This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Signatures of complex new physics in bcτν¯b\to c\tau\bar{\nu} transitions

Suman Kumbhakar111Presently at Centre for High Energy Physics, Indian Institute of Science Bangalore 560012 [email protected] Indian Institute of Technology Bombay, Mumbai 400076, India
Abstract

The anomalies in the measurements of RDR_{D} and RDR_{D^{*}} continue to provide motivation for physics beyond the Standard Model. In this work, we assume the new physics Wilson coefficients to be complex and find their values by doing a global fit to the present bcτν¯b\rightarrow c\tau\bar{\nu} data. We find that the number of allowed solutions depend on the choice of the upper limit on Br(Bcτν¯)Br(B_{c}\rightarrow\tau\bar{\nu}). We find that the forward-backward asymmetries in B(D,D)τν¯B\rightarrow(D,D^{*})\tau\bar{\nu} decays have the capability to distinguish between different solutions. Further we calculate the maximum values of CP violating triple product asymmetries in BDτν¯B\to D^{*}\tau\bar{\nu} decay allowed the current data. We observe that only one of the three CP asymmetries can be enhanced up to a maximum value of 23%\sim 2-3\% whereas the other asymmetries remain smaller.

I Introduction

The heavy meson decays, in particular the BB meson decays, are a very fertile ground to probe possible physics beyond the Standard Model (SM). In the past few years, several measurements by BaBar, Belle and LHCb in the BB meson decays show significant deviations from their SM predictions. One such class of decays occurs through the charged current bcτν¯b\rightarrow c\tau\bar{\nu} transition which is a tree level process in the SM. In this sector, two interesting observables are

RD=(BDτν¯)(BD{e/μ}ν¯),RD=(BDτν¯)(BD{e/μ}ν¯).R_{D}=\frac{\mathcal{B}(B\rightarrow D\tau\bar{\nu})}{\mathcal{B}(B\rightarrow D\{e/\mu\}\bar{\nu})}\,,\quad R_{D^{*}}=\frac{\mathcal{B}(B\rightarrow D^{*}\tau\bar{\nu})}{\mathcal{B}(B\rightarrow D^{*}\{e/\mu\}\bar{\nu})}\,. (1)

These flavor ratios are consecutively measured by BaBar Lees:2012xj ; Lees:2013uzd , Belle Huschle:2015rga ; Sato:2016svk ; Hirose:2016wfn ; Abdesselam:2019dgh and LHCb Aaij:2015yra ; Aaij:2017uff ; Aaij:2017deq collaborations. The SM predicts RDR_{D} to be 0.299±0.0030.299\pm 0.003 whereas the present experimental world average is 0.340±0.027(stat.)±0.013(syst.)0.340\pm 0.027\,(\rm stat.)\pm 0.013\,(\rm syst.). For RDR_{D^{*}}, the SM prediction is 0.258±0.0050.258\pm 0.005 and the experimental world average is 0.295±0.011(stat.)±0.008(syst.)0.295\pm 0.011\,(\rm stat.)\pm 0.008\,(\rm syst.). The SM predictions and the world averages are noted down from Heavy Flavor Averaging Group Amhis:2019ckw . The present average values of RDR_{D} and RDR_{D^{*}} exceed the SM predictions by 1.4σ1.4\sigma and 2.5σ2.5\sigma respectively. Including the correlation of 0.38-0.38, the tension between the measurements and the SM predictions is at the level of 3.1σ3.1\sigma. This discrepancy is an indication of lepton flavor universality (LFU) violation between τ\tau and μ/e\mu/e leptons.

In addition, the LHCb collaboration measured another flavor ratio RJ/ψ=Γ(BcJ/ψτν¯)/Γ(BcJ/ψμν¯)R_{J/\psi}=\Gamma(B_{c}\rightarrow J/\psi\tau\bar{\nu})/\Gamma(B_{c}\rightarrow J/\psi\mu\bar{\nu}) whose value is 0.71±0.17(stat.)±0.18(syst.)0.71\pm 0.17\,(\rm stat.)\pm 0.18\,(\rm syst.) Aaij:2017tyk . Eventhough the uncertainties are quite large, it is 1.7σ1.7\sigma higher than its SM prediction 0.289±0.0100.289\pm 0.010 Dutta:2017xmj . This is an additional hint of LFU violation in the bcν¯b\rightarrow c\ell\bar{\nu} sector. These deviations could be due to presence of new physics (NP) either in bcτν¯b\rightarrow c\tau\bar{\nu} or in bc{μ,e}ν¯b\rightarrow c\{\mu,e\}\bar{\nu} transition. However, it has been shown in Refs. Alok:2017qsi ; Iguro:2020cpg that the latter possibility is ruled out by other measurements. Therefore, we assume the presence of NP only in bcτν¯b\rightarrow c\tau\bar{\nu} transition.

Apart from these, Belle collaboration has measured two angular observables in the BDτν¯B\to D^{*}\tau\bar{\nu} decay - (a) the τ\tau polarization PτDP^{D^{*}}_{\tau} and (b) the DD^{*} longitudinal polarization fraction FLDF^{D^{*}}_{L}. The measured values of these two quantities are Hirose:2016wfn ; Abdesselam:2019wbt

PτD\displaystyle P^{D^{*}}_{\tau} =\displaystyle= 0.38±0.51(stat.)0.16+0.21(syst.),\displaystyle-0.38\pm 0.51\,(\rm stat.)^{+0.21}_{-0.16}\,(\rm syst.), (2)
FLD\displaystyle F^{D^{*}}_{L} =\displaystyle= 0.60±0.08(stat.)±0.04(syst.).\displaystyle 0.60\pm 0.08\,(\rm stat.)\pm 0.04\,(\rm syst.). (3)

The measured value of PτDP_{\tau}^{D^{*}} is consistent with its SM prediction of 0.497±0.013-0.497\pm 0.013 Tanaka:2012nw whereas for FLDF^{D^{*}}_{L} it is 1.6σ1.6\sigma higher than the SM prediction of 0.46±0.040.46\pm 0.04 Alok:2016qyh .

The anomalies in bcτν¯b\rightarrow c\tau\bar{\nu} transition have been studied in various model independent techniques Jung:2018lfu ; Bhattacharya:2018kig ; Hu:2018veh ; Alok:2019uqc ; Asadi:2019xrc ; Murgui:2019czp ; Bardhan:2019ljo ; Blanke:2019qrx ; Shi:2019gxi ; Becirevic:2019tpx ; Sahoo:2019hbu ; Cheung:2020sbq ; Cardozo:2020uol . The Wilson coefficients (WCs) of the NP operators are determined by doing a fit to the data available in this sector along with the constraint on the branching ratio of Bcτν¯B_{c}\to\tau\bar{\nu} decay. In Ref. Alok:2019uqc , it has been shown that the NP Lorentz structure in form of (VA)×(VA)(V-A)\times(V-A) is the only one operator solution allowed by the present data.

In this paper we do a global fit to of all present data on bcτν¯b\rightarrow c\tau\bar{\nu} transition by starting with a most general effective Hamiltonian. Assuming the NP WCs to be complex, we find the allowed NP solutions with their corresponding WCs. We show that one/two/three NP solution(s) is (are) allowed if we make the three different choices on the upper limits of 10%10\%/30%30\%/60%60\% on the branching ratio of Bcτν¯B_{c}\rightarrow\tau\bar{\nu}. We calculate the predictions of angular observables in B(D,D)τν¯B\rightarrow(D,D^{*})\tau\bar{\nu} decays and comment on their ability to distinguish between the allowed solutions. Further, we compute the predictions of the CP violating triple product asymmetries in BDτν¯B\to D^{*}\tau\bar{\nu} decay for the three NP solutions. We show that only one of these three asymmetries can be enhanced up to a maximum of 23%\sim 2-3\% in the presence the allowed NP scenarios.

The paper is organized as follows. In Section II, we describe our methodology for calculation and present our fit results. In this section, we calculate the predictions of the angular observables of B(D,D)τν¯B\rightarrow(D,D^{*})\tau\bar{\nu} decays and discuss their distinguishing capabilities. In section III, we determine the maximum possible CP violating triple product asymmetries in BDτν¯B\to D^{*}\tau\bar{\nu} decay allowed by the current data. We present our conclusions in section IV.

