This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


Simple Modular invariant model
for Quark, Lepton, and flavored-QCD axion

Y. H. Ahn1111Email: [email protected], Sin Kyu Kang1,2222Email: [email protected] 1Institute for Convergence Fundamental Study, Seoul National University of Science and Technology,
Seoul 139-743, Korea
2School of Liberal Arts, Seoul National University of Science and Technology, Seoul 139-743, Korea
Abstract

We propose a minimal extension of the Standard Model by incorporating sterile neutrinos and a QCD axion to account for the mass and mixing hierarchies of quarks and leptons and to solve the strong CP problem, and by introducing GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} symmetry. We demonstrate that the Kähler transformation corrects the weight of modular forms in the superpotential and show that the model is consistent with the modular and U(1)XU(1)_{X} anomaly-free conditions. This enables a simple construction of a modular-independent superpotential for scalar potential. Using minimal supermultiplets, we demonstrate a level 3 modular form-induced superpotential. Sterile neutrinos explain small active neutrino masses via the seesaw mechanism and provide a well-motivated U(1)XU(1)_{X} breaking scale, whereas gauge singlet scalar fields play crucial roles in generating the QCD axion, heavy neutrino mass, and fermion mass hierarchy. The model predicts a range for the U(1)XU(1)_{X} breaking scale from 101310^{13} GeV to 101510^{15} GeV for 1TeV<m3/2<106TeV1\,\mbox{TeV}<m_{3/2}<10^{6}\,\mbox{TeV}. In the supersymmetric limit, all Yukawa coefficients in the superpotential are given by complex numbers with an absolute value of unity, implying a democratic distribution. Performing numerical analysis, we study how model parameters are constrained by current experimental results. In particular, the model predicts that the value of the quark Dirac CP phase falls between 3838^{\circ} to 8787^{\circ}, which is consistent with experimental data, and the favored value of the neutrino Dirac CP phase is around 250250^{\circ}. Furthermore, the model can be tested by ongoing and future experiments on axion searches, neutrino oscillations, and 0νββ0\nu\beta\beta-decay.

I Introduction

Despite being theoretically self-consistent and successfully demonstrating experimental results in low-energy experiments so far, the Standard Model (SM) of particle physics leaves unanswered questions in theoretical and cosmological issues and fails to explain some physical phenomena such as neutrino oscillations, muon g2g-2, etc. Various attempts have been made to extend the SM in order to address these questions and account for experimental results that cannot be explained within the SM. For instance, the canonical seesaw mechanism Minkowski:1977sc has been proposed to explain the tiny masses of neutrinos by introducing new heavy neutral fermions alongside the SM particles. Additionally, the Peccei-Quinn (PQ) mechanism Peccei-Quinn has been suggested to solve the strong CP problem in quantum chromodynamics (QCD) by extending the SM to include an anomalous U(1)XU(1)_{X} symmetry.

Recently, Feruglio Feruglio:2017spp proposed a new idea regarding the origin of the structure of lepton mixing. He applied modular invariance 333Modular invariance was analyzed for supersymmetric field theories in Ref.Ferrara:1989bc . under the modular group to determine the flavor structure of leptons without introducing a number of scalar fields. This approach requires the Yukawa couplings among twisted states to be modular forms. It is a string-derived mechanism that naturally restricts the possible variations in the flavor structure of quarks and leptons, which are unconstrained by the SM gauge invariance. However, explaining the hierarchies of the masses and mixing in the quark and lepton sectors remains a challenge. As studied in most references modular , the Yukawa coefficients are assumed to be free parameters 444In Ref.modular2 , the Yukawa coefficients are assumed to be of order unity. which can be determined by matching them with experimental data on fermion mass and mixing hierarchies. This approach is not significantly different from that in the SM, except for the introduction of modular forms. Alternatively, it is also possible to take the Yukawa coefficient to be of order unity, accommodating the hierarchies of the fermion masses and mixing. Recently, Ref.Feruglio:2023uof has demonstrated that the vanishing QCD angle, a large CKM phase, and the reproduction of quark and lepton masses and mixings can be achieved by using coefficients up to order one, see also Ref.Kobayashi:2020oji .

To incorporate sterile neutrinos and a QCD axion into the SM and provide a natural explanation for the mass and mixing hierarchies of quarks and leptons, we propose an extension of a modular invariant model based on the four dimensional (4D) effective action derived from superstring theory with GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} symmetry. The non-Abelian discrete symmetry ΓN\Gamma_{N} with N=2,3,4,5N=2,3,4,5 plays a role of modular invariance, and may originate from superstring theory in compactified extra dimensions, where it acts as a finite subgroup of the modular group deAdelhartToorop:2011re . To ensure the validity of a modular invariant model with GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X}, we take the followings into account:

(i)

T-duality relates one type of superstring theory to another, and it also appears in the 4D low-energy effective field theory derived from superstring theory (for a review, see Ref.string_book ). In particular, 4D low-energy effective field theory of type IIA string theory with a certain compactification is invariant under the modular transformation of the modulus τ\tau,

τγτ=aτ+bcτ+d,(a,b,c,dZ,adbc=1).\displaystyle\tau\rightarrow\gamma\tau=\frac{a\tau+b}{c\tau+d}\,,\quad(a,b,c,d\in{Z},~{}~{}ad-bc=1)\,. (1)

So, the 4D action we conisder is required to be invariant under the modular transformation and gauged U(1)XU(1)_{X} symmetry, as well as the Kähler transformation (refer to Eq.(9)). This is necessary to cancel out the modular anomaly (see Ref.Derendinger:1991hq ) associated with the modular transformation Eq.(1) under the non-local modular group ΓN\Gamma_{N} and the gauged U(1)XU(1)_{X} anomaly, at the quantum level.

(ii)

While type II string theory allows for low axion decay constant models via D-branes, leading to the gauged U(1)XU(1)_{X} that becomes a global PQ symmetry when the U(1)XU(1)_{X} gauge boson is decoupled Dine:1987xk , heterotic string theory typically has a U(1)XU(1)_{X} breaking scale with a decay constant close to the string scale. The broken U(1)XU(1)_{X} gauge symmetry leaves behind a protected global U(1)XU(1)_{X} that is immune to quantum-gravitational effects, achieved via the Green-Schwarz (GS) mechanism Green:1984sg . The PQ breaking scale, or the low axion decay constant, can be determined by taking into account both supersymmetry (SUSY)-breaking effects Burgess:2003ic and supersymmetric next-leading-order Planck-suppressed terms Nanopoulos:1983sp ; Ahn:2016hbn ; Ahn:2017dpf .

The model features a minimal set of fields that transform based on representations of GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X}, and includes modular forms of level NN. These modular forms act as Yukawa couplings and transform under the modular group ΓN\Gamma_{N}. It should be noted that the Kähler transformation (refer to Eq.(9)) corrects the weight of modular forms in the superpotential due to the modular invariance of both the superpotential and Kähler potential, see Eq.(20). This enables a simple construction of a τ\tau-independent superpotential for scalar potential. The so-called flavored-PQ symmetry U(1)XU(1)_{X} guarantees the absence of bare mass terms Ahn:2014gva . We minimally extend the model by incorporating three right-handed neutrinos NcN^{c} and SM gauge singlet scalar fields χ(χ~)\chi(\tilde{\chi}). The scalar fields with a modular weight of zero and charged by +()+(-) under U(1)XU(1)_{X} play a crucial role in generating the QCD axion, heavy neutrino mass, and fermion mass hierarchy. Then the complex scalar field =χ(χ~){\cal F}=\chi(\tilde{\chi}) with modular weight zero acts on dimension-four(three) operators well-sewed by GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} and modular invariance with different orders, which generate the effective interactions for the SM and the right-handed neutrinos as follows,

c~1𝒪3()1+𝒪4n=0finitecn(Λ)n+\displaystyle\tilde{c}_{1}\,{\cal O}_{3}\,({\cal F})^{1}+{\cal O}_{4}\sum_{n=0}^{\rm finite}c_{n}\,\left(\frac{{\cal F}}{\Lambda}\right)^{n}+... (2)

Here, Λ\Lambda is the scale of flavor dynamics above which unknown physics exists as a UV cutoff, and Yukawa coefficients cn(c~1)c_{n}(\tilde{c}_{1}) are all complex numbers assumed to have a unit absolute value (|c~1|,|cn|=1|\tilde{c}_{1}|,|c_{n}|=1). The dimension-4(3)4(3) operators 𝒪4(3){\cal O}_{4(3)} are determined by GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} and modular invariance in the supersymmetric limit. These operators include modular forms of level NN, which transform according to the representation of ΓN\Gamma_{N}Feruglio:2017spp . We will demonstrate that any additive finite correction terms, which could potentially be generated by higher weight modular forms, are prohibited due to the modular weight of the χ(χ~)\chi(\tilde{\chi}) fields being zero. Note that there exist the infinite series of higher-dimensional operators induced solely by the combination of χχ~\chi\tilde{\chi} in the supersymmetric limit. These operators, represented by dots in Eq.(2), can be absorbed into the finite leading order terms and effectively modify the coefficients c~1\tilde{c}_{1} and cnc_{n} at the leading order. Furthermore, to avoid the breaking effects of the axionic shift symmetry caused by gravity that spoil the axion solution to the strong CP problem Kamionkowski:1992mf , we imposed a U(1)XU(1)_{X}-mixed gravitational anomaly-free condition Ahn:2016hbn ; Ahn:2018cau ; Ahn:2021ndu .

The rest of this paper is organized as follows: The next section discusses modular and U(1)XU(1)_{X} anomaly-free conditions under GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} symmetry, along with the modular forms of superpotential corrected by Kähler transformation. Sec.III presents an example of a superpotential induced by level 3 modular forms. We introduce minimal supermultiplets to address the challenges of tiny neutrino masses, the strong CP problem, and the hierarchies of SM fermion mass and mixing. For our purpose, we show how to derive Yukawa superpotentials and a modular-independent superpotential for the scalar potential and determining the relevant U(1)XU(1)_{X} PQ symmetry breaking scale (or seesaw scale). Additionally, we provide comments on the modular invariant model. In Sec.IV, we visually demonstrate the interconnections between quarks, leptons, and flavored-QCD axion. In Sec.V, we present numerical values of physical parameters that satisfy the current experimental data on flavor mixing and mass for quarks and leptons while also favoring the assumption in Eq.(2). The study predicts the Dirac CP phases of quarks and leptons, as well as the mass of the flavored-QCD axion and its coupling to photons and electrons. The final section provides a summary of our work.

II Modular and U(1) anomaly-free

T-duality relates different types of superstring theory and is also present in the 4D low-energy effective field theory derived from superstring theory (see Ref.string_book for a review). In particular, type IIA intersecting D-brane models are related to magnetized D-brane models through T-duality string_book . The group Γ(N)\Gamma(N) acts on the complex variable τ\tau, varying in the upper-half complex plane Im(τ)>0{\rm Im}(\tau)>0, as the modular transformation Eq.(1). Then the low-energy effective field theory of type IIA intersecting D-brane models must have the symmetry under the modular transformation Eq.(1). First, we shortly review the modular symmetry. The infinite groups Γ(N)\Gamma(N), called principal congruence subgroups of level N=1,2,3,N=1,2,3,..., are defined by

Γ(N)={(abcd)SL(2,Z),(abcd)=(1001)(modN)},\displaystyle\Gamma(N)=\Big{\{}\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in SL(2,Z),\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\quad(\text{mod}~{}N)\Big{\}}\,, (3)

which are normal subgroups of homogeneous modular group ΓΓ(1)SL(2,Z)\Gamma\equiv\Gamma(1)\simeq SL(2,Z), where SL(2,Z)SL(2,Z) is the group of 2×22\times 2 matrices with integer entries and determinant equal to one. The projective principal congruence subgroups are defined as Γ¯(N)=Γ(N)/{±I}\bar{\Gamma}(N)=\Gamma(N)/\{\pm{I}\} for N=1,2N=1,2. For N3N\geq 3 we have Γ¯(N)=Γ(N)\bar{\Gamma}(N)=\Gamma(N) because the elements I-I does not belong to Γ(N)\Gamma(N). The modular group Γ¯Γ/{±I}\bar{\Gamma}\equiv\Gamma/\{\pm{I}\} is generated by two elements SS and TT,

S:τ1τ,T:ττ+1,\displaystyle S:\tau\rightarrow-\frac{1}{\tau}\,,\qquad\qquad T:\tau\rightarrow\tau+1\,, (4)

satisfying

S2=(ST)3=(TS)3=𝟏.\displaystyle S^{2}=(ST)^{3}=(TS)^{3}={\bf 1}\,. (5)

They can be represented by the PSL(2,Z)PSL(2,Z) matrices

S=(0110),T=(1101).\displaystyle S=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\,,\qquad T=\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\,. (6)

The groups ΓN\Gamma_{N} are finite modular groups obtained by imposing the condition TN=𝟏T^{N}={\bf 1} in addition to Eq.(5), where ΓNΓ¯/Γ¯(N)\Gamma_{N}\equiv\bar{\Gamma}/\bar{\Gamma}(N). The groups ΓN\Gamma_{N} are isomorphic to the permutation groups S3S_{3}, A4A_{4}, S4S_{4}, and A5A_{5} for N=2,3,4,5N=2,3,4,5, respectively deAdelhartToorop:2011re .

We work in the 4D 𝒩=1{\cal N}=1 string-derived supergravity framework defined by a general Kähler potential G(Φ,Φ¯)G(\Phi,\bar{\Phi}) of the chiral superfields Φ\Phi and their conjugates,

G(Φ,Φ¯)=K(Φ,Φ¯)MP2+ln|W(Φ)|2MP6,\displaystyle G(\Phi,\bar{\Phi})=\frac{K(\Phi,\bar{\Phi})}{M^{2}_{P}}+\ln\frac{|W(\Phi)|^{2}}{M^{6}_{P}}\,, (7)

and by an analytic gauge kinetic function f(Φ)f(\Phi) of the chiral superfields Φ\Phi, where MP=(8πGN)1/2=2.436×1018M_{P}=(8\pi G_{N})^{-1/2}=2.436\times 10^{18} GeV is the reduced Planck mass with Newton’s gravitational constant GNG_{N}, K(Φ,Φ¯)K(\Phi,\bar{\Phi}) is a real gauge-invariant function of Φ\Phi and Φ¯\bar{\Phi}, and W(Φ)W(\Phi) is a holomorphic gauge-invariant function of Φ\Phi. Based on the 4D effective field theory derived from type IIA intersecting D-brane models, we build a modular invariant model with minimal chiral superfields transforming according to representations of GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X}. Here we assume that the non-Abelian discrete symmetry ΓN\Gamma_{N} as a finite subgroup of the modular group Feruglio:2017spp , and the anomalous gauged U(1)XU(1)_{X} including the SM gauge symmetry GSMG_{\rm SM} may arise from several stacks on D-brane models string_book . In the 4D global supersymmetry the most general form of the action can be written as

𝒮=d4xd2θd2θ¯K(Φ,Φ¯e2A)+{d4xd2θ(W(Φ)+fab(Φ)4𝒲αa𝒲αb)+h.c.},\displaystyle{\cal S}=\int d^{4}xd^{2}\theta d^{2}\bar{\theta}K(\Phi,\bar{\Phi}e^{2A})+\Big{\{}\int d^{4}xd^{2}\theta\Big{(}W(\Phi)+\frac{f_{ab}(\Phi)}{4}{\cal W}^{\alpha a}{\cal W}^{b}_{\alpha}\Big{)}+{\rm h.c.}\Big{\}}\,, (8)

where AAaTaA\equiv A^{a}T^{a} is the gauge multiplet containing Yang-Mills multiplet and TaT^{a} are the gauge group generators, and 𝒲α{\cal W}_{\alpha} is a gauge-invariant chiral spinor superfield containing the Yang-Mills field strength. The chiral superfields Φ\Phi denote all chiral supermultiplets with Kähler moduli, complex structure moduli, axio-dilaton, and matter superfields, transforming under GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X}. We assume that the low-energy Kähler potential KK, superpotential WW, and gauge kinetic function ff for moduli and matter superfields are given at a scale where Kähler moduli and complex structure moduli are stabilized through fluxes (see Ref.Gukov:1999ya ; Giddings:2001yu ; Dasgupta:1999ss ) leading to a consistent low-energy SM gauge theory.

Under the modular transformation Eq.(1) and the gauged U(1)XU(1)_{X} symmetry, the action (8) should be invariant with the transformations 555The upper two shifts in Eq.(9) of the Kähler potential and superpotential are known as the ‘Kähler transformation’ with reference to Eq.(7).

K(Φ,Φ¯e2A)K(Φ,Φ¯e2A)+(g(Φ)+g(Φ¯))MP2,\displaystyle K(\Phi,\bar{\Phi}e^{2A})\rightarrow K(\Phi,\bar{\Phi}e^{2A})+\big{(}g(\Phi)+g(\bar{\Phi})\big{)}M^{2}_{P}\,,
W(Φ)W(Φ)eg(Φ),\displaystyle W(\Phi)\rightarrow W(\Phi)e^{-g(\Phi)}\,,
f(Φ)𝒲α𝒲αf(Φ)𝒲α𝒲α,\displaystyle f(\Phi){\cal W}^{\alpha}{\cal W}_{\alpha}\rightarrow f(\Phi){\cal W}^{\alpha}{\cal W}_{\alpha}\,, (9)

where g(Φ)g(\Phi) is a function of modulus τ\tau. Then the given symmetry GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} can be violated at the quantum level by (i) an anomalous triangle graph associated with modular transformation Eq.(1) under the non-local modular group ΓN\Gamma_{N}, and (ii) anomalous triangle graphs with external states AνaAρbVXμA^{a}_{\nu}A^{b}_{\rho}V_{X\mu} where AνaA^{a}_{\nu}, AρbA^{b}_{\rho} are gauge bosons of the SM gauge group GSMG_{\rm SM} and VXμV^{\mu}_{X} is the connection associated with the gauged U(1)XU(1)_{X}. These anomalies can be cancelled by the GS mechanism Green:1984sg .

II.1 Modular anomaly-free and modular forms of level NN

To demonstrate the invariance of K(Φ,Φ¯e2A)K(\Phi,\bar{\Phi}e^{2A}) and f(Φ)𝒲α𝒲αf(\Phi){\cal W}^{\alpha}{\cal W}_{\alpha} of Eq.(8) under the finite modular group ΓN\Gamma_{N} and the gauged U(1)XU(1)_{X}, we consider a low-energy Kähler potential 666It is similar to the one-loop Kähler potential presented in Ref.Derendinger:1991hq .:

K\displaystyle K =\displaystyle= MP2ln{(S+S¯3c~ln(iτ+iτ¯))(UX+U¯XδXGS16π2VX)i=12(𝒰i+𝒰¯i)}\displaystyle-M^{2}_{P}\ln\Big{\{}\Big{(}S+\bar{S}-3\tilde{c}\ln(-i\tau+i\bar{\tau})\Big{)}\Big{(}U_{X}+\bar{U}_{X}-\frac{\delta^{\rm GS}_{X}}{16\pi^{2}}V_{X}\Big{)}\prod^{2}_{i=1}({\cal U}_{i}+\bar{\cal U}_{i})\Big{\}} (10)
\displaystyle- MP2ln(iτ+iτ¯)3+(iτ+iτ¯)k|φ|2+ZXφXeXVXφX+,\displaystyle M^{2}_{P}\ln\big{(}-i\tau+i\bar{\tau}\big{)}^{3}+(-i\tau+i\bar{\tau})^{-k}|\varphi|^{2}+Z_{X}\varphi^{\dagger}_{X}e^{-XV_{X}}\varphi_{X}+...\,,

where k-k is the modular weight, ZXZ_{X} is the normalization factor, SS denotes the axio-dilaton field, τ\tau represents the overall Kähler modulus, and UXU_{X} and 𝒰i{\cal U}_{i} correspond to the complex structure moduli. The dots in Eq.(10) denote the contributions of non-renormalizable terms scaled by an UV cutoff MPM_{P} invariant under GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X}. We note that the matter fields φX\varphi_{X} with U(1)XU(1)_{X} charge, complex structure modulus UXU_{X} and the vector superfield VXV_{X} of the gauged U(1)XU(1)_{X} including the gauge field AXμA^{\mu}_{X} participate in the 4D GS mechanism. We take the holomorphic gauge kinetic function to be linear in the complex structure moduli UXU_{X} and 𝒰i{\cal U}_{i}, fab(Φ)δab(S+UX+𝒰i)f_{ab}(\Phi)\supset\delta_{ab}(S+U_{X}+{\cal U}_{i}). The complex structure moduli are associated with the SM gauge theory, which we will not be focusing on. The GS parameter δXGS\delta^{\rm GS}_{X} characterizes the coupling of the anomalous gauge boson to the axion θX\theta_{X}. The matter superfields in KK consist of all scalar fields that are not moduli and do not have Planck-sized vacuum expectation values (VEVs). The scalar components of φ\varphi and φX\varphi_{X} are neutral under the U(1)XU(1)_{X} symmetry and the modular group ΓN\Gamma_{N}, respectively.

Calculating KIJ=IJK_{IJ}=\partial_{I}\partial_{J} from the Kähler potential Eq.(10), we obtain the kinetic terms for the scalar components of the supermultiplets which are approximated well for MPφ,φXM_{P}\gg\langle\varphi\rangle,\langle\varphi_{X}\rangle and VX=0V_{X}=0 as follows,

kinetic\displaystyle{\cal L}_{\rm kinetic} \displaystyle\simeq 3MP2iτ+iτ¯2μτ¯μτ+MP2UX+U¯X2μU¯XμUX\displaystyle\frac{3M^{2}_{P}}{\langle-i\tau+i\bar{\tau}\rangle^{2}}\partial_{\mu}\bar{\tau}\partial^{\mu}\tau+\frac{M^{2}_{P}}{\langle U_{X}+\bar{U}_{X}\rangle^{2}}\partial_{\mu}\bar{U}_{X}\partial^{\mu}U_{X} (11)
+\displaystyle+ MP2S+S¯3c~ln(iτ+iτ¯)2μS¯μS+Kφφ¯μφ¯μφ+KφXφ¯Xμφ¯XμφX,\displaystyle\frac{M^{2}_{P}}{\langle S+\bar{S}-3\tilde{c}\ln(-i\tau+i\bar{\tau})\rangle^{2}}\partial_{\mu}\bar{S}\partial^{\mu}S+K_{\varphi\bar{\varphi}}\partial_{\mu}\bar{\varphi}\partial^{\mu}\varphi+K_{\varphi_{X}\bar{\varphi}_{X}}\partial_{\mu}\bar{\varphi}_{X}\partial^{\mu}\varphi_{X},

where Kφφ¯=KφXφ¯X=1K_{\varphi\bar{\varphi}}=K_{\varphi_{X}\bar{\varphi}_{X}}=1 for canonically normalized scalar fields achieved by rescaling the fields φ\varphi and φX\varphi_{X} for given values of the VEVs of τ\tau and UXU_{X}. The U(1)XU(1)_{X} charged modulus UXU_{X} and scalar field φX\varphi_{X} can be decomposed as:

UX=ρX2+iθX,φX|θ=θ¯=0=12eiAXvX(vX+hX),\displaystyle U_{X}=\frac{\rho_{X}}{2}+i\theta_{X},\qquad\varphi_{X}\big{|}_{\theta=\bar{\theta}=0}=\frac{1}{\sqrt{2}}e^{i\frac{A_{X}}{v_{X}}}(v_{X}+h_{X}), (12)

where Re[UX]=ρX/2=1/gX2Re[U_{X}]=\rho_{X}/2=1/g^{2}_{X} with gXg_{X} being 4D U(1)XU(1)_{X} gauge coupling, AXA_{X}, vXv_{X}, and hXh_{X} are the axion, VEV, and Higgs boson of scalar components, respectively. Due to the axionic shift symmetry, the kinetic terms of Eq.(11) for the axionic and size part of UXU_{X} do not mix in perturbation theory, where any non-perturbative violations are small enough to be irrelevant, and the same goes for the axion and Higgs boson of the scalar components of φX\varphi_{X} for vXv_{X}\rightarrow\infty.

