  Postnikov  systems allows,   at  least  in  principle,   to determine  the homology  and cohomology  groups of  a space starting  with  its  homotopy  groups and some additional  invariants,   known as  Postnikov  invariants.   Simplicial  sets served as  the natural  framework  for  Postnikov’s  theory  [P2P_{\hskip 0.35002pt2}].

Simplicial  sets and  bounded cohomology  theory.   The bounded cohomology  groups  H^(K)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt) of  a simplicial  set  KK  are defined  in an obvious manner .   Namely,   the simplicial nn-cochains of  KK with  real  coefficients are  the real-valued  functions on  the set KnK_{\hskip 0.70004ptn} of  nn-simplices of  KK.   A simplicial nn-cochain  is  bounded  if  it  is  bounded as  a real-valued  function on KnK_{\hskip 0.70004ptn},   and  the coboundary of  a bounded cochain  is  obviously  bounded.   The bounded cohomology  H^(K)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt)  are  defined as  the cohomology  of  the cochain complex of  bounded cochains.   Homotopies of  simplicial  maps  lead  to cochain  homotopies of  complexes of  bounded cochains and,   similarly  to  the case of  spaces,  H^(K)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt) depends only  on  the homotopy  type of  KK.

It  is  only  natural  to expect  that  the  theories of  simplicial  sets and  Postnikov  systems can  be adapted  to  the bounded version of  the cohomology  theory  and,   in  particular ,   used  to prove  that  the bounded cohomology  groups  H^(K)\widehat{H}^{\hskip 0.35002pt*}(\hskip 1.49994ptK\hskip 1.49994pt)  do not  depend on  the higher  homotopy  groups of  KK.   The goal  of  the present  paper  is  to show  that  this  is  indeed  the case and,   moreover ,   that  the  tools provided  by  the  theories  of  simplicial  sets and  Postnikov  systems are nearly  ready  for using  in  the bounded cohomology  theory.

Kan  extension  property.   It  is  well  known  that  in  the  the  theory of  simplicial  sets  the internal  notions of  homotopy,  homotopy  type,  and  homotopy  groups are reasonable only  for simplicial  sets satisfying  an additional  condition  known as  the  Kan  extension  property.   Such simplicial  sets are called  Kan  simplicial  sets,  or ,  more recently,    fibrant  simplicial  sets.   The need  to restrict  the class of  considered simplicial  sets  is  clear  in  the bounded cohomology  theory.   Indeed,   the bounded cohomology  groups of  simplicial  sets arising  from  finite simplicial  complexes are  the same as  the usual  real  cohomology  groups.   It  turns out  the  Kan  extensions condition  is  exactly  what  is  needed  for  the bounded cohomology  theory.

The main  theorems.   The first  main  theorem  of  this paper  is  concerned  with  locally  trivial  bundles of  simplicial  sets.   The above notwithstanding,   the base  is  allowed  to be an arbitrary  simplicial  set.   In  this  theorem K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) denotes  the  Eilenberg–MacLane  simplicial  set,   as  in  the classical  papers of  Eilenberg  and  MacLane.   See  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for  the details.

Theorem  A.   Let  E,BE\hskip 0.50003pt,\hskip 3.00003ptB  be simplicial  sets,   and  let  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be a  locally  trivial  bundle with  the  Eilenberg–MacLane  simplicial  set  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  as  the fiber .   If  n>1n\hskip 1.99997pt>\hskip 1.99997pt1,   then  the map induced  by pp  in  bounded cohomology  is  an  isometric  isomorphism.   

See  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   This  result  should  be considered as a  relative property  of  EE  with  respect  to  BB.   Since K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt) has  the  Kan  extension property,   the  latter  is  present,   albeit  implicitly.

The second  main  theorem  is  concerned  with  the  “classifying  spaces”  Bπ\mathit{B}\hskip 1.49994pt\pi  of  discrete groups π\pi,   which are actually  not  spaces,   but  another  incarnation of  simplicial  sets  K(π,1)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt).   See  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for  a discussion of  classifying  spaces.

Theorem  B.   Let π\pi be a discrete group and  κπ\kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi be a normal  amenable subgroup of  π\pi.   Let  p:ππ/κp\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi/\kappa  be  the quotient  homomorphism.   Then  Bp:BπB(π/κ)\mathit{B}\hskip 0.50003ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)  induces  isometric  isomorphism  in  bounded cohomology.   

See  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   Note  that  the classifying spaces  Bπ\mathit{B}\hskip 1.49994pt\pi  are  Kan  simplicial  sets.

In addition  to  the classical  theory of  simplicial  sets,   the proofs of  these  theorems  involve  the notion of  Δ\Delta-sets,   introduced  under  the name  semi-simplicial  complexes  by  Eilenberg  and  Zilber  in  the same paper  [E Z]  in  which  they  introduced simplicial  sets.   The Δ\Delta-sets differ  from simplicial  sets by  the  lack  of  degeneracy  operators.   See  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for  the details.   The modern  term  “Δ\Delta-set ”  goes back  to  C.  Rourke  and  B.  Sanderson  [RS].   Our  main example of  a Δ\Delta-set  is  the infinitely  dimensional  simplex Δ[]\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt],   the union over n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  of  the standard nn-dimensional  simplices Δ[n]\Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  considered as Δ\Delta-sets.   Again,   see  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for  the details.   The Δ\Delta-sets are used  to construct  unravelings  of  simplicial  sets.   The idea of  the unraveling  goes back  to  G.  Segal  [S]  and  J.  Milnor’s  construction of  classifying  spaces  [Mi].   The  unraveling  of  a simplicial  set  KK  is  simply  the Δ\Delta-set  K×Δ[]K\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   In  this product  the degeneracy operators  of  KK are ignored and  the product  is  taken  dimension-wise,   exactly  as  the products of  simplicial  sets.   The main  result  about  unravelings  is  the following.

Theorem  C.   Let  KK  be a simplicial  set.   The projection  p:K×Δ[]Kp\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  induces  isometric  isomorphisms  in  the bounded cohomology  groups.   

See  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   The proof  is  based on a modification of  the method of  acyclic models.

Applications.   When combined  with  the basic facts of  the  theory  of  Postnikov  systems,   Theorem  A  easily  implies  the following  theorem.

Theorem  D.   Let  KK  be  a connected  Kan  simplicial  set  and  f:KBπ1(K,v)f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt),   where vv  is  a vertex of  KK,   be a simplicial  map  inducing isomorphism of  fundamental  groups.   Then  ff  induces an  isomorphism  in  bounded cohomology.   

See  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   This  theorem  together  with  Theorem  B  easily  implies  the following.

Theorem  E.   Let  K,LK\hskip 0.50003pt,\hskip 3.00003ptL  be connected  Kan  simplicial  sets and  let  vv be a vertex of  KK.   Let  f:KLf\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  be a simplicial  map.   If  f:π1(K,v)π1(L,f(v))f_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptL\hskip 0.50003pt,\hskip 1.99997ptf\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.49994pt)  is  surjective and  has amenable kernel,   then  ff  induces an  isometric  isomorphisms  in  bounded cohomology.   

See  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   When applied  to  the singular  simplicial  sets of  topological  spaces,   Theorems  E  and  D  turn  into  Gromov’s  Mapping  theorem  and  its  Corollary  (A)  respectively.   See  [Gr],   p.  40.   In  fact,   Gromov  deduces  his  Mapping  theorem  from  his  Corollary  (A).   Observing  some similarity  between  this deduction  (see  [Gr],   the  top of  p.  47)  and  Segal’s  unraveling  of  categories  [S]  was  the starting  point  of  the present  paper .

The structure of  the  paper .   Sections  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology,  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology,  and  the first  half  of  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  are devoted  to  the basic definitions and  a  review of  theories used  in  the paper .   The second  half  of  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  introduces some ideas behind  the proof  of  Theorem  B  and  the definition of  unravelings.   Appendix  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  provides additional  motivation,   but  is  not  used  in  the main  part  of  the  paper .   Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  is  the  technical  heart  of  the paper ,   laying the groundwork  for  the proof  of  Theorem  A.   Theorem  C  is  proved  in  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology,   which does not  depends on  the rest  of  the paper.   Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  is  devoted  to  the proofs of  Theorems  A  and  B  and deducing  Theorems  D  and  E  from  them.   Appendix  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  is  devoted  to  the proofs of  several  technical  lemmas.

2. Simplicial  sets  and  Δ\Delta-sets

The categories  𝚫\bm{\Delta}  and  Δ\Delta.   We will  include  0  in  the set  𝐍\mathbf{N}  of  natural  numbers.   For every  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  let  [n][\hskip 0.24994ptn\hskip 1.00006pt]  be  the set  {0,1,,n}\{\hskip 1.49994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn\hskip 1.49994pt\}.   The category  𝚫\bm{\Delta}  has sets  [n][\hskip 0.24994ptn\hskip 1.00006pt]  as objects and  non-decreasing  maps  [m][n][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  as morphisms from  [m][\hskip 0.24994ptm\hskip 1.00006pt]  to  [n][\hskip 0.24994ptn\hskip 1.00006pt],   with  the composition  being  the composition of  maps.   The category  Δ\Delta  is  the subcategory  of  𝚫\bm{\Delta}  having  the same objects and  strictly  increasing  maps  [m][n][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  as morphisms from  [m][\hskip 0.24994ptm\hskip 1.00006pt]  to  [n][\hskip 0.24994ptn\hskip 1.00006pt].

Simplicial  sets and Δ\Delta-sets.   A  simplicial  set  is  a contravariant  functor  from  𝚫\bm{\Delta}  to  the category  of  sets.   Similarly ,  a  Δ\Delta-set  is  a contravariant  functor  from  Δ\Delta  to  the category  of  sets.   So,   a simplicial  set  KK  consists of  a  set  KnK_{\hskip 0.70004ptn}  for every  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  and a map  θ:KnKm\theta^{\hskip 0.35002pt*}\hskip 1.00006pt\colon\hskip 1.00006ptK_{\hskip 0.70004ptn}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK_{\hskip 0.70004ptm}  for every  non-decreasing  map  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].   For Δ\Delta-set  KK  the map  θ\theta^{\hskip 0.35002pt*} is  defined only  if  θ\theta  is  strictly  increasing.   If  KK  is  a  simplicial  set ,   then  the restriction of  the functor  KK  to  the subcategory  Δ\Delta  of  𝚫\bm{\Delta}  is  a Δ\Delta-set ,   which  we will  denote by  ΔK\Delta\hskip 1.00006ptK  or  simply  by  KK.

The elements of  KnK_{\hskip 0.70004ptn}  are called  nn-simplices,   or  simplices  of  dimension  nn  of  KK,   and  the maps  θ\theta^{\hskip 0.35002pt*}  the  structure maps  of  KK.   The 0-simplices are also called  vertices  and  if  σKn\sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn},   then  the  vertices  of  σ\sigma are  0-simplices of  the form θ(σ)\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) with  θ\theta  being a map  [0][n][\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].

If  K,LK\hskip 0.50003pt,\hskip 3.00003ptL  are either simplicial  or  Δ\Delta-sets,   then a  simplicial  map  KLK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  is  a natural  transformation of  functors,   i.e.  as a sequence of  maps  KnLnK_{\hskip 0.70004ptn}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL_{\hskip 0.70004ptn}  such  that

   Kn{K_{\hskip 0.70004ptn}}Ln{L_{\hskip 0.70004ptn}}Km{K_{\hskip 0.70004ptm}}Lm{L_{\hskip 0.70004ptm}}θ\scriptstyle{\displaystyle\theta^{\hskip 0.35002pt*}}θ\scriptstyle{\displaystyle\theta^{\hskip 0.35002pt*}}

is  a commutative diagram  for every  morphism  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  of  𝚫\bm{\Delta}  or  Δ\Delta  respectively.

The face and degeneracy  operators.   For every  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  and  i[n]i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  there  is  a unique surjective non-decreasing  map s(i):[n+1][n]s\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  taking  the value ii twice.   If  n>0n\hskip 1.99997pt>\hskip 1.99997pt0,   then then  there is  a unique strictly  increasing  map d(i):[n1][n]d\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  not  taking  the value  ii.   The structure maps  si=s(i)s_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pts\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)^{\hskip 0.35002pt*}  and  i=d(i)\partial_{\hskip 0.35002pti}\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)^{\hskip 0.35002pt*}  are  called  the iith  degeneracy  and  face  operators  respectively .   If  σ\sigma  is  a simplex  of  KK,   then  iσ\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma  is  called  the  iith  face  of  σ\sigma.

Clearly,   every  non-decreasing  map  [m][n][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  admits a unique presentation as a composition  [m][k][n][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptk\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  of  a surjective non-decreasing map  [m][k][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptk\hskip 1.00006pt]  and  a strictly  increasing map  [k][n][\hskip 0.50003ptk\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].   On  the other  hand,   every  strictly  increasing  map  is  a composition of  several  maps of  the form  d(i)d\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt),   and every  surjective non-decreasing map  is  a composition of  several  maps of  the form  s(i)s\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt).

It  follows  that  every  structure map  is  a composition of  several  face  and  degeneracy  operators.   These operators satisfy  some simple and  well  known  relations  implied  by  relations between  maps  s(i),d(j)s\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.49994ptj\hskip 1.49994pt),   which  we do  not  reproduce here.   Conversely ,   the face and degeneracy operators  j,si\partial_{\hskip 0.35002ptj}\hskip 1.99997pt,\hskip 3.99994pts_{\hskip 0.70004pti}  satisfying  these relations can  be extended  to a contravariant  functor  from  𝚫\bm{\Delta}  to  the category  of  sets,   i.e.  to a simplicial  set .   Similarly,   face operators  j\partial_{\hskip 0.35002ptj}  satisfying  the relations involving only  face operators can  be extended  to a functor  from  Δ\Delta  to  the category  of  sets,   i.e.  to a Δ\Delta-set .   If  KK  is  a  simplicial  set ,   then  the Δ\Delta-set  ΔK\Delta\hskip 1.00006ptK  is  the result  of  ignoring  the degeneracy  operators of  KK.

Non-degenerate simplices.   A simplex σ\sigma of  a simplicial  set KK is  said  to be  degenerate  if  it  belongs  to  the image of  some sis_{\hskip 0.70004pti},   and  non-degenerate  otherwise.   An nn-simplex σ\sigma is  degenerate  if  and  only  if  σ=θ(τ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  for an mm-simplex τ\tau with m<nm\hskip 1.99997pt<\hskip 1.99997ptn and a surjective non-decreasing  θ:[n][m]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptm\hskip 1.00006pt].   By  a  lemma of  Eilenberg  and  Zilber  [E Z],   if  τ\tau  is  required  to be non-degenerate,   then  the presentation  σ=θ(τ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  is  unique.   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.

Simplicial  sets  from Δ\Delta-sets.   Let  DD  be a Δ\Delta-set .   It  gives rise  to simplicial  set 𝚫D\bm{\Delta}\hskip 1.00006ptD  defined as  follows.   The  nn-simplices of  𝚫D\bm{\Delta}\hskip 1.00006ptD  are  the pairs  (σ,ρ)(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.49994pt)  such  that  σ\sigma  is  an ll-simplex of  DD  for some  lnl\hskip 1.99997pt\leqslant\hskip 1.99997ptn  and  ρ:[n][l]\rho\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptl\hskip 1.99997pt]  is  a surjective non-decreasing  map.   In order  to define θ\theta^{\hskip 0.70004pt*}  for a non-decreasing  map  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt],   we represent  θ\theta  as  the composition  θ=τφ\theta\hskip 3.99994pt=\hskip 3.99994pt\tau\hskip 1.00006pt\circ\hskip 1.49994pt\varphi,   where  τ\tau  is  a  strictly  increasing  map and  φ\varphi  is  a  surjective non-decreasing  map,  and  set  θ(σ,ρ)=(τ(σ),φ)\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\tau^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt\varphi\hskip 1.49994pt).   One can easily  check  that  (θη)=θη(\hskip 1.00006pt\theta\hskip 1.00006pt\circ\hskip 1.49994pt\eta\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 0.50003pt\circ\hskip 1.99997pt\hskip 0.50003pt\eta^{\hskip 0.70004pt*}  and  hence  𝚫K\bm{\Delta}\hskip 0.50003ptK  is  indeed a simplicial  set .   The correspondence  D𝚫DD\hskip 3.99994pt\longmapsto\hskip 3.99994pt\bm{\Delta}\hskip 1.00006ptD  naturally  extends  to simplicial  maps,   i.e.  leads  to a functor from  the category  of  Δ\Delta-sets  to  the category  of  simplicial  sets.

Simplicial  sets and Δ\Delta-sets from simplicial  complexes.   Recall  that  a  simplicial  complex  SS  is  a set  of  vertices  V=VSV\hskip 3.99994pt=\hskip 3.99994ptV_{\hskip 0.70004ptS}  together  with a collection of  finite subsets of  VV,   called  simplices  of  SS,   subject  to  the condition  that  a subset  of  a simplex  is  also a simplex.   Elements of  a simplex  σV\sigma\hskip 1.99997pt\subset\hskip 1.99997ptV  are called  the  vertices of  σ\sigma.   A simplex τ\tau  is  said  to be a  face  of  a simplex σ\sigma  if  τσ\tau\hskip 1.99997pt\subset\hskip 1.99997pt\sigma.   A  local  order  on a simplicial  complex  SS  is  an assignment  of  a  linear order  <σ<_{\hskip 0.70004pt\sigma}  on σ\sigma for each simplex σ\sigma.   These orders are required  to agree in  the sense  that  <τ<_{\hskip 0.70004pt\tau}  is  the restriction of  <σ<_{\hskip 0.70004pt\sigma}  if  τ\tau  is  a  face of  σ\sigma.   For example,   if  <<  is  a  linear order on  VSV_{\hskip 0.70004ptS},   then  the restrictions of  <<  to simplices form a  local  order on  SS.   The simplest  examples of  simplicial  sets and Δ\Delta-sets  are provided  by  the following construction.

A  locally  ordered simplicial  complex  SS  gives rise  to a Δ\Delta-set  ΔS\Delta\hskip 0.50003ptS  and  a simplicial  set 𝚫S\bm{\Delta}\hskip 0.50003ptS.   The nn-simplices of  ΔS\Delta\hskip 0.50003ptS  are injective maps  σ:[n]V\sigma\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptV  such  that  the image  σ([n])\sigma\hskip 1.00006pt(\hskip 1.49994pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.49994pt)  is  a  simplex  of  SS  and σ\sigma is  order-preserving.   Of  course,   the sets  [n][\hskip 0.24994ptn\hskip 1.00006pt]  are  considered  with  their  natural  order  induced  from  𝐍\mathbf{N}.   The nn-simplices of  𝚫S\bm{\Delta}\hskip 0.50003ptS  are maps  σ:[n]V\sigma\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptV  such  that  σ([n])\sigma\hskip 1.00006pt(\hskip 1.49994pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.49994pt)  is  a  simplex  of  SS  and σ\sigma  in  non-decreasing  with  respect  to  the orders on [n][\hskip 0.24994ptn\hskip 1.00006pt] and  this simplex.   In  both cases  the structure maps θ\theta^{\hskip 0.35002pt*}  are defined  by  θ(σ)=σθ\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma\hskip 1.00006pt\circ\hskip 1.49994pt\theta.   An  easy  check  shows  that  𝚫S=𝚫ΔS\bm{\Delta}\hskip 0.50003ptS\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt\Delta\hskip 0.50003ptS.   The  local  order  involved  in  this construction almost  never  matters and  is  rarely  mentioned.

Basic examples.   For  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  the set [n][\hskip 0.24994ptn\hskip 1.00006pt] can  be considered as a simplicial  complex  having [n][\hskip 0.24994ptn\hskip 1.00006pt] as its set  of  vertices and all  subsets of  [n][\hskip 0.24994ptn\hskip 1.00006pt] as simplices.   The usual  order on 𝐍\mathbf{N}  turns [n][\hskip 0.24994ptn\hskip 1.00006pt]  into a  locally  ordered simplicial  complex.   The Δ\Delta-set Δ[n]\Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  has as kk-simplices strictly  increasing  maps  [k][n][\hskip 1.00006ptk\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt],   and  the simplicial  set 𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  has as kk-simplices  non-decreasing  maps  [k][n][\hskip 1.00006ptk\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].   Clearly,  𝚫[n]=𝚫Δ[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt].   We will  need also  the simplicial  complex  [][\hskip 1.00006pt\infty\hskip 1.00006pt]  having  𝐍\mathbf{N}  as its set  of  vertices and all  finite subsets of  𝐍\mathbf{N}  as simplices,   as also  the Δ\Delta-set  Δ[]\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  and  the simplicial  set  𝚫[]=𝚫Δ[]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt].

Every  non-decreasing  map  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  defines a simplicial  map  θ:𝚫[m]𝚫[n]\theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  by  the rule  θ(σ)=θσ\theta_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\sigma.   Clearly,  (θη)=θη(\hskip 1.49994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\eta\hskip 1.99997pt)_{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\theta_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004pt*}  and  the assignments n𝚫[n]n\hskip 3.99994pt\longmapsto\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  and  θθ\theta\hskip 3.99994pt\longmapsto\hskip 3.99994pt\theta_{\hskip 0.70004pt*}  define a covariant  functor from 𝚫\bm{\Delta} to  the category  of  simplicial  sets.   Similarly,   strictly  increasing maps  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  define simplicial  maps  θ:Δ[m]Δ[n]\theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\Delta\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\Delta\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  and  lead  to a functor  from  Δ\Delta  to Δ\Delta-sets.