II Fit Methodology and Results

We start with the most general effective Hamiltonian for bcτν¯b\rightarrow c\tau\bar{\nu} transition which contains all possible Lorentz structures. This is expressed as Freytsis:2015qca

eff=4GF2Vcb[𝒪VL+24GFVcb1Λ2{i(Ci𝒪i+Ci𝒪i+Ci′′𝒪i′′)}],\mathcal{H}_{\rm eff}=\frac{4G_{F}}{\sqrt{2}}V_{cb}\left[\mathcal{O}_{V_{L}}+\frac{\sqrt{2}}{4G_{F}V_{cb}}\frac{1}{\Lambda^{2}}\left\{\sum_{i}\left(C_{i}\mathcal{O}_{i}+C^{{}^{\prime}}_{i}\mathcal{O}^{{}^{\prime}}_{i}+C^{{}^{\prime\prime}}_{i}\mathcal{O}^{{}^{\prime\prime}}_{i}\right)\right\}\right], (4)

where GFG_{F} is the Fermi coupling constant and VcbV_{cb} is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element. Here we assume that the neutrino is left chiral. We also assume the new physics scale Λ=1\Lambda=1 TeV. The five unprimed operators

𝒪VL=(c¯γμPLb)(τ¯γμPLν),𝒪VR=(c¯γμPRb)(τ¯γμPLν),\mathcal{O}_{V_{L}}=(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)\ ,\quad\mathcal{O}_{V_{R}}=(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)\ ,\quad
𝒪SL=(c¯PLb)(τ¯PLν),𝒪SR=(c¯PRb)(τ¯PLν),𝒪T=(c¯σμνPLb)(τ¯σμνPLν),\mathcal{O}_{S_{L}}=(\bar{c}P_{L}b)(\bar{\tau}P_{L}\nu),\quad\mathcal{O}_{S_{R}}=(\bar{c}P_{R}b)(\bar{\tau}P_{L}\nu),\quad\mathcal{O}_{T}=(\bar{c}\sigma_{\mu\nu}P_{L}b)(\bar{\tau}\sigma^{\mu\nu}P_{L}\nu)\ , (5)

form the complete set of operators consistent with global baryon number and lepton number conservation. The primed and double primed operators 𝒪i\mathcal{O}^{{}^{\prime}}_{i} and 𝒪i′′\mathcal{O}^{{}^{\prime\prime}}_{i} only arise in different Leptoquark models Freytsis:2015qca depending on their spin and charge. A more rigorous discussion on all possible Leptoquarks can be found in Ref. Dorsner:2016wpm . The Lorentz structures of all these operators are described in Ref. Freytsis:2015qca . In particular, 𝒪i\mathcal{O}^{{}^{\prime}}_{i} and 𝒪i′′\mathcal{O}^{{}^{\prime\prime}}_{i} operators can be expressed in terms of five unprimed operators using Fierz identities. The constants CiC_{i}, CiC^{{}^{\prime}}_{i} and Ci′′C^{{}^{\prime\prime}}_{i} are the respective WCs of the NP operators in which NP effects are hidden. In this analysis, we assume these NP WCs to be complex.

Using the effective Hamiltonian given in Eq. (4), we calculate the expressions of measured observables RDR_{D}, RDR_{D^{*}}, RJ/ψR_{J/\psi}, PτDP^{D^{*}}_{\tau} and FLDF^{D^{*}}_{L} as functions of the NP WCs. To obtain the values of NP WCs, we do a fit of these expressions to the measured values of the observables. In doing the fit, we take only one NP operator at a time. We define the χ2\chi^{2} function as follows

χ2(Ci)=RD,RD,RJ/ψ,PτD,FLD(Oth(Ci)Oexp)𝒞1(Oth(Ci)Oexp),\chi^{2}(C_{i})=\sum_{R_{D},R_{D^{*}},R_{J/\psi},P_{\tau}^{D^{*}},F^{D^{*}}_{L}}\left(O^{th}(C_{i})-O^{exp}\right)\mathcal{C}^{-1}\left(O^{th}(C_{i})-O^{exp}\right), (6)

where Oth(Ci)O^{th}(C_{i}) are NP predictions of each observable and OexpO^{exp} are the corresponding experimental central values. The 𝒞\mathcal{C} denotes the covariance matrix which includes both theory and experimental correlations.

The B(D,D)ν¯B\rightarrow(D,D^{*})\ell\bar{\nu} decay distributions depend upon hadronic form-factors. The determination of these form-factors can be calculated with the HQET techniques which are presently known at O(1/mb,1/mc2,αs)O(1/m_{b},1/m^{2}_{c},\alpha_{s}). In this work we use the HQET form factors in the form parametrized by Caprini et al. Caprini:1997mu . The parameters for BDB\rightarrow D decay are determined from the lattice QCD Aoki:2019cca calculations and we use them in our analyses. For BDB\rightarrow D^{*} decay, the HQET parameters are extracted using data from Belle and BaBar experiments along with the inputs from lattice. In this work, the numerical values of these parameters are taken from refs. Bailey:2014tva and Amhis:2019ckw . The form factors for BcJ/ψB_{c}\rightarrow J/\psi transition and their uncertainties from ref. Wen-Fei:2013uea are used in the calculation of RJ/ψthR_{J/\psi}^{th}. These form factors are calculated in perturbative QCD framework.

To obtain the values of NP WCs, we minimize the χ2\chi^{2} function by taking non-zero value of one NP WC at a time. While doing so, we set other coefficients to be zero. This minimizations is performed by the CERN 𝙼𝙸𝙽𝚄𝙸𝚃\tt MINUIT library James:1975dr ; James:1994vla . We find that the values of χmin2\chi^{2}_{\rm min} fall into two disjoint ranges 4.5\lesssim 4.5 and 9\gtrsim 9. We keep only those NP WCs which satisfy χmin24.5\chi^{2}_{\rm min}\leq 4.5. The central values of these allowed WCs of NP solutions are listed in Table 1. We do not provide the errors of individual best fit values because of the correlation between the real and imaginary parts. In stead, we show the 1σ1\sigma allowed regions for theses NP solutions in Fig. 1.

NP type Best fit value(s) χmin2\chi^{2}_{\rm min} pull
CVLC_{V_{L}} 0.10±0.12i0.10\pm 0.12\,i 4.554.55 4.14.1
CSLC^{\prime}_{S_{L}} 0.25±0.86i0.25\pm 0.86\,i 4.504.50 4.24.2
CT′′C^{\prime\prime}_{T} 0.06±0.09i0.06\pm 0.09\,i 3.453.45 4.34.3
CSLC_{S_{L}} 0.82±0.45i-0.82\pm 0.45\,i 2.502.50 4.44.4
Table 1: Best fit values of NP WCs at Λ=1\Lambda=1 TeV for the measurements of RDR_{D}, RDR_{D^{*}}, RJ/ψR_{J/\psi}, PτDP^{D^{*}}_{\tau} and FLDF^{D^{*}}_{L}. We list the central values of the NP solutions with χmin24.5\chi^{2}_{\rm min}\leq 4.5. For the SM, we have χSM2=21.80\chi^{2}_{\rm SM}=21.80. The pull values are calculated using pull = χSM2χmin2\sqrt{\chi^{2}_{\rm SM}-\chi^{2}_{\rm min}}.
Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 1: The allowed 1σ1\sigma regions for the complex NP WCs listed in Table 1. For each plot, the blue colored region corresponds to the 1σ1\sigma parameter space whereas the red dots represents the best fit values of NP WCs.

The purely leptonic decay Bcτν¯B_{c}\rightarrow\tau\bar{\nu} plays a crucial role to constrain the NP solutions in this sector. This decay is subject to helicity suppression in the SM whereas this suppression is removed for the pseudo-scalar operators. Therefore, these NP operators are highly constrained by this observable. Within the NP framework, the branching fraction of Bcτν¯B_{c}\rightarrow\tau\bar{\nu} can be expressed as

Br(Bcτν¯)\displaystyle Br(B_{c}\rightarrow\tau\bar{\nu}) =\displaystyle= |Vcb|2GF2fBc2mBcmτ2τBcexp8π(1mτ2mBc2)2×\displaystyle\frac{|V_{cb}|^{2}G^{2}_{F}f^{2}_{B_{c}}m_{B_{c}}m^{2}_{\tau}\tau^{exp}_{B_{c}}}{8\pi}\left(1-\frac{m^{2}_{\tau}}{m^{2}_{B_{c}}}\right)^{2}\times (7)
|1+CVLCVR+mBc2mτ(mb+mc)(CSRCSL)|2,\displaystyle\left|1+C_{V_{L}}-C_{V_{R}}+\frac{m^{2}_{B_{c}}}{m_{\tau}(m_{b}+m_{c})}(C_{S_{R}}-C_{S_{L}})\right|^{2},

where the decay constant fBc=434±15f_{B_{c}}=434\pm 15 MeV Colquhoun:2015oha and the measured lifetime τBcexp=0.510±0.009\tau^{exp}_{B_{c}}=0.510\pm 0.009 ps Tanabashi:2018oca . Here mbm_{b} and mcm_{c} are the running quark masses evaluated at the μb=mb\mu_{b}=m_{b} scale. The SM predicts this branching fraction to be 2.15×102\sim 2.15\times 10^{-2}.