Since the matter superfields φ\varphi and axio-dilaton SS transform as,

φ(cτ+d)kρ(γ)φ,SS3c~ln(cτ+d),\displaystyle\varphi\rightarrow(c\tau+d)^{-k}\rho(\gamma)\varphi\,,\qquad S\rightarrow S-3\tilde{c}\ln(c\tau+d)\,, (13)

where ρ(γ)\rho(\gamma) is the unitary representation of the modular group ΓN\Gamma_{N} and c~\tilde{c} is a constant, the transformation of the Kähler potential KK given in Eq.(9) leads us to

g(τ)=ln(cτ+d)3.\displaystyle g(\tau)=\ln(c\tau+d)^{3}\,. (14)

Generically, the transformation of KK in Eq.(9) incorporating Eq.(14) gives rise to a modular anomaly arising from δS=c~14d4xd2θ𝒲α𝒲αg(τ)+h.c.\delta S=-\tilde{c}\frac{1}{4}\int d^{4}xd^{2}\theta{\cal W}^{\alpha}{\cal W}_{\alpha}\,g(\tau)+{\rm h.c.}Derendinger:1991hq ,

18c~{(g(τ)+g(τ¯))QμνQμν+i(g(τ)g(τ¯))QμνQ~μν}\displaystyle-\frac{1}{8}\tilde{c}\Big{\{}\big{(}g(\tau)+g(\bar{\tau})\big{)}Q^{\mu\nu}Q_{\mu\nu}+i\big{(}g(\tau)-g(\bar{\tau})\big{)}Q^{\mu\nu}\tilde{Q}_{\mu\nu}\Big{\}} (15)

where Q~μν=12εμνρσQρσ\tilde{Q}_{\mu\nu}=\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}Q^{\rho\sigma} with associated gauge field strengths QQ, and the first term in the bracket represents the kinetic term for gauge bosons and the second term is the CP-odd term. After receiving a correction due to the modular transformation of SS in Eq.(13), The gauge kinetic function fabf_{ab} is given at leading order by,

f1loop(Φ)=δab(S+UX)c~ln(cτ+d)3.\displaystyle f^{\rm 1-loop}(\Phi)=\delta_{ab}(S+U_{X})-\tilde{c}\ln(c\tau+d)^{3}\,. (16)

where the second term in the right hand side is the correction. It is worthwhile to notice that this correction cancels the modular anomaly Eq.(15) generated by g(τ),g(τ¯)g(\tau),g(\bar{\tau}).

The modular invariance W(Φ)W(\Phi) under the modular group ΓN\Gamma_{N} (N2N\geq 2) provides a strong restriction on the flavor structure Feruglio:2017spp . The superpotential W(Φ)W(\Phi) can be expanded in power series of the multiplets φ\varphi which are separated into brane sectors φ(I)\varphi_{(I)}

W(Φ)=nYI1In(τ)φ(I1)φ(In),\displaystyle W(\Phi)=\sum_{n}Y_{I_{1}...I_{n}}(\tau)\varphi_{(I_{1})}\cdot\cdot\cdot\varphi_{(I_{n})}\,, (17)

where the functions YI1In(τ)Y_{I_{1}...I_{n}}(\tau) are generically 777In Type II string orientifold compactifications, the Yukawa couplings have modular properties Cremades:2003qj . τ\tau-dependent in type IIA intersecting D-brane models string_book ; Cremades:2004wa . The superpotential W(Φ)W(\Phi) must have modular invariance under the transformation W(Φ)W(Φ)eg(τ)W(\Phi)\rightarrow W(\Phi)e^{-g(\tau)}, where g(τ)g(\tau) is given by Eq.(14). To ensure this, we need to satisfy two conditions: (i) the matter superfields φIi\varphi_{I_{i}} of the brane sector IiI_{i} should transform

φ(Ii)(cτ+d)kIiρ(Ii)(γ)φ(Ii)\displaystyle\varphi_{(I_{i})}\rightarrow(c\tau+d)^{-k_{I_{i}}}\rho_{(I_{i})}(\gamma)\varphi_{(I_{i})} (18)

in a representation ρ(Ii)(γ)\rho_{(I_{i})}(\gamma) of the modular group ΓN\Gamma_{N}, where kIi-k_{I_{i}} is the modular weight of sector IiI_{i}, and (ii) the functions YI1In(τ)Y_{I_{1}...I_{n}}(\tau) should be modular forms of weight kY(n)k_{Y}(n) transforming in the representation ρ(γ)\rho(\gamma) of ΓN\Gamma_{N},

YI1In(γτ)=(cτ+d)kY(n)ρ(γ)YI1In(τ),\displaystyle Y_{I_{1}...I_{n}}(\gamma\tau)=(c\tau+d)^{k_{Y}(n)}\rho(\gamma)Y_{I_{1}...I_{n}}(\tau)\,, (19)

with the requirements

kY(n)3=kI1++kIn,\displaystyle k_{Y}(n)-3=k_{I_{1}}+...+k_{I_{n}}\,,
ρ(γ)ρ(I1)ρ(In)𝟏.\displaystyle\rho(\gamma)\otimes\rho_{(I_{1})}\otimes\cdot\cdot\cdot\otimes\rho_{(I_{n})}\ni{\bf 1}\,. (20)

The weight of modular forms in the superpotential is corrected by the Kähler transformation in Eq.(9) due to the modular invariance of both the superpotential and Kähler potential. For example, a τ\tau-independent superpotential for scalar potential can be simply constructed by the matter supermultiplets that belong to the untwisted sector in the orbifold compactification of type II string theory (see Eq.(37)). We will show an explicit example of the superpotential induced by the modular forms of level 3 in the section III.

II.2 Gauged U(1) anomaly-free

The 4D action given by Eq.(8) should also be U(1)XU(1)_{X} gauge invariant. Under the U(1)XU(1)_{X} gauge transformation VXVX+i(ΛXΛ¯X)V_{X}\rightarrow V_{X}+i(\Lambda_{X}-\bar{\Lambda}_{X}), the matter superfields ΦX\Phi_{X} and complex structure modulus UXU_{X} transform as,

ΦXeiXΛXΦX,UXUX+iδXGS16π2ΛX,\displaystyle\Phi_{X}\rightarrow e^{iX\Lambda_{X}}\Phi_{X}\,,\qquad U_{X}\rightarrow U_{X}+i\frac{\delta^{\rm GS}_{X}}{16\pi^{2}}\Lambda_{X}\,, (21)

where ΛX(Λ¯X)\Lambda_{X}(\bar{\Lambda}_{X}) are (anti-) chiral superfields parameterizing U(1)XU(1)_{X} transformation on the superspace. So the axionic modulus θX\theta_{X} and axion aXa_{X} have shift symmetries

θXθXδXGS16π2ξX,aXaX+δXGSδXQfXξX,\displaystyle\theta_{X}\rightarrow\theta_{X}-\frac{\delta^{\rm GS}_{X}}{16\pi^{2}}\xi_{X}\,,\qquad a_{X}\rightarrow a_{X}+\frac{\delta^{\rm GS}_{X}}{\delta^{Q}_{X}}f_{X}\xi_{X}\,, (22)

where ξX=ReΛX|θ=θ¯=0\xi_{X}=-{\rm Re}\Lambda_{X}\big{|}_{\theta=\bar{\theta}=0}, fX=XvXf_{X}=Xv_{X} is the axion decay constant, and δXQ\delta^{Q}_{X} are anomaly coefficients defined in Eq.(25). Then, the U(1)XU(1)_{X} gauge field AXμA^{\mu}_{X} transforms as

AXμAXμμξX.\displaystyle A^{\mu}_{X}\rightarrow A^{\mu}_{X}-\partial^{\mu}\xi_{X}\,. (23)

Since the gauged U(1)XU(1)_{X} is anomalous, the axion aXa_{X} and axionic modulus θX\theta_{X} couple to the (non)-Abelian Chern-Pontryagin densities for the SM gauge group in the compactification. In type II string vacuum, the U(1)XU(1)_{X} anomalies should be cancelled by appropriate shifts of Ramond-Ramond axions in the bulk Sagnotti:1992qw ; Ibanez:1998qp ; Poppitz:1998dj ; Lalak:1999bk . The 4D effective action of the axions, θX\theta_{X} and aXa_{X}, and its corresponding gauge field AXμA^{\mu}_{X} contains the followings Ahn:2017dpf ; Ahn:2016typ :

KUXU¯X(μθXδXGS16π2AXμ)214gX2FXμνFXμνgXξXFIDX+DXgXX|φX|2\displaystyle K_{U_{X}\bar{U}_{X}}\Big{(}\partial^{\mu}\theta_{X}-\frac{\delta^{\rm GS}_{X}}{16\pi^{2}}A^{\mu}_{X}\Big{)}^{2}-\frac{1}{4g^{2}_{X}}F^{\mu\nu}_{X}F_{X\mu\nu}-g_{X}\xi^{\rm FI}_{X}D_{X}+D_{X}g_{X}X|\varphi_{X}|^{2}
+|DμφX|2+θXTr(QμνQ~μν)+aXfXδXQ16π2Tr(QμνQ~μν),\displaystyle+|D_{\mu}\varphi_{X}|^{2}+\theta_{X}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu})+\frac{a_{X}}{f_{X}}\frac{\delta^{Q}_{X}}{16\pi^{2}}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu})\,, (24)

where the gauge field strengths Q=G,W,YQ=G,W,Y for SU(3)CSU(3)_{C}, SU(2)LSU(2)_{L}, and U(1)YU(1)_{Y}, respectively, and their gauge couplings are absorbed into their corresponding gauge field strengths. FXμνF^{\mu\nu}_{X} is the U(1)XU(1)_{X} gauge field strength defined by FXμν=μAXννAXμF^{\mu\nu}_{X}=\partial^{\mu}A^{\nu}_{X}-\partial^{\nu}A^{\mu}_{X}. In |DμφX|2|D_{\mu}\varphi_{X}|^{2} the scalar components of φX\varphi_{X} couple to the U(1)XU(1)_{X} gauge boson, where the gauge coupling gXg_{X} is absorbed into the gauge boson AXμA^{\mu}_{X} in the U(1)XU(1)_{X} gauge covariant derivative Dμ=μiXAXμD^{\mu}=\partial^{\mu}-iXA^{\mu}_{X}. The coefficients of the mixed U(1)X×[SU(3)C]2U(1)_{X}\times[SU(3)_{C}]^{2}, U(1)X×[SU(2)L]2U(1)_{X}\times[SU(2)_{L}]^{2}, and U(1)X×[U(1)Y]2U(1)_{X}\times[U(1)_{Y}]^{2} anomalies are given respectively by

δXG=2Tr[XTSU(3)2],δXW=2Tr[XTSU(2)2],δXY=2Tr[XY2].\displaystyle\delta^{G}_{X}=2{\rm Tr}[XT^{2}_{SU(3)}]\,,\quad\delta^{W}_{X}=2{\rm Tr}[XT^{2}_{SU(2)}]\,,\quad\delta^{Y}_{X}=2{\rm Tr}[XY^{2}]\,. (25)

Here U(n)U(n) generators (n2n\geq 2) are normalized according to Tr[TaTb]=δab/2{\rm Tr}[T^{a}T^{b}]=\delta_{ab}/2, and for convenience, δXY=2Tr[XY2]\delta^{Y}_{X}=2{\rm Tr}[XY^{2}] is defined for hypercharge. The FI term XFI=ξXFId2θVX=ξXFIgXDX{\cal L}^{\rm FI}_{X}=-\xi^{\rm FI}_{X}\int d^{2}\theta V_{X}=-\xi^{\rm FI}_{X}g_{X}D_{X} with DX=gX(ξXFIX|φX|2)D_{X}=g_{X}(\xi^{\rm FI}_{X}-X|\varphi_{X}|^{2}) leads to D-term potential for the anomalous U(1)XU(1)_{X},

VD=1UX+U¯X(ξXFI+X|φX|2)2,\displaystyle V_{D}=\frac{1}{U_{X}+\bar{U}_{X}}\big{(}-\xi^{\rm FI}_{X}+X|\varphi_{X}|^{2}\big{)}^{2}\,, (26)

where ξXFI\xi^{\rm FI}_{X} is FI factor produced by expanding the Kähler potential Eq.(10) in components linear in VXV_{X} and depends on the closed string modulus Re[UX]=ρX/2{\rm Re}[U_{X}]=\rho_{X}/2. Since the FI term is controlled by the string coupling it can not be zero. The re-stabilization of VEVs by φX\varphi_{X} necessarily implies spontaneous breaking of the anomalous U(1)XU(1)_{X}, which will be shown later.

The first, third, fourth, and fifth terms in Eq.(24) result from expanding the Kähler potential of Eq.(10). The first and sixth terms together, and the fifth and seventh terms in Eq.(24), are gauge invariant under the anomalous U(1)XU(1)_{X} gauge transformations of Eqs.(22, 23). The gauge invariant interaction Lagrangian is given by

Aθint=AXμJμθ+θXTr(QμνQ~μν)AXμJμX+aXfXδXQ16π2Tr(QμνQ~μν)\displaystyle{\cal L}^{\rm int}_{A\theta}=-A^{\mu}_{X}J^{\theta}_{\mu}+\theta_{X}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu})-A^{\mu}_{X}J^{X}_{\mu}+\frac{a_{X}}{f_{X}}\frac{\delta^{Q}_{X}}{16\pi^{2}}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu}) (27)

where the anomalous currents JμXJ^{X}_{\mu} and JμθJ^{\theta}_{\mu} coupling to the gauge boson AXμA^{\mu}_{X} (that is, μJXμ=δXGS16π2Tr(QμνQ~μν)=μJθμ\partial_{\mu}J^{\mu}_{X}=\frac{\delta^{\rm GS}_{X}}{16\pi^{2}}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu})=-\partial_{\mu}J^{\mu}_{\theta} with δXGS=αXQδXQ\delta^{\rm GS}_{X}=\alpha^{Q}_{X}\delta^{Q}_{X} ) are represented by Jμθ=KUXU¯XδXGS8π2μθXJ^{\theta}_{\mu}=K_{U_{X}\bar{U}_{X}}\frac{\delta^{\rm GS}_{X}}{8\pi^{2}}\partial_{\mu}\theta_{X} and JμX=iXφXμφXJ^{X}_{\mu}=-iX\varphi_{X}^{\dagger}\overleftrightarrow{\partial_{\mu}}\varphi_{X}.

Expanding Eq.(24) and setting θX=aθ/8π2fθ\theta_{X}=a_{\theta}/8\pi^{2}f_{\theta} with fθ=2KUXU¯X(8π2)2f_{\theta}=\sqrt{\frac{2K_{U_{X}\bar{U}_{X}}}{(8\pi^{2})^{2}}} to canonically normalize, Aθint{\cal L}^{\rm int}_{A\theta} becomes

12(μaθ)2+aθ8π2fθTr(QμνQ~μν)+12(μAX)2+AXfXδXQ16π2Tr(QμνQ~μν)\displaystyle\frac{1}{2}(\partial^{\mu}a_{\theta})^{2}+\frac{a_{\theta}}{8\pi^{2}f_{\theta}}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu})+\frac{1}{2}(\partial^{\mu}A_{X})^{2}+\frac{A_{X}}{f_{X}}\frac{\delta^{Q}_{X}}{16\pi^{2}}{\rm Tr}(Q^{\mu\nu}\tilde{Q}_{\mu\nu})
AXμ(JμX+Jμθ)+12gX2mX2AXμAXμ14gX2FXμνFXμνgX22(ξXFIX|φX|2)2,\displaystyle-A^{\mu}_{X}(J^{X}_{\mu}+J^{\theta}_{\mu})+\frac{1}{2g^{2}_{X}}m^{2}_{X}A^{\mu}_{X}A_{X\mu}-\frac{1}{4g^{2}_{X}}F^{\mu\nu}_{X}F_{X\mu\nu}-\frac{g^{2}_{X}}{2}(\xi^{\rm FI}_{X}-X|\varphi_{X}|^{2})^{2}\,, (28)

where the gauge boson mass mXm_{X} obtained by the super-Higgs mechanism is given by mX=2KUXU¯X(δXGS/16π2)2+2fX2m_{X}=\sqrt{2K_{U_{X}\bar{U}_{X}}(\delta^{\rm GS}_{X}/16\pi^{2})^{2}+2f^{2}_{X}}. Then the open string axion aXa_{X} (decay constant fXf_{X}) is mixed linearly with the closed string aθa_{\theta} (decay constant fθf_{\theta}):

A~=aXδXGS2fθaθfXfX2+(δXGS2fθ)2aX,G=aθδXGS2fθ+AXfXfX2+(δXGS2fθ)2aθ.\displaystyle\tilde{A}=\frac{a_{X}\frac{\delta^{\rm GS}_{X}}{2}f_{\theta}-a_{\theta}f_{X}}{\sqrt{f^{2}_{X}+(\frac{\delta^{\rm GS}_{X}}{2}f_{\theta})^{2}}}\approx a_{X}\,,\qquad G=\frac{a_{\theta}\frac{\delta^{\rm GS}_{X}}{2}f_{\theta}+A_{X}f_{X}}{\sqrt{f^{2}_{X}+(\frac{\delta^{\rm GS}_{X}}{2}f_{\theta})^{2}}}\approx a_{\theta}\,. (29)

where the approximations are valid under the assumption that fθf_{\theta} is much larger than fXf_{X}. The gauged U(1)XU(1)_{X} absorbs one linear combination of aXa_{X} and aθa_{\theta}, denoted GG, giving it a string scale mass through the U(1)XU(1)_{X} gauge boson, while the other combination, A~aX\tilde{A}\approx a_{X}, remains at low energies and contributes to the QCD axion. At energies below the scale mXm_{X}, the gauge boson decouples, leaving behind an anomalous global U(1)XU(1)_{X} symmetry.

III Minimal model set-up

For our purpose, we take into account Γ(3)\Gamma(3) modular symmetry, which gives the modular forms of level 3. The group Γ3\Gamma_{3} is isomorphic to A4A_{4} which is the symmetry group of the tetrahedron and the finite groups of the even permutation of four objects having four irreducible representations. Its irreducible representations are three singlets 𝟏,𝟏{\bf 1},{\bf 1}^{\prime}, and 𝟏′′{\bf 1}^{\prime\prime} and one triplet 𝟑{\bf 3} with the multiplication rules 𝟑𝟑=𝟑s𝟑a𝟏𝟏𝟏′′{\mathbf{3}}\otimes{\mathbf{3}}={\mathbf{3}}_{s}\oplus{\mathbf{3}}_{a}\oplus{\mathbf{1}}\oplus{\mathbf{1}}^{\prime}\oplus{\mathbf{1}}^{\prime\prime} and 𝟏𝟏=𝟏′′{\mathbf{1}}^{\prime}\oplus{\mathbf{1}}^{\prime}={\mathbf{1}}^{\prime\prime}, where the subscripts ss and aa denote symmetric and antisymmetric combinations respectively. Let (a1,a2,a3)(a_{1},a_{2},a_{3}) and (b1,b2,b3)(b_{1},b_{2},b_{3}) denote the basis vectors for two 𝟑{\mathbf{3}}’s. Then we have

(ab)𝟑s\displaystyle(a\otimes b)_{{\mathbf{3}}_{s}} =\displaystyle= 13(2a1b1a2b3a3b2,2a3b3a1b2a2b1,2a2b2a3b1a1b3),\displaystyle\frac{1}{\sqrt{3}}\big{(}2a_{1}b_{1}-a_{2}b_{3}-a_{3}b_{2},~{}2a_{3}b_{3}-a_{1}b_{2}-a_{2}b_{1},~{}2a_{2}b_{2}-a_{3}b_{1}-a_{1}b_{3}\big{)}\,,
(ab)𝟑a\displaystyle(a\otimes b)_{{\mathbf{3}}_{a}} =\displaystyle= (a2b3a3b2,a1b2a2b1,a3b1a1b3),\displaystyle\big{(}a_{2}b_{3}-a_{3}b_{2},~{}a_{1}b_{2}-a_{2}b_{1},~{}a_{3}b_{1}-a_{1}b_{3}\big{)}\,,
(ab)𝟏\displaystyle(a\otimes b)_{\mathbf{1}} =\displaystyle= a1b1+a2b3+a3b2,\displaystyle a_{1}b_{1}+a_{2}b_{3}+a_{3}b_{2}\,,
(ab)𝟏\displaystyle(a\otimes b)_{{\mathbf{1}}^{\prime}} =\displaystyle= a3b3+a1b2+a2b1,\displaystyle a_{3}b_{3}+a_{1}b_{2}+a_{2}b_{1}\,,
(ab)𝟏′′\displaystyle(a\otimes b)_{{\mathbf{1}}^{\prime\prime}} =\displaystyle= a2b2+a3b1+a1b3.\displaystyle a_{2}b_{2}+a_{3}b_{1}+a_{1}b_{3}\,. (30)

The details of the A4A_{4} group are shown in Appendix A. The modular forms f(τ)f(\tau) of level 33 and weight kk, such as Eq.(19), are holomorphic functions of the complex variable τ\tau with well-defined transformation properties

f(γτ)=(cτ+d)kf(τ)γ=(abcd)Γ3\displaystyle f(\gamma\tau)=(c\tau+d)^{k}f(\tau)\quad\gamma=\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\Gamma_{3} (31)

with an integer k0k\geq 0, under the group Γ3\Gamma_{3}. The three linearly independent weight 2 and level-3 modular forms are given by Feruglio:2017spp

Y1(τ)=i2π[η(τ3)η(τ3)+η(τ+13)η(τ+13)+η(τ+23)η(τ+23)27η(3τ)η(3τ)],\displaystyle Y_{1}(\tau)=\frac{i}{2\pi}\Big{[}\frac{\eta^{\prime}(\frac{\tau}{3})}{\eta(\frac{\tau}{3})}+\frac{\eta^{\prime}(\frac{\tau+1}{3})}{\eta(\frac{\tau+1}{3})}+\frac{\eta^{\prime}(\frac{\tau+2}{3})}{\eta(\frac{\tau+2}{3})}-\frac{27\eta^{\prime}(3\tau)}{\eta(3\tau)}\Big{]}\,,
Y2(τ)=iπ[η(τ3)η(τ3)+ω2η(τ+13)η(τ+13)+ωη(τ+23)η(τ+23)],\displaystyle Y_{2}(\tau)=\frac{-i}{\pi}\Big{[}\frac{\eta^{\prime}(\frac{\tau}{3})}{\eta(\frac{\tau}{3})}+\omega^{2}\frac{\eta^{\prime}(\frac{\tau+1}{3})}{\eta(\frac{\tau+1}{3})}+\omega\frac{\eta^{\prime}(\frac{\tau+2}{3})}{\eta(\frac{\tau+2}{3})}\Big{]}\,,
Y3(τ)=iπ[η(τ3)η(τ3)+ωη(τ+13)η(τ+13)+ω2η(τ+23)η(τ+23)],\displaystyle Y_{3}(\tau)=\frac{-i}{\pi}\Big{[}\frac{\eta^{\prime}(\frac{\tau}{3})}{\eta(\frac{\tau}{3})}+\omega\frac{\eta^{\prime}(\frac{\tau+1}{3})}{\eta(\frac{\tau+1}{3})}+\omega^{2}\frac{\eta^{\prime}(\frac{\tau+2}{3})}{\eta(\frac{\tau+2}{3})}\Big{]}\,, (32)

where ω=1/2+i3/2\omega=-1/2+i\sqrt{3}/2 and η(τ)\eta(\tau) is the Dedekind eta-function defined by

η(τ)=q1/24n=1(1qn)withqei2πτandIm(τ)>0.\displaystyle\eta(\tau)=q^{1/24}\prod^{\infty}_{n=1}(1-q^{n})\quad\text{with}~{}q\equiv e^{i2\pi\tau}~{}\text{and}~{}{\rm Im}(\tau)>0\,. (33)

The Dedekind eta-function satisfies

η(1/τ)=iτη(τ),η(τ+1)=eiπ/12η(τ).\displaystyle\eta(-1/\tau)=\sqrt{-i\tau}\,\eta(\tau)\,,\qquad\eta(\tau+1)=e^{i\pi/12}\,\eta(\tau)\,. (34)

The three linear independent modular functions transform as a triplet of A4A_{4}, i.e. Y𝟑(2)=(Y1,Y2,Y3)Y^{(2)}_{\bf 3}=(Y_{1},Y_{2},Y_{3}). The qq-expansion of Yi(τ)Y_{i}(\tau) reads

Y1(τ)=1+12q+36q2+12q3+\displaystyle Y_{1}(\tau)=1+12q+36q^{2}+12q^{3}+...
Y2(τ)=6q1/3(17q+8q2+)\displaystyle Y_{2}(\tau)=-6q^{1/3}(17q+8q^{2}+...)
Y3(τ)=18q2/3(1+2q+5q2+).\displaystyle Y_{3}(\tau)=-18q^{2/3}(1+2q+5q^{2}+...)\,. (35)

Y𝟑(2)Y^{(2)}_{\bf 3} is constrained by the relation,

(Y𝟑(2)Y𝟑(2))𝟏′′=Y22+2Y1Y3=0.\displaystyle(Y^{(2)}_{\bf 3}Y^{(2)}_{\bf 3})_{{\bf 1}^{\prime\prime}}=Y^{2}_{2}+2Y_{1}Y_{3}=0\,. (36)

III.1 Modular invariant supersymmetric potential and a Nambu-Goldstone mode

Using Eqs.(17-20), we construct unique supersymmetric and modular invariant scalar potential by introducing minimal supermultiplets. Those include SM singlet fields χ0\chi_{0}888The field χ0\chi_{0} can act as an inflaton Ahn:2017dpf . with modular weight three and χ(χ~)\chi(\tilde{\chi}) with modular weight zero. Additionally, we have the usual two Higgs doublets Hu,dH_{u,d} with modular weight zero, which are responsible for electroweak (EW) symmetry breaking. The fields χ\chi and χ~\tilde{\chi} are charged by +1+1 and 1-1, respectively, and are ensured by the extended U(1)XU(1)_{X} symmetry due to the holomorphy of the superpotential. (If the seesaw mechanism Minkowski:1977sc is implemented, the field χ\chi or χ~\tilde{\chi} may be responsible for the heavy neutrino mass term).