Kan  extension and  lifting  properties.   Let n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N} and  k[n]k\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].   The  kk-horn  of  [n][\hskip 0.24994ptn\hskip 1.00006pt]  is  the simplicial  complex  [n]k[\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.35002ptk} having [n][\hskip 0.24994ptn\hskip 1.00006pt] as  the set  of  vertices and subsets of  [n][\hskip 0.24994ptn\hskip 1.00006pt] not  containing  [n]{k}[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\{\hskip 1.49994ptk\hskip 1.99997pt\} as simplices.   Equivalently ,  [n]k[\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.70004ptk} is  obtained  from [n][\hskip 0.24994ptn\hskip 1.00006pt]  by  removing  simplices [n][\hskip 0.24994ptn\hskip 1.00006pt] and [n]{k}[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\{\hskip 1.49994ptk\hskip 1.99997pt\}.   The kk-horn [n]k[\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.35002ptk}  of  [n][\hskip 0.24994ptn\hskip 1.00006pt]  leads  to  the kk-horn  𝚲k[n]=𝚫[n]k\bm{\Lambda}_{\hskip 0.35002ptk}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]_{\hskip 0.35002ptk}  of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt].

A simplicial  set  KK  is  said  to have  the  Kan  extension  property,  or  to be a  Kan  simplicial  set ,   if  every  simplicial  map  𝚲k[n]K\bm{\Lambda}_{\hskip 0.35002ptk}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  can  be extended  to a simplicial  map  𝚫[n]K\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK.   Let  E,BE\hskip 0.50003pt,\hskip 3.00003ptB  be simplicial  sets.   A simplicial  map  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  is  said  to  have  Kan  lifting  property,  or  to be a  Kan  fibration  if  every commutative diagram of  solid  arrows of  the form

   𝚲k[n]{\displaystyle\bm{\Lambda}_{\hskip 0.35002ptk}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]}E{E}𝚫[n]{\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]}B,{B\hskip 0.50003pt,}i\scriptstyle{\displaystyle i\hskip 1.00006pt}p\scriptstyle{\displaystyle p}

where  ii  is  the inclusion,   can  be completed  by  a dashed arrow  to a commutative diagram.   A  simplicial  set  KK  is  Kan  if  and  only  if  the unique map  K𝚫[0]K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]  is  a  Kan  fibration.

Simplices and simplicial  maps.   Let  𝜾n\bm{\iota}_{\hskip 0.70004ptn}  be  the identity  map  [n][n][\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  considered as an nn-simplex of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt].   Then every mm-simplex of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  equal  to  θ(𝜾n)\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.49994pt)  for a unique non-decreasing  map  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].   It  follows  that  for every simplicial  set  KK  simplicial  maps  f:𝚫[n]Kf\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK are uniquely  determined  by  the images f(𝜾n)f\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.00006pt).   Conversely,   if  σKn\sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn},   then  there  is  a unique simplicial  map

iσ:𝚫[n]K\quad i_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK

such  that  σ=iσ(𝜾n)\sigma\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\sigma}\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.00006pt).

Skeletons.   Let  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   If  DD  is  a Δ\Delta-set,   then  the nnth  skeleton  sknD\operatorname{sk}_{\hskip 0.70004ptn}\hskip 0.50003ptD  of  DD  is  the Δ\Delta-subset  of  DD  consisting of  all kk-simplices with  knk\hskip 1.99997pt\leqslant\hskip 1.99997ptn.   If  KK  is  a simplicial  set,   then  sknK\operatorname{sk}_{\hskip 0.70004ptn}\hskip 0.50003ptK  consists of  all  simplices of  the form  θ(σ)\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt),   where σ\sigma  is  a kk-simplex  for some  knk\hskip 1.99997pt\leqslant\hskip 1.99997ptn.   The  boundary  𝚫[n]\partial{\hskip 0.50003pt}\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] is  defined as  the skeleton skn1𝚫[n]\operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt].   The simplicial  set 𝚫[n]\partial{\hskip 0.50003pt}\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt] has as simplices non-decreasing  maps [m][n][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt] with  the image  [n]\neq\hskip 3.99994pt[\hskip 0.24994ptn\hskip 1.00006pt].

Products.   The  product  K×LK\hskip 1.00006pt\times\hskip 1.00006ptL of  simplicial  sets and Δ\Delta-sets  K,LK\hskip 0.50003pt,\hskip 3.00003ptL  is  defined dimension-wise.   In  more details,  (K×L)n=Kn×Ln(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006ptL\hskip 1.49994pt)_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptK_{\hskip 0.70004ptn}\hskip 1.00006pt\times\hskip 1.49994ptL_{\hskip 0.70004ptn}  and  the structure maps of  K×LK\hskip 1.00006pt\times\hskip 1.00006ptL  are  the products of  the structure maps of  KK  and  LL.   This  dimension-wise  product  is  hardly  natural  for  finite Δ\Delta-sets,   but  products  with  Δ[]\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt] play a  key  role in  our  theory.

Homotopies.   The maps  d(0),d(1):[0][1]d\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt),\hskip 3.00003ptd\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt\colon\hskip 1.99997pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006pt1\hskip 1.00006pt]  take 0 to 11 and 0 respectively.   Let  i(0)=d(1)i\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)_{\hskip 0.70004pt*}  and  i(1)=d(0)i\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)_{\hskip 0.70004pt*}  be  the corresponding  maps  𝚫[0]𝚫[1]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt].   Suppose  that  K,LK\hskip 0.50003pt,\hskip 3.00003ptL  are simplicial  sets and  f,g:KLf,\hskip 3.00003ptg\hskip 1.99997pt\colon\hskip 1.49994ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  are simplicial  maps.   A  homotopy  between ff and  gg  is  a simplicial  map  h:K×𝚫[1]Lh\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  such  that

f=k(idK×i(0))andg=k(idK×i(1)),\quad f\hskip 3.99994pt=\hskip 3.99994ptk\hskip 1.00006pt\circ\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\operatorname{id}_{\hskip 1.04996ptK}\hskip 1.00006pt\times\hskip 1.00006pti\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.99997pt\bigr{)}\quad\ \mbox{and}\quad\ g\hskip 3.99994pt=\hskip 3.99994ptk\hskip 1.00006pt\circ\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\operatorname{id}_{\hskip 1.04996ptK}\hskip 1.00006pt\times\hskip 1.00006pti\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

where  KK  is  identified  with  K×𝚫[0]K\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt].   Homotopy  equivalences  are defined  in  terms of  homotopies in  the usual  manner .   A simplicial  set  KK  is  said  to be  contractible  if  KK  is  homotopy  equivalent  to 𝚫[0]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt].   In  this case  idK\operatorname{id}_{\hskip 1.04996ptK}  is  homotopic  to  the composition  K𝚫[0]KK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  of  the unique map  K𝚫[0]K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]  with  iv:𝚫[n]Ki_{\hskip 0.70004ptv}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  for some  vK0v\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 1.04996pt0}.   If  KK  is  contractible,   then  the projection  K×LLK\hskip 1.00006pt\times\hskip 1.00006ptL\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  is  a  homotopy  equivalence  for every  LL.

Local  systems of  coefficients.   Let  KK  be either a simplicial  or  a Δ\Delta-set.   Let  ε\varepsilon  be a 11-simplex of  KK  and  v,wv\hskip 0.50003pt,\hskip 3.00003ptw  are vertices of  KK.   We say  that  ε\varepsilon  connects vv with ww  if  1ε=v\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptv  and  0ε=w\partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptw.   A  local  system of  coefficients,   or  simply  a  local  system  π\pi on  KK  is  an assignment  of  a  group πv\pi_{\hskip 0.70004ptv}  to every  vertex  vv of  KK  and  an  isomorphism  ε:πwπv\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv}  to every 11-simplex ε\varepsilon connecting vv with ww.   These groups and  isomorphisms are subject  to  the following  condition :   if  ωK2\omega\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 1.04996pt2}  and  ρ=2ω,σ=0ω,τ=1ω\rho\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt2}\hskip 1.00006pt\omega\hskip 0.50003pt,\hskip 3.99994pt\ \sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt0}\hskip 1.00006pt\omega\hskip 0.50003pt,\hskip 3.99994pt\ \tau\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\omega,   then  τ=ρσ\tau^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\rho^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pt\sigma^{\hskip 0.70004pt*}.   A  local  system of  coefficients π\pi  is  said  to be  abelian  if  all  groups πv\pi_{\hskip 0.70004ptv}  are abelian.

The  leading  vertex  of  an nn-simplex σ\sigma  is  the vertex  vσ=θ(σ)v_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.00006pt\sigma\hskip 1.00006pt),   where  θ:[0][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  the inclusion,   and  the  leading  edge  of  an nn-simplex σ\sigma  is  the 11-simplex  εσ=η(σ)\varepsilon_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pt\eta^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.00006pt\sigma\hskip 1.00006pt),   where  η:[1][n]\eta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  the inclusion.   An nn-cochain of  KK  with coefficients in  the  local  system π\pi  is  a map cc  assigning  every  σKn\sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn}  an element  c(v)πvc\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003pt\pi_{\hskip 0.70004ptv},   where  v=vσv\hskip 3.99994pt=\hskip 3.99994ptv_{\hskip 0.70004pt\sigma}  is  the  leading  vertex of  σ\sigma.   The group of  such cochains  is  denoted  by  Cn(K,π)C^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt).   For abelian π\pi  the  coboundary  operators  :Cn(K,π)Cn+1(K,π)\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptC^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)  are defined  by  the formula

c(σ)=εσ(c(0σ))+i=1n+1(1)ic(iσ)πvσ.\quad\partial^{\hskip 0.70004pt*}\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\varepsilon_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.49994ptc\hskip 1.49994pt\bigl{(}\hskip 1.99997pt\partial_{\hskip 1.04996pt0}\hskip 1.00006pt\sigma\hskip 1.49994pt\bigr{)}\hskip 1.99997pt\bigr{)}\hskip 3.99994pt+\hskip 3.99994pt\sum\nolimits_{\hskip 0.70004pti\hskip 1.39998pt=\hskip 1.39998pt1}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)^{\hskip 0.70004pti}\hskip 3.00003ptc\hskip 1.49994pt\bigl{(}\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\in\hskip 3.99994pt\pi_{\hskip 0.70004ptv_{\hskip 0.50003pt\sigma}}\hskip 3.99994pt.

The  cocycles  and  coboundaries  are defined  in  terms  \partial^{\hskip 0.70004pt*}  in  the usual  manner .

3. Postnikov  systems  and  minimality

Comparing  simplices.   Let  KK  be a simplicial  set  and  q𝐍q\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   Recall  that  for every σKq\sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq} there exists a unique simplicial  map iσ:𝚫[q]Ki_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK such  that  iσ(𝜾q)=σi_{\hskip 1.04996pt\sigma}\hskip 1.00006pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma.   Two simplices  σ,τKq\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq}  are said  to be  nn-equivalent   if  the restrictions of  the maps

iσ,iτ:𝚫[q]K\quad i_{\hskip 1.04996pt\sigma}\hskip 1.49994pt,\hskip 3.99994pti_{\hskip 1.04996pt\tau}\hskip 1.99997pt\colon\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptK

to  skn𝚫[q]\operatorname{sk}_{\hskip 0.70004ptn}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]  are  equal,   or ,   equivalently ,   if  θ(σ)=θ(τ)\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  for every  non-decreasing  map  θ:[n][q]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptq\hskip 1.00006pt].   We write  σnτ\sigma\hskip 3.99994pt\sim_{\hskip 0.70004ptn}\hskip 3.99994pt\tau  if  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau  are nn-equivalent.   Obviously,   if  qnq\hskip 1.99997pt\leqslant\hskip 1.99997ptn,   then  σnτ\sigma\hskip 3.99994pt\sim_{\hskip 0.70004ptn}\hskip 3.99994pt\tau  if  and  only  if  σ=τ\sigma\hskip 3.99994pt=\hskip 3.99994pt\tau.

Clearly,  n\sim_{\hskip 0.70004ptn}  is  an equivalence relation on  the set  of  simplices.   If  σ,τKq\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq}  and  σnτ\sigma\hskip 1.99997pt\sim_{\hskip 0.70004ptn}\hskip 1.99997pt\tau,   then  θ(σ)nθ(τ)\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 1.99997pt\sim_{\hskip 0.70004ptn}\hskip 1.99997pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  for every  non-decreasing  map  θ:[m][q]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptq\hskip 1.00006pt].   Therefore  the structural  maps θ\theta^{\hskip 0.70004pt*} of  KK  induce maps between sets of  equivalence classes of  n\sim_{\hskip 0.70004ptn}.   These induced  maps are  the structure maps of  a canonical  structure of  a simplicial  set  on  the set  K(n)K\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)  of  equivalence classes with  respect  to  n\sim_{\hskip 0.70004ptn}.   Clearly,   there  is  a canonical  simplicial  map

pn:KK(n).\quad p_{\hskip 0.35002ptn}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.00003pt.

Also,   if  nmn\hskip 1.99997pt\leqslant\hskip 1.99997ptm  and  σmτ\sigma\hskip 1.99997pt\sim_{\hskip 0.70004ptm}\hskip 1.99997pt\tau,   then  σnτ\sigma\hskip 1.99997pt\sim_{\hskip 0.70004ptn}\hskip 1.99997pt\tau,   and  hence  there  is  a canonical  simplicial  map

pm,n:K(m)K(n).\quad p_{\hskip 0.35002ptm,\hskip 0.70004ptn}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006ptm\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.00003pt.

Clearly,   the maps  pnp_{\hskip 0.35002ptn}  and  pm,np_{\hskip 0.35002ptm,\hskip 0.70004ptn}  induce isomorphisms of  nnth  skeletons.   When  there  is  no danger of  confusion,   we denote maps  pnp_{\hskip 0.35002ptn}  and  pm,np_{\hskip 0.35002ptm,\hskip 0.70004ptn}  simply  by  pp.

Let  MM  be a simplicial  subset  of  KK.   Clearly,   for simplices  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau  of  MM  the relation  σnτ\sigma\hskip 3.99994pt\sim_{\hskip 0.70004ptn}\hskip 3.99994pt\tau  holds in  MM  if  and  only  if  it  holds in  KK.   Therefore  there  is  a canonical  injective  map  M(n)K(n)M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt).   In such a situation  we will  identify  M(n)M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) with  its image in  K(n)K\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt).

Two simplices  σ,τKq\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptq}  are said  to be  homotopic  if  the maps  iσi_{\hskip 1.04996pt\sigma}  and  iτi_{\hskip 1.04996pt\tau}  are  homotopic relatively  to  𝚫[q]\partial\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt].   We write  στ\sigma\hskip 3.99994pt\sim\hskip 3.99994pt\tau  if  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau  are homotopic.   If  KK  is  a  Kan  simplicial  set ,   then  \sim  is  an equivalence relation on  the set  of  simplices.

Postnikov  systems.   The sequence of  simplicial  sets  K(0),K(1),,K(n),K\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003ptK\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots  together  with  the maps  pnp_{\hskip 0.35002ptn}  and  pm,np_{\hskip 0.35002ptm,\hskip 0.70004ptn}  is  called  Postnikov  or  Moore-Postnikov  system  of  KK.   More precisely,   this definition  is  the version of  the original  construction of  Postnikov  [P1P_{\hskip 0.35002pt1}],   [P2P_{\hskip 0.35002pt2}]  due  to  Moore  [Mo].   This construction and  the notion of  homotopic simplices are  useful  only  for  Kan  simplicial  sets.   If  KK  is  Kan,   then every  term  K(n)K\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)  of  the  Postnikov  system  is  also  Kan,   and all  maps  pnp_{\hskip 0.35002ptn}  and  pm,np_{\hskip 0.35002ptm,\hskip 0.70004ptn}  are  Kan  fibrations.   See  [Ma],   Proposition  8.2.

Minimality.   Postnikov  systems are especially  powerful  when  KK  is  minimal  in  the following sense.   A  Kan  simplicial  set  KK  is  said  to be  minimal  if  every  two homotopic simplices of  KK  are equal,   i.e.  that  στ\sigma\hskip 3.99994pt\sim\hskip 3.99994pt\tau  implies  σ=τ\sigma\hskip 3.99994pt=\hskip 3.99994pt\tau  for every  two simplices  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau  of  MM.   This notion  is  going  back  to  Eilenberg  and  Zilber  [E Z]  and  Postnikov  [P1P_{\hskip 0.35002pt1}].   Every  Kan  simplicial  set  KK  contains a  minimal  Kan  simplicial  subset  MM  as a strong  deformation  retract.   Moreover ,   every  two such simplicial  subsets  MM  are  isomorphic.   See  [Ma],   Theorems  9.5  and  9.8.

Let  E,BE\hskip 0.50003pt,\hskip 3.00003ptB  be simplicial  sets and  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be  a  Kan  fibration.   Two simplices  σ,τEq\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.99997pt\in\hskip 3.00003ptE_{\hskip 0.70004ptq}  are  fiberwise  homotopic   if  p(σ)=p(τ)p\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  and  there exists  a  relative  to  𝚫[q]\partial\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]  homotopy

h:𝚫[q]×𝚫[1]E\quad h\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE

between  the maps  iσi_{\hskip 1.04996pt\sigma}  and  iτi_{\hskip 1.04996pt\tau}  such  that  the diagram

   𝚫[q]×𝚫[1]{\displaystyle\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]}E{{\phantom{,}}E}𝚫[q]{\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]}B,{{\phantom{,}}B\hskip 1.00006pt,}h\scriptstyle{\displaystyle h}pr\scriptstyle{\displaystyle\operatorname{p{\hskip 0.50003pt}r}}p\scriptstyle{\displaystyle p}iρ\scriptstyle{\displaystyle i_{\hskip 1.04996pt\rho}}

where  ρ=p(σ)=p(τ)\rho\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  and  pr\operatorname{p{\hskip 0.50003pt}r}  is  the projection,   is  commutative.   In  particular ,   if  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau  are fiberwise homotopic,   then  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau  are homotopic.   A  Kan  fibration  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  is  said  to be  minimal  if  every  two fiberwise homotopic simplices are equal.   For every  Kan  fibration  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  there exists a simplicial  subset  MM  of  EE  such  that  p|M:EBp\hskip 1.00006pt|\hskip 1.49994ptM\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  is  a  minimal  Kan  fibration and  MM  is  a  fiberwise  strong  deformation  retract  of  EE  in  a  natural  sense.   See  [G  J],   Chapter  I,   Proposition  10.3,   or  [Ma],   Theorem  10.9.

3.1. Theorem.   Every  minimal  Kan  fibration  with connected  base  is  a  locally  trivial  bundle.   

Proof.   See  [G Z],   Section  VI.5.4,   or  [Ma],   Theorem  11.11.    \blacksquare

Postnikov  systems and  locally  trivial  bundles.   If  KK  is  a  minimal  Kan  simplicial  set,   then all  maps  pnp_{\hskip 0.35002ptn}  and  pm,np_{\hskip 0.35002ptm,\hskip 0.70004ptn}  are  minimal  Kan  fibrations.   See  [Ma],   Lemma  12.1.   Therefore,   Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  implies  that  these maps are  locally  trivial  bundles.   In  particular ,

p=pn,n1:K(n)K(n1)\quad p\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.35002ptn,\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)

is  a  locally  trivial  bundle.   Its  fiber  is  the  Eilenberg–MacLane  simplicial  set  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt),   where  π=πn(K,v)\pi\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)  is  the nnth  homotopy  groups of  KK.   See  [Ma],   the  beginning  of  Section  25.   For our  purposes  it  is  sufficient  to know  that  for  n>1n\hskip 1.99997pt>\hskip 1.99997pt1  the fiber  is  an  Eilenberg–MacLane  simplicial  set  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  with an abelian  group π\pi,   and  to identify  the simplicial  set  K(1)K\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt).   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology   for  the  latter .

4. Classifying  spaces  of  categories  and  groups

Classifying spaces of  categories.   This section  is  devoted  to some classical  constructions of  Milnor  [Mi]  and  Segal  [S]  (who attributed some of  the ideas of  [S]  to  Grothendieck ).

A set  SS  with a partial  order  \leqslant  defines a category  having  SS  as its set  of  objects.   For  a,bSa\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt\in\hskip 1.99997ptS  there  is  exactly  one morphisms  aba\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptb  if  aba\hskip 1.99997pt\leqslant\hskip 1.99997ptb,   an none otherwise.   In  particular ,   sets  [n][\hskip 0.24994ptn\hskip 1.00006pt]  together  with  their natural  order can  be considered as categories.   From  this point  of  view  non-decreasing  maps  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  are nothing else but  functors  [m][n][\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].

Every  small  category  𝒞\mathcal{C} defines a simplicial  set B𝒞\mathit{B}\hskip 1.99997pt\mathcal{C},   its  nerve  in  the sense of  G.  Segal  [S],   often called also  the  classifying  space  of  𝒞\mathcal{C}.   The vertices of  B𝒞\mathit{B}\hskip 1.99997pt\mathcal{C}  are  the objects of  𝒞\mathcal{C},   and  the nn-simplices are functors  σ:[n]𝒞\sigma\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{C}.   As usual,   the structure maps are defined as compositions.   Namely,   if  θ:[m][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  a non-decreasing  map,   then  θ(σ)=σθ\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma\hskip 1.00006pt\circ\hskip 1.49994pt\theta,   where in  the right  hand side  θ\theta  is  considered as a functor.   Clearly,   a functor  [n]𝒞[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{C}  is  determined  by  its values on  objects and on morphisms  ii+1i\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti\hskip 1.99997pt+\hskip 1.99997pt1,   where  i[n1]i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt].   Therefore nn-simplices of  B𝒞\mathit{B}\hskip 1.99997pt\mathcal{C} correspond  to sequences of  morphisms of  the form

(4.1)    v0{\displaystyle v_{\hskip 1.04996pt0}}v1{v_{\hskip 0.70004pt1}}{\ldots}vn,{v_{\hskip 0.70004ptn}\hskip 3.00003pt,}p1\scriptstyle{\displaystyle p_{\hskip 1.04996pt1}}p2\scriptstyle{\displaystyle p_{\hskip 1.04996pt2}}pn\scriptstyle{\displaystyle p_{\hskip 0.70004ptn}}

where each viv_{\hskip 0.70004pti}  is  an object  of  𝒞\mathcal{C}  and each  pip_{\hskip 0.70004pti}  is  a morphism  vi1viv_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptv_{\hskip 0.70004pti}.   Of  course,   the objects  viv_{\hskip 0.70004pti}  are determined  by  the morphisms  pkp_{\hskip 0.70004ptk}  and  hence nn-simplices correspond  to sequences  (p1,p2,,pn)(\hskip 1.49994ptp_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 0.70004ptn}\hskip 1.49994pt)  of  morphisms such  that  the composition  pi+1pip_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptp_{\hskip 0.70004pti}  is  defined  for each  ii  between  11  and  n1n\hskip 1.99997pt-\hskip 1.99997pt1.   For  0<i<n0\hskip 1.99997pt<\hskip 1.99997pti\hskip 1.99997pt<\hskip 1.99997ptn  the boundary  operators  i\partial_{\hskip 0.70004pti}  acts by  replacing  viv_{\hskip 0.70004pti}  and  morphisms  pi,pi+1p_{\hskip 0.70004pti}\hskip 0.50003pt,\hskip 3.00003ptp_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}  by  the composition  pi+1pip_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptp_{\hskip 0.70004pti}.   The boundary  operators  0\partial_{\hskip 1.04996pt0}  and  n\partial_{\hskip 0.70004ptn}  act  by  simply  removing  v0,p1v_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptp_{\hskip 0.70004pt1}  and  pn1,vnp_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003ptv_{\hskip 0.70004ptn}  respectively.   The degeneracy  operator  sis_{\hskip 0.70004pti}  acts by  inserting  the identity  morphism  viviv_{\hskip 0.70004pti}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptv_{\hskip 0.70004pti}.   Cf.  [G  J],   Example  I.1.4.

