This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Signature-inverse Theorem in Mesh Group-planes

Reza Aghayan
Department of Mathematics - University of Texas at San Antonio - TX 78249 - USA.
Email: [email protected].
Abstract

This is the second paper devoted to the numerical version of Signature-inverse Theorem in terms of the underlying joint invariants. Signature Theorem and its Inverse guarantee any application of differential invariant signature curves to the invariant recognition of visual objects. We first show the invalidity of Curvature-inverse and Signature-inverse theorems, meaning non-congruent meshes may have the same joint invariant numerical curvature or signature. Then by classifying three and five point ordinary meshes respectively in the Euclidean and affine cases, we look for conditions in terms of the associated joint invariant signatures which make these theorems correct. Additionally, we bring forward The Host Theorem to provide a simpler version of Signature-inverse Theorem for closed ordinary meshes.

Mathematical subject classification 2010: 53A55, 53A04, 53A15, 14L24, 65D18.

Keywords: Invariants theory, Differential invariant signature curves, Joint invariant numerical signatures, Curvature-inverse and Signature-inverse theorems, and Curve analysis.

I 1 Introduction

Geometric invariants play a crucial role in object recognition where the object of interest is affected by a transformation group. They were studied by Halphen hal , Wilczynski wil1 ; wil2 , Čech and Fubini fub , Weyl wey , Cartan car , Nagata nag , and Mumford mum who developed the theory of the invariants of transformation groups. A more modern approach has being studied by Calabi et al. cal3 by introducing the invariant signatures of planar curves, which later modified by Boutin bou , Aghayan et al. agh , and Aghayan agh1 ; agh2 ; agh3 ; agh4 ; agh5 . In agh ; agh1 ; bru3 ; bru2 ; bru4 ; bou ; fen ; cal3 ; hof2 , differential and integral signatures were applied to invariant recognition of object boundaries and detecting symmetries.

Throughout this paper 𝔾\mathrm{\mathbb{G}} refers to the special Euclidean motions S𝔼\mathrm{S\mathbb{E}}, the Euclidean group 𝔼\mathrm{\mathbb{E}}, the equiaffine transformations S𝔸\mathrm{S\mathbb{A}}, and the extended equiaffine group 𝔸¯\mathrm{\bar{\mathbb{A}}}. Also, a 𝔾\mathrm{\mathbb{G}}-plane E𝔾\mathrm{E^{\mathbb{G}}} means the plane E2\mathrm{E\simeq\mathbb{R}^{2}} with the geometry induced by 𝔾\mathrm{\mathbb{G}} acting on E.

Curvature Theorem and its Inverse sap indicates that a Cr\mathrm{C^{r}} (r2\mathrm{(r\geq 2} in E𝔼\mathrm{E^{\mathbb{E}}} and r4\mathrm{r\geq 4} in E𝔸)\mathrm{E^{\mathbb{A}})} curve γE𝔾\mathrm{\gamma\subset E^{\mathbb{G}}} is uniquely represented, up to the transformation group 𝔾\mathrm{\mathbb{G}}, by its 𝔾\mathrm{\mathbb{G}}-invariant curvature κ𝔾(ι)\mathrm{\kappa_{\mathbb{G}}(\iota)} as a function of the 𝔾\mathrm{\mathbb{G}}-invariant arc length ι\iota. To avoid the ambiguity caused by the choice of initial point from where the arc length is measured, Calabi et al. cal3 brought forward differential invariant signature curves (DISCs) or classifying curves as a new scheme of the invariant recognition for visual objects.

Definition 1.1 agh . A CrC^{r} (r3(r\geq 3 in E𝔼\mathrm{E^{\mathbb{E}}} and r5r\geq 5 in E𝔸)\mathrm{E^{\mathbb{A}})} curve γE𝔾\mathrm{\gamma\subset E^{\mathbb{G}}} is regular if κ𝔾(ι)\mathrm{\kappa_{\mathbb{G}}(\iota)} and its first derivative κ𝔾,ι\mathrm{\kappa_{\mathbb{G},\iota}} are defined and analytic over γ\mathrm{\gamma}. Then, the 𝔾\mathrm{\mathbb{G}}-invariant signature set of the regular curve γ\mathrm{\gamma} is parameterized by

Ξ𝔾(γ)={(κ𝔾(x),κ𝔾,ι(x))xγ}2.\displaystyle\mathrm{\Xi_{\mathbb{G}}(\gamma)=\{(\kappa_{\mathbb{G}}(x),\kappa_{\mathbb{G},\iota}(x))\mid x\in\gamma\}}\subset\mathbb{R}^{2}.

Moreover, if γ\mathrm{\gamma} is nonsingular, i.e. its signature set is a nondegenerate curve, Ξ𝔾(γ)\mathrm{\Xi_{\mathbb{G}}(\gamma)} is called the 𝔾\mathrm{\mathbb{G}}-DISC of γ\mathrm{\gamma}. Nonsingularity is guaranteed by (κ𝔾,ι,κ𝔾,ιι)0\mathrm{(\kappa_{\mathbb{G},\iota},\kappa_{\mathbb{G},\iota\iota})\neq 0}.

Signature Theorem in E𝔾\mathrm{E^{\mathbb{G}}} olv3 . Let γ,γ~E𝔾\mathrm{\gamma,\tilde{\gamma}\subset E^{\mathbb{G}}} be two congruent curves, i.e. γ~=gγ\mathrm{\tilde{\gamma}=g\cdot\gamma} for some g𝔾\mathrm{g\in\mathbb{G}}. Then, their DISCs are identical: Ξ𝔾(γ~)=Ξ𝔾(γ)\mathrm{\Xi_{\mathbb{G}}(\tilde{\gamma})=\Xi_{\mathbb{G}}(\gamma)}.

Signature-inverse Theorem in E𝔾\mathrm{E^{\mathbb{G}}} olv3 . All smooth nonsingular curves with the same DISC are congruent.

Accordingly, DISCs can be applied to program a computer to recognize curves modulo a certain transformation group. However, one major difficulty has been the noise sensitivity of standard differential invariants owing to their dependence on high order derivatives. Aiming to obtain less sensitive approximations, Calabi et al. cal3 suggested numerical expressions for κG\mathrm{\kappa_{G}} and κG,ι\mathrm{\kappa_{G,\iota}} in terms of joint invariants and introduced “joint invariant numerical signatures” (JINSs). Later, Boutin bou corrected and Aghayan et al. agh generalized the original formulae and recently Aghayan agh1 illustrated the resulting formulation depends on the viewpoint and introduced ‘orientation-invariant’ JINSs, leading to the same signature for congruent meshes - named “the current formulation”.

In the first paper in this series agh3 , we proved that Signature-inverse theorem is not correct in terms of the current formulation and therefore non-congruent meshes may have the same JINS. To deal with the problem, we introduced “the new formulation” for JINSs and showed that, compared to the current expressions, the new ones are not only closer to 𝔾\mathrm{\mathbb{G}}-DISCs but for ordinary meshes are also more stable.

This paper is organized as follows. Section 2 provides a brief survey of the framework of the new formulation. Section 3 shows that Curvature-inverse Theorem and Signature-inverse Theorem are not valid in terms of the new expressions, therefore, non-congruent meshes may have identical numerical curvatures or JINSs. Section 4 first classifies equally and unequally spaced three-point ordinary meshes with respect to their curvatures and side lengths, then, we look for conditions in terms of the new formulas to make the Euclidean Signature-inverse Theorem correct. Next, we bring forward The Host Theorem to give simpler versions of this theorem for closed meshes. Section 5 goes through the same process for the equi-affine case by classifying five-point ordinary meshes. Finally, Section 6 present our conclusions.

II 2 K-point 𝔾\mathrm{\mathbb{G}}-signatures - The new formulation

According to agh2 , the following subsection does a brief survey of the new formulation.

In a mesh of points {pi}E\mathrm{\{p_{i}\}\subset E}, a cusp is a point pi\mathrm{p_{i}} where the moving point pi+1\mathrm{p_{i+1}} starts to move backward - in other word, pi+1=pi1\mathrm{p_{i+1}=p_{i-1}}. An ordinary mesh point γ={pi}E\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset E} refers to a set of successive points with no cusp. An ordinary mesh γ\mathrm{\gamma^{\vartriangle}} is fine if it approximates a Cr(r3\mathrm{C^{r}}\hskip 3.41432pt\mathrm{(r\geq 3} in E𝔼\mathrm{E^{\mathbb{E}}} and r5\mathrm{r\geq 5} in E𝔸)\mathrm{E^{\mathbb{A}})} curve γγE\mathrm{\gamma^{\vartriangle}\subset\gamma\subset E} and all angles θi=<(pi1,pi,pi+1)\mathrm{\theta_{i}=\hskip 3.41432pt<(p_{i-1},p_{i},p_{i+1})} are obtuse - in this case, the JINS of γ\mathrm{\gamma^{\vartriangle}} approximates the DISC of γ\mathrm{\gamma}.

