This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Signed pp-adic LL-functions of Bianchi modular forms

Mihir V. Deo [email protected] Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
Abstract.

Let p3p\geq 3 be a prime number and KK be a quadratic imaginary field in which pp splits as 𝔭𝔭¯\mathfrak{p}\overline{\mathfrak{p}}. Let \mathcal{F} be a cuspidal Bianchi eigenform over KK of weight (k,k)(k,k), where k2k\geq 2 is an integer, level 𝔫\mathfrak{n} coprime to (p)(p), and non-ordinary at both of the primes above pp. We assume \mathcal{F} has trivial nebentypus. For 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}, let a𝔮a_{\mathfrak{q}} be the T𝔮T_{\mathfrak{q}} Hecke eigenvalue of \mathcal{F} and let α𝔮,β𝔮\alpha_{\mathfrak{q}},\beta_{\mathfrak{q}} be the roots of polynomial X2a𝔮X+pk1X^{2}-a_{\mathfrak{q}}X+p^{k-1}. Then we have four pp-stabilizations of \mathcal{F}: α𝔭,α𝔭¯,α𝔭,β𝔭¯,β𝔭,α𝔭¯,\mathcal{F}^{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}},\mathcal{F}^{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}},\mathcal{F}^{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}, and β𝔭,β𝔭¯\mathcal{F}^{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}} which are Bianchi cusp forms of level p𝔫p\mathfrak{n}. Due to Williams, to each pp-stabilization ,\mathcal{F}^{*,\dagger}, we can attach a locally analytic distribution Lp(,)L_{p}(\mathcal{F}^{*,\dagger}) over the ray class group Cl(K,p)\text{Cl}(K,p^{\infty}). On viewing Lp(,)L_{p}(\mathcal{F}^{*,\dagger}) as a two-variable power series with coefficients in some pp-adic field having unbounded denominators satisfying certain growth conditions, we decompose this power series into a linear combination of power series with bounded coefficients in the spirit of Pollack, Sprung, and Lei-Loeffler-Zerbes.

Key words and phrases:
Iwasawa theory, pp-adic LL-functions, pp-adic Hodge theory, Bianchi modular forms

1. Introduction

The study and construction of pp-adic LL-functions of arithmetic objects, like modular forms, is one of the central topics in modern number theory. The analytic pp-adic LL-functions are distributions on pp-adic rings like p\mathbb{Z}_{p}. For example, let ff be an elliptic modular eigenform of weight k2k\geq 2, level NN and character ϵ\epsilon, and let pp be a prime such that pNp\nmid N. Let α\alpha be a root of the Hecke polynomial X2apX+ϵ(p)pk1X^{2}-a_{p}X+\epsilon(p)p^{k-1} such that vp(α)<k1v_{p}(\alpha)<k-1, where vpv_{p} is the normalized pp-adic valuation such that vp(p)=1v_{p}(p)=1, and apa_{p} is the TpT_{p}-eigenvalue of ff. Then, due to the constructions of Amice-Velu and Vishik (see [1], [33]) we can attach to ff a pp-adic distribution Lp(f,α)L_{p}(f,\alpha) of order vp(α)v_{p}(\alpha) over p×\mathbb{Z}_{p}^{\times}. This Lp(f,α)L_{p}(f,\alpha) interpolates the critical values of the complex LL-function of ff.

We continue with the example of pp-adic LL-functions of modular forms. When ff is pp-ordinary, i.e. vp(ap)=0v_{p}(a_{p})=0, Lp(f,α)L_{p}(f,\alpha) is a bounded measure and hence an element of Iwasawa algebra ΛK(Γ)K𝒪K[Δ][[Γ1]]\Lambda_{K}(\Gamma)\cong K\otimes\mathcal{O}_{K}[\Delta][[\Gamma_{1}]], where KK is some finite extension of p\mathbb{Q}_{p}, Γ=Gal(p(μp)/p)Δ×Γ1\Gamma=\operatorname{Gal}(\mathbb{Q}_{p}(\mu_{p^{\infty}})/\mathbb{Q}_{p})\cong\Delta\times\Gamma_{1}, Δ(/p)×\Delta\cong(\mathbb{Z}/p\mathbb{Z})^{\times}, and Γ1p\Gamma_{1}\cong\mathbb{Z}_{p}. In this setting, the arithmetic is well understood and we have an Iwasawa main conjecture which relates this pp-adic LL-function with the characteristic ideal of the Selmer group of ff (proved in many cases by Kato in [15], Skinner-Urban in [31], Wan in [34], etc).

When ff is pp-non-ordinary, i.e. apa_{p} is not a pp-adic unit, Lp(f,α)L_{p}(f,\alpha) is no longer a measure and hence not an element of the Iwasawa algebra. Moreover, it has unbounded denominators and it is an element of a larger algebra known as the distribution algebra K(Γ)\mathcal{H}_{K}(\Gamma) (see section 2 for the definition). When ap=0a_{p}=0, Pollack in [30] has given a remedy. If α1,α2\alpha_{1},\alpha_{2} are the roots of X2+ϵ(p)pk1X^{2}+\epsilon(p)p^{k-1}, Pollack showed that there exists a decomposition

Lp(f,αi)=logp,k+Lp++αilogp,kLp,L_{p}(f,\alpha_{i})=\log^{+}_{p,k}L_{p}^{+}+\alpha_{i}\log^{-}_{p,k}L_{p}^{-},

where Lp±ΛK(Γ)L_{p}^{\pm}\in\Lambda_{K}(\Gamma), for some finite extension KK of p\mathbb{Q}_{p}, and logp,k±\log^{\pm}_{p,k} are some power series in p(Γ1)\mathcal{H}_{\mathbb{Q}_{p}}(\Gamma_{1}) depending only on kk. He also showed that if k=2k=2, then Lp±L_{p}^{\pm} have integral coefficients, i.e. they lie in p[Δ][[Γ]]\mathbb{Z}_{p}[\Delta][[\Gamma]]. Later Sprung (for k=2k=2) in [32] and Lei-Loeffler-Zerbes (for k2k\geq 2) in [23] have extended the work of Pollack when ap0a_{p}\neq 0 using the method of logarithmic matrix.

Remark 1.1.

On the algebraic side, we also have notions of signed Selmer groups due to Kobayashi (for k=2,ap=0k=2,a_{p}=0) in [16], Sprung (for k=2,ap0k=2,a_{p}\neq 0) in [32], Lei (for k2,ap=0k\geq 2,a_{p}=0) in [20], and Lei-Loeffler-Zerbes (for k2,ap0k\geq 2,a_{p}\neq 0) in [23]. We also have signed Iwasawa main conjectures relating signed pp-adic LL-functions of non-ordinary modular forms with signed Selmer groups. See [23] for more details.

In this article, we extend the construction of signed pp-adic LL-functions (due to Pollack, Sprung, and Lei-Loefller-Zerbes) in the setting of Bianchi modular forms using the two-variable pp-adic LL-functions constructed by Williams in [35]. Bianchi modular forms are automorphic forms over quadratic imaginary fields. Let KK be a quadratic imaginary field. Fix a prime number p3p\geq 3, which splits in KK as (p)=𝔭𝔭¯(p)=\mathfrak{p}\overline{\mathfrak{p}}, and let k2k\geq 2 be an integer. Let 𝒢\mathcal{G} be a Bianchi cusp eigenform of weight (k,k)(k,k), level 𝒩\mathcal{N} such that (p)(p) divides 𝒩\mathcal{N} and vp(a𝔮)<(k1)/e𝔮v_{p}(a_{\mathfrak{q}})<(k-1)/e_{\mathfrak{q}}, where a𝔮a_{\mathfrak{q}} is the U𝔮U_{\mathfrak{q}} Hecke eigenvalue for all primes 𝔮\mathfrak{q} of KK which lie above pp and e𝔮e_{\mathfrak{q}} is the ramification index of the prime 𝔮\mathfrak{q}. Then Williams has constructed a two-variable pp-adic LL-function Lp(𝒢)L_{p}(\mathcal{G}) (see [35, Theorem 7.4]) of a Bianchi modular cusp form 𝒢\mathcal{G} using overconvergent modular symbols. More precisely, Lp(𝒢)L_{p}(\mathcal{G}) is a locally analytic distribution over the ray class group Cl(K,p)=Gp=limnG(p)n\text{Cl}(K,p^{\infty})=G_{p^{\infty}}=\varprojlim_{n}G_{(p)^{n}}, where G(p)nG_{(p)^{n}} is the ray class group of KK modulo (p)n(p)^{n}. We start with a Bianchi cusp form \mathcal{F} of weight (k,k)(k,k), level 𝔫\mathfrak{n} coprime to pp, and \mathcal{F} is non-ordinary at both of the primes above pp, that is, vp(a𝔭)>0v_{p}(a_{\mathfrak{p}})>0 and vp(a𝔭¯)>0v_{p}(a_{\overline{\mathfrak{p}}})>0, where a𝔭a_{\mathfrak{p}} and a𝔭¯a_{\overline{\mathfrak{p}}} are T𝔭T_{\mathfrak{p}} and T𝔭¯T_{\overline{\mathfrak{p}}} Hecke eigenvalues of \mathcal{F} respectively. For 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}, we assume vp(a𝔮)>k2p1v_{p}(a_{\mathfrak{q}})>\left\lfloor\dfrac{k-2}{p-1}\right\rfloor. Moreover, let α𝔮\alpha_{\mathfrak{q}} and β𝔮\beta_{\mathfrak{q}} be the roots of Hecke polynomial X2a𝔮X+pk1X^{2}-a_{\mathfrak{q}}X+p^{k-1} which we assume are distinct. Then we get four pp-stabilizations of \mathcal{F}: α𝔭,α𝔭¯,α𝔭,β𝔭¯,β𝔭,α𝔭¯\mathcal{F}^{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}},\mathcal{F}^{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}},\mathcal{F}^{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}} and β𝔭,β𝔭¯\mathcal{F}^{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}, which are Bianchi modular forms of the same weight as \mathcal{F} and level p𝔫p\mathfrak{n}. Thanks to Williams, we can attach a two-variable pp-adic LL-function to each of the stabilization L,Lp(,)L_{*,\dagger}\coloneqq L_{p}(\mathcal{F}^{*,\dagger}), for {α𝔭,β𝔭}*\in\{\alpha_{\mathfrak{p}},\beta_{\mathfrak{p}}\} and {α𝔭¯,β𝔭¯}\dagger\in\{\alpha_{\overline{\mathfrak{p}}},\beta_{\overline{\mathfrak{p}}}\}. The main theorem of this article is:

Theorem A (Theorem 8.3).

There exist two variable power series with bounded coefficients, that is, there exist L,,L,,L,,L,ΛE(Gp)L_{\sharp,\sharp},L_{\sharp,\flat},L_{\flat,\sharp},L_{\flat,\flat}\in\Lambda_{E}(G_{p^{\infty}}) such that

(Lα𝔭,α𝔭¯Lβ𝔭,α𝔭¯Lα𝔭,β𝔭¯Lβ𝔭,β𝔭¯)=Q𝔭¯1M𝔭¯¯(L,L,L,L,)(Q𝔭1M𝔭¯)T,\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}=Q^{-1}_{\overline{\mathfrak{p}}}\underline{M_{\overline{\mathfrak{p}}}}\begin{pmatrix}L_{\sharp,\sharp}&L_{\flat,\sharp}\\[6.0pt] L_{\sharp,\flat}&L_{\flat,\flat}\end{pmatrix}(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})^{T},

where M𝔭¯\underline{M_{\mathfrak{p}}} and M𝔭¯¯\underline{M_{\overline{\mathfrak{p}}}} are 2×22\times 2 logarithmic matrices, Q𝔮=(α𝔮β𝔮pk1pk1)Q_{\mathfrak{q}}=\begin{pmatrix}\alpha_{\mathfrak{q}}&-\beta_{\mathfrak{q}}\\[6.0pt] -p^{k-1}&p^{k-1}\end{pmatrix}, and ΛE(Gp)E[ΔK]p[[T1,T2]]\Lambda_{E}(G_{p^{\infty}})\cong E[\Delta_{K}]\otimes\mathbb{Z}_{p}[[T_{1},T_{2}]], where ΔK\Delta_{K} is a finite abelian group such that GpΔK×p2G_{p^{\infty}}\cong\Delta_{K}\times\mathbb{Z}_{p}^{2}.

1.1. Plan of the article

We start with the setup and notations in Section 2 which we require throughout the article.

In Section 3, we recall tools from pp-adic Hodge theory and Wach modules. In general, we look at crystalline representations, families of Wach modules and the relation between them due to Berger-Li-Zhu [4]. Note that we don’t have much information about pp-adic Hodge theoretic properties of the Galois representation attached to Bianchi modular forms, for example conjecturally pp-adic Galois representations attached to Bianchi modular forms are crystalline. There are some partial results due to Jorza, see[14] and [13]. Using Berger-Li-Zhu’s construction, we can avoid (rather bypass) the pp-adic representation coming from Bianchi modular forms.

In Section 4, we recall the big logarithm map constructed by Perrin-Riou and the pp-adic regulator map along with Coleman maps which were introduced by Lei-Loeffler-Zerbes in [23] and [21]. Moreover, we study the relationship between the big logarithm map and the pp-adic regulator map. In this section, we also introduce the logarithm matrix M¯\underline{M}, which is an element of M2,2(E(Γ1))M_{2,2}(\mathcal{H}_{E}(\Gamma_{1})).

Section 5 deals with the factorization of power series in one variable. We first investigate M¯\underline{M} in more depth. Then we prove the following result:

Theorem B (Theorem 5.5).

Let EE be a finite extension of p\mathbb{Q}_{p}. Let α,β𝒪E\alpha,\beta\in\mathcal{O}_{E} and k2k\geq 2 be an integer such that αβ=pk1\alpha\beta=p^{k-1}. Assume αβ\alpha\neq\beta and vp(α+β)>k2p1v_{p}(\alpha+\beta)>\left\lfloor\dfrac{k-2}{p-1}\right\rfloor. For each λ{α,β}\lambda\in\{\alpha,\beta\}, let FλE,vp(λ)(Γ)F_{\lambda}\in\mathcal{H}_{E,v_{p}(\lambda)}(\Gamma), such that for any integer 0jk20\leq j\leq k-2, and for any Dirichlet character ω\omega of conductor pnp^{n}, we have Fλ(χjω)=λnCω,jF_{\lambda}(\chi^{j}\omega)=\lambda^{-n}C_{\omega,j}, where χ\chi is the pp-adic cyclotomic character and Cω,jp¯C_{\omega,j}\in\overline{\mathbb{Q}_{p}} that is independent of λ\lambda. Then there exist F,FΛE(Γ)F_{\flat},F_{\sharp}\in\Lambda_{E}(\Gamma) such that

(FαFβ)=Q1M¯(FF).\begin{pmatrix}F_{\alpha}\\[6.0pt] F_{\beta}\end{pmatrix}=Q^{-1}\underline{M}\begin{pmatrix}F_{\sharp}\\[6.0pt] F_{\flat}\end{pmatrix}.
Remark 1.2.

In [7, Section 2], the authors proved a similar result as above under the Fontaine-Laiffaille condition (p>kp>k). In this article, we are replacing this condition with a weaker condition vp(α+β)>k2p1v_{p}(\alpha+\beta)>\left\lfloor\dfrac{k-2}{p-1}\right\rfloor. We also use different methods than the methods used in [7]. For example, we obtain properties of M¯\underline{M} using the pp-adic regulator TW\mathcal{L}_{T_{W}} and Perrin-Riou’s big logarithm map ΩTW\Omega_{T_{W}}.

Remark 1.3.

Theorem B can be used in the decomposition of any two power series satisfying certain growth conditions and interpolation properties. In [10], which is an upcoming work regarding pp-adic Asai LL-distributions of pp-non-ordinary Bianchi modular forms, we can use this method to decompose the distributions into bounded measures.

In Section 6, we develop the two-variable setup and recall definitions of ray class groups, Hecke characters, etc.

Bianchi modular forms and their pp-adic LL-functions are briefly recalled in Section 7.

In the last section, we prove the main theorem (Theorem A) of this article. We generalize and apply results of [19] in our setting.

Acknowledgements

I would like to thank my PhD advisor Antonio Lei for suggesting this problem to me, for answering all my questions, and for his patience, guidance, encouragement, and support. I would like to thank my brother Shaunak Deo for helpful mathematical and non-mathematical conversations. I would also like to thank Katharina Müller for her suggestions on the earlier draft of this article.

2. Setup and notations

Fix an odd prime pp. Let EE be a finite extension of p\mathbb{Q}_{p} with the ring of integers 𝒪E\mathcal{O}_{E}. Let α,β𝒪E\alpha,\beta\in\mathcal{O}_{E} such that vp(a)>0v_{p}(a)>0, where a=α+βa=\alpha+\beta. Let v𝒪Ev\in\mathcal{O}_{E} and k2k\geq 2 be an integer such that αβ=vpk1\alpha\beta=vp^{k-1} for some vv such that v1/2𝒪E×v^{1/2}\in\mathcal{O}_{E}^{\times}. We denote Gal(p¯/p)\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p}) by GpG_{\mathbb{Q}_{p}}.

Assumption 2.1.

vp(a)>m=k2p1v_{p}(a)>m=\left\lfloor\dfrac{k-2}{p-1}\right\rfloor and αβ\alpha\neq\beta.

We fix a,α,β,a,\alpha,\beta, and vv for the rest of the article.

Iwasawa algebras

Let p,n=p(μpn)\mathbb{Q}_{p,n}=\mathbb{Q}_{p}(\mu_{p^{n}}), where μpn\mu_{p^{n}} is the set of all pnp^{n}-th roots of unity. Let p,=n1p,n\mathbb{Q}_{p,\infty}=\bigcup_{n\geq 1}\mathbb{Q}_{p,n}. Then Γ=Gal(p,/p)Δ×p\Gamma=\operatorname{Gal}(\mathbb{Q}_{p,\infty}/\mathbb{Q}_{p})\cong\Delta\times\mathbb{Z}_{p}, where Δ\Delta is the torsion group of Γ\Gamma of order p1p-1. Let Γ1\Gamma_{1} be a subgroup of Γ\Gamma such that Γ1Γ/Δp\Gamma_{1}\cong\Gamma/\Delta\cong\mathbb{Z}_{p}. In other words, Γ1\Gamma_{1} is the Galois group of p,\mathbb{Q}_{p,\infty} over p,1\mathbb{Q}_{p,1}. We denote the Iwasawa algebra 𝒪Ep[[Γ]]𝒪E[[Γ]]\mathcal{O}_{E}\otimes\mathbb{Z}_{p}[[\Gamma]]\cong\mathcal{O}_{E}[[\Gamma]] over 𝒪E\mathcal{O}_{E} by Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma). Fix a topological generator γ0\gamma_{0} of Γ1\Gamma_{1}. Then we can identify 𝒪E[[Γ1]]\mathcal{O}_{E}[[\Gamma_{1}]] with 𝒪E[[X]]\mathcal{O}_{E}[[X]] via identification γ01+X\gamma_{0}\mapsto 1+X. This can be extended to Λ𝒪E(Γ)𝒪E[Δ][[X]]\Lambda_{\mathcal{O}_{E}}(\Gamma)\cong\mathcal{O}_{E}[\Delta][[X]]. We further write ΛE(Γ1)=EΛ𝒪E(Γ1)\Lambda_{E}(\Gamma_{1})=E\otimes\Lambda_{\mathcal{O}_{E}}(\Gamma_{1}) and ΛE(Γ)=EΛ𝒪E(Γ)\Lambda_{E}(\Gamma)=E\otimes\Lambda_{\mathcal{O}_{E}}(\Gamma). Fix a topological generator uu of 1+pp1+p\mathbb{Z}_{p} and let χ\chi be the pp-adic cyclotomic character on Γ\Gamma such that χ(γ0)=u\chi(\gamma_{0})=u.

Power series rings

Given any power series FE[[X]]F\in E[[X]] and 0<ρ<10<\rho<1, we define the sup norm Fρ=sup|z|pρ|F(z)|p\|F\|_{\rho}=\text{sup}_{|z|_{p}\leq\rho}|F(z)|_{p}. For any real number r0r\geq 0, we define

r={FE[[X]]:supt(ptrFρt)<},\mathcal{H}_{r}=\{F\in E[[X]]:\operatorname{sup_{t}}(p^{-tr}\|F\|_{\rho_{t}})<\infty\},

where ρt=p1/pt1(p1)\rho_{t}=p^{-1/p^{t-1}(p-1)} and t1t\geq 1 is an integer. We write E=r0r\mathcal{H}_{E}=\bigcup_{r\geq 0}\mathcal{H}_{r}. We define E,r(Γ)\mathcal{H}_{E,r}(\Gamma) to be the set of power series n0,σΔcn,σσ(γ01)n,\sum_{n\geq 0,\sigma\in\Delta}c_{n,\sigma}\cdot\sigma\cdot(\gamma_{0}-1)^{n}, such that n0cn,σXnr\sum_{n\geq 0}c_{n,\sigma}X^{n}\in\mathcal{H}_{r} for all σΔ\sigma\in\Delta. In other words, the elements of E,r(Γ)\mathcal{H}_{E,r}(\Gamma) are the power series in γ01\gamma_{0}-1 over E[Δ]E[\Delta] with growth rate O(logpr)O(\log_{p}^{r}). Write E(Γ)=r0E,r(Γ)\mathcal{H}_{E}(\Gamma)=\bigcup_{r\geq 0}\mathcal{H}_{E,r}(\Gamma). We call E(Γ)\mathcal{H}_{E}(\Gamma) the space of distributions on Γ\Gamma. We can identify E(Γ)\mathcal{H}_{E}(\Gamma) with

{FE[Δ][[X]]:F converges everywhere on the open unit p-adic disk}\{F\in E[\Delta][[X]]:F\text{ converges everywhere on the open unit }p\text{-adic disk}\}

where XX corresponds to γ01\gamma_{0}-1.

Fontaine’s rings

Let π\pi be a variable, 𝔸p+=p[[π]]\mathbb{A}_{\mathbb{Q}_{p}}^{+}=\mathbb{Z}_{p}[[\pi]] and 𝔹p+=𝔸p+[1/p]\mathbb{B}^{+}_{\mathbb{Q}_{p}}=\mathbb{A}_{\mathbb{Q}_{p}}^{+}[1/p]. Let 𝔸p\mathbb{A}_{\mathbb{Q}_{p}} be the ring of power series i=+aiπi\sum_{i=-\infty}^{+\infty}a_{i}\pi^{i} such that aipa_{i}\in\mathbb{Z}_{p} and ai0a_{i}\to 0 as ii\to-\infty. Write 𝔹rig,p+\mathbb{B}^{+}_{\mathrm{rig},\mathbb{Q}_{p}} for the ring of power series f(π)p[[π]]f(\pi)\in\mathbb{Q}_{p}[[\pi]] such that f(X)f(X) converges everywhere in the open unit pp-adic disk. We equip 𝔹rig,p+\mathbb{B}^{+}_{\mathrm{rig},\mathbb{Q}_{p}} with actions of a Frobenius operator φ\varphi and Γ\Gamma by φ:π(1+π)p1\varphi:\pi\mapsto(1+\pi)^{p}-1 and σ:π(1+π)χ(σ)1\sigma:\pi\mapsto(1+\pi)^{\chi(\sigma)}-1 for all σΓ\sigma\in\Gamma. We then write 𝔹rig,E+\mathbb{B}^{+}_{\mathrm{rig},E} for the power series ring E𝔹rig,p+E\otimes\mathbb{B}^{+}_{\mathrm{rig},\mathbb{Q}_{p}}. We can define a left inverse ψ\psi of φ\varphi such that

φψ(f(π))=1pζp=1f(ζ(1+π)1).\varphi\circ\psi(f(\pi))=\dfrac{1}{p}\sum_{\zeta^{p}=1}f(\zeta(1+\pi)-1).