Let  𝒞,𝒟\mathcal{C}\hskip 0.50003pt,\hskip 3.00003pt\mathcal{D}  be  two categories.   A functor  f:𝒞𝒟f\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{C}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}  defines,   in an obvious  way,   a simplicial  map  Bf:B𝒞B𝒟\mathit{B}\hskip 0.50003ptf\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\mathcal{D}.   Given  two functors  f,g:𝒞𝒟f,\hskip 3.00003ptg\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{C}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D},   a natural  transformation  fgf\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptg  defines a homotopy  between  Bf\mathit{B}\hskip 0.50003ptf  and  Bg\mathit{B}\hskip 1.00006ptg.   Indeed,   a natural  transformation  t:fgt\hskip 1.00006pt\colon\hskip 1.00006ptf\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptg  can  be considered as  a  functor  𝒞×[1]𝒟\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D},   where  [1][\hskip 1.00006pt1\hskip 1.00006pt]  is  considered as a category.   One can easily  see  that  the operation  𝒞B𝒞\mathcal{C}\hskip 3.99994pt\longmapsto\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\mathcal{C}  commutes with  the products.   Since,   obviously,  B[1]=𝚫[1]\mathit{B}\hskip 1.99997pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt],   the natural  transformation  tt  defines a simplicial  map  Bt:B𝒞×𝚫[1]B𝒟\mathit{B}\hskip 1.00006ptt\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\mathcal{D},   i.e.  a  homotopy.   We  leave  to  the reader  the verification  that  this  is  a homotopy  between  Bf\mathit{B}\hskip 0.50003ptf  and  Bg\mathit{B}\hskip 1.00006ptg.

A discrete group π\pi can  be considered as a category  with a single object  and  π\pi  being  the set  of  morphisms from  this object  to  itself ,   with  the composition  being  the group multiplication.   The classifying space  Bπ\mathit{B}\hskip 1.49994pt\pi  is  a  Kan  simplicial  set.   See  [G  J],   Lemma  I.3.5.   Comparing  the definitions shows  that  the usual  and  the bounded cohomology of  the group  π\pi  are,   in  fact,   cohomology of  the classifying space  Bπ\mathit{B}\hskip 1.49994pt\pi.

Milnor’s  classifying  spaces.   Another classical  construction of  classifying  spaces of  groups  is  due  to  Milnor  [Mi].   While we will  not  use  it  directly,   it  serves as a motivation  for  the definitions of  unravelings  of  classifying spaces and simplicial  sets  below and  in  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.

For a discrete group  π\pi  let  π\mathcal{E}\hskip 0.50003pt\pi  be  the simplicial  complex  having  the product  π×𝐍\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N}  as  the set  of  vertices and as simplices finite subsets  σπ×𝐍\sigma\hskip 1.99997pt\subset\hskip 1.99997pt\hskip 0.50003pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N}  such  that  the projection  π×𝐍𝐍\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{N}  is  injective on σ\sigma.   There  is  a  left  action  π×ππ\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathcal{E}\hskip 0.50003pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{E}\hskip 0.50003pt\pi  of  the group π\pi on  π\mathcal{E}\hskip 0.50003pt\pi  by  the rule

h(g,k)=(hg,k),\quad h\hskip 1.00006pt\cdot\hskip 1.49994pt(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997pth\hskip 0.50003pt\cdot\hskip 0.50003ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.00003pt,

where  hπh\hskip 1.99997pt\in\hskip 1.99997pt\pi  and  (g,k)π×𝐍(\hskip 1.99997ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N}  is  a vertex of  π\mathcal{E}\hskip 0.50003pt\pi.   The quotient  π=π\π\mathcal{B}\hskip 1.00006pt\pi\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 0.50003pt\backslash\hskip 1.00006pt\mathcal{E}\hskip 0.50003pt\pi  of  the simplicial  complex  π\mathcal{E}\hskip 0.50003pt\pi  by  this action  is  a  well-defined simplicial  complex.   We will  call  π\mathcal{B}\hskip 1.00006pt\pi  the  Milnor’  classifying  space  of  π\pi.   Milnor  defined directly  the geometric realization |π||\hskip 1.99997pt\mathcal{B}\hskip 1.00006pt\pi\hskip 1.99997pt| for arbitrary  topological  group π\pi.   By  this reason  his construction  is  different  from  ours one.

It  is  convenient  to enhance  the structure of  Milnor’s  classifying  space  to a Δ\Delta-set.   The natural  order on  𝐍\mathbf{N}  defines  local  orders on  the simplicial  set  π\mathcal{E}\hskip 0.50003pt\pi and  π\mathcal{B}\hskip 1.00006pt\pi  and  allows  to  turn  them  into Δ\Delta-sets,   which  we will  still  denote by  π\mathcal{E}\hskip 1.00006pt\pi  and  π\mathcal{B}\hskip 1.00006pt\pi.   The  local  order on  π\mathcal{E}\hskip 1.00006pt\pi  is  invariant  under  the  left  action of  π\pi,   and  π=π\π\mathcal{B}\hskip 1.00006pt\pi\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 0.50003pt\backslash\hskip 1.00006pt\mathcal{E}\hskip 0.50003pt\pi  as Δ\Delta-sets also.

One of  advantages of  π\mathcal{B}\hskip 1.00006pt\pi  is  the existence of  many  automorphisms.   Let  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  be  the group of  all  maps  𝐍π\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi.   Let  us  define a right  action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  on π\mathcal{E}\hskip 0.50003pt\pi  by  the rule

(g,k)(gc(k),k),\quad(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994pt\left(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptk\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt\right)\hskip 1.00006pt,

where  cC0(𝐍,π)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  and  (g,k)π×𝐍(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathbf{N}  is  a vertex of  π\mathcal{E}\hskip 0.50003pt\pi.   Clearly,   the right  action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  on π\mathcal{E}\hskip 0.50003pt\pi  preserves  the  order of  vertices and commutes with  the  left  action of  π\pi.   Hence  this action  leads  to a right  action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) on  π\mathcal{B}\hskip 1.00006pt\pi.   If  κπ\kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi  is  a subgroup of  π\pi,   then  C0(𝐍,κ)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)  is  a subgroup of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt),   and  if  κ\kappa  is  a  normal  subgroup,   then

(4.2) (π/κ)=π/C0(𝐍,κ).\quad\mathcal{B}\hskip 1.00006pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 1.00006pt\pi\left/\hskip 1.00006ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)\right.\hskip 1.00006pt.

This obvious property  is  the main  reason of  our  interest  in  π\mathcal{B}\hskip 1.00006pt\pi.   This property  strongly  contracts with  the properties of  the classifying  spaces  Bπ\mathit{B}\hskip 1.49994pt\pi.   Namely,   the classifying  space  B(π/κ)\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)  is  not  a quotient  of  Bπ\mathit{B}\hskip 1.49994pt\pi,   at  least  not  in any  natural  way.

Unravelings  of  classifying spaces of  groups.   The Δ\Delta-set  π\mathcal{B}\hskip 1.00006pt\pi  is  isomorphic  to  Bπ×Δ[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   While we are not  going  to use  this result,   it  motivates our  interest  to  the Δ\Delta-set  Bπ×Δ[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt],   which  we will  call  the  unraveling  of  Bπ\mathit{B}\hskip 1.49994pt\pi.

As we will  see in a  moment,   the action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  can  be defined  directly  for  Bπ×Δ[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   In  fact,   it  is  easier and  more useful  to define  an action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  on  the simplicial  set  Bπ×𝚫[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  first.   The  latter  is  the classifying  space of  a category.   Indeed,   the simplicial  set 𝚫[]\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] has  non-decreasing  maps  [n]𝐍[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{N}  as nn-simplices,   with  the usual  structure maps.   Let  𝒏\bm{n}  be  the category  having  𝐍\mathbf{N} as  its  set  of  objects,   exactly  one morphism  nmn\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm  when  nmn\hskip 1.99997pt\leqslant\hskip 1.99997ptm,   and no morphisms  nmn\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm  when  n>mn\hskip 1.99997pt>\hskip 1.99997ptm.   Clearly,  𝚫[]=B𝒏\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.00006pt\bm{n}.   It  follows  that

Bπ×𝚫[]=Bπ×B𝒏=B(π×𝒏).\quad\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\mathit{B}\hskip 1.00006pt\bm{n}\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)\hskip 3.00003pt.

The category  π×𝒏\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}  has  𝐍\mathbf{N}  as  the set  of  objects.   The set  of  morphisms  nmn\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm  is  a copy of  π\pi  if  nmn\hskip 1.99997pt\leqslant\hskip 1.99997ptm,   and  is  empty  if  n>mn\hskip 1.99997pt>\hskip 1.99997ptm.   Given  cC0(𝐍,π)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt),   let  a(c):π×𝒏π×𝒏a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}  be  the functor  equal  to  the identity  on objects and and acting  on  morphisms  nmn\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptm  identified  with elements of  the group π\pi  by  the rule

gc(n)1gc(m).\quad g\hskip 3.99994pt\longmapsto\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptg\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptm\hskip 1.49994pt)\hskip 3.00003pt.

Clearly,  a(c)a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) is  an automorphism of  π×𝒏\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n} and even an automorphism over 𝒏\bm{n},   in  the sense  that  pra(c)=pr\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\circ\hskip 1.99997pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{p{\hskip 0.50003pt}r},   where  pr:π×𝒏𝒏\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{n}  is  the projection.   Also,   all  diagrams

   n{\displaystyle n}n{n}n{n}m{m}g\scriptstyle{\displaystyle g}c(n)\scriptstyle{\displaystyle c\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)}c(m)\scriptstyle{\displaystyle c\hskip 1.49994pt(\hskip 1.00006ptm\hskip 1.49994pt)}a(c)(g)\scriptstyle{\displaystyle a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 0.50003pt(\hskip 1.00006ptg\hskip 1.00006pt)}

are commutative and  hence  morphisms  c(n):nnc\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptn\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptn  form a natural  transformation  from  the identity  functor  to  a(c)a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt).   It  follows  that  the simplicial  map

Ba(c):B(π×𝒏)B(π×𝒏)\quad\mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)

is  an automorphism of  B(π×𝒏)\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)  homotopic  to  the identity.   The map  cBa(c)c\hskip 3.99994pt\longmapsto\hskip 3.99994pt\mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  defines an action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) on  B(π×𝒏)=Bπ×𝚫[]\mathit{B}\hskip 1.49994pt(\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   Since  the functors a(c)a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt) are automorphisms over 𝒏\bm{n},   the simplicial  maps  Ba(c)\mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  are automorphisms of  Bπ×𝚫[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  over  𝚫[]\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   It  follows  that  maps  Ba(c)\mathit{B}\hskip 1.00006pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  leave  the Δ\Delta-subset  Bπ×Δ[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  of  Bπ×𝚫[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  invariant.   By  restricting  these maps  to  Bπ×Δ[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  we get  an action of  C0(𝐍,π)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt) on  Bπ×Δ[]\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   If  κπ\kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi  is  a normal  subgroup of  π\pi,   then a direct  verification shows  that

B(π/κ)×Δ[]=Bπ×Δ[]/C0(𝐍,κ).\quad\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\left/\hskip 1.00006ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)\right.\hskip 1.00006pt.

Of  course,   this  is  simply  another  form of  the property  (4.2).   We will  need a slightly  stronger ,   but  still  obvious,   form of  this property.   Let  1π1\hskip 1.99997pt\in\hskip 1.99997pt\pi  be  the unit  of  π\pi,   and  let  C0(𝐍,π)C_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\pi\hskip 1.49994pt)  be  the group of  maps  c:𝐍πc\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  such  that  c(n)=1c\hskip 1.49994pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  for almost  every  nn.   Then

(4.3) B(π/κ)×Δ[]=Bπ×Δ[]/C0(𝐍,κ).\quad\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\left/\hskip 1.00006ptC_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)\right.\hskip 1.00006pt.

5. Bundles  with  Eilenberg–MacLane  fibers

Locally  trivial  bundles.   Let  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be a simplicial  map  thought  as a bundle,   and  let  i:ABi\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  a simplicial  map.   Let  iEE×Ai^{\hskip 0.70004pt*}\hskip 0.50003ptE\hskip 1.99997pt\subset\hskip 3.00003ptE\hskip 1.00006pt\times\hskip 1.00006ptA  be  the simplicial  subset  of  E×AE\hskip 1.00006pt\times\hskip 1.00006ptA  having as nn-simplices pairs  (σ,τ)(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.49994pt)  such  that  σEn\sigma\hskip 1.99997pt\in\hskip 3.00003ptE_{\hskip 0.70004ptn},  τAn\tau\hskip 1.99997pt\in\hskip 1.99997ptA_{\hskip 0.70004ptn},   and  p(σ)=i(τ)p\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt).   In other  terms,

(iE)n={(σ,τ)En×An|p(σ)=i(τ)}.\quad(\hskip 1.49994pti^{\hskip 0.70004pt*}\hskip 0.50003ptE\hskip 1.49994pt)_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt\left\{\hskip 3.00003pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003ptE_{\hskip 0.70004ptn}\hskip 1.00006pt\times\hskip 1.00006ptA_{\hskip 0.70004ptn}\hskip 3.99994pt\bigl{|}\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.00003pt\right\}\hskip 3.00003pt.

The restriction  ip:iEAi^{\hskip 0.70004pt*}p\hskip 1.00006pt\colon\hskip 1.00006pti^{\hskip 0.70004pt*}\hskip 0.50003ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA  of  the projection  E×AAE\hskip 1.00006pt\times\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA  to  iEi^{\hskip 0.70004pt*}\hskip 0.50003ptE  is  called  the  pull-back  of  pp  by  ii,   or  the  bundle  induced  from  the bundle  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  by  ii.   The bundle  ipi^{\hskip 0.70004pt*}p  has  the usual  universal  properties of  pull-backs.   A simplicial  map  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  is  said  to  be a  trivial  bundle  with  the  fiber FF  if  there exists a commutative diagram

   B×F{\displaystyle B\hskip 1.00006pt\times\hskip 1.00006ptF}E{E}B{B}B,{B\hskip 0.50003pt,}t\scriptstyle{\displaystyle t\hskip 1.00006pt}pr\scriptstyle{\displaystyle\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt}p\scriptstyle{\displaystyle p}=\scriptstyle{\displaystyle=}

such  that  t:B×FEt\hskip 1.00006pt\colon\hskip 1.00006pt\ B\hskip 1.00006pt\times\hskip 1.00006ptF\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  is  an  isomorphism.   Such  tt  is  called a  trivialization  of  pp.   A map  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  is  a  locally  trivial  bundle  with  the fiber  FF  if  for every  simplex σ\sigma of  BB  the pull-back  iσpi_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006ptp  is  a  trivial  bundle with  the  fiber FF.   In  this case  EE  is  called  the  total  space  and  BB  the  base  of  pp.   Clearly,   if  pp  is  a  locally  trivial  bundle,   then  pp  is  surjective.

Normalized  and  non-abelian cochains.   Let  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N},  n>1n\hskip 1.99997pt>\hskip 1.99997pt1,   and  let  π\pi  be an abelian  group.   A cochain of  a simplicial  set  KK  is  said  to be  normalized  if  it  is  equal  to 0 on degenerate simplices.   We will  denote  by  𝒞n(K,π)\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)  the  group of  normalized nn-cochains of  KK  with  coefficients  in  π\pi and  by  𝒵n(K,π)\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)  the subgroup of  normalized cocycles.

Eilenberg–MacLane  simplicial  sets  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   For every  q𝐍q\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  let  us consider  the groups 𝒞n(𝚫[q],π)\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)  and  𝒵n(𝚫[q],π)\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt).   Every  non-decreasing  map  θ:[r][q]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006ptr\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptq\hskip 1.49994pt]  induces a simplicial  map  θ:𝚫[r]𝚫[q]\theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptr\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt],   which,   in  turn,   induces homomorphisms

θ:𝒞n(𝚫[q],π)𝒞n(𝚫[r],π)and\quad\theta^{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptr\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\quad\ \mbox{and}\quad\
θ:𝒵n(𝚫[q],π)𝒵n(𝚫[r],π).\quad\theta^{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptr\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt.

Eilenberg–MacLane  simplicial  set  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  is  defined as follows.   Its set  of  qq-simplices  is

K(π,n)q=𝒵n(𝚫[q],π),\quad K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptq}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt,

and  the structural  maps  θ:K(π,n)qK(π,n)r\theta^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptq}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptr}  are  the above induced  homomorphisms  θ\theta^{\hskip 0.70004pt*}.   Let  0q𝒵n(𝚫[q],π)=K(π,n)q0_{\hskip 0.35002ptq}\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptq}  be  the zero cocycle.

The nn-cocycles of  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   Every  normalized  nn-cochain of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  a cocycle,   i.e.

𝒵n(𝚫[n],π)=𝒞n(𝚫[n],π).\quad\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt.

Clearly,   a normalized nn-cochain cc of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  determined  by  its value  c(𝜾n)c\hskip 1.49994pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 1.49994pt)  on  the unique non-degenerate nn-simplex 𝜾n\bm{\iota}_{\hskip 0.70004ptn}  of  𝚫[n]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt].   Therefore we can  identity  K(π,n)nK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn}  with  π\pi.

A nn-cochain of  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  with coefficients in π\pi is  a  map  K(π,n)nπK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi,   and  hence can  be  thought  as a map  c:ππc\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi.   Clearly,   the zero cocycle  0n𝒵n(𝚫[n],π)0_{\hskip 0.35002ptn}\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)  is  the only  degenerate nn-simplex of  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   Therefore we can identify  normalized nn-cochains cc of  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  with  maps  c:ππc\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  subject  only  to  the condition  c(0)=0c\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0.   It  turns out  that  cc  is  a  cocycle  if  and  only  if  cc  is  a  homomorphisms  ππ\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi.   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for a proof .   In  particular ,   the identity  map  idπ:ππ\operatorname{id}_{\hskip 1.04996pt\pi}\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  is  an nn-cocycle of  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).

Simplicial  maps  to  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   Let  KK  be a simplicial  set.   Let  us assign  to every  simplicial  map  f:KK(π,n)f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  the nn-cocycle

z(f)=f(idπ)𝒵n(K,π)\quad z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\operatorname{id}_{\hskip 1.04996pt\pi}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)\hskip 3.00003pt

( the cochain  z(f)z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)  is  a  normalized cocycle because  idπ\operatorname{id}_{\hskip 1.04996pt\pi}  is).   Unraveling  the definitions shows  that  ff  is  uniquely  determined  by  z(f)z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)  and  for every  z𝒵n(K,π)z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt)  there  is  a map  f:KK(π,n)f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  such  that  z(f)=zz\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz.   One can say  that  the definition of  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  is  dictated  by  this property.   If  π\pi  is  abelian,   then  two maps  f,g:KK(π,n)f,\hskip 3.00003ptg\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  are homotopic  if  and  only  if  z(f)z(g)z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptz\hskip 1.49994pt(\hskip 1.49994ptg\hskip 1.49994pt)  is  a coboundary  of  a normalized (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochain.   See,   for example,   [Ma],   Lemma  24.3  and  Theorem  24.4,   or  [EM3E{\hskip 0.50003pt}M_{\hskip 0.35002pt3}],   Theorems  5.1  and  5.2.

In  the case of  K=K(π,n)K\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt),   we see  that  every  homomorphism  h:ππh\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  defines a  map  K(π,n)K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   We will  denote  this map  by  𝒔(h)\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt).   There are no other simplicial  maps  K(π,n)K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt),   and  𝒔(h)\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)  is  an  isomorphisms  if  and  only  if  hh  is.

Maps over  the base.   Let  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be a  simplicial  map  thought  of  as a bundle.   A simplicial  map  f:EEf\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  is  said  to be a  map over  the base,  or  a  map over  BB,   if  pf=fp\hskip 1.49994pt\circ\hskip 1.00006ptf\hskip 3.99994pt=\hskip 3.99994ptf.   For example,   the identity  map  idE:EE\operatorname{id}_{\hskip 1.04996ptE}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  is  a map over  the base.