Also, the n-neighborhood of piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} means the 2n+1 successive points:

pin,,pi1,pi,pi+1,,pi+n.\displaystyle\mathrm{p_{i-n},\ldots,p_{i-1},p_{i},p_{i+1},\ldots,p_{i+n}}.

In addition, a “k-point invariant” of E𝔾\mathrm{E^{\mathbb{G}}} is a function J:Ek\mathrm{J:E^{k}\longrightarrow\mathbb{R}} such that for each g𝔾\mathrm{g\in\mathbb{G}} and every k-point subset {p1,,pk}E\mathrm{\{p_{1},\ldots,p_{k}\}\subset E} we have J(gp1,,gpk)=J(p1,,pk).\mathrm{J(g\cdot p_{1},\ldots,g\cdot p_{k})=J(p_{1},\ldots,p_{k})}.

II.1 2.1 Two-point S𝔼\mathrm{S\mathbb{E}}-signatures

Consider the Euclidean geometry of curves in the plane ES𝔼2,S𝔼\mathrm{E^{S\mathbb{E}}\simeq\mathbb{R}^{2,S\mathbb{E}}} where the underlying group of transformations is the special Euclidean group S𝔼(2)=SO(2)2\mathrm{S\mathbb{E}(2)=SO(2)\ltimes\mathbb{R}^{2}}, containing all translations and rotations. One can also include reflections, leading to the Euclidean group 𝔼(2)=O(2)2\mathrm{\mathbb{E}(2)=O(2)\ltimes\mathbb{R}^{2}}.

Definition 2.1. The 2-point 𝔼\mathrm{\mathbb{E}}-curvature of an ordinary mesh γ={pi}i3E𝔼\mathrm{\gamma^{\vartriangle}=\{p_{i}\}_{i\geq 3}\subset E^{\mathbb{E}}} is the function κ𝔼:γ\mathrm{\kappa_{\mathbb{E}}^{\vartriangle}:\gamma^{\vartriangle}\longrightarrow\mathbb{R}} given by pi4abc(pi)\mathrm{p_{i}\longmapsto\frac{4\bigtriangleup}{abc}(p_{i})}, where a(pi)b(pi)c(pi)\mathrm{a(p_{i})\geqslant b(p_{i})\geqslant c(p_{i})} are the Euclidean distances in the one-neighborhood of pi\mathrm{p_{i}} and (pi)\mathrm{\bigtriangleup(p_{i})} is the area of the triangle whose vertices are the one-neighborhood of pi\mathrm{p_{i}} given by

(pi)=(a+(b+c))(c(ab))(c+(ab))(a+(bc))(pi).\displaystyle\mathrm{\bigtriangleup(p_{i})=\sqrt{(a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))}(p_{i})}.

Then the 2-point S𝔼\mathrm{S\mathbb{E}}-signature of an ordinary mesh γ={pi}\mathrm{\gamma^{\vartriangle}=\{p_{i}\}} is parameterized as follows.

- Where γ\mathrm{\gamma^{\vartriangle}} is equally spaced:

ΞS𝔼(γ)={(4Δabc(pi),4Δabc(pi+1)4Δabc(pi)di)piγ}2\displaystyle\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma^{\vartriangle})=\{(\frac{4\Delta}{abc}(p_{i}),\ \frac{\frac{4\Delta}{abc}(p_{i+1})-\frac{4\Delta}{abc}(p_{i})}{d_{i}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}} (1)

or, in terms of a centered difference quotient

ΞS𝔼(γ)={(4Δabc(pi),4Δabc(pi+1)4Δabc(pi1)di1,i+1)piγ}2.\displaystyle\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma^{\vartriangle})=\{(\frac{4\Delta}{abc}(p_{i}),\ \frac{\frac{4\Delta}{abc}(p_{i+1})-\frac{4\Delta}{abc}(p_{i-1})}{d_{i-1,i+1}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}}. (2)

- Where γ\mathrm{\gamma^{\vartriangle}} is unequally spaced:

ΞS𝔼(γ)={(4abc(pi), 34abc(pi+1)4abc(pi)di1,i+2)piγ}2\displaystyle\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma^{\vartriangle})=\{(\frac{4\bigtriangleup}{abc}(p_{i}),\ 3\cdot\frac{\frac{4\bigtriangleup}{abc}(p_{i+1})-\frac{4\bigtriangleup}{abc}(p_{i})}{d_{i-1,i+2}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}} (3)

or, in terms of a centered difference quotient

ΞS𝔼(γ)={(4abc(pi), 34abc(pi+1)4abc(pi1)di3,i+3)piγ}2.\displaystyle\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma^{\vartriangle})=\{(\frac{4\bigtriangleup}{abc}(p_{i}),\ 3\cdot\frac{\frac{4\bigtriangleup}{abc}(p_{i+1})-\frac{4\bigtriangleup}{abc}(p_{i-1})}{d_{i-3,i+3}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}}. (4)

In which di,j=|pipj|\mathrm{d_{i,j}=|p_{i}-p_{j}|} denotes their Euclidean distance and di=di,i+1\mathrm{d_{i}=d_{i,i+1}}.

II.2 2.2 Three-point S𝔸\mathrm{S\mathbb{A}}-signatures

Affine geometry is the study of geometric properties of the objects in the plane ES𝔸\mathrm{E^{S\mathbb{A}}} which remain unchanged by signed area-preserving affine transformations xAx+b,ASL(2)\mathrm{x\longmapsto Ax+b,A\in SL(2)} and x,b2\mathrm{x,b\in\mathbb{R}^{2}} - called the equiaffine group S𝔸(2)=SL(2)2\mathrm{S\mathbb{A}(2)=SL(2)\ltimes\mathbb{R}^{2}}. One can include reflections, leading to the extended equiaffine group 𝔸¯(2)\mathrm{\bar{\mathbb{A}}(2)}.

Definition 2.2 agh2 . The 3-point 𝔸\mathrm{\mathbb{A}}-curvature of an ordinary convex (no three are collinear) mesh γ={pi}i5E𝔸\mathrm{\gamma^{\vartriangle}=\{p_{i}\}_{i\geq 5}\subset E^{\mathbb{A}}} is the real-valued function κ𝔸:γ\mathrm{\kappa_{\mathbb{A}}^{\vartriangle}:\gamma^{\vartriangle}\longrightarrow\mathbb{R}} given by piSF(2/3)(pi)\mathrm{p_{i}\longmapsto\frac{S}{F^{(2/3)}}(p_{i})}, where F and S are the first and second affine invariants of γ\mathrm{\gamma^{\vartriangle}}.

Moreover, the 3-point affine arc lengths of γ={pi}ES𝔸\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset E^{S\mathbb{A}}} are obtained as follows.

Theorem 2.3 agh2 . In the five-neighborhood of any point piγ\mathrm{p_{i}\in\gamma^{\vartriangle}}, the 3-point 𝔸\mathbb{A}-arc length Lk,l=L(pk,pl)\mathrm{L_{k,l}=L(p_{k},p_{l})} from pk\mathrm{p_{k}} to pl\mathrm{p_{l}} is computed as follows.

-If SF2/3(pi)0\mathrm{\frac{S}{F^{2/3}}(p_{i})\neq 0}, then

Lk,l=|SF2/3(pi)[klO]|;whereO=(BECDACB2,AEBDACB2)(pi),\displaystyle\mathrm{L_{k,l}=|\frac{S}{F^{2/3}}(p_{i})\cdot[klO]|;\hskip 11.38109pt\textit{where}\hskip 5.69054ptO=(\frac{\mathrm{BE-CD}}{AC-B^{2}},-\frac{\mathrm{AE-BD}}{AC-B^{2}})(p_{i}),}

and [klO]\mathrm{[klO]} equals the signed area of the parallelogram whose sides are pkpl\mathrm{p_{k}-p_{l}} and pkO\mathrm{p_{k}-O}.