Under kI×A4×U(1)Xk_{I}\times A_{4}\times U(1)_{X} with the modular weights kIk_{I} according to Eq.(20), we assign the two Higgs doublets Hu,dH_{u,d} to be (0,𝟏,0)(0,{\mathbf{1}},0) and three SM gauge singlets χ\chi, χ~\tilde{\chi}, χ0\chi_{0} to be (0,𝟏,+1)(0,{\bf 1},+1), (0,𝟏,1)(0,{\bf 1},-1), (3,𝟏,0)(3,{\bf 1},0), respectively 999As a consequence of kI×A4×U(1)Xk_{I}\times A_{4}\times U(1)_{X} the other superpotential term καLαHu\kappa_{\alpha}L_{\alpha}H_{u} and the terms violating the lepton and baryon number symmetries are not allowed. Besides, dimension 6 supersymmetric operators like QiQjQkLlQ_{i}Q_{j}Q_{k}L_{l} (i,j,ki,j,k must not all be the same) are not allowed either, and stabilizing proton.. The A4A_{4}-singlet χ0\chi_{0} field with modular weight three ensures that the functions YI1In(τ)Y_{I_{1}...I_{n}}(\tau) are independent of τ\tau. Then the supersymmetric scalar potential invariant under GSM×U(1)X×A4G_{\rm SM}\times U(1)_{X}\times A_{4} is given at leading order by

Wv\displaystyle W_{v} =\displaystyle= gχ0χ0HuHd+χ0(gχχχ~μχ2),\displaystyle g_{\chi_{0}}\chi_{0}\,H_{u}H_{d}+\chi_{0}(g_{\chi}\chi\tilde{\chi}-\mu^{2}_{\chi})\,\,, (37)

where dimensionless coupling constants gχ0g_{\chi_{0}} and gχg_{\chi} are assumed to be equal to one, but are modified to Eq.(60) by considering all higher order terms induced by χχ~\chi\tilde{\chi} combinations. Note that the PQ breaking parameter μχ\mu_{\chi} corresponds to the scale of the spontaneous symmetry breaking.

In the global SUSY limit, i.e. MPM_{P}\rightarrow\infty, the scalar potential obtained by the FF- and DD-term of all fields is required to vanish. Then the relevant FF-term from Eq.(37) and DD-term of the scalar potential given by Eq.(26) reads

VFglobal\displaystyle V_{F}^{\rm global} =\displaystyle= |gχχχ~μχ2|2,VDglobal=|X|2gX22(ξXFI|X|+|χ|2|χ~|2)2.\displaystyle\big{|}g_{\chi}\chi\tilde{\chi}-\mu^{2}_{\chi}\big{|}^{2}\,,\qquad V_{D}^{\rm global}=\frac{|X|^{2}g^{2}_{X}}{2}\Big{(}-\frac{\xi^{\rm FI}_{X}}{|X|}+|\chi|^{2}-|\tilde{\chi}|^{2}\Big{)}^{2}\,\,. (38)

The scalar fields χ\chi and χ~\tilde{\chi} have XX-charges +1+1 and 1-1, respectively, i.e.,

χe+iξχ,χ~eiξχ~,\displaystyle\chi\rightarrow e^{+i\xi}\chi\,,\qquad\tilde{\chi}\rightarrow e^{-i\xi}\tilde{\chi}\,, (39)

with a constant ξ\xi. So the potential VSUSYV_{\rm SUSY} has U(1)XU(1)_{X} symmetry. Since SUSY is preserved after the spontaneous breaking of U(1)XU(1)_{X}, the scalar potential in the limit of MPM_{P}\rightarrow\infty vanishes at its ground states, i.e. VFglobal=0\langle V_{F}^{\rm global}\rangle=0 and VDglobal=0\langle V_{D}^{\rm global}\rangle=0 vanishing FF-term must have also vanishing DD-term. From the minimization of the FF-term scalar potential we obtain

χ=χ~=vχ2withμχ=vχgχ2.\displaystyle\langle\chi\rangle=\langle\tilde{\chi}\rangle=\frac{v_{\chi}}{\sqrt{2}}\qquad\text{with}~{}\mu_{\chi}=v_{\chi}\sqrt{\frac{g_{\chi}}{2}}\,. (40)

where we have assumed χ,χ~Hu,d\langle\chi\rangle,\langle\tilde{\chi}\rangle\gg\langle H_{u,d}\rangle. The above supersymmetric solution is taken by the DD-flatness condition for Ahn:2016hbn ; Ahn:2017dpf

ξXFI=0,χ=χ~.\displaystyle\xi^{\rm FI}_{X}=0\,,\qquad\langle\chi\rangle=\langle\tilde{\chi}\rangle\,. (41)

The tension between χ=χ~\langle\chi\rangle=\langle\tilde{\chi}\rangle and ξXFI0\xi^{\rm FI}_{X}\neq 0 arises because the FI term cannot be cancelled, unless the VEV of flux in the FI term is below the string scale Achucarro:2006zf ; Burgess:2003ic . The FI term acts as an uplifting potential,

ξXFI=MP2δXGS16π2Δρρ0,\displaystyle\xi^{\rm FI}_{X}=M^{2}_{P}\frac{\delta^{\rm GS}_{X}}{16\pi^{2}}\frac{\Delta\rho}{\rho_{0}}\,, (42)

where Δρ=ρXρ0\Delta\rho=\rho_{X}-\rho_{0}, which raises the Anti-de Sitter minimum to the de Sitter minimum Burgess:2003ic . To achieve this, the FF-term must necessarily break SUSY for the DD-term to act as an uplifting potential. The PQ scale μχ\mu_{\chi} can be determined by taking into account both the SUSY-breaking effect, which lifts up the flat direction, and supersymmetric next-leading-order Planck-suppressed terms Nanopoulos:1983sp ; Ahn:2016hbn ; Ahn:2017dpf . The supersymmetric next-to-leading order term invariant under A4×U(1)XA_{4}\times U(1)_{X} satisfying Eq.(20) are given by

ΔWvαMP2χ0(χχ~)2,\displaystyle\Delta W_{v}\simeq\frac{\alpha}{M^{2}_{P}}\chi_{0}(\chi\tilde{\chi})^{2}\,, (43)

where α\alpha is assumed to be a real-valued constant being of unity. Since soft SUSY-breaking terms are already present at the scale relevant to flavor dynamics, the scalar potential for χ\chi, χ~\tilde{\chi} at leading order read

V(χ,χ~)α1m3/22|χ|2α2m3/22|χ~|2+α2|χ|4|χ~|4MP4,\displaystyle V(\chi,\tilde{\chi})\simeq-\alpha_{1}m^{2}_{3/2}|\chi|^{2}-\alpha_{2}m^{2}_{3/2}|\tilde{\chi}|^{2}+\alpha^{2}\frac{|\chi|^{4}|\tilde{\chi}|^{4}}{M^{4}_{P}}\,, (44)

where m3/2m_{3/2} represents soft SUSY-breaking mass, and α1,α2\alpha_{1},\alpha_{2} are real-valued constants. It leads to the PQ breaking scale (equivalently, the seesaw scale),

μχ(gχ6α1α216α4)112(m3/2MP2)13,\displaystyle\mu_{\chi}\simeq\big{(}\frac{g^{6}_{\chi}\alpha_{1}\alpha_{2}}{16\alpha^{4}}\big{)}^{\frac{1}{12}}\big{(}m_{3/2}M^{2}_{P}\big{)}^{\frac{1}{3}}\,, (45)

indicating that μχ\mu_{\chi} lies within the range of approximately 1.2×10131.2\times 10^{13} to 1.7×10141.7\times 10^{14} GeV (or 2.6×10132.6\times 10^{13} to 1.2×10151.2\times 10^{15} GeV) for m3/2m_{3/2} values ranging from 1 TeV to 10310^{3} TeV (or from 10 TeV to 10610^{6} TeV) for α1\alpha_{1} and α2\alpha_{2} of order unity.

The model includes the SM gauge singlet scalar fields χ\chi and χ~\tilde{\chi} charged under U(1)XU(1)_{X}, which have interactions invariant under GSM×U(1)X×A4G_{\rm SM}\times U(1)_{X}\times A_{4} with the transformations Eq.(9). These interactions result in a chiral symmetry, which is reflected in the form of the kinetic and Yukawa terms, as well as the scalar potential VSUSYV_{\rm SUSY} in the SUSY limit:

\displaystyle{\cal L} \displaystyle\supset μχμχ+μχ~μχ~+YVSUSY+ϑ+ψ¯iψ+12N¯iN+12ν¯iν,\displaystyle\partial_{\mu}\chi^{\ast}\partial^{\mu}\chi+\partial_{\mu}\tilde{\chi}^{\ast}\partial^{\mu}\tilde{\chi}+{\cal L}_{Y}-V_{\rm SUSY}+{\cal L}_{\vartheta}+\overline{\psi}\,i\!\!\not\!\partial\psi+\frac{1}{2}\overline{N}\,i\!\!\not\!\partial N+\frac{1}{2}\overline{\nu}\,i\!\!\not\!\partial\nu\,, (46)

where ψ\psi denotes Dirac fermions, and VSUSYV_{\rm SUSY} is replaced by VtotalV_{\rm total} when SUSY breaking effects are considered. The above kinetic terms for χ(χ~)\chi(\tilde{\chi}) are canonically normalized from the Kähler potential Eq.(10). Here four component Majorana spinors (Nc=NN^{c}=N and νc=ν\nu^{c}=\nu) are used. The global U(1)XU(1)_{X} PQ symmetry guarantees the absence of bare mass term in the Yukawa Lagrangian Y{\cal L}_{Y} in Eq.(46). The QCD Lagrangian has a CP-violating term

ϑ\displaystyle{\cal L}_{\vartheta} =\displaystyle= ϑQCDgs232π2GaμνG~μνa\displaystyle\vartheta_{\rm QCD}\,\frac{g^{2}_{s}}{32\pi^{2}}\,G^{a\mu\nu}\tilde{G}^{a}_{\mu\nu} (47)

where gsg_{s} stands for the gauge coupling constant of SU(3)CSU(3)_{C}, and GaμνG^{a\mu\nu} is the color field strength tensor and its dual G~μνa=12εμνρσGaμν\tilde{G}^{a}_{\mu\nu}=\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}G^{a\mu\nu} (here aa is an SU(3)SU(3)-adjoint index), coming from the strong interaction. After obtaining VEV χ0\langle\chi\rangle\neq 0, which generates the heavy neutrino masses given by Eq.(53), the PQ U(1)XU(1)_{X} symmetry breaks spontaneously at a much higher scale than EW scale. This is manifested through the existence of the Nambu-Goldstone (NG) mode AXA_{X}, which interacts with ordinary quarks and leptons via Yukawa interactions, see Eqs.(81, 94, 121). To extract the associated boson resulting from spontaneous breaking of U(1)XU(1)_{X}, we set the decomposition of complex scalar fields Ahn:2014gva ; Ahn:2016hbn ; Ahn:2018cau as follows

χ=vχ2eiAXuχ(1+hχuχ),χ~=vχ~2eiAXuχ(1+hχ~uχ)withuχ=vχ2+vχ~2,\displaystyle\chi=\frac{v_{\chi}}{\sqrt{2}}e^{i\frac{A_{X}}{u_{\chi}}}\left(1+\frac{h_{\chi}}{u_{\chi}}\right)\,,\quad\,\tilde{\chi}=\frac{v_{\tilde{\chi}}}{\sqrt{2}}e^{-i\frac{A_{X}}{u_{\chi}}}\left(1+\frac{h_{\tilde{\chi}}}{u_{\chi}}\right)\qquad\text{with}~{}u_{\chi}=\sqrt{v^{2}_{\chi}+v^{2}_{\tilde{\chi}}}\,, (48)

in which AXA_{X} is the NG mode and we set vχ=vχ~v_{\chi}=v_{\tilde{\chi}} and hχ=hχ~h_{\chi}=h_{\tilde{\chi}} in the supersymmetric limit. The derivative coupling of NG boson AXA_{X} arises from the kinetic term

μχμχ+μχ~μχ~=12(μAX)2(1+hχuχ)2+12(μhχ)2.\displaystyle\partial_{\mu}\chi^{\ast}\partial^{\mu}\chi+\partial_{\mu}\tilde{\chi}^{\ast}\partial^{\mu}\tilde{\chi}=\frac{1}{2}(\partial_{\mu}A_{X})^{2}\Big{(}1+\frac{h_{\chi}}{u_{\chi}}\Big{)}^{2}+\frac{1}{2}(\partial_{\mu}h_{\chi})^{2}\,. (49)

Performing uχu_{\chi}\rightarrow\infty, the NG mode AXA_{X}, whose interaction is determined by symmetry, is distinguished from the radial mode hχh_{\chi}, which is invariant under the symmetry U(1)XU(1)_{X}.

III.2 Modular invariant Yukawa superpotentials and Anomaly coefficients

By introducing just two A4A_{4}-singlet fields, χ\chi and χ~\tilde{\chi}, with modular weight zero and charged under U(1)XU(1)_{X} by +1+1 and 1-1, respectively, and using economic weight modular forms, we construct Yukawa superpotentials that are invariant under GSM×U(1)X×A4G_{\rm SM}\times U(1)_{X}\times A_{4} satisfying Eq.(20). This approach can explain the observed hierarchy of fermion masses and mixing given by the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks as well as by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for leptons. Furthermore, the approach provides a solution to the strong CP problem by breaking down the U(1)XU(1)_{X} flavor symmetry. Since the modular weights of the fields χ(χ~)\chi(\tilde{\chi}) are zero, any additive correction terms induced by higher weight modular forms are forbidden in the superpotential (see Eqs.(37, 50, 53)). However, higher-order corrections arising from the combination χχ~\chi\tilde{\chi} are allowed, but they do not modify the leading-order flavor structure.

Now let us assign A4×U(1)XA_{4}\times U(1)_{X} representations and quantum numbers as well as modular weights kIk_{I} to the SM quarks and leptons including SM gauge singlet Majorana neutrinos as presented in Table-1101010All fields appearing in Table-1 are left-handed particles/antiparticles.. Here, three quark SU(2)LSU(2)_{L} doublets and three up-type quark singlets are denoted as Qi(=1,2,3)Q_{i(=1,2,3)} and (uc,cc,tc)(u^{c},c^{c},t^{c}), respectively. 𝒟c={dc,sc,bc}{\cal D}^{c}=\{d^{c},s^{c},b^{c}\} represents the down-type quark singlets.

Table 1: Representations and quantum numbers of the quark fields under GSM×A4×U(1)XG_{\rm SM}\times A_{4}\times U(1)_{X} and modular weight kIk_{I} according to Eq.(20). In (𝒬1,𝒬2)Y({\cal Q}_{1},{\cal Q}_{2})_{Y} of GSMG_{\rm SM}, 𝒬1{\cal Q}_{1} and 𝒬2{\cal Q}_{2} are the representations under SU(3)CSU(3)_{C} and SU(2)LSU(2)_{L} respectively, and the script YY denotes the U(1)U(1) hypercharge.
Field Q1Q_{1} Q2Q_{2} Q3Q_{3} 𝒟c{\cal D}^{c} ucu^{c} ccc^{c} tct^{c}
GSMG_{\rm SM} (3,2)1/6(3,2)_{1/6} (3,2)1/6(3,2)_{1/6} (3,2)1/6(3,2)_{1/6} (3,1)1/3(3,1)_{1/3} (3,1)2/3(3,1)_{-2/3} (3,1)2/3(3,1)_{-2/3} (3,1)2/3(3,1)_{-2/3}
A4A_{4} 𝟏\mathbf{1} 𝟏′′\mathbf{1}^{\prime\prime} 𝟏\mathbf{1^{\prime}} 𝟑\mathbf{3} 𝟏\mathbf{1} 𝟏\mathbf{1}^{\prime} 𝟏′′\mathbf{1^{\prime\prime}}
kIk_{I} 0 0 0 3-3 3-3 3-3 33
U(1)XU(1)_{X} fbfdf_{b}-f_{d} fbfsf_{b}-f_{s} 0 fb-f_{b} fdfbfuf_{d}-f_{b}-f_{u} fsfbfcf_{s}-f_{b}-f_{c} 0

Then the quark Yukawa superpotential invariant under GSM×A4×U(1)XG_{\rm SM}\times A_{4}\times U(1)_{X} with modular forms is sewed with ={χ{\cal F}=\{\chi or χ~}\tilde{\chi}\} through Eq.(2) as

Wq\displaystyle W_{q} =\displaystyle= αt(0)tcQ3Hu+αc(0)(Λ)|fc|Y𝟏(6)ccQ2Hu+αu(0)(Λ)|fu|Y𝟏(6)ucQ1Hu\displaystyle\alpha_{t}^{(0)}\,t^{c}Q_{3}H_{u}+\alpha_{c}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{c}|}Y^{(6)}_{\bf 1}c^{c}Q_{2}H_{u}+\alpha_{u}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{u}|}Y^{(6)}_{\bf 1}u^{c}Q_{1}H_{u} (50)
+\displaystyle+ αb(0)(Λ)|fb|(Y𝟑(6)𝒟c)𝟏′′Q3Hd+αs(0)(Λ)|fs|(Y𝟑(6)𝒟c)𝟏Q2Hd\displaystyle\alpha_{b}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{b}|}(Y^{(6)}_{\bf 3}{\cal D}^{c})_{{\bf 1}^{\prime\prime}}Q_{3}H_{d}+\alpha_{s}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{s}|}(Y^{(6)}_{\bf 3}{\cal D}^{c})_{{\bf 1}^{\prime}}Q_{2}H_{d}
+\displaystyle+ αd(0)(Λ)|fd|(Y𝟑(6)𝒟c)𝟏Q1Hd+Wq(h),\displaystyle\alpha_{d}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{d}|}(Y^{(6)}_{\bf 3}{\cal D}^{c})_{{\bf 1}}Q_{1}H_{d}+W^{(h)}_{q}\,,

where αi(0)\alpha_{i}^{(0)} denotes coefficient at leading order and Wq(h)W^{(h)}_{q} stand for higher order contributions, which are simply contructed by the leadging order operators in Eq.(50) multiplied by n=1(χχ~Λ2)n\sum^{\infty}_{n=1}\Big{(}\frac{\chi\tilde{\chi}}{\Lambda^{2}}\Big{)}^{n}. Note that all Yukawa coefficients in the above suprpotential, αi(0)\alpha_{i}^{(0)}, are assumed to be complex numbers with an absolute value of unity. Since it is hard to reproduce the experimental data of fermion masses and mixing with Yukawa terms constructed with modular forms of weight 4 in quark and charged-lepton sectors in this model, we take into account Yukawa terms with modular forms of weight 6 which are decomposed as 𝟏𝟑𝟑{\bf 1}\oplus{\bf 3}\oplus{\bf 3} under A4A_{4} given explicitly by Feruglio:2017spp

Y𝟏(6)=Y13+Y23+Y333Y1Y2Y3\displaystyle Y^{(6)}_{\bf 1}=Y^{3}_{1}+Y^{3}_{2}+Y^{3}_{3}-3Y_{1}Y_{2}Y_{3}\,
Y𝟑,1(6)=(Y13+2Y1Y2Y3,Y12Y2+2Y22Y3,Y12Y3+2Y32Y2)\displaystyle Y^{(6)}_{{\bf 3},1}=(Y^{3}_{1}+2Y_{1}Y_{2}Y_{3},Y^{2}_{1}Y_{2}+2Y^{2}_{2}Y_{3},Y^{2}_{1}Y_{3}+2Y^{2}_{3}Y_{2})
Y𝟑,2(6)=(Y33+2Y1Y2Y3,Y22Y1+2Y12Y2,Y32Y2+2Y22Y1).\displaystyle Y^{(6)}_{{\bf 3},2}=(Y^{3}_{3}+2Y_{1}Y_{2}Y_{3},Y^{2}_{2}Y_{1}+2Y^{2}_{1}Y_{2},Y^{2}_{3}Y_{2}+2Y^{2}_{2}Y_{1})\,. (51)

In the above superpotential only the top quark operator is renormalizable and does not contain a modular form, leading to the top quark mass as the pole mass, while the other quark operators driven by χ\chi (or χ~)\tilde{\chi}) are dependent on modular forms. Using modular forms of weight 6, Y𝟏(6)Y^{(6)}_{\bf 1} and Y𝟑(6)Y^{(6)}_{\bf 3}, with the quark fields charged under A4×U(1)XA_{4}\times U(1)_{X}, which does not allow mixing among up-type quarks, the off-diagonal entries in the up-type quark mass matrix are forbidden, as indicated in Eq.(68). From the above superpotential the effective Yukawa couplings of quarks can be visualized as functions of the SM gauge-singlet fields χ(χ~)\chi(\tilde{\chi}) and modular forms Y𝟏(𝟑)(6)Y^{(6)}_{\bf 1(3)}, except for the top Yukawa coupling (see the details given in Sec. IV).

According to the quantum numbers of the quark sectors as in Table-1, the color anomaly coefficient of U(1)X×[SU(3)C]2U(1)_{X}\times[SU(3)_{C}]^{2} defined as NC2Tr[XψTSU(3)C2]N_{C}\equiv 2{\rm Tr}[X_{\psi}T^{2}_{SU(3)_{C}}] reads

NC=(fu+fc+fd+fs+fb).\displaystyle N_{C}=-(f_{u}+f_{c}+f_{d}+f_{s}+f_{b})\,. (52)

Note that U(n)U(n) generators (n2n\geq 2) are normalized according to Tr[TaTb]=δab/2{\rm Tr}[T^{a}T^{b}]=\delta^{ab}/2. The U(1)XU(1)_{X} is broken down to its discrete subgroup ZNDWZ_{N_{\rm DW}} in the backgrounds of QCD instanton, and the quantity NCN_{C} (non-zero integer) is given by the axionic domain-wall number NDWN_{\rm DW}. At the QCD phase transition, each axionic string becomes the edge to NDWN_{\rm DW} domain-walls, and the process of axion radiation stops. To avoid the domain-wall problem one should consider NDW=1N_{\rm DW}=1 or the PQ phase transition occurred during (or before) inflation for NDW>1N_{\rm DW}>1.

Next, we turn to the lepton sector, where the fields are charged under GSM×A4×U(1)XG_{\rm SM}\times A_{4}\times U(1)_{X} with modular weight kIk_{I}. Remark that the sterile neutrinos NcN^{c} (which interact with gravity) are introduced (i) to solve the anomaly-free condition of U(1)×[gravity]2U(1)\times[gravity]^{2}, (ii) to explain the small active neutrino masses via the seesaw mechanism, and (iii) to provide a theoretically well-motivated PQ symmetry breaking scale.

Table 2: Representations and quantum numbers of the lepton fields under GSM×A4×U(1)XG_{\rm SM}\times A_{4}\times U(1)_{X} and modular weight kIk_{I} determined according to Eq.(20).
Field LeL_{e} LμL_{\mu} LτL_{\tau} ece^{c} μc\mu^{c} τc\tau^{c} NcN^{c}
GSMG_{\rm SM} (1,2)1/2(1,2)_{-1/2} (1,2)1/2(1,2)_{-1/2} (1,2)1/2(1,2)_{-1/2} (1,1)1(1,1)_{1} (1,1)1(1,1)_{1} (1,1)1(1,1)_{1} (1,1)0(1,1)_{0}
A4A_{4} 𝟏\mathbf{1} 𝟏\mathbf{1}^{\prime} 𝟏′′\mathbf{1}^{\prime\prime} 𝟏\mathbf{1} 𝟏′′\mathbf{1^{\prime\prime}} 𝟏\mathbf{1^{\prime}} 𝟑\mathbf{3}
kIk_{I} 52\frac{5}{2} 52\frac{5}{2} 52\frac{5}{2} 112-\frac{11}{2} 112-\frac{11}{2} 112-\frac{11}{2} 32-\frac{3}{2}
U(1)XU(1)_{X} 12ge\frac{1}{2}-g_{e} 12gμ\frac{1}{2}-g_{\mu} 12gτ\frac{1}{2}-g_{\tau} ge12feg_{e}-\frac{1}{2}-f_{e} gμ12fμg_{\mu}-\frac{1}{2}-f_{\mu} gτ12fτg_{\tau}-\frac{1}{2}-f_{\tau} 12-\frac{1}{2}

In Table 2, the representations and quantum numbers of the lepton fields as well as modular weight kfk_{f} determined along with Eq.(20) are presented. Here, LeL_{e}, LμL_{\mu}, and LτL_{\tau} denote SU(2)LSU(2)_{L} lepton doublets and ece^{c}, μc\mu^{c}, and τc\tau^{c} are three charged lepton singlets. The field NcN^{c} represents the right-handed SU(2)LSU(2)_{L} singlet neutrino, which is introduced to generate active neutrino masses via canonical seesaw mechanism Minkowski:1977sc .