Simplicial  groups.   A  simplicial  group  is  a contravariant  functor  from  𝚫\bm{\Delta}  to  the category  of  groups.   In other  words,   a simplicial  group  is  a simplicial  set  GG  together with group structures on  sets  GnG_{\hskip 0.70004ptn},  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N},   such  that  the structural  maps  θ\theta^{\hskip 0.70004pt*}  are homomorphisms.   Let  GG  be a simplicial  group.   Then  for every  q𝐍q\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  there  is  a natural  action of  the group  GqG_{\hskip 0.70004ptq}  on  𝚫[q]×G\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG  defined as follows.   Let  gGqg\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004ptq}.   The mm-simplices of  𝚫[q]×G\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG  are  the pairs  (θ,τ)(\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt),   where  τGm\tau\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004ptm}  and  θ:[m][q]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptq\hskip 1.49994pt]  is  a qq-simplex of  𝚫[q]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt].   Let

g(θ,τ)=(θ,θ(g)τ),\quad g\hskip 1.00006pt\cdot\hskip 1.00006pt(\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\theta\hskip 0.50003pt,\hskip 3.00003pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\tau\hskip 1.99997pt\right)\hskip 3.00003pt,

where  the product  in  the right  hand side  is  taken  in  GqG_{\hskip 0.70004ptq}.   A routine check shows  that  the map  (θ,τ)g(θ,τ)(\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt(\hskip 1.00006pt\theta\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)  is  a simplicial  map  𝚫[q]×G𝚫[q]×G\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG.   We will  denote  this map  by  𝒕(g)\bm{t}\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt).   Clearly,  𝒕(g)\bm{t}\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)  is  an automorphism of  the  bundle  pr:𝚫[q]×G𝚫[q]\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptG\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]  over  the base.   Another  routine check shows  that  g𝒕(g)g\hskip 3.99994pt\longmapsto\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)  is  an  action.

The addition of  normalized cocycles  turns  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  into a simplicial  group.   In  the case of  G=K(π,n)G\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  we  get  an  automorphism

(5.1) 𝒕(c):𝚫[q]×K(π,n)𝚫[q]×K(π,n)\quad\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 3.00003pt

of  the  bundle

(5.2) pr:𝚫[q]×K(π,n)𝚫[q].\quad\operatorname{p{\hskip 0.50003pt}r}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 3.00003pt.

over  the base for every  normalized cocycle  c𝒵n(𝚫[q],π)c\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt).

5.1. Theorem.   Every  automorphism of   (5.2)  over  the base is  equal  to  the composition

(id𝚫[q]×𝒔(h))𝒕(c),\quad\left(\hskip 1.49994pt\operatorname{id}_{\hskip 0.70004pt\bm{\Delta}\hskip 0.35002pt[\hskip 0.70004ptq\hskip 1.04996pt]}\hskip 1.00006pt\times\hskip 1.99997pt\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.00003pt\circ\hskip 3.00003pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.00003pt,

where  h:ππh\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  is  an automorphism  and  c𝒵n(𝚫[q],π)c\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt).   Both  hh  and  cc are uniquely  determined  by  the  automorphism.   

Proof.   See  [Ma],   Propositions  25.2  and  25.3.    \blacksquare

Translations of  trivial  bundles.   Let  p:E𝚫[q]p\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]  be a  trivial  bundle with  the fiber  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt),  n>1n\hskip 1.99997pt>\hskip 1.99997pt1,   and  let  f:EEf\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  be an automorphism over  the base.   We will  say  that  ff  is  a  translation   if  f=t𝒕(c)t1f\hskip 3.99994pt=\hskip 3.99994ptt\hskip 1.00006pt\circ\hskip 1.00006pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006ptt^{\hskip 0.70004pt-\hskip 0.70004pt1}  for some  trivialization  t:𝚫[q]×K(π,n)Et\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  and some normalized cocycle  c𝒵n(𝚫[q],π)c\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt).

Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  implies  that  if  ff  has  the form  t𝒕(c)t1t\hskip 1.00006pt\circ\hskip 1.00006pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006ptt^{\hskip 0.70004pt-\hskip 0.70004pt1}  for some  trivialization  tt,   then  ff  has such  form  for every  trivialization.   But  the cocycle  cc  depends on  the choice of  tt  because  (5.2)  has automorphisms of  the form  id𝚫[q]×𝒔(h)\operatorname{id}_{\hskip 0.70004pt\bm{\Delta}\hskip 0.35002pt[\hskip 0.70004ptq\hskip 1.04996pt]}\hskip 1.00006pt\times\hskip 1.99997pt\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt).   Still,   there  is  a way  to make  cc  to be uniquely  determined  by  ff.

Let  i0:𝚫[0]𝚫[q]i_{\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]  be  the map defined  by  the inclusion  [0][q][\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.00006ptq\hskip 1.49994pt].   The  total  space  FF of  the pull-back  bundle  i0pi_{\hskip 1.04996pt0}^{\hskip 0.70004pt*}\hskip 1.00006ptp  is  isomorphic  to  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   Any  two isomorphisms differ  by  an automorphism of  the form  𝒔(h)\bm{s}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt),   where  hh  is  an automorphism of  π\pi.   Therefore  FF  is  a simplicial  group isomorphic  to  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   In  particular ,   the set  FnF_{\hskip 0.70004ptn}  of  nn-simplices of  FF  is  a group  isomorphic  to  π\pi.   Let  us  denote  this group by  π0\pi_{\hskip 1.04996pt0}.   Then  pp  is  also a  trivial  bundle with  the fiber  canonically  isomorphic  to  K(π0,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   Let  us  call  a trivialization  t:𝚫[q]×K(π0,n)Et\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  special  if  the induced  map  K(π0,n)FK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF  is  the canonical  isomorphism.   By  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  two special  trivializations differ  by  a  translation.   But,   if

g:𝚫[q]×K(π0,n)𝚫[q]×K(π0,n)\quad g\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)

is  a  translation,   then  g𝒕(c)g1=𝒕(c)g\hskip 1.00006pt\circ\hskip 1.00006pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt).   It  follows  that  for every  translation  ff  of  the bundle  pp  there  is  a  well  defined  cocycle

d(f)𝒵n(𝚫[q],π0)\quad d\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 1.04996pt0}\hskip 1.49994pt)

such  that  t1ft=𝒕(d(f))t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptf\hskip 1.00006pt\circ\hskip 1.49994ptt\hskip 3.99994pt=\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.49994ptd\hskip 1.49994pt(\hskip 1.00006ptf\hskip 1.49994pt)\hskip 1.49994pt)  for every  special  trivialization  tt.

The canonical  local  system.   Let  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be a  locally  trivial  bundle with  the fiber  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  and  n1n\hskip 1.99997pt\geqslant\hskip 1.99997pt1.   The above discussion of  translations suggests  to associate with each vertex  vB0v\hskip 1.99997pt\in\hskip 3.00003ptB_{\hskip 0.70004pt0}  a  group  πv\pi_{\hskip 0.70004ptv}  isomorphic  to  π\pi.   Namely,   the  total  space  FvF_{\hskip 0.35002ptv} of  the pull-back  bundle  ivpi_{\hskip 0.70004ptv}^{\hskip 0.70004pt*}\hskip 1.49994ptp  is    a simplicial  group isomorphic  to  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   Let  πv\pi_{\hskip 0.70004ptv}  be  the group of  nn-simplices of  FvF_{\hskip 0.35002ptv}.   Then  FvF_{\hskip 0.35002ptv}  is  canonically  isomorphic  to  K(πv,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).

Suppose  that  v,wB0v\hskip 0.50003pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 3.00003ptB_{\hskip 0.70004pt0}  and  ε\varepsilon  is  a 11-simplex of  BB  such  that  1ε=v\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptv,  0ε=w\partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptw.   Let  EεE_{\hskip 0.70004pt\varepsilon}  be  the  total  space of  the pull-back  bundle  iεpi_{\hskip 0.70004pt\varepsilon}^{\hskip 0.70004pt*}\hskip 1.49994ptp,   and  let  t:𝚫[1]×K(πv,n)Eεt\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004pt\varepsilon}  be a  special  trivialization.   Recall  that  two special  trivializations differ  by  a  translation.   Since  n>1n\hskip 1.99997pt>\hskip 1.99997pt1,   every  normalized nn-chain of  𝚫[1]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]  is  equal  to 0.   It  follows  that  every  translation  is  equal  to  the identity  and  hence  tt  is  uniquely  determined.   Therefore,   the isomorphism

K(πv,n)Fw=K(πw,n)\quad K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)

induced  by  tt  depends only on  ε\varepsilon.   Let  ε(p)\varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)  be  its  inverse,   and  let  ε:πwπv\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv}  be  the unique isomorphism such  that  ε(p)=𝒔(ε)\varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bm{s}\hskip 1.49994pt(\hskip 1.00006pt\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt).   By  using  trivializations of  the pull-back  bundles  iσpi_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp  for 22-simplices σ\sigma of  BB  one can easily  check  that  the groups  πv\pi_{\hskip 0.70004ptv}  together  with  isomorphisms  ε\varepsilon^{\hskip 0.70004pt*}  form a  local  system of  coefficients on  BB,   which we will  denote by  π(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt).

Translations  of  locally  trivial  bundles.   Let  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be a  locally  trivial  bundle with  the fiber  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt),  n1n\hskip 1.99997pt\geqslant\hskip 1.99997pt1.   Let  f:EEf\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  be an automorphism over  the base.   For every qq-simplex σ\sigma of  BB  the automorphism  ff  induces an automorphism  fσf_{\hskip 0.70004pt\sigma}  of  the pull-back  bundle  iσpi_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp  over  the base.   Since  the bundle  iσpi_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp  is  trivial,   it  make sense  to ask  if  fσf_{\hskip 0.70004pt\sigma}  is  a  translation and  to call  ff  a  translation  if  fσf_{\hskip 0.70004pt\sigma}  is  a  translation for every  simplex σ\sigma of  BB.   Suppose  that  f:EEf\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  is  a  translation.   Let  σ\sigma  be an nn-simplex of  BB,   and  let  πσ=πv\pi_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004ptv},   where  v=vσv\hskip 3.99994pt=\hskip 3.99994ptv_{\hskip 0.70004pt\sigma}  is  the  leading vertex of  σ\sigma.   Then

d(fσ)𝒵n(𝚫[n],πσ).\quad d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.00003pt.

The group  𝒵n(𝚫[n],πσ)\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)  is  canonically  isomorphic  to  πσ\pi_{\hskip 0.70004pt\sigma}  and  hence we can consider  d(fσ)d\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)  as an elements of  πσ\pi_{\hskip 0.70004pt\sigma}.   The map

Df:σd(fσ)\quad D_{\hskip 0.35002ptf}\hskip 1.00006pt\colon\hskip 1.00006pt\sigma\hskip 3.99994pt\longmapsto\hskip 3.99994ptd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)

is  an nn-cochain of  BB  with coefficients  in  the  local  system  π(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt).

5.2. Lemma.   The nn-cochain  DfD_{\hskip 0.35002ptf}  is  a  normalized  cocycle.   

Proof.   If  σ\sigma  is  a degenerate nn-simplex of  BB,   then σ=θ(τ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt) for an mm-simplex τ\tau such  that  m<nm\hskip 1.99997pt<\hskip 1.99997ptn  and a non-decreasing  map  θ:[n][m]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptm\hskip 1.00006pt].   Therefore iσ=iτθi_{\hskip 0.70004pt\sigma}\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\tau}\hskip 1.00006pt\circ\hskip 1.00006pt\theta_{\hskip 0.70004pt*},   where  θ:𝚫[n]𝚫[m]\theta_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt]  is  induced  by  θ\theta,   and  hence

(5.3) iσp=θ(iτp)\quad i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 3.99994pt=\hskip 3.99994pt\theta_{\hskip 0.70004pt*}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997pti_{\hskip 1.04996pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 1.99997pt\right)

If  tt  be a special  trivialization of  iτpi_{\hskip 1.04996pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptp,   then t1fτt=𝒕(d(fτ))t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptf_{\hskip 1.04996pt\tau}\hskip 1.00006pt\circ\hskip 1.49994ptt\hskip 3.99994pt=\hskip 3.99994pt\bm{t}\hskip 1.49994pt(\hskip 1.49994ptd\hskip 1.49994pt(\hskip 1.00006ptf_{\hskip 0.70004pt\tau}\hskip 1.49994pt)\hskip 1.49994pt).   But  d(fτ)d\hskip 1.49994pt(\hskip 1.00006ptf_{\hskip 1.04996pt\tau}\hskip 1.49994pt)  is  a normalized mm-cochain of  𝚫[m]\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptm\hskip 1.00006pt].   Therefore m<nm\hskip 1.99997pt<\hskip 1.99997ptn  implies  that  d(fτ)=0d\hskip 1.49994pt(\hskip 1.00006ptf_{\hskip 1.04996pt\tau}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0  and  hence  fτf_{\hskip 1.04996pt\tau}  is  equal  to  the identity.   In  view of  (5.3)  this implies  that  fσf_{\hskip 0.70004pt\sigma}  is  equal  to  the identity and  hence  d(fσ)=0d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.   It  follows  that  DfD_{\hskip 0.35002ptf}  is  normalized.

Let  ρ\rho be an (n+1)(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)-simplex of  BB,   and  let  ε=θ(ρ)\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt),   where  θ:[1][n]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.49994pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  the inclusion.   Then  v=1εv\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon  is  the  leading  vertex of  ρ\rho and each  face  iρ\partial_{\hskip 0.70004pti}\hskip 1.49994pt\rho with i>0i\hskip 1.99997pt>\hskip 1.99997pt0,   and  w=0εw\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon  is  the  leading  vertex of  τ=0ρ\tau\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt0}\hskip 1.49994pt\rho.   Let  tt  be a special  trivialization of  iρpi_{\hskip 1.04996pt\rho}^{\hskip 0.70004pt*}\hskip 1.49994ptp.   Then  tt  induces a  trivialization of  iσpi_{\hskip 1.04996pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp  for every  face  σ=iρ\sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}\hskip 1.49994pt\rho.   If  i>0i\hskip 1.99997pt>\hskip 1.99997pt0,   then  the induced  trivialization  is  special.   If  i=0i\hskip 3.99994pt=\hskip 3.99994pt0,   it  differs  from a special  trivialization by  the isomorphism

ε(p):K(πw,n)K(πv,n)\quad\varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)

corresponding  to  the isomorphism  ε:πwπv\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv}.   It  follows  that

d(fρ)(i𝜾n+1)=Df(iρ)ifi>0and\quad d\hskip 1.49994pt\left(\hskip 1.49994ptf_{\hskip 1.04996pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptD_{\hskip 0.35002ptf}\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.49994pt\rho\hskip 1.49994pt\right)\quad\ \mbox{if}\quad\ i\hskip 1.99997pt>\hskip 1.99997pt0\quad\ \mbox{and}\quad\
d(fρ)(0𝜾n+1)=ε(Df(τ)).\quad d\hskip 1.49994pt\left(\hskip 1.49994ptf_{\hskip 1.04996pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial_{\hskip 1.04996pt0}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptD_{\hskip 0.35002ptf}\hskip 1.00006pt\left(\hskip 1.49994pt\tau\hskip 1.49994pt\right)\hskip 1.49994pt\right)\hskip 3.00003pt.

Since  d(fρ)d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 1.04996pt\rho}\hskip 1.49994pt)  is  a cocycle with coefficients in  πρ=πv\pi_{\hskip 1.04996pt\rho}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004ptv},   this  implies  that  DfD_{\hskip 0.35002ptf}  is  a cocycle with coefficients in  the local  system  π(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt).    \blacksquare

5.3. Lemma.   For every  normalized nn-cocycle c𝒵n(B,π(p))c\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) there exists a unique  translation f=f(c):EEf\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE such  that  Df=cD_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994ptc.   

Proof.   Let  σ\sigma  be a qq-simplex of  BB,   and  let  tt  be a special  trivialization of  iσpi_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp.   Then  tt  induces a  trivialization of  iτpi_{\hskip 1.04996pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptp  for every  simplex τ\tau of  the form  τ=θ(σ)\tau\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\hskip 1.00006pt\sigma\hskip 1.49994pt).   In  general,   the induced  trivialization  is  not  special,   but  differs from a special  one by  the isomorphism

ε(p):K(πw,n)K(πv,n)\quad\varepsilon\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)

where v,wv\hskip 0.50003pt,\hskip 3.00003ptw are  the  leading  vertices of  σ,τ\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau respectively,   and ε\varepsilon  is  the unique 11-simplex of  the form  ε=η(ρ)\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\eta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)  such  that  1ε=v\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptv,  0ε=w\partial_{\hskip 0.70004pt0}\hskip 1.00006pt\varepsilon\hskip 3.99994pt=\hskip 3.99994ptw.   It  follows  that

θ(d(fσ))=ε(d(fτ)),\quad\theta_{\hskip 0.70004pt*}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997ptd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997ptd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\tau}\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.00003pt,

where  the isomorphism  ε:πwπv\varepsilon^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004ptw}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004ptv}  is  applied  to  the coefficients of  d(fτ)d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\tau}\hskip 1.49994pt).   By  applying  this observation  to nn-simplices τ\tau we see  that  d(fσ)d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)  is  determined  by  DfD_{\hskip 0.35002ptf},   and  hence

fσ:iσpiσp\quad f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp

is  also determined  by  DfD_{\hskip 0.35002ptf}.   Since  this  is  true for every simplex σ\sigma of  BB,   the  translation  ff  is  determined  by  DfD_{\hskip 0.35002ptf}.   This proves  the uniqueness.   To prove  the existence,   suppose  that c𝒵n(B,π(p))c\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) is  given.   Let  σ\sigma  be a qq-simplex of  BB.   The isomorphisms  ε\varepsilon^{\hskip 0.70004pt*}  from  the first  part  of  the proof  establish an  isomorphism  between  the induced  local  system  iσπ(p)i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  and  the constant  coefficients system  πv\pi_{\hskip 0.70004ptv}.   This isomorphism  turns  the nn-cochain  iσ(c)i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  of  𝚫[q]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt] with coefficients in  iσπ(p)i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  into an nn-cochain

c(σ)𝒵n(𝚫[q],πv).\quad c\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.70004ptv}\hskip 1.49994pt)\hskip 3.00003pt.

There  is  a  unique  translation  fσ:iσpiσpf_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptp such  that  d(fσ)=c(v)d\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.49994pt).   Since  the cochains c(σ)c\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)  result  from a single cochain cc,   the  translations  fσf_{\hskip 0.70004pt\sigma}  agree with each other  in  the sense  that  if  τ=θ(σ)\tau\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt),   then  the diagram

   iτE{\displaystyle i_{\hskip 0.70004pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptE}iσE{i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptE}iτE{i_{\hskip 0.70004pt\tau}^{\hskip 0.70004pt*}\hskip 1.49994ptE}iσE{i_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.49994ptE}θ\scriptstyle{\displaystyle\theta_{\hskip 0.70004pt*}\hskip 1.00006pt}fτ\scriptstyle{\displaystyle f_{\hskip 0.70004pt\tau}\hskip 1.00006pt}fσ\scriptstyle{\displaystyle\hskip 1.00006ptf_{\hskip 0.70004pt\sigma}}θ\scriptstyle{\displaystyle\theta_{\hskip 0.70004pt*}}

is  commutative.   It  follows  that  the maps  fσf_{\hskip 0.70004pt\sigma}  together define a  translation  f:EEf\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE.   By  the construction,  Df=cD_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994ptc.   This proves  the existence.    \blacksquare

5.4. Lemma.   Let  f,g:EEf,\hskip 3.00003ptg\hskip 1.99997pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  be  two  translations.   Then

Dfg=Df+Dg.\quad D_{\hskip 0.35002ptf\hskip 0.70004pt\circ\hskip 1.04996ptg}\hskip 3.99994pt=\hskip 3.99994ptD_{\hskip 0.35002ptf}\hskip 3.99994pt+\hskip 3.99994ptD_{\hskip 0.70004ptg}\hskip 3.00003pt.

If  c,d𝒵n(B,π(p))c\hskip 0.50003pt,\hskip 3.00003ptd\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt),   then  f(c+d)=f(c)f(d)f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.99997pt+\hskip 1.99997ptd\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.00006ptf\hskip 1.00006pt(\hskip 1.00006ptd\hskip 1.99997pt).   

Proof.   The first  part  of  the  lemma  follows directly  from  the definitions.   In  view of  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the second  part  follows  from  the first  one.    \blacksquare

5.5. Lemma.   Let  c,d𝒵n(B,π(p))c\hskip 0.50003pt,\hskip 3.00003ptd\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt).   If  cdc\hskip 1.99997pt-\hskip 1.99997ptd  is  equal  to  the coboundary of  a  normalized cochain,   then  the maps  f(c)f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  and  f(d)f\hskip 1.00006pt(\hskip 1.00006ptd\hskip 1.99997pt)  are homotopic.   

Proof.   In  view of  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  it  is  sufficient  to consider  the case when  d=0d\hskip 3.99994pt=\hskip 3.99994pt0.   Suppose  that  b𝒞n1(B,π(p))b\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)  and  c=bc\hskip 3.99994pt=\hskip 3.99994pt\hskip 0.50003pt\partial^{\hskip 0.70004pt*}\hskip 0.50003ptb.   In  this case we need  to prove  that  f(c)f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  is  homotopic  to  the identity.   Let  us  consider  the bundle

p1=p×id𝚫[1]:E×𝚫[1]B×𝚫[1].\quad p_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}_{\hskip 0.70004pt\bm{\Delta}\hskip 0.35002pt[\hskip 0.70004pt1\hskip 0.70004pt]}\hskip 1.99997pt\colon\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt.

Equivalently,   p1p_{\hskip 0.70004pt1}  is  induced  from  pp  by  the projection  prB:B×𝚫[1]B\operatorname{p{\hskip 0.50003pt}r}_{\hskip 0.70004ptB}\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB.   Clearly,   the  local  system  π(p1)\pi\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt1}\hskip 1.49994pt)  is  induced  from  π(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  by  the same projection.   Recall  the simplicial  maps  i(e):𝚫[0]𝚫[1]i\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt)\hskip 1.99997pt\colon\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt],   where  e=0e\hskip 3.99994pt=\hskip 3.99994pt0  or  11,   from  the definition of  homotopies.   These maps  lead  to  the maps

idB×i(e):B×𝚫[0]B×𝚫[1].\quad\operatorname{id}_{\hskip 1.04996ptB}\hskip 1.00006pt\times\hskip 1.99997pti\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt)\hskip 1.99997pt\colon\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt.