-If SF2/3(pi)=0\mathrm{\frac{S}{F^{2/3}}(p_{i})=0}, then

Lk,l=A2AEBD3[(xkxl)+BA(ykyl)](pi);where(xk,yk)=pk,(xl,yl)=pl,\displaystyle\mathrm{L_{k,l}=\sqrt[3]{\frac{\mathrm{A}^{2}}{\mathrm{AE-BD}}}\left[(x_{k}-x_{l})+\frac{B}{A}(y_{k}-y_{l})\right](p_{i});\hskip 8.53581pt\textit{where}\hskip 5.69054pt(x_{k},y_{k})=p_{k},\hskip 2.84526pt(x_{l},y_{l})=p_{l},}

and A, B, C, D, and E are the affine functions of γ\mathrm{\gamma^{\vartriangle}}. Moreover, Lk=L(pk,pk+1)\mathrm{L_{k}=L(p_{k},p_{k+1})}.

Then the 3-point S𝔸\mathrm{S\mathbb{A}}-signature of the convex mesh γ={pi}MS𝔸\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset M^{S\mathbb{A}}} is obtained as follows.

- Where γ\mathrm{\gamma^{\vartriangle}} is equally spaced:

ΞS𝔸Δ(γ)={(SF2/3(pi),SF2/3(pi+1)SF2/3(pi)Li)piγ}2\displaystyle\mathrm{\Xi_{S\mathbb{A}}^{\Delta}(\gamma^{\vartriangle})=\{(\frac{S}{F^{2/3}}(p_{i}),\ \frac{\frac{S}{F^{2/3}}(p_{i+1})-\frac{S}{F^{2/3}}(p_{i})}{L_{i}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}} (5)

or, in terms of a centered difference quotient

ΞS𝔸Δ(γ)={(SF2/3(pi),SF2/3(pi+1)SF2/3(pi1)Li1,i+1)piγ}2.\displaystyle\mathrm{\Xi_{S\mathbb{A}}^{\Delta}(\gamma^{\vartriangle})=\{(\frac{S}{F^{2/3}}(p_{i}),\ \frac{\frac{S}{F^{2/3}}(p_{i+1})-\frac{S}{F^{2/3}}(p_{i-1})}{L_{i-1,i+1}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}}. (6)

- Where γ\mathrm{\gamma^{\vartriangle}} is unequally spaced:

ΞS𝔸Δ(γ)={(SF2/3(pi), 5SF2/3(pi+1)SF2/3(pi)Li2,i+3)piγ}2\displaystyle\mathrm{\Xi_{S\mathbb{A}}^{\Delta}(\gamma^{\vartriangle})=\{(\frac{S}{F^{2/3}}(p_{i}),\ 5\cdot\frac{\frac{S}{F^{2/3}}(p_{i+1})-\frac{S}{F^{2/3}}(p_{i})}{L_{i-2,i+3}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}} (7)

Or, in terms of a centered difference quotient

ΞS𝔸Δ(γ)={(SF2/3(pi), 5SF2/3(pi+1)SF2/3(pi1)Li5,i+5)piγ}2.\displaystyle\mathrm{\Xi_{S\mathbb{A}}^{\Delta}(\gamma^{\vartriangle})=\{(\frac{S}{F^{2/3}}(p_{i}),\ 5\cdot\frac{\frac{S}{F^{2/3}}(p_{i+1})-\frac{S}{F^{2/3}}(p_{i-1})}{L_{i-5,i+5}})\mid p_{i}\in\gamma^{\vartriangle}\}\subset\mathbb{R}^{2}}.\vspace{-2cm} (8)

III 3. Counterexamples in the space of ordinary meshes

Consider the space of all planar ordinary meshes affected by 𝔾\mathrm{\mathbb{G}}, called the Mesh 𝔾\mathrm{\mathbb{G}}-plane M𝔾\mathrm{M^{\mathbb{G}}}. Two n-point ordinary meshes γ={pi}\mathrm{\gamma^{\vartriangle}=\{p_{i}\}} and γ~={p~i}\mathrm{\tilde{\gamma}^{\vartriangle}=\{\tilde{p}_{i}\}} in M𝔾\mathrm{M^{\mathbb{G}}} are congruent if and only if there exists a g𝔾\mathrm{g\in\mathbb{G}} and a permutation σ:{1,,n}{1,,n}\mathrm{\sigma:\{1,\ldots,n\}\longrightarrow\{1,\ldots,n\}} such that

p~i=gpσ(i)for all1in.\displaystyle\mathrm{\tilde{p}_{i}=g\cdot p_{\sigma(i)}\hskip 14.22636pt\mbox{for all}\hskip 8.53581pt1\leq i\leq n}. (9)

This identity introduces an equivalence relation on M𝔾\mathrm{M^{\mathbb{G}}}, called the 𝔾\mathrm{\mathbb{G}}-congruent classes. From now on, without loss of generality, we suppose that γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are congruent if and only if there exists g𝔾\mathrm{g\in\mathbb{G}} such that p~i=gpi\mathrm{\tilde{p}_{i}=g\cdot p_{i}} for all 1in\mathrm{1\leq i\leq n}.

III.1 3.1 Counterexamples for Curvature-inverse Theorem in M𝔾\mathrm{M^{\mathbb{G}}}

According to agh ; agh1 , Curvature Theorem is correct in M𝔾\mathrm{M^{\mathbb{G}}}, meaning congruent meshes have the same k-point 𝔾\mathrm{\mathbb{G}}-curvature κ𝔾\mathrm{\kappa_{\mathbb{G}}^{\vartriangle}}. Now, we are going to investigate its inverse.

Example 1. Let γ01={p1,p,p2}\mathrm{\gamma_{0-1}^{\vartriangle}=\{p_{1},p,p_{2}\}} and γ02={q1,q,q2}\mathrm{\gamma_{0-2}^{\vartriangle}=\{q_{1},q,q_{2}\}} be two 3-point ordinary meshes of the unit circle γ02\mathrm{\gamma_{0}\subset\mathbb{R}^{2}} as shown in Figure 1.

Refer to caption
Figure 1: Two arbitrary 3-point ordinary meshes of γ02\mathrm{\gamma_{0}\subset\mathbb{R}^{2}}.

These meshes have the following identical 𝔼\mathrm{\mathbb{E}}-curvatures, while they are clearly non-congruent:

κ𝔼(γ01Δ)=κ𝔼(γ02Δ):{p=q}{1}.\displaystyle\mathrm{\kappa_{\mathbb{E}}^{\vartriangle}(\gamma_{0-1}^{\Delta})=\kappa_{\mathbb{E}}^{\vartriangle}(\gamma_{0-2}^{\Delta}):\{p=q\}\longmapsto\{1\}}.

Example 2. Let γ11={p1,p,p2}γ1\mathrm{\gamma_{1-1}^{\vartriangle}=\{p_{1},p,p_{2}\}\subset\gamma_{1}} and γ21={q1,q,q2}γ2\mathrm{\gamma_{2-1}^{\vartriangle}=\{q_{1},q,q_{2}\}\subset\gamma_{2}} be two equally spaced 3-point ordinary meshes in ES𝔼\mathrm{E^{S\mathbb{E}}}, see FIG. 2, and their circumcircles have the same radius 𝖱\mathsf{R}.

Refer to caption
Figure 2: To transform γ21\mathrm{\gamma_{2-1}^{\vartriangle}} to γ11\mathrm{\gamma_{1-1}^{\vartriangle}} a reflection is required.

γ11\mathrm{\gamma_{1-1}^{\vartriangle}} and γ21\mathrm{\gamma_{2-1}^{\vartriangle}} are clearly non-congruent, while they have the same 2-point 𝔼\mathrm{\mathbb{E}}-curvature:

κ𝔼(p)=κ𝔼(q)=1/𝖱.\displaystyle\mathrm{\kappa_{\mathbb{E}}^{\vartriangle}(p)=\kappa_{\mathbb{E}}^{\vartriangle}(q)=1/\mathsf{R}}.

Now consider two approximating meshes of γ0\mathrm{\gamma_{0}} with the same resolution (number of points) in which one is equally and the other one is unequally spaced. They have the same 2-point 𝔼\mathrm{\mathbb{E}}-curvatures, while they are not congruent, meaning Curvature-inverse Theorem is not correct even for fine partitions.

Just like the Euclidean case, it is also easy to give some counterexamples in M𝔸\mathrm{M^{\mathbb{A}}}, therefore, we have the following proposition.

proposition 3.1. Non-congruent meshes may have identical k-point 𝔾\mathrm{\mathbb{G}}-curvatures.