Inside 𝔹rig,E+\mathbb{B}^{+}_{\mathrm{rig},E}, we have subrings 𝔸E+=𝒪E[[π]]\mathbb{A}^{+}_{E}=\mathcal{O}_{E}[[\pi]] and 𝔹E+=E𝔸E+\mathbb{B}^{+}_{E}=E\otimes\mathbb{A}^{+}_{E}. The actions of φ,ψ\varphi,\psi, and Γ\Gamma preserve these subrings. Write t=log(1+π)𝔹rig,E+t=\log(1+\pi)\in\mathbb{B}^{+}_{\mathrm{rig},E} and q=φ(π)/π𝔸E+q=\varphi(\pi)/\pi\in\mathbb{A}^{+}_{E}. Note that φ(t)=pt\varphi(t)=pt and σ(t)=χ(σ)t\sigma(t)=\chi(\sigma)t for all σΓ\sigma\in\Gamma.

Mellin transform

We have a ΛE(Γ)\Lambda_{E}(\Gamma)-module isomorphism between E(Γ)\mathcal{H}_{E}(\Gamma) and (𝔹rig,E+)ψ=0(\mathbb{B}^{+}_{\mathrm{rig},E})^{\psi=0} due to the action of Γ\Gamma on 𝔹rig,E+\mathbb{B}^{+}_{\mathrm{rig},E}, called the Mellin transform. The isomorphism is given by

𝔐:E(Γ)\displaystyle\mathfrak{M}:\mathcal{H}_{E}(\Gamma) (𝔹rig,E+)ψ=0\displaystyle\to(\mathbb{B}^{+}_{\mathrm{rig},E})^{\psi=0}
f(γ01)\displaystyle f(\gamma_{0}-1) f(γ01)(1+π).\displaystyle\mapsto f(\gamma_{0}-1)\cdot(1+\pi).

Moreover, Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma) corresponds to (𝔸E+)ψ=0(\mathbb{A}^{+}_{E})^{\psi=0} and Λ𝒪E(Γ1)\Lambda_{\mathcal{O}_{E}}(\Gamma_{1}) corresponds to (1+π)φ(𝔸E+)(1+\pi)\varphi(\mathbb{A}^{+}_{E}) under 𝔐\mathfrak{M}. Let E(Γ1)={f(γ01):fE}\mathcal{H}_{E}(\Gamma_{1})=\{f(\gamma_{0}-1):f\in\mathcal{H}_{E}\}, then E(Γ1)\mathcal{H}_{E}(\Gamma_{1}) corresponds to (1+π)φ(𝔹rig,E+)(1+\pi)\varphi(\mathbb{B}^{+}_{\mathrm{rig},E}). See [28, Section B.2.8] for more details.

3. Crystalline representations and Wach modules

In this section, we recall definitions of crystalline representations and Wach modules. Furthermore, we recall the construction of families of Wach modules from [4]. The primary reference for this section is [4, Sections 1, 2, and 3].

3.1. Crystalline representations

Let 𝔹crys\mathbb{B}_{\mathrm{crys}} be the Fontaine’s period ring. Recall that we call a p\mathbb{Q}_{p}-linear GpG_{\mathbb{Q}_{p}}-representation VV a crystalline representation if VV is 𝔹crys\mathbb{B}_{\mathrm{crys}}-admissible. In other words, VV is a crystalline representation if the dimension of the filtered φ\varphi-module 𝔻crys(V)=(𝔹crysV)Gp\mathbb{D}_{\mathrm{crys}}(V)=(\mathbb{B}_{\mathrm{crys}}\otimes V)^{G_{\mathbb{Q}_{p}}} is dimpV\text{dim}_{\mathbb{Q}_{p}}V. For any integer jj, we take p(j)=pej\mathbb{Q}_{p}(j)=\mathbb{Q}_{p}\cdot e_{j}, where GpG_{\mathbb{Q}_{p}} acts on eje_{j} via χj\chi^{j}. We know that p(j)\mathbb{Q}_{p}(j) is a crystalline representation. Then for any crystalline representation VV, the representation V(j)=V(χj)=Vp(j)V(j)=V(\chi^{j})=V\otimes\mathbb{Q}_{p}(j) is again a crystalline representation. Moreover,we have 𝔻crys(V(j))=tj𝔻crys(V)ej\mathbb{D}_{\mathrm{crys}}(V(j))=t^{-j}\mathbb{D}_{\mathrm{crys}}(V)\otimes e_{j}. We say a crystalline (or more generally a Hodge-Tate) representation VV is positive if its Hodge-Tate weights are negative.

Let EE be a finite extension of p\mathbb{Q}_{p}. We say that an EE-linear GpG_{\mathbb{Q}_{p}}-representation VV is crystalline if and only if the underlying p\mathbb{Q}_{p}-linear representation is crystalline. In this case, 𝔻crys(V)\mathbb{D}_{\mathrm{crys}}(V) is an EE-vector space with EE-linear Frobenius and a filtration of EE-vector spaces. More precisely, 𝔻crys(V)\mathbb{D}_{\mathrm{crys}}(V) is an admissible EE-linear filtered φ\varphi-module and the functor V𝔻crys(V)V\mapsto\mathbb{D}_{\mathrm{crys}}(V) is an equivalence of categories from the category of crystalline EE-linear representations to the category of admissible EE-linear filtered φ\varphi-module (see [9] for more details).

3.1.1. Crystalline representations as filtered φ\varphi-modules

Let Dk,v1/2aD_{k,v^{1/2}a} be a filtered φ\varphi-module given by Dk,v1/2a=Ee1Ee2D_{k,v^{1/2}a}=Ee_{1}\oplus Ee_{2} where:

{φ(e1)=pk1e2φ(e2)=e1+(v1/2a)e2and FiliDk,v1/2a={Dk,v1/2a if i0Ee1 if 1ik10 if ik.\displaystyle\begin{matrix}\begin{cases}\varphi(e_{1})=p^{k-1}e_{2}\\ \varphi(e_{2})=-e_{1}+(v^{1/2}a)e_{2}\end{cases}&\text{and }&\mathrm{Fil}^{i}D_{k,v^{1/2}a}=\begin{cases}D_{k,v^{1/2}a}\text{ if }i\leq 0\\ Ee_{1}\text{ if }1\leq i\leq k-1\\ 0\text{ if }i\geq k.\end{cases}\end{matrix}

Take e1=v1/2e1e^{\prime}_{1}=v^{1/2}e_{1} and e2=e2e^{\prime}_{2}=e_{2}. Thus, e1,e2e^{\prime}_{1},e^{\prime}_{2} is another EE-basis of Dk,v1/2aD_{k,v^{1/2}a}. The matrix of φ\varphi with respect to basis e1,e2e^{\prime}_{1},e^{\prime}_{2} is

A~φ=(0v1/2v1/2pk1v1/2a).\tilde{A}_{\varphi}=\begin{pmatrix}0&-v^{-1/2}\\[6.0pt] v^{1/2}p^{k-1}&v^{-1/2}a\end{pmatrix}.
Theorem 3.1 (Colmez-Fontaine[9], Berger-Li-Zhu[4]).

There exists a crystalline EE-linear representation Vk,v1/2aV_{k,v^{1/2}a}, such that 𝔻crys(Vk,v1/2a)=Dk,v1/2a\mathbb{D}_{\mathrm{crys}}(V^{*}_{k,v^{1/2}a})=D_{k,v^{1/2}a}, where Vk,v1/2a=Hom(Vk,v1/2a,E)V^{*}_{k,v^{1/2}a}=\mathrm{Hom}(V_{k,v^{1/2}a},E).

Proof.

See [4, Section I and Proposition 3.2.4]

From the above theorem, we get

𝔻crys(Vk,v1/2a)=Ee1Ee2=Ee1Ee2.\mathbb{D}_{\mathrm{crys}}(V^{*}_{k,v^{1/2}a})=Ee_{1}\oplus Ee_{2}=Ee^{\prime}_{1}\oplus Ee^{\prime}_{2}.

The Hodge-Tate weights of Vk,v1/2aV_{k,v^{1/2}a} are 0 and k1k-1, and thus the Hodge-Tate weights of Vk,v1/2aV^{*}_{k,v^{1/2}a} are 0 and 1k1-k. Let W=Vk,v1/2a(χk1η)W=V^{*}_{k,v^{1/2}a}(\chi^{k-1}\otimes\eta), where η:Gpp¯×\eta:G_{\mathbb{Q}_{p}}\to\overline{\mathbb{Q}_{p}}^{\times} is an unramified character such that η(Frobp)=v1/2\eta(\text{Frob}_{p})=v^{1/2}. In other words, WW is the representation we get after twisting Vk,v1/2aV^{*}_{k,v^{1/2}a} by the character χk1η\chi^{k-1}\otimes\eta. Therefore WW is a crystalline representation with Hodge-Tate weights 0 and k1k-1.

Let wi=eit(k1)ek1eηw_{i}=e^{\prime}_{i}\otimes t^{-(k-1)}e_{k-1}\otimes e_{\eta}, for i=1,2i=1,2, where eηe_{\eta} is a basis of p(η)\mathbb{Q}_{p}(\eta) and the action of φ\varphi on eηe_{\eta} is given by φ(eη)=η(Frobp1)eη\varphi(e_{\eta})=\eta(\text{Frob}^{-1}_{p})e_{\eta}. Then w1,w2w_{1},w_{2} is a basis of 𝔻crys(W)\mathbb{D}_{\mathrm{crys}}(W). The action of φ\varphi on wiw_{i} can be calculated as

{φ(w1)=w2φ(w2)=(1/vpk1)w1+(a/vpk1)w2.\displaystyle\begin{cases}\varphi(w_{1})=w_{2}\\ \varphi(w_{2})=(-1/vp^{k-1})w_{1}+(a/vp^{k-1})w_{2}.\end{cases}

Thus, the matrix of φ\varphi with respect to basis w1,w2w_{1},w_{2} is

Aφ=(01vpk11avpk1).A_{\varphi}=\begin{pmatrix}0&\dfrac{-1}{vp^{k-1}}\\[12.0pt] 1&\dfrac{a}{vp^{k-1}}\end{pmatrix}.

3.2. Wach modules

An étale (φ,Γ)(\varphi,\Gamma)-module over 𝔸p\mathbb{A}_{\mathbb{Q}_{p}} is a finitely generated 𝔸p\mathbb{A}_{\mathbb{Q}_{p}}- module MM, with semilinear action of φ\varphi and a continuous action of Γ\Gamma commuting with each other, such that φ(M)\varphi(M) generates MM as an 𝔸p\mathbb{A}_{\mathbb{Q}_{p}}-module. In [11, A.3.4], Fontaine has constructed a functor T𝔻(T)T\mapsto\mathbb{D}(T) which associates to every p\mathbb{Z}_{p}-linear representation an étale (φ,Γ)(\varphi,\Gamma)-module over 𝔸p\mathbb{A}_{\mathbb{Q}_{p}}. The (φ,Γ)(\varphi,\Gamma)-module 𝔻(T)\mathbb{D}(T) is defined as (𝔸T)Hp(\mathbb{A}\otimes T)^{H_{\mathbb{Q}_{p}}}, where 𝔸\mathbb{A} is the ring defined in [11] and Hp=Gal(p¯/p,)H_{\mathbb{Q}_{p}}=\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p,\infty}). He also shows that the functor T𝔻(T)T\mapsto\mathbb{D}(T) is an equivalence of categories. By inverting pp, we also get an equivalence of categories between the category of p\mathbb{Q}_{p}-linear GpG_{\mathbb{Q}_{p}}-representations and the category of étale (φ,Γ)(\varphi,\Gamma)-module over 𝔹p=𝔸p[p1]\mathbb{B}_{\mathbb{Q}_{p}}=\mathbb{A}_{\mathbb{Q}_{p}}[p^{-1}].

If EE is a finite extension of p\mathbb{Q}_{p}, we extend the Frobenius and the action of Γ\Gamma to E𝔹pE\otimes\mathbb{B}_{\mathbb{Q}_{p}} by EE-linearity. We then get an equivalence of categories between 𝒪E\mathcal{O}_{E}-modules (or EE-linear GpG_{\mathbb{Q}_{p}}-representations) and the category of (φ,Γ)(\varphi,\Gamma)-modules over 𝒪E𝔸p\mathcal{O}_{E}\otimes\mathbb{A}_{\mathbb{Q}_{p}} (or over E𝔹pE\otimes\mathbb{B}_{\mathbb{Q}_{p}}), given by T𝔻(T)T\mapsto\mathbb{D}(T).

In [3], Berger shows that if VV is an EE-linear GpG_{\mathbb{Q}_{p}}-representation, then VV is crystalline with Hodge-Tate weights in [a,b][a,b] if and only if there exists a unique E𝔹p+E\otimes\mathbb{B}^{+}_{\mathbb{Q}_{p}}-module (V)𝔻(V)\mathbb{N}(V)\subset\mathbb{D}(V) such that:

  1. (1)

    (V)\mathbb{N}(V) is free of rank d=dimE(V)d=\dim_{E}(V) over E𝔹p+E\otimes\mathbb{B}^{+}_{\mathbb{Q}_{p}};

  2. (2)

    The action of Γ\Gamma preserves (V)\mathbb{N}(V) and is trivial on (V)/π(V)\mathbb{N}(V)/\pi\mathbb{N}(V);

  3. (3)

    φ(πb(V))πb(V)\varphi(\pi^{b}\mathbb{N}(V))\subset\pi^{b}\mathbb{N}(V) and πb(V)/φ(πb(V))\pi^{b}\mathbb{N}(V)/\varphi^{*}(\pi^{b}\mathbb{N}(V)) is killed by qba,q^{b-a}, where q=φ(π)πq=\frac{\varphi(\pi)}{\pi}.

Moreover, if VV is crystalline and positive, then we can take b=0b=0. In this case, (V)/π(V)\mathbb{N}(V)/\pi\mathbb{N}(V) is a filtered EE-module and there exists an isomorphism (V)/π(V)𝔻crys(V)\mathbb{N}(V)/\pi\mathbb{N}(V)\cong\mathbb{D}_{\mathrm{crys}}(V). See [3, Section III.4] for more details.

Let TT be a GpG_{\mathbb{Q}_{p}}-stable lattice in VV. Then (T)=𝔻(T)(V)\mathbb{N}(T)=\mathbb{D}(T)\cap\mathbb{N}(V) is an 𝒪E𝔸p+\mathcal{O}_{E}\otimes\mathbb{A}^{+}_{\mathbb{Q}_{p}}-lattice in (V)\mathbb{N}(V). By [3], the functor T(T)T\mapsto\mathbb{N}(T) gives a bijection between the GpG_{\mathbb{Q}_{p}}-stable lattices TT in VV and the 𝒪E𝔸p+\mathcal{O}_{E}\otimes\mathbb{A}^{+}_{\mathbb{Q}_{p}}-lattices in (V)\mathbb{N}(V) which satisfy

  1. (1)

    (T)\mathbb{N}(T) is free of rank d=dimE(V)d=\dim_{E}(V) over 𝒪E𝔸p+\mathcal{O}_{E}\otimes\mathbb{A}^{+}_{\mathbb{Q}_{p}};

  2. (2)

    The action of Γ\Gamma preserves (T)\mathbb{N}(T);

  3. (3)

    φ(πb(T))πb(T)\varphi(\pi^{b}\mathbb{N}(T))\subset\pi^{b}\mathbb{N}(T) and πb(T)/φ(πb(T))\pi^{b}\mathbb{N}(T)/\varphi^{*}(\pi^{b}\mathbb{N}(T)) is killed by qbaq^{b-a}.

The E𝔹p+E\otimes\mathbb{B}^{+}_{\mathbb{Q}_{p}}-module (V)𝔻(V)\mathbb{N}(V)\subset\mathbb{D}(V) as well as 𝒪E𝔸p+\mathcal{O}_{E}\otimes\mathbb{A}^{+}_{\mathbb{Q}_{p}}-module (T)𝔻(T)\mathbb{N}(T)\subset\mathbb{D}(T) are called Wach modules.

3.2.1. Famillies of Wach modules

In this section, we recall some results from [4].

Recall q=φ(π)/πq=\varphi(\pi)/\pi. We define λ+\lambda_{+} and λ\lambda_{-} as

λ+=n0φ2n+1(q)p\lambda_{+}=\prod_{n\geq 0}\dfrac{\varphi^{2n+1}(q)}{p}

and

λ=n0φ2n(q)p.\lambda_{-}=\prod_{n\geq 0}\dfrac{\varphi^{2n}(q)}{p}.
Lemma 3.2.

Write pm(λ/λ+)k1=i0ziπip^{m}(\lambda_{-}/\lambda_{+})^{k-1}=\sum_{i\geq 0}z_{i}\pi^{i}, where m=k2p1m=\left\lfloor\dfrac{k-2}{p-1}\right\rfloor and define z=z0+z1π+zk2πk2z=z_{0}+z_{1}\pi+\cdots z_{k-2}\pi^{k-2}. Then zp[[π]]z\in\mathbb{Z}_{p}[[\pi]].

Proof.

See [4, Proposition 3.1.1]. ∎

Let YY be a variable. Define a matrix

P(Y)=(0v1/2v1/2qk1Yv1/2z).P(Y)=\begin{pmatrix}0&-v^{-1/2}\\[6.0pt] v^{1/2}q^{k-1}&Yv^{-1/2}z\end{pmatrix}.

Then by [4, Proposition 3.1.3], for γΓ\gamma\in\Gamma, there exists a matrix Gγ(Y)I2+πM2,2(p[[π,Y]])G_{\gamma}(Y)\in I_{2}+\pi M_{2,2}(\mathbb{Z}_{p}[[\pi,Y]]) such that

P(Y)φ(Gγ(Y))=Gγ(Y)γ(P(Y)).P(Y)\varphi(G_{\gamma}(Y))=G_{\gamma}(Y)\gamma(P(Y)).

Note that φ\varphi and γΓ\gamma\in\Gamma acts trivially on YY.

Lemma 3.3.

For δ=apm\delta=\dfrac{a}{p^{m}} and γ,γΓ\gamma,\gamma^{\prime}\in\Gamma, we have Gγγ(δ)=Gγ(δ)γ(Gγ(δ))G_{\gamma\gamma^{\prime}}(\delta)=G_{\gamma}(\delta)\gamma^{\prime}(G_{\gamma^{\prime}}(\delta)) and P(δ)φ(Gγ(δ))=Gγ(δ)γ(P(δ))P(\delta)\varphi(G_{\gamma}(\delta))=G_{\gamma}(\delta)\gamma(P(\delta)). Therefore, one can use the matrices P(δ)P(\delta) and Gγ(δ)G_{\gamma}(\delta) to define a Wach module k(δ)\mathbb{N}_{k}(\delta) over 𝒪E[[π]]\mathcal{O}_{E}[[\pi]].

Proof.

Define the free 𝒪E[[π]]\mathcal{O}_{E}[[\pi]]-module of rank 22 with basis n1,n2n_{1},n_{2} as: k(δ)=𝒪E[[π]]n1𝒪E[[π]]n2\mathbb{N}_{k}(\delta)=\mathcal{O}_{E}[[\pi]]n_{1}\oplus\mathcal{O}_{E}[[\pi]]n_{2}. Endow it with Frobenius φ\varphi and an action of γΓ\gamma\in\Gamma such that the matrix of φ\varphi with respect to the basis n1,n2n_{1},n_{2} is P(δ)=(0v1/2v1/2qk1v1/2δz)P(\delta)=\begin{pmatrix}0&-v^{-1/2}\\[6.0pt] v^{1/2}q^{k-1}&v^{-1/2}\delta\cdot z\end{pmatrix} and the matrix of γ\gamma is Gγ(δ)G_{\gamma}(\delta). See [4, Proposition 3.2.1] for details. ∎

The above lemma implies Ek(δ)=(Vk,v1/2a)E\otimes\mathbb{N}_{k}(\delta)=\mathbb{N}(V^{*}_{k,v^{1/2}a}), where δ=a/pm\delta=a/p^{m}, and Vk,v1/2aV_{k,v^{1/2}a} is crystalline EE-linear representation which is described in subsection 3.1.1 above. Here (Vk,v1/2a)\mathbb{N}(V^{*}_{k,v^{1/2}a}) is the Wach module associated to the crystalline representation Vk,v1/2aV^{*}_{k,v^{1/2}a}. More precisely:

Theorem 3.4.

The filtered φ\varphi-module E𝒪E(k(δ)/πk(δ))E\otimes_{\mathcal{O}_{E}}(\mathbb{N}_{k}(\delta)/\pi\mathbb{N}_{k}(\delta)) is isomorphic to the φ\varphi-module Dk,v1/2aD_{k,v^{1/2}a} which is described in the subsection 3.1.

Proof.

This can be proved using [4, Proposition 3.2.4]. ∎

We adapt the above machinery in our setting. Recall that W=Vk,v1/2a(χk1η)W=V^{*}_{k,v^{1/2}a}(\chi^{k-1}\otimes\eta). Let TWT_{W} be an 𝒪E\mathcal{O}_{E}-lattice in WW. Then TW=T(χk1η)T_{W}=T(\chi^{k-1}\otimes\eta), where TT is an 𝒪E\mathcal{O}_{E}-lattice in Vk,v1/2aV_{k,v^{1/2}a} such that k(δ)=(T)\mathbb{N}_{k}(\delta)=\mathbb{N}(T^{*}). By an abuse of notation, we write k(δ)=(TW)=𝒪E[[π]]n1𝒪E[[π]]n2\mathbb{N}_{k}(\delta)=\mathbb{N}(T_{W})=\mathcal{O}_{E}[[\pi]]n^{\prime}_{1}\oplus\mathcal{O}_{E}[[\pi]]n^{\prime}_{2}, where n1,n2n^{\prime}_{1},n^{\prime}_{2} is a basis after twisting the basis n1,n2n_{1},n_{2} of (T)\mathbb{N}(T) with χk1η\chi^{k-1}\otimes\eta. Then the matrix of φ\varphi with respect to {n1,n2}\{n^{\prime}_{1},n^{\prime}_{2}\} is

P=(01/vqk11δz/vqk1).P=\begin{pmatrix}0&-1/vq^{k-1}\\[6.0pt] 1&\delta\cdot z/vq^{k-1}\end{pmatrix}.

Note that PAφmodπ,P\equiv A_{\varphi}\operatorname{mod}\pi, since qpmodπq\equiv p\operatorname{mod}\pi and δzamodπ\delta\cdot z\equiv a\operatorname{mod}\pi. We fix this 𝒪E[[π]]\mathcal{O}_{E}[[\pi]]-basis n1,n2n^{\prime}_{1},n^{\prime}_{2} for (TW)\mathbb{N}(T_{W}) for the rest of the article.

4. Perrin-Riou’s big logarithm map, Coleman maps, and the pp-adic regulator

We recall definitions of Perrin-Rious’s big logarithm map, pp-adic regulator, and Coleman maps. We also explicitly study these maps and the relationship between them after fixing some basis. The preliminary reference for this section is [21].

4.1. Iwasawa cohomology and Wach modules

Let VV be any crystalline EE-linear representation of GpG_{\mathbb{Q}_{p}} and let TT be an 𝒪E\mathcal{O}_{E}-lattice inside VV. The Iwasawa cohomology group HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) is defined by

HIw1(p,T)=limH1(p,n,T),H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T)=\varprojlim H^{1}(\mathbb{Q}_{p,n},T),

where the inverse limit is taken with respect to the corestriction maps. Then, due to Fontaine (see [8, Section II.1]), there exists a canonical Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-module isomorphism

hIw1:𝔻(T)ψ=1HIw1(p,T),h^{1}_{\mathrm{Iw}}\colon\mathbb{D}(T)^{\psi=1}\to H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T),

where 𝔻(T)\mathbb{D}(T) is a (φ,Γ)(\varphi,\Gamma)-module associated to TT.

From now on, we fix pp-adic representation WW from the previous section unless mentioned otherwise. Moreover, Let 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) be the image of (TW)/π(TW)\mathbb{N}(T_{W})/\pi\mathbb{N}(T_{W}) in 𝔻crys(W).\mathbb{D}_{\mathrm{crys}}(W). Then

  1. (1)

    𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) is filtered φ\varphi-module over 𝒪E\mathcal{O}_{E},

  2. (2)

    𝔻crys(TW)=𝒪Ew1𝒪Ew2\mathbb{D}_{\mathrm{crys}}(T_{W})=\mathcal{O}_{E}\cdot w_{1}\oplus\mathcal{O}_{E}\cdot w_{2},

  3. (3)

    the matrix of φ\varphi with respect to the basis w1,w2w_{1},w_{2} is AφA_{\varphi}.