Let  BeB_{\hskip 0.70004pte}  be  the image of  idB×i(e)\operatorname{id}_{\hskip 1.04996ptB}\hskip 1.00006pt\times\hskip 1.99997pti\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt).   Similarly,   let  EeE_{\hskip 0.70004pte}  be  the image of  idE×i(e)\operatorname{id}_{\hskip 1.04996ptE}\hskip 1.00006pt\times\hskip 1.99997pti\hskip 1.00006pt(\hskip 1.00006pte\hskip 1.49994pt).   Let  us  identify  B0B_{\hskip 1.04996pt0}  with  BB  and consider  the (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochain

b0𝒞n1(B×𝚫[1],π(p1))\quad b_{\hskip 1.04996pt0}\hskip 3.00003pt\in\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt)

equal  to  bb  on  B0=BB_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptB  and  to  0  on all  (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-simplices of  B×𝚫[1]B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]  not  in  B0B_{\hskip 1.04996pt0}.   Let

c0=b0and\quad c_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\hskip 0.50003ptb_{\hskip 1.04996pt0}\quad\ \mbox{and}\quad\
h=f(c0):E×𝚫[1]E×𝚫[1].\quad h\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptc_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 1.99997pt\colon\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 3.00003pt.

Then  hh  is  a  translation of  p1p_{\hskip 0.70004pt1}.   Clearly,   the map  E0E0E_{\hskip 1.04996pt0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 1.04996pt0}  induced  by hh can  be identified  with  f(c)f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt),   and  the map  E1E1E_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004pt1}  induced  by hh is  equal  to  the identity.   Therefore,   the composition of  hh  with  the projection  E×𝚫[1]EE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  is  a  homotopy  between  f(c)f\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  and  the identity.   The  lemma  follows.    \blacksquare

Remark.   Since  𝒵n(𝚫[q],π0)=0\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0  if  q<nq\hskip 1.99997pt<\hskip 1.99997ptn,   every  translation  f:EEf\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  is  equal  to  the identity  over  skn1B\operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003ptB.   By  the same reason  the homotopy  constructed  in  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  is  constant  over  skn2B\operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt2}\hskip 0.50003ptB.

Remark.   If  pp  is  the  trivial  bundle  B×K(π,n)BB\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB,   then  the  translations of  pp  correspond  to maps  BK(π,n)B\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   So,   Lemmas  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  and  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  provide a  “twisted”  version of  the classification of  maps  f:KK(π,n)f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  in  terms of  cocycles  z(f)z\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt).

A  group acting  on  EE.   Let  G=𝒞n1(B,π(p))G\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997ptB\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) be  the group of  normalized (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochains of  BB  with  coefficients in  the  local  system  π(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt).   By  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for every  gGg\hskip 1.99997pt\in\hskip 1.99997ptG  there exists a unique  automorphism

a(c)=f(c):EE\quad a\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.49994pt\partial^{\hskip 0.70004pt*}c\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE

over  BB such  that  Da(c)=cD_{\hskip 0.35002pta\hskip 0.70004pt(\hskip 0.70004ptc\hskip 1.04996pt)}\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\hskip 1.00006ptc.   By  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the map  ca(c)c\hskip 3.99994pt\longmapsto\hskip 3.99994pta\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)  is  a  homomorphism.   Hence  this map defines an action of  GG  on  EE.   By  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  every  automorphism  a(c)a\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)  is  homotopic  to  the  identity.   Moreover ,   by  the  remark after  the proof  of  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the homotopy  can  be chosen  to be constant  over  skn2B\operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt2}\hskip 0.50003ptB.   Therefore,   the group  GG  acts on  EE  by  automorphisms homotopic  to  the  identity  by  homotopies constant  over  skn2B\operatorname{sk}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt2}\hskip 0.50003ptB.

Free simplices.   Let  us  say  that  a qq-simplex σ\sigma  is  free in dimension  mm  if  the restriction of  the simplicial  map  iσ:𝚫[q]Ki_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  to  skm𝚫[q]\operatorname{sk}_{\hskip 0.70004ptm}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.50003ptq\hskip 1.00006pt]  is  an  isomorphism onto  its  image.

5.6. Lemma.   Suppose  that  τ,τ\tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime}  are qq-simplices of  EE  such  that  p(τ)=p(τ)p\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau^{\prime}\hskip 1.49994pt).   If  p(τ)p\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  is  free  in  dimension n1n\hskip 1.99997pt-\hskip 1.99997pt1,   then  there exists  cGc\hskip 1.99997pt\in\hskip 1.00006ptG  such  that  a(c)(τ)=τa\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\tau^{\prime}.   

Proof.   Let  σ=p(τ)\sigma\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  and vv be  the leading  vertex of  σ\sigma.   Let

t:𝚫[q]×K(πv,n)iσE\quad t\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.35002ptv}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pti_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.99997ptE

be a special  trivialization of  the pull-back  bundle  iσpi_{\hskip 0.70004pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006ptp.   Then

t1(τ)=(𝜾q,z)andt1(τ)=(𝜾q,z).\quad t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.99997pt\right)\quad\ \mbox{and}\quad\ t^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz^{\prime}\hskip 1.99997pt\right)\hskip 3.00003pt.

for some qq-simplices  z,zz\hskip 0.50003pt,\hskip 3.00003ptz^{\prime}  of  K(πv,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.35002ptv}\hskip 1.00006pt,\hskip 1.99997ptn\hskip 1.49994pt),   i.e.  for some  z,z𝒵n(𝚫[q],πv)z\hskip 0.50003pt,\hskip 3.00003ptz^{\prime}\hskip 1.99997pt\in\hskip 3.00003pt\mathcal{Z}^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]\hskip 0.50003pt,\hskip 1.99997pt\pi_{\hskip 0.35002ptv}\hskip 1.49994pt).   Clearly,

𝒕(zz)(𝜾q,z)=(𝜾q,z).\quad\bm{t}\hskip 1.49994pt(\hskip 1.00006ptz^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz\hskip 1.49994pt)\hskip 1.00006pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptq}\hskip 0.50003pt,\hskip 1.99997ptz^{\prime}\hskip 1.99997pt\right)\hskip 3.00003pt.

Since  the cohomology  of  𝚫[q]\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006ptq\hskip 1.49994pt]  vanish,   the cocycle  zzz^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz  is  the coboundary  of  some normalized (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochain  dd.   Since  σ\sigma  is  free in dimension  n1n\hskip 1.99997pt-\hskip 1.99997pt1,   there exists a normalized (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochain  cc of  BB  such  that  d=iσ(c)d\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  ( the values of  cc  on  non-degenerate (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-simplices not  belonging  to  the  image  of  iσi_{\hskip 1.04996pt\sigma} are arbitrary)  and  hence

zz=d=iσ(c).\quad z^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}d\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 1.04996pt\sigma}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}c\hskip 1.49994pt)\hskip 3.00003pt.

Let  f=a(c)=f(c)f\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}c\hskip 1.49994pt).   Then  Df=cD_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}c  and  hence  d(fσ)=zzd\hskip 1.49994pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz^{\prime}\hskip 1.99997pt-\hskip 1.99997ptz.   It  follows  that

a(c)(τ)=f(τ)=τ.\quad a\hskip 1.49994pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\tau^{\prime}\hskip 3.00003pt.

This completes  the proof .    \blacksquare

6. Unraveling  simplicial  sets

The unraveling.   Let  Γ=Δ[]\Gamma\hskip 3.99994pt=\hskip 3.99994pt\Delta\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   As usual,  we will  denote by  Γn\Gamma_{n}  the set  of  nn-simplices of  Γ\Gamma.   The  unravelling  of  a simplicial  set  KK  is  the dimension-wise product  ΔK×Γ\Delta\hskip 0.50003ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   We will  denote  this Δ\Delta-set  simply  by  K×ΓK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   The goal  of  this section  is  to prove  that  the projection  p:K×ΓKp\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  induces isomorphisms in  bounded cohomology.

Averaging  operators.   An  averaging  operator  on  Γn\Gamma_{n}  is  a  bounded  linear  functional

mn:B(Γn)𝐑,\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994pt\Gamma_{n}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}\hskip 3.00003pt,

of  the norm  11  equal  to  the identity  on  constant  functions.   More precisely,   if  f(n)=af\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta  for all  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N},   then  it  is  required  that  mn(f)=am_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta.   A family  of  averaging operators  mnm_{\hskip 0.70004ptn},   where  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N},   is  said  to be  coherent   if  the operators  mnm_{\hskip 0.70004ptn}  commute with  the adjoints of  the face operators  i:ΓnΓn1\partial_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006pt\Gamma_{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\Gamma_{n\hskip 0.70004pt-\hskip 0.70004pt1},    i.e.  if

mni=mn1\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\circ\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006ptm_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}

for every  n1n\hskip 1.99997pt\geqslant\hskip 1.99997pt1  and  i𝐍i\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   Such a  family  defines a graded  map of  degree 0

m:B(K×Γ)B(K)\quad m_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.70004pt*}\hskip 0.50003pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 3.00003pt

by  averaging  cochains over  preimages  in  K×ΓK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  of  simplices of  KK.   In  fact ,  mm_{\hskip 0.70004pt*}  is  a cochain  map.   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   Clearly,   mp=idm_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}.

Banach  limits.   Given a function  f:𝐍𝐑f\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R},   let  sfsf  be  the function  𝐍𝐑\mathbf{N}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  defined  by  sf(n)=f(n+1)sf\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt).   A  Banach  limit  is  a  linear  functional  l:B(𝐍)𝐑l\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  such  that  its norm  is  equal  to 11,   l(f)=al\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta  if  ff  is  the constant  function  with  the value a𝐑a\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{R},   and  l(sf)=l(f)l\hskip 1.49994pt(\hskip 1.49994ptsf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)  for all  ff.   It  is  well  known  that  Banach  limits exist.   See,   for example,   [R],   Exercise  4  to  Chapter  3.   Let  us  fix a  Banach  limit  and  denote it  by  lim\lim.

Suppose now  that  f(n)f\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)  is  a  bounded  real-valued  function of  the natural  argument  nn  defined only  for sufficiently  large numbers nn.   If  NN  is  sufficiently  large,   then  the function  fN(n)=f(n+N)f_{\hskip 1.39998ptN}\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997ptN\hskip 1.49994pt)  is  defined  for all  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}.   Clearly,  fN+1=sfNf_{\hskip 1.39998ptN\hskip 1.39998pt+\hskip 1.39998pt1}\hskip 3.99994pt=\hskip 3.99994ptsf_{\hskip 1.39998ptN}.   Therefore  we can define  limf\lim\hskip 1.00006ptf  as  the common values of  limfN\lim\hskip 1.00006ptf_{\hskip 1.39998ptN}  for sufficiently  large natural  numbers  NN.

Suppose now  that  f(a,b,,z)f\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003ptb\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz\hskip 1.49994pt)  is  a  bounded  real-valued  function of  several  natural  variable  a,b,,za\hskip 0.50003pt,\hskip 3.00003ptb\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz  and  that  kk  is  one of  these variables.   By  fixing  values of  other variables and applying  lim\lim  to  the resulting  function of  kk  we will  get  a bounded  function of  the other variables  a,,k^,za\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003pt\widehat{k}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz,   which  we will  denote by  limkf(a,,k^,z)\lim_{\hskip 0.70004ptk}\hskip 1.00006ptf\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003pt\widehat{k}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz\hskip 1.49994pt).   As above,   this operation applies even  if  f(a,b,,z)f\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003ptb\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptz\hskip 1.49994pt)  is  defined only  for sufficiently  large  kk.

6.1. Lemma.   Coherent  families of  averaging operators exist .

Proof.   The nn-simplices of  Γ\Gamma can  be identified  with  the sequences (k0,k1,,kn)𝐍n+1(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.49994pt\in\hskip 1.49994pt\mathbf{N}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}  such  that  k0<k1<<knk_{\hskip 1.04996pt0}\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004pt1}\hskip 1.99997pt<\hskip 1.99997pt\ldots\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004ptn}.   Given a bounded  function  f:Γn𝐑f\hskip 1.00006pt\colon\hskip 1.00006pt\Gamma_{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R},   let  f(1)f^{\hskip 1.04996pt(\hskip 0.70004pt1\hskip 0.70004pt)}  be  the function  Γn1𝐑\Gamma_{n\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  defined  by

f(1)(k0,k1,,kn1)=limknf(k0,k1,,kn).\quad f^{\hskip 1.04996pt(\hskip 0.70004pt1\hskip 0.70004pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\lim\nolimits_{\hskip 1.39998ptk_{\hskip 0.50003ptn}}\hskip 1.99997ptf\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.

For  0mn+10\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt+\hskip 1.99997pt1  let  us  define  f(m)f^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 1.04996pt)}  recursively  by  f(0)=ff^{\hskip 1.04996pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 3.99994pt=\hskip 3.99994ptf  and

f(m+1)=(f(m))(1).\quad f^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1\hskip 1.04996pt)}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997ptf^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 1.04996pt)}\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004pt1\hskip 0.70004pt)}\hskip 3.00003pt.

Then  f(m)f^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 1.04996pt)}  is  a  function of  n+1mn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.99997pt-\hskip 1.99997ptm  natural  variables.   In  particular ,   f(n+1)f^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt)}  is  a  function of  zero variables,   i.e.  is  a constant.   Let  mn(f)m_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)  be  this constant.   Clearly,   each mnm_{\hskip 0.70004ptn}  is  an averaging operator.   We claim  that  the family  of  these operators  is  coherent,   i.e.  that

(6.1) (if)(n+2)=f(n+1)\quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt2\hskip 0.70004pt)}\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt)}

for every  i[n+1]i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.50003ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt].   By  the definition,

if(k0,k1,,kn+1)=f(k0,,ki^,kn+1)\quad\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994pt\widehat{k_{\hskip 0.70004pti}}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)

is  a function  independent  of  kik_{\hskip 0.70004pti}.   By  consecutively  taking  limits we see  that

(if)(m)(k0,k1,,kn+1m)=f(m)(k0,,ki^,kn+1m)\quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 0.70004pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004ptm}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptm\hskip 0.70004pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994pt\widehat{k_{\hskip 0.70004pti}}\hskip 3.99994pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004ptm}\hskip 1.49994pt)

for  n+1min\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.99997pt-\hskip 1.99997ptm\hskip 1.99997pt\geqslant\hskip 1.99997pti,   i.e.  for  mn+1im\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.99997pt-\hskip 1.99997pti.   In  particular ,

(if)(n+1i)(k0,k1,,ki)=f(n+1i)(k0,,ki1).\quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994ptk_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.00003pt.

By  taking  the  limit  of  the  left  hand side,   which  is  independent  of  kik_{\hskip 0.70004pti},   we see  that

(if)(n+2i)(k0,k1,,ki1)=f(n+1i)(k0,,ki1).\quad\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.99997pt\right)^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 1.39998pt2\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf^{\hskip 1.04996pt(\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt-\hskip 0.70004pti\hskip 1.04996pt)}\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.99994ptk_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.00003pt.

Taking  the  limits  ii  more  times shows  that  the equality  (6.1)  holds.   Therefore our  family  of  averaging  operators  is  indeed  coherent.    \blacksquare

Acyclicity  of  𝚫[n]×Γ\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   Recall  that  an mm-chain of  a Δ\Delta-set  DD  is  a finite formal  sum of  mm-simplices of  DD  with coefficients in some abelian  group.   A  vertex  of  a chain  is  defined as a vertex of  some simplex entering  into  this sum  with  non-zero coefficient.   If  an mm-chain cc of  𝚫[n]×Γ\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  is  a cycle,   then  cc  is  a  boundary  in  𝚫[n]×Γ\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   Indeed,   since cc  is  a finite sum,   there exists  m𝐍m\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  such  that  for every  vertex  (v,k)(\hskip 1.00006ptv\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)  of  cc  the inequality  k<mk\hskip 1.99997pt<\hskip 1.99997ptm  holds.   Let  ww  be a vertex of  𝚫[n]\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt],   and  let  us consider  the cone  bb  over cc with  the apex  (w,m)(\hskip 1.00006ptw\hskip 0.50003pt,\hskip 3.00003ptm\hskip 1.49994pt).   In  order  to ensure  that  this cone  is  indeed a chain of  𝚫[n]×Γ\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  one needs  to  build  the cone by  adding  the apex as  the  last  vertex of  every  simplex of  cc.   Then

c=(1)m+1b.\quad c\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)^{\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\partial\hskip 1.00006ptb\hskip 3.00003pt.

The sign  is  caused  by  adding  the apex as  the  last  vertex.

The method of  acyclic models.   For a simplicial  or Δ\Delta-set  KK  let  C(K)C_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)  be  the complex of  chains  in  KK  with coefficients in some abelian  group.   The method of  acyclic models applied  to  the functors KC(K)K\hskip 3.99994pt\longmapsto\hskip 3.99994ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) and KC(K×Γ)K\hskip 3.99994pt\longmapsto\hskip 3.99994ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) from simplicial  sets  to chain complexes  implies  that  p:C(K×Γ)C(K)p_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)  is  a chain  homotopy  equivalence.

We will  adapt  the method of  acyclic models  to prove  that  p:B(K)B(K×Γ)p^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  is  a cochain  homotopy  equivalence.   Let  mnm_{\hskip 0.70004ptn}  be a coherent  family  of  averaging operators.   Since  mp=idm_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id},   it  is  sufficient  to prove  that pm:B(K×Γ)B(K×Γ)p^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) is  cochain  homotopic  to  the identity.

Some special  chains.   Recall  that  d(i):[n1][n]d\hskip 1.49994pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  the unique strictly  increasing  map not  having ii as  a value.   Let  δi=d(i):𝚫[n1]𝚫[n]\delta_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.49994pt(\hskip 1.00006pti\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]  be  the simplicial  map induced  by  d(i)d\hskip 1.49994pt(\hskip 1.00006pti\hskip 1.49994pt).   We will  use  the following abbreviated  notation  for sums :

i=i(1)i.\quad\sum\nolimits_{\hskip 1.39998pti}^{\prime}\hskip 3.99994pt\bullet\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pti}\hskip 1.99997pt(\hskip 1.49994pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 3.99994pt\bullet\hskip 3.99994pt\hskip 3.99994pt.

For  every  two  simplices  τ,τΓn\tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime}\hskip 1.99997pt\in\hskip 3.00003pt\Gamma_{n}  we are going  to define an (n+1)(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)-chain  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  of  𝚫[n]×Γ\bm{\Delta}\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  with  integer coefficients in such a way  that

(6.2) cn(τ,τ)=(𝜾n,τ)(𝜾n,τ)i(δi×idΓ)(cn1(iτ,iτ)).\quad\partial\hskip 1.00006ptc_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)\hskip 3.00003pt.

In addition,   we will  require  that  the l1l_{\hskip 0.70004pt1}-norm of  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  ( i.e.  the sum of  the absolute values of  the coefficients)  can  be bounded  by constants depending  only  on nn.   For  n=0n\hskip 3.99994pt=\hskip 3.99994pt0  the condition  (6.2)  simplifies  to

c0(τ,τ)=(𝜾0,τ)(𝜾0,τ).\quad\partial\hskip 1.00006ptc_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.

We will  construct  such chains using a recursion  by  nn.   The chain  (𝜾0,τ)(𝜾0,τ)(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  has  the augmentation  0  and  is  a boundary  in  𝚫[0]×Γ\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt0\hskip 1.00006pt]\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  if  N2N\hskip 1.99997pt\geqslant 2.   Assuming  that  N2N\hskip 1.99997pt\geqslant\hskip 1.99997pt2,   let  us choose a vertex vv of  Γ\Gamma  strictly  larger  that  τ,τ\tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime}  in  the natural  order  (recall  that  Γ0=𝐍\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\mathbf{N})  and  take as  c0(τ,τ)c_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  the cone with  the apex  (𝜾0,v)(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)  over  the cycle  (𝜾0,τ)(𝜾0,τ)(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\bm{\iota}_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt).   Then  the l1l_{\hskip 0.70004pt1}-norm of  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  is  2\leqslant\hskip 1.99997pt2.

Suppose  that  the chains  cm(τ,τ)c_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  are already  defined  for  mn1m\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt-\hskip 1.99997pt1,   the condition  (6.2)  holds for  them,   and  there are  required  bounds on  the l1l_{\hskip 0.70004pt1}-norms.   In order  to define  the chains  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  we need  to verify  that  the right  hand side of  (6.2)  is  a cycle.   The boundary  of  the right  hand side  is

(𝜾n,τ)(𝜾n,τ)i(δi×idΓ)(cn1(iτ,iτ))\quad\partial\hskip 1.00006pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\partial\hskip 1.00006pt(\hskip 1.49994pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\partial\hskip 1.99997pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)
=i(i𝜾n,iτ)(i𝜾n,iτ)(δi×idΓ)(cn1(iτ,iτ))\quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt\bigr{)}\hskip 3.99994pt-\hskip 3.99994pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 3.99994pt-\hskip 3.99994pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.99997pt\partial\hskip 1.00006ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)
=i(δi×idΓ)((𝜾n1,iτ)(𝜾n1,iτ)cn1(iτ,iτ)).\quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\Bigl{(}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt\bigr{)}\hskip 3.00003pt-\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt-\hskip 3.00003pt\partial\hskip 1.00006ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\Bigr{)}\hskip 3.99994pt.