III.2 3.2 Counterexample for Signature-inverse Theorem in M𝔾\mathrm{M^{\mathbb{G}}}

According to agh1 , to validate Signature Theorem in terms of the current formulation, one just needs to consider the orientation-invariant version of it, meaning congruent meshes have the same orientation-invariant JINS. Now, we investigate the correctness of its inverse.

Let Rp\mathrm{R_{p}} be the radius of the circumcircle passing through the one-neighborhood of a point p\mathrm{p} on an ordinary mesh γ\mathrm{\gamma^{\vartriangle}}.

Example 3. Let γ31={p1,p2,p3,p4,p5}γ3\mathrm{\gamma_{3-1}^{\vartriangle}=\{p_{1},p_{2},p_{3},p_{4},p_{5}\}\subset\gamma_{3}} and γ41={q1,q2,q3,q4,q5}γ4\mathrm{\gamma_{4-1}^{\vartriangle}=\{q_{1},q_{2},q_{3},q_{4},q_{5}\}\subset\gamma_{4}} denote two equally spaced ordinary meshes with d(p1,p3)=d(q1,q3)\mathrm{d(p_{1},p_{3})=d(q_{1},q_{3})}, see FIG. 3. Also, let

Rp1=Rp2=\mathrm{R_{p_{1}}=R_{p_{2}}=} Rq1=Rq2=𝖱\mathrm{R_{q_{1}}=R_{q_{2}}=\mathsf{R}}       and       Rp3=Rq3=𝗋\mathrm{R_{p_{3}}=R_{q_{3}}=\mathsf{r}}.

Refer to caption
Figure 3: γ31\mathrm{\gamma_{3-1}^{\vartriangle}} and γ41\mathrm{\gamma_{4-1}^{\vartriangle}}.

From identity (2)

ΞS𝔼(γ31)\displaystyle\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma_{3-1}^{\vartriangle})} =\displaystyle= {(4Δabc(pi),4Δabc(pi+1)4Δabc(pi1)di1,i+1)piγ31}={(1𝖱,1𝗋1𝖱d1,3)}\displaystyle\mathrm{\{(\frac{4\Delta}{abc}(p_{i}),\frac{\frac{4\Delta}{abc}(p_{i+1})-\frac{4\Delta}{abc}(p_{i-1})}{d_{i-1,i+1}})\mid p_{i}\in\gamma_{3-1}^{\vartriangle}\}}=\mathrm{\{(\dfrac{1}{\mathsf{R}},\frac{\frac{1}{\mathsf{r}}-\frac{1}{\mathsf{R}}}{d_{1,3}})\}}

and

ΞS𝔼(γ41)\displaystyle\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma_{4-1}^{\vartriangle})} =\displaystyle= {(4Δabc(qi),4Δabc(qi+1)4Δabc(qi1)di1,i+1)qiγ41}={(1𝖱,1𝗋1𝖱d1,3)}.\displaystyle\mathrm{\{(\frac{4\Delta}{abc}(q_{i}),\frac{\frac{4\Delta}{abc}(q_{i+1})-\frac{4\Delta}{abc}(q_{i-1})}{d_{i-1,i+1}})\mid q_{i}\in\gamma_{4-1}^{\vartriangle}\}}=\mathrm{\{(\dfrac{1}{\mathsf{R}},\frac{\frac{1}{\mathsf{r}}-\frac{1}{\mathsf{R}}}{d_{1,3}})\}}.

Thus γ31\mathrm{\gamma_{3-1}^{\vartriangle}} and γ41\mathrm{\gamma_{4-1}^{\vartriangle}} have the same 2-point S𝔼\mathrm{S\mathbb{E}}-signature, while they are not clearly congruent.

Just like the Euclidean case, it is also easy to give some counterexamples in MS𝔸\mathrm{M^{S\mathbb{A}}}, therefore, we have the following corollary.

Proposition 3.2. Signature-inverse Theorem is not correct in M𝔾\mathrm{M^{\mathbb{G}}}.

Remark. There are theorems with very simple conditions for Signature-inverse Theorem in M𝔾\mathrm{M^{\mathbb{G}}}, but they are not in terms of the resulting JINSs. For example, the following theorem is the simplest.

Theorem 3.3. Let γ,γ~MS𝔼\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset M^{S\mathbb{E}}} denote ordinary meshes with the same Euclidean distance between any two corresponding successive points and have also identical corresponding signed angles. Then, γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are congruent.

From now on, this paper looks for conditions in terms of the resulting signatures to make Signature-inverse Theorem correct in M𝔾\mathrm{M^{\mathbb{G}}}.

IV 4 Signature-inverse Theorem in MS𝔼\mathrm{M^{S\mathbb{E}}}

Definition 4.1. Let γ={pi}E2\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset E\simeq\mathbb{R}^{2}} denote an ordinary mesh point.

a) The signature-sign of γ\mathrm{\gamma^{\vartriangle}} is the function SS:γ{1,0,1}\mathrm{SS:\gamma^{\vartriangle}\longrightarrow\{-1,0,1\}} given at any point piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} by: pisgn((pi+1pi)×(pi1pi))\mathrm{p_{i}\longmapsto sgn((p_{i+1}-p_{i})\times(p_{i-1}-p_{i}))} where ×\times denotes the 2d-cross product.

b) piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} is in the signature-direction (SD)\mathrm{(SD)} if its one-neighborhood are in counterclockwise order on their circumcircle. Otherwise, we say pi\mathrm{p_{i}} is in SD\mathrm{\sim SD}.

Besides, two ordinary meshes γ={pi}1n\mathrm{\gamma^{\vartriangle}=\{p_{i}\}_{1}^{n}} and γ~={p~i}1n\mathrm{\tilde{\gamma}^{\vartriangle}=\{\tilde{p}_{i}\}_{1}^{n}} are in the same signature-direction if and only if for 1<i<n1<i<n the corresponding points pi\mathrm{p_{i}} and p~i\mathrm{\tilde{p}_{i}} are both in SD\mathrm{SD} or in SD\mathrm{\sim SD}.

Proposition 4.2. Rotations do not change the signature-directions while reflections do. In other words, for a mesh point γ={pi}\mathrm{\gamma^{\vartriangle}=\{p_{i}\}}

a) pi\mathrm{p_{i}} is in SD iff θpi1θpiθpi+1\mathrm{\theta\cdot p_{i-1}\curvearrowright\theta\cdot p_{i}\curvearrowright\theta\cdot p_{i+1}} are in SD, where θSO(2)\mathrm{\theta\in SO(2)},

b) pi\mathrm{p_{i}} is in SD iff ϑpi1ϑpiϑpi+1\mathrm{\vartheta\cdot p_{i-1}\curvearrowright\vartheta\cdot p_{i}\curvearrowright\vartheta\cdot p_{i+1}} are in SD\mathrm{\sim SD}, where ϑ\mathrm{\vartheta\in} O(2)SO(2)\mathrm{O(2)\diagdown SO(2)},

meaning the signature-direction makes a distinction between rotations and reflections.

IV.1 4.1 Equally spaced meshes in ES𝔼\mathrm{E^{S\mathbb{E}}}

A mesh point γE𝔼\mathrm{\gamma^{\vartriangle}\subset E^{\mathbb{E}}} is equally spaced, if all edges (two successive points) have the same Euclidean length. Also, in a 3-point equally spaced mesh, let 𝖽\mathrm{\mathsf{d}} and 𝖽_\mathrm{\mathsf{d}\_} denote respectively the 𝔼\mathrm{\mathbb{E}}-length of each edge and the 𝔼\mathrm{\mathbb{E}}-distances between the first and end points. In addition, for a n-point equally spaced mesh, let 𝖽i\mathrm{\mathsf{d}_{i}} and 𝖽_i\mathrm{\mathsf{d}_{\_i}} be respectively 𝖽\mathrm{\mathsf{d}} and 𝖽_\mathrm{\mathsf{d}\_} in the one-neighborhood of its ith\mathrm{i^{th}} point (in open meshes 1<i<n\mathrm{1<i<n}).

The following lemma plays a central role in our investigations.

Lemma 4.3 fel2 . The 2-point action S𝔼(2)×M2M2\mathrm{S\mathbb{E}(2)\times M^{2}\longrightarrow M^{2}} given by
g(p1,p2)(gp1,gp2)\mathrm{\hskip 156.49014ptg\cdot(p_{1},p_{2})\longmapsto(g\cdot p_{1},g\cdot p_{2})}

is free on M2𝖣\mathrm{M^{2}\setminus\mathsf{D}}, where 𝖣={(p1,p2)p1=p2}\mathrm{\mathsf{D}=\{(p_{1},p_{2})\mid p_{1}=p_{2}\}}.