For the representation WW, the eigenvalues of the φ\varphi are α1,β1\alpha^{-1},\beta^{-1}. From now on we assume that α1\alpha^{-1} and β1\beta^{-1} are not integral powers of the prime pp. Since the Hodge-Tate weights of WW are 0 and k1k-1, we have the following theorem due to Berger:

Theorem 4.1 (Berger, [2, Theorem A.3]).

For the GpG_{\mathbb{Q}_{p}}-stable 𝒪E\mathcal{O}_{E}-lattice TWT_{W} in WW, there exists a Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-module isomorphism

hIw,TW1:(TW)ψ=1HIw1(p,TW).h^{1}_{\mathrm{Iw},T_{W}}\colon\mathbb{N}(T_{W})^{\psi=1}\to H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}).

Moreover, we can extend this isomorphism from Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-modules to ΛE(Γ)\Lambda_{E}(\Gamma)-modules

hIw,W1:(W)ψ=1HIw1(p,W),h^{1}_{\mathrm{Iw},W}\colon\mathbb{N}(W)^{\psi=1}\to H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},W),

where (W)=E(TW)\mathbb{N}(W)=E\otimes\mathbb{N}(T_{W}) and HIw1(p,W)=EHIw1(p,T)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},W)=E\otimes H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T).

4.2. Coleman maps

For the pp-adic representation WW and the 𝒪E\mathcal{O}_{E}-lattice TWT_{W} in WW, we deduce (TW)φ((TW))\mathbb{N}(T_{W})\subset\varphi^{*}(\mathbb{N}(T_{W})), since the Hodge-Tate weights of WW are non-negative, where φ((TW))\varphi^{*}(\mathbb{N}(T_{W})) is 𝔸E+\mathbb{A}^{+}_{E}-submodule of (TW)[π1]\mathbb{N}(T_{W})[\pi^{-1}] generated by φ((TW))\varphi(\mathbb{N}(T_{W})) (See [21, Lemma 1.7]). Hence there exists a well-defined map 1φ:(TW)φ((TW))1-\varphi\colon\mathbb{N}(T_{W})\to\varphi^{*}(\mathbb{N}(T_{W})) which maps (TW)ψ=1\mathbb{N}(T_{W})^{\psi=1} to (φ(TW)))ψ=0(\varphi^{*}\mathbb{N}(T_{W})))^{\psi=0}.

Theorem 4.2 (Lei-Loeffler-Zerbes, Berger).

(φ(TW))ψ=0(\varphi^{*}\mathbb{N}(T_{W}))^{\psi=0} is a free Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-module of rank 22. Moreover, for any basis v1,v2v_{1},v_{2} of 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}), there exists an 𝒪E𝔸p+\mathcal{O}_{E}\otimes\mathbb{A}^{+}_{\mathbb{Q}_{p}}-basis n1,n2n_{1},n_{2} of (TW)\mathbb{N}(T_{W}) such that nivimodπn_{i}\equiv v_{i}\operatorname{mod}\pi and (1+π)φ(n1),(1+π)φ(n2)(1+\pi)\varphi(n_{1}),(1+\pi)\varphi(n_{2}) form a Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-basis of (φ(TW))ψ=0(\varphi^{*}\mathbb{N}(T_{W}))^{\psi=0}.

Proof.

See[23, Lemma 3.15] for the proof for any crystalline representation of dimension dd. ∎

The above theorem gives an isomorphism of Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-modules

𝔍:(φ(TW))ψ=0Λ𝒪E(Γ)2.\mathfrak{J}\colon(\varphi^{*}\mathbb{N}(T_{W}))^{\psi=0}\to\Lambda_{\mathcal{O}_{E}}(\Gamma)^{\oplus 2}.
Definition 4.3 (The Coleman map).

We define the Coleman map

Col¯=(Col¯i)i=12:(TW)ψ=1Λ𝒪E(Γ)2\operatorname{\underline{Col}}=(\operatorname{\underline{Col}}_{i})_{i=1}^{2}\colon\mathbb{N}(T_{W})^{\psi=1}\to\Lambda_{\mathcal{O}_{E}}(\Gamma)^{\oplus 2}

as the composition 𝔍(1φ)\mathfrak{J}\circ(1-\varphi).

This Coleman map Col¯\operatorname{\underline{Col}} can be extended as a map from (W)\mathbb{N}(W) to get a ΛE(Γ)\Lambda_{E}(\Gamma)-module homomorphism

Col¯:(W)ψ=1ΛE(Γ)2.\operatorname{\underline{Col}}\colon\mathbb{N}(W)^{\psi=1}\to\Lambda_{E}(\Gamma)^{\oplus 2}.

From the above discussion, for the fixed basis n1,n2n^{\prime}_{1},n^{\prime}_{2} for (TW)\mathbb{N}(T_{W}) and basis w1,w2w_{1},w_{2} for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}), we get a matrix M¯\underline{M} as follows: The elements (1+π)(φ(n1)),(1+π)(φ(n2))(1+\pi)(\varphi(n^{\prime}_{1})),(1+\pi)(\varphi(n^{\prime}_{2})) form a Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-basis of (φ(TW))ψ=0(\varphi^{*}\mathbb{N}(T_{W}))^{\psi=0}. Furthermore the elements (1+π)w1,(1+π)w2(1+\pi)\otimes w_{1},(1+\pi)\otimes w_{2} form a basis of (𝔹rig,E+)ψ=0𝔻crys(TW)(\mathbb{B}^{+}_{\mathrm{rig},E})^{\psi=0}\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}) as a E(Γ)\mathcal{H}_{E}(\Gamma)-module. Since niwimodπn^{\prime}_{i}\equiv w_{i}\mod\pi for i=1,2i=1,2, there exists a unique 2×22\times 2 matrix M¯M2,2(E(Γ))\underline{M}\in M_{2,2}(\mathcal{H}_{E}(\Gamma)) such that

(4.1) [(1+π)φ(n1)(1+π)φ(n2)]=[(1+π)w1(1+π)w2]M¯.\begin{bmatrix}(1+\pi)\varphi(n^{\prime}_{1})&(1+\pi)\varphi(n^{\prime}_{2})\end{bmatrix}=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}\underline{M}.

That is, M¯\underline{M} is a change of the basis matrix for the following homomorphism of E(Γ)\mathcal{H}_{E}(\Gamma)-modules:

(φ(TW))ψ=0(𝔹rig,E+)ψ=0𝔻crys(TW).(\varphi\mathbb{N}(T_{W}))^{\psi=0}\hookrightarrow(\mathbb{B}^{+}_{\mathrm{rig},E})^{\psi=0}\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}).
Remark 4.4.

More precisely, M¯M2,2((Γ1))\underline{M}\in M_{2,2}(\mathcal{H}(\Gamma_{1})), since nin^{\prime}_{i} lie in (1+π)φ((TW))(1+π)φ(𝔹rig,E+)𝔻crys(TW)(1+\pi)\varphi(\mathbb{N}(T_{W}))\subset(1+\pi)\varphi(\mathbb{B}^{+}_{\mathrm{rig},E})\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}).

This matrix M¯\underline{M} will play a crucial role in the upcoming sections. More precisely, we will show that M¯\underline{M} is a logarithmic matrix (in the sense of Sprung and Lei-Loeffler-Zerbes) that can be used in the decomposition of power series with unbounded denominators.

4.3. The big logarithm map, the pp-adic regulator and the relation between them

Recall that the eigenvalues of φ\varphi are not integral powers of pp. Using this fact, we can construct the Perrin-Riou big logarithm as (see [29, Section 3.2.3], [2, Section II.5] for the details)

ΩTW,k1:E(𝔹rig,p+)ψ=0𝔻crys(TW)E(Γ)HIw1(p,TW).\Omega_{T_{W},k-1}\colon E\otimes(\mathbb{B}^{+}_{\mathrm{rig},\mathbb{Q}_{p}})^{\psi=0}\otimes\mathbb{D}_{\mathrm{crys}}(T_{W})\to\mathcal{H}_{E}(\Gamma)\otimes H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}).

Note that this map is a Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-module homomorphism. We can extend this to a ΛE(Γ)\Lambda_{E}(\Gamma)-module homomorphism

ΩW,k1:E(𝔹rig,p+)ψ=0𝔻crys(W)E(Γ)HIw1(p,W).\Omega_{W,k-1}\colon E\otimes(\mathbb{B}^{+}_{\mathrm{rig},\mathbb{Q}_{p}})^{\psi=0}\otimes\mathbb{D}_{\mathrm{crys}}(W)\to\mathcal{H}_{E}(\Gamma)\otimes H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},W).

This map interpolates the Bloch-Kato exponential map

expn,j:p,n𝔻crys(W(j))H1(p,n,W(j)),\mathrm{exp}_{n,j}\colon\mathbb{Q}_{p,n}\otimes\mathbb{D}_{\mathrm{crys}}(W(j))\to H^{1}(\mathbb{Q}_{p,n},W(j)),

where jj is any integer.

For ii\in\mathbb{Z}, define i=log(1+X)logp(u)i\ell_{i}=\dfrac{\log(1+X)}{\log_{p}(u)}-i. It is easy to see that iE(Γ)\ell_{i}\in\mathcal{H}_{E}(\Gamma) for all integers ii. Berger gave a description of ΩW,k1\Omega_{W,k-1} in the terms of i\ell_{i}’s (see [2, Section II.1, Theorem II.13] for more details) as follows:

(4.2) ΩW,k1(z)=(k20)(1φ)1(z¯),\Omega_{W,k-1}(z)=(\ell_{k-2}\circ\cdots\circ\ell_{0})(1-\varphi)^{-1}(\bar{z}),

where zE(Γ)𝔻crys(W)z\in\mathcal{H}_{E}(\Gamma)\otimes\mathbb{D}_{\mathrm{crys}}(W) and z¯=(𝔐1)(z)\bar{z}=(\mathfrak{M}\otimes 1)(z).

Definition 4.5 (The pp-adic regulator).

The Perrin-Riou pp-adic regulator map TW\mathcal{L}_{T_{W}} for the GpG_{\mathbb{Q}_{p}}-stable 𝒪E\mathcal{O}_{E}-lattice TWT_{W} in WW is a Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-homomorphism defined as

TW(𝔐11)(1φ)(hIw,TW1)1:HIw1(p,TW)E(Γ)𝔻crys(TW).\mathcal{L}_{T_{W}}\coloneqq(\mathfrak{M}^{-1}\otimes 1)\circ(1-\varphi)\circ(h^{1}_{\mathrm{Iw},T_{W}})^{-1}\colon H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W})\to\mathcal{H}_{E}(\Gamma)\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}).

The pp-adic regulator TW\mathcal{L}_{T_{W}} can be extended to a ΛE(Γ)\Lambda_{E}(\Gamma)-homomorphism as

W:HIw1(p,W)E(Γ)𝔻crys(W).\mathcal{L}_{W}\colon H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},W)\to\mathcal{H}_{E}(\Gamma)\otimes\mathbb{D}_{\mathrm{crys}}(W).

The pp-adic regulator W\mathcal{L}_{W} and the big logarithm ΩW,k1\Omega_{W,k-1} are related by the following lemma:

Lemma 4.6.

As maps on HIw1(p,W)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},W), we have

W=(𝔐11)(i=0k2i)(ΩW,k1)1.\mathcal{L}_{W}=(\mathfrak{M}^{-1}\otimes 1)(\prod_{i=0}^{k-2}\ell_{i})(\Omega_{W,k-1})^{-1}.

In other words,

(4.3) ΩW,k1(W(z))=(i=0k2i)(z),\Omega_{W,k-1}(\mathcal{L}_{W}(z))=(\prod_{i=0}^{k-2}\ell_{i})(z),

for all zHIw1(p,W)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},W).

Proof.

See [21, Theorem 4.6]. ∎

The following lemma gives a relationship between TW\mathcal{L}_{T_{W}} and the Coleman maps.

Lemma 4.7 (Lei-Loeffler-Zerbes [21]).

For z(TW)ψ=0z\in\mathbb{N}(T_{W})^{\psi=0}, we have

(1φ)(z)=[(1+π)w1(1+π)w2]M¯Col¯(z).(1-\varphi)(z)=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}\underline{M}\operatorname{\underline{Col}}(z).

Thus, we can rewrite TW\mathcal{L}_{T_{W}} in terms of (1+π)w1,(1+π)w2(1+\pi)\otimes w_{1},(1+\pi)\otimes w_{2} as

TW(z)=[(1+π)w1(1+π)w2]M¯(Col¯(hIw,TW1)1)(z),\mathcal{L}_{T_{W}}(z)=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}\underline{M}\left(\operatorname{\underline{Col}}\circ(h^{1}_{\mathrm{Iw},T_{W}})^{-1}\right)(z),

where zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}).

Proof.

This can be proved using.

(1φ)(z)=[(1+π)φ(n1)(1+π)φ(n2)]Col¯(z),(1-\varphi)(z)=\begin{bmatrix}(1+\pi)\varphi(n_{1})&(1+\pi)\varphi(n_{2})\end{bmatrix}\cdot\operatorname{\underline{Col}}(z),

and the definitions of M¯\underline{M} and TW\mathcal{L}_{T_{W}}. ∎

Now for zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}), TW(z)\mathcal{L}_{T_{W}}(z) is an element of E(Γ)𝔻crys(TW)\mathcal{H}_{E}(\Gamma)\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}). Hence, we can apply any character of Γ\Gamma to TW(z)\mathcal{L}_{T_{W}}(z) to get an element in E𝔻crys(TW)E\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}).

Proposition 4.8.

Let zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}). Then for any integer 0ik20\leq i\leq k-2, and for any Dirichlet character ω\omega of conductor pn>1p^{n}>1, we have

(4.4) (1φ)1(1p1φ1)χi(TW(z)tiei)\displaystyle(1-\varphi)^{-1}(1-p^{-1}\varphi^{-1})\chi^{i}(\mathcal{L}_{T_{W}}(z)\otimes t^{i}e_{-i}) Fil0(𝔻crys(TW(i))),\displaystyle\in\mathrm{Fil}^{0}(\mathbb{D}_{\mathrm{crys}}(T_{W}(-i))),
(4.5) φn(χiω(TW(z)tiei))\displaystyle\varphi^{-n}(\chi^{i}\omega(\mathcal{L}_{T_{W}}(z)\otimes t^{i}e_{-i})) p,nFil0𝔻crys(TW(i)),\displaystyle\in\mathbb{Q}_{p,n}\otimes\mathrm{Fil}^{0}\mathbb{D}_{\mathrm{crys}}(T_{W}(-i)),

where χ\chi is the pp-adic cyclotomic character and eie_{-i} is the basis of 𝔻crys(p(i))\mathbb{D}_{\mathrm{crys}}(\mathbb{Z}_{p}(-i)).

Proof.

We replace VV with TWT_{W} in [21, Proposition 4.8] and the result follows. ∎

Lemma 4.9.
det(W)=i=0k2i.\det(\mathcal{L}_{W})=\prod_{i=0}^{k-2}\ell_{i}.
Proof.

Since the Hodge-Tate weights of WW are 0 and k1k-1, we have

dimE(Fili𝔻crys(W))=1,\mathrm{dim}_{E}(\mathrm{Fil}^{i}\mathbb{D}_{\mathrm{crys}}(W))=1,

for all (k2)i0-(k-2)\leq i\leq 0. Thus, replacing VV with WW, putting d=2d=2 and ni=1n_{i}=1 for all integers 0i(k2)0\leq i\leq(k-2) in [21, Corollary 4.7], we get

det(W)=i=0k2(i)21.\det(\mathcal{L}_{W})=\prod_{i=0}^{k-2}(\ell_{i})^{2-1}.

4.4. The matrices of ΩW,k2,W\Omega_{W,k-2},\mathcal{L}_{W} and their connection with M¯\underline{M}

For the rest of the article, fix an eigenbasis eig={wα,wβ}\mathcal{B}_{\mathrm{eig}}=\{w_{\alpha},w_{\beta}\} of φ\varphi for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}), that is, eig\mathcal{B}_{\mathrm{eig}} is a basis for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) and φ(wα)=(α)1wα\varphi(w_{\alpha})=(\alpha)^{-1}w_{\alpha} and φ(wβ)=(β)1wβ\varphi(w_{\beta})=(\beta)^{-1}w_{\beta}. Thus, (1+π)wα,(1+π)wβ(1+\pi)\otimes w_{\alpha},(1+\pi)\otimes w_{\beta} is a basis for (𝔹rig,E+)ψ=0𝔻crys(TW)(\mathbb{B}^{+}_{\mathrm{rig},E})^{\psi=0}\otimes\mathbb{D}_{\mathrm{crys}}(T_{W}). We denote the basis {w1,w2}\{w_{1},w_{2}\} for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) by \mathcal{B}, which we have defined in subsection 3.1.

Recall that the matrix of φ\varphi with respect to \mathcal{B} is

Aφ=(01/vpk11a/vpk1),A_{\varphi}=\begin{pmatrix}0&-1/vp^{k-1}\\[6.0pt] 1&a/vp^{k-1}\end{pmatrix},

and thus we get

(α100β1)=Q1AφQ,\begin{pmatrix}\alpha^{-1}&0\\[6.0pt] 0&\beta^{-1}\end{pmatrix}=Q^{-1}A_{\varphi}Q,

where Q=(αβvpk1vpk1)Q=\begin{pmatrix}\alpha&-\beta\\[6.0pt] -vp^{k-1}&vp^{k-1}\end{pmatrix}.

We know that the Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-rank of HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) is 2, since dimE𝔻crys(W)=2\dim_{E}\mathbb{D}_{\mathrm{crys}}(W)=2 and TWT_{W} is an 𝒪E\mathcal{O}_{E}-lattice in WW. See [29, Section 3.2] and [2, Proposition 2.7] for precise details. Thus, we may fix a Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-basis {z1,z2}\{z_{1},z_{2}\} for HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}).

4.4.1. The matrix of ΩTW,k1\Omega_{T_{W},k-1}

Using the big logarithm map ΩTW,k1\Omega_{T_{W},k-1}, we obtain the following equations

ΩW,k1((1+π)wα)\displaystyle\Omega_{W,k-1}((1+\pi)\otimes w_{\alpha}) =az1+cz2,\displaystyle=a\cdot z_{1}+c\cdot z_{2},
ΩW,k1((1+π)wβ)\displaystyle\Omega_{W,k-1}((1+\pi)\otimes w_{\beta}) =bz1+dz2,\displaystyle=b\cdot z_{1}+d\cdot z_{2},

where a,b,c,da,b,c,d are elements in the distribution ring E(Γ)\mathcal{H}_{E}(\Gamma). In other words, we can write these equations as

[ΩW,k1((1+π)wα)ΩW,k1((1+π)wβ)]=[z1z2](abcd).\begin{bmatrix}\Omega_{W,k-1}((1+\pi)\otimes w_{\alpha})&\Omega_{W,k-1}((1+\pi)\otimes w_{\beta})\end{bmatrix}=\begin{bmatrix}z_{1}&z_{2}\end{bmatrix}\begin{pmatrix}a&b\\[6.0pt] c&d\end{pmatrix}.

Therefore, with respect to the basis {z1,z2}\{z_{1},z_{2}\} for HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) and the basis eig\mathcal{B}_{\mathrm{eig}} for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) we can describe the matrix MΩM_{\Omega} of ΩTW,k1\Omega_{T_{W},k-1} as,

(4.6) MΩ=(abcd).M_{\Omega}=\begin{pmatrix}a&b\\[6.0pt] c&d\end{pmatrix}.

Recall that, if FE,r(Γ)F\in\mathcal{H}_{E,r}(\Gamma), we say FF is O(logpr)O(\log_{p}^{r}).

Lemma 4.10.

The elements a,ca,c are O(logpvp(β))O(\log_{p}^{v_{p}(\beta)}), whereas b,db,d are O(logpvp(α))O(\log_{p}^{v_{p}(\alpha)}).

Proof.

From [29, Section 3.2.4], we note that for any 𝒪E\mathcal{O}_{E}-lattice TT in a crystalline representation VV, if ff is an element of (𝔹rig,E+)ψ=0𝔻ν(T(j))(\mathbb{B}^{+}_{\mathrm{rig},E})^{\psi=0}\otimes\mathbb{D}_{\nu}(T(j)), where 𝔻ν(T(j))\mathbb{D}_{\nu}(T(j)) is a subspace of 𝔻crys(T(j))\mathbb{D}_{\mathrm{crys}}(T(j)) in which φ\varphi has slope ν\nu, then ΩT(J),h+j(f)\Omega_{T(J),h+j}(f) is O(logph+ν)O(\log_{p}^{h+\nu}). In other words, ΩT(j),h+j(f)\Omega_{T(j),h+j}(f) lies in h+ν(Γ)HIw1(p,T(j))\mathcal{H}_{h+\nu}(\Gamma)\otimes H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T(j)).

For the crystalline representation WW and the lattice TWT_{W} in WW, we know that φ(wα)=α1wα\varphi(w_{\alpha})=\alpha^{-1}w_{\alpha} and φ(wβ)=β1wβ\varphi(w_{\beta})=\beta^{-1}w_{\beta}. Thus, ΩTW,k1((1+π)wα)\Omega_{T_{W},k-1}((1+\pi)\otimes w_{\alpha}) is O(logp(k1)vp(α))=O(logpvp(β))O(\log^{(k-1)-v_{p}(\alpha)}_{p})=O(\log^{v_{p}(\beta)}_{p}), since vp(α)+vp(β)=k1v_{p}(\alpha)+v_{p}(\beta)=k-1. Similarly, ΩTW,k1((1+π)wβ)\Omega_{T_{W},k-1}((1+\pi)\otimes w_{\beta}) is O(logpvp(α))O(\log^{v_{p}(\alpha)}_{p}).

But ΩTW,k1((1+π)wα)=az1+cz2E,vp(β)(Γ)HIw1(p,TW)\Omega_{T_{W},k-1}((1+\pi)\otimes w_{\alpha})=a\cdot z_{1}+c\cdot z_{2}\in\mathcal{H}_{E,v_{p}(\beta)}(\Gamma)\otimes H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}). Therefore we conclude that aa and cc have growth O(logpvp(β))O(\log_{p}^{v_{p}(\beta)}). In the same manner, bb and dd have growth O(logpvp(α))O(\log_{p}^{v_{p}(\alpha)}). ∎

4.4.2. The matrix of the pp-adic regulator TW\mathcal{L}_{T_{W}}

After applying the pp-adic regulator TW\mathcal{L}_{T_{W}} on the Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-basis z1,z2z_{1},z_{2} of HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}), we get

TW(z1)\displaystyle\mathcal{L}_{T_{W}}(z_{1}) =x1wα+x3wβ,\displaystyle=x_{1}\cdot w_{\alpha}+x_{3}\cdot w_{\beta},
TW(z1)\displaystyle\mathcal{L}_{T_{W}}(z_{1}) =x2wα+x4wβ.\displaystyle=x_{2}\cdot w_{\alpha}+x_{4}\cdot w_{\beta}.

We can rewrite these equations as

(4.7) [TW(z1)TW(z2)]=[wαwβ](x1x2x3x4).\begin{bmatrix}\mathcal{L}_{T_{W}}(z_{1})&\mathcal{L}_{T_{W}}(z_{2})\end{bmatrix}=\begin{bmatrix}w_{\alpha}&w_{\beta}\end{bmatrix}\begin{pmatrix}x_{1}&x_{2}\\[6.0pt] x_{3}&x_{4}\end{pmatrix}.

Hence, using the basis {z1,z2}\{z_{1},z_{2}\} for HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) and the basis eig\mathcal{B}_{\mathrm{eig}} for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}), we get a matrix [TW]eigM2,2(E(Γ))[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}\in M_{2,2}(\mathcal{H}_{E}(\Gamma)) of TW\mathcal{L}_{T_{W}} as

(4.8) [TW]eig=(x1x2x3x4).[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\begin{pmatrix}x_{1}&x_{2}\\[6.0pt] x_{3}&x_{4}\end{pmatrix}.
Lemma 4.11.