In Ref. Akeroyd:2017mhr , the upper limit on this branching ratio is set to be 10%10\% from the LEP data which are admixture of Bcτν¯B_{c}\to\tau\bar{\nu} and Buτν¯B_{u}\to\tau\bar{\nu} decays at ZZ peak. To extract the Br(Bcτν¯)Br(B_{c}\to\tau\bar{\nu}), one needs to know the ratio of fragmentation functions of BcB_{c} and BuB_{u} mesons defined as fc/fuf_{c}/f_{u}. The value of this ratio is obtained from the data of Tevatron Abe:1998fb ; Abulencia:2006zu and LHCb Aaij:2014jxa . On the other hand, the authors of Ref. Alonso:2016oyd obtained this upper limit to be 30%30\% by making use of the lifetime of BcB_{c} meson. This is estimated by considering that the Bcτν¯B_{c}\to\tau\bar{\nu} decay rate does not exceed the fraction of the total width which is allowed by the calculation of the lifetime in the SM. In Ref. Blanke:2019qrx , the authors have argued that these two different upper limits are too conservative and these could be over-estimated. However, taking all uncertainties into account the decay width of BcB_{c} meson can be relaxed up to 60%60\% which is not that much conservative. Therefore, we consider these three different upper limits on branching ratio of Bcτν¯B_{c}\rightarrow\tau\bar{\nu} to constrain the NP parameter space. In this analysis, the NP WCs are defined at a scale Λ\Lambda= 1 TeV. However, all these physical processes happen at mbm_{b} scale. Therefore, we include the renormalization group (RG) effects in the evolution of the WCs from the scale of 11 TeV to the mbm_{b} scale Gonzalez-Alonso:2017iyc . In particular, these effects are important for the scalar and tensor operators.

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 2: The 1σ1\sigma regions allowed by bcτν¯b\to c\tau\bar{\nu} data (blue) and parameter spaces for three different upper limits 10%10\% (green), 30%30\% (yellow), 60%60\% (violet) of Br(Bcτν¯)Br(B_{c}\rightarrow\tau\bar{\nu}) for each complex NP WC listed in Table 1. In each plot, the red dots represent the best fit points.

In Fig. 2, we have shown the parameter space which span 1σ1\sigma region allowed by present bcτν¯b\rightarrow c\tau\bar{\nu} data and by the three different upper limits on the branching ratio of Bcτν¯B_{c}\rightarrow\tau\bar{\nu}. The best fit point for each solution listed in Table 1 is also plotted within the 1σ1\sigma allowed region. Only the 𝒪VL\mathcal{O}_{V_{L}} solution falls within the allowed space constrained by Br(Bcτν¯)<10%Br(B_{c}\rightarrow\tau\bar{\nu})<10\%. The allowed 1σ1\sigma regions for 𝒪SL\mathcal{O}^{\prime}_{S_{L}} and 𝒪T′′\mathcal{O}^{\prime\prime}_{T} solutions fall into the regions allowed by the constraints Br(Bcτν¯)Br(B_{c}\rightarrow\tau\bar{\nu}) <30%<30\% and <60%<60\% respectively. The best fit NP WCs of 𝒪SL\mathcal{O}_{S_{L}} solution do not fall into the region allowed by the constraint Br(Bcτν¯)<60%Br(B_{c}\rightarrow\tau\bar{\nu})<60\% whereas a small fraction of the 1σ1\sigma region overlaps with the region allowed by 30%<Br(Bcτν¯)<60%30\%<Br(B_{c}\rightarrow\tau\bar{\nu})<60\%. Hence we can reject the mildly allowed 𝒪SL\mathcal{O}_{S_{L}} solution. We list the final three allowed NP solutions in Table 2.

Using the best fit values of the allowed solutions, we provide the predicted central values of the quantities used in the fit, i.e., RD,RD,RJ/ψR_{D},R_{D^{*}},R_{J/\psi}, PτDP^{D^{*}}_{\tau} and FLDF_{L}^{D^{*}}, for each solution. This will allow us to see how close are the predictions of NP solutions to the experimental measurements. We note the following observations by looking at the predictions in Table 2:

  • The predictions of RDR_{D}, RDR_{D^{*}} and PτDP^{D^{*}}_{\tau} for the three solutions are within 1σ\sigma of the respective experimental averages.

  • The predicted values of RJ/ψR_{J/\psi} and FLDF^{D^{*}}_{L} for the three solutions are within 1.6σ\sim 1.6\sigma of the experimental measurements. The Lorentz structure of 𝒪SL\mathcal{O}^{\prime}_{S_{L}} is different from that of 𝒪VL\mathcal{O}_{V_{L}}. But the prediction of FLDF^{D^{*}}_{L} for 𝒪SL\mathcal{O}^{\prime}_{S_{L}} solution is the same as that of 𝒪VL\mathcal{O}_{V_{L}} solution because the value of WC is quite small. However, these two NP solutions fall in two different ranges of Br(Bcτν¯)Br(B_{c}\to\tau\bar{\nu}) because the helicity suppression is lifted in presence of the 𝒪SL\mathcal{O}^{\prime}_{S_{L}} solution.

NP type Best fit value(s) RDR_{D} RDR_{D^{*}} RJ/ψR_{J/\psi} PτDP^{D^{*}}_{\tau} FLDF^{D^{*}}_{L}
SM Ci=0C_{i}=0 0.297±0.0080.297\pm 0.008 0.253±0.0020.253\pm 0.002 0.289±0.0080.289\pm 0.008 0.499±0.004-0.499\pm 0.004 0.457±0.0050.457\pm 0.005
CVL|10%C_{V_{L}}|_{10\%} 0.10±0.12i0.10\pm 0.12\,i 0.364±0.0100.364\pm 0.010 0.294±0.0050.294\pm 0.005 0.334±0.0100.334\pm 0.010 0.499±0.005-0.499\pm 0.005 0.443±0.0070.443\pm 0.007
CSL|30%C^{\prime}_{S_{L}}|_{30\%} 0.25±0.86i0.25\pm 0.86\,i 0.336±0.0090.336\pm 0.009 0.295±0.0050.295\pm 0.005 0.339±0.0110.339\pm 0.011 0.419±0.006-0.419\pm 0.006 0.443±0.0070.443\pm 0.007
CT′′|60%C^{\prime\prime}_{T}|_{60\%} 0.06±0.09i0.06\pm 0.09\,i 0.333±0.0100.333\pm 0.010 0.296±0.0060.296\pm 0.006 0.344±0.0090.344\pm 0.009 0.375±0.005-0.375\pm 0.005 0.420±0.0060.420\pm 0.006
Table 2: Central values of best fit NP WCs at Λ=1\Lambda=1 TeV by making use of data of RDR_{D}, RDR_{D^{*}}, RJ/ψR_{J/\psi}, PτDP^{D^{*}}_{\tau} and FLDF^{D^{*}}_{L}. Here we allow only those solutions for which χmin24.5\chi^{2}_{\rm min}\leq 4.5 as well as for three different upper limits 10%10\%, 30%30\% and 60%60\% of Br(Bcτν¯)Br(B_{c}\rightarrow\tau\bar{\nu}). We also provide the predictions of each observables which are taken into the fit.
NP type Best fit value(s) PτDP^{D}_{\tau} AFBDA^{D}_{FB} AFBDA^{D^{*}}_{FB}
SM Ci=0C_{i}=0 0.325±0.0010.325\pm 0.001 0.360±0.0020.360\pm 0.002 0.063±0.005-0.063\pm 0.005
CVL|10%C_{V_{L}}|_{10\%} 0.10±0.12i0.10\pm 0.12\,i 0.325±0.0020.325\pm 0.002 0.360±0.0020.360\pm 0.002 0.063±0.006-0.063\pm 0.006
CSL|30%C^{\prime}_{S_{L}}|_{30\%} 0.25±0.86i0.25\pm 0.86\,i 0.420±0.0010.420\pm 0.001 0.212±0.0030.212\pm 0.003 0.0001±0.0050.0001\pm 0.005
CT′′|60%C^{\prime\prime}_{T}|_{60\%} 0.06±0.09i0.06\pm 0.09\,i 0.414±0.0020.414\pm 0.002 0.100±0.0040.100\pm 0.004 0.009±0.0060.009\pm 0.006
Table 3: Average values of angular observables PτDP^{D}_{\tau}, AFBDA^{D}_{FB} and AFBDA^{D^{*}}_{FB} for the SM and three solutions listed in Table 2.