By  applying  (6.2)  with  n1n\hskip 1.99997pt-\hskip 1.99997pt1  in  the role of  nn  and cancelling  two occurrences of

(𝜾n1,iτ)(𝜾n1,iτ)\quad\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt\bigr{)}\hskip 3.00003pt-\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\bigr{)}

we conclude  that  the boundary of  the right  hand side of  (6.2)  is  equal  to

i(δi×idΓ)(k(δk×idΓ)(cn1(kiτ,kiτ)))\quad\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998ptk}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004ptk}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)\hskip 1.99997pt\right)
=ik(δi×idΓ)(δk×idΓ)(cn1(kiτ,kiτ))\quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\sum^{\prime}\nolimits_{\hskip 1.39998ptk}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\circ\hskip 1.49994pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004ptk}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)
=ik(δiδk×idΓ)(cn1(kiτ,kiτ)).\quad=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pt\sum^{\prime}\nolimits_{\hskip 1.39998ptk}\hskip 3.00003pt\bigl{(}\hskip 1.49994pt\delta_{\hskip 0.70004pti}\hskip 1.00006pt\circ\hskip 1.00006pt\delta_{\hskip 0.70004ptk}\hskip 1.49994pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004ptk}\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt\right)\hskip 1.99997pt\right)\hskip 3.99994pt.

As in  the proof  of  the identity  =0\partial\hskip 1.00006pt\circ\hskip 1.00006pt\partial\hskip 3.99994pt=\hskip 3.99994pt0,   all  summands  in  the  last  double sum cancel  (recall  that  \sum^{\prime}  denotes an alternating sum).   It  follows  that  the right  hand side of  (6.2)  is  a cycle.   Clearly,   the l1l_{\hskip 0.70004pt1}-norm of  the right  hand side can be bounded  in  terms of  nn and  the l1l_{\hskip 0.70004pt1}-norm of  cn1(ρ,ρ)c_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\rho\hskip 0.50003pt,\hskip 1.99997pt\rho^{\prime}\hskip 1.49994pt).   By  the inductive assumption  this implies  that  these norms can  bounded  in  terms of  nn  only.   Hence one can  take as  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  the cone over  the right  hand side with an appropriate apex.   Then  the l1l_{\hskip 0.70004pt1}-norms of  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  and of  the right  hand side are equal  and can  be bounded  in  terms of  nn.   This completes  the construction of  the chains  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt).

Partial  averaging.   We will  deal  with  the functions of  several  variables such as bounded  cochains  (σ,τ,τ)g(σ,τ,τ)(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  and apply  the averaging operators  to only  one of  the variables.   If ,   say,  τ\tau^{\prime}  runs over Γn\Gamma_{n},   we will  denote by

(σ,τ)mnτg(σ,τ,τ)\quad(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt

the function of  variables (σ,τ)(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt) resulting  from applying mnm_{\hskip 0.70004ptn}  to functions

τg(σ,τ,τ).\quad\tau^{\prime}\hskip 3.00003pt\longmapsto\hskip 3.00003ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.

With  these notations  the coherence condition  takes  the form

mnτg(σ,τ,iτ)=mn1ρg(σ,τ,ρ),\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\langle\hskip 1.00006pt\hskip 0.50003pt\rho\hskip 1.00006pt\rangle\hskip 1.49994ptg\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.49994pt)\hskip 3.00003pt,

where τ\tau^{\prime}  runs over  Γn\Gamma_{n}  and  ρ\rho  runs over  Γn1\Gamma_{n\hskip 0.70004pt-\hskip 0.70004pt1}.

Constructing  cochain  homotopies.   Let  KK  be a simplicial  set.   Every nn-simplex of  K×Γ×ΓK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  has  the form (σ,τ,τ)(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt),   where σKn\sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn}  and  τ,τΓn\tau\hskip 0.50003pt,\hskip 3.00003pt\tau^{\prime}\hskip 1.99997pt\in\hskip 3.00003pt\Gamma_{n}.   Clearly,

(σ,τ,τ)=(iσ×idΓ×Γ)(𝜾n,τ,τ).\quad(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pti_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma\hskip 0.70004pt\times\hskip 0.70004pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt(\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.00003pt.

Let  kn:Cn(K×Γ×Γ)Cn(K×Γ)k_{\hskip 0.70004ptn}\hskip 1.00006pt\colon\hskip 1.00006ptC_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  be  the unique homomorphism such  that

kn(σ,τ,τ)=(iσ×idΓ×Γ)(cn(τ,τ)).\quad k_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pti_{\hskip 1.04996pt\sigma}\hskip 1.00006pt\times\hskip 1.49994pt\operatorname{id}_{\hskip 1.39998pt\Gamma\hskip 0.70004pt\times\hskip 0.70004pt\Gamma}\hskip 1.49994pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.49994pt\left(\hskip 1.49994ptc_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.00003pt.

for every nn-simplex (σ,τ,τ)(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt).   The condition  (6.2)  implies  that

(6.3) kn(σ,τ,τ)=(σ,τ)(σ,τ)ikn1(iσ,iτ,iτ).\quad\partial\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 3.00003pt.

The next  step  is  to apply  the averaging operators mnm_{\hskip 0.70004ptn}.   If  fBn+1(K×Γ)f\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt),   then

(σ,τ,τ)f(kn(σ,τ,τ))\quad(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}

is  a bounded  function  because,   together  with  the l1l_{\hskip 0.70004pt1}-norm of  cn(τ,τ)c_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt),   the l1l_{\hskip 0.70004pt1}-norm of  kn(σ,τ,τ)k_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)  can  be bounded  in  terms of  nn only.   Let

hn+1(f)(σ,τ)=mnτf(kn(σ,τ,τ)).\quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

Then  hn+1(f)Bn(K×Γ)h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  and,   moreover ,

hn+1:Bn+1(K×Γ)Bn(K×Γ)\quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)

is  a  bounded operator .

6.2. Lemma.   The operators  hnh_{\hskip 0.70004ptn}  form  a cochain  homotopy  between pmp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*} and  the identity.

Proof.   Let  fBn(K×Γ)f\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt).   By  appling  ff  to  (6.3)  we see  that

f(kn(σ,τ,τ))=f(σ,τ)f(σ,τ)if(kn1(iσ,iτ,iτ)),\quad f\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\partial\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

or ,   equivalently,

f(kn(σ,τ,τ))=f(σ,τ)f(σ,τ)if(kn1(iσ,iτ,iτ)).\quad\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.99997pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

Next,   let  us  apply  mnτm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle  to  the  terms of  this equality.   By  the definition of  hn+1h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1},

mnτf(kn(σ,τ,τ))=hn+1(f)(σ,τ).\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.99997pt\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigr{)}\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.00003pt.

Since  f(σ,τ)f\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)  does not  depend on  τ\tau^{\prime},

mnτf(σ,τ)=f(σ,τ).\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.00003pt.

By  the definition of  m(f)m^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt),

mnτf(σ,τ)=m(f)(σ)=pm(f)(σ,τ).\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.00003pt.

Finally,   the coherence of  the family  mnm_{\hskip 0.70004ptn}  implies  that

mnτif(kn1(iσ,iτ,iτ))=imnτf(kn1(iσ,iτ,iτ))\quad m_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\langle\hskip 1.00006pt\tau^{\prime}\hskip 0.50003pt\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt
=imn1ρf(kn1(iσ,iτ,ρ))\quad\hskip 3.99994pt=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003ptm_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\langle\hskip 1.00006pt\hskip 0.50003pt\rho\hskip 1.00006pt\rangle\hskip 1.49994ptf\hskip 1.99997pt\bigl{(}\hskip 1.99997ptk_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 0.50003pt,\hskip 3.00003pt\rho\hskip 1.99997pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt
=ihn(f)(iσ,iτ)=(hn(f))(σ,τ).\quad\hskip 3.99994pt=\hskip 3.99994pt\sum^{\prime}\nolimits_{\hskip 1.39998pti}\hskip 3.00003pth_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.99997pth_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 1.49994pt(\hskip 1.99997pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.99997pt)\hskip 3.00003pt.

By  collecting  all  these observations  together ,   we see  that

hn+1(f)=fpm(f)(hn(f))\quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\bigl{(}\hskip 1.49994pt\partial^{\hskip 0.70004pt*}f\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.99997pt-\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\bigl{(}\hskip 1.99997pth_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}

for every  fBn(K×Γ)f\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  and  hence

hn+1=idpmhn,\quad h_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.99997pt\operatorname{id}\hskip 3.00003pt-\hskip 3.00003ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 3.00003pt-\hskip 3.00003pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pth_{\hskip 0.70004ptn}\hskip 3.00003pt,

or ,   equivalently,  idpm=hn+1+hn\operatorname{id}\hskip 3.00003pt-\hskip 3.00003ptp^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptm^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 3.00003pt+\hskip 3.00003pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997pth_{\hskip 0.70004ptn}.    \blacksquare

6.3. Theorem.   The projection  p:K×ΓKp\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  induces  isometric  isomorphisms  in  the bounded cohomology  groups.   

Proof.   Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  together  with  mp=idm^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptp^{\hskip 0.70004pt*}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}  implies  that  the induced  homomorphisms are isomorphisms.   Since  the norms of  mm^{\hskip 0.70004pt*}  and  pp^{\hskip 0.70004pt*} are  1\leqslant\hskip 1.99997pt1,   these  induced  homomorphisms are isometries.    \blacksquare

7. Isometric  isomorphisms  in  bounded  cohomology

7.1. Theorem.   Let  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be a  locally  trivial  bundle with  the  fiber  K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt).   If  n>1n\hskip 1.99997pt>\hskip 1.99997pt1,   then  the map induced  by pp  in  bounded cohomology  is  an  isometric  isomorphism.   

Proof.   Let  𝚪=𝚫[]\bm{\Gamma}\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 0.50003pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   Let  us  consider  the diagram

   E{\displaystyle E}E×Γ{E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma}E×𝚪{E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\phantom{\hskip 1.00006pt,}}B{B}B×Γ{B\hskip 1.00006pt\times\hskip 1.00006pt\Gamma}B×𝚪,{B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.00006pt,}p\scriptstyle{\displaystyle p\phantom{\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}}}p×id\scriptstyle{\displaystyle p\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}}p×id\scriptstyle{\displaystyle p\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}}

where  the  left  horizontal  arrows are projections,   and  the right  horizontal  arrows are inclusions.   The unravellings  E×ΓE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  and  B×ΓB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  are only Δ\Delta-sets,   and  the arrows of  this diagram are simplicial  maps of  Δ\Delta-sets,   except  of  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  and  p×id:E×𝚪B×𝚪p\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma},   which are maps of  simplicial  sets.   Clearly,   this diagram  is  commutative.   By  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the  left  horizontal  arrows induce  isometric  isomorphisms  in  bounded cohomology.   Therefore,   it  is  sufficient  to prove  that  the simplicial  map  q=p×id:E×ΓB×Γq\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  induces  isometric  isomorphisms  in  bounded cohomology.   Since  𝚪\bm{\Gamma}  is  contractible,   the projections  E×𝚪EE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE  and  B×𝚪BB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  are homotopy  equivalences.   In  particular ,   these projections induce  isometric  isomorphisms  in  bounded cohomology.   It  follows  that  the right  horizontal  arrows of  the diagram  induce isometric  isomorphisms  in  bounded cohomology.

Clearly,   the simplicial  map  𝒒=p×id:E×𝚪B×𝚪\bm{q}\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  is  a  locally  trivial  bundle.   The main  part  of  the proof  is  an application of  the  theory  developed  in  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  to 𝒒\bm{q}  in  the role of  pp.   Let  G=𝒞n1(B×𝚪,π(𝒒))G\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}^{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt(\hskip 1.00006pt\bm{q}\hskip 1.49994pt)\hskip 1.49994pt) be  the group of  normalized (n1)(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochains of  B×𝚪B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  with  coefficients in  the  local  system  π(𝒒)\pi\hskip 1.49994pt(\hskip 1.00006pt\bm{q}\hskip 1.49994pt).   The group  GG  acts on  E×𝚪E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  by  homotopic  to  the  identity  automorphisms over  B×𝚪B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}.   The group GG  is  abelian and  hence  is  amenable.

Clearly,   a simplex of  E×𝚪E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  belongs  to  E×ΓE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  if  and  only  if  its image in  B×𝚪B\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  belongs  to  B×ΓB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   It  follows  that  the action of  GG  leaves  the Δ\Delta-subset  E×ΓE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  invariant.   Obviously,   every  simplex of  Γ\Gamma  is  free in every  dimension.   It  follows  that  every  simplex of  B×ΓB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  is  free in every  dimension.   Hence  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  implies  that  E×Γ/G=B×ΓE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma/\hskip 0.50003ptG\hskip 3.99994pt=\hskip 3.99994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  and

q:B(B×Γ)B(E×Γ)\quad q^{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.49994ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)

induces isomorphism  from B(B×Γ)B^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) to  the space GG-invariant  cochains in  B(E×Γ)B^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt).   Let

q:H^(B×Γ)H^(E×Γ)\quad q^{\hskip 0.70004pt**}\hskip 1.99997pt\colon\hskip 1.49994pt\widehat{H}^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\widehat{H}^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)

be  the map induced  by  qq^{\hskip 0.70004pt*}.   Let  us prove  that  qq^{\hskip 0.70004pt**}  is  surjective.   Let γBm(E×Γ)\gamma\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) be a cocycle.   Since E×ΓE×𝚪E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  induces  isomorphisms in  bounded cohomology,   there exists a cocycle cBm(E×𝚪)c\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.49994pt) such  that  the restriction of  cc  to E×ΓE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  is  cohomologous  to γ\gamma.   Since GG  is  amenable and  acts on  EE  by  automorphisms  homotopic  to  the identity,   the cocycle cc  is  cohomologous  to a GG-invariant  bounded cocycle bb.   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   Let  β\beta  be  the restriction of  bb  to  E×𝚪E\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}.   Then  β\beta  is  cohomologous  to γ\gamma and  is  GG-invariant.   Since  β\beta  is GG-invariant,  β=q(α)\beta\hskip 3.99994pt=\hskip 3.99994ptq^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\alpha\hskip 1.49994pt)  for some  αBm(B×𝚪)\alpha\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}\hskip 1.49994pt).   It  follows  that  qq^{\hskip 0.70004pt**}  is  surjective.

Let  us prove  now  that  qq^{\hskip 0.70004pt**}  is  injective.   Since GG  is  amenable,   there exists a  GG-invariant  mean  μ:B(G)𝐑\mu\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}.   For each m𝐍m\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  let  us define a map

μ:Bm(E×Γ)Bm(B×Γ)\quad\mu_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)

as follows.   Let  cBm(E×Γ)c\hskip 1.99997pt\in\hskip 1.99997ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt) and σ\sigma  is  an mm-simplex of  B×ΓB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   Let  us  choose an mm-simplex  σ\sigma\hskip 0.50003pt^{\prime}  of  E×ΓE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma such  that  p(σ)=σp\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sigma  and consider  the function  gc(gσ)g\hskip 3.99994pt\longmapsto\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\sigma\hskip 0.50003pt^{\prime}\hskip 1.49994pt)  on  GG.   Let  the value of  the cochain  μ(c)\mu_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  on σ\sigma  be  equal  to  the value of  μ\mu on  this function.   Since μ\mu  is  GG-invariant,   this value  is  independent  on  the choice of  σ\sigma\hskip 0.50003pt^{\prime}.   Therefore  μ\mu_{\hskip 0.70004pt*} is  well-defined.   Clearly,   the composition  μq\mu_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptq^{\hskip 0.70004pt*}  is  equal  to  the identity.   Since GG acts by  automorphisms,  μ\mu_{\hskip 0.70004pt*} commutes with  the duals  i\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}  of  the face operators  i\partial_{\hskip 0.70004pti} and  hence with  the coboundary  operator  \partial^{\hskip 0.70004pt*}.   Hence  μ\mu_{\hskip 0.70004pt*}  leads  to maps

μ:H^m(E×Γ)H^m(B×Γ).\quad\mu_{\hskip 0.70004pt**}\hskip 1.00006pt\colon\hskip 1.00006pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.00003pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)\hskip 3.00003pt.

Since  the composition  μq\mu_{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.99997ptq^{\hskip 0.70004pt*}  is  equal  to  the identity,   the composition  μq\mu_{\hskip 0.70004pt**}\hskip 1.00006pt\circ\hskip 1.99997ptq^{\hskip 0.70004pt**}  is  also equal  to  the identity.   It  follows  that  qq^{\hskip 0.70004pt**} is  injective.

We see  that  qq^{\hskip 0.70004pt**} is  an  isomorphism.   It  remains  to prove  that  qq^{\hskip 0.70004pt**} is  an  isometric isomorphism.   Since  qq^{\hskip 0.70004pt**}  is  induced  by  a simplicial  map,   the norm of  qq^{\hskip 0.70004pt**}  is  1\leqslant\hskip 1.99997pt1.   On  the other  hand,   the norm of  μ\mu  is  1\leqslant\hskip 1.99997pt1  and  hence  the norms of  μ\mu_{\hskip 0.70004pt*}  and  μ\mu_{\hskip 0.70004pt**}  are also  1\leqslant\hskip 1.99997pt1.   Since  qq^{\hskip 0.70004pt**}  is  an  isomorphism and  μq\mu_{\hskip 0.70004pt**}\hskip 1.00006pt\circ\hskip 1.00006ptq^{\hskip 0.70004pt**}  is  the identity,  μ\mu_{\hskip 0.70004pt**}  is  the inverse of  qq^{\hskip 0.70004pt**}.   So,   the norms of  qq^{\hskip 0.70004pt**}  and of  its  inverse are  1\leqslant\hskip 1.99997pt1.   It  follows  that  qq^{\hskip 0.70004pt**}  is  an  isometry.    \blacksquare

Remark.   One can  prove  that  qq^{\hskip 0.70004pt**} is  an  isometry  in a different  way.   Let  us  return  to  the proof  of  the surjectivity  of  qq^{\hskip 0.70004pt**}.    Since E×ΓE×𝚪E\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE\hskip 1.00006pt\times\hskip 1.00006pt\bm{\Gamma}  induces  isometric  isomorphisms in  bounded cohomology,   one can choose  cc  in such a way  that  γc\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997ptc\hskip 1.99997pt\|.   By  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  one can choose  bb  in such a way  that  cb\|\hskip 1.99997ptc\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997ptb\hskip 1.99997pt\|.   Clearly,  bβ\|\hskip 1.99997ptb\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997pt\beta\hskip 1.99997pt\|  and  β=α\|\hskip 1.99997pt\beta\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt\|\hskip 1.99997pt\alpha\hskip 1.99997pt\|.   It  follows  that  γα\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt\geqslant\hskip 1.99997pt\|\hskip 1.99997pt\alpha\hskip 1.99997pt\|.   Therefore for every  cohomology  class  𝜸H^m(E×Γ)\bm{\gamma}\hskip 1.99997pt\in\hskip 3.00003pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptE\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  there exists a cohomology  class  𝜶H^m(B×Γ)\bm{\alpha}\hskip 1.99997pt\in\hskip 3.00003pt\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  such  that  𝜸=q(𝜶)\bm{\gamma}\hskip 3.99994pt=\hskip 3.99994ptq^{\hskip 0.70004pt**}\hskip 1.00006pt(\hskip 1.00006pt\bm{\alpha}\hskip 1.49994pt)  and  𝜶𝜸\|\hskip 1.99997pt\bm{\alpha}\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\bm{\gamma}\hskip 1.99997pt\|.   Since,   at  the same  time,   q(𝜶)𝜶\|\hskip 1.99997ptq^{\hskip 0.70004pt**}\hskip 1.00006pt(\hskip 1.00006pt\bm{\alpha}\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\bm{\alpha}\hskip 1.99997pt\|,   the isomorphism  qq^{\hskip 0.70004pt**}  is  an  isometric  isomorphism.

7.2. Theorem.   Let π\pi be a discrete group and  κπ\kappa\hskip 1.99997pt\subset\hskip 1.99997pt\pi be a normal  amenable subgroup of  π\pi.   Let  p:ππ/κp\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi/\kappa  be  the quotient  homomorphism.   Then  Bp:BπB(π/κ)\mathit{B}\hskip 0.50003ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)  induces  isometric  isomorphism  in  bounded cohomology.   

Proof.   The proof  is  completely  similar  to  the proof  of  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology,   with  the  map

Bp:BπB(π/κ)\quad\mathit{B}\hskip 0.50003ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)

playing  the role of  p:EBp\hskip 1.00006pt\colon\hskip 1.00006ptE\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB.   As we saw  in  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology,   the group  G=C0(𝐍,κ)G\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994pt\mathbf{N}\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt)  acts on  Bπ×Γ\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Gamma  and  Bπ×Γ/G=B(π/κ)×Γ\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 0.24994pt/\hskip 0.24994ptG\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt(\hskip 1.00006pt\pi/\kappa\hskip 1.00006pt)\hskip 1.00006pt\times\hskip 1.00006pt\Gamma.   See  (4.3).   While,   to  the best  of  author’s  knowledge,   the group C0(V,κ)C^{\hskip 1.04996pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\kappa\hskip 1.49994pt) is  not  known  to be amenable,   the group C0(V,κ)C_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 1.99997pt\kappa\hskip 1.49994pt) is  a direct  sum of  copies of  κ\kappa and  hence  is  amenable.   Hence one can argue as  in  the proof  of  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  and conclude  that  Bp\mathit{B}\hskip 0.50003ptp  induces  isometric  isomorphism in  bounded cohomology.    \blacksquare

The fundamental  group.   Let  KK  be a connected  Kan  simplicial  set.   Suppose  that  KK  has only  one vertex,   which  we will  denote by vv.   Let  us  interpret  a 11-simplex σK1\sigma\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004pt1} as a  loop based at  vv.   The  Kan  extension  property  implies  that  for every  two 11-simplices  ρ,σ\rho\hskip 0.50003pt,\hskip 3.00003pt\sigma  there exists a 22-simplex ω\omega such  that  ρ=2ω\rho\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt2}\hskip 1.00006pt\omega  and  σ=0ω\sigma\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 1.04996pt0}\hskip 1.00006pt\omega.   One can easily  check  that  up  to homotopy  τ=1ω\tau\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pt1}\hskip 1.00006pt\omega  does not  depends on  the choice of  ω\omega,   and,   moreover ,   up  to homotopy  τ\tau  depends only  on  the homotopy  classes of  σ,τ\sigma\hskip 0.50003pt,\hskip 3.00003pt\tau.   One can  take  the homotopy  class of  τ\tau  as  the  product  rsr\hskip 1.00006pt\cdot\hskip 1.00006pts  of  the homotopy  classes  r,sr\hskip 0.50003pt,\hskip 3.00003pts  of  ρ,σ\rho\hskip 0.50003pt,\hskip 3.00003pt\sigma  respectively.   The set  of  homotopy  classes of  11-simplicies  together  with  this product  is  the  fundamental  group  π1(K,v)\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt) of  KK.   If ,   in  addition,  KK  is  minimal,   then every  two homotopic 11-simplices are equal.   In  this case  π1(K,v)\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)  can  be identified  with  K1K_{\hskip 0.70004pt1}  as a set.