We have the equation

(4.9) [TW]eig=adjMΩ,[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\operatorname{adj}M_{\Omega},

where adjM¯\operatorname{adj}\underline{M} is the adjugate matrix of M¯\underline{M}. In particular, x1,x2x_{1},x_{2} are O(logpvp(α))O(\log_{p}^{v_{p}(\alpha)}) and x3,x4x_{3},x_{4} are O(logpvp(β))O(\log_{p}^{v_{p}(\beta)}).

Proof.

From Lemma 4.6, we know that

ΩW,k1W=(i=0k2i).\Omega_{W,k-1}\circ\mathcal{L}_{W}=\left(\prod_{i=0}^{k-2}\ell_{i}\right).

By restricting to the 𝒪E\mathcal{O}_{E}-lattice TWT_{W} in WW, we have, for any zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}),

ΩTW,k1(TW(z))=(i=0k2i)(z),\displaystyle\Omega_{T_{W},k-1}(\mathcal{L}_{T_{W}}(z))=\left(\prod_{i=0}^{k-2}\ell_{i}\right)(z),

Thus, we use Λ𝒪E(Γ)\Lambda_{\mathcal{O}_{E}}(\Gamma)-basis {z1,z2}\{z_{1},z_{2}\} for HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}), we get

(4.10) ΩTW,k1(TW(z1))\displaystyle\Omega_{T_{W},k-1}(\mathcal{L}_{T_{W}}(z_{1})) =(i=0k2i)(z1),\displaystyle=\left(\prod_{i=0}^{k-2}\ell_{i}\right)(z_{1}),
(4.11) ΩTW,k1(TW(z2))\displaystyle\Omega_{T_{W},k-1}(\mathcal{L}_{T_{W}}(z_{2})) =(i=0k2i)(z2).\displaystyle=\left(\prod_{i=0}^{k-2}\ell_{i}\right)(z_{2}).

In matrix form, we can rewrite the equations (4.10) and (4.11)

MΩ[TW]eig=(i=0k2i)I2.M_{\Omega}[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\left(\prod_{i=0}^{k-2}\ell_{i}\right)I_{2}.

From Lemma 4.9, we have det(TW)=i=0k2i\det(\mathcal{L}_{T_{W}})=\prod_{i=0}^{k-2}\ell_{i}, hence we have det([TW]eig)=i=0k2i.\det([\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}})=\prod_{i=0}^{k-2}\ell_{i}. Thus

MΩ[TW]eig=det(TW)I2.M_{\Omega}[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\det(\mathcal{L}_{T_{W}})I_{2}.

Hence,

(4.12) (x1x2x3x4)=[TW]eig=adjMΩ=(dbca),\begin{pmatrix}x_{1}&x_{2}\\[6.0pt] x_{3}&x_{4}\end{pmatrix}=[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\operatorname{adj}M_{\Omega}=\begin{pmatrix}d&-b\\[6.0pt] -c&a\end{pmatrix},

where adjMΩ\operatorname{adj}M_{\Omega} is the adjugate matrix of the matrix MΩM_{\Omega}. Thus, from Lemma 4.10, we get x1,x2x_{1},x_{2} have growth O(logpvp(α))O(\log_{p}^{v_{p}(\alpha)}) and x3,x4x_{3},x_{4} have growth O(logpvp(β))O(\log_{p}^{v_{p}(\beta)}). ∎

We use the basis \mathcal{B} of 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) and the basis {z1,z2}\{z_{1},z_{2}\} for HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) to get another matrix [TW][\mathcal{L}_{T_{W}}]_{\mathcal{B}} such that

[TW(z1)TW(z2))]=[w1w2][TW].\begin{bmatrix}\mathcal{L}_{T_{W}}(z_{1})&\mathcal{L}_{T_{W}}(z_{2}))\end{bmatrix}=\begin{bmatrix}w_{1}&w_{2}\end{bmatrix}[\mathcal{L}_{T_{W}}]_{\mathcal{B}}.

Since [w1w2]=[wαwβ]Q1\begin{bmatrix}w_{1}&w_{2}\end{bmatrix}=\begin{bmatrix}w_{\alpha}&w_{\beta}\end{bmatrix}Q^{-1}, we have

(4.13) [TW]eig=Q1[TW].[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=Q^{-1}[\mathcal{L}_{T_{W}}]_{\mathcal{B}}.

For any non-negative integer nn, we write ωn(1+X)=(1+X)pn1\omega_{n}(1+X)=(1+X)^{p^{n}}-1. Let Φn(1+X)=ωn(1+X)/ωn1(1+X)\Phi_{n}(1+X)=\omega_{n}(1+X)/\omega_{n-1}(1+X) be the pnp^{n}-th cyclotomic polynomial for integers n>1n>1. Recall from Section 2, topological generators γ0\gamma_{0} of Γ1\Gamma_{1} and uu of 1+pp1+p\mathbb{Z}_{p} such that χ(γ0)=u\chi(\gamma_{0})=u, where χ\chi is the pp-adic cyclotomic character. For any integer m1m\geq 1, we define

Φn,m(1+X)\displaystyle\Phi_{n,m}(1+X) =j=0m1Φn(uj(1+X)),\displaystyle=\prod_{j=0}^{m-1}\Phi_{n}(u^{-j}(1+X)),
ωn,m(1+X)\displaystyle\omega_{n,m}(1+X) =j=0m1ωn(uj(1+X)),\displaystyle=\prod_{j=0}^{m-1}\omega_{n}(u^{-j}(1+X)),
δm(X)\displaystyle\delta_{m}(X) =j=0m1(uj(1+X)1),\displaystyle=\prod_{j=0}^{m-1}(u^{-j}(1+X)-1),
logp,m(1+X)\displaystyle\log_{p,m}(1+X) =j=0m1logp(uj(1+X)).\displaystyle=\prod_{j=0}^{m-1}\log_{p}(u^{-j}(1+X)).

Recall from Proposition 4.8, for any Dirichlet character ω\omega of conductor pn,n>1p^{n},n>1, we have

φn(χiω(TW(z)tiei))p,nFil0𝔻crys(TW(i)),\varphi^{-n}(\chi^{i}\omega(\mathcal{L}_{T_{W}}(z)\otimes t^{i}e_{-i}))\in\mathbb{Q}_{p,n}\otimes\mathrm{Fil}^{0}\mathbb{D}_{\mathrm{crys}}(T_{W}(-i)),

for any zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) and 0i(k2)0\leq i\leq(k-2).

Proposition 4.12.

The second row of the matrix [φnTW][\varphi^{-n}\mathcal{L}_{T_{W}}]_{\mathcal{B}} is divisible by Φn1,k1(γ0)\Phi_{n-1,k-1}(\gamma_{0}) over E(Γ)\mathcal{H}_{E}(\Gamma), for all integers n>1n>1.

Proof.

The Hodge-Tate weights of the crystalline representation WW are 0 and k1k-1. Thus, for 0ik20\leq i\leq k-2, we have

dimE(Fil0𝔻crys(W(i)))=dimE(Fili𝔻crys(W))=1.\dim_{E}(\mathrm{Fil}^{0}\mathbb{D}_{\mathrm{crys}}(W(-i)))=\dim_{E}(\mathrm{Fil}^{-i}\mathbb{D}_{\mathrm{crys}}(W))=1.

We know that Fili𝔻crys(TW)\mathrm{Fil}^{-i}\mathbb{D}_{\mathrm{crys}}(T_{W}) is one dimensional 𝒪E\mathcal{O}_{E}-submodule of 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) generated by w1w_{1} for all 0ik20\leq i\leq k-2. Thus, Fil0𝔻crys(TW)\mathrm{Fil}^{0}\mathbb{D}_{\mathrm{crys}}(T_{W}) is generated by w1tieiw_{1}\otimes t^{i}e_{-i}.

Write

(4.14) φn(TW(z)tiei)=F1,z(w1pnitiei)+F2,z(w2pnitiei),\varphi^{-n}(\mathcal{L}_{T_{W}}(z)\otimes t^{i}e_{-i})=F_{1,z}\cdot(w_{1}\otimes p^{-ni}t^{i}e_{-i})+F_{2,z}\cdot(w_{2}\otimes p^{-ni}t^{i}e_{-i}),

where F1,z,F2,zE(Γ)F_{1,z},F_{2,z}\in\mathcal{H}_{E}(\Gamma) and zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}).

Thus, (4.5) implies

(4.15) F2,z(χiω)=0,F_{2,z}(\chi^{i}\omega)=0,

for all 0ik20\leq i\leq k-2 and for all Dirichlet character ω\omega of conductor pnp^{n}, where n>1n>1. Then [23, Theorem 5.4] implies Φn1,k1(γ0)\Phi_{n-1,k-1}(\gamma_{0}) divides F2,zF_{2,z}.

Using the basis z1,z2z_{1},z_{2} for HIw1(p,TW)H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}) and the basis \mathcal{B} for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}), we get

[φn(TW(z1)tiei)φn(TW(z2)tiei)]=[w1tieiw2tiei](F1,z1F1,z2F2,z1F2,z2).\begin{bmatrix}\varphi^{-n}(\mathcal{L}_{T_{W}}(z_{1})\otimes t^{i}e_{-i})&\varphi^{-n}(\mathcal{L}_{T_{W}}(z_{2})\otimes t^{i}e_{-i})\end{bmatrix}=\begin{bmatrix}w_{1}\otimes t^{i}e_{-i}&w_{2}\otimes t^{i}e_{-i}\end{bmatrix}\begin{pmatrix}F_{1,z_{1}}&F_{1,z_{2}}\\[6.0pt] F_{2,z_{1}}&F_{2,z_{2}}\end{pmatrix}.

Then the matrix of φnTW\varphi^{-n}\mathcal{L}_{T_{W}} with respect to basis \mathcal{B} is

[φnTW]=(F1,z1F1,z2F2,z1F2,z2).[\varphi^{-n}\mathcal{L}_{T_{W}}]_{\mathcal{B}}=\begin{pmatrix}F_{1,z_{1}}&F_{1,z_{2}}\\[6.0pt] F_{2,z_{1}}&F_{2,z_{2}}\end{pmatrix}.

Note that [φnTW]M2,2((Γ))[\varphi^{-n}\mathcal{L}_{T_{W}}]_{\mathcal{B}}\in M_{2,2}(\mathcal{H}(\Gamma)). Hence, using (4.15), we deduce that Φn1,k1(γ0)\Phi_{n-1,k-1}(\gamma_{0}) divides both F2,z1F_{2,z_{1}} and F2,z2F_{2,z_{2}}

For n>1n>1, we can write

[φn(TW(z1))φn(TW(z2))]\displaystyle\begin{bmatrix}\varphi^{-n}(\mathcal{L}_{T_{W}}(z_{1}))&\varphi^{-n}(\mathcal{L}_{T_{W}}(z_{2}))\end{bmatrix} =[φn(wα)φn(wβ)][TW]eig,\displaystyle=\begin{bmatrix}\varphi^{-n}(w_{\alpha})&\varphi^{-n}(w_{\beta})\end{bmatrix}[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}},
=[wαwβ](αn00βn)[TW]eig.\displaystyle=\begin{bmatrix}w_{\alpha}&w_{\beta}\end{bmatrix}\begin{pmatrix}\alpha^{n}&0\\[6.0pt] 0&\beta^{n}\end{pmatrix}[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}.

Thus, we get a matrix for φnTW\varphi^{-n}\mathcal{L}_{T_{W}} with respect to the eigenbasis eig\mathcal{B}_{\mathrm{eig}} for 𝔻crys(TW)\mathbb{D}_{\mathrm{crys}}(T_{W}) and using (4.8), we get

(4.16) [φnTW]eig=(αn00βn)[TW]eig=(αnx1αnx2βnx3βnx4).[\varphi^{-n}\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\begin{pmatrix}\alpha^{n}&0\\[6.0pt] 0&\beta^{n}\end{pmatrix}[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\begin{pmatrix}\alpha^{n}x_{1}&\alpha^{n}x_{2}\\[6.0pt] \beta^{n}x_{3}&\beta^{n}x_{4}\end{pmatrix}.

5. Logarithmic matrix M¯\underline{M} and the factorization of power series in one variable

In this section, we will first explore some properties of M¯\underline{M} which imply that M¯\underline{M} is a logarithmic matrix in the sense of Sprung and Lei-Loeffler-Zerbes. Next, we will use M¯\underline{M} to decompose power series with certain growth conditions into power series with bounded coefficients.

5.1. Properties of M¯\underline{M}

For any zHIw1(p,TW)z\in H^{1}_{\mathrm{Iw}}(\mathbb{Q}_{p},T_{W}), we have

TW(z)=[(1+π)w1(1+π)w2]M¯(Col¯1(z)Col¯2(z)).\mathcal{L}_{T_{W}}(z)=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}\underline{M}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z)\\[6.0pt] \operatorname{\underline{Col}}_{2}(z)\end{pmatrix}.

In matrix form, we write

[TW(z1)TW(z2)]=[(1+π)w1(1+π)w2]M¯(Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(z2)).\begin{bmatrix}\mathcal{L}_{T_{W}}(z_{1})&\mathcal{L}_{T_{W}}(z_{2})\end{bmatrix}=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}\underline{M}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(z_{2})\end{pmatrix}.

Thus,

(5.1) [TW]=M¯(Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(Z2)).[\mathcal{L}_{T_{W}}]_{\mathcal{B}}=\underline{M}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(Z_{2})\end{pmatrix}.

Similarly, we have

(5.2) [TW]eig=Q1M¯(Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(Z2)),[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=Q^{-1}\underline{M}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(Z_{2})\end{pmatrix},

since [TW]eig=Q1[TW].[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=Q^{-1}[\mathcal{L}_{T_{W}}]_{\mathcal{B}}.

Proposition 5.1.

The elements in the first row of Q1M¯Q^{-1}\underline{M} are inside E,vp(α)(Γ1)\mathcal{H}_{E,v_{p}(\alpha)}(\Gamma_{1}), while the elements in the second row are in the E,vp(β)(Γ1)\mathcal{H}_{E,v_{p}(\beta)}(\Gamma_{1}).

Proof.

Recall from Lemma 4.11,

[TW]eig=adjMΩ=(x1x2x3x4).[\mathcal{L}_{T_{W}}]_{\mathcal{B}_{\mathrm{eig}}}=\operatorname{adj}M_{\Omega}=\begin{pmatrix}x_{1}&x_{2}\\[6.0pt] x_{3}&x_{4}\end{pmatrix}.

Therefore, (5.2) implies

(x1x2x3x4)=Q1M¯(Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(Z2)).\begin{pmatrix}x_{1}&x_{2}\\[6.0pt] x_{3}&x_{4}\end{pmatrix}=Q^{-1}\underline{M}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(Z_{2})\end{pmatrix}.

But Col¯i(zj)\operatorname{\underline{Col}}_{i}(z_{j}) are O(1)O(1) for i,j{1,2}i,j\in\{1,2\}, since they lie in the Iwasawa algebra ΛE(Γ)\Lambda_{E}(\Gamma). Therefore, after writing Q1M¯=(P1P2P3P4)Q^{-1}\underline{M}=\begin{pmatrix}P_{1}&P_{2}\\[6.0pt] P_{3}&P_{4}\end{pmatrix}, we get

(5.3) (x1x2x3x4)=(P1P2P3P4)(Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(Z2)).\begin{pmatrix}x_{1}&x_{2}\\[6.0pt] x_{3}&x_{4}\end{pmatrix}=\begin{pmatrix}P_{1}&P_{2}\\[6.0pt] P_{3}&P_{4}\end{pmatrix}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(Z_{2})\end{pmatrix}.

We take isotypic components on both sides with respect to the trivial character of Δ\Delta. After writing [ColΔ][\mathrm{Col}^{\Delta}] for (Col¯1Δ(z1)Col¯1Δ(z2)Col¯2Δ(z1)Col¯2Δ(Z2))\begin{pmatrix}\operatorname{\underline{Col}}^{\Delta}_{1}(z_{1})&\operatorname{\underline{Col}}^{\Delta}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}^{\Delta}_{2}(z_{1})&\operatorname{\underline{Col}}^{\Delta}_{2}(Z_{2})\end{pmatrix}, equation (5.3) becomes

(5.4) (x1Δx2Δx3Δx4Δ)adj[ColΔ]=(P1P2P3P4)det([ColΔ]).\begin{pmatrix}x_{1}^{\Delta}&x_{2}^{\Delta}\\[6.0pt] x_{3}^{\Delta}&x_{4}^{\Delta}\end{pmatrix}\operatorname{adj}[\mathrm{Col}^{\Delta}]=\begin{pmatrix}P_{1}&P_{2}\\[6.0pt] P_{3}&P_{4}\end{pmatrix}\det([\mathrm{Col}^{\Delta}]).

The result follows from the Lemma 4.11, since det([ColΔ])\det([\mathrm{Col}^{\Delta}]) is again O(1)O(1) and x1Δ,x2ΔE,vp(α)(Γ1)x_{1}^{\Delta},x_{2}^{\Delta}\in\mathcal{H}_{E,v_{p}(\alpha)}(\Gamma_{1}) and x3Δ,x4ΔE,vp(β)(Γ1)x_{3}^{\Delta},x_{4}^{\Delta}\in\mathcal{H}_{E,v_{p}(\beta)}(\Gamma_{1}). ∎

Lemma 5.2.

The second row of AφnM¯A_{\varphi}^{-n}\underline{M} is divisible by the cyclotomic polynomial Φn1,k1(γ0)\Phi_{n-1,k-1}(\gamma_{0}) over E(Γ1)\mathcal{H}_{E}(\Gamma_{1}).

Proof.

We know that

[TW(z1)TW(z2)]=[(1+π)w1(1+π)w2]M¯(Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(z2)).\begin{bmatrix}\mathcal{L}_{T_{W}}(z_{1})&\mathcal{L}_{T_{W}}(z_{2})\end{bmatrix}=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}\underline{M}\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(z_{2})\end{pmatrix}.

Let us denote (Col¯1(z1)Col¯1(z2)Col¯2(z1)Col¯2(z2))\begin{pmatrix}\operatorname{\underline{Col}}_{1}(z_{1})&\operatorname{\underline{Col}}_{1}(z_{2})\\[6.0pt] \operatorname{\underline{Col}}_{2}(z_{1})&\operatorname{\underline{Col}}_{2}(z_{2})\end{pmatrix} by [Col][\mathrm{Col}]. By an abuse of notation, we write φ\varphi for 1φ1\otimes\varphi.

After applying φn\varphi^{-n} on both sides of the above equation, we obtain

φn([TW(z1)TW(z2)])\displaystyle\varphi^{-n}\left(\begin{bmatrix}\mathcal{L}_{T_{W}}(z_{1})&\mathcal{L}_{T_{W}}(z_{2})\end{bmatrix}\right) =[φn(TW(z1))φn(TW(z2))],\displaystyle=\begin{bmatrix}\varphi^{-n}(\mathcal{L}_{T_{W}}(z_{1}))&\varphi^{-n}(\mathcal{L}_{T_{W}}(z_{2}))\end{bmatrix},
=[(1+π)φn(w1)(1+π)φn(w2)]M¯[Col],\displaystyle=\begin{bmatrix}(1+\pi)\otimes\varphi^{-n}(w_{1})&(1+\pi)\otimes\varphi^{-n}(w_{2})\end{bmatrix}\underline{M}[\mathrm{Col}],
=[(1+π)w1(1+π)w2]AφnM¯[Col].\displaystyle=\begin{bmatrix}(1+\pi)\otimes w_{1}&(1+\pi)\otimes w_{2}\end{bmatrix}A_{\varphi}^{-n}\underline{M}[\mathrm{Col}].

Therefore, we get

[φnTW]=AφnM¯[Col].[\varphi^{-n}\mathcal{L}_{T_{W}}]_{\mathcal{B}}=A^{-n}_{\varphi}\underline{M}[\mathrm{Col}].

After rearranging the above equation, we get

(5.5) [φnTW]adj[Col]=AφnM¯det([Col]),[\varphi^{-n}\mathcal{L}_{T_{W}}]_{\mathcal{B}}\operatorname{adj}[\mathrm{Col}]=A^{-n}_{\varphi}\underline{M}\det([\mathrm{Col}]),

From [21, Proposition 4.11, Theorem 4.12, Corollary 4.15], we can conclude that Φn1,k1(γ0)\Phi_{n-1,k-1}(\gamma_{0}) does not divide det([Col])\det([\mathrm{Col}]). Thus, the result follows from Proposition 4.12. ∎

Lemma 5.3.

The determinant of matrix M¯\underline{M} is logp,k1(γ0)δk1(γ01)\dfrac{\log_{p,k-1}(\gamma_{0})}{\delta_{k-1}(\gamma_{0}-1)} upto a unit in ΛE(Γ1)\Lambda_{E}(\Gamma_{1}).

Proof.

This is [21, Corollary 3.2]. See also [7, Lemma 2.7]. ∎

Thus, Proposition 5.1, Lemma 5.2, and Lemma 5.3 imply that the matrix M¯\underline{M} is a logarithmic matrix in the sense of Sprung and Lei-Loeffler-Zerbes.

5.2. Factorization using M¯\underline{M}

Let F,GF,G be power series in E(Γ)\mathcal{H}_{E}(\Gamma). We write FGF\sim G, if FF is O(G)O(G) and GG is O(F)O(F).

Lemma 5.4.

We have det(M¯)logpk1\det(\underline{M})\sim\log_{p}^{k-1}.

Proof.

From Lemma 5.3, we get det(M¯)=logp,k1(γ0)δk1(γ01)\det(\underline{M})=*\dfrac{\log_{p,k-1}(\gamma_{0})}{\delta_{k-1}(\gamma_{0}-1)}, where * is a unit in ΛE(Γ)\Lambda_{E}(\Gamma). Hence the result follows from the definition of logpk1(γ0)\log^{k-1}_{p}(\gamma_{0}) and the fact that δk1(γ01)\delta_{k-1}(\gamma_{0}-1) is polynomial and hence O(1)O(1). ∎

Theorem 5.5.

For λ{α,β}\lambda\in\{\alpha,\beta\}, let FλE,vp(λ)(Γ)F_{\lambda}\in\mathcal{H}_{E,v_{p}(\lambda)}(\Gamma), such that for any integer 0jk20\leq j\leq k-2 and for any Dirichlet character ω\omega of conductor pnp^{n} we have Fλ(χjω)=λnCω,jF_{\lambda}(\chi^{j}\omega)=\lambda^{-n}C_{\omega,j}, where Cω,jp¯C_{\omega,j}\in\overline{\mathbb{Q}_{p}} that is independent of λ\lambda. Then, there exist F,FΛE(Γ)F_{\flat},F_{\sharp}\in\Lambda_{E}(\Gamma) such that

(5.6) (FαFβ)=Q1M¯(FF).\begin{pmatrix}F_{\alpha}\\[6.0pt] F_{\beta}\end{pmatrix}=Q^{-1}\underline{M}\begin{pmatrix}F_{\sharp}\\[6.0pt] F_{\flat}\end{pmatrix}.
Proof.

From Lemma 5.2, we know that the second row of AφnM¯A_{\varphi}^{-n}\underline{M} is divisible by Φn1,k1(γ0)\Phi_{n-1,k-1}(\gamma_{0}). Hence we can write

AφnM¯=(abcΦn1,k1(γ0)dΦn1,k1(γ0)),A_{\varphi}^{-n}\underline{M}=\begin{pmatrix}a&b\\[6.0pt] c\cdot\Phi_{n-1,k-1}(\gamma_{0})&d\cdot\Phi_{n-1,k-1}(\gamma_{0})\end{pmatrix},

where a,b,c,da,b,c,d are power series.

Recall, Q1=1detQ(vpk1βvpk1α),Q^{-1}=\frac{1}{\det Q}\begin{pmatrix}vp^{k-1}&\beta\\[6.0pt] vp^{k-1}&\alpha\end{pmatrix}, and adjQ1M¯=(P4P2P3P1)\operatorname{adj}Q^{-1}\underline{M}=\begin{pmatrix}P_{4}&-P_{2}\\[6.0pt] -P_{3}&P_{1}\end{pmatrix}. Note that detQ0\det Q\neq 0 since αβ\alpha\neq\beta.