\square\succ Signature-inverse Theorem in terms of (1)

Lemma 4.4. For any p,qES𝔼\mathrm{p,q\in E^{S\mathbb{E}}}, there are at most 2 circles with a given radius 𝖱\mathrm{\mathsf{R}} passing through them, see FIG. 4.

Refer to caption
Figure 4: There is no motion in S𝔼\mathrm{S\mathbb{E}} to coincide the right circles.

Let γ={p1,p,p2}\mathrm{\gamma^{\vartriangle}=\{p_{1},p,p_{2}\}} denote a 3-point equally spaced ordinary mesh with 𝔼\mathrm{\mathbb{E}}-curvature κ\mathsf{\kappa} and side length 𝖽\mathsf{d}, see FIG. 5.

Refer to caption
Figure 5: The mesh γ\gamma^{\vartriangle}.

By Lemma 4.4, there exists only one class of 3-point equally spaced meshes with the same κ\mathsf{\kappa} and 𝖽\mathrm{\mathsf{d}} and non-congruent with γ\gamma^{\vartriangle}, which is its mirror reflection - denoted by γ~={q1,q,q2}\mathrm{\tilde{\gamma}^{\vartriangle}=\{q_{1},q,q_{2}\}}, see FIG. 6.

Refer to caption
Figure 6: There is no motion in S𝔼\mathrm{S\mathbb{E}} to map one mesh to the other.

We, therefore, have the following results.

Theorem 4.5. In MS𝔼\mathrm{M^{S\mathbb{E}}}, there exist two congruent classes of equally spaced 3-point ordinary meshes with the same curvature κ\kappa and side length 𝖽\mathsf{d}. One in SD\mathrm{SD} and another in SD\mathrm{\sim SD} denoted respectively by γκ,d,SD\mathrm{\gamma^{\vartriangle}_{\kappa,d,SD}} and γκ,d,SD\mathrm{\gamma^{\vartriangle}_{\kappa,d,\sim SD}}, see FIG. 7. Also, there is a unique class of them in M𝔼\mathrm{M^{\mathbb{E}}}.

Refer to caption
Figure 7: Just a reflection in M𝔼\mathrm{M^{\mathbb{E}}} maps one to the other.

Corollary 4.6. There exists a unique S𝔼\mathrm{S\mathbb{E}}-congruent class of 3-point equally spaced ordinary meshes with total length 2𝖽\mathrm{2\mathsf{d}}, 𝔼\mathrm{\mathbb{E}}-curvature κ\kappa, and being in the same signature-direction.

Corollary 4.7. Two equally spaced ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔼\mathrm{M^{S\mathbb{E}}} with the same total length, signature-direction, and 2-point curvature κ𝔼(γ~)=κ𝔼(γ)\mathrm{\kappa_{\mathbb{E}}^{\vartriangle}({\tilde{\gamma}^{\vartriangle}})=\kappa_{\mathbb{E}}^{\vartriangle}({\gamma^{\vartriangle}})} are congruent.

However, it is not in terms of the S𝔼\mathrm{S\mathbb{E}}-JINSs. It is also easy to check the following result.

Theorem 4.8. In MS𝔼\mathrm{M^{S\mathbb{E}}}, there exist two congruent classes of equally spaced 3-point meshes with curvature κ\kappa, angle 0<θ0<π0<\theta_{0}<\pi, and the same signature-direction denoted by γκ,θ0,SD\mathrm{\gamma^{\vartriangle}_{\kappa,\theta_{0},SD}} and γκ,θ0,SD\mathrm{\gamma^{\vartriangle}_{\kappa,\theta_{0},\sim SD}}, see FIG. 8. Moreover, there is a unique equivalence class of them in M𝔼\mathrm{M^{\mathbb{E}}}.

Refer to caption
Figure 8: There is no motion in S𝔼\mathrm{S\mathbb{E}} to coincide one mesh to the other.

Theorem 4.9, Signature-inverse Theorem. Equally spaced ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔼\mathrm{M^{S\mathbb{E}}} with the same signature-direction and identical JINSs given by (1) are congruent.

Proof. Let γ={pi}1n\mathrm{\gamma^{\vartriangle}=\{p_{i}\}_{1}^{n}} and γ~={p~i}1n\mathrm{\tilde{\gamma}^{\vartriangle}=\{\tilde{p}_{i}\}_{1}^{n}}. Also, without loss of generality, we assume that ΞS𝔼(p~i)=ΞS𝔼(pi)\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\tilde{p}_{i})=\Xi_{S\mathbb{E}}^{\vartriangle}(p_{i})} for 1in\mathrm{1\leq i\leq n}. By identity (1)

{4Δabc(p~i)=4Δabc(pi)and4Δabc(p~i+1)4Δabc(p~i)d~i=4Δabc(pi+1)4Δabc(pi)di\left\{\begin{array}[]{cl}\mathrm{\frac{4\Delta}{abc}(\tilde{p}_{i})=\frac{4\Delta}{abc}(p_{i})}\hskip 99.58464pt\mbox{and}\\[4.2679pt] \mathrm{\displaystyle\frac{\frac{4\Delta}{abc}(\tilde{p}_{i+1})-\frac{4\Delta}{abc}(\tilde{p}_{i})}{\tilde{d}_{i}}=\frac{\frac{4\Delta}{abc}(p_{i+1})-\frac{4\Delta}{abc}(p_{i})}{d_{i}}}\end{array}\right.

which result

4Δabc(p~i)=4Δabc(pi)=κiandd~i=di;1i<n.\displaystyle\mathrm{\frac{4\Delta}{abc}(\tilde{p}_{i})=\frac{4\Delta}{abc}(p_{i})=\kappa_{i}\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\tilde{d}_{i}=d_{i};\hskip 14.22636pt1\leq i<n}.

Hence

giS𝔼(2)s.t.gi[pi,pi+1][p~i,p~i+1];1i<n.\displaystyle\mathrm{\exists\hskip 1.42262ptg_{i}\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 11.38109ptg_{i}\cdot[p_{i},p_{i+1}]\longmapsto[\tilde{p}_{i},\tilde{p}_{i+1}];\hskip 14.22636pt1\leq i<n}.\vspace{-3mm} (10)

where [p,q]=tp+(1t)q; 0t1.\mathrm{[p,q]=tp+(1-t)q;\ 0\leq t\leq 1}. To show that gi=gi+1\mathrm{g_{i}=g_{i+1}} for all 1i<n1\mathrm{1\leq i<n-1}, consider the one-neighborhoods of a point pi\mathrm{p_{i}}. From (10)

gi[pi,pi+1][p~i,p~i+1]andgi+1[pi+1,pi+2][p~i+1,p~i+2].\displaystyle\mathrm{g_{i}\cdot[p_{i},p_{i+1}]\longmapsto[\tilde{p}_{i},\tilde{p}_{i+1}]}\hskip 11.38109pt\mbox{and}\hskip 11.38109pt\mathrm{g_{i+1}\cdot[p_{i+1},p_{i+2}]\longmapsto[\tilde{p}_{i+1},\tilde{p}_{i+2}]}. (11)

On the other hand, Corollary 4.6 and Lemma 4.3 give

!gi1S𝔼(2)s.t.gi1:Ni1N~i1;1<i<n\displaystyle\mathrm{\exists!\hskip 1.99168ptg^{1}_{i}\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 11.38109ptg^{1}_{i}:N^{1}_{i}\longmapsto\tilde{N}^{1}_{i};\hskip 14.22636pt1<i<n}

which, along with (11), results in

!gS𝔼(2)s.t.γ~Δ=gγ.\displaystyle\mathrm{\exists!\hskip 1.42262ptg\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 14.22636pt\tilde{\gamma}^{\Delta}=g\cdot\gamma^{\vartriangle}}.

In other words, γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are S𝔼\mathrm{S\mathbb{E}}-congruent.

It is not also hard to check that Theorem 4.9 and Theorem 3.3 are the same.

\square\succ Signature-inverse Theorem in terms of (2) - version 1

Definition 4.10. Two ordinary meshes γ,γ~M\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset{M}} have the same “angle-type” iff any pair of angles θi=<(pi1,pi,pi+1)\mathrm{\theta_{i}=\hskip 3.41432pt<(p_{i-1},p_{i},p_{i+1})} and θ~i=<(p~i1,p~i,p~i+1)\mathrm{\tilde{\theta}_{i}=\hskip 3.41432pt<(\tilde{p}_{i-1},\tilde{p}_{i},\tilde{p}_{i+1})} are both acute, obtuse, or right.