7.3. Lemma.   Suppose  that  KK  is  a connected  minimal  Kan  simplicial  set.   Then  K(1)K\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt) is  canonically  isomorphic  to  Bπ1(K,v)\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt),   where vv is  the unique vertex of  KK.   

Proof.   For  i,j,n𝐍i\hskip 0.50003pt,\hskip 3.00003ptj\hskip 0.50003pt,\hskip 3.00003ptn\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  such  that  0i<jn0\hskip 1.99997pt\leqslant\hskip 1.99997pti\hskip 1.99997pt<\hskip 1.99997ptj\hskip 1.99997pt\leqslant\hskip 1.99997ptn  let  θi,j:[1][n]\theta_{\hskip 0.70004pti\hskip 0.35002pt,\hskip 0.70004ptj}\hskip 1.99997pt\colon\hskip 1.00006pt[\hskip 1.00006pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  be  the map

θi,j:0i, 1j.\quad\theta_{\hskip 0.70004pti\hskip 0.35002pt,\hskip 0.70004ptj}\hskip 1.00006pt\colon\hskip 1.00006pt0\hskip 3.99994pt\longmapsto\hskip 3.99994pti\hskip 1.99997pt,\quad\ 1\hskip 3.99994pt\longmapsto\hskip 3.99994ptj\hskip 3.00003pt.

Suppose  that  ρ1,ρ2,,ρn\rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn}  are 11-simplices of  KK.   If

θi1,i(σ)=ρi\quad\theta^{\hskip 0.70004pt*}_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1\hskip 0.35002pt,\hskip 0.70004pti}\hskip 1.99997pt(\hskip 1.49994pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004pti}

for some nn-simplex σ\sigma of  KK and every ii between 11 and nn,   then

θi,j(σ)=ρiρj\quad\theta^{\hskip 0.70004pt*}_{\hskip 0.70004pti\hskip 0.35002pt,\hskip 0.70004ptj}\hskip 1.99997pt(\hskip 1.49994pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 3.99994pt\ldots\hskip 3.99994pt\cdot\hskip 1.00006pt\rho_{\hskip 0.70004ptj}

for every  i<ji\hskip 1.99997pt<\hskip 1.99997ptj.   This  follows  from  the definition of  the product  together  with an  induction  by  jij\hskip 1.99997pt-\hskip 1.99997pti.   In  turn,   this implies  that  the restriction of  iσi_{\hskip 0.70004pt\sigma}  to  sk1𝚫[n]\operatorname{sk}_{\hskip 1.04996pt1}\hskip 0.50003pt\bm{\Delta}\hskip 0.50003pt[\hskip 0.24994ptn\hskip 1.00006pt]  is  uniquely  determined  by  ρ1,ρ2,,ρn\rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn}.   On  the other  hand,   Kan  extension  property  implies  that  such a simplex σ\sigma exists for every nn-tuple  ρ1,ρ2,,ρn\rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn}.   It  follows  that  one can  identify  nn-simplices of  K(1)K\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)  with sequences  (ρ1,ρ2,,ρn)(\hskip 1.49994pt\rho_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt\rho_{\hskip 0.70004ptn}\hskip 1.49994pt)  of  elements of  π1(K,v)\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt),   i.e.  with nn-simplices of  Bπ1(K,v)\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt).   A direct  check  shows  that  this identification  respects  the boundary  and  degeneracy  operators.   The  lemma  follows.    \blacksquare

7.4. Theorem.   Let  KK  be  a connected  Kan  simplicial  set  and  f:KBπ1(K,v)f\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt),   where vv  is  a vertex of  KK,   be a simplicial  map  inducing isomorphism of  fundamental  groups.   Then  ff  induces an  isomorphism  in  bounded cohomology.   

Proof.   The proof  is  based on  the  theory of  Postnikov  systems.   See  Section  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  for a review of  the definitions and  the  theorems used  in  this proof .

Let  π1\pi_{\hskip 0.70004pt1}  be  the fundamental  group of  KK.   Since  Bπ1\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.70004pt1}  is  a  Kan  simplicial  set,   every  two map  KBπ1K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.70004pt1}  inducing  isomorphism of  the fundamental  groups are homotopic.   Hence  it  is  sufficient  to prove  to prove  the  theorem  for one such  map.   Let  MM  be a  minimal  Kan  simplicial  subset  of  KK  which  is  a strong deformation  retract  of  KK.   Since  MM  is  minimal  and connected,  MM  has only one vertex,   which we denote by  vv.   Let  M(0),M(1),,M(n),M\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt\ldots  and  the maps  pnp_{\hskip 0.35002ptn}  and  pm,np_{\hskip 0.35002ptm,\hskip 0.70004ptn}  be  the  Postnikov  system of  MM.   Then every  map

pn,n1:M(n)M(n1)\quad p_{\hskip 0.35002ptn,\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)

is  a  locally  trivial  bundle  with  the fiber  K(πn,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi_{\hskip 0.70004ptn}\hskip 1.00006pt,\hskip 1.99997ptn\hskip 1.49994pt),   where  πn=πn(M,v)\pi_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)  is  the nnth  homotopy  group of  MM.   If  n>1n\hskip 1.99997pt>\hskip 1.99997pt1,   then  pn,n1p_{\hskip 0.35002ptn,\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}  induces  isometric  isomorphism  in  bounded cohomology.   It  follows  that  for every  n>1n\hskip 1.99997pt>\hskip 1.99997pt1  the map

pn,1:M(n)M(1)\quad p_{\hskip 0.35002ptn,\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)

induces  isometric  isomorphism  in  bounded cohomology.   On  the other  hand,  for  nmn\hskip 1.99997pt\geqslant\hskip 1.99997ptm  the mmth  skeletons of  MM and  M(n)M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt) are  the same by  the very  definition of  M(n)M\hskip 1.00006pt(\hskip 1.00006ptn\hskip 1.49994pt).   By  the definition,   the bounded cohomology  group  H^m(M)\widehat{H}^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.49994pt)  depends only on  the (m+1)(\hskip 1.00006ptm\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.00006pt)th  skeleton  skm+1M\operatorname{sk}_{\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003ptM  of  MM.   It  follows  that  the map

p1:MM(1)\quad p_{\hskip 0.35002pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)\hskip 3.00003pt

induces  isometric  isomorphism  in  bounded cohomology.   By  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the simplicial  set  M(1)M\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt) is  canonically  isomorphic  to  Bπ1\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}.   Moreover ,   the description of  fundamental  groups preceding  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  shows  that  p1:MM(1)p_{\hskip 0.35002pt1}\hskip 1.00006pt\colon\hskip 1.00006ptM\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)  induces isomorphism of  fundamental  groups.   If  r:KMr\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM  is  a strong deformation  retraction,   then rr induces isomorphism of  fundamental  groups and  isometric  isomorphism  in  bounded cohomology.   It  follows  that

p1r:KM(1)=Bπ1\quad p_{\hskip 0.35002pt1}\hskip 1.00006pt\circ\hskip 1.49994ptr\hskip 1.49994pt\colon\hskip 1.49994ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptM\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}

also has  this property.   This proves  the  theorem  for  f=p1rf\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.35002pt1}\hskip 1.00006pt\circ\hskip 1.49994ptr.   As was pointed out  above,   any  special  case of  the  theorem  implies  the general  one.   This completes  the proof .    \blacksquare

7.5. Corollary.   Let  K,LK\hskip 0.50003pt,\hskip 3.00003ptL  be  connected  Kan  simplicial  sets.   If  f:KLf\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  is  a simplicial  map inducing isomorphism of  fundamental  groups,   then  ff  induces isomorphism  in  bounded cohomology.    \blacksquare

7.6. Theorem.   Let  K,LK\hskip 0.50003pt,\hskip 3.00003ptL  be connected  Kan  simplicial  sets and  let  vv be a vertex of  KK.   Let  f:KLf\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL  be a simplicial  map.   If  f:π1(K,v)π1(L,f(v))f_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptL\hskip 0.50003pt,\hskip 1.99997ptf\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.49994pt)  is  surjective and  has amenable kernel,   then  ff  induces an  isometric  isomorphism  in  bounded cohomology.   

Proof.   In order  not  to clutter  the notations,   we will  not  mention  the base points  v,f(v)v\hskip 0.50003pt,\hskip 3.00003ptf\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)  anymore.   Let  us  consider  the diagram

   K{\displaystyle K}L{L}Bπ1(K){\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)}Bπ1(L),{\mathit{B}\hskip 1.99997pt\pi_{\hskip 0.35002pt1}\hskip 1.00006pt(\hskip 1.49994ptL\hskip 1.49994pt)\hskip 1.00006pt,}f\scriptstyle{\displaystyle f\hskip 1.00006pt}pK\scriptstyle{\displaystyle p_{\hskip 1.04996ptK}\hskip 1.00006pt}pL\scriptstyle{\displaystyle\hskip 1.00006ptp_{\hskip 1.04996ptL}}Bf\scriptstyle{\displaystyle\mathit{B}\hskip 0.50003ptf_{\hskip 0.70004pt*}}

where  pK,pLp_{\hskip 1.04996ptK}\hskip 1.00006pt,\hskip 3.00003ptp_{\hskip 1.04996ptL}  are some maps inducing  isomorphisms of  fundamental  groups.   By  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the map  Bf\mathit{B}\hskip 0.50003ptf_{\hskip 0.70004pt*}  induces  isometric  isomorphism  in  bounded cohomology.   By  Theorem  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  the maps  pK,pLp_{\hskip 1.04996ptK}\hskip 1.00006pt,\hskip 3.00003ptp_{\hskip 1.04996ptL}  induce isometric  isomorphisms  in  bounded cohomology.   Since  the above diagram  is  commutative up  to homotopy,   it  follows  that  ff  induces  isometric  isomorphism  in  bounded cohomology.    \blacksquare

A .1.  The  constructions  of  Milnor  and  Segal

A  . 1.1. Lemma.   The Δ\Delta-set  π\mathcal{B}\hskip 1.00006pt\pi  is  canonically  isomorphic  to  the product  Bπ×Δ[]\mathit{B}\hskip 1.99997pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].   

Proof.   To begin  with,   we will  give an explicit  description of  simplices of  π\mathcal{B}\hskip 1.00006pt\pi.   The nn-simplices of  π\mathcal{E}\hskip 1.00006pt\pi  can  be identified  with  pairs of  sequences

(g0,g1,,gn)πn+1,(k0,k1,,kn)𝐍n+1,\quad(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\pi^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt,\quad(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{N}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt,

such  that  k0<k1<<knk_{\hskip 1.04996pt0}\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004pt1}\hskip 1.99997pt<\hskip 1.99997pt\ldots\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004ptn},   and  gπg\hskip 1.99997pt\in\hskip 1.99997pt\pi  acts by  the rules

g(g0,g1,,gn)=(gg0,gg1,,ggn)and\quad g\hskip 1.00006pt\cdot\hskip 1.49994pt(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptg\hskip 1.00006ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg\hskip 1.00006ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\quad\ \mbox{and}\quad\
g(k0,k1,,kn)=(k0,k1,,kn).\quad g\hskip 1.00006pt\cdot\hskip 1.00006pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.

In order  to give a direct  description of  simplices of  π\mathcal{B}\hskip 1.00006pt\pi,   let  us  set use  the  bar  notations

g0[g1g2gn]=(g0,g0g1,,g0g1gn).\quad g_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 1.04996pt0}\hskip 1.00006ptg_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptg_{\hskip 1.04996pt0}\hskip 1.00006ptg_{\hskip 0.70004pt1}\hskip 1.00006pt\ldots\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.

In  these notations  the action of  π\pi  takes  the form

g(g0[g1g2gn])=gg0[g1g2gn].\quad g\hskip 1.00006pt\cdot\hskip 1.49994pt\left(\hskip 1.99997ptg_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptg\hskip 1.00006ptg_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.00003pt.

Therefore nn-simplices of  π\mathcal{B}\hskip 1.00006pt\pi  can  be identified  with  pairs of  sequences

[g1g2gn]πn,(k0,k1,,kn)𝐍n+1,\quad[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 1.99997pt\in\hskip 1.99997pt\pi^{\hskip 0.70004ptn}\hskip 1.00006pt,\quad(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{N}^{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt,

such  that  k0<k1<<knk_{\hskip 1.04996pt0}\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004pt1}\hskip 1.99997pt<\hskip 1.99997pt\ldots\hskip 1.99997pt<\hskip 1.99997ptk_{\hskip 0.70004ptn}.

The boundary  operators act  independently  on  these sequences.   Namely,   the action of  the boundary  operator  i\partial_{\hskip 0.70004pti}  on  the sequences  (k0,k1,,kn)(\hskip 1.99997ptk_{\hskip 1.04996pt0}\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)  is  the same as  in Δ[]\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt],   and  the action on  the sequences  [g1g2gn][\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]  is  given  by  the rules

0[g1g2gn]=[g2g3gn],\quad\partial_{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.49994ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt3}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 1.99997pt,
n[g1g2gn]=[g1g2gn1],and\quad\partial_{\hskip 0.70004ptn}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt]\hskip 1.99997pt,\quad\mbox{and}\hskip 3.00003pt
i[g1g2gn]=[g1gigi+1gn]for0<i<n.\quad\partial_{\hskip 0.70004pti}\hskip 1.99997pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004pt2}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.49994ptg_{\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid g_{\hskip 0.70004pti}\hskip 1.00006ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 0.50003pt\mid\hskip 1.00006pt\ldots\hskip 0.50003pt\mid\hskip 1.00006ptg_{\hskip 0.70004ptn}\hskip 1.49994pt]\quad\mbox{for}\quad 0\hskip 1.99997pt<\hskip 1.99997pti\hskip 1.99997pt<\hskip 1.99997ptn\hskip 3.00003pt.

This differs  from  the definition of  i\partial_{\hskip 0.70004pti} for Bπ\mathit{B}\hskip 1.49994pt\pi only  in  notations  ( the product gigi+1g_{\hskip 0.70004pti}\hskip 1.00006ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} is  interpreted as  the composition gi+1gig_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptg_{\hskip 0.70004pti}).   It  follows  that  π=Bπ×Δ[]\mathcal{B}\hskip 1.00006pt\pi\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\pi\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt].    \blacksquare

Unravelings  of  classifying spaces of  categories.   For a category  𝒞\mathcal{C}  let  𝒞𝒏\mathcal{C}_{\hskip 0.70004pt\bm{n}}  be  the subcategory  of  𝒞×𝒏\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}  obtained  by  deleting all  morphisms of  the form  (c,n)(c,n)(\hskip 1.00006ptc\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt(\hskip 1.00006ptc^{\prime}\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  where c,cc\hskip 0.50003pt,\hskip 3.00003ptc^{\prime} are objects of  𝒞\mathcal{C} and n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N},   except  identity  morphisms.   This construction  is  due  to  Segal  [S],   who called  𝒞𝒏\mathcal{C}_{\hskip 0.70004pt\bm{n}}  the  unraveling  of  𝒞\mathcal{C}  over  the ordered  set  𝐍\mathbf{N}  and  pointed  out  that  for a group π\pi  the geometric realizations of  π\mathcal{B}\hskip 1.00006pt\pi  and  Bπ𝒏\mathit{B}\hskip 1.49994pt\pi_{\hskip 0.70004pt\bm{n}}  are homeomorphic.

This result  can  be interpreted  in  terms of  simplicial  sets and extended  to arbitrary  categories.   Namely,   Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  suggests  that  the Δ\Delta-set  𝒞=B𝒞×Δ[]\mathcal{B}\hskip 0.50003pt\mathcal{C}\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.49994pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]  is  an analogue of  π\mathcal{B}\hskip 1.00006pt\pi.   In  contrast  with  the case groups,   in  general  𝒞\mathcal{B}\hskip 0.50003pt\mathcal{C}  is  not  arising  from a simplicial  complex.   It  turns out  that  the simplicial  set  𝚫𝒞\bm{\Delta}\hskip 1.00006pt\mathcal{B}\hskip 0.50003pt\mathcal{C}  is  isomorphic  to  B𝒞𝒏\mathit{B}\hskip 1.49994pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}.   Before proving  this,   it  is  convenient  to introduce  the notion of  the  core  of  a simplicial  set.

The core of  a simplicial  set.   Following  Rourke  and  Sanderson  [RS],   let  us  define  the  core  of  a simplicial  set  KK  as  the Δ\Delta-subset core(K)\operatorname{core}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt) of  KK  consisting  of  simplices of  the form θ(σ)\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt) with  non-degenerate σ\sigma and strictly  increasing θ\theta.   The simplicial  set  KK  is  said  to have  non-degenerate core  if  non-degenerate simplices of  KK form a Δ\Delta-subset  of  KK.   Clearly,   this Δ\Delta-subset  is  equal  to core(K)\operatorname{core}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt).   There  is  a canonical  simplicial  map Θ:𝚫core(K)K\Theta\hskip 1.00006pt\colon\hskip 1.00006pt\bm{\Delta}\operatorname{core}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  defined  by  Θ(σ,ρ)=ρ(σ)\Theta\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt).

A  . 1.2. Lemma.   If  KK  has  non-degenerate core,   then  Θ\Theta  is  an  isomorphism.   

Proof.   Every  simplex σ\sigma of  a simplicial  set  admits a unique presentation  σ=θ(τ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  with  non-degenerate τ\tau and surjective θ\theta.   See  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology.   This  implies  that  Θ\Theta  is  surjective.   If  KK  has non-degenerate core and  Θ(σ1,ρ1)=Θ(σ2,ρ2)\Theta\hskip 1.49994pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Theta\hskip 1.49994pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt2}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt2}\hskip 1.49994pt),   then  ρ1(σ1)=ρ2(σ2)\rho_{\hskip 0.70004pt1}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004pt2}^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt2}\hskip 1.49994pt)  and  σ1,σ2\sigma_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003pt\sigma_{\hskip 0.70004pt2}  are non-degenerate.   Therefore  the uniqueness part  of  Lemma  Simplicial  sets,   Postnikov  systems, and  bounded  cohomology  implies  that  (σ1,ρ1)=(σ2,ρ2)(\hskip 1.00006pt\sigma_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006pt\sigma_{\hskip 0.70004pt2}\hskip 0.50003pt,\hskip 1.99997pt\rho_{\hskip 0.70004pt2}\hskip 1.49994pt).    \blacksquare

A  . 1.3. Theorem.   The simplicial  set  𝚫𝒞\bm{\Delta}\hskip 1.00006pt\mathcal{B}\hskip 0.50003pt\mathcal{C}  is  isomorphic  to  B𝒞𝐧\mathit{B}\hskip 1.49994pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}.   

Proof.   By  restricting  the projection  𝒞×𝒏𝒏\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\bm{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{n}  to  the subcategory  𝒞𝒏\mathcal{C}_{\hskip 0.70004pt\bm{n}}  we get  a functor  p:𝒞𝒏𝒏p\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\bm{n}.   This  functor  induces a simplicial  map

Bp:B𝒞𝒏B𝒏=𝚫[].\quad\mathit{B}\hskip 1.00006ptp\hskip 1.00006pt\colon\hskip 1.00006pt\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathit{B}\hskip 1.00006pt\bm{n}\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.00003pt.

By  the definition of  the category  𝒞𝒏\mathcal{C}_{\hskip 0.70004pt\bm{n}}  a morphism ff of  this category  is  an  identity  morphism  if  and  only  if  p(f)p\hskip 1.49994pt(\hskip 1.49994ptf\hskip 1.49994pt)  is  an  identity  morphism.   It  follows  that  a simplex σ\sigma of  B𝒞𝒏\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}  is  non-degenerate  if  and  only  if  Bp(σ)\mathit{B}\hskip 1.00006ptp\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.00006pt)  is  non-degenerate.   This implies  that

core(B𝒞𝒏)=B𝒞×core𝚫[]=B𝒞×Δ[]=𝒞,\quad\operatorname{core}\hskip 1.49994pt(\hskip 1.49994pt\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\operatorname{core}\hskip 1.49994pt\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathit{B}\hskip 1.99997pt\mathcal{C}\hskip 1.00006pt\times\hskip 1.00006pt\Delta\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt]\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 0.50003pt\mathcal{C},

where  B𝒞\mathit{B}\hskip 1.99997pt\mathcal{C}  is  considered as a Δ\Delta-set.   Also,   since 𝚫[]\bm{\Delta}\hskip 1.00006pt[\hskip 1.00006pt\infty\hskip 1.00006pt] has  non-degenerate core,   this implies  that  B𝒞𝒏\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}} has non-degenerate core.   Therefore  B𝒞𝒏=𝚫core(B𝒞𝒏)=𝚫𝒞\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\operatorname{core}\hskip 1.49994pt(\hskip 1.49994pt\mathit{B}\hskip 1.99997pt\mathcal{C}_{\hskip 0.70004pt\bm{n}}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bm{\Delta}\hskip 1.00006pt\mathcal{B}\hskip 0.50003pt\mathcal{C}.    \blacksquare

A .2.  Few  technical  lemmas

A  . 2.1. Lemma.   If  the averaging  maps  mnm_{\hskip 0.70004ptn},  n𝐍n\hskip 1.99997pt\in\hskip 3.00003pt\mathbf{N}  form  a coherent  family,   then  mm_{\hskip 0.70004pt*}  is  a cochain  map.   