We note that mixing between different charged-leptons does not occur when lepton Yukawa superpotential is economically constructed with modular forms of weight 6 prevents, which leads to the diagonal form of the charged lepton mass matrix as can be seen in Eq.(91)). In contrast, modular forms Y𝟑(2)Y^{(2)}_{\bf 3}, Y𝟏(6)Y^{(6)}_{\bf 1}, and Y𝟑(6)Y^{(6)}_{\bf 3} are used to construct neutrino mass matrices 111111By selecting appropriate modular weight of particle contents, lower weight modular forms can be used, such as (i) Y𝟑(2)Y^{(2)}_{\bf 3} in the Dirac neutrino sector, and Y𝟏(𝟏,𝟏′′)(4)Y^{(4)}_{\bf 1(1^{\prime},1^{\prime\prime})} and Y𝟑(4)Y^{(4)}_{\bf 3} in the Majorana neutrino sector. However, this leads to additional interactions, including 12Y𝟏(4)(NcNc)𝟏χ\frac{1}{2}Y^{(4)}_{\bf 1}(N^{c}N^{c})_{\bf 1}\chi, 12Y𝟏(4)(NcNc)𝟏′′χ\frac{1}{2}Y^{(4)}_{{\bf 1}^{\prime}}(N^{c}N^{c})_{{\bf 1}^{\prime\prime}}\chi, 12Y𝟏′′(4)(NcNc)𝟏χ\frac{1}{2}Y^{(4)}_{{\bf 1}^{\prime\prime}}(N^{c}N^{c})_{{\bf 1}^{\prime}}\chi, and 12Y𝟑(4)(NcNc)𝟑χ\frac{1}{2}Y^{(4)}_{\bf 3}(N^{c}N^{c})_{\bf 3}\chi. (ii) Another option is to use Y𝟑(2)Y^{(2)}_{\bf 3} in the Dirac neutrino sector and no modular form in the Majorana neutrino sector, which results in only 12(NcNc)𝟏χ\frac{1}{2}(N^{c}N^{c})_{\bf 1}\chi and degenerate heavy Majorana neutrino mass states at the seesaw scale. However, we have found that this approach is difficult to reconcile with experimental neutrino data. Then the Yukawa superpotential for lepton invariant under GSM×A4×U(1)XG_{\rm SM}\times A_{4}\times U(1)_{X} with economic modular forms are sewed with ={χ{\cal F}=\{\chi or χ~}\tilde{\chi}\} through Eq.(2), respectively, as

Wν\displaystyle W_{\ell\nu} =\displaystyle= ατ(0)(Λ)|fτ|Y𝟏(6)τcLτHd+αμ(0)(Λ)|fμ|Y𝟏(6)μcLμHd+αe(0)(Λ)|fe|Y𝟏(6)ecLeHd\displaystyle\alpha_{\tau}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{\tau}|}Y^{(6)}_{\bf 1}\tau^{c}L_{\tau}H_{d}+\alpha_{\mu}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{\mu}|}Y^{(6)}_{\bf 1}\mu^{c}L_{\mu}H_{d}+\alpha_{e}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{e}|}Y^{(6)}_{\bf 1}e^{c}L_{e}H_{d} (53)
+\displaystyle+ β1(0)(Λ)|ge|(Y𝟑(2)Nc)𝟏LeHu+β2(0)(Λ)|gμ|(Y𝟑(2)Nc)𝟏′′LμHu\displaystyle\beta_{1}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|g_{e}|}(Y^{(2)}_{\bf 3}N^{c})_{{\bf 1}}L_{e}H_{u}+\beta_{2}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|g_{\mu}|}(Y^{(2)}_{\bf 3}N^{c})_{{\bf 1}^{\prime\prime}}L_{\mu}H_{u}
+\displaystyle+ β3(0)(Λ)|gτ|(Y𝟑(2)Nc)𝟏LτHu+γ1(0)12Y𝟏(6)(NcNc)𝟏χ+γ2(0)12Y𝟑(6)(NcNc)𝟑χ+Wlν(h),\displaystyle\beta_{3}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|g_{\tau}|}(Y^{(2)}_{\bf 3}N^{c})_{{\bf 1}^{\prime}}L_{\tau}H_{u}+\gamma_{1}^{(0)}\frac{1}{2}Y^{(6)}_{\bf 1}(N^{c}N^{c})_{{\bf 1}}\chi+\gamma_{2}^{(0)}\frac{1}{2}Y^{(6)}_{\bf 3}(N^{c}N^{c})_{{\bf 3}}\chi+W^{(h)}_{l\nu},

where αi(0),βi(0),γi(0)\alpha_{i}^{(0)},\beta_{i}^{(0)},\gamma_{i}^{(0)} denote coefficients at leading order and Wlν(h)W^{(h)}_{l\nu} stands for higher order contributions triggered by the combination χχ~\chi\tilde{\chi}. Like in the quark sector, the Yukawa coefficients in the above superpotential, such as αi(0),βi(0),γi(0)\alpha_{i}^{(0)},\beta_{i}^{(0)},\gamma_{i}^{(0)}, are assumed to be complex numbers with an absolute value of unity. In the above superpotential, the charged-lepton and Dirac neutrino parts have three distinct Yukawa terms each, with their common modular forms being Y𝟏(6)Y^{(6)}_{\bf 1} and Y𝟑(2)Y^{(2)}_{\bf 3}, respectively. Each term involves /Λ{\cal F}/\Lambda to the power of an appropriate U(1)XU(1)_{X} quantum number. The flavored U(1)XU(1)_{X} PQ symmetry allows for two renormalizable terms for the right-handed neutrino NcN^{c}, which implement the seesaw mechanism Minkowski:1977sc by making the VEV χ\langle\chi\rangle large. The details on how the active neutrino masses and mixing are predicted will be presented in Sec. IV.3.

Nonperturbative quantum gravitational anomaly effects Kamionkowski:1992mf violate the conservation of the corresponding current, μJXμRR~\partial_{\mu}J^{\mu}_{X}\propto R\tilde{R}, where RR is the Riemann tensor and R~\tilde{R} is its dual, and make the axion solution to the strong CP problem problematic. To consistently couple gravity to matter charged under U(1)XU(1)_{X}, the mixed-gravitational anomaly U(1)X×[gravity]2U(1)_{X}\times[{\rm gravity}]^{2} (related to the color anomaly U(1)X×[SU(3)C]2U(1)_{X}\times[SU(3)_{C}]^{2}) must be cancelled, as shown in Refs. Ahn:2016hbn ; Ahn:2018cau ; Ahn:2021ndu , which leads to the relation,

3NC=fe+fμ+fτ+ge+gμ+gτ.\displaystyle 3N_{C}=f_{e}+f_{\mu}+f_{\tau}+g_{e}+g_{\mu}+g_{\tau}\,. (54)

Thus the choice of U(1)XU(1)_{X} charge for ordinary quarks and leptons is strictly restricted.

Below the U(1)XU(1)_{X} symmetry breaking scale (here, equivalent to the seesaw scale) the effective interactions of QCD axion with the weak and hypercharge gauge bosons and with the photon are expressed through the chiral rotation of Eq.(62), respectively, as

AWY\displaystyle{\cal L}^{WY}_{A} =\displaystyle= AXfA132π2{gW2NWWμνW~μν+gY2NYYμνY~μν},\displaystyle\frac{A_{X}}{f_{A}}\frac{1}{32\pi^{2}}\Big{\{}g^{2}_{W}\,N_{W}\,W^{\mu\nu}\tilde{W}_{\mu\nu}+g^{2}_{Y}\,N_{Y}\,Y^{\mu\nu}\tilde{Y}_{\mu\nu}\Big{\}}\,, (55)
Aγ\displaystyle{\cal L}^{\gamma}_{A} =\displaystyle= AXfAe232π2EFμνF~μν,\displaystyle\frac{A_{X}}{f_{A}}\frac{e^{2}}{32\pi^{2}}\,E\,F^{\mu\nu}\tilde{F}_{\mu\nu}\,, (56)

where gWg_{W}, gYg_{Y}, and ee stand for the gauge coupling constant of SU(2)LSU(2)_{L}, U(1)YU(1)_{Y}, and U(1)EMU(1)_{EM}, respectively; their corresponding gauge field strengths Wμν,YμνW^{\mu\nu},Y^{\mu\nu}, and FμνF^{\mu\nu} with their dual forms W~μν,Y~μν\tilde{W}_{\mu\nu},\tilde{Y}_{\mu\nu}, and F~μν\tilde{F}_{\mu\nu}, respectively. Here NW2Tr[XψfTSU(2)2]N_{W}\equiv 2{\rm Tr}[X_{\psi_{f}}T^{2}_{SU(2)}] and NY2Tr[Xψf(QfY)2]N_{Y}\equiv 2{\rm Tr}[X_{\psi_{f}}(Q_{f}^{Y})^{2}] are the anomaly coefficients of U(1)X×[SU(2)L]2U(1)_{X}\times[SU(2)_{L}]^{2} and U(1)X×[U(1)Y]2U(1)_{X}\times[U(1)_{Y}]^{2}, respectively. And the electromagnetic anomaly coefficient EE of U(1)X×[U(1)EM]2U(1)_{X}\times[U(1)_{EM}]^{2} defined by E=2ψfXψf(Qψfem)2E=2\sum_{\psi_{f}}X_{\psi_{f}}(Q^{\rm em}_{\psi_{f}})^{2} with QψfemQ^{\rm em}_{\psi_{f}} being the U(1)EMU(1)_{\rm EM} charge of field ψf\psi_{f} is expressed as

E\displaystyle E =\displaystyle= NW+NY=2(fe+fμ+fτ)23(4fu+4fc+fd+fs+fb).\displaystyle N_{W}+N_{Y}=-2(f_{e}+f_{\mu}+f_{\tau})-\frac{2}{3}(4f_{u}+4f_{c}+f_{d}+f_{s}+f_{b})\,. (57)

The physical quantities of QCD axion, such as axion mass mam_{a} and axion-photon coupling gaγγg_{a\gamma\gamma}, are dependent on the ratio of electromagnetic anomaly coefficient EE to color one NCN_{C}. The value of E/NCE/N_{C} is determined in terms of the XX-charges for quarks and leptons by the relation,

ENC\displaystyle\frac{E}{N_{C}} =\displaystyle= 2(fe+fμ+fτ)+23(4fu+4fc+fd+fs+fb)fu+fc+fd+fs+fb\displaystyle\frac{2(f_{e}+f_{\mu}+f_{\tau})+\frac{2}{3}(4f_{u}+4f_{c}+f_{d}+f_{s}+f_{b})}{f_{u}+f_{c}+f_{d}+f_{s}+f_{b}}\, (58)
=\displaystyle= 6(fe+fμ+fτ)+2(4fu+4fc+fd+fs+fb)fefμfτgegμgτ,\displaystyle\frac{6(f_{e}+f_{\mu}+f_{\tau})+2(4f_{u}+4f_{c}+f_{d}+f_{s}+f_{b})}{-f_{e}-f_{\mu}-f_{\tau}-g_{e}-g_{\mu}-g_{\tau}}\,,

where the first and second equality follow from Eqs.(52) and (54), respectively. Our model with a specific value of E/NCE/N_{C} can be tested by ongoing experiments such as KLASH Alesini:2019nzq and FLASH Gatti:2021cel ( see Eq.(86) and Fig.1 and 2) by considering the scale of U(1)XU(1)_{X} breakdown induced by Eq.(45).

Compared to conventional A4A_{4} symmetry models resulting in tribimaximal Ma:2001dn or nearly tribimaximal Ahn:2012cg mixing in the neutrino sector, the modular invariant model leads to neutrino mixing without the need for special breaking patterns and the introduction of multiple scalar fields. Our model can be uniquely realized for quark sector by assigning A4×U(1)XA_{4}\times U(1)_{X} quantum numbers to matter fields with appropriate modular forms based on Eq.(2). Some comments are worth noting. (i) By selecting the appropriate modular weight for the right-handed down-type quark fields, it is possible to construct down-type quark Yukawa superpotential with lower modular weight forms Y𝟑(2)Y^{(2)}_{\bf 3} or Y𝟑(4)Y^{(4)}_{\bf 3} while keeping the same up-type quark Yukawa superpotential given in Eq.(50). However, it is hard to reproduce the experimental data for quark masses and mixing hierarchies in this way due to the limited number of parameters. (ii) Unlike the case in Table-1, the quark SU(2)LSU(2)_{L} doublets and singlets can be assigned to A4A_{4} triplets and singlets by choosing appropriate modular weight forms and U(1)XU(1)_{X} quantum numbers, respectively. In this case, the quark mass hierarchies can be realized in the limit of τ=i\langle\tau\rangle=i\infty (i.e. Y11Y_{1}\rightarrow 1, Y20Y_{2}\rightarrow 0, and Y30Y_{3}\rightarrow 0), whereas it is hard to reproduce the CKM mixing angles since additive correction terms induced by higher weight modular forms are forbidden by the modular weight zero of χ(χ~)\chi(\tilde{\chi}) fields. (iii) In the opposite scenario where the quark SU(2)LSU(2)_{L} doublets and singlets are assigned to A4A_{4} singlets and triplets, respectively, it is not possible to account for the observed quark mass hierarchy due to the charge assignment of U(1)XU(1)_{X}. (iv) For leptons, unlike the case in Table-2, the left-handed charged lepton SU(2)LSU(2)_{L} doublets LL can be assigned to the A4A_{4} triplet and their U(1)XU(1)_{X} quantum numbers are taken to be 12gl\frac{1}{2}-g_{l}, whereas SU(2)LSU(2)_{L} singlets (ece^{c}, μc\mu^{c}, τc\tau^{c}) are assigned to the A4A_{4} singlets (1,1′′{}^{{}^{\prime\prime}},1{}^{{}^{\prime}}) and U(1)XU(1)_{X} quantum numbers are taken to be (glfe12,glfμ12,glfτ12)(g_{l}-f_{e}-\frac{1}{2},g_{l}-f_{\mu}-\frac{1}{2},g_{l}-f_{\tau}-\frac{1}{2}). To generate neutrino mass through the seesaw mechanism, NcN^{c} is assigned to the A4A_{4} triplet, and U(1)XU(1)_{X} quantum number is taken to be 12-\frac{1}{2}. In this case, we have the freedom to select the weights. For instance, we can choose the following weights: kL=52k_{L}=\frac{5}{2}, kec=kμc=kτc=32k_{e^{c}}=k_{\mu^{c}}=k_{\tau^{c}}=-\frac{3}{2}, and kNc=12k_{N^{c}}=\frac{1}{2}. Then the lepton Yukawa superpotential reads

Wν\displaystyle W_{\ell\nu} =\displaystyle= [ατ(0)(Λ)|fτ|(Y𝟑(2)L)𝟏′′τc+αμ(0)(Λ)|fμ|(Y𝟑(2)L)𝟏μc+αe(0)(Λ)|fe|(Y𝟑(2)L)𝟏ec]Hd\displaystyle\Big{[}\alpha_{\tau}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{\tau}|}(Y^{(2)}_{\bf 3}L)_{{\bf 1}^{\prime\prime}}\tau^{c}+\alpha_{\mu}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{\mu}|}(Y^{(2)}_{\bf 3}L)_{{\bf 1}^{\prime}}\mu^{c}+\alpha_{e}^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|f_{e}|}(Y^{(2)}_{\bf 3}L)_{\bf 1}e^{c}\Big{]}H_{d} (59)
+\displaystyle+ β(0)(Λ)|gl|(NcL)𝟏Hu+γ(0)12(Y𝟑(2)NcNc)𝟏χ+,\displaystyle\beta^{(0)}\Big{(}\frac{\cal F}{\Lambda}\Big{)}^{|g_{l}|}(N^{c}L)_{{\bf 1}}H_{u}+\gamma^{(0)}\frac{1}{2}(Y^{(2)}_{\bf 3}N^{c}N^{c})_{{\bf 1}}\chi+...\,,

where dots stand for higher order contributions triggered by the combination χχ~\chi\tilde{\chi}. It is worth noting that the above superpotential enables mixing between different charged leptons, analogous to the down-type quark sector. Additionally, the Dirac neutrino Yukawa matrix, denoted as mDm_{D}, exhibits a proportional relationship to mDmD(1,1,1)m_{D}^{\dagger}m_{D}\propto(1,1,1), and the heavy Majorana neutrino mass term follows a similar form, as found in Ref.Feruglio:2017spp . By selecting another specific weights, namely kL=92k_{L}=\frac{9}{2}, kec=kμc=kτc=72k_{e^{c}}=k_{\mu^{c}}=k_{\tau^{c}}=-\frac{7}{2}, and kNc=32k_{N^{c}}=-\frac{3}{2}, a notable change occurs in the modular form of the Majorana neutrino operator. Specifically, the term Y𝟑(2)Y^{(2)}_{\bf 3} transforms into Y𝟏(𝟑)(6)Y^{(6)}_{\bf 1(3)}, resulting in an expression that aligns with the form presented in Eq.(53). While these cases show potential for reproducing lepton mass and mixing, further investigation is necessary to confirm its viability. (v) However, the assignment of the right-handed charged lepton Ec=(ec,μc,τc)E^{c}=(e^{c},\mu^{c},\tau^{c}) to the A4A_{4} triplet, the left-handed charged lepton denoted as Le,μ,τL_{e,\mu,\tau} to A4A_{4} singlets (1,1′′{}^{{}^{\prime\prime}},1{}^{{}^{\prime}}), and NcN^{c} to the A4A_{4} triplet may not provide an explanation for the observed charged-lepton mass hierarchy. This difficulty arises from the charge assignment of U(1)XU(1)_{X}.

IV Quark and Lepton interactions with QCD axion

Let us discuss how quark and lepton masses and mixings are derived from Yukawa interactions within a framework based on A4×U(1)XA_{4}\times U(1)_{X} symmetries with modular invariance. Non-zero VEVs of scalar fields χ(χ~)\chi(\tilde{\chi}) spontaneously break the flavor symmetry U(1)XU(1)_{X}121212If the symmetry U(1)XU(1)_{X} is broken spontaneously, the massless mode AXA_{X} of the scalar χ\chi appear as a phase. at high energies above EW scale and create a heavy Majorana neutrino mass term. Then, the effective Yukawa structures in the low-energy limit depend on a small dimensionless parameter /ΛΔ\langle{\cal F}\rangle/\Lambda\equiv\Delta_{\cal F}. The higher order contributions of superpotentials Wq(lν)(h)W^{(h)}_{q(l\nu)} become n=1c~iΔχ2n\sum^{\infty}_{n=1}\tilde{c}_{i}\,\Delta^{2n}_{\chi}\cdot(leading order operators) with c~i=eiθ~i\tilde{c}_{i}=e^{i\tilde{\theta}_{i}}, which make the Yukawa coefficients of the leading order terms in the superpotentials given in Eqs.(37, 50, 53) shifted. Denoting the effective Yukawa coefficients shifted by higher order contributions as αi,βi,γi\alpha_{i},\beta_{i},\gamma_{i}, we see that they are constrained as

1Δχ21Δχ2|αi|,|β|,|γi|1+Δχ21Δχ2withΔχvχ2Λ,\displaystyle 1-\frac{\Delta^{2}_{\chi}}{1-\Delta^{2}_{\chi}}\leq|\alpha_{i}|,|\beta_{|},|\gamma_{i}|\leq 1+\frac{\Delta^{2}_{\chi}}{1-\Delta^{2}_{\chi}}\qquad\text{with}~{}\Delta_{\chi}\equiv\frac{v_{\chi}}{\sqrt{2}\,\Lambda}, (60)

where the lower (upper) limit corresponds to the sum of higher order terms with θ~i=π(0)\tilde{\theta}_{i}=\pi(0). When Hu(d)H_{u(d)} acquire non-zero VEVs, all quarks and leptons obtain masses. The relevant quark and lepton interactions with their chiral fermions are given by

\displaystyle-{\cal L} \displaystyle\supset qRu¯uqLu+qRd¯dqLd+g2Wμ+qLu¯γμqLd\displaystyle\overline{q^{u}_{R}}\,\mathcal{M}_{u}\,q^{u}_{L}+\overline{q^{d}_{R}}\,\mathcal{M}_{d}\,q^{d}_{L}+\frac{g}{\sqrt{2}}W^{+}_{\mu}\overline{q^{u}_{L}}\gamma^{\mu}\,q^{d}_{L} (61)
+\displaystyle+ R¯L+12(νLc¯NR¯)(0mDTmDeiAXuχMR)(νLNRc)+g2WμL¯γμνL+h.c.,\displaystyle\overline{\ell_{R}}\,{\cal M}_{\ell}\,\ell_{L}+\frac{1}{2}\begin{pmatrix}\overline{\nu^{c}_{L}}&\overline{N_{R}}\end{pmatrix}\begin{pmatrix}0&m^{T}_{D}\\ m_{D}&~{}~{}~{}e^{i\frac{A_{X}}{u_{\chi}}}\,M_{R}\end{pmatrix}\begin{pmatrix}\nu_{L}\\ N^{c}_{R}\end{pmatrix}+\frac{g}{\sqrt{2}}W^{-}_{\mu}\overline{\ell_{L}}\gamma^{\mu}\,\nu_{L}+\text{h.c.}\,,

where gg is the SU(2)LSU(2)_{L} coupling constant, qu=(u,c,t)q^{u}=(u,c,t), qd=(d,s,b)q^{d}=(d,s,b), =(e,μ,τ)\ell=(e,\mu,\tau), ν=(νe,νμ,ντ)\nu=(\nu_{e},\nu_{\mu},\nu_{\tau}), and N=(N1,N2,N3)N=(N_{1},N_{2},N_{3}). MRM_{R} contains a VEV of χ\chi presented by Eq.(48). The explicit forms of u,d,l\mathcal{M}_{u,d,l} will be given later. The above Lagrangian of the fermions, including their kinetic terms of Eq.(46), should be invaruant under U(1)XU(1)_{X}:

ψfeifψfγ52αψf,t=invariant,Neiγ52αN\displaystyle\psi_{f}\rightarrow e^{if_{\psi_{f}}\frac{\gamma_{5}}{2}\alpha}\psi_{f}\,,\quad t=\text{invariant}\,,\quad N\rightarrow e^{i\frac{\gamma_{5}}{2}\alpha}N (62)

where ψf={u,c,d,s,b,e,μ,τ}\psi_{f}=\{u,c,d,s,b,e,\mu,\tau\} and α\alpha is a transformation constant parameter.

IV.1 Quark and flavored-QCD axion

As axion models, the axion-Yukawa coupling matrices and quark mass matrices in our model can be aresimultaneously diagonalized. The quark mass matrices are diagonalized through bi-unitary transformations: VRψψVLψ=^ψV^{\psi}_{R}{\cal M}_{\psi}V^{\psi{\dagger}}_{L}=\hat{{\cal M}}_{\psi} (diagonal form) and the mass eigenstates are ψR=VRψψR\psi^{\prime}_{R}=V^{\psi}_{R}\,\psi_{R} and ψL=VLψψL\psi^{\prime}_{L}=V^{\psi}_{L}\,\psi_{L}. These transformation include, in particular, the chiral transformation of Eq.(62) that necessarily makes u,d,{\cal M}_{u,d,\ell} real and positive. This induces a contribution to the QCD vacuum angle in Eq.(46), i.e.,

ϑQCDϑeff=ϑQCD+arg{det(u)det(d)}\displaystyle\vartheta_{\rm QCD}\rightarrow\vartheta_{\rm eff}=\vartheta_{\rm QCD}+\arg\{\det({\cal M}_{u})\det({\cal M}_{d})\} (63)

with πϑeffπ-\pi\leq\vartheta_{\rm eff}\leq\pi. Then one obtains the vanishing QCD anomaly term

ϑ=(ϑeff+AXFa)αs8πGaμνG~μνawithFa=faNC,\displaystyle{\cal L}_{\vartheta}=\Big{(}\vartheta_{\rm eff}+\frac{A_{X}}{F_{a}}\Big{)}\frac{\alpha_{s}^{\prime}}{8\pi}G^{a\mu\nu}\tilde{G}^{a}_{\mu\nu}\qquad\text{with}~{}F_{a}=\frac{f_{a}}{N_{C}}\,, (64)

where αs=gs2/4π\alpha_{s}^{\prime}=g^{2}_{s}/4\pi and the axion decay constant FaF_{a} with fa=uχf_{a}=u_{\chi} of Eq.(48). At low energies AXA_{X} will get a VEV, AX=Faϑeff\langle A_{X}\rangle=-F_{a}\vartheta_{\rm eff}, eliminating the constant ϑeff\vartheta_{\rm eff} term. The QCD axion then is the excitation of the AXA_{X} field, a=AXAXa=A_{X}-\langle A_{X}\rangle.