We consider other angular observables in B(D,D)τν¯B\to(D,D^{*})\tau\bar{\nu} decay which are yet to be measured. In particular, we are interested in the following three observables Alok:2018uft

  • The polarization of τ\tau lepton in BDτν¯B\to D\tau\bar{\nu} decay, PτDP^{D}_{\tau}

  • The forward-backward asymmetry in BDτν¯B\to D\tau\bar{\nu} decay, AFBDA^{D}_{FB} and

  • The forward-backward asymmetry in BDτν¯B\to D^{*}\tau\bar{\nu} decay, AFBDA^{D^{*}}_{FB}.

Refer to caption Refer to caption
Refer to caption
Figure 3: The predictions of angular observables PτDP^{D}_{\tau}, AFBDA^{D}_{FB} and AFBDA^{D^{*}}_{FB} as a function of q2q^{2} (GeV2) for the SM and three solutions listed in Table 3. The color code for each case is shown in each plot.

We compute the average values of these three angular observables for the allowed NP solutions. The predicted values are listed in Table 3. For completeness, we also plot these observables as a function of q2=(pBpD())2q^{2}=(p_{B}-p_{D^{(*)}})^{2}, where pBp_{B} and pD()p_{D^{(*)}} are the respective four momenta of BB and D()D^{(*)} mesons. These are shown in Fig. 3. From Table 3 and Fig. 3, we observe the following features

  • The predictions of all three observables for the 𝒪VL\mathcal{O}_{V_{L}} solution are exactly same as those of the SM. This is because the Lorentz structure of 𝒪VL\mathcal{O}_{V_{L}} operator is same as the SM.

  • The PτDP^{D}_{\tau} has very poor discriminating capability.

  • The predictions of AFBDA^{D}_{FB} and AFBDA^{D^{*}}_{FB} for the 𝒪SL\mathcal{O}^{\prime}_{S_{L}} and 𝒪T′′\mathcal{O}^{\prime\prime}_{T} solutions are markedly different. These two solutions can be distinguished by forward-backward asymmetries.

III CP violating triple product asymmetries

If the hints of LFU violation in bcτν¯b\to c\tau\bar{\nu} sector is indeed due to new physics, then it is very likely that the new physics will contain additional phases which can lead to some signatures of CP violation in the relevant decay modes. In this section, we discuss about the possible CP violation in BDτν¯B\to D^{*}\tau\bar{\nu} decay. The simplest possible CP violating observable, which one could think of, is the direct CP asymmetry between the decay and its CP conjugate mode. In order to have a non-zero value of direct CP asymmetry, we need strong phase difference between the amplitudes besides the weak phase. For BDτν¯B\to D^{*}\tau\bar{\nu} decay, there is no strong phase difference in the SM because of unique final state of the decay and its CP conjugate mode. In Ref. Aloni:2018ipm , the authors suggested a mechanism where this strong phase difference could arise due to interference between the higher resonances of DD^{*} meson. They have shown that the CP violation could be as large as 10%\sim 10\% only for the tensor NP. However, the tensor NP is now ruled out by the Belle measurement on FLDF^{D^{*}}_{L}.

In this work, we focus on CP violating triple product asymmetries (TPA) in BDτν¯B\to D^{*}\tau\bar{\nu} decay. The full angular distribution of quasi-four body decay BD(Dπ)τν¯B\to D^{*}(\to D\pi)\tau\bar{\nu} can be described by four independent parameters - (a) q2=(pBpD)2q^{2}=(p_{B}-p_{D^{*}})^{2} where pBp_{B} and pDp_{D^{*}} are respective four momenta of BB and DD^{*} meson, (b) θD\theta_{D} the angle between BB and DD mesons where DD meson comes from DD^{*} decay, (c) θτ\theta_{\tau} the angle between τ\tau momenta and BB meson, and (d) ϕ\phi the angle between DD^{*} decay plane and the plane defined by the τ\tau and ν\nu momenta Duraisamy:2014sna . The triple products (TP) are obtained by integrating the full decay distribution in different ranges of the polar angles θD\theta_{D} and θτ\theta_{\tau}. These are following Alok:2011gv ; Duraisamy:2013kcw ; Bhattacharya:2019olg ; Bhattacharya:2020lfm

d2Γ(1)dq2dϕ\displaystyle\frac{d^{2}\Gamma^{(1)}}{dq^{2}d\phi} =\displaystyle= 1111d4Γdq2dcosθτdcosθDdϕdcosθτdcosθD\displaystyle\int^{1}_{-1}\int^{1}_{-1}\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\tau}d\cos\theta_{D}d\phi}d\cos\theta_{\tau}d\cos\theta_{D}
=\displaystyle= 12πdΓdq2[1+(AC(1)cos2ϕ+AT(1)sin2ϕ)],\displaystyle\frac{1}{2\pi}\frac{d\Gamma}{dq^{2}}\left[1+\left(A^{(1)}_{C}\,\cos 2\phi+A^{(1)}_{T}\,\sin 2\phi\right)\right],
d2Γ(2)dq2dϕ\displaystyle\frac{d^{2}\Gamma^{(2)}}{dq^{2}d\phi} =\displaystyle= 11dcosθτ[0110]d4Γdq2dcosθτdcosθDdϕdcosθD\displaystyle\int^{1}_{-1}d\cos\theta_{\tau}\left[\int^{1}_{0}-\int^{0}_{-1}\right]\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\tau}d\cos\theta_{D}d\phi}d\cos\theta_{D} (9)
=\displaystyle= 14dΓdq2[AC(2)cosϕ+AT(2)sinϕ],\displaystyle\frac{1}{4}\frac{d\Gamma}{dq^{2}}\left[A^{(2)}_{C}\,\cos\phi+A^{(2)}_{T}\,\sin\phi\right],

and

d2Γ(3)dq2dϕ\displaystyle\frac{d^{2}\Gamma^{(3)}}{dq^{2}d\phi} =\displaystyle= [0110]dcosθτ[0110]d4Γdq2dcosθτdcosθDdϕdcosθD\displaystyle\left[\int^{1}_{0}-\int^{0}_{-1}\right]d\cos\theta_{\tau}\left[\int^{1}_{0}-\int^{0}_{-1}\right]\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\tau}d\cos\theta_{D}d\phi}d\cos\theta_{D} (10)
=\displaystyle= 23πdΓdq2[AC(3)cosϕ+AT(3)sinϕ].\displaystyle\frac{2}{3\pi}\frac{d\Gamma}{dq^{2}}\left[A^{(3)}_{C}\,\cos\phi+A^{(3)}_{T}\,\sin\phi\right].

The coefficients AC(i)A^{(i)}_{C} of cosϕ\cos\phi and cos2ϕ\cos 2\phi are even under CP transformation and hence we are not interested in these. However, the angular coefficients AT(i)A^{(i)}_{T} of sinϕ\sin\phi and sin2ϕ\sin 2\phi are odd under the CP transformation which leads to these quantities to be CP violating observables. These three TPs are defined as follows Duraisamy:2013kcw :

AT(1)(q2)=4V5TAL+AT,AT(2)(q2)=V30TAL+AT,AT(3)(q2)=V40TAL+AT,A^{(1)}_{T}(q^{2})=\frac{4V^{T}_{5}}{A_{L}+A_{T}},\quad A^{(2)}_{T}(q^{2})=\frac{V^{0T}_{3}}{A_{L}+A_{T}},\quad A^{(3)}_{T}(q^{2})=\frac{V^{0T}_{4}}{A_{L}+A_{T}}, (11)

where VV’s are the angular coefficients and ALA_{L} and ATA_{T} are the longitudinal and transverse amplitudes respectively. The expressions for these quantities are given in Appendix A and also can be found in Ref. Duraisamy:2014sna . The SM predictions of these TPs are almost zero. Therefore, the complex NP WCs can predict a non-zero value for these quantities. Thus these TPs provide a new degree of freedom to test beyond SM physics. For the CP conjugate decay, the definitions in Eq. (11) take the following forms

A¯T(1)(q2)=4V¯5TA¯L+A¯T,A¯T(2)(q2)=V¯30TA¯L+A¯T,A¯T(3)(q2)=V¯40TA¯L+A¯T.\bar{A}^{(1)}_{T}(q^{2})=-\frac{4\bar{V}^{T}_{5}}{\bar{A}_{L}+\bar{A}_{T}},\quad\bar{A}^{(2)}_{T}(q^{2})=\frac{\bar{V}^{0T}_{3}}{\bar{A}_{L}+\bar{A}_{T}},\quad\bar{A}^{(3)}_{T}(q^{2})=-\frac{\bar{V}^{0T}_{4}}{\bar{A}_{L}+\bar{A}_{T}}. (12)

Using Eqs. (11) and (12), three asymmetries can be defined between the corresponding TPs of the decay and its CP conjugate. These TPAs are defined as follows

AT(1)(q2)\displaystyle\langle A^{(1)}_{T}(q^{2})\rangle =\displaystyle= 12(AT(1)(q2)+A¯T(1)(q2)),\displaystyle\frac{1}{2}\left(A^{(1)}_{T}(q^{2})+\bar{A}^{(1)}_{T}(q^{2})\right),
AT(2)(q2)\displaystyle\langle A^{(2)}_{T}(q^{2})\rangle =\displaystyle= 12(AT(2)(q2)A¯T(2)(q2)),\displaystyle\frac{1}{2}\left(A^{(2)}_{T}(q^{2})-\bar{A}^{(2)}_{T}(q^{2})\right),
AT(3)(q2)\displaystyle\langle A^{(3)}_{T}(q^{2})\rangle =\displaystyle= 12(AT(3)(q2)+A¯T(3)(q2)).\displaystyle\frac{1}{2}\left(A^{(3)}_{T}(q^{2})+\bar{A}^{(3)}_{T}(q^{2})\right). (13)
Refer to caption Refer to caption
Refer to caption
Figure 4: The TPAs are plotted as a function of q2q^{2} (GeV2) for the SM and three best fit NP WCs listed in Table 2. The color code for each plot is shown in figure.