Thus for every positive integer nn, we have

Q1M¯\displaystyle Q^{-1}\underline{M} =Q1AφnQQ1AφnM¯,\displaystyle=Q^{-1}A^{n}_{\varphi}QQ^{-1}A_{\varphi}^{-n}\underline{M},
=(1αn001βn)1detQ(vpk1βvpk1α)(abcΦn1,k1(γ0)dΦn1,k1(γ0)),\displaystyle=\begin{pmatrix}\frac{1}{\alpha^{n}}&0\\[12.0pt] 0&\frac{1}{\beta^{n}}\end{pmatrix}\dfrac{1}{\det Q}\begin{pmatrix}vp^{k-1}&\beta\\[12.0pt] vp^{k-1}&\alpha\end{pmatrix}\begin{pmatrix}a&b\\[12.0pt] c\cdot\Phi_{n-1,k-1}(\gamma_{0})&d\cdot\Phi_{n-1,k-1}(\gamma_{0})\end{pmatrix},
=1detQ(1αn001βn)(avpk1+βcΦn1,k1(γ0)bvpk1+βdΦn1,k1(γ0)avpk1+αcΦn1,k1(γ0)bvpk1+αdΦn1,k1(γ0)),\displaystyle=\frac{1}{\det Q}\begin{pmatrix}\frac{1}{\alpha^{n}}&0\\[12.0pt] 0&\frac{1}{\beta^{n}}\end{pmatrix}\begin{pmatrix}a\cdot vp^{k-1}+\beta\cdot c\cdot\Phi_{n-1,k-1}(\gamma_{0})&b\cdot vp^{k-1}+\beta\cdot d\cdot\Phi_{n-1,k-1}(\gamma_{0})\\[12.0pt] a\cdot vp^{k-1}+\alpha\cdot c\cdot\Phi_{n-1,k-1}(\gamma_{0})&b\cdot vp^{k-1}+\alpha\cdot d\cdot\Phi_{n-1,k-1}(\gamma_{0})\end{pmatrix},
=1detQ(1αn(avpk1+βcΦn1,k1(γ0))1αn(bvpk1+βdΦn1,k1(γ0))1βn(avpk1+αcΦn1,k1(γ0))1βn(bvpk1+αdΦn1,k1(γ0))).\displaystyle=\frac{1}{\det Q}\begin{pmatrix}\frac{1}{\alpha^{n}}(a\cdot vp^{k-1}+\beta\cdot c\cdot\Phi_{n-1,k-1}(\gamma_{0}))&\frac{1}{\alpha^{n}}(b\cdot vp^{k-1}+\beta\cdot d\cdot\Phi_{n-1,k-1}(\gamma_{0}))\\[12.0pt] \frac{1}{\beta^{n}}(a\cdot vp^{k-1}+\alpha\cdot c\cdot\Phi_{n-1,k-1}(\gamma_{0}))&\frac{1}{\beta^{n}}(b\cdot vp^{k-1}+\alpha\cdot d\cdot\Phi_{n-1,k-1}(\gamma_{0}))\end{pmatrix}.

Hence

(5.7) adjQ1M¯=1detQ(1βn(bvpk1+αdΦn1,k1(γ0))1αn(bvpk1+βdΦn1,k1(γ0))1βn(avpk1+αcΦn1,k1(γ0))1αn(avpk1+βcΦn1,k1(γ0))).\operatorname{adj}Q^{-1}\underline{M}=\frac{1}{\det Q}\begin{pmatrix}\dfrac{1}{\beta^{n}}(b\cdot vp^{k-1}+\alpha\cdot d\cdot\Phi_{n-1,k-1}(\gamma_{0}))&\dfrac{-1}{\alpha^{n}}(b\cdot vp^{k-1}+\beta\cdot d\cdot\Phi_{n-1,k-1}(\gamma_{0}))\\[12.0pt] \dfrac{-1}{\beta^{n}}(a\cdot vp^{k-1}+\alpha\cdot c\cdot\Phi_{n-1,k-1}(\gamma_{0}))&\dfrac{1}{\alpha^{n}}(a\cdot vp^{k-1}+\beta\cdot c\cdot\Phi_{n-1,k-1}(\gamma_{0}))\end{pmatrix}.

For integer 0j(k2)0\leq j\leq(k-2), and Dirichlet character ω\omega of conductor pnp^{n}, equation (5.7) implies

(adjQ1M¯)(χjω)=(1βn1αn1βn1αn),(\operatorname{adj}Q^{-1}\underline{M})(\chi^{j}\omega)=\begin{pmatrix}\dfrac{1}{\beta^{n}}*&\dfrac{-1}{\alpha^{n}}*\\[12.0pt] \dfrac{-1}{\beta^{n}}*^{\prime}&\dfrac{1}{\alpha^{n}}*^{\prime}\end{pmatrix},

where ,*,*^{\prime} are in p¯\overline{\mathbb{Q}_{p}}.

Thus, if we write F1=P4FαP2Fβ,F_{1}=P_{4}F_{\alpha}-P_{2}F_{\beta}, then, from (5.7), we get

F1(χjω)\displaystyle F_{1}(\chi^{j}\omega) =P4(χjω)Fα(χjω)P2(χjω)Fβ(χjω),\displaystyle=P_{4}(\chi^{j}\omega)F_{\alpha}(\chi^{j}\omega)-P_{2}(\chi^{j}\omega)F_{\beta}(\chi^{j}\omega),
=1βnCω,jαn1αnCω,jβn,\displaystyle=\frac{1}{\beta^{n}}\frac{*C_{\omega,j}}{\alpha^{n}}-\frac{1}{\alpha^{n}}\frac{*C_{\omega,j}}{\beta^{n}},
=0.\displaystyle=0.

Similarly, if we write F2=P3Fα+P1FβF_{2}=-P_{3}F_{\alpha}+P_{1}F_{\beta}, then F2(χjω)=0F_{2}(\chi^{j}\omega)=0.

Hence, for every positive integer nn, the zeros of Φn1,k1\Phi_{n-1,k-1} are also zeros of F1F_{1} and F2F_{2}. In other words, the roots of det(Q1M¯)=(some constant)logp,k1(γ0)δk1(γ01)\det(Q^{-1}\underline{M})=(\text{some constant})\dfrac{\log_{p,k-1}(\gamma_{0})}{\delta_{k-1}(\gamma_{0}-1)} are also the roots of F1F_{1}, and F2F_{2}. Therefore, detQ1M¯\det Q^{-1}\underline{M} divides both F1,F2F_{1},F_{2} in E(Γ)\mathcal{H}_{E}(\Gamma).

Note that P4FαP_{4}F_{\alpha} is O(logpk1)O(\log_{p}^{k-1}), since P4P_{4} is O(logpvp(β))O(\log_{p}^{v_{p}(\beta)}) and FαF_{\alpha} is O(logpvp(α))O(\log_{p}^{v_{p}(\alpha)}). Similarly, P2Fβ,P3Fα,P_{2}F_{\beta},P_{3}F_{\alpha}, and P1FβP_{1}F_{\beta} are O(logpk1)O(\log_{p}^{k-1}).

Let

(5.8) F=P4FαP2FβdetQ1M¯andF=P3Fα+P1FβdetQ1M¯.\begin{matrix}F_{\sharp}=\dfrac{P_{4}F_{\alpha}-P_{2}F_{\beta}}{\det Q^{-1}\underline{M}}&\text{and}&F_{\flat}=\dfrac{-P_{3}F_{\alpha}+P_{1}F_{\beta}}{\det Q^{-1}\underline{M}}.\end{matrix}

Then FF_{\sharp} and FF_{\flat} have bounded coefficients since the numerators of both of them are O(logpk1)O(\log_{p}^{k-1}), denominators of both of them are det(Q1M¯)\det(Q^{-1}\underline{M}) and by Lemma 5.4 det(Q1M¯)logpk1\det(Q^{-1}\underline{M})\sim\log_{p}^{k-1}. Hence FF_{\sharp} and FF_{\flat} are O(1)O(1) (i.e. bounded). Therefore, we can conclude that FF_{\sharp} and FF_{\flat} are in ΛE(Γ)\Lambda_{E}(\Gamma). This completes the proof.∎

6. Preliminaries about ray class groups, Hecke characters, and the two variable distribution algebras

For the rest of the article, we fix a quadratic imaginary field KK and a prime p3p\geq 3 which splits in KK as p𝒪K=𝔭𝔭¯p\mathcal{O}_{K}=\mathfrak{p}\overline{\mathfrak{p}}. Let hK1h_{K}\geq 1 be the class number of KK.

Assumption 6.1.

Throughout the article, we assume that p∤hKp\not\mid h_{K}.

6.1. Ray class groups and ray class fields

Let KK_{\infty} be the unique p2\mathbb{Z}^{2}_{p} extension of KK. If \mathcal{I} is an ideal of KK, we write GG_{\mathcal{I}} for the ray class group KK modulo \mathcal{I}. We define

Cl(K,p)=Gp=limnG(p)n,G𝔭=limnG𝔭n,G𝔭¯=limnG𝔭¯n.\text{Cl}(K,p^{\infty})=G_{p^{\infty}}=\varprojlim_{n}G_{(p)^{n}},\hskip 3.61371ptG_{\mathfrak{p}^{\infty}}=\varprojlim_{n}G_{\mathfrak{p}^{n}},\hskip 3.61371ptG_{\overline{\mathfrak{p}}^{\infty}}=\varprojlim_{n}G_{\overline{\mathfrak{p}}^{n}}.

These are the Galois groups of the ray class fields K(p),K(𝔭)K(p^{\infty}),K(\mathfrak{p}^{\infty}) and K(𝔭¯)K(\overline{\mathfrak{p}}^{\infty}) respectively. For 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}, let H(𝔮)H(\mathfrak{q}^{\infty}) be the subfield of G𝔮G_{\mathfrak{q}^{\infty}} such that Gal(H(𝔮)/K)p\operatorname{Gal}(H(\mathfrak{q}^{\infty})/K)\cong\mathbb{Z}_{p}. Note H(𝔮)KH(\mathfrak{q}^{\infty})\subset K_{\infty}.

Remark 6.2.

We have an isomorphism GpΔK×p×pΔ×γ𝔭¯×γ𝔭¯¯G_{p^{\infty}}\cong\Delta_{K}\times\mathbb{Z}_{p}\times\mathbb{Z}_{p}\cong\Delta\times\overline{\langle\gamma_{\mathfrak{p}}\rangle}\times\overline{\langle\gamma_{\overline{\mathfrak{p}}}\rangle}, where ΔK\Delta_{K} is a finite abelian group, γ𝔭\gamma_{\mathfrak{p}} and γ𝔭¯\gamma_{\overline{\mathfrak{p}}} topologically generate p\mathbb{Z}_{p} parts of G𝔭G_{\mathfrak{p}^{\infty}} and G𝔭¯G_{\overline{\mathfrak{p}}^{\infty}} respectively.

Remark 6.3.

By the assumption p∤hKp\not\mid h_{K}, there exists a unique prime in KK_{\infty} above 𝔭\mathfrak{p} and a unique prime above 𝔭¯\overline{\mathfrak{p}}. By an abuse of notation, we will also denote by 𝔭\mathfrak{p} and 𝔭¯\overline{\mathfrak{p}} by the unique prime above 𝔭\mathfrak{p} and 𝔭¯\overline{\mathfrak{p}} respectively in KK_{\infty}. Therefore, for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}, Gal(H(𝔮)𝔮/K𝔮)=γ𝔮¯Gal(H(𝔮)/K)p\operatorname{Gal}(H(\mathfrak{q}^{\infty})_{\mathfrak{q}}/K_{\mathfrak{q}})=\overline{\langle\gamma_{\mathfrak{q}}\rangle}\cong\operatorname{Gal}(H(\mathfrak{q}^{\infty})/K)\cong\mathbb{Z}_{p}.

Since pp splits in KK, the local field K𝔮K_{\mathfrak{q}} is isomorphic to p\mathbb{Q}_{p}, for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}. Thus,1+π𝔮𝒪K𝔮1+pp1+\pi_{\mathfrak{q}}\mathcal{O}_{K_{\mathfrak{q}}}\cong 1+p\mathbb{Z}_{p}, where π𝔮\pi_{\mathfrak{q}} is a uniformizer of 𝒪K𝔮\mathcal{O}_{K_{\mathfrak{q}}}. Recall the topological generator u1+ppu\in 1+p\mathbb{Z}_{p} such that χ(γ0)=u\chi(\gamma_{0})=u, where γ0\gamma_{0} generates Γ1p\Gamma_{1}\cong\mathbb{Z}_{p}, and χ\chi is pp-adic cyclotomic character. Thus, we may set u𝔭=u𝔭¯=uu_{\mathfrak{p}}=u_{\overline{\mathfrak{p}}}=u, where u𝔮u_{\mathfrak{q}} is a topological generator of 1+π𝔮𝒪K𝔮1+\pi_{\mathfrak{q}}\mathcal{O}_{K_{\mathfrak{q}}}. From now on, we fix this uu.

By local class field theory, there exists a group isomorphism (Artin map)

Art𝔮:𝒪K𝔮×Gal(H(𝔮)𝔮/K𝔮)Gal(H(𝔮)/K),\operatorname{Art}_{\mathfrak{q}}:\mathcal{O}_{K_{\mathfrak{q}}}^{\times}\to\operatorname{Gal}(H(\mathfrak{q}^{\infty})_{\mathfrak{q}}/K_{\mathfrak{q}})\cong\operatorname{Gal}(H(\mathfrak{q}^{\infty})/K),

such that

Art𝔮(u𝔮)=Art𝔮(u)=γ𝔮,\operatorname{Art}_{\mathfrak{q}}(u_{\mathfrak{q}})=\operatorname{Art}_{\mathfrak{q}}(u)=\gamma_{\mathfrak{q}},

where γ𝔮\gamma_{\mathfrak{q}} is a topological generator of Gal(H(𝔮)𝔮/K𝔮)\operatorname{Gal}(H(\mathfrak{q}^{\infty})_{\mathfrak{q}}/K_{\mathfrak{q}}). By an abuse of notations, let γ𝔮\gamma_{\mathfrak{q}} be a topological generator of Gal(H(𝔮)/K)\operatorname{Gal}(H(\mathfrak{q}^{\infty})/K) and Art𝔮(u)=γ𝔮\operatorname{Art}_{\mathfrak{q}}(u)=\gamma_{\mathfrak{q}}.

6.2. Hecke characters as the characters on the ray class groups

Let 𝔸K×\mathbb{A}_{K}^{\times} denote the group of ideles of KK and write 𝔸K×=𝔸××𝔸f×\mathbb{A}_{K}^{\times}=\mathbb{A}_{\infty}^{\times}\times\mathbb{A}_{f}^{\times}, where 𝔸×\mathbb{A}_{\infty}^{\times} is the infinite part and 𝔸f×\mathbb{A}_{f}^{\times} is the finite part. We can embed K×K^{\times} into 𝔸K×\mathbb{A}_{K}^{\times} diagonally. Fix embeddings i:¯i_{\infty}:\overline{\mathbb{Q}}\hookrightarrow\mathbb{C} and ip:¯pi_{p}:\overline{\mathbb{Q}}\hookrightarrow\mathbb{C}_{p}.

Definition 6.4 (Hecke characters).
  1. (1)

    A Hecke character Ξ\Xi of KK is a continuous homomorphism Ξ:𝔸K××\Xi:\mathbb{A}_{K}^{\times}\to\mathbb{C}^{\times} that is trivial on K×K^{\times}. In other words, a Hecke character of KK is a continuous homomorphism Ξ:K×\𝔸K××\Xi:K^{\times}\backslash\mathbb{A}_{K}^{\times}\to\mathbb{C}^{\times}.

  2. (2)

    We say a Hecke character Ξ\Xi is algebraic if for each embedding κ:K\kappa:K\hookrightarrow\mathbb{C}, there exists nκn_{\kappa}\in\mathbb{Z} such that Ξ(x)=κ(κ(x))nκ\Xi(x)=\prod_{\kappa}(\kappa(x))^{-n_{\kappa}} for each xx in the connected component of the identity in K×K_{\infty}^{\times}.

  3. (3)

    Let Ξ:K×\𝔸K××\Xi:K^{\times}\backslash\mathbb{A}_{K}^{\times}\to\mathbb{C}^{\times} be an algebraic Hecke character of KK. We say that Ξ\Xi has infinity type (q,r)2(q,r)\in\mathbb{Z}^{2} if Ξ(z)=zqz¯r\Xi_{\infty}(z)=z^{q}\overline{z}^{r}, where for each place vv of KK, we let Ξv:Kv××\Xi_{v}:K_{v}^{\times}\to\mathbb{C}^{\times} be the vv-component of Ξ\Xi.

From now on, all the Hecke characters mentioned in this article are algebraic Hecke characters. We can view Hecke characters as pp-adic characters:

Definition 6.5 (pp-adic avatar of an algebraic Hecke character).

Let Ξ\Xi be a Hecke character of KK of conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}} and infinity type (a,b)(a,b). The pp-adic avatar of Ξ\Xi is defined as

Ξ^(x)x𝔭ax𝔭¯bip(Ξ(xfin)).\widehat{\Xi}(x)\coloneqq x_{\mathfrak{p}}^{a}x_{\overline{\mathfrak{p}}}^{b}i_{p}(\Xi(x_{fin})).

By the class field theory, the correspondence ΞΞ^\Xi\mapsto\widehat{\Xi} establishes a bijection between the set of algebraic Hecke characters of KK of conductor dividing (p)(p^{\infty}) and the set of locally algebraic p¯\overline{\mathbb{Q}_{p}}-valued characters of GpG_{p^{\infty}}.

Now we combine this pp-adic avatar of the Hecke character and the global Artin reciprocity map rec\operatorname{rec} to define a Galois character on the ray class group GpG_{p^{\infty}}.

Let Ξ\Xi be a Hecke character of KK of conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}} and infinity type (a,b)(a,b).

Definition 6.6.

The Galois character of Ξ\Xi is Ξ~:GKabp×\widetilde{\Xi}:G^{ab}_{K}\to\mathbb{C}_{p}^{\times} given by

Ξ~=Ξ^rec1,\widetilde{\Xi}=\widehat{\Xi}\circ\operatorname{rec}^{-1},

where rec\operatorname{rec} is the global Artin isomorphism.

Note that GpGKabG_{p^{\infty}}\subset G^{ab}_{K} and Remark 6.3 implies rec1(γ𝔮)=Art𝔮1(γ𝔮)\operatorname{rec}^{-1}(\gamma_{\mathfrak{q}})=\operatorname{Art}_{\mathfrak{q}}^{-1}(\gamma_{\mathfrak{q}}).

By an abuse of notation, let Ξ~\widetilde{\Xi} denote Ξ~Gp\widetilde{\Xi}\mid_{G_{p^{\infty}}}. Define Ξ~𝔮Ξ~|γ𝔮¯\widetilde{\Xi}_{\mathfrak{q}}\coloneqq\widetilde{\Xi}|_{\overline{\langle\gamma_{\mathfrak{q}}\rangle}}. Hence, if Ξ\Xi is a Hecke character of the infinity type (a,b)(a,b) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}, then

Ξ~𝔭(γ𝔭)=uaζ𝔭,\widetilde{\Xi}_{\mathfrak{p}}(\gamma_{\mathfrak{p}})=u^{a}\zeta_{\mathfrak{p}},

and

Ξ~𝔭¯(γ𝔭¯)=ubζ𝔭¯,\widetilde{\Xi}_{\overline{\mathfrak{p}}}(\gamma_{\overline{\mathfrak{p}}})=u^{b}\zeta_{\overline{\mathfrak{p}}},

where ζ𝔮\zeta_{\mathfrak{q}} is a (pn𝔮1)(p^{n_{\mathfrak{q}}-1})-th root of unity. In other words, for any σΔK,\sigma\in\Delta_{K},

(6.1) Ξ~(σ×γ𝔭×γ𝔭¯)=Ξ~𝔭(γ𝔭)Ξ~𝔭¯(γ𝔭¯)×some root of unity.\widetilde{\Xi}(\sigma\times\gamma_{\mathfrak{p}}\times\gamma_{\overline{\mathfrak{p}}})=\widetilde{\Xi}_{\mathfrak{p}}(\gamma_{\mathfrak{p}})\cdot\widetilde{\Xi}_{\overline{\mathfrak{p}}}(\gamma_{\overline{\mathfrak{p}}})\times\text{some root of unity}.

From the above discussion, we get

ΞˇΞ~|γ𝔭¯×γ𝔭¯¯=Ξ~𝔭Ξ~𝔭¯.\widecheck{\Xi}\coloneqq\widetilde{\Xi}|_{\overline{\langle\gamma_{\mathfrak{p}}\rangle}\times\overline{\langle\gamma_{\overline{\mathfrak{p}}}\rangle}}=\widetilde{\Xi}_{\mathfrak{p}}\cdot\widetilde{\Xi}_{\overline{\mathfrak{p}}}.

Moreover, for any Hecke character ω1\omega_{1} of infinity type (a,0)(a,0) and conductor 𝔭n𝔭\mathfrak{p}^{n_{\mathfrak{p}}} and Hecke character ω2\omega_{2} of infinity type (0,b),(0,b), and conductor 𝔭¯n𝔭¯\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}, then the product ω1~𝔭ω2~𝔭¯\widetilde{\omega_{1}}_{\mathfrak{p}}\cdot\widetilde{\omega_{2}}_{\overline{\mathfrak{p}}} is a character on γ𝔭¯×γ𝔭¯¯\overline{\langle\gamma_{\mathfrak{p}}\rangle}\times\overline{\langle\gamma_{\overline{\mathfrak{p}}}\rangle}.

6.3. Two variable distribution modules

We will extend E(Γ1)\mathcal{H}_{E}(\Gamma_{1}) from previous sections. Let

p,r(Γ1)={f(γ01):f(X)=n0anXnp[[X]],supn(nr|an|p)<}.\mathcal{H}_{\mathbb{C}_{p},r}(\Gamma_{1})=\{f(\gamma_{0}-1)\colon f(X)=\sum_{n\geq 0}a_{n}X^{n}\in\mathbb{C}_{p}[[X]],\sup_{n}(n^{-r}|a_{n}|_{p})<\infty\}.

and

p(Γ1)=r0p,r(Γ1).\mathcal{H}_{\mathbb{C}_{p}}(\Gamma_{1})=\bigcup_{r\geq 0}\mathcal{H}_{\mathbb{C}_{p},r}(\Gamma_{1}).

Note that E(Γ1)=E[[γ01]]p(Γ1)\mathcal{H}_{E}(\Gamma_{1})=E[[\gamma_{0}-1]]\bigcap\mathcal{H}_{\mathbb{C}_{p}}(\Gamma_{1}), for any field extension EE of p\mathbb{Q}_{p}.

Define a map τ𝔮=Art𝔮χ\tau_{\mathfrak{q}}=\operatorname{Art}_{\mathfrak{q}}\circ\chi between Γ1\Gamma_{1} and Γ𝔮Gal(H(𝔮)/K)\Gamma_{\mathfrak{q}}\coloneqq\operatorname{Gal}(H(\mathfrak{q}^{\infty})/K) which sends γ0\gamma_{0} to γ𝔮\gamma_{\mathfrak{q}}. This change of variable map can be extended to ring isomorphism

τ𝔮:p(Γ1)\displaystyle\tau_{\mathfrak{q}}\colon\mathcal{H}_{\mathbb{C}_{p}}(\Gamma_{1}) p(Γ𝔮),\displaystyle\to\mathcal{H}_{\mathbb{C}_{p}}(\Gamma_{\mathfrak{q}}),
f(γ01)\displaystyle f(\gamma_{0}-1) f(γ𝔮1).\displaystyle\mapsto f(\gamma_{\mathfrak{q}}-1).

Similarly, for any field extension EE of p\mathbb{Q}_{p}, we again have an isomorphism

τ𝔮:E(Γ1)E(Γ𝔮).\tau_{\mathfrak{q}}:\mathcal{H}_{E}(\Gamma_{1})\to\mathcal{H}_{E}(\Gamma_{\mathfrak{q}}).