Substituting the VEV of Eq.(40) into the superpotential Eq.(50), the mass matrices u{\cal M}_{u} and d{\cal M}_{d} for up- and down-type quarks given in the Lagrangian (61) are derived as,

u=(αuΔχ|fu|Y𝟏(6)eifuAXuχ000αcΔχ|fc|Y𝟏(6)eifcAXuχ000αt)vu,\displaystyle{\cal M}_{u}={\left(\begin{array}[]{ccc}\alpha_{u}\Delta^{|f_{u}|}_{\chi}\,Y^{(6)}_{\bf 1}e^{if_{u}\frac{A_{X}}{u_{\chi}}}&0&0\\ 0&\alpha_{c}\Delta^{|f_{c}|}_{\chi}\,Y^{(6)}_{\bf 1}e^{if_{c}\frac{A_{X}}{u_{\chi}}}&0\\ 0&0&\alpha_{t}\end{array}\right)}\,v_{u}\,, (68)
d=[(αdΔχ|fd|αsxΔχ|fs|αbyΔχ|fb|αdyΔχ|fd|αsΔχ|fs|αbxΔχ|fb|αdxΔχ|fd|αsyΔχ|fs|αbΔχ|fb|)(1+2xy)\displaystyle{\cal M}_{d}=\Big{[}{\left(\begin{array}[]{ccc}\alpha_{d}\Delta^{|f_{d}|}_{\chi}&\alpha_{s}\,x\Delta^{|f_{s}|}_{\chi}&\alpha_{b}\,y\Delta^{|f_{b}|}_{\chi}\\ \alpha_{d}\,y\Delta^{|f_{d}|}_{\chi}&\alpha_{s}\Delta^{|f_{s}|}_{\chi}&\alpha_{b}\,x\Delta^{|f_{b}|}_{\chi}\\ \alpha_{d}\,x\Delta^{|f_{d}|}_{\chi}&\alpha_{s}\,y\Delta^{|f_{s}|}_{\chi}&\alpha_{b}\Delta^{|f_{b}|}_{\chi}\end{array}\right)}(1+2xy) (72)
+(α~dyΔχ|fd|α~sΔχ|fs|α~bxΔχ|fb|α~dxΔχ|fd|α~syΔχ|fs|α~bΔχ|fb|α~dΔχ|fd|α~sxΔχ|fs|α~byΔχ|fb|)(y2+2x)]C~Y31vd,\displaystyle\qquad\qquad\qquad\qquad+{\left(\begin{array}[]{ccc}\tilde{\alpha}_{d}\,y\Delta^{|f_{d}|}_{\chi}&\tilde{\alpha}_{s}\Delta^{|f_{s}|}_{\chi}&\tilde{\alpha}_{b}\,x\Delta^{|f_{b}|}_{\chi}\\ \tilde{\alpha}_{d}\,x\Delta^{|f_{d}|}_{\chi}&\tilde{\alpha}_{s}\,y\Delta^{|f_{s}|}_{\chi}&\tilde{\alpha}_{b}\Delta^{|f_{b}|}_{\chi}\\ \tilde{\alpha}_{d}\Delta^{|f_{d}|}_{\chi}&\tilde{\alpha}_{s}\,x\Delta^{|f_{s}|}_{\chi}&\tilde{\alpha}_{b}\,y\Delta^{|f_{b}|}_{\chi}\end{array}\right)}(y^{2}+2x)\Big{]}\tilde{C}\,Y^{3}_{1}\,v_{d}\,, (76)

where vdHd=vcosβ/2v_{d}\equiv\langle H_{d}\rangle=v\cos\beta/\sqrt{2}, vuHu=vsinβ/2v_{u}\equiv\langle H_{u}\rangle=v\sin\beta/\sqrt{2} with v246v\simeq 246 GeV, and

C~=diag.(eifdAXuχ,eifsAXuχ,eifbAXuχ),x=Y2Y1,y=Y3Y1.\displaystyle\tilde{C}={\rm diag.}\big{(}e^{if_{d}\frac{A_{X}}{u_{\chi}}},e^{if_{s}\frac{A_{X}}{u_{\chi}}},e^{if_{b}\frac{A_{X}}{u_{\chi}}}\big{)}\,,\quad x=\frac{Y_{2}}{Y_{1}}\,,\quad y=\frac{Y_{3}}{Y_{1}}\,. (77)

The terms with αd,s,b\alpha_{d,s,b} in Eq.(76) generate by taking the modular form Y𝟑,1(6)Y^{(6)}_{{\bf 3},1} given in Eq.(51), whereas the terms with α~d,s,b\tilde{\alpha}_{d,s,b} in Eq.(76) generate by taking Y𝟑,2(6)Y^{(6)}_{{\bf 3},2}.

The quark mass matrices u{\cal M}_{u} in Eq.(68) and d{\cal M}_{d} in Eq.(76) generate the up- and down-type quark masses:

^u=VRuuVLu=diag(mu,mc,mt),^d=VRddVLd=diag(md,ms,mb).\displaystyle\hat{\mathcal{M}}_{u}=V^{u}_{R}\,{\cal M}_{u}\,V^{u{\dagger}}_{L}={\rm diag}(m_{u},m_{c},m_{t})\,,\quad\hat{\mathcal{M}}_{d}=V^{d}_{R}\,{\cal M}_{d}\,V^{d{\dagger}}_{L}={\rm diag}(m_{d},m_{s},m_{b})\,. (78)

Diagonalizing the matrices ff{\cal M}_{f}^{\dagger}{\cal M}_{f} and ff{\cal M}_{f}{\cal M}_{f}^{\dagger} (f=u,df=u,d) determine the mixing matrices VLfV_{L}^{f} and VRfV_{R}^{f}, respectively Ahn:2011yj . The left-handed quark mixing matrices VLuV_{L}^{u} and VLdV_{L}^{d} are components of the CKM matrix VCKM=VLuVLdV_{\rm CKM}=V_{L}^{u}V_{L}^{d\dagger}, which is generated from the down-type quark matrix in Eq.(76) due to the diagonal form of the up-type quark mass matrix in Eq.(68). The CKM matrix is parameterized by the Wolfenstein parametrization Wolfenstein:1983yz , see Eq.(139), and has been determined with high precision Ahn:2011fg . The current best-fit values of the CKM mixing angles in the standard parameterization Chau:1984fp read in the 3σ3\sigma range ckm

θ23q[]=2.3760.070+0.054,θ13q[]=0.2100.010+0.016,θ12q[]=13.0030.036+0.048,δCPq[]=65.54.9+3.1.\displaystyle\theta^{q}_{23}[^{\circ}]=2.376^{+0.054}_{-0.070}\,,\quad\theta^{q}_{13}[^{\circ}]=0.210^{+0.016}_{-0.010}\,,\quad\theta^{q}_{12}[^{\circ}]=13.003^{+0.048}_{-0.036}\,,\quad\delta^{q}_{CP}[^{\circ}]=65.5^{+3.1}_{-4.9}\,. (79)

The physical structure of the up- and down-type quark Lagrangian should match up with the empirical results calculated from the Particle Data Group (PDG) PDG :

md\displaystyle m_{d} =\displaystyle= 4.670.17+0.48MeV,ms=935+11MeV,mb=4.180.02+0.03GeV,\displaystyle 4.67^{+0.48}_{-0.17}\,{\rm MeV}\,,\qquad~{}m_{s}=93^{+11}_{-5}\,{\rm MeV}\,,\qquad\qquad~{}~{}m_{b}=4.18^{+0.03}_{-0.02}\,{\rm GeV}\,,
mu\displaystyle m_{u} =\displaystyle= 2.160.29+0.49MeV,mc=1.27±0.02GeV,mt=173.1±0.9GeV,\displaystyle 2.16^{+0.49}_{-0.29}\,{\rm MeV}\,,\qquad~{}m_{c}=1.27\pm 0.02\,{\rm GeV}\,,\qquad~{}m_{t}=173.1\pm 0.9\,{\rm GeV}\,, (80)

where tt-quark mass is the pole mass, cc- and bb-quark masses are the running masses in the MS¯\overline{\rm MS} scheme, and the light uu-, dd-, ss-quark masses are the current quark masses in the MS¯\overline{\rm MS} scheme at the momentum scale μ2\mu\approx 2 GeV. Below the scale of spontaneous SU(2)L×U(1)YSU(2)_{L}\times U(1)_{Y} gauge symmetry breaking, the running masses of cc- and bb-quark receive corrections from QCD and QED loops PDG . The top quark mass at scales below the pole mass is unphysical since the tt-quark decouples at its scale, and its mass is determined more directly by experiments PDG .

After diagonalizing the mass matrices of Eqs.(68, 76), the flavored-QCD axion to quark interactions are written at leading order as

aq\displaystyle-{\cal L}^{aq} \displaystyle\simeq μa2uχ{fuu¯γμγ5u+fcc¯γμγ5c+fdd¯γμγ5d+fss¯γμγ5s+fbb¯γμγ5b}\displaystyle\frac{\partial_{\mu}a}{2u_{\chi}}\Big{\{}f_{u}\,\bar{u}\gamma^{\mu}\gamma_{5}u+f_{c}\,\bar{c}\gamma^{\mu}\gamma_{5}c+f_{d}\,\bar{d}\gamma^{\mu}\gamma_{5}d+f_{s}\,\bar{s}\gamma^{\mu}\gamma_{5}s+f_{b}\,\bar{b}\gamma^{\mu}\gamma_{5}b\Big{\}} (81)
+\displaystyle+ μa2uχ{(fdfs)λ(1λ22)d¯γμγ5s+(fsfb)Adλ2s¯γμγ5b\displaystyle\frac{\partial_{\mu}a}{2u_{\chi}}\Big{\{}(f_{d}-f_{s})\lambda\Big{(}1-\frac{\lambda^{2}}{2}\Big{)}\bar{d}\gamma^{\mu}\gamma_{5}s+(f_{s}-f_{b})A_{d}\lambda^{2}\,\bar{s}\gamma^{\mu}\gamma_{5}b
+Adλ3(fd(ρ+iη)fs+fb(1ρiη))b¯γμγ5d+h.c.}\displaystyle\qquad\qquad+A_{d}\lambda^{3}\Big{(}f_{d}(\rho+i\eta)-f_{s}+f_{b}(1-\rho-i\eta)\Big{)}\bar{b}\gamma^{\mu}\gamma_{5}d+{\rm h.c.}\Big{\}}
+\displaystyle+ ia2uχ{(fdfs)λ(1λ22)(mdms)d¯s+(fsfb)Adλ2(msmb)s¯b\displaystyle i\frac{a}{2u_{\chi}}\Big{\{}(f_{d}-f_{s})\lambda\Big{(}1-\frac{\lambda^{2}}{2}\Big{)}(m_{d}-m_{s})\,\bar{d}s+(f_{s}-f_{b})A_{d}\lambda^{2}(m_{s}-m_{b})\,\bar{s}b
+Adλ3(fd(ρ+iη)fs+fb(1ρiη))(mbmd)b¯d+h.c.}\displaystyle\qquad\qquad+A_{d}\lambda^{3}\Big{(}f_{d}(\rho+i\eta)-f_{s}+f_{b}(1-\rho-i\eta)\Big{)}(m_{b}-m_{d})\,\bar{b}d+{\rm h.c.}\Big{\}}
+\displaystyle+ muu¯u+mcc¯c+mtt¯t+mdd¯d+mss¯s+mbb¯bq¯iDq,\displaystyle m_{u}\,\bar{u}u+m_{c}\,\bar{c}c+m_{t}\,\bar{t}t+m_{d}\,\bar{d}d+m_{s}\,\bar{s}s+m_{b}\,\bar{b}b-\bar{q}i\!\!\not\!D\,q\,,

where VLd=VCKMV^{d{\dagger}}_{L}=V_{\rm CKM} of Eq.(139) is used by rotating the phases in u{\cal M}_{u} away, which is the result of a direct interaction of the SM gauge singlet scalar field χ\chi with the SM quarks charged under U(1)XU(1)_{X}. The flavored-QCD axion aa is produced by flavor-changing neutral Yukawa interactions in Eq.(81), which leads to induced rare flavor-changing processes. The strongest bound on the QCD axion decay constant is from the flavor-changing process K+π++aK^{+}\rightarrow\pi^{+}+aWilczek:1982rv ; Bolton:1988af ; Artamonov:2008qb ; raredecay ; Berezhiani:1989fp , induced by the flavored-QCD axion aa. From Eq.(81) the flavored-QCD axion interactions with the flavor violating coupling to the ss- and dd-quark are given by

Yasdi2(fdfs)aNCFas¯d(mdms)λ(1λ22).\displaystyle-{\cal L}^{asd}_{Y}\simeq\frac{i}{2}(f_{d}-f_{s})\frac{a}{N_{C}F_{a}}\bar{s}d\,(m_{d}-m_{s})\lambda\Big{(}1-\frac{\lambda^{2}}{2}\Big{)}\,. (82)

Then the decay width of K+π++aK^{+}\rightarrow\pi^{+}+a is given by

Γ(K+π++a)=mK316π(1mπ2mK2)3|fdfs2FaNCλ(1λ22)|2,\displaystyle\Gamma(K^{+}\rightarrow\pi^{+}+a)=\frac{m^{3}_{K}}{16\pi}\Big{(}1-\frac{m^{2}_{\pi}}{m^{2}_{K}}\Big{)}^{3}\Big{|}\frac{f_{d}-f_{s}}{2\,F_{a}N_{C}}\lambda\Big{(}1-\frac{\lambda^{2}}{2}\Big{)}\Big{|}^{2}\,, (83)

where mK±=493.677±0.013m_{K^{\pm}}=493.677\pm 0.013 MeV, mπ±=139.57061±0.00024m_{\pi^{\pm}}=139.57061\pm 0.00024 MeV PDG . From the present experimental upper bound Br(K+π+a)<(36)×1011(1×1011){\rm Br}(K^{+}\rightarrow\pi^{+}a)<(3-6)\times 10^{-11}(1\times 10^{-11}) for ma=0110m_{a}=0-110 (160-260) MeV at 90%90\% CL with Br(K+π+νν¯)=(10.63.4+4.0|stat±0.9syst)×1011{\rm Br}(K^{+}\rightarrow\pi^{+}\nu\bar{\nu})=(10.6^{+4.0}_{-3.4}|_{\rm stat}\pm 0.9_{\rm syst})\times 10^{-11} at 68%68\%CL NA62:2021zjw , we obtain the lower limit on the QCD axion decay constant,

Fa2|NC||fdfs|(0.861.90)×1011GeV.\displaystyle F_{a}\frac{2|N_{C}|}{|f_{d}-f_{s}|}\gtrsim(0.86-1.90)\times 10^{11}\,{\rm GeV}\,. (84)

The QCD axion mass mam_{a} in terms of the pion mass and pion decay constant reads Ahn:2014gva ; Ahn:2016hbn

ma2Fa2=mπ02fπ2F(z,w),\displaystyle m^{2}_{a}F^{2}_{a}=m^{2}_{\pi^{0}}f^{2}_{\pi}F(z,w)\,, (85)

where fπ92.1f_{\pi}\simeq 92.1 MeV PDG and F(z,w)=z/(1+z)(1+z+w)F(z,w)=z/(1+z)(1+z+w) with ω=0.315z\omega=0.315\,z. Here the Weinberg value lies in zmuMS¯(2GeV)/mdMS¯(2GeV)=0.470.07+0.06z\equiv m^{\overline{\rm MS}}_{u}(2\,{\rm GeV})/m^{\overline{\rm MS}}_{d}(2\,{\rm GeV})=0.47^{+0.06}_{-0.07}PDG . After integrating out the heavy π0\pi^{0} and η\eta at low energies, there is an effective low energy Lagrangian with an axion-photon coupling gaγγg_{a\gamma\gamma}: aγγ=gaγγaEB{\cal L}_{a\gamma\gamma}=-g_{a\gamma\gamma}\,a\,\vec{E}\cdot\vec{B} where E\vec{E} and B\vec{B} are the electromagnetic field components. The axion-photon coupling is expressed in terms of the QCD axion mass, pion mass, pion decay constant, zz and ww,

gaγγ=αem2πmafπmπ01F(z,w)(ENC234+z+w1+z+w).\displaystyle g_{a\gamma\gamma}=\frac{\alpha_{\rm em}}{2\pi}\frac{m_{a}}{f_{\pi}m_{\pi^{0}}}\frac{1}{\sqrt{F(z,w)}}\left(\frac{E}{N_{C}}-\frac{2}{3}\,\frac{4+z+w}{1+z+w}\right)\,. (86)

The upper bound on the axion-photon coupling, derived from the recent analysis of the horizontal branch stars in galactic globular clusters Ayala:2014pea , can be translated to

|gaγγ|<6.6×1011GeV1(95%CL)Fa2.525×107|ENC1.903|GeV,\displaystyle|g_{a\gamma\gamma}|<6.6\times 10^{-11}\,{\rm GeV}^{-1}\,(95\%\,{\rm CL})\Leftrightarrow F_{a}\gtrsim 2.525\times 10^{7}\Big{|}\frac{E}{N_{C}}-1.903\Big{|}\,{\rm GeV}\,, (87)

where z=0.47z=0.47 is used.

IV.2 Charged-lepton and flavored-QCD axion

Substituting the VEV ofEq.(40) into the superpotential (53), the charged-lepton mass matrix given in the Lagrangian (61) is derived as,

\displaystyle{\cal M}_{\ell} =\displaystyle= (αeΔχ|fe|eifeAXuχ000αμΔχ|fμ|eifμAXuχ000ατΔχ|fτ|eifτAXuχ)Y𝟏(6)vd.\displaystyle{\left(\begin{array}[]{ccc}\alpha_{e}\Delta^{|f_{e}|}_{\chi}\,e^{if_{e}\frac{A_{X}}{u_{\chi}}}&0&0\\ 0&\alpha_{\mu}\,\Delta^{|f_{\mu}|}_{\chi}\,e^{if_{\mu}\frac{A_{X}}{u_{\chi}}}&0\\ 0&0&\alpha_{\tau}\,\Delta^{|f_{\tau}|}_{\chi}\,e^{if_{\tau}\frac{A_{X}}{u_{\chi}}}\end{array}\right)}Y^{(6)}_{\bf 1}\,v_{d}\,. (91)

Recall that the coefficients αi\alpha_{i} are complex numbers with an effective absolute value satisfying Eq.(60). Then, the corresponding charged-lepton masses are given by

me\displaystyle m_{e} =\displaystyle= αeY𝟏(6)Δχ|fe|vd,mμ=αμY𝟏(6)Δχ|fμ|vd,mτ=ατY𝟏(6)Δχ|fτ|vd,\displaystyle\alpha_{e}\,Y^{(6)}_{\bf 1}\Delta^{|f_{e}|}_{\chi}\,v_{d}\,,\quad m_{\mu}=\alpha_{\mu}\,Y^{(6)}_{\bf 1}\Delta^{|f_{\mu}|}_{\chi}\,v_{d}\,,\quad m_{\tau}=\alpha_{\tau}\,Y^{(6)}_{\bf 1}\Delta^{|f_{\tau}|}_{\chi}\,v_{d}\,, (92)

where Y𝟏(6)Y^{(6)}_{\bf 1} is given in Eq.(51) and the phases in each term can be absorbed into (li)R(l_{i})_{R}. They are matched with the empirical values from the PDG PDG given by

me\displaystyle m_{e} =\displaystyle= 0.511MeV,mμ=105.658MeV,mτ=1776.86±0.12MeV.\displaystyle 0.511\,{\rm MeV}\,,\qquad m_{\mu}=105.658\,{\rm MeV}\,,\qquad m_{\tau}=1776.86\pm 0.12\,{\rm MeV}\,. (93)

Flavored axions typically interact with charged leptons (electrons, muons, taus) Ahn:2014gva ; Ahn:2016hbn ; Ahn:2018cau ; Ahn:2021ndu and can be emitted through atomic axio-recombination, axio-deexcitation, axio-bremsstrahlung in electron-ion or electron-electron collisions, and Compton scatterings Redondo:2013wwa . Then the flavored-QCD axion to charged-lepton interactions read

a\displaystyle-{\cal L}^{a\ell} \displaystyle\simeq μa2uχ(fee¯γμγ5e+fμμ¯γμγ5μ+fττ¯γμγ5τ)+=e,μ,τ(m¯¯i).\displaystyle\frac{\partial_{\mu}a}{2u_{\chi}}\Big{(}f_{e}\,\bar{e}\gamma^{\mu}\gamma_{5}e+f_{\mu}\,\bar{\mu}\gamma^{\mu}\gamma_{5}\mu+f_{\tau}\,\bar{\tau}\gamma^{\mu}\gamma_{5}\tau\Big{)}+\sum_{\ell=e,\mu,\tau}\big{(}m_{\ell}\bar{\ell}\ell-\bar{\ell}i\!\!\not\!\partial\,\ell\big{)}\,. (94)

Like rare neutral flavor-changing decays in particle physics, the interaction of the flavored-QCD axion aa with leptons makes it possible to search for the QCD axion in astroparticle physics through stellar evolution. The flavored-QCD axion coupling to electrons reads

gaee\displaystyle g_{aee} =\displaystyle= |fe|meuχ.\displaystyle|f_{e}|\,\frac{m_{e}}{u_{\chi}}\,. (95)

Stars in the red giant branch (RGB) of color-magnitude diagrams in globular clusters provide a strict constraint on axion-electron couplings which leads to a lower bound on the axion decay constant. This constraint is expressed as Viaux:2013lha

|gaee|<4.3×1013(95%CL)NCFa1.19|fe|×109GeV.\displaystyle|g_{aee}|<4.3\times 10^{-13}\quad(95\%\,{\rm CL})~{}\Leftrightarrow N_{C}F_{a}\gtrsim 1.19|f_{e}|\times 10^{9}\,{\rm GeV}\,. (96)

Bremsstrahlung off electrons e+ZeZe+e+ae+Ze\rightarrow Ze+e+a in white dwarfs is an effective process for detecting axions as the Primakoff and Compton processes are suppressed due to the large plasma frequency. Comparing the theoretical and observed WD luminosity functions (WDLFs) provides a way to place limits 131313Note that Refs. WD01 ; Bertolami:2014wua have pointed out features in some WDLFs DeGennaro:2007yw ; Rowell:2011wp that could imply axion-electron couplings in the range 7.2×1014|gaee|2.2×10137.2\times 10^{-14}\lesssim|g_{aee}|\lesssim 2.2\times 10^{-13}. on |gaee||g_{aee}|Raffelt:1985nj . Recent analyses of WDLFs, using detailed WD cooling treatment and new data on the WDLF of the Galactic disk, suggest electron couplings |gaee|2.8×1013|g_{aee}|\lesssim 2.8\times 10^{-13}Bertolami:2014wua . However, these results come with large theoretical and observational uncertainties.

We note that the entries of the quark and charged lepton mass matrices given in Eqs.(68), (76), and (91) except for the entry corresponding to the top quark are expressed as a combination of Δχ|fα|\Delta_{\chi}^{|f_{\alpha}|} and modular forms for each component. Accurate determination of the values of Δχ\Delta_{\chi}, its power, and the value of τ\tau is crucial to reproduce the observed CKM mixing angles given in Eq.(79) and quark masses in Eq.(80). The values of those parameters are also closely linked to those in the lepton sector, and they should necessarily be determined in order to reproduce the observed values of charged lepton masses and to predict light active neutrinos derived from Eqs.(104) and (112). The U(1)XU(1)_{X} PQ scale, which corresponds to the seesaw scale (as shown n Eq.(105)), can be estimated as μχ6×1013\mu_{\chi}\sim 6\times 10^{13} GeV from Eq.(45) for m3/2100m_{3/2}\sim 100 TeV.