First we calculate the predictions of these TPAs for the SM and the three best fit NP solutions listed in Table 2 as a function of q2q^{2}. These predictions are shown in Fig. 4. From this figure, we make the following observations

  • The TPAs AT(1)(q2)\langle A^{(1)}_{T}(q^{2})\rangle and AT(3)(q2)\langle A^{(3)}_{T}(q^{2})\rangle depend only on the 𝒪VL\mathcal{O}_{V_{L}} and 𝒪VR\mathcal{O}_{V_{R}} operators. The 𝒪VL\mathcal{O}_{V_{L}} has the same Lorentz structure as the SM. Therefore, the 𝒪VL\mathcal{O}_{V_{L}} solution predicts these two asymmetries to be zero for whole q2q^{2} range. For other two NP solutions, the predictions are zero because these two asymmetries do not depend on those NP WCs.

  • The TPA AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle depends on 𝒪VL\mathcal{O}_{V_{L}}, 𝒪VR\mathcal{O}_{V_{R}}, 𝒪SL\mathcal{O}_{S_{L}}, 𝒪SR\mathcal{O}_{S_{R}} and 𝒪T\mathcal{O}_{T} operators. The 𝒪VL\mathcal{O}_{V_{L}} operator has the same Lorentz structure as the SM. Hence, the prediction of this TPA is zero for the 𝒪VL\mathcal{O}_{V_{L}} solution for whole q2q^{2} range. The 𝒪SL\mathcal{O}^{\prime}_{S_{L}} and 𝒪T′′\mathcal{O}^{\prime\prime}_{T} operators are linear combinations of 𝒪SL\mathcal{O}_{S_{L}} and 𝒪T\mathcal{O}_{T}. Therefore, we get some non-zero value of this TPA for these two solutions. For the 𝒪SL\mathcal{O}^{\prime}_{S_{L}} solution, AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle reaches a maximum value of 0.7%\sim 0.7\% at q26q^{2}\simeq 6 GeV2 and decreases to zero at qmax2q^{2}_{\rm max}. For the 𝒪T′′\mathcal{O}^{\prime\prime}_{T} solution, AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle reaches a maximum value of 1.7%\sim 1.7\% at q25.4q^{2}\simeq 5.4 GeV2 and decreases to zero at qmax2q^{2}_{\rm max}.

Refer to caption Refer to caption
Figure 5: The second TPA is plotted as a function of q2q^{2} (GeV2) for three benchmark NP WCs CSL=0.24+iC^{\prime}_{S_{L}}=0.24+i (blue curve), CT′′=0.06+0.098iC^{\prime\prime}_{T}=0.06+0.098i (black curve) and CSL=0.350.60iC_{S_{L}}=-0.35-0.60i (red curve).

Our next aim is to compute the maximum CP violation allowed by the present bcτν¯b\to c\tau\bar{\nu} data. To calculate this, we choose a benchmark point from the 1σ1\sigma allowed parameter space of each NP solution. From Fig. 4, we have learned that for any complex value of CVLC_{V_{L}} three TPAs lead to zero. Only the second TPA AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle is non-zero for the 𝒪SL\mathcal{O}^{\prime}_{S_{L}} and 𝒪T′′\mathcal{O}^{\prime\prime}_{T} solutions. Therefore, we pick a benchmark points from Fig 1 for each of these two solutions. These points are CSL=0.24±iC^{\prime}_{S_{L}}=0.24\pm i and CT′′=0.06+0.098iC^{\prime\prime}_{T}=0.06+0.098i , which can lead to the maximum value of the TPA AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle in BDτν¯B\to D^{*}\tau\bar{\nu} decay. In the left panel of Fig. 5, we plot the TPA AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle as a function of q2q^{2} for these two benchmark points of 𝒪SL\mathcal{O}^{\prime}_{S_{L}} and 𝒪T′′\mathcal{O}^{\prime\prime}_{T} solutions. From this plot, we observe that it has almost same features which are obtained from the plot of AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle in Fig 4. We have not got much larger value of TPA AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle than what we got for the best fit NP solutions.

As per discussion in Sec II, the 𝒪SL\mathcal{O}_{S_{L}} solution listed in Table 1 is marginally disfavored because the best fit values of CSLC_{S_{L}} does not satisfy the constraint of Br(Bcτν¯)<60%Br(B_{c}\to\tau\bar{\nu})<60\%. However, a small fraction of the 1σ1\sigma region of this solution falls on the region spanned by the constraint 30%<Br(Bcτν¯)<60%30\%<Br(B_{c}\to\tau\bar{\nu})<60\%. For completeness, we calculate the predictions of TPAs for this solution. We can get a allowed value of CSLC_{S_{L}} which can give to maximum possible TPA for the AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle. We choose a benchmark point CSL=0.350.60iC_{S_{L}}=-0.35-0.60i from the allowed region and calculate the second TPA. In right panel of Fig. 5, we plot AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle as a function of q2q^{2} for the benchmark point of CSLC_{S_{L}}. From this plot, we observe that the second TPA reaches a maximum value of 2.6%\sim 2.6\% at q25q^{2}\simeq 5 GeV2 and decreases to zero at qmax2q^{2}_{\rm max}. In fact, this is the maximum value of AT(2)(q2)\langle A^{(2)}_{T}(q^{2})\rangle predicted by the scalar operator solution among all the predictions made by allowed NP solutions.

IV Conclusions

In this work, we have done a global fit of bcτν¯b\to c\tau\bar{\nu} data assuming NP WCs to complex. We find that the 𝒪VL\mathcal{O}_{V_{L}} solution is the only NP solution allowed by the constraint Br(Bcτν¯)<10%Br(B_{c}\to\tau\bar{\nu})<10\%. If we relax the constraint to 30%30\% or 60%60\%, then we get one or two additional allowed NP solutions. We calculate the predictions of angular observables in B(D,D)τν¯B\to(D,D^{*})\tau\bar{\nu} decays. We find that the forward-backward asymmetries in these two decays are quite useful to distinguish the two solutions other than the 𝒪VL\mathcal{O}_{V_{L}} solution.

We then compute the maximum values of CP violating TPAs in BDτν¯B\to D^{*}\tau\bar{\nu} decay for the allowed NP solutions. These TPAs are zero in the SM. Hence any non-zero measurement of these quantities would give a smoking gun signal of physics beyond SM. Here we find that the predictions of first and third TPAs are zero for all NP solutions whereas the second TPA reaches a maximum value of 1.9%\sim 1.9\% for the 𝒪SL\mathcal{O}^{\prime}_{S_{L}} solution and 0.9%\sim 0.9\% for the 𝒪T′′\mathcal{O}^{\prime\prime}_{T} solution. The mildly favored NP solution 𝒪SL\mathcal{O}_{S_{L}} predicts a maximum value of 2.6%\sim 2.6\% for the second TPA which is the maximum predicted value among all the NP predictions.

To measure the angular observables and TPAs, the reconstruction of the τ\tau lepton momentum is crucial. This is quite difficult because of the missing neutrinos. The LHCb collaboration has already made a fair attempt to reconstruct the τ\tau lepton through τππ+π(nπ0)ντ\tau^{-}\to\pi^{-}\pi^{+}\pi^{-}(n\pi^{0})\nu_{\tau} decay channel Aaij:2017uff . However, in case of Belle II, it is very hard to reconstruct the τ\tau momentum through leptonic decay τντν¯\tau^{-}\to\ell^{-}\nu_{\tau}\bar{\nu_{\ell}} because of multiple neutrinos in the final state. Thus, LHCb may be able to measure θτ\theta_{\tau} and ϕ\phi with a better precision than Belle II and this could lead to a null test of the TPAs. We hope LHCb would be able to overcome this challenge in the near future Cerri:2018ypt . Recently in Ref. Marangotto:2018pbs , the author discussed an outline to measure the full angular distribution and the CP violating TPAs for BDν¯B\to D^{*}\ell\bar{\nu} decays at the collider experiments.