Theorem 4.11. In MS𝔼\mathrm{M^{S\mathbb{E}}}, there exist at most 4 congruent classes of 3-point equally spaced ordinary meshes with curvature κ\mathrm{\kappa} and distance 𝖽_\mathrm{\mathsf{d\_}} as follows:

- If κ𝖽_=2\mathrm{\kappa\cdot\mathsf{d\_}=2}; there are 2 congruent classes: one in SD\mathrm{SD} denoted by γκ,SD\mathrm{\gamma^{\vartriangle}_{\kappa,SD}} and another in SD\mathrm{\sim SD} denoted by γκ,SD\mathrm{\gamma^{\vartriangle}_{\kappa,\sim SD}}, see FIG. 9.

Refer to caption
Figure 9: 2 classes of 3-point equally spaced ordinary meshes where 𝖽_\mathrm{\mathsf{d\_}} equals the diameter.

- If κ𝖽_2\mathrm{\kappa\cdot\mathsf{d\_}\neq 2}; there are 4 congruent classes: two in SD\mathrm{SD} denoted by {γκ,𝖽_,SD,1,γκ,𝖽_,SD,2}\mathrm{\{\gamma^{\vartriangle,1}_{\kappa,\mathsf{d\_},SD},\gamma^{\vartriangle,2}_{\kappa,\mathsf{d\_},SD}\}}, and the other two in SD\mathrm{\sim SD} denoted by {γκ,𝖽_,SD,1,γκ,𝖽_SD,2}\mathrm{\{\gamma^{\vartriangle,1}_{\kappa,\mathsf{d\_},\sim SD},\gamma^{\vartriangle,2}_{\kappa,\mathsf{d\_}\sim SD}\}}, see FIG. 10.

Refer to caption
Figure 10: 4 classes of 3-point equally spaced ordinary meshes where 𝖽_\mathrm{\mathsf{d\_}} is less than the diameter.

We, therefore, established the following results.

Theorem 4.12. In MS𝔼\mathrm{M^{S\mathbb{E}}}, there exist 2 congruent classes of 3-point equally spaced ordinary meshes with curvature κ\mathrm{\kappa}, distance 𝖽_\mathrm{\mathsf{d\_}}, and also the same angle-type θ\mathrm{\theta}. One in SD\mathrm{SD} and another in SD\mathrm{\sim SD} denoted respectively by γκ,θ,SD\mathrm{\gamma^{\vartriangle}_{\kappa,\theta,SD}} and γκ,θ,SD\mathrm{\gamma^{\vartriangle}_{\kappa,\theta,\sim SD}}, see FIG. 11. Moreover, there is a unique congruent class of them in M𝔼\mathrm{M^{\mathbb{E}}}.

Refer to caption
Figure 11: 4 classes of 3-point equally spaced ordinary meshes where 𝖽_\mathrm{\mathsf{d\_}} is less than the diameter.

Corollary 4.13. There exists a unique congruent class of 3-point equally spaced ordinary meshes with the same κ\mathrm{\kappa}, 𝖽_\mathrm{\mathsf{d\_}}, and angle-type θ\mathrm{\theta} which are also in the same signature-direction.

Theorem 4.14, Signature-inverse Theorem. Equally spaced ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔼\mathrm{M^{S\mathbb{E}}} with the same signature-direction and angle-type which also have identical 2-point signatures in terms of (2) are congruent.

Proof. According to (2) and just like the Theorem 4.9 we have

4Δabc(p~i)=4Δabc(pi);1<i<nand\displaystyle\mathrm{\frac{4\Delta}{abc}(\tilde{p}_{i})=\frac{4\Delta}{abc}(p_{i});\hskip 14.22636pt1<i<n\hskip 14.22636pt\mbox{and}} (12)
d~i1,i+1=di1,i+1;2<i<n1.\displaystyle\vspace{-7mm}\mathrm{\tilde{d}_{i-1,i+1}=d_{i-1,i+1};\hskip 14.22636pt2<i<n-1}. (13)

Since, additionally, γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are equally spaced of the same angle-type and are in the same signature-direction, by Corollary 4.13

giS𝔼(2)s.t.gi:Ni1N~i1;2<i<n1.\displaystyle\mathrm{\exists\hskip 1.42262ptg_{i}\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 11.38109ptg_{i}:N^{1}_{i}\longmapsto\tilde{N}^{1}_{i};\hskip 14.22636pt2<i<n-1}. (14)

To prove that gi\mathrm{g_{i}}s are equal, consider the one-neighborhoods of two successive points pi\mathrm{p_{i}} and pi+1\mathrm{p_{i+1}}. From (14)

gi[pi,pi+1][p~i,p~i+1]andgi+1[pi,pi+1][p~i,p~i+1]\mathrm{\hskip 76.82234ptg_{i}\cdot[p_{i},p_{i+1}]\longmapsto[\tilde{p}_{i},\tilde{p}_{i+1}]}\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\mathrm{g_{i+1}\cdot[p_{i},p_{i+1}]\longmapsto[\tilde{p}_{i},\tilde{p}_{i+1}]}.

Hence, according to Lemma 4.3, gi=gi+1\mathrm{g_{i}=g_{i+1}} for 2<i<n1\mathrm{2<i<n-1}. In other words

!gS𝔼(2)s.t.γ~=gγ;p2<pi<pn1.\displaystyle\mathrm{\exists!\hskip 1.99168ptg\in S\mathbb{E}(2)\hskip 11.38109pts.t.\hskip 11.38109pt\tilde{\gamma}^{\vartriangle}=g\cdot\gamma^{\vartriangle};\hskip 14.22636ptp_{2}<p_{i}<p_{n-1}}.

Finally, Corollary 4.6 extends this result to the whole points of the meshes, meaning γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are S𝔼\mathrm{S\mathbb{E}}-congruent.

We indeed established the following theorem for fine meshes as well.

Theorem 4.15, Signature-inverse Theorem. Two equally spaced ordinary fine meshes γ,γ~MS𝔼\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset M^{S\mathbb{E}}} in the same signature-direction and with identical 2-point JINS, parameterized by (2), are congruent.

\square\succ Signature-inverse Theorem in terms of (2) - version 2

Definition 4.16. Let γ={pi}MS𝔼\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset M^{S\mathbb{E}}} denote an ordinary mesh. By “the signed angle” at a point pi\mathrm{p_{i}} we mean ϑi=SS(pi)θi\mathrm{\vartheta_{i}=SS(p_{i})\cdot\theta_{i}} where θi=<(pi1,pi,pi+1)\mathrm{\theta_{i}=\hskip 3.41432pt<(p_{i-1},p_{i},p_{i+1})}.

Also, two ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} have the same “signed angle-type” if the corresponding angles ϑi\mathrm{\vartheta_{i}} and ϑ~i\mathrm{\tilde{\vartheta}_{i}} are both signed-acute, signed-obtuse, or signed-right.

Definition 4.16, along with Corollary 4.13 and Theorem 4.14, gives the following results.

Theorem 4.17. There exists a unique congruent class of equally spaced 3-point ordinary meshes with 𝔼\mathrm{{\mathbb{E}}}-curvature κ\mathrm{\kappa}, distance 𝖽_\mathrm{\mathsf{d\_}}, and the same signed angle-type ϑ\mathrm{\vartheta}, see FIG. 12.

Refer to caption
Figure 12: The unique class of equally spaced 3-point meshes with the same κ\mathrm{\kappa}, 𝖽_\mathrm{\mathsf{d\_}}, and ϑ\mathrm{\vartheta}.

Theorem 4.18, Signature-inverse Theorem. Equally spaced ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔼\mathrm{M^{S\mathbb{E}}} with the same signed angle-type and 2-point signature ΞS𝔼(γ~)=ΞS𝔼(γ)\mathrm{\Xi_{S\mathbb{E}}^{\vartriangle}(\tilde{\gamma}^{\vartriangle})=\Xi_{S\mathbb{E}}^{\vartriangle}(\gamma^{\vartriangle})} obtained from (2) are congruent.

Now, we rewrite Theorem 4.8 in terms of the signed angles as follows.

Theorem 4.19. There is a unique congruent class of 3-point equally spaced meshes with Euclidean curvature κ\kappa and signed-angle 0<ϑ0<π\mathrm{0<\vartheta_{0}<\pi}.

Theorem 4.19 establishes the following result.