IV.3 Neutrino

Similar to the case of charged lepton mass matrix, the heavy Majorana mass matrix given in the Lagrangian (61) is derived from the superpotential (53) as

MR\displaystyle M_{R} =\displaystyle= M(1+y35xy00001+y35xy01+y35xy0)\displaystyle M{\left(\begin{array}[]{ccc}1+y^{3}-5xy&0&0\\ 0&0&1+y^{3}-5xy\\ 0&1+y^{3}-5xy&0\end{array}\right)} (100)
+\displaystyle+ M(23(γp+γyr)13(γyp+γxr)13(γxp+γr)13(γyp+γxr)23(γxp+γr)13(γp+γyr)13(γxp+γr)13(γp+γyr)23(γyp+γxr)),\displaystyle M{\left(\begin{array}[]{ccc}\frac{2}{\sqrt{3}}(\gamma\,p+\gamma^{\prime}\,yr)&-\frac{1}{\sqrt{3}}(\gamma\,yp+\gamma^{\prime}\,xr)&-\frac{1}{\sqrt{3}}(\gamma\,xp+\gamma^{\prime}\,r)\\ -\frac{1}{\sqrt{3}}(\gamma\,yp+\gamma^{\prime}\,xr)&\frac{2}{\sqrt{3}}(\gamma\,xp+\gamma^{\prime}\,r)&-\frac{1}{\sqrt{3}}(\gamma\,p+\gamma^{\prime}\,yr)\\ -\frac{1}{\sqrt{3}}(\gamma\,xp+\gamma^{\prime}\,r)&-\frac{1}{\sqrt{3}}(\gamma\,p+\gamma^{\prime}\,yr)&\frac{2}{\sqrt{3}}(\gamma\,yp+\gamma^{\prime}\,xr)\end{array}\right)}\,, (104)

where p=1+2xyp=1+2xy, r=y2+2xyr=y^{2}+2xy, γ=γ2/γ1\gamma=\gamma_{2}/\gamma_{1}, γ=γ2/γ1\gamma^{\prime}=\gamma^{\prime}_{2}/\gamma_{1}, and the common factor MM can be replaced by the QCD axion decay constant FaF_{a},

M|γ1Y13χ|=|γ1|2Fa|NCY13|.\displaystyle M\equiv|\gamma_{1}Y^{3}_{1}\langle\chi\rangle|=\frac{|\gamma_{1}|}{2}F_{a}|N_{C}Y^{3}_{1}|\,. (105)

The terms with γ2\gamma_{2} in Eq.(104) are derived by taking the modular form Y𝟑,1(6)Y^{(6)}_{{\bf 3},1} safisfying Eq.(51), whereas the terms with γ2\gamma^{\prime}_{2} are derived by taking Y𝟑,2(6)Y^{(6)}_{{\bf 3},2}. Eq.(104) has three unknown complex parameters, γ\gamma γ\gamma^{\prime}, and γ1\gamma_{1}, where the phase of γ1\gamma_{1} contributes as an overall factor after seesawing. Other variables such as x,y,Y1x,y,Y_{1} are determined from the analysis for the quark and charged-lepton sectors, and χ\langle\chi\rangle is fixed from the seesaw formula Eq.(113) whose scale is given by PQ scale Eq.(45). The Dirac mass term in the Lagrangian (61) reads

mD=(β1Δχ|ge|β2yΔχ|gμ|β3xΔχ|gτ|β1yΔχ|ge|β2xΔχ|gμ|β3Δχ|gτ|β1xΔχ|ge|β2Δχ|gμ|β3yΔχ|gτ|)(eigeAXuχ000eigμAXuχ000eigτAXuχ)Y1vu.\displaystyle m_{D}={\left(\begin{array}[]{ccc}\beta_{1}\,\Delta^{|g_{e}|}_{\chi}&\beta_{2}\,y\Delta^{|g_{\mu}|}_{\chi}&\beta_{3}\,x\Delta^{|g_{\tau}|}_{\chi}\\ \beta_{1}\,y\Delta^{|g_{e}|}_{\chi}&\beta_{2}\,x\Delta^{|g_{\mu}|}_{\chi}&\beta_{3}\,\Delta^{|g_{\tau}|}_{\chi}\\ \beta_{1}\,x\Delta^{|g_{e}|}_{\chi}&\beta_{2}\,\Delta^{|g_{\mu}|}_{\chi}&\beta_{3}\,y\Delta^{|g_{\tau}|}_{\chi}\end{array}\right)}{\left(\begin{array}[]{ccc}e^{ig_{e}\frac{A_{X}}{u_{\chi}}}&0&0\\ 0&e^{ig_{\mu}\frac{A_{X}}{u_{\chi}}}&0\\ 0&0&e^{ig_{\tau}\frac{A_{X}}{u_{\chi}}}\end{array}\right)}\,Y_{1}\,v_{u}\,. (112)

The coefficients βi\beta_{i} and γi\gamma_{i} in the neutrino sector, like in the quark and charged-lepton sectors, are complex numbers corrected by higher-dimensional operators, resulting in an effective absolute value satisfying Eq.(60). Eq.(112) contains three complex parameters (β1,β2\beta_{1},\beta_{2}, and β3\beta_{3}), where one of the phases can be removable as an overall factor after seesawing. As shwon before, the parameter Δχ\Delta_{\chi} can be determined from quark and charged-lepton sectors. In addition, its U(1)XU(1)_{X} quantum number gαg_{\alpha} can be determined from the numerical analysis for the neutrino sector with the help of the condition of U(1)XU(1)_{X}-mixed gravitational anomaly-free given in in Eq.(54).

After integrating out the right-handed heavy Majorana neutrinos, the effective neutrino mass matrix ν{\cal M}_{\nu} is given at leading order by

νmDTMR1mD=Uνdiag.(mν1,mν2,mν3)Uν,\displaystyle{\cal M}_{\nu}\simeq-m^{T}_{D}M^{-1}_{R}m_{D}=U^{\ast}_{\nu}{\rm diag.}(m_{\nu_{1}},m_{\nu_{2}},m_{\nu_{3}})U^{{\dagger}}_{\nu}\,, (113)

where UνU_{\nu} is the rotation matrix diagonalizing ν{\cal M}_{\nu} and mνim_{\nu_{i}} (i=1,2,3i=1,2,3) are the light neutrino masses. Then the PMNS mixing matrix becomes

UPMNS=Uν.\displaystyle U_{\rm PMNS}=U_{\nu}. (114)

The matrix UPMNSU_{\rm PMNS} is expressed in terms of three mixing angles, θ12,θ13,θ23\theta_{12},\theta_{13},\theta_{23}, and a Dirac type CP violaitng phase δCP\delta_{CP} and two additional CP  violating phases φ1,2\varphi_{1,2} if light neutrinos are Majorana particle as PDG

UPMNS=(c13c12c13s12s13eiδCPc23s12s23c12s13eiδCPc23c12s23s12s13eiδCPs23c13s23s12c23c12s13eiδCPs23c12c23s12s13eiδCPc23c13)Qν,\displaystyle U_{\rm PMNS}={\left(\begin{array}[]{ccc}c_{13}c_{12}&c_{13}s_{12}&s_{13}e^{-i\delta_{CP}}\\ -c_{23}s_{12}-s_{23}c_{12}s_{13}e^{i\delta_{CP}}&c_{23}c_{12}-s_{23}s_{12}s_{13}e^{i\delta_{CP}}&s_{23}c_{13}\\ s_{23}s_{12}-c_{23}c_{12}s_{13}e^{i\delta_{CP}}&-s_{23}c_{12}-c_{23}s_{12}s_{13}e^{i\delta_{CP}}&c_{23}c_{13}\end{array}\right)}Q_{\nu}\,, (118)

where sijsinθijs_{ij}\equiv\sin\theta_{ij}, cijcosθijc_{ij}\equiv\cos\theta_{ij} and Qν=Diag(eiφ1/2,eiφ2/2,1)Q_{\nu}={\rm Diag}(e^{-i\varphi_{1}/2},e^{-i\varphi_{2}/2},1). Then the neutrino masses are obtained by the transformation

UPMNSTνUPMNS=Diag.(mν1,mν2,mν3).\displaystyle U^{T}_{\rm PMNS}\,{\cal M}_{\nu}\,U_{\rm PMNS}={\rm Diag}.(m_{\nu_{1}},m_{\nu_{2}},m_{\nu_{3}})\,. (119)

Here mνim_{\nu_{i}} (i=1,2,3i=1,2,3) are the light neutrino masses. The observed hierarchy |ΔmAtm2|=|mν32(mν12+mν22)/2|ΔmSol2mν22mν12>0|\Delta m^{2}_{\rm Atm}|=|m^{2}_{\nu_{3}}-(m^{2}_{\nu_{1}}+m^{2}_{\nu_{2}})/2|\gg\Delta m^{2}_{\rm Sol}\equiv m^{2}_{\nu_{2}}-m^{2}_{\nu_{1}}>0 and the requirement of a Mikheyev-Smirnov-Wolfenstein resonance Wolfenstein:1977ue for solar neutrinos lead to two possible neutrino mass spectra: normal mass ordering (NO) mν12<mν22<mν32m^{2}_{\nu_{1}}<m^{2}_{\nu_{2}}<m^{2}_{\nu_{3}} and inverted mass ordering (IO) mν32<mν12<mν22m^{2}_{\nu_{3}}<m^{2}_{\nu_{1}}<m^{2}_{\nu_{2}}. Nine physical observables can be derived from Eqs.(118) and (119): θ23\theta_{23}, θ13\theta_{13}, θ12\theta_{12}, δCP\delta_{CP}, φ1\varphi_{1}, φ2\varphi_{2}, mν1m_{\nu_{1}}, mν2m_{\nu_{2}}, and mν3m_{\nu_{3}}.

Table 3: The global fit of three-flavor oscillation parameters at the best-fit and 3σ3\sigma level with Super-Kamiokande atmospheric data Esteban:2020cvm . NO = normal neutrino mass ordering; IO = inverted mass ordering. And ΔmSol2mν22mν12\Delta m^{2}_{\rm Sol}\equiv m^{2}_{\nu_{2}}-m^{2}_{\nu_{1}}, ΔmAtm2mν32mν12\Delta m^{2}_{\rm Atm}\equiv m^{2}_{\nu_{3}}-m^{2}_{\nu_{1}} for NO, and ΔmAtm2mν22mν32\Delta m^{2}_{\rm Atm}\equiv m^{2}_{\nu_{2}}-m^{2}_{\nu_{3}} for IO.
θ13[]\theta_{13}[^{\circ}] δCP[]\delta_{CP}[^{\circ}] θ12[]\theta_{12}[^{\circ}] θ23[]\theta_{23}[^{\circ}] ΔmSol2[105eV2]\Delta m^{2}_{\rm Sol}[10^{-5}{\rm eV}^{2}] ΔmAtm2[103eV2]\Delta m^{2}_{\rm Atm}[10^{-3}{\rm eV}^{2}]
NOIO\begin{array}[]{ll}\hbox{NO}\\ \hbox{IO}\end{array} 8.580.35+0.338.570.34+0.37\begin{array}[]{ll}8.58^{+0.33}_{-0.35}\\ 8.57^{+0.37}_{-0.34}\end{array} 23288+11827682+68\begin{array}[]{ll}232^{+118}_{-88}\\ 276^{+68}_{-82}\end{array} 33.412.10+2.3333.41^{+2.33}_{-2.10} 42.22.5+8.849.09.1+2.5\begin{array}[]{ll}42.2^{+8.8}_{-2.5}\\ 49.0^{+2.5}_{-9.1}\end{array} 7.410.59+0.627.41^{+0.62}_{-0.59} 2.5070.080+0.0832.4860.080+0.084\begin{array}[]{ll}2.507^{+0.083}_{-0.080}\\ 2.486^{+0.084}_{-0.080}\end{array}

Recent global fits Esteban:2018azc ; deSalas:2017kay ; Capozzi:2018ubv of neutrino oscillations have enabled a more precise determination of the mixing angles and mass squared differences, with large uncertainties remaining for θ23\theta_{23} and δCP\delta_{CP} at 3σ\sigma. The most recent analysis Esteban:2020cvm lists global fit values and 3σ3\sigma intervals for these parameters in Table-3. Furthermore, recent constraints on the rate of 0νββ0\nu\beta\beta decay have added to these findings. Specifically, the most tight upper bounds for the effective Majorana mass (ν)ee{\cal M}_{\nu})_{ee}, which is the modulus of the eeee-entry of the effective neutrino mass matrix, are given by

(ν)ee<0.0360.156eV(136Xe-based experiment KamLAND-Zen:2022tow )\displaystyle({\cal M}_{\nu})_{ee}<0.036-0.156\,{\rm eV}\,~{}(^{136}\text{Xe-based experiment\,\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{KamLAND-Zen:2022tow}{\@@citephrase{(}}{\@@citephrase{)}}}}) (120)

at 90%90\% confidence level. 0νββ0\nu\beta\beta decay is a low-energy probe of lepton number violation and its measurement could provide the strongest evidence for lepton number violation at high energy. Its discovery would suggest the Majorana nature of neutrinos and, consequently, the existence of heavy Majorana neutrinos via the seesaw mechanism Minkowski:1977sc .

Transforming the neutrino fields by chiral rotations of Eq.(62) under U(1)XU(1)_{X} we obtain the flavored-QCD axion interactions to neutrinos

aν\displaystyle-{\cal L}^{a\nu} \displaystyle\simeq a2uχijνi¯{(mνimνj)Im[V]ijiγ5(mνi+mνj)Re[V]ij}νj+a4uχN¯γμγ5Nc\displaystyle\frac{a}{2u_{\chi}}\sum_{i\neq j}\overline{\nu_{i}}\big{\{}(m_{\nu_{i}}-m_{\nu_{j}}){\rm Im}[V]_{ij}-i\gamma_{5}(m_{\nu_{i}}+m_{\nu_{j}}){\rm Re}[V]_{ij}\big{\}}\nu_{j}+\frac{\partial a}{4u_{\chi}}\overline{N}\gamma_{\mu}\gamma_{5}N^{c} (121)

where mνim_{\nu_{i}} are real and positive, 𝒬[V]ij=(ge12)𝒬[U1iU1j]+(gμ12)𝒬[U2iU2j]+(gτ12)𝒬[U3iU3j]{\cal Q}[V]_{ij}=(g_{e}-\frac{1}{2}){\cal Q}[U_{1i}U^{\ast}_{1j}]+(g_{\mu}-\frac{1}{2}){\cal Q}[U_{2i}U^{\ast}_{2j}]+(g_{\tau}-\frac{1}{2}){\cal Q}[U_{3i}U^{\ast}_{3j}] with 𝒬=Re{\cal Q}={\rm Re} or Im{\rm Im}, and Im[V]ij=Im[V]ji{\rm Im}[V]_{ij}=-{\rm Im}[V]_{ji} with UUPMNSU\equiv U_{\rm PMNS}. Since the light neutrino mass is less than 0.1 eV, the coupling between the flavored-QCD axion and light neutrinos is subject to a stringent constraint given by Eq.(84), which significantly suppresses the interaction. Therefore, we will not take it into consideration. Ref.Kharusi:2021jez provides the latest experimental constraints on Majoron-neutrino coupling, which are below the range of (0.40.9)×105(0.4-0.9)\times 10^{-5}.

Table 4: U(1)XU(1)_{X} charges linked to seesaw scale.
|ge||g_{e}| |gμ||g_{\mu}| |gτ||g_{\tau}| χ\langle\chi\rangle/GeV
NO 66 44 55 101310^{13}
55 33 44 5×10135\times 10^{13}
44 22 33 101410^{14}
33 11 22 5×10145\times 10^{14}
22 0 11 101510^{15}
IO 22 33 3 5×10135\times 10^{13}
11 2 2 101410^{14}
0 11 1 5×10145\times 10^{14}

Once the lepton U(1)XU(1)_{X} quantum numbers are fixed, the seesaw scale MvχM\sim v_{\chi} of Eq.(105) comparable to the PQ scale of Eq.(45) can be roughly determined using the seesaw formula Eq.(113). By putting Eqs.(104, 112) into the seesaw formula Eq.(113), we obtain numerically a range of values for χ\langle\chi\rangle. For instance, see Table-4: it implies that for normal mass ordering, the maximum scale should be below 1015\sim 10^{15} GeV, and for inverted mass ordering, the maximum scale should be below 5×1014\sim 5\times 10^{14} GeV. Refer to Table-5 and -6 for NO, and Table-7 for IO, with Fa=2|χ/NC|F_{a}=2|\langle\chi\rangle/N_{C}|. By using the seesaw formula Eq.(113), one can set the scale χ\langle\chi\rangle along with the U(1)XU(1)_{X} quantum numbers gαg_{\alpha} without loss of generality. Doing so results in an effective mass matrix with nine physical degrees of freedom

m0|β12γ1Y𝟏|vu2χ,|γ|,|γ|,|β~2|,|β~3|,arg(γ),arg(γ),arg(β~2),arg(β~3),\displaystyle m_{0}\equiv\Big{|}\frac{\beta^{2}_{1}}{\gamma_{1}Y_{\bf 1}}\Big{|}\frac{v^{2}_{u}}{\langle\chi\rangle}\,,~{}|\gamma|\,,~{}|\gamma^{\prime}|\,,~{}|\tilde{\beta}_{2}|\,,~{}|\tilde{\beta}_{3}|\,,~{}\arg(\gamma)\,,~{}\arg(\gamma^{\prime})\,,~{}\arg(\tilde{\beta}_{2})\,,~{}\arg(\tilde{\beta}_{3})\,, (122)

in which m0m_{0} is an overall factor of Eq.(113), β~2β2/β1,β~3β3/β1\tilde{\beta}_{2}\equiv\beta_{2}/\beta_{1},\tilde{\beta}_{3}\equiv\beta_{3}/\beta_{1}, and 12Δχ2|β~2(3)|,|γ|,|γ|112Δχ21-2\Delta^{2}_{\chi}\leq|\tilde{\beta}_{2(3)}|,|\gamma|,|\gamma^{\prime}|\leq\frac{1}{1-2\Delta^{2}_{\chi}}. Out of the nine observables corresponding to Eq.(122), the five measured quantities (θ12\theta_{12}, θ23\theta_{23}, θ13\theta_{13}, ΔmSol2\Delta m^{2}_{\rm Sol}, ΔmAtm2\Delta m^{2}_{\rm Atm}) can be used as constraints. The remaining four degrees of freedom correspond to four measurable quantities (δCP\delta_{CP}, φ1,2\varphi_{1,2}, and the 0νββ0\nu\beta\beta-decay rate), which can be determined through measurements.

V Numerical analysis for quark, lepton, and a QCD axion

To simulate and match experimental results for quarks and leptons (Eqs.(79, 80) and Table-3), we use linear algebra tools from Ref.Antusch:2005gp . By analyzing experimental data for quarks and charged leptons, we determined the U(1)XU(1)_{X} quantum numbers listed in Tables-5 and -6 for normal neutrino mass ordering and Table-7 for inverted neutrino mass ordering. We also ensured the U(1)XU(1)_{X}-mixed gravitational anomaly-free condition of Eq.(54) and consistency of the seesaw scale discussed above Eq.(122) with the PQ breaking scale of Eq.(45).

Notably, in our model, the flavored-QCD axion mass (and its associated PQ breaking or seesaw scale) is closely linked to the soft SUSY-breaking mass. Our analysis covers the PQ scale χ\langle\chi\rangle from roughly 101310^{13} GeV to 101510^{15} GeV due to Table-4, corresponding to m3/2m_{3/2} values of 1 TeV to 10610^{6} TeV, by considering Eq.(45) and Table-4. The given U(1)XU(1)_{X} quantum numbers can then be used to predict the branching ratio of K+π++aK^{+}\rightarrow\pi^{+}+a (Eq.(83)), as well as the axion coupling to photon (Eq.(86)) and electron (Eq.(95)). See Table-5, -6, and -7 for more details. Our proposed model’s predictions can be tested by current axion search experiments. KLASH Alesini:2019nzq is sensitive to the mass range of 0.270.93μeV0.27-0.93\,\mu{\rm eV}, while FLASH Gatti:2021cel covers the mass range of 0.51.5μeV0.5-1.5\,\mu{\rm eV}.

Refer to caption
Refer to caption
Figure 1: Plots for axion-photon coupling |gaγγ||g_{a\gamma\gamma}| as a function of the flavored-QCD axion mass mam_{a} for NO and IO. Orange shaded region and vertical red lines indicate the conventional QCD axion predictions and the exclusion region of various axion search experiments, respectively, see Ref.PDG .

Fig.1 illustrates plots of the axion-photon coupling |gaγγ||g_{a\gamma\gamma}| as a function of the flavored-QCD axion mass mam_{a} for NO (left) and IO (right), respectively. Each plotted point corresponds to values listed in Tables-5, -6, and -7, which are consistent with the experimental constraints described in Eqs.(84), (87), and (96). And Fig.1 illustrates that certain data points in Table-5 (I-c, I-d, I-e) have been fully excluded by the ADMX experiment ADMX , while another data point (II) in Table-5 has been marginally excluded by the same experiment. Fig.2 shows plots for axion-electron coupling |gaee||g_{aee}| as a function of the flavored-QCD axion mass mam_{a} for NO (left) and IO (right).