Acknowledgements

We would like to thank the organizers of WHEPP 2019 at IIT Guwahati, where this work had been initiated. We thank Amarjit Soni for useful suggestions at WHEPP. We also thank S. Uma Sankar for useful discussions and for careful reading of the manuscript.

Appendix A Angular Coefficients

The total longitudinal and transverse amplitudes are defined as Duraisamy:2014sna

AL=(V1013V20),AT=2(V1T13V2T).A_{L}=\left(V_{1}^{0}-\frac{1}{3}V_{2}^{0}\right),\quad A_{T}=2\left(V_{1}^{T}-\frac{1}{3}V_{2}^{T}\right). (14)

The longitudinal coefficients V10V^{0}_{1} and V20V^{0}_{2} are written as

V10\displaystyle V_{1}^{0} =\displaystyle= 2[(1+mτ2q2)(|𝒜0|2+16|𝒜0T|2)+2mτ2q2|𝒜tP|216mτq2Re[𝒜0T𝒜0]],\displaystyle 2\left[\left(1+\frac{m^{2}_{\tau}}{q^{2}}\right)\left(|\mathcal{A}_{0}|^{2}+16|\mathcal{A}_{0T}|^{2}\right)+\frac{2m^{2}_{\tau}}{q^{2}}|\mathcal{A}_{tP}|^{2}-\frac{16m_{\tau}}{\sqrt{q^{2}}}{\rm Re}\left[\mathcal{A}_{0T}\mathcal{A}^{*}_{0}\right]\right],
V20\displaystyle V_{2}^{0} =\displaystyle= 2(1mτ2q2)[|𝒜0|2+16|𝒜0T|2],\displaystyle 2\left(1-\frac{m^{2}_{\tau}}{q^{2}}\right)\left[-|\mathcal{A}_{0}|^{2}+16|\mathcal{A}_{0T}|^{2}\right], (15)

and the transverse coefficients V1TV^{T}_{1}, V2TV^{T}_{2} and V5TV^{T}_{5} are given by

V1T\displaystyle V_{1}^{T} =\displaystyle= 12(3+mτ2q2)(|𝒜|2+|𝒜|2)+8(1+3mτ2q2)(|𝒜T|2+|𝒜T|2)16mτ2q2Re[𝒜T𝒜+𝒜T𝒜],\displaystyle\frac{1}{2}\left(3+\frac{m^{2}_{\tau}}{q^{2}}\right)\left(|\mathcal{A}_{\parallel}|^{2}+|\mathcal{A}_{\perp}|^{2}\right)+8\left(1+\frac{3m^{2}_{\tau}}{q^{2}}\right)\left(|\mathcal{A}_{\parallel T}|^{2}+|\mathcal{A}_{\perp T}|^{2}\right)-\frac{16m^{2}_{\tau}}{\sqrt{q^{2}}}{\rm Re}\left[\mathcal{A}_{\parallel T}\mathcal{A}^{*}_{\parallel}+\mathcal{A}_{\perp T}\mathcal{A}^{*}_{\perp}\right],
V2T\displaystyle V_{2}^{T} =\displaystyle= (1mτ2q2)[12(|𝒜|2+|𝒜|2)8(|𝒜T|2+|𝒜T|2)],\displaystyle\left(1-\frac{m^{2}_{\tau}}{q^{2}}\right)\left[\frac{1}{2}\left(|\mathcal{A}_{\parallel}|^{2}+|\mathcal{A}_{\perp}|^{2}\right)-8\left(|\mathcal{A}_{\parallel T}|^{2}+|\mathcal{A}_{\perp T}|^{2}\right)\right],
V5T\displaystyle V_{5}^{T} =\displaystyle= 2(1mτ2q2)Im[𝒜𝒜].\displaystyle 2\left(1-\frac{m^{2}_{\tau}}{q^{2}}\right){\rm Im}\left[\mathcal{A}_{\parallel}\mathcal{A}^{*}_{\perp}\right]. (16)

The expressions for mixed angular coefficients V30TV^{0T}_{3} and V40TV^{0T}_{4} are given by

V30T\displaystyle V^{0T}_{3} =\displaystyle= 22Im[𝒜𝒜0+mτ2q2𝒜𝒜tP+4mτq2(𝒜0T𝒜𝒜T𝒜0+𝒜T𝒜tP)],\displaystyle 2\sqrt{2}\,{\rm Im}\left[-\mathcal{A}_{\parallel}\mathcal{A}^{*}_{0}+\frac{m^{2}_{\tau}}{q^{2}}\mathcal{A}_{\perp}\mathcal{A}^{*}_{tP}+\frac{4m_{\tau}}{\sqrt{q^{2}}}\left(\mathcal{A}_{0T}\mathcal{A}^{*}_{\parallel}-\mathcal{A}_{\parallel T}\mathcal{A}^{*}_{0}+\mathcal{A}_{\perp T}\mathcal{A}^{*}_{tP}\right)\right],
V40T\displaystyle V^{0T}_{4} =\displaystyle= 2(1mτ2q2Im[𝒜𝒜0]).\displaystyle\sqrt{2}\left(1-\frac{m^{2}_{\tau}}{q^{2}}\,{\rm Im}\left[\mathcal{A}_{\perp}\mathcal{A}^{*}_{0}\right]\right). (17)

The corresponding hadronics matrix elements are expressed as

𝒜0\displaystyle\mathcal{A}_{0} =\displaystyle= mB+mD2mDq2[(mB2mD2q2)A1(q2)λD(mB+mD)2A2(q2)](1+CVLCVR),\displaystyle\frac{m_{B}+m_{D^{*}}}{2m_{D^{*}}\sqrt{q^{2}}}\left[\left(m^{2}_{B}-m^{2}_{D^{*}}-q^{2}\right)A_{1}(q^{2})-\frac{\lambda_{D^{*}}}{(m_{B}+m_{D^{*}})^{2}}A_{2}(q^{2})\right](1+C_{V_{L}}-C_{V_{R}}),
𝒜±\displaystyle\mathcal{A}_{\pm} =\displaystyle= (mB+mD)A1(q2)(1+CVLCVR)λD(mB+mD)V(q2)(1+CVL+CVR),\displaystyle(m_{B}+m_{D^{*}})A_{1}(q^{2})\left(1+C_{V_{L}}-C_{V_{R}}\right)\mp\frac{\sqrt{\lambda_{D^{*}}}}{(m_{B}+m_{D^{*}})}V(q^{2})\left(1+C_{V_{L}}+C_{V_{R}}\right),
𝒜t\displaystyle\mathcal{A}_{t} =\displaystyle= λDq2A0(q2)(1+CVLCVR),\displaystyle\frac{\sqrt{\lambda_{D^{*}}}}{\sqrt{q^{2}}}A_{0}(q^{2})(1+C_{V_{L}}-C_{V_{R}}),
𝒜P\displaystyle\mathcal{A}_{P} =\displaystyle= λDmb+mcA0(q2)(CSRCSL),\displaystyle\frac{\sqrt{\lambda_{D^{*}}}}{m_{b}+m_{c}}A_{0}(q^{2})(C_{S_{R}}-C_{S_{L}}),
𝒜0T\displaystyle\mathcal{A}_{0T} =\displaystyle= CT2mD[(mB2+3mD2q2)T2(q2)λDmB2mD2T3(q2)],\displaystyle\frac{C_{T}}{2m_{D^{*}}}\left[\left(m^{2}_{B}+3m^{2}_{D^{*}}-q^{2}\right)T_{2}(q^{2})-\frac{\lambda_{D^{*}}}{m^{2}_{B}-m^{2}_{D^{*}}}T_{3}(q^{2})\right],
𝒜±T\displaystyle\mathcal{A}_{\pm T} =\displaystyle= CT[mB2mD2q2T2(q2)±λDq2T1(q2)].\displaystyle C_{T}\left[\frac{m^{2}_{B}-m^{2}_{D^{*}}}{\sqrt{q^{2}}}T_{2}(q^{2})\pm\sqrt{\frac{\lambda_{D^{*}}}{q^{2}}}T_{1}(q^{2})\right]. (18)

Further the transversity amplitudes can be defined as

𝒜(T)=12(𝒜+(+T)+𝒜(T)),𝒜(T)=12(𝒜+(+T)𝒜(T)).\mathcal{A}_{\parallel(T)}=\frac{1}{\sqrt{2}}\left(\mathcal{A}_{+(+T)}+\mathcal{A}_{-(-T)}\right),\quad\mathcal{A}_{\perp(T)}=\frac{1}{\sqrt{2}}\left(\mathcal{A}_{+(+T)}-\mathcal{A}_{-(-T)}\right). (19)

The amplitude 𝒜tP\mathcal{A}_{tP} is a combination of tt and PP amplitudes which is given by

𝒜tP=(At+q2mτ𝒜P)\mathcal{A}_{tP}=\left(A_{t}+\frac{\sqrt{q^{2}}}{m_{\tau}}\mathcal{A}_{P}\right) (20)

All the above expressions for the angular coefficients and hadronic amplitudes are taken from the Ref. Duraisamy:2014sna . The form factors appeared in the hadronic amplitudes V(q2)V(q^{2}), A0,1,2(q2)A_{0,1,2}(q^{2}) and T1,2,3(q2)T_{1,2,3}(q^{2}) are calculated in HQET parametrization Caprini:1997mu and their expressions can be also found in Ref. Sakaki:2013bfa .