Theorem 4.20. Equally spaced ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔼\mathrm{M^{S\mathbb{E}}} with identical signed angles 0<ϑ~0,i=ϑ0,i<π\mathrm{0<\tilde{\vartheta}_{0,i}=\vartheta_{0,i}<\pi} and 2-point Euclidean curvatures κ𝔼(γ~)=κ𝔼(γ)\mathrm{\kappa_{\mathbb{E}}^{\vartriangle}({\tilde{\gamma}^{\vartriangle}})=\kappa_{\mathbb{E}}^{\vartriangle}({\gamma^{\vartriangle}})} are congruent.

IV.2 4.2 Unequally spaced meshes in MS𝔼\mathrm{M^{S\mathbb{E}}}

Definition 4.21 agh . Let γ={pi}MS𝔼\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset M^{S\mathbb{E}}} be an ordinary mesh.

a) The (m1,m2)\mathrm{(m_{1},m_{2})}-neighborhood of a point piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} means pim1,pi,pi+m2E\mathrm{p_{i-m_{1}},p_{i},p_{i+m_{2}}\in E}.

b) The 2-point 𝔼m1m2\mathrm{\mathbb{E}_{m_{1}}^{m_{2}}}-curvature of γ\mathrm{\gamma^{\vartriangle}} is the real-valued function (m1,m2)(m_{1},m_{2})-κ𝔼:γ\mathrm{\kappa^{\vartriangle}_{\mathbb{E}}:\gamma^{\vartriangle}\longrightarrow\mathbb{R}}, given by Definition 2.1 rewritten in the (m1,m2)(m_{1},m_{2})-neighborhood of each point.

c) (m1,m2)(m_{1},m_{2})-ΞS𝔼(γ)\mathrm{\Xi^{\vartriangle}_{S\mathbb{E}}(\gamma^{\vartriangle})} denotes the 2-point S𝔼m1m2\mathrm{S\mathbb{E}_{m_{1}}^{m_{2}}}-signature of γ\mathrm{\gamma^{\vartriangle}} parameterized by (1)-(4) where they are rewritten in the (m1,m2)(m_{1},m_{2})-neighborhood of each point in terms of the (m1,m2)(m_{1},m_{2})-κ𝔼\mathrm{\kappa^{\vartriangle}_{\mathbb{E}}}.

d) The (m1,m2)\mathrm{(m_{1},m_{2})}-angle at pi\mathrm{p_{i}} refers to (m1,m2)(m_{1},m_{2})-θi=<(pim1,pi,pi+m2)\mathrm{\theta_{i}=\hskip 3.41432pt<(p_{i-m_{1}},p_{i},p_{i+m_{2}})} along γ\mathrm{\gamma^{\vartriangle}}. In addition, the signed (m1,m2)\mathrm{(m_{1},m_{2})}-angle at pi\mathrm{p_{i}} means (m1,m2)(m_{1},m_{2})-ϑi=SS(pi)(m1,m2)\mathrm{\vartheta_{i}=SS(p_{i})\cdot}(m_{1},m_{2})-θi\mathrm{\theta_{i}}.

Moreover, if m1=m2=m\mathrm{m_{1}=m_{2}=m} then “(m1,m2)\mathrm{(m_{1},m_{2})}-\mathrm{\ast}” will be denoted by “m\mathrm{\ast^{m}}”.

According to Aghayan agh1 ; agh3 , we have the following theorem.

Theorem 4.22, Signature Theorem in MS𝔼\mathrm{M^{S\mathbb{E}}} agh ; agh1 ; agh2 . Congruent ordinary meshes have the same (orientation-invariant) 2-point S𝔼m1m2\mathrm{S\mathbb{E}_{m_{1}}^{m_{2}}}-signature.

\square\succ Signature-inverse Theorem in terms of (3) and (4)

In an unequally spaced 3-point mesh, let 𝖽𝟣,𝖽𝟤\mathrm{\mathsf{d_{1}},\mathsf{d_{2}}} and 𝖽_\mathrm{\mathsf{d\_}} denote, respectively, the 𝔼\mathrm{\mathbb{E}}-distances between the first and middle points, the end and middle points, and the first and end points. Besides for an unequally spaced n-point mesh, let (m1,m2)\mathrm{(m_{1},m_{2})}-𝖽𝟣,𝗂\mathrm{\mathsf{d_{1,i}}}, (m1,m2)\mathrm{(m_{1},m_{2})}-𝖽𝟤,𝗂\mathrm{\mathsf{d_{2,i}}} and (m1,m2)\mathrm{(m_{1},m_{2})}-𝖽_𝗂\mathrm{\mathsf{d_{\_i}}} denote, respectively, the 𝔼\mathrm{\mathbb{E}}-distances between the first and middle points, the end and middle points, and the first and end points of the (m1,m2)\mathrm{(m_{1},m_{2})}-neighborhood of the ith\mathrm{i^{th}} point (for open meshes m1<i<nm2+1\mathrm{m_{1}<i<n-m_{2}+1} where n>3\mathrm{n>3}). We also suppose that (m1,m2)\mathrm{(m_{1},m_{2})}-𝖽𝟤>(m1,m2)\mathrm{\mathsf{d_{2}}>(m_{1},m_{2})}-𝖽𝟣\mathrm{\mathsf{d_{1}}}.

Lemma 4.23. There are at most 4 congruent classes of 3-point unequally spaced meshes with 𝔼\mathrm{\mathbb{E}}-curvature κ\kappa and the side lengths 𝖽1\mathrm{\mathsf{d}_{1}} and 𝖽2\mathrm{\mathsf{d}_{2}} classified as follows.

a) If κd2=2\mathrm{\kappa\cdot d_{2}=2};111footnotetext: meaning that the bigger side 𝖽𝟤\mathrm{\mathsf{d_{2}}} is the diameter 2𝖱\mathrm{2\mathsf{R}} of the circumcircle there exist 2 equivalent classes: one in SD\mathrm{SD} denoted by γκ,d1,SD\mathrm{\gamma^{\vartriangle}_{\kappa,d_{1},SD}} and another in SD\mathrm{\sim SD} denoted by γκ,d1,SD\mathrm{\gamma^{\vartriangle}_{\kappa,d_{1},\sim SD}}, see FIG. 13.

Refer to caption
Figure 13: There is no motion in S𝔼\mathrm{S\mathbb{E}} to map one to the other.

b) If κ𝖽22\mathrm{\kappa\cdot\mathsf{d}_{2}\neq 2}; there exist 4 congruent classes: two in SD\mathrm{SD} denoted by {γκ,𝖽1,𝖽2,SD,1,γκ,𝖽𝟣,𝖽𝟤,SD,2}\mathrm{\{\gamma^{\vartriangle,1}_{\kappa,\mathsf{d}_{1},\mathsf{d}_{2},SD},\gamma^{\vartriangle,2}_{\kappa,\mathsf{d_{1}},\mathsf{d_{2}},SD}\}} and the other two in SD\mathrm{\sim SD} denoted by {γκ,𝖽𝟣,𝖽2,SD,3,γκ,𝖽1,𝖽2,SD,4}\mathrm{\{\gamma^{\vartriangle,3}_{\kappa,\mathsf{d_{1}},\mathsf{d}_{2},\sim SD},\gamma^{\vartriangle,4}_{\kappa,\mathsf{d}_{1},\mathsf{d}_{2},\sim SD}\}}, see FIG. 14.

Refer to caption
Figure 14: There is no S𝔼\mathrm{S\mathbb{E}}-transformation to coincide one with the other.

We, therefore, have the following theorem.

Theorem 4.24. In MS𝔼\mathrm{M^{S\mathbb{E}}}, there exists a unique congruent class of unequally spaced 3-point ordinary meshes with the following conditions.

a) With the same κ\mathrm{\kappa}, 𝖽1(𝖽2)\mathrm{\mathsf{d}_{1}(\mathsf{d}_{2})}, and signed angle ϑ0\mathrm{\vartheta_{0}}, denoted by γκ,𝖽1,ϑ0\mathrm{\gamma^{\vartriangle}_{\kappa,\mathsf{d}_{1},\vartheta_{0}}} (γκ,𝖽2,ϑ0)\mathrm{(\gamma^{\vartriangle}_{\kappa,\mathsf{d}_{2},\vartheta_{0}})}, see FIG. 15.