Refer to caption
Refer to caption
Figure 2: Plots for axion-electron coupling |gaee||g_{aee}| as a function of the flavored-QCD axion mass mam_{a} for NO (left) and IO (right). Orange shaded region indicates the conventional QCD axion predictions.
Table 5: The quark and lepton U(1)XU(1)_{X} quantum numbers that satisfy experimental results, including Eqs.(79, 80, 84) and Table-3, as well as the U(1)U(1)-mixed gravitational anomaly-free condition for normal neutrino mass ordering. And QCD anomaly coefficient NCN_{C}, QCD axion decay constant Fa=2|χ/NC|F_{a}=2|\langle\chi\rangle/N_{C}| (with PQ breakdown or seesaw scale χ\langle\chi\rangle), the ratio of QCD and QED anomaly coefficients E/NCE/N_{C}, axion-electron coupling gaeg_{ae}, and for z=0.47z=0.47 axion-photon coupling gaγγg_{a\gamma\gamma}, axion mass mam_{a}, and branching ratio Br(K+π++a)Br(Kπa){\rm Br}(K^{+}\rightarrow\pi^{+}+a)\equiv{\rm Br}(K\pi a).
U(1)XU(1)_{X} fuf_{u} fcf_{c} fdf_{d} fsf_{s} fbf_{b} fef_{e} fμf_{\mu} fτf_{\tau} geg_{e} gμg_{\mu} gτg_{\tau} NCN_{C} FaGeV\frac{F_{a}}{\rm GeV} ENC\frac{E}{N_{C}} gae1017\frac{g_{ae}}{10^{-17}} |gaγγ|1017GeV1\frac{|g_{a\gamma\gamma}|}{10^{-17}\,{\rm GeV}^{-1}} ma107eV\frac{m_{a}}{10^{-7}\,{\rm eV}} Br(Kπa){\rm Br}(K\pi a)
2020 88 1414 1111 55 2020 99 44 66 44 55 4.21.7+1.9×10154.2^{+1.9}_{-1.7}\times 10^{-15}
I-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±4\pm 4 5×10125\times 10^{12} 56-\frac{5}{6} 36.1336.13 66.0066.00 10.8910.89
I-b \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm ±\pm \mp ±4\pm 4 5×10125\times 10^{12} 196\frac{19}{6} 36.1336.13 26.9426.94 10.8910.89
I-c \mp ±\pm \mp ±\pm ±\pm ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±10\pm 10 2×10122\times 10^{12} 115\frac{1}{15} 36.1336.13 112.71112.71 27.2127.21
I-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm ±\pm \mp ±10\pm 10 2×10122\times 10^{12} 2915-\frac{29}{15} 36.1336.13 228.88228.88 27.2127.21
I-e \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp ±10\pm 10 2×10122\times 10^{12} 5315-\frac{53}{15} 36.1336.13 321.82321.82 27.2127.21
2121 88 1414 1111 55 2020 99 44 55 33 44 4.21.7+1.9×10154.2^{+1.9}_{-1.7}\times 10^{-15}
II \mp ±\pm ±\pm \mp \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm ±15\pm 15 1.3×10121.3\times 10^{12} 2-2 37.0637.06 358.09358.09 41.8741.87
2020 88 1414 1111 55 1919 99 44 55 33 44 1.70.7+0.8×10161.7^{+0.8}_{-0.7}\times 10^{-16}
III-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm \mp ±\pm ±4\pm 4 2.5×10132.5\times 10^{13} 113\frac{11}{3} 6.876.87 7.717.71 2.182.18
III-b \mp ±\pm ±\pm \mp ±\pm ±\pm ±\pm \mp \mp \mp \mp ±4\pm 4 2.5×10132.5\times 10^{13} 163-\frac{16}{3} 6.876.87 34.1134.11 2.182.18
III-c \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±4\pm 4 2.5×10132.5\times 10^{13} 13-\frac{1}{3} 6.876.87 10.8810.88 2.182.18
III-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp ±10\pm 10 101310^{13} 103-\frac{10}{3} 6.876.87 62.0462.04 5.445.44
III-e \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm \mp ±\pm ±10\pm 10 101310^{13} 2615-\frac{26}{15} 6.876.87 43.4543.45 5.445.44
2020 88 1414 1111 55 2020 99 44 44 22 33 4.21.7+1.9×10174.2^{+1.9}_{-1.7}\times 10^{-17}
IV-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp \mp ±\pm ±4\pm 4 5×10135\times 10^{13} 56-\frac{5}{6} 3.613.61 6.606.60 1.091.09
IV-b \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm \mp ±\pm ±4\pm 4 5×10135\times 10^{13} 196\frac{19}{6} 3.613.61 2.692.69 1.091.09
IV-c \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm \mp ±\pm ±10\pm 10 2×10132\times 10^{13} 2915-\frac{29}{15} 3.613.61 22.8922.89 2.722.72
IV-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp ±\pm ±10\pm 10 2×10132\times 10^{13} 5315-\frac{53}{15} 3.613.61 32.1832.18 2.722.72
IV-e \mp ±\pm ±\pm \mp \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm ±14\pm 14 1.43×10131.43\times 10^{13} 73-\frac{7}{3} 3.613.61 35.3035.30 3.813.81
Table 6: The same as in Table 5.
U(1)XU(1)_{X} fuf_{u} fcf_{c} fdf_{d} fsf_{s} fbf_{b} fef_{e} fμf_{\mu} fτf_{\tau} geg_{e} gμg_{\mu} gτg_{\tau} NCN_{C} FaGeV\frac{F_{a}}{\rm GeV} ENC\frac{E}{N_{C}} gae1017\frac{g_{ae}}{10^{-17}} |gaγγ|1017GeV1\frac{|g_{a\gamma\gamma}|}{10^{-17}\,{\rm GeV}^{-1}} ma107eV\frac{m_{a}}{10^{-7}\,{\rm eV}} Br(Kπa){\rm Br}(K\pi a)
2121 88 1414 1111 55 1919 99 44 44 22 33 4.21.7+1.9×10174.2^{+1.9}_{-1.7}\times 10^{-17}
V-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp ±\pm ±\pm ±5\pm 5 4×10134\times 10^{13} 415\frac{4}{15} 3.433.43 5.055.05 1.361.36
V-b \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm ±\pm ±\pm ±5\pm 5 4×10134\times 10^{13} 5215\frac{52}{15} 3.433.43 4.244.24 1.361.36
V-c \mp ±\pm ±\pm \mp ±\pm ±\pm ±\pm \mp \mp \mp \mp ±5\pm 5 4×10134\times 10^{13} 5615-\frac{56}{15} 3.433.43 16.6716.67 1.361.36
V-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm \mp ±\pm ±\pm ±11\pm 11 1.8×10131.8\times 10^{13} 9233-\frac{92}{33} 3.433.43 30.6430.64 2.992.99
V-e \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm ±\pm ±\pm ±11\pm 11 1.8×10131.8\times 10^{13} 43-\frac{4}{3} 3.433.43 21.3421.34 2.992.99
2020 88 1414 1111 55 1919 99 44 33 11 22 1.70.7+0.8×10181.7^{+0.8}_{-0.7}\times 10^{-18}
VI-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp \mp ±\pm ±4\pm 4 2.5×10142.5\times 10^{14} 13-\frac{1}{3} 0.690.69 1.091.09 0.220.22
VI-b \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm ±\pm ±\pm ±4\pm 4 2.5×10142.5\times 10^{14} 113\frac{11}{3} 0.690.69 0.770.77 0.220.22
VI-c \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp ±\pm ±10\pm 10 101410^{14} 103-\frac{10}{3} 0.690.69 6.206.20 0.540.54
VI-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm ±\pm ±\pm ±10\pm 10 101410^{14} 2615-\frac{26}{15} 0.690.69 4.354.35 0.540.54
2121 88 1414 1111 55 2020 99 44 33 11 22 1.70.7+0.8×10181.7^{+0.8}_{-0.7}\times 10^{-18}
VII-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp ±\pm ±\pm ±5\pm 5 2×10142\times 10^{14} 215-\frac{2}{15} 0.720.72 1.241.24 0.270.27
VII-b \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp ±11\pm 11 9×10139\times 10^{13} 9833-\frac{98}{33} 0.720.72 6.366.36 0.600.60
2121 88 1414 1111 55 1919 99 44 22 0 11 4.21.7+1.9×10194.2^{+1.9}_{-1.7}\times 10^{-19}
VIII-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm ±\pm 0 \mp ±5\pm 5 4×10144\times 10^{14} 415\frac{4}{15} 0.340.34 0.510.51 0.140.14
VIII-b \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm 0 \mp ±11\pm 11 1.8×10141.8\times 10^{14} 9233-\frac{92}{33} 0.340.34 3.063.06 0.300.30
2020 88 1414 1111 55 2020 99 44 22 0 11 4.21.7+1.9×10194.2^{+1.9}_{-1.7}\times 10^{-19}
IX-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp 0 \mp ±4\pm 4 5×10145\times 10^{14} 56-\frac{5}{6} 0.360.36 0.660.66 0.110.11
IX-b \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm \mp 0 \mp ±10\pm 10 2×10142\times 10^{14} 5315-\frac{53}{15} 0.360.36 3.223.22 0.270.27
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Model predictions for δCPq\delta^{q}_{\rm CP} are shown, left upper, right upper, and left lower panel, as a function of the parameters that are constrained by other empirical results. The horizontal black-dotted lines indicate the 3σ3\sigma experimental bound.

V.1 Quark and charged-lepton

The Yukawa matrices for charged fermions in the SM, as given in Eqs.(68, 76, 91), are taken at the scale of U(1)XU(1)_{X} symmetry breakdown. Hence their masses are subject to quantum corrections. Subsequently, these matrices are run down to mtm_{t} and diagonalized. We assume that the Yukawa matrices at the scale of U(1)XU(1)_{X} breakdown are the same as those at the scale mtm_{t}, since the one-loop renormalization group running effect on observables for hierarchical mass spectra is expected to be negligible. The low-energy Yukawa couplings required for experimental values are obtained from the physical masses and mixing angles compiled by the PDG PDG and CKMfitter ckm .

We have thirteen physical observables in the quark and charged-lepton sector: md,ms,mbm_{d},m_{s},m_{b}, mu,mc,mt,me,mμ,mτm_{u},m_{c},m_{t},m_{e},m_{\mu},m_{\tau}, and θ12q,θ23q,θ13q,δCPq\theta^{q}_{12},\theta^{q}_{23},\theta^{q}_{13},\delta^{q}_{CP}. These observables are used to determine thirteen effective model parameters: 21 parameters (|αd||\alpha_{d}|, |αs||\alpha_{s}|, |αb||\alpha_{b}|, |α~d||\tilde{\alpha}_{d}|, |α~s||\tilde{\alpha}_{s}|, |α~b||\tilde{\alpha}_{b}|, αe\alpha_{e}, αμ\alpha_{\mu}, ατ\alpha_{\tau}, αt\alpha_{t}, αc\alpha_{c}, αu\alpha_{u}; arg(αd),arg(αs),arg(α~d),arg(α~s),arg(α~b)\arg(\alpha_{d}),\arg(\alpha_{s}),\arg(\tilde{\alpha}_{d}),\arg(\tilde{\alpha}_{s}),\arg(\tilde{\alpha}_{b}); Δχ\Delta_{\chi}, tanβ\tan\beta; Re[τ],Im[τ]{\rm Re[\tau]},{\rm Im}[\tau]) among whihc 8 parameters are fixed by quantum numbers (fe,μ,τ,fd,s,b,fu,cf_{e,\mu,\tau},f_{d,s,b},f_{u,c}). Using highly precise data as constraints for both quarks and charged leptons, with the exception of the quark Dirac CP phase, as described in Eqs.(79), (80), and (93), we scanned all parameter ranges and determined that

Δχ=[0.596,0.602],tanβ=[6.8,7.3],\displaystyle\Delta_{\chi}=[0.596,0.602]\,,\qquad\tan\beta=[6.8,7.3]\,,
τ=(0.00010.046)+(1.09061.1086)i.\displaystyle\tau=(0.0001\sim 0.046)+(1.0906\sim 1.1086)i\,. (123)

Re(τ){\rm Re}(\tau) contributes to the phase of the Yukawa coupling, while Im(τ){\rm Im}(\tau) influences the magnitude of Yukawa coupling, as demonstrated in Eqs.(68, 76, 91, 105, 112). When τ=i\langle\tau\rangle=i, resulting in real values of x,yx,y with Y𝟑(2)=Y1(i)(1,13,2+3)Y^{(2)}_{\bf 3}=Y_{1}(i)(1,1-\sqrt{3},-2+\sqrt{3}), it becomes apparent that the empirical results of quark masses and CKM mixing angles cannot be satisfied due to the overall factors in Eq.(76) being real. Therefore, a departure of τ\tau from ii is necessary. Fig.3 shows how the quark Dirac CP phase δCPq\delta^{q}_{CP} behaves based on certain constrained parameters. Our model predicts that δCPq\delta^{q}_{CP} falls between 3838^{\circ} and 8787^{\circ}, which aligns well with experimental data. The horizontal black-dotted lines in Fig.3 represent the 3σ3\sigma experimental bound for δCPq\delta^{q}_{CP}. Notably, the effective Yukawa coefficients satisfying the experimental data fall well within the bound specified in Eq.(60), as shown in the top left panel of Fig.3. This reflects that these coefficients have a natural size of unity, as stated in Eq.(2).

We choose reference values, for example, that satisfy the experimental data :

Δχ=0.597,τ=0.0074+1.0997i,tanβ=6.8\displaystyle\Delta_{\chi}=0.597\,,\qquad\tau=0.0074+1.0997i\,,\qquad\tan\beta=6.8 (124)

which result in effective Yukawa coefficients from Eq.(60) satisfying 0.45|αi|1.550.45\lesssim|\alpha_{i}|\lesssim 1.55. With the inputs

arg(αd)=1.007,arg(αs)=2.232,arg(α~d)=4.723,arg(α~s)=3.388,arg(α~b)=1.164,\displaystyle\arg(\alpha_{d})=1.007,~{}\arg(\alpha_{s})=2.232,~{}\arg(\tilde{\alpha}_{d})=4.723,~{}\arg(\tilde{\alpha}_{s})=3.388,~{}\arg(\tilde{\alpha}_{b})=1.164,
αu=1.320for |fu|=21(αu=0.788for |fu|=20),αc=0.950,αt=1.006,\displaystyle\alpha_{u}=1.320~{}\text{for $|f_{u}|=21$}(\alpha_{u}=0.788~{}\text{for $|f_{u}|=20$}),~{}\alpha_{c}=0.950,~{}\alpha_{t}=1.006,
|αd|=1.039,|αs|=1.218,|αb|=0.790,|α~d|=0.896,|α~s|=0.822,|α~b|=1.158,\displaystyle|\alpha_{d}|=1.039,~{}|\alpha_{s}|=1.218,~{}|\alpha_{b}|=0.790,~{}|\tilde{\alpha}_{d}|=0.896,~{}|\tilde{\alpha}_{s}|=0.822,~{}|\tilde{\alpha}_{b}|=1.158, (125)

we obtain the mixing angles and Dirac CP phase θ12q=12.980\theta^{q}_{12}=12.980^{\circ}, θ23q=2.320\theta^{q}_{23}=2.320^{\circ}, θ13q=0.218\theta^{q}_{13}=0.218^{\circ}, δCPq=64.216\delta^{q}_{CP}=64.216^{\circ} compatible with the 3σ3\sigma Global fit of CKMfitter ckm , see Eq.(79); the quark masses md=4.593m_{d}=4.593 MeV, ms=103.819m_{s}=103.819 MeV, mb=4.206m_{b}=4.206 GeV, mu=2.164m_{u}=2.164 MeV, mc=1.271m_{c}=1.271 GeV, and mt=173.1m_{t}=173.1 GeV compatible with the values in PDG PDG , see Eq.(80). Here, without loss of generality, the up-type quark masses mum_{u}, mcm_{c}, and mtm_{t} are a one-to-one correspondence with αu\alpha_{u}, αc\alpha_{c}, and αt\alpha_{t}, which have been taken real, and we have set arg(αb)=0\arg(\alpha_{b})=0.

The masses of the charged leptons mem_{e}, mμm_{\mu}, and mτm_{\tau} are in a one-to-one correspondence with the real parameters αe\alpha_{e}, αμ\alpha_{\mu}, and ατ\alpha_{\tau} from Eq.(92). Using the numerical results of Eq.(124) from the quark sector, with the inputs

αe=1.268for|fe|=20(αe=0.757for|fe|=19),αμ=0.900,ατ=1.148,\displaystyle\alpha_{e}=1.268~{}\text{for}\,|f_{e}|=20\,(\alpha_{e}=0.757~{}\text{for}\,|f_{e}|=19),\alpha_{\mu}=0.900,\alpha_{\tau}=1.148\,, (126)

we obtain the charged lepton masses, which well agree with the empirical values of Eq.(93).

Table 7: The same as in Table 5, except for the inverted neutrino mass ordering.
U(1)XU(1)_{X} fuf_{u} fcf_{c} fdf_{d} fsf_{s} fbf_{b} fef_{e} fμf_{\mu} fτf_{\tau} geg_{e} gμg_{\mu} gτg_{\tau} NCN_{C} FaGeV\frac{F_{a}}{\rm GeV} ENC\frac{E}{N_{C}} gae1017\frac{g_{ae}}{10^{-17}} |gaγγ|1017GeV1\frac{|g_{a\gamma\gamma}|}{10^{-17}\,{\rm GeV}^{-1}} ma107eV\frac{m_{a}}{10^{-7}\,{\rm eV}} Br(Kπa){\rm Br}(K\pi a)
1919 88 1414 1111 55 2020 99 44 22 33 33 1.70.7+0.8×10161.7^{+0.8}_{-0.7}\times 10^{-16}
I-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm ±\begin{array}[]{ll}\mp\\ \pm\end{array} ±\begin{array}[]{ll}\pm\\ \mp\end{array} ±3\pm 3 3.33×10133.33\times 10^{13} 103\frac{10}{3} 7.237.23 4.624.62 1.631.63
I-b \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm ±\begin{array}[]{ll}\mp\\ \pm\end{array} ±\begin{array}[]{ll}\pm\\ \mp\end{array} ±9\pm 9 1.11×10131.11\times 10^{13} 229-\frac{22}{9} 7.237.23 46.5446.54 4.904.90
2020 88 1414 1111 55 1919 99 44 22 33 33 1.70.7+0.8×10161.7^{+0.8}_{-0.7}\times 10^{-16}
II-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp ±\begin{array}[]{ll}\mp\\ \pm\end{array} ±\begin{array}[]{ll}\pm\\ \mp\end{array} ±4\pm 4 2.5×10132.5\times 10^{13} 13-\frac{1}{3} 6.876.87 10.8810.88 2.182.18
II-b \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm \mp ±\begin{array}[]{ll}\mp\\ \pm\end{array} ±\begin{array}[]{ll}\pm\\ \mp\end{array} ±10\pm 10 101310^{13} 103-\frac{10}{3} 6.876.87 62.0462.04 5.445.44
2020 88 1414 1111 55 2020 99 44 11 22 22 4.21.7+1.9×10174.2^{+1.9}_{-1.7}\times 10^{-17}
III-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±\pm ±\pm ±\pm ±4\pm 4 5×10135\times 10^{13} 196\frac{19}{6} 3.613.61 6.606.60 1.091.09
III-b \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp ±4\pm 4 5×10135\times 10^{13} 56-\frac{5}{6} 3.613.61 2.692.69 1.091.09
III-c \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp ±\pm ±\pm ±\pm ±10\pm 10 2×10132\times 10^{13} 2915-\frac{29}{15} 3.613.61 22.8922.89 2.722.72
III-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp ±10\pm 10 2×10132\times 10^{13} 5315-\frac{53}{15} 3.613.61 32.1832.18 2.722.72
1919 88 1414 1111 55 1919 99 44 11 22 22 4.21.7+1.9×10174.2^{+1.9}_{-1.7}\times 10^{-17}
IV-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp \mp ±\pm ±\pm ±3\pm 3 6.67×10136.67\times 10^{13} 44 3.433.43 3.473.47 8.168.16
IV-b \mp ±\pm ±\pm \mp ±\pm ±\pm \mp ±\pm \mp \mp \mp ±3\pm 3 6.67×10136.67\times 10^{13} 43-\frac{4}{3} 3.433.43 5.825.82 8.168.16
IV-c \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp \mp ±\pm ±\pm ±9\pm 9 2.22×10132.22\times 10^{13} 209-\frac{20}{9} 3.433.43 22.1122.11 2.452.45
IV-d \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm ±\pm \mp \mp \mp ±9\pm 9 2.22×10132.22\times 10^{13} 4-4 3.433.43 31.4031.40 2.452.45
1919 88 1414 1111 55 2020 99 44 0 11 11 1.70.7+0.8×10181.7^{+0.8}_{-0.7}\times 10^{-18}
V-a \mp ±\pm ±\pm \mp ±\pm ±\pm \mp \mp 0 ±\pm ±\pm ±3\pm 3 3.33×10143.33\times 10^{14} 103\frac{10}{3} 0.720.72 0.460.46 0.160.16
V-b \mp ±\pm \mp ±\pm ±\pm ±\pm ±\pm \mp 0 ±\pm ±\pm ±9\pm 9 1.11×10141.11\times 10^{14} 229-\frac{22}{9} 0.720.72 4.654.65 0.490.49

V.2 Neutrino

The seesaw mechanism in Eq.(113) operates at the U(1)XU(1)_{X} symmetry breakdown scale, while its implications are measured by experiments below EW scale. Therefore, quantum corrections to neutrino masses and mixing angles can be crucial, especially for degenerate neutrino masses Antusch:2005gp . However, based on our observation that the neutrino mass spectra exhibit hierarchy at the scale of U(1)XU(1)_{X} breakdown (as depicted in Fig.4), we can safely assume that the renormalization group running effect on observables can be ignored.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Plots for 0νββ0\nu\beta\beta-decay rate (upper panel) and leptonic Dirac CP phase δCP\delta_{CP} (lower panel) as a function of the neutrino masses mνim_{\nu_{i}} and the atmospheric mixing angle θ23\theta_{23}, respectively, for NO (left) and IO (right). Vertical and horizontal dashed lines represent the 1σ1\sigma bounds for θ23\theta_{23} and δCP\delta_{CP}, respectively, in Table-3. Horizontal red-lines indicate the upper bound of KamLAND-Zen result of Eq.(120) KamLAND-Zen:2022tow .
Refer to caption
Refer to caption
Figure 5: Plots for 0νββ0\nu\beta\beta-decay rate as a function of leptonic Dirac CP phase δCP\delta_{CP} for NO (left) and IO (right). Vertical dashed lines indicate the 1σ1\sigma bound for δCP\delta_{CP} listed in Table-3, while horizontal red-lines represent the upper bound of KamLAND-Zen result of Eq.(120) KamLAND-Zen:2022tow for the 0νββ0\nu\beta\beta-decay rate.
Refer to caption
Figure 6: Plot for mν=mν1+mν2+mν3\sum m_{\nu}=m_{\nu_{1}}+m_{\nu_{2}}+m_{\nu_{3}} as a function of mlightestm_{\rm lightest} for NO (red) and IO (black).

Neutrino oscillation experiments currently aim to make precise measurements of the Dirac CP-violating phase δCP\delta_{CP} and atmospheric mixing angle θ23\theta_{23}. Using our model, we investigate which values of δCP\delta_{CP} and θ23\theta_{23} can predict the mass hierarchy of neutrinos (NO or IO) and identify observables that can be tested in current and next-generation experiments. To explore the parameter spaces, we scan the precision constraints {θ13\{\theta_{13}, θ23\theta_{23}, θ12\theta_{12}, ΔmSol2\Delta m^{2}_{\rm Sol}, ΔmAtm2}\Delta m^{2}_{\rm Atm}\} at 3σ3\sigma from Table-3. Using the reference values from Eq.(124) in the quark and charged-lepton sectors, we determine the input parameter spaces of Eq.(122) for both NO and IO at the U(1)XU(1)_{X} breaking scale : for example, taking χ=5×1013\langle\chi\rangle=5\times 10^{13} GeV (see, Table-6, 6, and -7) and for NO

β~2=[0.48,1.10],β~3=[0.61,1.18],arg(β~2(3))=[0,2π]\displaystyle\tilde{\beta}_{2}=[0.48,1.10],\quad\tilde{\beta}_{3}=[0.61,1.18]\,,\quad\arg(\tilde{\beta}_{2(3)})=[0,2\pi]
m0χ/vu2=[0.59,1.84],γ=[0.37,0.84],γ=[0.37,0.65]\displaystyle m_{0}\langle\chi\rangle/v^{2}_{u}=[0.59,1.84],\quad\gamma=[0.37,0.84],\quad\gamma^{\prime}=[0.37,0.65]
arg(γ)=[4.42,5.55],arg(γ)=[1.30,2.19];\displaystyle\arg(\gamma)=[4.42,5.55],\quad\arg(\gamma^{\prime})=[1.30,2.19]; (127)

where β1=[0.97,1.47]\beta_{1}=[0.97,1.47], β2=[0.61,1.11]\beta_{2}=[0.61,1.11], and β3=[0.69,1.15]\beta_{3}=[0.69,1.15]; for IO

β~2=[0.55,0.87],β~3=[0.56,0.86],arg(β~2(3))=[0,2π]\displaystyle\tilde{\beta}_{2}=[0.55,0.87],\quad\tilde{\beta}_{3}=[0.56,0.86]\,,\quad\arg(\tilde{\beta}_{2(3)})=[0,2\pi]
m0χ/vu2=[0.81,1.39],γ=[0.758,1.154],γ=[0.350,0.618]\displaystyle m_{0}\langle\chi\rangle/v^{2}_{u}=[0.81,1.39],\quad\gamma=[0.758,1.154],\quad\gamma^{\prime}=[0.350,0.618]
arg(γ)=[2.92,4.19],arg(γ)=[0.1,1.29]&[5.66,6.26].\displaystyle\arg(\gamma)=[2.92,4.19],\quad\arg(\gamma^{\prime})=[0.1,1.29]\,\&\,[5.66,6.26]\,. (128)

where β1=[0.98,1.29]\beta_{1}=[0.98,1.29], β2=[0.69,0.95]\beta_{2}=[0.69,0.95], and β3=[0.68,0.93]\beta_{3}=[0.68,0.93]. For these parameter regions, we investigate how 0νββ0\nu\beta\beta-decay rate and Dirac CP phase can be determined for the normal and inverted mass ordering. These predictions are represented by crosses and X-marks for NO and IO, respectively, in Fig.5. Referring to the two-dimensional allowed regions at 3σ3\sigma presented in Ref.Esteban:2020cvm , we note that the most favored regions correspond to δCP250\delta_{CP}\sim 250^{\circ}, whereas there are no favored regions with respect to θ23\theta_{23}. Ongoing experiments like DUNE DUNE:2018tke , as well as proposed next-generation experiments such as Hyper-K Hyper-Kamiokande:2018ofw , are poised to greatly reduce uncertainties in the values of θ23\theta_{23} and δCP\delta_{CP}, providing a rigorous test for our proposed model. Furthermore, ongoing and future experiments on 0νββ0\nu\beta\beta-decay like NEXT NEXT:2020amj , SNO++SNO:2022trz , KamLAND-Zen KamLAND-Zen:2022tow , Theia Theia:2019non , SuperNEMO Arnold:2004xq may soon reach a sensitivity to exclude the inverted mass ordering of our model. Cosmological and astrophysical measurements provide powerful constraints on the sum of neutrino masses. The upper bound on the sum of the three active neutrino masses can be summarized as mν=mν1+mν2+mν3<0.120\sum m_{\nu}=m_{\nu_{1}}+m_{\nu_{2}}+m_{\nu_{3}}<0.120 eV at 95%95\% CL for TT, TE, EE+lowE+lensing+BAO Planck:2018vyg . Fig.6 illustrates that the sum of neutrino masses lies in the range of 0.05820.0582 to 0.06050.0605 eV for the NO when 0.0003397mlightest=mν10.00079450.0003397\lesssim m_{\rm lightest}=m_{\nu_{1}}\lesssim 0.0007945 eV. Conversely, for the IO, the sum of neutrino masses falls within the range of 0.10030.1003 to 0.10380.1038 eV when 0.001125mlightest=mν30.0016470.001125\lesssim m_{\rm lightest}=m_{\nu_{3}}\lesssim 0.001647 eV.

VI conclusion

We proposed a minimal extension of a modular invariant model that incorporates sterile neutrinos and a QCD axion (as a strong candidate of dark matter) into the SM to account for the mass and mixing hierarchies of quarks and leptons, as well as the strong CP problem. Our model, based on the 4D effective action, features the GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} symmetry. To ensure the reliability of our model, we have examined the modular forms of the superpotential, corrected by Kähler transformation, under the GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X} symmetry, while also considering the modular and U(1)XU(1)_{X} anomaly-free conditions. The model features a minimal set of fields that transform based on representations of GSM×ΓN×U(1)XG_{\rm SM}\times\Gamma_{N}\times U(1)_{X}, and includes modular forms of level NN. These modular forms act as Yukawa couplings and transform under the modular group ΓN\Gamma_{N}. Our numerical analysis guarantees that, in the supersymmetric limit, all Yukawa coefficients in the superpotential are complex numbers with a unit absolute value, implying a democratic distribution.