References

  • (1) J. P. Lees et al. [BaBar Collaboration], “Evidence for an excess of B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} decays,” Phys. Rev. Lett.  109, 101802 (2012) [arXiv:1205.5442 [hep-ex]].
  • (2) J. P. Lees et al. [BaBar Collaboration], “Measurement of an Excess of B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} Decays and Implications for Charged Higgs Bosons,” Phys. Rev. D 88, no. 7, 072012 (2013) [arXiv:1303.0571 [hep-ex]].
  • (3) M. Huschle et al. [Belle Collaboration], “Measurement of the branching ratio of B¯D()τν¯τ\bar{B}\to D^{(\ast)}\tau^{-}\bar{\nu}_{\tau} relative to B¯D()ν¯\bar{B}\to D^{(\ast)}\ell^{-}\bar{\nu}_{\ell} decays with hadronic tagging at Belle,” Phys. Rev. D 92, no. 7, 072014 (2015) [arXiv:1507.03233 [hep-ex]].
  • (4) Y. Sato et al. [Belle Collaboration], “Measurement of the branching ratio of B¯0D+τν¯τ\bar{B}^{0}\rightarrow D^{*+}\tau^{-}\bar{\nu}_{\tau} relative to B¯0D+ν¯\bar{B}^{0}\rightarrow D^{*+}\ell^{-}\bar{\nu}_{\ell} decays with a semileptonic tagging method,” Phys. Rev. D 94, no. 7, 072007 (2016) [arXiv:1607.07923 [hep-ex]].
  • (5) S. Hirose et al. [Belle Collaboration], “Measurement of the τ\tau lepton polarization and R(D)R(D^{*}) in the decay B¯Dτν¯τ\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau},” Phys. Rev. Lett.  118, no. 21, 211801 (2017) [arXiv:1612.00529 [hep-ex]].
  • (6) A. Abdesselam et al. [Belle Collaboration], “Measurement of (D)\mathcal{R}(D) and (D)\mathcal{R}(D^{\ast}) with a semileptonic tagging method,” arXiv:1904.08794 [hep-ex].
  • (7) R. Aaij et al. [LHCb Collaboration], “Measurement of the ratio of branching fractions (B¯0D+τν¯τ)/(B¯0D+μν¯μ)\mathcal{B}(\bar{B}^{0}\to D^{*+}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^{0}\to D^{*+}\mu^{-}\bar{\nu}_{\mu}),” Phys. Rev. Lett.  115, no. 11, 111803 (2015) [arXiv:1506.08614 [hep-ex]].
  • (8) R. Aaij et al. [LHCb], “Measurement of the ratio of the B0Dτ+ντB^{0}\to D^{*-}\tau^{+}\nu_{\tau} and B0Dμ+νμB^{0}\to D^{*-}\mu^{+}\nu_{\mu} branching fractions using three-prong τ\tau-lepton decays,” Phys. Rev. Lett. 120 (2018) no.17, 171802 [arXiv:1708.08856 [hep-ex]].
  • (9) R. Aaij et al. [LHCb Collaboration], “Test of Lepton Flavor Universality by the measurement of the B0Dτ+ντB^{0}\to D^{*-}\tau^{+}\nu_{\tau} branching fraction using three-prong τ\tau decays,” Phys. Rev. D 97 (2018) no.7, 072013 [arXiv:1711.02505 [hep-ex]].
  • (10) Y. S. Amhis et al. [HFLAV], “Averages of bb-hadron, cc-hadron, and τ\tau-lepton properties as of 2018,” [arXiv:1909.12524 [hep-ex]].
  • (11) R. Aaij et al. [LHCb], “Measurement of the ratio of branching fractions (Bc+J/ψτ+ντ)\mathcal{B}(B_{c}^{+}\,\to\,J/\psi\tau^{+}\nu_{\tau})/(Bc+J/ψμ+νμ)\mathcal{B}(B_{c}^{+}\,\to\,J/\psi\mu^{+}\nu_{\mu}),” Phys. Rev. Lett. 120 (2018) no.12, 121801 [arXiv:1711.05623 [hep-ex]].
  • (12) R. Dutta and A. Bhol, “ Bc(J/Ψ,ηc)τνB_{c}\to(J/\Psi,\,\eta_{c})\tau\nu semileptonic decays within Standard model and beyond,” Phys. Rev. D 96, no. 7, 076001 (2017) [arXiv:1701.08598 [hep-ph]].
  • (13) A. K. Alok, D. Kumar, J. Kumar, S. Kumbhakar and S. U. Sankar, “New physics solutions for RDR_{D} and RDR_{D^{*}},” JHEP 09 (2018), 152 [arXiv:1710.04127 [hep-ph]].
  • (14) S. Iguro and R. Watanabe, “Bayesian fit analysis to full distribution data of B¯D()ν¯\bar{B}\to D^{(*)}\ell\bar{\nu}: |Vcb||V_{cb}| determination and New Physics constraints,” [arXiv:2004.10208 [hep-ph]].
  • (15) A. Abdesselam et al. [Belle Collaboration], “Measurement of the DD^{\ast-} polarization in the decay B0Dτ+ντB^{0}\to D^{\ast-}\tau^{+}\nu_{\tau},” arXiv:1903.03102 [hep-ex].
  • (16) M. Tanaka and R. Watanabe, “New physics in the weak interaction of B¯D()τν¯\bar{B}\to D^{(*)}\tau\bar{\nu},” Phys. Rev. D 87 (2013) no.3, 034028 [arXiv:1212.1878 [hep-ph]].
  • (17) A. K. Alok, D. Kumar, S. Kumbhakar and S. U. Sankar, “DD^{*} polarization as a probe to discriminate new physics in B¯Dτν¯\bar{B}\to D^{*}\tau\bar{\nu},” Phys. Rev. D 95, no. 11, 115038 (2017) [arXiv:1606.03164 [hep-ph]].
  • (18) M. Jung and D. M. Straub, “Constraining new physics in bcνb\to c\ell\nu transitions,” JHEP 01 (2019), 009 [arXiv:1801.01112 [hep-ph]].
  • (19) S. Bhattacharya, S. Nandi and S. Kumar Patra, “bcτντb\rightarrow c\tau\nu_{\tau} Decays: a catalogue to compare, constrain, and correlate new physics effects,” Eur. Phys. J. C 79 (2019) no.3, 268 [arXiv:1805.08222 [hep-ph]].
  • (20) Q. Y. Hu, X. Q. Li and Y. D. Yang, “bcτνb\to c\tau\nu transitions in the standard model effective field theory,” Eur. Phys. J. C 79 (2019) no.3, 264 [arXiv:1810.04939 [hep-ph]].
  • (21) A. K. Alok, D. Kumar, S. Kumbhakar and S. Uma Sankar, “Solutions to RDR_{D}-RDR_{D^{*}} in light of Belle 2019 data,” Nucl. Phys. B 953 (2020), 114957 [arXiv:1903.10486 [hep-ph]].
  • (22) P. Asadi and D. Shih, “Maximizing the Impact of New Physics in bcτνb\rightarrow c\tau\nu Anomalies,” Phys. Rev. D 100 (2019) no.11, 115013 [arXiv:1905.03311 [hep-ph]].
  • (23) C. Murgui, A. Peñuelas, M. Jung and A. Pich, “Global fit to bcτνb\to c\tau\nu transitions,” JHEP 09 (2019), 103 [arXiv:1904.09311 [hep-ph]].
  • (24) D. Bardhan and D. Ghosh, “BB -meson charged current anomalies: The post-Moriond 2019 status,” Phys. Rev. D 100 (2019) no.1, 011701 [arXiv:1904.10432 [hep-ph]].
  • (25) M. Blanke, A. Crivellin, T. Kitahara, M. Moscati, U. Nierste and I. Nišandžić, “Addendum to “Impact of polarization observables and BcτνB_{c}\to\tau\nu on new physics explanations of the bcτνb\to c\tau\nu anomaly”,” Phys. Rev. D 100 (2019) no.3, 035035 [arXiv:1905.08253 [hep-ph]].
  • (26) R. X. Shi, L. S. Geng, B. Grinstein, S. Jäger and J. Martin Camalich, “Revisiting the new-physics interpretation of the bcτνb\to c\tau\nu data,” JHEP 12 (2019), 065 [arXiv:1905.08498 [hep-ph]].