For any finite extension EE of p\mathbb{Q}_{p}, let

ΛE(Gp)=E[ΔK]ΛE(Γ𝔭)^ΛE(Γ𝔭¯),\Lambda_{E}(G_{p^{\infty}})=E[\Delta_{K}]\otimes\Lambda_{E}(\Gamma_{\mathfrak{p}})\widehat{\otimes}\Lambda_{E}(\Gamma_{\overline{\mathfrak{p}}}),

where ΛE(Γ𝔮)\Lambda_{E}(\Gamma_{\mathfrak{q}}) is the Iwasawa algebra E𝒪E[[Γ𝔮]]E\otimes\mathcal{O}_{E}[[\Gamma_{\mathfrak{q}}]] for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}. The two-variable Iwasawa algebra ΛE(Gp)\Lambda_{E}(G_{p^{\infty}}) is isomorphic to the power series ring

E[ΔK]𝒪E[[T1,T2]],E[\Delta_{K}]\otimes\mathcal{O}_{E}[[T_{1},T_{2}]],

by identifying γ𝔭1\gamma_{\mathfrak{p}}-1 with T1T_{1} and γ𝔭¯1\gamma_{\overline{\mathfrak{p}}}-1 with T2T_{2}.

We define the

p,r,sp,r(Γ𝔭)^p,s(Γ𝔭¯),\mathcal{H}_{\mathbb{C}_{p},r,s}\coloneqq\mathcal{H}_{\mathbb{C}_{p},r}(\Gamma_{\mathfrak{p}})\widehat{\otimes}\mathcal{H}_{\mathbb{C}_{p},s}(\Gamma_{\overline{\mathfrak{p}}}),

and

E,r,sp,r,sE[[γ𝔭1,γ𝔭¯1]],\mathcal{H}_{E,r,s}\coloneqq\mathcal{H}_{\mathbb{C}_{p},r,s}\cap E[[\gamma_{\mathfrak{p}}-1,\gamma_{\overline{\mathfrak{p}}}-1]],

for any extension EE of p\mathbb{Q}_{p}. We also define

p,r,s(Gp)p[ΔK]p,r,s,\mathcal{H}_{\mathbb{C}_{p},r,s}(G_{p^{\infty}})\coloneqq\mathbb{C}_{p}[\Delta_{K}]\otimes\mathcal{H}_{\mathbb{C}_{p},r,s},

and

E,r,s(Gp)E[ΔK]E,r,s,\mathcal{H}_{E,r,s}(G_{p^{\infty}})\coloneqq E[\Delta_{K}]\otimes\mathcal{H}_{E,r,s},

for any extension EE of p\mathbb{Q}_{p} and Δ\Delta is the finite abelian group appearing in the Galois group GpG_{p^{\infty}}.

Note that

ΛE(Gp)=E,0,0(Gp).\Lambda_{E}(G_{p^{\infty}})=\mathcal{H}_{E,0,0}(G_{p^{\infty}}).

Moreover, E,r,s\mathcal{H}_{E,r,s} is a ΛE(Γ𝔭)^ΛE(Γ𝔭¯)\Lambda_{E}(\Gamma_{\mathfrak{p}})\widehat{\otimes}\Lambda_{E}(\Gamma_{\overline{\mathfrak{p}}})-module, and E,r,s(Gp)\mathcal{H}_{E,r,s}(G_{p^{\infty}}) is a ΛE(Gp)\Lambda_{E}(G_{p^{\infty}})-module.

For FE,r,sF\in\mathcal{H}_{E,r,s}, and a Hecke character Ξ\Xi of the infinity type (a,b)(a,b) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}, define

(6.2) F(Ξ~𝔭)\displaystyle F^{(\widetilde{\Xi}_{\mathfrak{p}})} F(uaζ𝔭1,γ𝔭¯1),\displaystyle\coloneqq F(u^{a}\zeta_{\mathfrak{p}}-1,\gamma_{\overline{\mathfrak{p}}}-1),
(6.3) F(Ξ~𝔭¯)\displaystyle F^{(\widetilde{\Xi}_{\overline{\mathfrak{p}}})} F(γ𝔭1,ubζ𝔭¯1),\displaystyle\coloneqq F(\gamma_{\mathfrak{p}}-1,u^{b}\zeta_{\overline{\mathfrak{p}}}-1),

where ζ𝔮\zeta_{\mathfrak{q}} is a primitive p(n𝔮1)p^{(n_{\mathfrak{q}}-1)}-th root of unity for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}.

Lemma 6.7.

Let EE be a finite extension of p\mathbb{Q}_{p}, FE,r,sF\in\mathcal{H}_{E,r,s} be a power series and let Ξ\Xi be a Hecke character of KK of infinity type (a,b)(a,b) and conductor 𝔭n𝔭.𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}.\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}. Then, F(Ξ~𝔭)E(Ξ~𝔭(γ𝔭)),s(Γ𝔭¯)F^{(\widetilde{\Xi}_{\mathfrak{p}})}\in\mathcal{H}_{E(\widetilde{\Xi}_{\mathfrak{p}}(\gamma_{\mathfrak{p}})),s}(\Gamma_{\overline{\mathfrak{p}}}) and F(Ξ~𝔭¯)E(Ξ~𝔭¯(γ𝔭¯)),r(Γ𝔭)F^{(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}\in\mathcal{H}_{E(\widetilde{\Xi}_{\overline{\mathfrak{p}}}(\gamma_{\overline{\mathfrak{p}}})),r}(\Gamma_{\mathfrak{p}}), where E(Ξ~𝔮(γ𝔮))E(\widetilde{\Xi}_{\mathfrak{q}}(\gamma_{\mathfrak{q}})) is finite extension of E by adjoining values of Ξ~𝔮(γ𝔮)\widetilde{\Xi}_{\mathfrak{q}}(\gamma_{\mathfrak{q}}) for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}.

Proof.

The power series FF belongs to the power series ring E,r,s\mathcal{H}_{E,r,s} which is completed tensor product of E,r(Γ𝔭)\mathcal{H}_{E,r}(\Gamma_{\mathfrak{p}}) and E,s(Γ𝔭¯)\mathcal{H}_{E,s}(\Gamma_{\overline{\mathfrak{p}}}). Thus, if we substitute γ𝔭\gamma_{\mathfrak{p}} by uaζ𝔭u^{a}\zeta_{\mathfrak{p}}, then F(Ξ~𝔭)F^{(\widetilde{\Xi}_{\mathfrak{p}})} will be a power series with growth ss and the coefficients of F(Ξ~𝔭)F^{(\widetilde{\Xi}_{\mathfrak{p}})} will be in E(Ξ~𝔭(γ𝔭))E(\widetilde{\Xi}_{\mathfrak{p}}(\gamma_{\mathfrak{p}})).

Similarly, substituting γ𝔭¯\gamma_{\overline{\mathfrak{p}}} by ubζ𝔭¯u^{b}\zeta_{\overline{\mathfrak{p}}}, then F(Ξ~𝔭¯)E(Ξ~𝔭¯(𝔭¯)),s(Γ𝔭)F^{(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}\in\mathcal{H}_{E(\widetilde{\Xi}_{\overline{\mathfrak{p}}}(\overline{\mathfrak{p}})),s}(\Gamma_{\mathfrak{p}}). ∎

Isotypical components. Let η:ΔKp×\eta:\Delta_{K}\to\mathbb{Z}_{p}^{\times} (or η:ΔKp¯×\eta:\Delta_{K}\to\overline{\mathbb{Q}_{p}}^{\times})be a character, where ΔK\Delta_{K} is a finite abelian subgroup appearing in GpG_{p^{\infty}}. Write eη=1|ΔK|σΔη1(σ)σe_{\eta}=\frac{1}{|\Delta_{K}|}\sum_{\sigma\in\Delta}\eta^{-1}(\sigma)\sigma. For {p,E}*\in\{\mathbb{C}_{p},E\}, if F,r,s(Gp)F\in\mathcal{H}_{*,r,s}(G_{p^{\infty}}), write Fη=eη(F)F^{\eta}=e_{\eta}(F) for its image in eη(,r,s(Gp)),r,se_{\eta}(\mathcal{H}_{*,r,s}(G_{p^{\infty}}))\cong\mathcal{H}_{*,r,s}. Note that this isomorphism is a ring isomorphism If η=1\eta=1, we simply write FΔKF^{\Delta_{K}} instead of FηF^{\eta}. Note that FΔK,r,sF^{\Delta_{K}}\in\mathcal{H}_{*,r,s}.

7. Bianchi modular forms and their pp-adic LL-functions

In this section, we will briefly recall the definition of Bianchi modular forms, their LL-functions, and the pp-adic LL-functions constructed by Williams in [35].

7.1. Bianchi modular forms

We define Bianchi modular forms adelically. Fix a quadratic imaginary field KK.

Definition 7.1 (Level).

For any integral ideal 𝒩\mathcal{N} of 𝒪K\mathcal{O}_{K}, we let

Ω1(𝒩){(abcd)GL2(𝒪K^):c𝒩𝒪K^,a,d1+𝒩𝒪K^},\Omega_{1}(\mathcal{N})\coloneqq\left\{\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\text{GL}_{2}(\widehat{\mathcal{O}_{K}})\colon c\in\mathcal{N}\widehat{\mathcal{O}_{K}},a,d\in 1+\mathcal{N}\widehat{\mathcal{O}_{K}}\right\},

where 𝒪K^=𝒪K^\widehat{\mathcal{O}_{K}}=\mathcal{O}_{K}\otimes\widehat{\mathbb{Z}}.

Henceforth, we will always take k2k\geq 2 to be an integer.

For any ring RR, V2k2(R)V_{2k-2}(R) denote the ring of homogeneous polynomials over RR in two variables of degree 2k22k-2.

Definition 7.2 (Bianchi modular cusp forms).

We say a function

:GL2(𝔸K)V2k2()\mathcal{F}:\text{GL}_{2}(\mathbb{A}_{K})\to V_{2k-2}(\mathbb{C})

is a cusp form of weight (k,k)(k,k) and level 𝒩\mathcal{N} (i.e. level Ω1(𝒩)\Omega_{1}(\mathcal{N})) if it satisfies

  1. (1)

    For all uSU2()u\in\text{SU}_{2}(\mathbb{C}) and z×z\in\mathbb{C}^{\times},

    (zgu)=(g)ρ(u,z),\mathcal{F}(zgu)=\mathcal{F}(g)\rho(u,z),

    where ρ:SU2()××GL(V2k2())\rho:\text{SU}_{2}(\mathbb{C})\times\mathbb{C}^{\times}\to\text{GL}(V_{2k-2}(\mathbb{C})) is an antihomomorphism.

  2. (2)

    The function \mathcal{F} is right-invariant under the group Ω1(𝒩)\Omega_{1}(\mathcal{N}).

  3. (3)

    The function \mathcal{F} is left-invariant under the group GL2(K)\text{GL}_{2}(K).

  4. (4)

    The function \mathcal{F} is an eigenfunction of a Casimir operator \partial,

  5. (5)

    The function \mathcal{F} satisfies the cuspidal condition for all gGL2(𝔸K)g\in\text{GL}_{2}(\mathbb{A}_{K}), that is, we have

    K\𝔸K(ug)𝑑u=0.\int_{K\backslash\mathbb{A}_{K}}\mathcal{F}(ug)\,du=0.
Remarks 7.3.
  1. (1)

    In a result by Harder, he showed that if \mathcal{F} is Bianchi modular cusp form of weight (k1,k2)(k_{1},k_{2}), then k1=k2k_{1}=k_{2}. See [12].

  2. (2)

    A cusp form \mathcal{F} descends to give a collection of hh automorphic forms i:3V2k2()\mathcal{F}^{i}:\mathcal{H}_{3}\to V_{2k-2}(\mathbb{C}), where hh is the class number of KK, and 3GL2()/[SU2()Z(GL2())]\mathcal{H}_{3}\coloneqq\text{GL}_{2}(\mathbb{C})/[\text{SU}_{2}(\mathbb{C})Z(\text{GL}_{2}(\mathbb{C}))] is the hyperbolic 33-space.

  3. (3)

    For Fourier expansion of Bianchi modular forms, see [35, Section 1.2].

Definition 7.4 (Twisted LL-function of a Bianchi modular form).

Let \mathcal{F} be a Bianchi modular cusp form of any weight and level 𝒩\mathcal{N}. Let Ξ\Xi be a Hecke character of conductor 𝔣\mathfrak{f}. The twisted LL-function of \mathcal{F} is defined as

L(,Ξ,s)=0𝔪𝒪K,(𝔣,𝔪)=1c(𝔪,)Ξ(𝔪)N(𝔪)s,L(\mathcal{F},\Xi,s)=\sum_{\begin{subarray}{c}0\neq\mathfrak{m}\subset\mathcal{O}_{K},\\ (\mathfrak{f},\mathfrak{m})=1\end{subarray}}c(\mathfrak{m},\mathcal{F})\Xi(\mathfrak{m})N(\mathfrak{m})^{-s},

where c(𝔪,)c(\mathfrak{m},\mathcal{F}) is the 𝔪\mathfrak{m}-th Fourier coefficient of \mathcal{F} and ss\in\mathbb{C} in some suitable right-half plane.

We renormalize this LL-function, using Deligne’s Γ\Gamma-factor. We define

Λ(,Ξ,s)=Γ(q+s)Γ(r+s)(2πι)q+s(2πι)r+sL(,Ξ,s),\Lambda(\mathcal{F},\Xi,s)=\dfrac{\Gamma(q+s)\Gamma(r+s)}{(2\pi\iota)^{q+s}(2\pi\iota)^{r+s}}L(\mathcal{F},\Xi,s),

where (q,r)(q,r) is the infinity type of Ξ\Xi.

7.2. pp-adic LL-function of Bianchi modular forms

For the quadratic imaginary field K/K/\mathbb{Q} with class number hKh_{K} and discriminant D-D, let pp be an odd prime splitting in KK as (p)=𝔭𝔭¯(p)=\mathfrak{p}\overline{\mathfrak{p}}. Let e𝔮e_{\mathfrak{q}} denote the ramification index of the prime 𝔮\mathfrak{q} in KK.

Theorem 7.5 (Williams, [35, Theorem 7.4]).

Let \mathcal{F} be a Bianchi modular cusp form of weight (k,k)(k,k) and level 𝒩\mathcal{N} such that (p)𝒩(p)\mid\mathcal{N}. Let a𝔭a_{\mathfrak{p}} denote the U𝔭U_{\mathfrak{p}}-eigenvalues of \mathcal{F} where vp(a𝔭)<(k+1)/e𝔭v_{p}(a_{\mathfrak{p}})<(k+1)/e_{\mathfrak{p}} for all 𝔭p\mathfrak{p}\mid p. For any ideal 𝔣\mathfrak{f}, we define the operator U𝔣U_{\mathfrak{f}} as

U𝔣𝔭n𝔣U𝔭n.U_{\mathfrak{f}}\coloneqq\prod_{\mathfrak{p}^{n}\mid\mid\mathfrak{f}}U_{\mathfrak{p}}^{n}.

Then there exists a locally analytic distribution Lp,L_{p,\mathcal{F}} on the ray class group GpG_{p^{\infty}} such that for any Hecke character Ξ\Xi of infinity type (0,0)(a,b)(k2,k2)(0,0)\leq(a,b)\leq(k-2,k-2) and conductor 𝔣\mathfrak{f}, we have

(7.1) Lp,(Ξ~)=(explicit factor)1a𝔣Λ(,Ξ)Ω,L_{p,\mathcal{F}}(\widetilde{\Xi})=(\text{explicit factor})\dfrac{1}{a_{\mathfrak{f}}}\dfrac{\Lambda(\mathcal{F},\Xi)}{\Omega_{\mathcal{F}}},

where a𝔣a_{\mathfrak{f}} is U𝔣U_{\mathfrak{f}}-eigenvalue of \mathcal{F}, Λ(,Ξ)\Lambda(\mathcal{F},\Xi) is renormalized LL-series, and Ω\Omega_{\mathcal{F}} is a complex period.

The distribution LpL_{p} is (vp(λ𝔭))𝔭p(v_{p}(\lambda_{\mathfrak{p}}))_{\mathfrak{p}\mid p}-admissible and is unique with these interpolation and growth properties.

Remark 7.6.

In [35, Section 6.3], Williams has defined the admissibility for locally analytic distributions on 𝒪Kp\mathcal{O}_{K}\otimes\mathbb{Z}_{p}. But using methods from [24], we can extend the notion of admissibility for locally analytic distributions on 𝒪Kp\mathcal{O}_{K}\otimes\mathbb{Z}_{p} to locally analytic distributions on ray class group GpG_{p^{\infty}}. See [35, Section 7.4] for more details.

Remark 7.7.

For real numbers r,s0r,s\geq 0 and let EE be a finite extension of p\mathbb{Q}_{p}, we define D(r,s)(Gp,E)D^{(r,s)}(G_{p^{\infty}},E) to be the set of distributions μ\mu of GpG_{p^{\infty}} such that for fixed integers m,n0m,n\geq 0,

infgGpvp(μ(1gγ𝔭pmγ𝔭¯pn))Rumvn,\inf_{g\in G_{p^{\infty}}}v_{p}(\mu(1_{g\langle\gamma_{\mathfrak{p}}\rangle^{p^{m}}\langle\gamma_{\overline{\mathfrak{p}}}\rangle^{p^{n}}}))\geq R-um-vn,

for some constant RR\in\mathbb{R} which only depends on μ\mu.

Since pp splits in the quadratic imaginary field KK, we can identify D(u,v)(Gp,E)D^{(u,v)}(G_{p^{\infty}},E) with E,u,v(Gp)\mathcal{H}_{E,u,v}(G_{p^{\infty}}). See [19, Section 2.1] for the details.

Therefore if pp splits in KK as (p)=𝔭𝔭¯(p)=\mathfrak{p}\overline{\mathfrak{p}}, and \mathcal{F} is a Bianchi modular form which satisfies the conditions of the above theorem, then Lp,L_{p,\mathcal{F}} is a (vp(a𝔭),vp(a𝔭¯))(v_{p}(a_{\mathfrak{p}}),v_{p}(a_{\overline{\mathfrak{p}}}))-admissible locally analytic distribution on GpG_{p^{\infty}}, that is, by [35] and [24],

(7.2) Lp,D(vp(a𝔭),vp(a𝔭¯))(Gp,F),L_{p,\mathcal{F}}\in D^{(v_{p}(a_{\mathfrak{p}}),v_{p}(a_{\overline{\mathfrak{p}}}))}(G_{p^{\infty}},F),

where FF is a finite extension of p\mathbb{Q}_{p} containing a𝔭a_{\mathfrak{p}} and a𝔭¯a_{\overline{\mathfrak{p}}}. By Remark 7.7, we conclude

Lp,F,vp(a𝔭),vp(a𝔭¯)(Gp).L_{p,\mathcal{F}}\in\mathcal{H}_{F,v_{p}(a_{\mathfrak{p}}),v_{p}(a_{\overline{\mathfrak{p}}})}(G_{p^{\infty}}).

8. Factorisation of pp-adic LL-functions of Bianchi modular forms

In this section, we first define pp-stabilizations of Bianchi modular forms. Next, we modify our logarithmic matrix M¯\underline{M} and prove the main factorization theorem of two-variable pp-adic LL-functions.

8.1. pp-stabilization of Bianchi modular forms

We begin with a Bianchi modular form \mathcal{F} of weight (k,k)(k,k) and level 𝔫\mathfrak{n} such that (p𝒪K,𝔫)=1(p\mathcal{O}_{K},\mathfrak{n})=1. We further assume \mathcal{F} is a Hecke eigenform and for 𝔮{𝔭,𝔭}\mathfrak{q}\in\{\mathfrak{p},\mathfrak{p}\}, we have T𝔮=a𝔮T_{\mathfrak{q}}\mathcal{F}=a_{\mathfrak{q}}\mathcal{F}. Note that the norm of 𝔮\mathfrak{q} is pp. Consider the Hecke polynomial X2a𝔮X+pk1=(Xα𝔮)(Xβ𝔮)X^{2}-a_{\mathfrak{q}}X+p^{k-1}=(X-\alpha_{\mathfrak{q}})(X-\beta_{\mathfrak{q}}).

There are four pp-stabilisations α𝔭,α𝔭¯,α𝔭,β𝔭¯,β𝔭,α𝔭¯,\mathcal{F}^{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}},\mathcal{F}^{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}},\mathcal{F}^{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}},and β𝔭,β𝔭¯\mathcal{F}^{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}} of level p𝔫p\mathfrak{n}, such that for {α𝔭,β𝔭¯}*\in\{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}\} and {α𝔭¯,β𝔭¯}\dagger\in\{\alpha_{\overline{\mathfrak{p}}},\beta_{\overline{\mathfrak{p}}}\}, we have

(8.1) U𝔭(,)\displaystyle U_{\mathfrak{p}}(\mathcal{F}^{*,\dagger}) =,,\displaystyle=*\mathcal{F}^{*,\dagger},
(8.2) U𝔭¯(,)\displaystyle U_{\overline{\mathfrak{p}}}(\mathcal{F}^{*,\dagger}) =,.\displaystyle=\dagger\mathcal{F}^{*,\dagger}.

For more details about pp-stabilizations, refer to [27, Section 3.3].

Assumption 8.1.

Throughout the article, we assume

  1. (1)

    \mathcal{F} is non-ordinary at both the primes 𝔭\mathfrak{p} and 𝔭¯\overline{\mathfrak{p}} i.e. vp(a𝔭)v_{p}(a_{\mathfrak{p}}) and vp(a𝔭¯)>0v_{p}(a_{\overline{\mathfrak{p}}})>0.

  2. (2)

    vp(a𝔮)>k2p1v_{p}(a_{\mathfrak{q}})>\left\lfloor\dfrac{k-2}{p-1}\right\rfloor.

Let EE be a finite extension of p\mathbb{Q}_{p} which contains α𝔭,α𝔭¯,β𝔭\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}},\beta_{\mathfrak{p}} and β𝔭¯\beta_{\overline{\mathfrak{p}}}.

8.2. Modified logarithmic matrices

Recall the ring isomorphism τ𝔮:F(Γ1)F(Γ𝔮)\tau_{\mathfrak{q}}:\mathcal{H}_{F}(\Gamma_{1})\to\mathcal{H}_{F}(\Gamma_{\mathfrak{q}}), for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}. Consider the change of variable map between matrices induced by τ𝔮\tau_{\mathfrak{q}}:

Mat𝔮:M2,2(F(Γ1))M2,2(F(Γ𝔮)),\operatorname{Mat}_{\mathfrak{q}}:M_{2,2}(\mathcal{H}_{F}(\Gamma_{1}))\to M_{2,2}(\mathcal{H}_{F}(\Gamma_{\mathfrak{q}})),

such that

Mat𝔮((ABCD))=(τ𝔮(A)τ𝔮(B)τ𝔮(C)τ𝔮(D)).\operatorname{Mat}_{\mathfrak{q}}\left(\begin{pmatrix}A&B\\[6.0pt] C&D\end{pmatrix}\right)=\begin{pmatrix}\tau_{\mathfrak{q}}(A)&\tau_{\mathfrak{q}}(B)\\[6.0pt] \tau_{\mathfrak{q}}(C)&\tau_{\mathfrak{q}}(D)\end{pmatrix}.

Note that this map is also a ring isomorphism.

Let \mathcal{F} be a Bianchi modular form of level 𝔫\mathfrak{n} coprime to pp and let a𝔮a_{\mathfrak{q}} and β𝔮\beta_{\mathfrak{q}} be the T𝔮T_{\mathfrak{q}}-eigenvalues, for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}. Let

Aφ,𝔮\displaystyle A_{\varphi,\mathfrak{q}} =(01pk11a𝔮pk1,),\displaystyle=\begin{pmatrix}0&\dfrac{-1}{p^{k-1}}\\[12.0pt] 1&\dfrac{a_{\mathfrak{q}}}{p^{k-1}},\end{pmatrix},
Q𝔮\displaystyle Q_{\mathfrak{q}} =(α𝔮β𝔮pk1pk1),\displaystyle=\begin{pmatrix}\alpha_{\mathfrak{q}}&-\beta_{\mathfrak{q}}\\[6.0pt] -p^{k-1}&p^{k-1}\end{pmatrix},
M𝔮¯\displaystyle\underline{M_{\mathfrak{q}}} =Mat𝔮(M¯).\displaystyle=\operatorname{Mat}_{\mathfrak{q}}(\underline{M}).
Theorem 8.2.