Proof.   For an nn-cochain  fBn(K×Γ)f\hskip 1.99997pt\in\hskip 1.99997ptB^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  and  an nn-simplex  σKn\sigma\hskip 1.99997pt\in\hskip 1.99997ptK_{\hskip 0.70004ptn}  let  fσ:Γn𝐑f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt\colon\hskip 1.00006pt\Gamma_{n}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  be defined  by  fσ(τ)=f(σ,τ)f_{\hskip 0.70004pt\sigma}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt).   Then  m(f)(σ)=mn(fσ)m_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004pt\sigma}\hskip 1.49994pt).

Suppose  that  fBn(K×Γ)f\hskip 1.99997pt\in\hskip 1.99997ptB^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.00006pt\times\hskip 1.00006pt\Gamma\hskip 1.49994pt)  and  ρKn+1\rho\hskip 1.99997pt\in\hskip 3.00003ptK_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}.   Then

(m(f))(ρ)=i=0n+1(1)im(f)(iρ)\quad\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.49994pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\rho\hskip 1.49994pt\right)
=i=0n+1(1)imn(fiρ)\quad\phantom{\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004ptn}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)
=i=0n+1(1)imn+1(i(fiρ))\quad\phantom{\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.49994pt\right)\hskip 3.00003pt

because  mn=mn+1im_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\partial_{\hskip 0.70004pti}.   If  τΓn+1\tau\hskip 1.99997pt\in\hskip 1.99997pt\Gamma_{n\hskip 0.70004pt+\hskip 0.70004pt1},   then

i(fiρ)(τ)=f(iρ,iτ)\quad\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\rho\hskip 0.50003pt,\hskip 3.00003pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt\tau\hskip 1.49994pt\right)
=f(i(ρ,τ))\quad\phantom{\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptf\hskip 1.00006pt\left(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 0.50003pt,\hskip 3.00003pt\tau\hskip 1.49994pt)\hskip 1.49994pt\right)
=i(f)(ρ,τ)=i(f)ρ(τ)\quad\phantom{\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 0.50003pt,\hskip 1.99997pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)

It  follows  that  i(fiρ)=i(f)ρ\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf_{\hskip 2.10002pt\partial_{\hskip 0.50003pti}\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}  and  hence

(m(f))(ρ)=i=0n(1)imn+1(i(f)ρ).\quad\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pti\hskip 1.39998pt=\hskip 1.39998pt0}^{\hskip 1.39998ptn}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}\hskip 1.49994pt\right)\hskip 3.00003pt.

Since  the maps  mn+1m_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}  and  hhρh\hskip 3.99994pt\longmapsto\hskip 3.99994pth_{\hskip 1.04996pt\rho}  are  linear ,   it  follows  that

(m(f))(ρ)=mn+1(i=0n+1(1)ii(f)ρ)\quad\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 3.00003pt\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt\right)^{i}\hskip 1.99997pt\partial_{\hskip 0.70004pti}^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994ptf\hskip 1.49994pt\right)_{\hskip 0.70004pt\rho}\hskip 1.99997pt\right)
=mn+1(f)(ρ)\quad\phantom{\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptm_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt\left(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}f\hskip 1.49994pt\right)\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)

and  hence  (m(f))=m(f)\partial^{\hskip 0.70004pt*}\left(\hskip 1.99997ptm_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptm_{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.99997pt\partial^{\hskip 0.70004pt*}\hskip 1.00006ptf\hskip 1.49994pt\right).    \blacksquare

A  . 2.2. Lemma.   Suppose  that  n1n\hskip 1.99997pt\geqslant\hskip 1.99997pt1.   A  normalized nn-cochain  c:ππc\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  of   K(π,n)K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)  is  a cocycle  if  and  only  if  cc  is  a  homomorphism  ππ\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi.   

Proof.   An nn-cochain uu of  𝚫n+1\bm{\Delta}^{n\hskip 0.70004pt+\hskip 0.70004pt1}  is  determined  by  its values  ui=u(i𝜾n+1)u_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.49994pt\partial_{\hskip 0.70004pti}\hskip 1.99997pt\bm{\iota}_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)  on  the non-degenerate nn-simplices of  𝚫n+1\bm{\Delta}^{n\hskip 0.70004pt+\hskip 0.70004pt1}.   Therefore,   one can  identify  uu  with  the (n+2)(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt)-tuple

(u0,u1,,un+1)\quad(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.00003pt

of  elements of  π\pi.   The boundary  operators i\partial_{\hskip 0.70004pti} are given  by  the restrictions  to  faces,   i.e.

i(u0,u1,,un+1)=ui\quad\partial_{\hskip 0.70004pti}\hskip 1.49994pt(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu_{\hskip 0.70004pti}

Suppose  that π\pi is  abelian.   Then uu  is  cocycle,   i.e.  belongs  to  K(π,n)n+1K\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1},   if  and  only  if

i=0n+1(1)iui=0.\quad\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997ptu_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.

An nn-cochain  c:ππc\hskip 1.00006pt\colon\hskip 1.00006pt\pi\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi  is  a cocycle  if  and  only  if  c(u)=0\partial^{\hskip 0.70004pt*}\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0  for every  simplex  uK(π,n)n+1u\hskip 1.99997pt\in\hskip 3.00003ptK\hskip 1.00006pt(\hskip 1.00006pt\pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt)_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1},   i.e.  if  and  only  if  the last  equality  implies

i=0n+1(1)ic(ui)=0\quad\sum_{i\hskip 1.39998pt=\hskip 1.39998pt0}^{n\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 3.99994pt(\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)^{\hskip 0.70004pti}\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0

for every (n+2)(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt)-tuple uu.   Clearly,   this  is  the case when  cc  is  a  homomorphism.   Conversely,   if  cc  is  a cocycle,   then  the  last  equality  for  the (n+2)(\hskip 1.00006ptn\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt)-tuples

(u0,u1,,un+1)=(v,v+w,w,0,,0),\quad(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptu_{\hskip 0.70004ptn\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptv\hskip 1.00006pt,\hskip 3.99994ptv\hskip 1.99997pt+\hskip 1.99997ptw\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.00006pt,\hskip 3.99994pt0\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pt0\hskip 1.49994pt)\hskip 3.00003pt,

where  v,wπv\hskip 0.50003pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997pt\pi,   together  with  the fact  that  c(0)=0c\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0  implies  that

c(v)c(v+w)+c(w)=0\quad c\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.00006ptv\hskip 1.99997pt+\hskip 1.99997ptw\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0

for every  v,wπv\hskip 0.50003pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997pt\pi.   This proves  that  cc  is  a homomorphism  when  π\pi  is  abelian.

If  π\pi  is  not  abelian,   then  n=1n\hskip 3.99994pt=\hskip 3.99994pt1  and a  triple  u=(u0,u1,u2)u\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptu_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003ptu_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.00003ptu_{\hskip 1.04996pt2}\hskip 1.49994pt)  is  a cocycle  if  and  only  if  u1=u2u0u_{\hskip 1.04996pt1}\hskip 3.99994pt=\hskip 3.99994ptu_{\hskip 1.04996pt2}\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 1.04996pt0}.   It  follows  that  cc  is  a cocycle  if  and  only  if  c(u2u0)=c(u2)c(u0)c\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 1.04996pt2}\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 1.04996pt0}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 1.04996pt2}\hskip 1.00006pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006ptu_{\hskip 1.04996pt0}\hskip 1.00006pt) for every  pair  u2,u0πu_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.00003ptu_{\hskip 1.04996pt0}\hskip 1.99997pt\in\hskip 1.99997pt\pi,   i.e.  if  and  only  if  cc  is  a homomorphism.   In addition,   we see  that  when  n=1n\hskip 3.99994pt=\hskip 3.99994pt1,   every  cocycle  is  automatically  normalized.    \blacksquare

A  . 2.3. Lemma.   Suppose  that  KK  is  a simplicial  set  and  GG  is  an amenable  group acting  on  KK  on  the  left  by  automorphisms  homotopic  to  the identity.   Then every  bounded cocycle  cc  of  KK  is  boundedly  cohomologous  to a  GG-invariant  bounded cocycle with  the norm  c\leqslant\hskip 1.99997pt\|\hskip 1.99997ptc\hskip 1.99997pt\|.   

Proof.   We will  denote  the action  by  (g,σ)gσ(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997pt\sigma\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\sigma,   where  gGg\hskip 1.99997pt\in\hskip 1.99997ptG  and  σ\sigma  is  a simplex of  KK.   Let  B(G)B\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt)  be  the space of  bounded  real-valued  functions on  GG.   For  gGg\hskip 1.99997pt\in\hskip 1.99997ptG  and  fB(G)f\hskip 1.99997pt\in\hskip 3.00003ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt)  let  gfg\hskip 1.00006pt\cdot\hskip 1.00006ptf  be  the function  hf(hg)h\hskip 3.99994pt\longmapsto\hskip 3.99994ptf\hskip 1.00006pt(\hskip 1.49994pthg\hskip 1.49994pt).   This defines an action of  GG  on  B(G)B\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt).

Since  GG  is  amenable,   there exists a  GG-invariant  mean  on  B(G)B\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt),   i.e.  a  linear  functional  μ:B(G)𝐑\mu\hskip 1.00006pt\colon\hskip 1.00006ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  such  that  the norm of  μ\mu  is  1\leqslant\hskip 1.99997pt1,  μ\mu  takes a constant  function  to its value,   and  μ(gf)=μ(f)\mu\hskip 1.00006pt(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006ptf\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)  for every  gGg\hskip 1.99997pt\in\hskip 1.99997ptG  and  fB(G)f\hskip 1.99997pt\in\hskip 3.00003ptB\hskip 1.00006pt(\hskip 1.49994ptG\hskip 1.49994pt).

For  gGg\hskip 1.99997pt\in\hskip 1.99997ptG  let  a(g):KKa\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  be  the automorphism defined  by  gg.   Since  a(g)a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)  is  homotopic  to  the identity,   there exists a cochain  homotopy  between  a(g):B(K)B(K)a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)  and  the identity.   In other  words,   for each  m>0m\hskip 1.99997pt>\hskip 1.99997pt0  a  homomorphism

km(g):Bm(K)Bm1(K)\quad k_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB^{\hskip 0.35002ptm\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)

is  defined,   and

a(g)(c)c=km+1(g)(c)+km(g)(c)\quad a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 0.70004ptm\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 0.50003pt\circ\hskip 1.00006pt\partial^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.99994pt+\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\circ\hskip 1.00006ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)

for every  cBm(K)c\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt).   Suppose  that  cc  is  a cocycle.   Then  this identity  simplifies  to

a(g)(c)c=km(g)(c).\quad a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\circ\hskip 1.00006ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 3.00003pt.

By  applying  this equality  to an mm-simplex σ\sigma of  KK  using  the definition of  \partial^{\hskip 0.70004pt*},   we get

(7.1) a(g)(c)(σ)c(σ)=km(g)(c)(σ).\quad a\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.49994pt\partial\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt.

We would  like  to consider all  terms of  this equality  as functions of  gg  and apply  μ\mu  to  them.

To begin  with,   let  γ(σ)\gamma\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)  be  the result  of  applying  μ\mu  to  the function

ga(g)(c)(σ)=c(gσ).\quad g\hskip 3.99994pt\longmapsto\hskip 3.99994pta\hskip 1.49994pt(\hskip 1.00006ptg\hskip 1.49994pt)^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt.

The map  γ:σγ(σ)\gamma\hskip 1.00006pt\colon\hskip 1.00006pt\sigma\hskip 3.99994pt\longmapsto\hskip 3.99994pt\gamma\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)  is  a  bounded mm-cochain of  KK  and  γc\|\hskip 1.99997pt\gamma\hskip 1.99997pt\|\hskip 1.99997pt\leqslant\hskip 1.99997pt\|\hskip 1.99997ptc\hskip 1.99997pt\|.   Since μ\mu  is  GG-invariant,  γ\gamma  is  also GG-invariant.   Next,   the result  of  applying  μ\mu  to  the constant  map  gc(σ)g\hskip 3.99994pt\longmapsto\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)  is  c(σ)c\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt).   Let  τ\tau  be an (m1)(\hskip 1.00006ptm\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-simplex of  KK  and  consider  the function

gkm(g)(c)(τ).\quad g\hskip 3.99994pt\longmapsto\hskip 3.99994ptk_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptg\hskip 1.49994pt)\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.00003pt.

Let  κm(c)(τ)𝐑\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}  be  the result  of  applying  μ\mu  to  this function.   The map

κm(c):τκm(c)(τ)\quad\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\tau\hskip 3.99994pt\longmapsto\hskip 3.99994pt\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006pt\tau\hskip 1.49994pt)

is  a bounded (m1)(\hskip 1.00006ptm\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)-cochain of  KK.   i.e.  κm(c)Bm1(K)\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003ptB^{\hskip 0.35002ptm\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt).   In  terms of  γ\gamma  and  κm(c)\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)  the result  of  applying  μ\mu  to  (7.1)  can  be written as follows :

γ(σ)c(σ)=κm(c)(σ).\quad\gamma\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 1.99997pt-\hskip 3.00003ptc\hskip 1.49994pt(\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.49994pt\partial\hskip 1.00006pt\sigma\hskip 1.49994pt)\hskip 3.00003pt.

Therefore  γc=κm(c)\gamma\hskip 1.99997pt-\hskip 1.99997ptc\hskip 3.99994pt=\hskip 3.99994pt\partial^{\hskip 0.70004pt*}\hskip 0.50003pt\kappa_{\hskip 0.70004ptm}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.49994pt).   The  lemma  follows.    \blacksquare

A  . 2.4. Lemma.   Every  nn-simplex σ\sigma of  a simplicial  set  KK  admits a unique presentation of  the form  σ=θ(τ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  with a surjective non-decreasing  map θ\theta and a non-degenerate simplex  τ\tau.   

Proof.   This  is  a  well  known  lemma of  Eilenberg  and  Zilber  [E Z].   See  [E Z],   (8.3).

Let  us  choose among all  presentations  σ=θ(τ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)  with surjective  θ:[n][m]\theta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptm\hskip 1.00006pt]  and  an mm-simplex τ\tau  some presentation  with  minimal  possible mm.   Clearly,   the minimality  of  mm  implies  that  τ\tau  is  non-degenerate.   This proves  the existence.   Suppose  that  also  σ=η(ρ)\sigma\hskip 3.99994pt=\hskip 3.99994pt\eta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt),   where  η:[n][k]\eta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptn\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.50003ptk\hskip 1.00006pt]  is  surjective  and ρ\rho is  a kk-simplex.   Since  θ,η\theta\hskip 0.50003pt,\hskip 3.00003pt\eta  are surjective non-decreasing maps,   there exist  strictly  increasing  maps  α:[m][n]\alpha\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.24994ptm\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  and  β:[k][n]\beta\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 0.50003ptk\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt]  such  that  θα\theta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha  and  ηβ\eta\hskip 1.00006pt\circ\hskip 1.00006pt\beta  are  the identity  maps.   Then

(ηα)(ρ)=α(η(ρ))=α(θ(τ))=(θα)(τ)=τ.\quad(\hskip 1.49994pt\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.49994pt)^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\alpha^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994pt\eta^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\rho\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt\alpha^{\hskip 0.70004pt*}\hskip 1.00006pt\left(\hskip 1.49994pt\theta^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.49994pt)^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\tau\hskip 3.00003pt.

Similarly,  (θβ)(τ)=ρ(\hskip 1.49994pt\theta\hskip 1.00006pt\circ\hskip 1.00006pt\beta\hskip 1.49994pt)^{\hskip 0.35002pt*}\hskip 1.00006pt(\hskip 1.49994pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\rho.   Since  τ\tau  and  ρ\rho  are both  non-degenerate,   both  ηα\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha  and  θβ\theta\hskip 1.00006pt\circ\hskip 1.00006pt\beta  are strictly  injective.   It  follows  that  m=km\hskip 3.99994pt=\hskip 3.99994ptk  and  both  ηα\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha  and  θβ\theta\hskip 1.00006pt\circ\hskip 1.00006pt\beta  are equal  to  the identity.   In  turn,   this  implies  that  τ=ρ\tau\hskip 3.99994pt=\hskip 3.99994pt\rho.   Suppose  that  θ(i)η(i)\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.99994pt\neq\hskip 3.99994pt\eta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)  for some  i[n]i\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 0.24994ptn\hskip 1.00006pt].   One can  choose  the map  α\alpha  in such a way  that  α(θ(i))=i\alpha\hskip 1.00006pt(\hskip 1.49994pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti.   Then

(ηα)(θ(i))=ηαθ(i)=η(i)θ(i),\quad(\hskip 1.49994pt\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.49994pt)\hskip 1.49994pt\bigl{(}\hskip 1.49994pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha\hskip 1.00006pt\circ\hskip 1.00006pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\eta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.99994pt\neq\hskip 3.99994pt\theta\hskip 1.00006pt(\hskip 1.00006pti\hskip 1.49994pt)\hskip 3.00003pt,

contrary  to  ηα\eta\hskip 1.00006pt\circ\hskip 1.00006pt\alpha  being  equal  to  the identity.   Hence  θ=η\theta\hskip 3.99994pt=\hskip 3.99994pt\eta.   The uniqueness follows.    \blacksquare

References

  • [E] S.  Eilenberg,   Singular homology theory,   Annals  of  Mathematics,   V.  45,   No.  3  (1944),   407 – 447.
  • [EM1E{\hskip 0.50003pt}M_{\hskip 0.35002pt1}] S.  Eilenberg,   S.  MacLane,   Relations between  homology  and  homotopy  groups of  spaces,   Annals  of  Mathematics,   V.  46,   No.  3  (1945),   480 – 509.
  • [EM2E{\hskip 0.50003pt}M_{\hskip 0.35002pt2}] S.  Eilenberg,   S.  MacLane,   Relations between  homology  and  homotopy  groups of  spaces.   II,   Annals  of  Mathematics,   V.  51,   No.  3  (1950),   514 – 533.
  • [EM3E{\hskip 0.50003pt}M_{\hskip 0.35002pt3}] S.  Eilenberg,   S.  MacLane,   On  the groups  H(Π,n)H\hskip 1.00006pt(\hskip 1.49994pt\Pi\hskip 0.50003pt,\hskip 1.99997ptn\hskip 1.49994pt),   III,   Annals  of  Mathematics,   V.  60,   No.  3  (1954),   513 – 557.
  • [E Z] S.  Eilenberg,   J.  Zilber ,   Semi-simplicial  complexes and singular  homology,   Annals  of  Mathematics,   V.  51,   No.  3  (1950),   499 – 513.
  • [F M] R.  Frigerio,   M.  Moraschini,   Gromov’s  theory of  multicomplexes  with applications  to bounded cohomology  and simplicial  volume,   2018,   150  pp.   ArXiv : 1808.07307v3.
  • [G Z] P.  Gabriel,   M.  Zisman,   Calculus  of  fractions and  homotopy  theory,   Springer-Verlag  New  York  Inc.,   1967,   x,  168  pp.   
  • [G  J] P.G.  Goerss,   J.F.  Jardine,   Simplicial  homotopy  theory ,  Springer ,   1999,   xv,  510  pp.
  • [Gr ] M.  Gromov,   Volume and bounded cohomology,   Publ.  Mathematiques  IHES,   V.  56,  (1982),   pp.  5 – 99.
  • [I1I_{\hskip 0.35002pt1}] N.V.  Ivanov,   Foundations of the bounded cohomology theory,   Research  in  topology,   5,   Notes  of  LOMI  scientific  seminars,   V.  143  (1985),   pp.  69 – 109.   English  translation :   J.  Soviet  Math.,    V.  37  (1987),   pp.  1090 – 1114.
  • [I2I_{\hskip 0.35002pt2}] N.V.  Ivanov,   Notes on the bounded cohomology theory,   2017,   94  pp.   
    ArXiv : 1708.05150.
  • [Ma] J.P.  May ,   Simplicial  objects in algebraic  topology ,   The  University  of  Chicago  Press,   Chicago  and  London,   1967,   viii,  161  pp.   
  • [Mi ] J.W.  Milnor ,   Construction of universal bundles,   II,   Annals of Mathematics,   V.  63,   No.  3  (1956),   pp.  430 – 436.
  • [Mo] J.C.  Moore,   Semi-simplicial  complexes and  Postnikov  systems,   1958  Symposium internacional de topología algebraica,   Universidad Nacional Autónoma de México and  UNESCO,   Mexico City,   pp.  232 – 247.
  • [P1P_{\hskip 0.35002pt1}] M.M.  Postnikov,   Determination of  the homology  groups of  a space by  means of  the homotopy  invariants,   Doklady  Akad.  Nauk SSSR,  V.  76,  No.  8  (1951),  pp.  359 – 362.
  • [P2P_{\hskip 0.35002pt2}] M.M.  Postnikov,   Investigations in homotopy theory of continuous mappings,   Trudy  Mat.  Inst.  Steklov,   V.  46,   Izdat.  Akad.  Nauk  SSSR,   Moscow,   1955.   158  pp.   English  translation :   Investigations in  the  homotopy  theory  of  continuous mappings.   I.  The algebraic theory  of  systems.   II.  The natural  system and  homotopy  type.    American  Mathematical  Society  Translations  –  Series  2,   V.  7,   1957,   pp.  1 – 134.
  • [R] W.  Rudin,   Functional analysis,   McGraw-Hill,   New York,   1973,   xiii,  397  pp.
  • [RS] C.P.  Rourke,   B.J.  Sanderson,   Δ\Delta-sets  I :   Homotopy  theory,   The Quarterly Journal of Mathematics. Oxford. Second Series,   V.  22,   No.  3  (1971),   pp.  321 – 338.
  • [S] G.  Segal,   Classifying spaces and spectral sequences,   Publicationes  Mathematiques  IHES,   V.  34,  (1968),   pp.  105 – 112.

October  10,   2020

https :/​/nikolaivivanov.com

E-mail :   nikolai.v.ivanov @ icloud.com