  • (27) D. Bečirević, M. Fedele, I. Nišandžić and A. Tayduganov, “Lepton Flavor Universality tests through angular observables of B¯D()ν¯\overline{B}\to D^{(\ast)}\ell\overline{\nu} decay modes,” [arXiv:1907.02257 [hep-ph]].
  • (28) S. Sahoo and R. Mohanta, “Investigating the role of new physics in bcτν¯τb\to c\tau\bar{\nu}_{\tau} transitions,” [arXiv:1910.09269 [hep-ph]].
  • (29) K. Cheung, Z. R. Huang, H. D. Li, C. D. Lu, Y. N. Mao and R. Y. Tang, “Revisit to the bcτνb\to c\tau\nu transition: in and beyond the SM,” [arXiv:2002.07272 [hep-ph]].
  • (30) J. Cardozo, J. H. Muñoz, N. Quintero and E. Rojas, “Analysing the charged scalar boson contribution to the charged-current BB meson anomalies,” [arXiv:2006.07751 [hep-ph]].
  • (31) M. Freytsis, Z. Ligeti and J. T. Ruderman, “Flavor models for B¯D()τν¯\bar{B}\to D^{(*)}\tau\bar{\nu},” Phys. Rev. D 92, no. 5, 054018 (2015) [arXiv:1506.08896 [hep-ph]].
  • (32) I. Doršner, S. Fajfer, A. Greljo, J. Kamenik and N. Košnik, “Physics of leptoquarks in precision experiments and at particle colliders,” Phys. Rept. 641 (2016), 1-68 [arXiv:1603.04993 [hep-ph]].
  • (33) I. Caprini, L. Lellouch and M. Neubert, “Dispersive bounds on the shape of anti-B —¿ D(*) lepton anti-neutrino form-factors,” Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417].
  • (34) S. Aoki et al. [Flavour Lattice Averaging Group], “FLAG Review 2019: Flavour Lattice Averaging Group (FLAG),” Eur. Phys. J. C 80 (2020) no.2, 113 [arXiv:1902.08191 [hep-lat]].
  • (35) J. A. Bailey et al. [Fermilab Lattice and MILC Collaborations], ’‘Update of |Vcb||V_{cb}| from the B¯Dν¯\bar{B}\to D^{*}\ell\bar{\nu} form factor at zero recoil with three-flavor lattice QCD,” Phys. Rev. D 89 (2014) no.11, 114504 [arXiv:1403.0635 [hep-lat]].
  • (36) W. F. Wang, Y. Y. Fan and Z. J. Xiao, “Semileptonic decays Bc(ηc,J/Ψ)lνB_{c}\to(\eta_{c},J/\Psi)l\nu in the perturbative QCD approach,” Chin. Phys. C 37, 093102 (2013) [arXiv:1212.5903 [hep-ph]].
  • (37) F. James and M. Roos, “Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations,” Comput. Phys. Commun. 10 (1975), 343-367
  • (38) F. James, “MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1,” CERN-D-506.
  • (39) B. Colquhoun et al. [HPQCD Collaboration], “B-meson decay constants: a more complete picture from full lattice QCD,” Phys. Rev. D 91 (2015) no.11, 114509 [arXiv:1503.05762 [hep-lat]].
  • (40) M. Tanabashi et al. [Particle Data Group], “Review of Particle Physics,” Phys. Rev. D 98 (2018) no.3, 030001
  • (41) A. G. Akeroyd and C. H. Chen, “Constraint on the branching ratio of Bcτν¯B_{c}\to\tau\bar{\nu} from LEP1 and consequences for R(D())R(D^{(*)}) anomaly,” Phys. Rev. D 96, no. 7, 075011 (2017) [arXiv:1708.04072 [hep-ph]].
  • (42) F. Abe et al. [CDF], “Observation of BcB_{c} mesons in pp¯p\bar{p} collisions at s=1.8\sqrt{s}=1.8 TeV,” Phys. Rev. D 58 (1998), 112004 [arXiv:hep-ex/9804014 [hep-ex]].
  • (43) A. Abulencia et al. [CDF], “Measurement of the B(c)+ meson lifetime using B(c)+ —¿ J/psi e+ nu(e),” Phys. Rev. Lett. 97 (2006), 012002 [arXiv:hep-ex/0603027 [hep-ex]].
  • (44) R. Aaij et al. [LHCb], “Measurement of the ratio of Bc+B_{c}^{+} branching fractions to J/ψπ+J/\psi\pi^{+} and J/ψμ+νμJ/\psi\mu^{+}\nu_{\mu},” Phys. Rev. D 90 (2014) no.3, 032009 [arXiv:1407.2126 [hep-ex]].
  • (45) R. Alonso, B. Grinstein and J. Martin Camalich, “Lifetime of BcB_{c}^{-} Constrains Explanations for Anomalies in BD()τνB\to D^{(*)}\tau\nu,” Phys. Rev. Lett.  118, no. 8, 081802 (2017) [arXiv:1611.06676 [hep-ph]].
  • (46) M. González-Alonso, J. Martin Camalich and K. Mimouni, “Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays,” Phys. Lett. B 772 (2017), 777-785 [arXiv:1706.00410 [hep-ph]].
  • (47) A. K. Alok, D. Kumar, S. Kumbhakar and S. Uma Sankar, “Resolution of RDR_{D}/RDR_{D^{*}} puzzle,” Phys. Lett. B 784 (2018) 16 [arXiv:1804.08078 [hep-ph]].
  • (48) D. Aloni, Y. Grossman and A. Soffer, “Measuring CP violation in bcτν¯τb\to c\tau^{-}\bar{\nu}_{\tau} using excited charm mesons,” Phys. Rev. D 98 (2018) no.3, 035022 [arXiv:1806.04146 [hep-ph]].
  • (49) M. Duraisamy, P. Sharma and A. Datta, “Azimuthal BDτντ¯B\to D^{*}\tau^{-}\bar{\nu_{\tau}} angular distribution with tensor operators,” Phys. Rev. D 90 (2014) no.7, 074013 [arXiv:1405.3719 [hep-ph]].
  • (50) M. Duraisamy and A. Datta, “The Full BDτντ¯B\to D^{*}\tau^{-}\bar{\nu_{\tau}} Angular Distribution and CP violating Triple Products,” JHEP 1309, 059 (2013) [arXiv:1302.7031 [hep-ph]].
  • (51) A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh and D. London, “New Physics in b -¿ s mu+ mu-: CP-Violating Observables,” JHEP 11 (2011), 122 [arXiv:1103.5344 [hep-ph]].
  • (52) B. Bhattacharya, A. Datta, S. Kamali and D. London, “CP Violation in B¯0D+μν¯μ{\bar{B}}^{0}\to D^{*+}\mu^{-}{\bar{\nu}}_{\mu},” JHEP 05 (2019), 191 [arXiv:1903.02567 [hep-ph]].
  • (53) B. Bhattacharya, A. Datta, S. Kamali and D. London, “A Measurable Angular Distribution for B¯Dτν¯τ{\bar{B}}\to D^{*}\tau^{-}{\bar{\nu}}_{\tau} Decays,” [arXiv:2005.03032 [hep-ph]].
  • (54) A. Cerri et al., “Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC” CERN Yellow Rep. Monogr. 7 (2019), 867-1158 [arXiv:1812.07638 [hep-ph]].
  • (55) D. Marangotto, “Angular and CP-Violation Analyses of B¯D+lν¯l\bar{B}\to D^{*+}l^{-}\bar{\nu}_{l} Decays at Hadron Collider Experiments,” Adv. High Energy Phys. 2019 (2019), 5274609 [arXiv:1812.08144 [hep-ex]].
  • (56) Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, “Testing leptoquark models in B¯D()τν¯\bar{B}\to D^{(*)}\tau\bar{\nu},” Phys. Rev. D 88 (2013) no.9, 094012 [arXiv:1309.0301 [hep-ph]].