For 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\},

  1. (1)

    The elements in the first row of Q𝔮1M𝔮¯Q_{\mathfrak{q}}^{-1}\underline{M_{\mathfrak{q}}} are inside E,vp(α𝔮)(Γ𝔮)\mathcal{H}_{E,v_{p}(\alpha_{\mathfrak{q}})}(\Gamma_{\mathfrak{q}}), while the elements in the second row are in E,vp(β𝔮)(Γ𝔮)\mathcal{H}_{E,v_{p}(\beta_{\mathfrak{q}})}(\Gamma_{\mathfrak{q}}).

  2. (2)

    The second row of the matrix Aφ,𝔮nM𝔮¯A_{\varphi,\mathfrak{q}}^{-n}\underline{M_{\mathfrak{q}}} is divisible by the cyclotomic polynomial Φn1,k1(γ𝔮)\Phi_{n-1,k-1}(\gamma_{\mathfrak{q}}).

  3. (3)

    The determinant of M𝔮¯\underline{M_{\mathfrak{q}}} is logp,k1(γ𝔮)δk1(γ𝔮1)\dfrac{\log_{p,k-1}(\gamma_{\mathfrak{q}})}{\delta_{k-1}(\gamma_{\mathfrak{q}}-1)} upto a unit in ΛE(Γ𝔮)\Lambda_{E}(\Gamma_{\mathfrak{q}}).

Proof.

(1) follows from Proposition 5.1 and the definitions of Q𝔮Q_{\mathfrak{q}} and M𝔮¯\underline{M_{\mathfrak{q}}}. (2) follows from Lemma 5.2.

For (3), we know M𝔮¯=Mat𝔮(M¯)\underline{M_{\mathfrak{q}}}=\operatorname{Mat}_{\mathfrak{q}}(\underline{M}). Thus,

det(M𝔮¯)\displaystyle\det(\underline{M_{\mathfrak{q}}}) =det(Mat𝔮(M¯)),\displaystyle=\det(\operatorname{Mat}_{\mathfrak{q}}(\underline{M})),
=τ𝔮(det(M¯)),\displaystyle=\tau_{\mathfrak{q}}(\det(\underline{M})),

since τ𝔮\tau_{\mathfrak{q}} is ring isomorphism. Hence the result follows from Lemma 5.3. ∎

For the rest of the article, we write

(8.3) Q𝔮1M𝔮¯=(P1,𝔮P2,𝔮P3,𝔮P4,𝔮).Q_{\mathfrak{q}}^{-1}\underline{M_{\mathfrak{q}}}=\begin{pmatrix}P_{1,\mathfrak{q}}&P_{2,\mathfrak{q}}\\[6.0pt] P_{3,\mathfrak{q}}&P_{4,\mathfrak{q}}\end{pmatrix}.

8.3. The main theorem and its proof

In this section, we generalize the results of [19] and use them to decompose the two variable pp-adic LL-functions of Bianchi modular forms.

For the Bianchi cusp form \mathcal{F} of level 𝔫\mathfrak{n} which is not divisible by (p)(p), let a𝔮a_{\mathfrak{q}} be the T𝔮T_{\mathfrak{q}}-eigenvalue of \mathcal{F} for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}. Recall that we have four pp-stabilizations α𝔭,α𝔭¯,α𝔭,β𝔭¯,β𝔭,α𝔭¯\mathcal{F}^{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}},\mathcal{F}^{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}},\mathcal{F}^{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}, and β𝔭,β𝔭¯\mathcal{F}^{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}} of level p𝒩p\mathcal{N}, where α𝔮,β𝔮\alpha_{\mathfrak{q}},\beta_{\mathfrak{q}} are the roots of Hecke polynomial X2a𝔮X+pk1X^{2}-a_{\mathfrak{q}}X+p^{k-1}, for 𝔮{𝔭,𝔭¯}\mathfrak{q}\in\{\mathfrak{p},\overline{\mathfrak{p}}\}.

Therefore, from Theorem 7.5 and equation (7.2), for {α𝔭,β𝔭}*\in\{\alpha_{\mathfrak{p}},\beta_{\mathfrak{p}}\} and {α𝔭¯,β𝔭¯}\bullet\in\{\alpha_{\overline{\mathfrak{p}}},\beta_{\overline{\mathfrak{p}}}\}, we have

L,Lp,,E,vp(),vp()(Gp).L_{*,\bullet}\coloneqq L_{p,\mathcal{F}^{*,\bullet}}\in\mathcal{H}_{E,v_{p}(*),v_{p}(\bullet)}(G_{p^{\infty}}).

Moreover, for any Hecke character Ξ\Xi of infinity type (0,0)(a,b)(k2,k2)(0,0)\leq(a,b)\leq(k-2,k-2) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}} with n𝔭,n𝔭¯1n_{\mathfrak{p}},n_{\overline{\mathfrak{p}}}\geq 1, we have

(8.4) Lα𝔭,α𝔭¯(Ξ~)\displaystyle L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}) =α𝔭n𝔭α𝔭¯n𝔭¯Ca,b,Ξ~,\displaystyle=\alpha_{\mathfrak{p}}^{-n_{\mathfrak{p}}}\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}C_{a,b,\widetilde{\Xi}},
(8.5) Lα𝔭,β𝔭¯(Ξ~)\displaystyle L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}) =α𝔭n𝔭β𝔭¯n𝔭¯Ca,b,Ξ~,\displaystyle=\alpha_{\mathfrak{p}}^{-n_{\mathfrak{p}}}\beta_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}C_{a,b,\widetilde{\Xi}},
(8.6) Lβ𝔭,α𝔭¯(Ξ~)\displaystyle L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}) =β𝔭n𝔭α𝔭¯n𝔭¯Ca,b,Ξ~,\displaystyle=\beta_{\mathfrak{p}}^{-n_{\mathfrak{p}}}\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}C_{a,b,\widetilde{\Xi}},
(8.7) Lβ𝔭,β𝔭¯(Ξ~)\displaystyle L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}) =β𝔭n𝔭β𝔭¯n𝔭¯Ca,b,Ξ~,\displaystyle=\beta_{\mathfrak{p}}^{-n_{\mathfrak{p}}}\beta_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}C_{a,b,\widetilde{\Xi}},

where Ca,b,Ξ~p¯C_{a,b,\widetilde{\Xi}}\in\overline{\mathbb{Q}_{p}} is a constant independent of α𝔭,β𝔭,α𝔭¯,β𝔭¯\alpha_{\mathfrak{p}},\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}},\beta_{\overline{\mathfrak{p}}}.

The main theorem is as follows:

Theorem 8.3.

There exist two variable power series with bounded coefficients, that is, there exist L,,L,,L,,L,ΛE(Gp)L_{\sharp,\sharp},L_{\sharp,\flat},L_{\flat,\sharp},L_{\flat,\flat}\in\Lambda_{E}(G_{p^{\infty}}) such that

(8.8) (Lα𝔭,α𝔭¯Lβ𝔭,α𝔭¯Lα𝔭,β𝔭¯Lβ𝔭,β𝔭¯)=Q𝔭¯1M𝔭¯¯(L,L,L,L,)(Q𝔭1M𝔭¯)T.\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}=Q^{-1}_{\overline{\mathfrak{p}}}\underline{M_{\overline{\mathfrak{p}}}}\begin{pmatrix}L_{\sharp,\sharp}&L_{\flat,\sharp}\\[6.0pt] L_{\sharp,\flat}&L_{\flat,\flat}\end{pmatrix}(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})^{T}.
Remark 8.4.

Theorem 8.3 is analogus to [19, Theorem 2.2] and [7, Equation (24)].

We first factorize through the variable γ𝔭\gamma_{\mathfrak{p}} and then through γ𝔭¯\gamma_{\overline{\mathfrak{p}}}. In other words, we will first decompose the matrix (Lα𝔭,α𝔭¯Lβ𝔭,α𝔭¯Lα𝔭,β𝔭¯Lβ𝔭,β𝔭¯)\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}\end{pmatrix} in terms of matrix, say CC, and M𝔭¯\underline{M_{\mathfrak{p}}}. Then we decompose CC as a product of matrices (L,L,L,L,)\begin{pmatrix}L_{\sharp,\sharp}&L_{\flat,\sharp}\\[6.0pt] L_{\sharp,\flat}&L_{\flat,\flat}\end{pmatrix} and M𝔭¯¯\underline{M_{\overline{\mathfrak{p}}}}.

First, we need the following classical result:

Lemma 8.5.

Let γ\gamma be a topological generator of p\mathbb{Z}_{p}. Let s,hs,h be non-negative integers and assume s<hs<h. If FE[[γ1]]F\in E[[\gamma-1]] is O(logps)O(\log_{p}^{s}) and vanishes at all characters of type χiω\chi^{i}\omega for all 0ih10\leq i\leq h-1, where χ\chi is any character which sends γ\gamma to another topological generator u1+ppu\in 1+p\mathbb{Z}_{p} (for example the cyclotomic character) and ω\omega is any Dirichlet character of conductor pn,n1p^{n},n\geq 1. Then FF is identically 0.

Proof.

See [1, Lemme II.2.5] and [33, Lemma 2.10].

We give a sketch here. FF is o(logph)o(log_{p}^{h}), since FF is O(logps)O(\log_{p}^{s}) and s<hs<h. Suppose FF is not 0 and has infinitely many zeros, then

F=logp,h(γ)G,F=\log_{p,h}(\gamma)\cdot G,

where G0G\neq 0 is another power series. Note that logp,h(γ)\log_{p,h}(\gamma) is not o(logph)o(\log_{p}^{h}) and therefore FF is not o(logph)o(\log_{p}^{h}). This is a contradiction. ∎

Recall that EE is a finite extension of p\mathbb{Q}_{p} containing α𝔭,β𝔭,α𝔭¯\alpha_{\mathfrak{p}},\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}} and β𝔭¯\beta_{\overline{\mathfrak{p}}}. Let S𝔭S_{\mathfrak{p}} be the set of all Hecke characters on the ray class group GpG_{p^{\infty}} with infinity type (0,0)(a,0)(k2,0)(0,0)\leq(a,0)\leq(k-2,0) and conductor 𝔭n𝔭\mathfrak{p}^{n_{\mathfrak{p}}}, for n𝔭>1n_{\mathfrak{p}}>1. Similarly, let S𝔭¯S_{\overline{\mathfrak{p}}} be the set of all Hecke characters on the ray class group GpG_{p^{\infty}} with infinity type (0,0)(0,b)(0,k2)(0,0)\leq(0,b)\leq(0,k-2) and conductor 𝔭¯n𝔭¯\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}, for n𝔭¯>1n_{\overline{\mathfrak{p}}}>1.

Proposition 8.6.

There exist L,α𝔭¯,L,α𝔭¯E,0,vp(α𝔭¯)(Gp)L_{\sharp,\alpha_{\overline{\mathfrak{p}}}},L_{\flat,\alpha_{\overline{\mathfrak{p}}}}\in\mathcal{H}_{E,0,v_{p}(\alpha_{\overline{\mathfrak{p}}})}(G_{p^{\infty}}) and L,β𝔭¯,L,β𝔭¯E,0,vp(β𝔭¯)(Gp)L_{\sharp,\beta_{\overline{\mathfrak{p}}}},L_{\flat,\beta_{\overline{\mathfrak{p}}}}\in\mathcal{H}_{E,0,v_{p}(\beta_{\overline{\mathfrak{p}}})}(G_{p^{\infty}}) such that

(Lα𝔭,α𝔭¯Lβ𝔭,α𝔭¯Lα𝔭,β𝔭¯Lβ𝔭,β𝔭¯)=(L,α𝔭¯L,α𝔭¯L,β𝔭¯L,β𝔭¯)(Q𝔭1M𝔭¯)T.\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}&L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}=\begin{pmatrix}L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}&L_{\flat,\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\sharp,\beta_{\overline{\mathfrak{p}}}}&L_{\flat,\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})^{T}.
Proof.

This is a generalization of [19, Proposition 2.3]. Recall that L,L_{*,\bullet} are locally analytic distributions on the ray class group GpΔK×γ𝔭¯×γ𝔭¯¯G_{p^{\infty}}\cong\Delta_{K}\times\overline{\langle\gamma_{\mathfrak{p}}\rangle}\times\overline{\langle\gamma_{\overline{\mathfrak{p}}}\rangle}. For any character η:ΔKp¯×\eta:\Delta_{K}\to\overline{\mathbb{Z}_{p}}^{\times}, we will prove that for Lα𝔭,α𝔭¯η,Lβ𝔭,α𝔭¯ηE,vp(α𝔭),vp(α𝔭¯),L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\eta},L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\eta}\in\mathcal{H}_{E,v_{p}(\alpha_{\mathfrak{p}}),v_{p}(\alpha_{\overline{\mathfrak{p}}})}, there exist L,α𝔭¯η,L,α𝔭¯ηE,0,vp(α𝔭¯)L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}^{\eta},L_{\flat,\alpha_{\overline{\mathfrak{p}}}}^{\eta}\in\mathcal{H}_{E,0,v_{p}(\alpha_{\overline{\mathfrak{p}}})} such that

(8.9) (Lα𝔭,α𝔭¯ηLβ𝔭,α𝔭¯η)=Q𝔭1M𝔭¯(L,α𝔭¯ηL,α𝔭¯η).\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\eta}\\[6.0pt] L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\eta}\end{pmatrix}=Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}\begin{pmatrix}L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}^{\eta}\\[6.0pt] L_{\flat,\alpha_{\overline{\mathfrak{p}}}}^{\eta}\end{pmatrix}.

and therefore,

(Lα𝔭,α𝔭¯Lβ𝔭,α𝔭¯)=Q𝔭1M𝔭¯(L,α𝔭¯L,α𝔭¯).\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}\end{pmatrix}=Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}\begin{pmatrix}L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\flat,\alpha_{\overline{\mathfrak{p}}}}\end{pmatrix}.

Fix η=1\eta=1. The proof for other characters is similar.

Let Ξ\Xi be any Hecke character of KK of infinity type (0,0)(a,b)(k2,k2)(0,0)\leq(a,b)\leq(k-2,k-2) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}, where n𝔭,n𝔭¯1n_{\mathfrak{p}},n_{\overline{\mathfrak{p}}}\geq 1. Using equations (8.4) and (8.6), we get

(8.10) Lα𝔭,α𝔭¯ΔK(Ξˇ)\displaystyle L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi}) =α𝔭n𝔭(α𝔭¯n𝔭¯Ca,b,Ξ~),\displaystyle=\alpha_{\mathfrak{p}}^{-n_{\mathfrak{p}}}(\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}\cdot C_{a,b,\widetilde{\Xi}}),
(8.11) Lβ𝔭,α𝔭¯ΔK(Ξˇ)\displaystyle L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi}) =β𝔭n𝔭(α𝔭¯n𝔭¯Ca,b,Ξ~),\displaystyle=\beta_{\mathfrak{p}}^{-n_{\mathfrak{p}}}(\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}\cdot C_{a,b,\widetilde{\Xi}}),

where Ξˇ=Ξ~|γ𝔭¯×γ𝔭¯¯=Ξ~𝔭Ξ~𝔭¯\widecheck{\Xi}=\widetilde{\Xi}|_{\overline{\langle\gamma_{\mathfrak{p}}\rangle}\times\overline{\langle\gamma_{\overline{\mathfrak{p}}}\rangle}}=\widetilde{\Xi}_{\mathfrak{p}}\cdot\widetilde{\Xi}_{\overline{\mathfrak{p}}}. Denote αn𝔭¯Ca,b,Ξ~\alpha^{-n_{\overline{\mathfrak{p}}}}C_{a,b,\widetilde{\Xi}} by DD. Using (6.3), we can rewrite equations (8.10) and (8.11) as

(8.12) Lα𝔭,α𝔭¯ΔK(Ξ~𝔭¯)(Ξ~𝔭)\displaystyle L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}(\widetilde{\Xi}_{\mathfrak{p}}) =α𝔭n𝔭D,\displaystyle=\alpha_{\mathfrak{p}}^{-n_{\mathfrak{p}}}D,
(8.13) Lβ𝔭,α𝔭¯ΔK(Ξ~𝔭¯)(Ξ~𝔭)\displaystyle L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}(\widetilde{\Xi}_{\mathfrak{p}}) =β𝔭n𝔭D.\displaystyle=\beta_{\mathfrak{p}}^{-n_{\mathfrak{p}}}D.

Note that Lα𝔭,α𝔭¯ΔK(Ξ~𝔭¯)E,vp(α𝔭)(Γ𝔭)L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}}\in\mathcal{H}_{E^{\prime},v_{p}(\alpha_{\mathfrak{p}})}(\Gamma_{\mathfrak{p}}) and Lβ𝔭,α𝔭¯ΔK(Ξ~𝔭¯)E,vp(β𝔭)(Γ𝔭)L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}}\in\mathcal{H}_{E^{\prime},v_{p}(\beta_{\mathfrak{p}})}(\Gamma_{\mathfrak{p}}), where EE^{\prime} is some field extension of EE.

Let

G1=P4,𝔭Lα𝔭,α𝔭¯ΔK(Ξ~𝔭¯)P2,𝔭Lβ𝔭,α𝔭¯ΔK(Ξ~𝔭¯)G_{1}=P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}

and

G2=P3,𝔭Lα𝔭,α𝔭¯ΔK(Ξ~𝔭¯)+P1,𝔭Lβ𝔭,α𝔭¯ΔK(Ξ~𝔭¯).G_{2}=-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\Xi}_{\overline{\mathfrak{p}}})}.

Then, from Theorem 8.2, G1,G2E,k1G_{1},G_{2}\in\mathcal{H}_{E^{\prime},k-1} and G1(Ξ~𝔭)=G2(Ξ~𝔭)=0G_{1}(\widetilde{\Xi}_{\mathfrak{p}})=G_{2}(\widetilde{\Xi}_{\mathfrak{p}})=0. Hence, Theorem 5.5 implies that det(Q𝔭1M𝔭¯)\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}}) divides both G1G_{1} and G2G_{2} in E,k1(Γ𝔭)\mathcal{H}_{E^{\prime},k-1}(\Gamma_{\mathfrak{p}}).

Thus,

(8.14) P4,𝔭(Ξˇ)Lα𝔭,α𝔭¯ΔK(Ξˇ)P2,𝔭(Ξˇ)Lα𝔭,α𝔭¯ΔK(Ξˇ)=P3,𝔭(Ξˇ)Lα𝔭,α𝔭¯ΔK(Ξˇ)+P1,𝔭(Ξˇ)Lβ𝔭,α𝔭¯ΔK(Ξˇ)=0,P_{4,\mathfrak{p}}(\widecheck{\Xi})L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi})-P_{2,\mathfrak{p}}(\widecheck{\Xi})L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\check{\Xi})=-P_{3,\mathfrak{p}}(\widecheck{\Xi})L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi})+P_{1,\mathfrak{p}}(\widecheck{\Xi})L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi})=0,

for any Hecke character Ξ\Xi of infinity type (0,0)(a,b)(k2,k2)(0,0)\leq(a,b)\leq(k-2,k-2) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}.

Thus, for any Hecke characters ω1S𝔭\omega_{1}\in S_{\mathfrak{p}}, ω2S𝔭¯\omega_{2}\in S_{\overline{\mathfrak{p}}} , (8.14) implies

(P4,𝔭Lα𝔭,α𝔭¯ΔKP2,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭ω2~𝔭¯)=0,(P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})(\widetilde{\omega_{1}}_{\mathfrak{p}}\widetilde{\omega_{2}}_{\overline{\mathfrak{p}}})=0,

which we rewrite as

(8.15) (P4,𝔭Lα𝔭,α𝔭¯ΔKP2,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭)(ω2~𝔭¯)=0.(P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})^{(\widetilde{\omega_{1}}_{\mathfrak{p}})}(\widetilde{\omega_{2}}_{\overline{\mathfrak{p}}})=0.

Similarly.

(8.16) (P3,𝔭Lα𝔭,α𝔭¯ΔK+P1,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭)(ω2~𝔭¯)=0.(-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})^{(\widetilde{\omega_{1}}_{\mathfrak{p}})}(\widetilde{\omega_{2}}_{\overline{\mathfrak{p}}})=0.

Hence, the distributions (P4,𝔭Lα𝔭,α𝔭¯ΔKP2,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭)(P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})^{(\widetilde{\omega_{1}}_{\mathfrak{p}})} and (P3,𝔭Lα𝔭,α𝔭¯ΔK+P1,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭)(-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})^{(\widetilde{\omega_{1}}_{\mathfrak{p}})} vanish at all characters ω2S𝔭¯\omega_{2}\in S_{\overline{\mathfrak{p}}}. Moreover, these two distributions belong to vp(α𝔭¯),E(Γ𝔭¯)\mathcal{H}_{v_{p}(\alpha_{\overline{\mathfrak{p}}}),E^{\prime}}(\Gamma_{\overline{\mathfrak{p}}}) and vp(α𝔭¯)<k1v_{p}(\alpha_{\overline{\mathfrak{p}}})<k-1. Therefore, Lemma 8.5 implies

(P4,𝔭Lα𝔭,α𝔭¯ΔKP2,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭)\displaystyle(P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})^{(\widetilde{\omega_{1}}_{\mathfrak{p}})} =0,\displaystyle=0,
(P3,𝔭Lα𝔭,α𝔭¯ΔK+P1,𝔭Lβ𝔭,α𝔭¯ΔK)(ω1~𝔭)\displaystyle(-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}})^{(\widetilde{\omega_{1}}_{\mathfrak{p}})} =0.\displaystyle=0.

Hence, using Theorem 5.5 again, we conclude that det(Q𝔭1M𝔭¯)\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}}) divide (P4,𝔭Lα𝔭,α𝔭¯ΔKP2,𝔭Lβ𝔭,α𝔭¯ΔK)(P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}) and (P3,𝔭Lα𝔭,α𝔭¯ΔK+P1,𝔭Lβ𝔭,α𝔭¯ΔK)(-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}) over the two-variable distribution algebra E,k1,vp(α𝔭¯)\mathcal{H}_{E,k-1,v_{p}(\alpha_{\overline{\mathfrak{p}}})}.

Write

L,α𝔭¯ΔK\displaystyle L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}} =P4,𝔭Lα𝔭,α𝔭¯ΔKP2,𝔭Lβ𝔭,α𝔭¯ΔKdet(Q𝔭1M𝔭¯),\displaystyle=\dfrac{P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}}{\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}})},
L,α𝔭¯ΔK\displaystyle L_{\flat,\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}} =P3,𝔭Lα𝔭,α𝔭¯ΔK+P1,𝔭Lβ𝔭,α𝔭¯ΔKdet(Q𝔭1M𝔭¯).\displaystyle=\dfrac{-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}}{\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}})}.

Then, Theorem 5.5 implies L,α𝔭¯ΔKL_{\sharp,\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}} and L,α𝔭¯ΔKL_{\flat,\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}} lie in E,0,vp(α𝔭¯)\mathcal{H}_{E,0,v_{p}(\alpha_{\overline{\mathfrak{p}}})}.

We then write

L,α𝔭¯\displaystyle L_{\sharp,\alpha_{\overline{\mathfrak{p}}}} =P4,𝔭Lα𝔭,α𝔭¯P2,𝔭Lβ𝔭,α𝔭¯det(Q𝔭1M𝔭¯),\displaystyle=\dfrac{P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}}{\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}})},
L,α𝔭¯\displaystyle L_{\flat,\alpha_{\overline{\mathfrak{p}}}} =P3,𝔭Lα𝔭,α𝔭¯+P1,𝔭Lβ𝔭,α𝔭¯det(Q𝔭1M𝔭¯).\displaystyle=\dfrac{-P_{3,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}+P_{1,\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}}{\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}})}.