We demonstrated, as an explicit example, a level 3 modular form-induced superpotential by introducing minimal supermultiplets. The extension includes right-handed neutrinos (NcN^{c}) and SM gauge singlet scalar fields (χ\chi and χ~\tilde{\chi}) with zero modular weight and (++ and -) charge under U(1)XU(1)_{X}. These scalar fields are crucial in generating the QCD axion, heavy neutrino mass, and fermion mass hierarchy. Modular invariance of both the superpotential and Kähler potential allows for Kähler transformation to correct modular form weight in the superpotential, enabling a τ\tau-independent superpotential for the scalar potential. The sterile neutrinos are introduced to satisfy the U(1)XU(1)_{X}-mixed gravitational anomaly-free condition, explain small active neutrino masses via the seesaw mechanism, and provide a well-motivated PQ symmetry breaking scale. As the fields χ(χ~)\chi(\tilde{\chi}) have modular weights of zero, any additional correction terms arising from higher weight modular forms are not permitted in the superpotentials. However, the combination χχ~\chi\tilde{\chi} can trigger higher-order corrections that are permissible and do not modify the leading-order flavor structures. Taking into account both SUSY-breaking effects and supersymmetric next-leading-order Planck-suppressed terms, we have determined the low axion decay constant (or seesaw scale). This leads to an approximate range for the PQ scale χ\langle\chi\rangle (equivalently, the seesaw scale) of 101310^{13} GeV to 101510^{15} GeV for m3/2m_{3/2} values between 1 TeV and 10610^{6} TeV, see Table-5, -6 and -7. Interestingly enough, in our model, the PQ breaking scale (or axion mass) is closely linked to the seesaw scale and the soft SUSY breaking mass. Our model with E/NCE/N_{C} could be tested by ongoing experiments such as KLASH Alesini:2019nzq and FLASH Gatti:2021cel , see Fig.1 and 2, by considering the scale of U(1)XU(1)_{X} breakdown.

We explored numerical values of physical parameters that satisfy the highly precise data on the mass of quarks and charged-leptons, as well as the quark mixing angles, except for the quark Dirac CP phase. Our model predicts that the value of δCPq\delta^{q}_{CP} falls within the range of 3838^{\circ} to 8787^{\circ}, which is consistent with experimental data. Notably, the effective Yukawa coefficients satisfying the experimental data fall well within the bound specified in Eq.(60), as shown in the top left panel of Fig.3. This suggests that our assumption, as stated in Eq.(2), that the Yukawa coefficients have a natural size of unity is plausible. Using precise neutrino oscillation data as constraints, we investigated how the 0νββ0\nu\beta\beta-decay rate and Dirac CP phase could be determined for the normal and inverted mass ordering in the neutrino sector. Referring to the 3σ3\sigma allowed regions in Ref.Esteban:2020cvm , we note that the most favored regions for our proposed model are δCP250\delta_{CP}\sim 250^{\circ}, with no favored regions with respect to θ23\theta_{23}. Ongoing experiments, such as DUNE DUNE:2018tke and proposed next-generation experiments, such as Hyper-K Hyper-Kamiokande:2018ofw , are expected to greatly reduce uncertainties in the values of θ23\theta_{23} and δCP\delta_{CP}, providing a rigorous test for our model. Additionally, ongoing and future experiments on 0νββ0\nu\beta\beta-decay, such as NEXT NEXT:2020amj , SNO++SNO:2022trz , KamLAND-Zen KamLAND-Zen:2022tow , Theia Theia:2019non , and SuperNEMO Arnold:2004xq , may soon have the sensitivity to exclude the inverted mass ordering in our model.

Acknowledgements.
YHA was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2020R1A2C1010617). SKK was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1088953, No.2020K1A3A7A09080135, No.2023R1A2C1006091).

Appendix A The group A4A_{4}

The group A4A_{4} is the symmetry group of the tetrahedron, isomorphic to the finite group of the even permutations of four objects. The group A4A_{4} has two generators, denoted SS and TT, satisfying the relations S2=T3=(ST)3=𝟏S^{2}=T^{3}=(ST)^{3}={\bf 1}. In the three-dimensional complex representation, SS and TT are given by

S=13(122212221),T=(1000ω000ω2),\displaystyle S=\frac{1}{3}{\left(\begin{array}[]{ccc}-1&2&2\\ 2&-1&2\\ 2&2&-1\end{array}\right)}\,,\qquad T={\left(\begin{array}[]{ccc}1&0&0\\ 0&\omega&0\\ 0&0&\omega^{2}\end{array}\right)}\,, (135)

where ω=ei2π/3=1/2+i3/2\omega=e^{i2\pi/3}=-1/2+i\sqrt{3}/2 is a complex cubic-root of unity. A4A_{4} has four irreducible representations: three singlets 𝟏,𝟏{\bf 1},{\bf 1}^{\prime}, and 𝟏′′{\bf 1}^{\prime\prime} and one triplet 𝟑{\bf 3}. An A4A_{4} singlet 𝐚{\bf a} is invariant under the action of SS (S𝐚=𝐚S{\bf a}={\bf a}), while the action of TT produces T𝐚=𝐚T{\bf a}={\bf a} for 𝟏{\bf 1}, T𝐚=ω𝐚T{\bf a}=\omega{\bf a} for 𝟏{\bf 1}^{\prime}, and T𝐚=ω2𝐚T{\bf a}=\omega^{2}{\bf a} for 𝟏′′{\bf 1}^{\prime\prime}. Products of two A4A_{4} representations decompose into irreducible representations according to the following multiplication rules: 𝟑𝟑=𝟑s𝟑a𝟏𝟏𝟏′′{\mathbf{3}}\otimes{\mathbf{3}}={\mathbf{3}}_{s}\oplus{\mathbf{3}}_{a}\oplus{\mathbf{1}}\oplus{\mathbf{1}}^{\prime}\oplus{\mathbf{1}}^{\prime\prime}, 𝟏𝟏=𝟏′′{\mathbf{1}}^{\prime}\oplus{\mathbf{1}}^{\prime}={\mathbf{1}}^{\prime\prime} and 𝟏′′𝟏′′=𝟏{\mathbf{1}}^{\prime\prime}\oplus{\mathbf{1}}^{\prime\prime}={\mathbf{1}}^{\prime}. Explicitly, if (a1,a2,a3)(a_{1},a_{2},a_{3}) and (b1,b2,b3)(b_{1},b_{2},b_{3}) denote two A4A_{4} triplets, then we have Eq.(30).

Appendix B The CKM mixing matrix

The CKM mixing matrix is given in the Wolfenstein parametrization Wolfenstein:1983yz by

VCKM=(112λ2λAdλ3(ρiη)λ112λ2Adλ2Adλ3(1ρiη)Adλ21)+𝒪(λ4).\displaystyle V_{\rm CKM}={\left(\begin{array}[]{ccc}1-\frac{1}{2}\lambda^{2}&\lambda&A_{d}\lambda^{3}(\rho-i\eta)\\ -\lambda&1-\frac{1}{2}\lambda^{2}&A_{d}\lambda^{2}\\ A_{d}\lambda^{3}(1-\rho-i\eta)&-A_{d}\lambda^{2}&1\end{array}\right)}+{\cal O}(\lambda^{4})\,. (139)

where λ=0.225000.00063+0.00082\lambda=0.22500^{+0.00082}_{-0.00063}, Ad=0.8130.018+0.026A_{d}=0.813^{+0.026}_{-0.018}, ρ¯=ρ/(1λ2/2)=0.1570.018+0.036\bar{\rho}=\rho/(1-\lambda^{2}/2)=0.157^{+0.036}_{-0.018}, and η¯=η/(1λ2/2)=0.3470.020+0.030\bar{\eta}=\eta/(1-\lambda^{2}/2)=0.347^{+0.030}_{-0.020} with 3σ3\sigma errors ckm .

References

  • (1) P. Minkowski, Phys. Lett. B 67, 421 (1977); T. Yanagida, in Proc. of the Workshop on Unified Theories and Baryon Number in the Universe, ed.O. Sawada and A. Sugamoto, 95 (KEK, Japan, 1979); M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, ed. P. Nieuwenhuizen and D. Freeman (North Holland, Amsterdam, 1979); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, (1980) 912.
  • (2) R. D. Peccei and H. R. Quinn, Phys. Rev. Lett.  38, 1440 (1977); R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977).
  • (3) F. Feruglio, doi:10.1142/9789813238053_0012 [arXiv:1706.08749 [hep-ph]].
  • (4) S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, Phys. Lett. B 225 (1989), 363; S. Ferrara, D. Lust and S. Theisen, Phys. Lett. B 233 (1989), 147-152.
  • (5) T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 11 (2018), 196 [arXiv:1808.03012 [hep-ph]]; S. J. D. King and S. F. King, JHEP 09 (2020), 043 [arXiv:2002.00969 [hep-ph]]; F. J. de Anda, S. F. King and E. Perdomo, Phys. Rev. D 101 (2020) no.1, 015028 [arXiv:1812.05620 [hep-ph]]; C. Y. Yao, J. N. Lu and G. J. Ding, JHEP 05 (2021), 102 [arXiv:2012.13390 [hep-ph]]; H. Okada and M. Tanimoto, Eur. Phys. J. C 81 (2021) no.1, 52 [arXiv:1905.13421 [hep-ph]]; C. Y. Yao, J. N. Lu and G. J. Ding, JHEP 05 (2021), 102 [arXiv:2012.13390 [hep-ph]]; S. Kikuchi, T. Kobayashi, H. Otsuka, M. Tanimoto, H. Uchida and K. Yamamoto, Phys. Rev. D 106, no.3, 035001 (2022) [arXiv:2201.04505 [hep-ph]]; K. Hoshiya, S. Kikuchi, T. Kobayashi and H. Uchida, Phys. Rev. D 106 (2022) no.11, 115003 [arXiv:2209.07249 [hep-ph]]; A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, JHEP 09 (2022), 224 [arXiv:2207.10677 [hep-ph]]; X. K. Du and F. Wang, JHEP 01 (2023), 036 [arXiv:2209.08796 [hep-ph]]; Y. Abe, T. Higaki, J. Kawamura and T. Kobayashi, [arXiv:2302.11183 [hep-ph]]; H. Okada and M. Tanimoto, Phys. Dark Univ. 40 (2023), 101204 [arXiv:2005.00775 [hep-ph]]; S. T. Petcov and M. Tanimoto, [arXiv:2306.05730 [hep-ph]]; S. T. Petcov and M. Tanimoto, [arXiv:2212.13336 [hep-ph]].
  • (6) G. J. Ding, S. F. King and X. G. Liu, JHEP 09 (2019), 074 [arXiv:1907.11714 [hep-ph]]; Y. H. Ahn, S. K. Kang, R. Ramos and M. Tanimoto, Phys. Rev. D 106 (2022) no.9, 095002 [arXiv:2205.02796 [hep-ph]].
  • (7) F. Feruglio, A. Strumia and A. Titov, [arXiv:2305.08908 [hep-ph]].
  • (8) T. Kobayashi and H. Otsuka, Phys. Lett. B 807 (2020), 135554 [arXiv:2002.06931 [hep-ph]].
  • (9) R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437-467 (2012) [arXiv:1112.1340 [hep-ph]].
  • (10) L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).
  • (11) J. P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, Nucl. Phys. B 372, 145-188 (1992).
  • (12) M. Dine, N. Seiberg and E. Witten, Nucl. Phys. B 289, 589-598 (1987); P. Svrcek and E. Witten, JHEP 06, 051 (2006) [arXiv:hep-th/0605206 [hep-th]].
  • (13) M. B. Green and J. H. Schwarz, Phys. Lett.  149B, 117 (1984); M. B. Green and J. H. Schwarz, Nucl. Phys. B 255, 93-114 (1985); M. B. Green, J. H. Schwarz and P. C. West, Nucl. Phys. B 254, 327-348 (1985).
  • (14) C. P. Burgess, R. Kallosh and F. Quevedo, JHEP 10, 056 (2003) [arXiv:hep-th/0309187 [hep-th]].
  • (15) D. V. Nanopoulos, K. A. Olive, M. Srednicki and K. Tamvakis, Phys. Lett. B 124, 171 (1983); H. Murayama, H. Suzuki and T. Yanagida, Phys. Lett. B 291, 418-425 (1992); K. Choi, E. J. Chun and J. E. Kim, Phys. Lett. B 403, 209-217 (1997) [arXiv:hep-ph/9608222 [hep-ph]].
  • (16) Y. H. Ahn, Phys. Rev. D 100, no. 1, 015002 (2019) [arXiv:1706.09707 [hep-ph]].
  • (17) Y. H. Ahn, Phys. Rev. D 96, no. 1, 015022 (2017) [arXiv:1611.08359 [hep-ph]].
  • (18) Y. H. Ahn, Phys. Rev. D 91, 056005 (2015) [arXiv:1410.1634 [hep-ph]].
  • (19) M. Kamionkowski and J. March-Russell, Phys. Lett. B 282, 137 (1992) [hep-th/9202003]; R. Kallosh, A. D. Linde, D. A. Linde and L. Susskind, Phys. Rev. D 52, 912 (1995) [hep-th/9502069]; G. Dvali, hep-th/0507215.
  • (20) Y. H. Ahn, Phys. Rev. D 98, no. 3, 035047 (2018) [arXiv:1804.06988 [hep-ph]]; Y. H. Ahn, Nucl. Phys. B 939, 534 (2019) [arXiv:1802.05044 [hep-ph]]. Y. H. Ahn and X. Bi, Nucl. Phys. B 960, 115210 (2020) [arXiv:1912.09038 [hep-ph]].
  • (21) Y. H. Ahn, S. K. Kang and H. M. Lee, Phys. Rev. D 106, no.7, 075029 (2022) [arXiv:2112.13392 [hep-ph]].
  • (22) S. Gukov, C. Vafa and E. Witten, Nucl. Phys. B 584, 69-108 (2000) [erratum: Nucl. Phys. B 608, 477-478 (2001)] [arXiv:hep-th/9906070 [hep-th]].
  • (23) S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D 66, 106006 (2002) [arXiv:hep-th/0105097 [hep-th]].
  • (24) K. Dasgupta, G. Rajesh and S. Sethi, JHEP 08, 023 (1999) [arXiv:hep-th/9908088 [hep-th]].
  • (25) D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 05, 079 (2004) [arXiv:hep-th/0404229 [hep-th]].
  • (26) D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 07 (2003), 038 [arXiv:hep-th/0302105 [hep-th]]; R. Blumenhagen, M. Cvetic, P. Langacker and G. Shiu, Ann. Rev. Nucl. Part. Sci. 55 (2005), 71-139 [arXiv:hep-th/0502005 [hep-th]]; S. A. Abel and M. D. Goodsell, JHEP 10 (2007), 034 [arXiv:hep-th/0612110 [hep-th]]; R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445 (2007), 1-193 [arXiv:hep-th/0610327 [hep-th]]; F. Marchesano, Fortsch. Phys. 55 (2007), 491-518 [arXiv:hep-th/0702094 [hep-th]]; I. Antoniadis, A. Kumar and B. Panda, Nucl. Phys. B 823 (2009), 116-173 [arXiv:0904.0910 [hep-th]]; T. Kobayashi, S. Nagamoto and S. Uemura, PTEP 2017 (2017) no.2, 023B02 [arXiv:1608.06129 [hep-th]].
  • (27) A. Sagnotti, Phys. Lett. B 294, 196-203 (1992) [arXiv:hep-th/9210127 [hep-th]].
  • (28) L. E. Ibanez, R. Rabadan and A. M. Uranga, Nucl. Phys. B 542, 112-138 (1999) [arXiv:hep-th/9808139 [hep-th]].
  • (29) E. Poppitz, Nucl. Phys. B 542, 31-44 (1999) [arXiv:hep-th/9810010 [hep-th]].
  • (30) Z. Lalak, S. Lavignac and H. P. Nilles, Nucl. Phys. B 559, 48-70 (1999) [arXiv:hep-th/9903160 [hep-th]].
  • (31) Y. H. Ahn, Phys. Rev. D 93, no. 8, 085026 (2016) [arXiv:1604.01255 [hep-ph]].
  • (32) A. Achucarro, B. de Carlos, J. A. Casas and L. Doplicher, JHEP 06, 014 (2006) [arXiv:hep-th/0601190 [hep-th]]; E. Dudas and Y. Mambrini, JHEP 10, 044 (2006) [arXiv:hep-th/0607077 [hep-th]].
  • (33) D. Alesini, D. Babusci, P. Beltrame, S.J., F. Björkeroth, F. Bossi, P. Ciambrone, G. Delle Monache, D. Di Gioacchino, P. Falferi and A. Gallo, et al. [arXiv:1911.02427 [physics.ins-det]].
  • (34) C. Gatti, P. Gianotti, C. Ligi, M. Raggi and P. Valente, Universe 7, no.7, 236 (2021).
  • (35) E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) [arXiv:hep-ph/0106291 [hep-ph]]; G. Altarelli and F. Feruglio, Nucl. Phys. B 720, 64-88 (2005) [arXiv:hep-ph/0504165 [hep-ph]]; P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003) doi:10.1016/S0370-2693(03)00183-7 [arXiv:hep-ph/0302025 [hep-ph]]; X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 04, 039 (2006) [arXiv:hep-ph/0601001 [hep-ph]].
  • (36) Y. H. Ahn, S. Baek and P. Gondolo, Phys. Rev. D 86, 053004 (2012) [arXiv:1207.1229 [hep-ph]]; Y. H. Ahn, S. K. Kang and C. S. Kim, Phys. Rev. D 87, no.11, 113012 (2013) [arXiv:1304.0921 [hep-ph]]; Z. z. Xing, Phys. Lett. B 533, 85-93 (2002) doi:10.1016/S0370-2693(02)01649-0 [arXiv:hep-ph/0204049 [hep-ph]]; S. K. Kang, Z. z. Xing and S. Zhou, Phys. Rev. D 73, 013001 (2006) doi:10.1103/PhysRevD.73.013001 [arXiv:hep-ph/0511157 [hep-ph]]; S. Chang, S. K. Kang and K. Siyeon, Phys. Lett. B 597, 78-88 (2004) doi:10.1016/j.physletb.2004.06.104 [arXiv:hep-ph/0404187 [hep-ph]].
  • (37) Y. H. Ahn, H. Y. Cheng and S. Oh, Phys. Rev. D 83, 076012 (2011) [arXiv:1102.0879 [hep-ph]].
  • (38) L. Wolfenstein, Phys. Rev. Lett.  51, 1945 (1983).
  • (39) Y. H. Ahn, H. Y. Cheng and S. Oh, Phys. Lett. B 703, 571 (2011) [arXiv:1106.0935 [hep-ph]].
  • (40) L. L. Chau and W. Y. Keung, Phys. Rev. Lett.  53, 1802 (1984).
  • (41) http://ckmfitter.in2p3.fr.
  • (42) R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022).
  • (43) R. D. Bolton et al., Phys. Rev. D 38, 2077 (1988).
  • (44) A. V. Artamonov et al. [E949 Collaboration], Phys. Rev. Lett.  101, 191802 (2008) [arXiv:0808.2459 [hep-ex]].
  • (45) A. Davidson and K. C. Wali, Phys. Rev. Lett. 48 (1982), 11; F. Wilczek, Phys. Rev. Lett.  49, 1549 (1982).
  • (46) J. L. Feng, T. Moroi, H. Murayama and E. Schnapka, Phys. Rev. D 57, 5875 (1998) [hep-ph/9709411].
  • (47) Z. G. Berezhiani and M. Y. Khlopov, Sov. J. Nucl. Phys. 51 (1990), 739-746; Z. G. Berezhiani and M. Y. Khlopov, Z. Phys. C 49 (1991), 73-78; A. S. Sakharov and M. Y. Khlopov, Phys. Atom. Nucl. 57 (1994), 651-658
  • (48) E. Cortina Gil et al. [NA62], JHEP 06 (2021), 093 [arXiv:2103.15389 [hep-ex]].
  • (49) A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Phys. Rev. Lett.  113, no. 19, 191302 (2014) [arXiv:1406.6053 [astro-ph.SR]].
  • (50) J. Redondo, JCAP 12 (2013), 008 [arXiv:1310.0823 [hep-ph]].
  • (51) N. Viaux, M. Catelan, P. B. Stetson, G. Raffelt, J. Redondo, A. A. R. Valcarce and A. Weiss, Astron. Astrophys. 558 (2013), A12 [arXiv:1308.4627 [astro-ph.SR]]; N. Viaux, M. Catelan, P. B. Stetson, G. Raffelt, J. Redondo, A. A. R. Valcarce and A. Weiss, Phys. Rev. Lett. 111 (2013), 231301 [arXiv:1311.1669 [astro-ph.SR]].
  • (52) M. M. Miller Bertolami, B. E. Melendez, L. G. Althaus and J. Isern, JCAP 1410, no. 10, 069 (2014) [arXiv:1406.7712 [hep-ph]].
  • (53) J. Isern, E. Garcia-Berro, S. Torres and S. Catalan, Astrophys. J.  682, L109 (2008) [arXiv:0806.2807 [astro-ph]]; J. Isern, S. Catalan, E. Garcia-Berro and S. Torres, J. Phys. Conf. Ser.  172, 012005 (2009) [arXiv:0812.3043 [astro-ph]]; J. Isern, M. Hernanz and E. Garcia-Berro, Astrophys. J.  392, L23 (1992).
  • (54) G. G. Raffelt, Phys. Lett. B 166, 402 (1986); S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. Roy. Astron. Soc.  266, 289 (1994).
  • (55) S. DeGennaro, T. von Hippel, D. E. Winget, S. O. Kepler, A. Nitta, D. Koester and L. Althaus, Astron. J. 135 (2008), 1-9 [arXiv:0709.2190 [astro-ph]].
  • (56) N. Rowell and N. Hambly, [arXiv:1102.3193 [astro-ph.GA]].
  • (57) L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. P. Mikheyev and A. Y. Smirnov, Sov. J. Nucl. Phys.  42, 913 (1985) [Yad. Fiz.  42, 1441 (1985)].
  • (58) I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, JHEP 1901, 106 (2019) [arXiv:1811.05487 [hep-ph]].
  • (59) P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola and J. W. F. Valle, Phys. Lett. B 782, 633 (2018) [arXiv:1708.01186 [hep-ph]].
  • (60) F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Prog. Part. Nucl. Phys.  102, 48 (2018) [arXiv:1804.09678 [hep-ph]].
  • (61) I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09, 178 (2020) [arXiv:2007.14792 [hep-ph]]; NuFIT 5.2 (2022), www.nu-fit.org.
  • (62) S. Abe et al. [KamLAND-Zen], Phys. Rev. Lett. 130, no.5, 051801 (2023) [arXiv:2203.02139 [hep-ex]].
  • (63) S. A. Kharusi, G. Anton, I. Badhrees, P. S. Barbeau, D. Beck, V. Belov, T. Bhatta, M. Breidenbach, T. Brunner and G. F. Cao, et al. Phys. Rev. D 104, no.11, 112002 (2021) [arXiv:2109.01327 [hep-ex]].
  • (64) S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503, 024 (2005) [hep-ph/0501272].
  • (65) S. J. Asztalos et al. [ADMX Collaboration], Phys. Rev. Lett.  104, 041301 (2010) [arXiv:0910.5914 [astro-ph.CO]].
  • (66) B. Abi et al. [DUNE], [arXiv:1807.10334 [physics.ins-det]].
  • (67) K. Abe et al. [Hyper-Kamiokande], [arXiv:1805.04163 [physics.ins-det]].
  • (68) C. Adams et al. [NEXT], JHEP 2021 (2021) no.08, 164 [arXiv:2005.06467 [physics.ins-det]].
  • (69) A. Allega et al. [SNO+], Phys. Rev. D 105 (2022) no.11, 112012 [arXiv:2205.06400 [hep-ex]].
  • (70) M. Askins et al. [Theia], Eur. Phys. J. C 80 (2020) no.5, 416 [arXiv:1911.03501 [physics.ins-det]].
  • (71) R. Arnold, C. Augier, A. M. Bakalyarov, J. Baker, A. Barabash, P. Bernaudin, M. Bouchel, V. Brudanin, A. J. Caffrey and J. Cailleret, et al. Nucl. Instrum. Meth. A 536 (2005), 79-122 [arXiv:physics/0402115 [physics]].
  • (72) N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [erratum: Astron. Astrophys. 652 (2021), C4] [arXiv:1807.06209 [astro-ph.CO]].