Since det(Q𝔭1M𝔭¯)\det(Q_{\mathfrak{p}}^{-1}\underline{M_{\mathfrak{p}}}) divides each isotypic component of the two distributions in the numerators, L,α𝔭¯L_{\sharp,\alpha_{\overline{\mathfrak{p}}}} and L,α𝔭¯L_{\flat,\alpha_{\overline{\mathfrak{p}}}} are elements in E,0,vp(α𝔭¯)(Gp)\mathcal{H}_{E,0,v_{p}(\alpha_{\overline{\mathfrak{p}}})}(G_{p^{\infty}}).

The proof for

(Lα𝔭,β𝔭¯Lβ𝔭,β𝔭¯)=Q𝔭1M𝔭¯(L,β𝔭¯L,β𝔭¯).\begin{pmatrix}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}=Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}\begin{pmatrix}L_{\sharp,\beta_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\flat,\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}.

is identical. ∎

Recall r,E{f(X)=n0anXnE[[X]]:supn(nr|an|p)<}\mathcal{H}_{r,E}\coloneqq\{f(X)=\sum_{n\geq 0}a_{n}X^{n}\in E[[X]]\colon\sup_{n}(n^{-r}|a_{n}|_{p})<\infty\}. Then, we can identify E,r,sE,r(Γ𝔭)^E,s(Γ𝔭¯)\mathcal{H}_{E,r,s}\coloneqq\mathcal{H}_{E,r}(\Gamma_{\mathfrak{p}})\widehat{\otimes}\mathcal{H}_{E,s}(\Gamma_{\overline{\mathfrak{p}}}) with E,r^E,s\mathcal{H}_{E,r}\widehat{\otimes}\mathcal{H}_{E,s} by identifying X=γ𝔭1X=\gamma_{\mathfrak{p}}-1 and Y=γ𝔭¯1Y=\gamma_{\overline{\mathfrak{p}}}-1. We define the operator 𝔭\partial_{\mathfrak{p}} to be the partial derivative X\dfrac{\partial}{\partial X}. The next proposition is a generalization of [19, Lemma 2.4].

Proposition 8.7.

Let Ξ\Xi be any character Hecke character of KK of the infinity type (0,0)(a,b)(k2,k2)(0,0)\leq(a,b)\leq(k-2,k-2) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}} with n𝔭,n𝔭¯>0n_{\mathfrak{p}},n_{\overline{\mathfrak{p}}}>0. Then, there exist constants Aa,b,Ξ,Ba,b,Ξp¯A_{a,b,\Xi},B_{a,b,\Xi}\in\overline{\mathbb{Q}_{p}} such that

𝔭Lα𝔭,α𝔭¯(Ξ~)=α𝔭¯n𝔭¯Aa,b,Ξ~,𝔭Lα𝔭,β𝔭¯(Ξ~)=β𝔭¯n𝔭¯Aa,b,Ξ~,𝔭Lβ𝔭,α𝔭¯(Ξ~)=α𝔭¯n𝔭¯Ba,b,Ξ~,𝔭Lβ𝔭,β𝔭¯(Ξ~)=β𝔭¯n𝔭¯Ba,b,Ξ~.\begin{matrix}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}(\widetilde{\Xi})=\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}A_{a,b,\widetilde{\Xi}},&\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}(\widetilde{\Xi})=\beta_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}A_{a,b,\widetilde{\Xi}},\\[6.0pt] \partial_{\mathfrak{p}}L_{\beta_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}(\widetilde{\Xi})=\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}B_{a,b,\widetilde{\Xi}},&\partial_{\mathfrak{p}}L_{\beta_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}(\widetilde{\Xi})=\beta_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}B_{a,b,\widetilde{\Xi}}.\end{matrix}
Proof.

We will only show that

α𝔭¯n𝔭¯𝔭Lα𝔭,α𝔭¯(Ξ~)\displaystyle\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}) =β𝔭¯n𝔭¯𝔭Lα𝔭,β𝔭¯(Ξ~),\displaystyle=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}),

for any Hecke character Ξ\Xi of of the infinity type (0,0)(a,b)(k2,k2)(0,0)\leq(a,b)\leq(k-2,k-2) and conductor 𝔭n𝔭𝔭¯n𝔭¯\mathfrak{p}^{n_{\mathfrak{p}}}\overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}} with n𝔭,n𝔭¯>0n_{\mathfrak{p}},n_{\overline{\mathfrak{p}}}>0.

Fix a Hecke character ω1S𝔭\omega_{1}\in S_{\mathfrak{p}}. Then, for any Hecke character ω2S𝔭¯\omega_{2}\in S_{\overline{\mathfrak{p}}}, (8.4) and (8.5) imply

(8.17) α𝔭¯n𝔭¯Lα𝔭,α𝔭¯ΔK(ω1,𝔭~ω2,𝔭¯~)=β𝔭¯n𝔭¯Lα𝔭,β𝔭¯ΔK(ω1,𝔭~ω2,𝔭¯~),\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widetilde{\omega_{1,\mathfrak{p}}}\widetilde{\omega_{2,\overline{\mathfrak{p}}}})=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widetilde{\omega_{1,\mathfrak{p}}}\widetilde{\omega_{2,\overline{\mathfrak{p}}}}),

where Lα𝔭,α𝔭¯ΔK,Lα𝔭,β𝔭¯ΔKL_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}},L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}} are isotypic components of Lα𝔭,α𝔭¯,Lα𝔭,β𝔭¯L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}},L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}} respectively with respect to the trivial character of ΔK\Delta_{K}. Using (6.3), we rewrite (8.17) as

(8.18) α𝔭¯n𝔭¯Lα𝔭,α𝔭¯ΔK(ω2,𝔭¯~)(ω1,𝔭~)=β𝔭¯n𝔭¯Lα𝔭,β𝔭¯ΔK(ω2,𝔭¯~)(ω1,𝔭~).\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}(\widetilde{\omega_{1,\mathfrak{p}}})=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}(\widetilde{\omega_{1,\mathfrak{p}}}).

From Lemma 6.7, we know that Lα𝔭,α𝔭¯ΔK(ω2,𝔭¯~),Lα𝔭,β𝔭¯ΔK(ω2,𝔭¯~)E,vp(α𝔭)(Γ𝔭)L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})},L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}\in\mathcal{H}_{E^{\prime},v_{p}(\alpha_{\mathfrak{p}})}(\Gamma_{\mathfrak{p}}) for some extension EE^{\prime} of EE. As vp(α𝔭)<k1v_{p}(\alpha_{\mathfrak{p}})<k-1, using Lemma 8.5 we have

α𝔭¯n𝔭¯Lα𝔭,α𝔭¯ΔK(ω2,𝔭¯~)=β𝔭¯n𝔭¯Lα𝔭,β𝔭¯ΔK(ω2,𝔭¯~).\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}.

Hence, their partial derivatives also agree, i.e.

(8.19) α𝔭¯n𝔭¯𝔭Lα𝔭,α𝔭¯ΔK(ω2,𝔭¯~)=β𝔭¯n𝔭¯𝔭Lα𝔭,β𝔭¯ΔK(ω2,𝔭¯~).\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})}.

But, for any power series FE,vp(α𝔭),sF\in\mathcal{H}_{E,v_{p}(\alpha_{\mathfrak{p}}),s},

𝔭(F(ω2,𝔭¯~))(ω1,𝔭~)=(𝔭F)(ω1,𝔭~ω2,𝔭¯~),\partial_{\mathfrak{p}}(F^{(\widetilde{\omega_{2,\overline{\mathfrak{p}}}})})(\widetilde{\omega_{1,\mathfrak{p}}})=(\partial_{\mathfrak{p}}F)(\widetilde{\omega_{1,\mathfrak{p}}}\widetilde{\omega_{2,\overline{\mathfrak{p}}}}),

for all Hecke characters ω1S𝔭\omega_{1}\in S_{\mathfrak{p}}.

Therefore for any Hecke character Ξ\Xi,

(8.20) α𝔭¯n𝔭¯𝔭Lα𝔭,α𝔭¯ΔK(Ξˇ)=β𝔭¯n𝔭¯𝔭Lα𝔭,β𝔭¯ΔK(Ξˇ),\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi})=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi}),

Since equation (8.20) is true for any isotypic component, we have

(8.21) α𝔭¯n𝔭¯𝔭Lα𝔭,α𝔭¯(Ξ~)=β𝔭¯n𝔭¯𝔭Lα𝔭,β𝔭¯(Ξ~).\alpha_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\alpha_{\overline{\mathfrak{p}}}}(\widetilde{\Xi})=\beta_{\overline{\mathfrak{p}}}^{n_{\overline{\mathfrak{p}}}}\partial_{\mathfrak{p}}L_{\alpha_{\mathfrak{p}},\beta_{\overline{\mathfrak{p}}}}(\widetilde{\Xi}).

Proposition 8.8.

There exist L,,L,,L,,L,ΛE(Gp)L_{\sharp,\sharp},L_{\sharp,\flat},L_{\flat,\sharp},L_{\flat,\flat}\in\Lambda_{E}(G_{p^{\infty}}) such that

(L,α𝔭¯L,α𝔭¯L,β𝔭¯L,β𝔭¯)=(Q𝔭¯1M𝔭¯¯)(L,L,L,L,).\begin{pmatrix}L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}&L_{\flat,\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\sharp,\beta_{\overline{\mathfrak{p}}}}&L_{\flat,\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}=(Q_{\overline{\mathfrak{p}}}^{-1}\underline{M_{\overline{\mathfrak{p}}}})\begin{pmatrix}L_{\sharp,\sharp}&L_{\flat,\sharp}\\[6.0pt] L_{\sharp,\flat}&L_{\flat,\flat}\end{pmatrix}.
Proof.

The proof is similar to the proof of [19, Proposition 2.5]. We will prove that

(L,α𝔭¯L,β𝔭¯)=(Q𝔭¯1M𝔭¯¯)(L,L,).\begin{pmatrix}L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}\\[6.0pt] L_{\sharp,\beta_{\overline{\mathfrak{p}}}}\end{pmatrix}=(Q^{-1}_{\overline{\mathfrak{p}}}\underline{M_{\overline{\mathfrak{p}}}})\begin{pmatrix}L_{\sharp,\sharp}\\[6.0pt] L_{\sharp,\flat}\end{pmatrix}.

The proof for the other set of power series is similar.

Let ω1S𝔭\omega_{1}\in S_{\mathfrak{p}} and ω2S𝔭¯\omega_{2}\in S_{\overline{\mathfrak{p}}} and Ξ=ω1.ω2\Xi=\omega_{1}.\omega_{2}. Recall, from Proposition 8.6, for {α𝔭¯,β𝔭¯}*\in\{\alpha_{\overline{\mathfrak{p}}},\beta_{\overline{\mathfrak{p}}}\}, we have

(8.22) L,=P4,𝔭Lα𝔭,P2,𝔭Lβ𝔭,det(Q𝔭1M𝔭¯).L_{\sharp,*}=\dfrac{P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},*}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},*}}{\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})}.

Thus,

(8.23) L,det(Q𝔭1M𝔭¯)=P4,𝔭Lα𝔭,P2,𝔭Lβ𝔭,.L_{\sharp,*}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})=P_{4,\mathfrak{p}}L_{\alpha_{\mathfrak{p}},*}-P_{2,\mathfrak{p}}L_{\beta_{\mathfrak{p}},*}.

From Theorem 8.2, we know that det(M𝔭¯)\det(\underline{M_{\mathfrak{p}}}) is equal to, upto a pp-adic unit, logp,k1(γ𝔭)δk1(γ𝔭)\dfrac{\log_{p,k-1}(\gamma_{\mathfrak{p}})}{\delta_{k-1}(\gamma_{\mathfrak{p}})}. Therefore, det(Q𝔭1M𝔭¯)(ω1,𝔭~)=0\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})(\widetilde{\omega_{1,\mathfrak{p}}})=0. Hence, (𝔭det(Q𝔭1M𝔭¯))(ω1,𝔭~)0(\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}))(\widetilde{\omega_{1,\mathfrak{p}}})\neq 0.

For the rest of the proof, we will use isotypic components corresponding to the trivial character of ΔK\Delta_{K}. From (8.23), we get,

𝔭L,ΔKdet(Q𝔭1M𝔭¯)+L,ΔK𝔭det(Q𝔭1M𝔭¯)=𝔭P4,𝔭Lα𝔭,ΔK+P4,𝔭𝔭Lα𝔭,ΔK(𝔭P2,𝔭Lβ𝔭,ΔK+P2,𝔭𝔭Lβ𝔭,ΔK).\partial_{\mathfrak{p}}L^{\Delta_{K}}_{\sharp,*}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})+L^{\Delta_{K}}_{\sharp,*}\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})=\partial_{\mathfrak{p}}P_{4,\mathfrak{p}}L^{\Delta_{K}}_{\alpha_{\mathfrak{p}},*}+P_{4,\mathfrak{p}}\partial_{\mathfrak{p}}L^{\Delta_{K}}_{\alpha_{\mathfrak{p}},*}-(\partial_{\mathfrak{p}}P_{2,\mathfrak{p}}L^{\Delta_{K}}_{\beta_{\mathfrak{p}},*}+P_{2,\mathfrak{p}}\partial_{\mathfrak{p}}L^{\Delta_{K}}_{\beta_{\mathfrak{p}},*}).

We evaluate the above equation at Ξˇ=Ξ~|γ𝔭¯×γ𝔭¯¯\widecheck{\Xi}=\widetilde{\Xi}|_{\overline{\langle\gamma_{\mathfrak{p}}\rangle}\times\overline{\langle\gamma_{\overline{\mathfrak{p}}}\rangle}}, where Ξ=ω1ω2\Xi=\omega_{1}\omega_{2} and apply Proposition 8.7 together with the equations (8.4) to (8.7) to get

(8.24) L,ΔK(Ξˇ).(𝔭det(Q𝔭1M𝔭¯))(Ξˇ)=()n𝔭¯MΞ~,L^{\Delta_{K}}_{\sharp,*}(\widecheck{\Xi}).(\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}))(\widecheck{\Xi})=(*)^{-n_{\overline{\mathfrak{p}}}}\cdot M_{\widetilde{\Xi}},

where MΞ~M_{\widetilde{\Xi}} is the constant

(𝔭P4,𝔭)(Ξˇ)(α𝔭n𝔭Ca,b,Ξ~)+P4,𝔭(Ξˇ)Aa,b,Ξ~(𝔭P2,𝔭)(Ξˇ)(β𝔭n𝔭Ca,b,Ξ~)P2,𝔭(Ξˇ)Ba,b,Ξ~.(\partial_{\mathfrak{p}}P_{4,\mathfrak{p}})(\widecheck{\Xi})(\alpha_{\mathfrak{p}}^{-n_{\mathfrak{p}}}C_{a,b,\widetilde{\Xi}})+P_{4,\mathfrak{p}}(\widecheck{\Xi})A_{a,b,\widetilde{\Xi}}-(\partial_{\mathfrak{p}}P_{2,\mathfrak{p}})(\widecheck{\Xi})(\beta_{\mathfrak{p}}^{-n_{\mathfrak{p}}}C_{a,b,\widetilde{\Xi}})-P_{2,\mathfrak{p}}(\widecheck{\Xi})B_{a,b,\widetilde{\Xi}}.

In other words, we have

L,α𝔭¯ΔK(Ξˇ)\displaystyle L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi}) =α𝔭¯n𝔭¯MΞ~(𝔭det(Q𝔭1M𝔭¯))(Ξˇ),\displaystyle=\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}\dfrac{M_{\widetilde{\Xi}}}{(\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}))(\widecheck{\Xi})},
L,β𝔭¯ΔK(Ξˇ)\displaystyle L_{\sharp,\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}}(\widecheck{\Xi}) =β𝔭¯n𝔭¯MΞ~(𝔭det(Q𝔭1M𝔭¯))(Ξˇ).\displaystyle=\beta_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}\dfrac{M_{\widetilde{\Xi}}}{(\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}))(\widecheck{\Xi})}.

Since Ξ=ω1ω2\Xi=\omega_{1}\omega_{2}, we can rewrite the above equations as

L,α𝔭¯ΔK(ω1,𝔭~)(ω2,𝔭¯~)\displaystyle L_{\sharp,\alpha_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{1,\mathfrak{p}}})}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}}) =α𝔭¯n𝔭¯MΞ~(𝔭det(Q𝔭1M𝔭¯))(Ξˇ),\displaystyle=\alpha_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}\dfrac{M_{\widetilde{\Xi}}}{(\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}}))(\widecheck{\Xi})},
L,β𝔭¯ΔK(ω1,𝔭~)(ω2,𝔭¯~)\displaystyle L_{\sharp,\beta_{\overline{\mathfrak{p}}}}^{\Delta_{K}(\widetilde{\omega_{1,\mathfrak{p}}})}(\widetilde{\omega_{2,\overline{\mathfrak{p}}}}) =β𝔭¯n𝔭¯MΞ~(𝔭det(Q𝔭1M𝔭¯)).(Ξˇ).\displaystyle=\beta_{\overline{\mathfrak{p}}}^{-n_{\overline{\mathfrak{p}}}}\dfrac{M_{\widetilde{\Xi}}}{(\partial_{\mathfrak{p}}\det(Q^{-1}_{\mathfrak{p}}\underline{M_{\mathfrak{p}}})).(\widecheck{\Xi})}.

Thus, after using Theorem 5.5 and the proof of Proposition 8.6 (we need to change 𝔭\mathfrak{p} with 𝔭¯\overline{\mathfrak{p}}), we deduce the desired result. ∎

Proof of Theorem 8.3.

Combining the factorizations obtained in Proposition 8.6 and Proposition 8.8, we deduce the result. ∎

References

  • [1] Yvette Amice and Jacques Vélu “Distributions pp-adiques associées aux séries de Hecke” In Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) No. 24-25, Astérisque Soc. Math. France, Paris, 1975, pp. 119–131
  • [2] Laurent Berger “Bloch and Kato’s exponential map: three explicit formulas” Kazuya Kato’s fiftieth birthday In Doc. Math., 2003, pp. 99–129
  • [3] Laurent Berger “Limites de représentations cristallines” In Compos. Math. 140.6, 2004, pp. 1473–1498
  • [4] Laurent Berger, Hanfeng Li and Hui June Zhu “Construction of some families of 2-dimensional crystalline representations” In Math. Ann. 329.2, 2004, pp. 365–377
  • [5] Kâzım Büyükboduk and Antonio Lei “Functional equation for pp-adic Rankin-Selberg LL-functions” In Ann. Math. Qué. 44.1, 2020, pp. 9–25
  • [6] Kâzım Büyükboduk and Antonio Lei “Integral Iwasawa theory of Galois representations for non-ordinary primes” In Math. Z. 286.1-2, 2017, pp. 361–398
  • [7] Kâzım Büyükboduk and Antonio Lei “Iwasawa theory of elliptic modular forms over imaginary quadratic fields at non-ordinary primes” In Int. Math. Res. Not. IMRN, 2021, pp. 10654–10730
  • [8] Frédéric Cherbonnier and Pierre Colmez “Théorie d’Iwasawa des représentations pp-adiques d’un corps local” In J. Amer. Math. Soc. 12.1, 1999, pp. 241–268
  • [9] Pierre Colmez and Jean-Marc Fontaine “Construction des représentations pp-adiques semi-stables” In Invent. Math. 140.1, 2000, pp. 1–43
  • [10] Mihir Deo pp-adic Asai LL-functions of pp-non-ordinary Bianchi modular forms and their decomposition into bounded measures”, In preparation
  • [11] Jean-Marc Fontaine “Représentations pp-adiques des corps locaux. I” In The Grothendieck Festschrift, Vol. II 87, Progr. Math. Birkhäuser Boston, Boston, MA, 1990, pp. 249–309
  • [12] G. Harder “Eisenstein cohomology of arithmetic groups. The case GL2{\rm GL}_{2} In Invent. Math. 89.1, 1987, pp. 37–118
  • [13] Andrei Jorza pp-adic families and Galois representations for GSp(4)\rm GS_{p}(4) and GL(2)\rm GL(2) In Math. Res. Lett. 19.5, 2012, pp. 987–996
  • [14] Andrei Jorza “Galois representations for holomorphic Siegel modular forms” In Math. Ann. 355.1, 2013, pp. 381–400
  • [15] Kazuya Kato pp-adic Hodge theory and values of zeta functions of modular forms” Cohomologies pp-adiques et applications arithmétiques. III In Astérisque, 2004, pp. ix\bibrangessep117–290
  • [16] Shin-ichi Kobayashi “Iwasawa theory for elliptic curves at supersingular primes” In Invent. Math. 152.1, 2003, pp. 1–36
  • [17] Michel Lazard “Les zéros des fonctions analytiques d’une variable sur un corps valué complet” In Inst. Hautes Études Sci. Publ. Math., 1962, pp. 47–75
  • [18] Antonio Lei “Bounds on the Tamagawa numbers of a crystalline representation over towers of cyclotomic extensions” In Tohoku Math. J. (2) 69.4, 2017, pp. 497–524
  • [19] Antonio Lei “Factorisation of two-variable pp-adic LL-functions” In Canad. Math. Bull. 57.4, 2014, pp. 845–852
  • [20] Antonio Lei “Iwasawa theory for modular forms at supersingular primes” In Compos. Math. 147.3, 2011, pp. 803–838
  • [21] Antonio Lei, David Loeffler and Sarah Livia Zerbes “Coleman maps and the pp-adic regulator” In Algebra Number Theory 5.8, 2011, pp. 1095–1131
  • [22] Antonio Lei, David Loeffler and Sarah Livia Zerbes “On the asymptotic growth of Bloch-Kato-Shafarevich-Tate groups of modular forms over cyclotomic extensions” In Canad. J. Math. 69.4, 2017, pp. 826–850
  • [23] Antonio Lei, David Loeffler and Sarah Livia Zerbes “Wach modules and Iwasawa theory for modular forms” In Asian J. Math. 14.4, 2010, pp. 475–528
  • [24] David Loeffler pp-adic integration on ray class groups and non-ordinary pp-adic LL-functions” In Iwasawa theory 2012 7, Contrib. Math. Comput. Sci. Springer, Heidelberg, 2014, pp. 357–378
  • [25] David Loeffler, Otmar Venjakob and Sarah Livia Zerbes “Local epsilon isomorphisms” In Kyoto J. Math. 55.1, 2015, pp. 63–127
  • [26] David Loeffler and Sarah Livia Zerbes “Iwasawa theory and pp-adic LL-functions over p2\mathbb{Z}_{p}^{2}-extensions” In Int. J. Number Theory 10.8, 2014, pp. 2045–2095
  • [27] Luis Santiago Palacios “Functional equation of the pp-adic LL-function of Bianchi modular forms” In J. Number Theory 242, 2023, pp. 725–753
  • [28] Bernadette Perrin-Riou “Théorie d’Iwasawa des représentations pp-adiques semi-stables” In Mém. Soc. Math. Fr. (N.S.), 2001
  • [29] Bernadette Perrin-Riou “Théorie d’Iwasawa des représentations pp-adiques sur un corps local” With an appendix by Jean-Marc Fontaine In Invent. Math. 115.1, 1994, pp. 81–161
  • [30] Robert Pollack “On the pp-adic LL-function of a modular form at a supersingular prime” In Duke Math. J. 118.3, 2003, pp. 523–558
  • [31] Christopher Skinner and Eric Urban “The Iwasawa main conjectures for GL2\rm GL_{2} In Invent. Math. 195.1, 2014, pp. 1–277
  • [32] Florian E. Sprung “Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures” In J. Number Theory 132.7, 2012, pp. 1483–1506
  • [33] M.. Višik “Nonarchimedean measures associated with Dirichlet series” In Mat. Sb. (N.S.) 99(141).2, 1976, pp. 248–260\bibrangessep296
  • [34] Xin Wan “Iwasawa theory for modular forms” In Development of Iwasawa theory—the centennial of K. Iwasawa’s birth 86, Adv. Stud. Pure Math. Math. Soc. Japan, Tokyo, 2020, pp. 61–78
  • [35] Chris Williams PP-adic LL-functions of Bianchi modular forms” In Proc. Lond. Math. Soc. (3) 114.4, 2017, pp. 614–656