Refer to caption
Figure 15: A unique class with given κ\mathrm{\kappa}, 𝖽1\mathrm{\mathsf{d}_{1}}, and signed angle ϑ0\mathrm{\vartheta_{0}}.

b) With the same κ\mathrm{\kappa}, 𝖽1(𝖽2)\mathrm{\mathsf{d}_{1}(\mathsf{d}_{2})}, and signed angle-type ϑ90o\vartheta\geq 90^{o}, denoted by γκ,𝖽1,ϑ90o\mathrm{\gamma^{\vartriangle}_{\kappa,\mathsf{d}_{1},\vartheta\geq 90^{o}}} (γκ,𝖽2,ϑ90o)\mathrm{(\gamma^{\vartriangle}_{\kappa,\mathsf{d}_{2},\vartheta\geq 90^{o}})}.

c) With the same κ\mathrm{\kappa}, 𝖽1(𝖽2)\mathrm{\mathsf{d}_{1}(\mathsf{d}_{2})}, 𝖽_\mathrm{\mathsf{d}\_}, and signed angle-type ϑ\vartheta, denoted by γκ,𝖽1,𝖽_,ϑ\mathrm{\gamma^{\vartriangle}_{\kappa,\mathsf{d}_{1},\mathsf{d}\_,\vartheta}} (γκ,𝖽2,𝖽_,ϑ)\mathrm{(\gamma^{\vartriangle}_{\kappa,\mathsf{d}_{2},\mathsf{d}\_,\vartheta})}, see FIG. 16.

Refer to caption
Figure 16: A unique class with given κ\mathrm{\kappa}, 𝖽1\mathrm{\mathsf{d}_{1}}, 𝖽_\mathrm{\mathsf{d}\_}, and signed angle-type.

Theorem 4.25, Signature-inverse Theorem. Unequally spaced ordinary meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔼\mathrm{M^{S\mathbb{E}}} with identical lengths di1,i+1d_{i-1,i+1}, the same signed (1,2)-angle type, and the same 2-point S𝔼12\mathrm{S\mathbb{E}_{1}^{2}}-signature in terms of (3) are congruent.

Proof. According to the definition of S𝔼12\mathrm{S\mathbb{E}_{1}^{2}}-signatures in terms of (3)

{(1,2)-κ𝔼(p~i)=(1,2)-κ𝔼(pi)and(1,2)-κ𝔼(p~i+1)(1,2)-κ𝔼(p~i1)d~i1,i+2=(1,2)-κ𝔼(pi+1)(1,2)-κ𝔼(pi1)di1,i+2\left\{\begin{array}[]{cl}\mathrm{(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(\tilde{p}_{i})=(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(p_{i})}\hskip 179.25244pt\mbox{and}\\[4.2679pt] \mathrm{\displaystyle\frac{(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(\tilde{p}_{i+1})-(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(\tilde{p}_{i-1})}{\tilde{d}_{i-1,i+2}}=\frac{(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(p_{i+1})-(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(p_{i-1})}{d_{i-1,i+2}}}\end{array}\right.

where 1<i<n2\mathrm{1<i<n-2}. Therefore

(1,2)-κ𝔼(p~i)=(1,2)-κ𝔼(pi)=κi;1<i<n1,and\displaystyle\mathrm{(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(\tilde{p}_{i})=(1,2)\mbox{-}\kappa_{\mathbb{E}}^{\vartriangle}(p_{i})=\kappa_{i};\hskip 14.22636pt1<i<n-1,\hskip 14.22636pt\mbox{and}} (15)
d~i1,i+2=di1,i+2=(1,2)-𝖽_i;1<i<n2.\displaystyle\mathrm{\tilde{d}_{i-1,i+2}=d_{i-1,i+2}=(1,2)\mbox{-}\mathsf{d}\_{i};\hskip 14.22636pt1<i<n-2}. (16)

Additionally, (1,2)-d2,i=(1,2)-d~2,i\mathrm{(1,2)\mbox{-}d_{2,i}=(1,2)\mbox{-}\tilde{d}_{2,i}} and the signed angles (1,2)-ϑi\mathrm{(1,2)\mbox{-}\vartheta_{i}} and (1,2)-ϑ~i\mathrm{(1,2)\mbox{-}\tilde{\vartheta}_{i}} have the same type, therefore, according to Theorem 4.24-part c)

giS𝔼(2)s.t.gi:(1,2)-Ni(1,2)-N~i;1<i<n2.\displaystyle\mathrm{\exists\hskip 1.42262ptg_{i}\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 11.38109ptg_{i}:(1,2)\mbox{-}N_{i}\longmapsto(1,2)\mbox{-}\tilde{N}_{i};\hskip 14.22636pt1<i<n-2}. (17)

Now, consider the corresponding triangles (pi1,pi,pi+1)\mathrm{\bigtriangleup(p_{i-1},p_{i},p_{i+1})} and (p~i1,p~i,p~i+1)\mathrm{\bigtriangleup(\tilde{p}_{i-1},\tilde{p}_{i},\tilde{p}_{i+1})}. From (17)

d1,i=d~1,i,d2,i=d~2,i,andd_i=d~_i\mathrm{\hskip 123.76965ptd_{1,i}=\tilde{d}_{1,i},\hskip 11.38109ptd_{2,i}=\tilde{d}_{2,i},\hskip 11.38109pt\mbox{and}\hskip 14.22636ptd\__{i}=\tilde{d}\__{i}}

which, with regard to the Lemma 4.3, results in gi=gi+1\mathrm{g_{i}=g_{i+1}} for 1<i<n2\mathrm{1<i<n-2}. In other words

!gS𝔼(2)s.t.γ~=gγ;1<i<n2\mathrm{\hskip 99.58464pt\exists!\hskip 1.99168ptg\in S\mathbb{E}(2)\hskip 11.38109pts.t.\hskip 11.38109pt\tilde{\gamma}^{\vartriangle}=g\cdot\gamma^{\vartriangle};\hskip 14.22636pt1<i<n-2}

showing the congruence of γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} where they are closed. It also proves that for the open meshes the congruence satisfies where p1pi<pn\mathrm{p_{1}\leq p_{i}<p_{n}}. In this case, if γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} have the same (1,2)\mathrm{(1,2)}-d_(n2)\mathrm{d\__{(n-2)}}, the result extends to their whole points.

Theorem 4.26, Signature-inverse Theorem. Let γ,γ~MS𝔼\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset M^{S\mathbb{E}}} denote two unequally spaced ordinary meshes with the same 𝔼31\mathrm{\mathbb{E}^{1}_{3}}-curvature and signed angle (3,1)\mathrm{(3,1)}-ϑ0,i\mathrm{\vartheta_{0,i}}. Let also they have the same signed 3-angle type, identical lengths d1,i3d^{3}_{1,i}, and identical 2-point S𝔼3\mathrm{S\mathbb{E}^{3}}-signatures in terms of (4). Then, γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are congruent.

Proof. With regard to the definition of S𝔼3\mathrm{S\mathbb{E}^{3}}-signatures in terms of (4)

{κ𝔼,3(p~i)=κ𝔼,3(pi)andκ𝔼,3(p~i+1)κ𝔼,3(p~i1)d~i3,i+3=κ𝔼,3(pi+1)κ𝔼,3(pi1)di3,i+3\left\{\begin{array}[]{cl}\mathrm{\kappa_{\mathbb{E}}^{\vartriangle,3}(\tilde{p}_{i})=\kappa_{\mathbb{E}}^{\vartriangle,3}(p_{i})}\hskip 133.72786pt\mbox{and}\\[4.2679pt] \mathrm{\displaystyle\frac{\kappa_{\mathbb{E}}^{\vartriangle,3}(\tilde{p}_{i+1})-\kappa_{\mathbb{E}}^{\vartriangle,3}(\tilde{p}_{i-1})}{\tilde{d}_{i-3,i+3}}=\frac{\kappa_{\mathbb{E}}^{\vartriangle,3}(p_{i+1})-\kappa_{\mathbb{E}}^{\vartriangle,3}(p_{i-1})}{d_{i-3,i+3}}}\end{array}\right.

where 4<i<n3\mathrm{4<i<n-3}. As a result

κ𝔼,3(p~i)=κ𝔼,3(pi)=κi;3<i<n2and\displaystyle\mathrm{\kappa_{\mathbb{E}}^{\vartriangle,3}(\tilde{p}_{i})=\kappa_{\mathbb{E}}^{\vartriangle,3}(p_{i})=\kappa_{i};\hskip 14.22636pt3<i<n-2\hskip 14.22636pt\mbox{and}} (18)
d~i3,i+3=di3,i+3=d_i3;4<i<n3.\displaystyle\mathrm{\tilde{d}_{i-3,i+3}=d_{i-3,i+3}=d^{3}_{\_i};\hskip 14.22636pt4<i<n-3}. (19)

Besides, d1,i3=d~1,i3\mathrm{d^{3}_{1,i}=\tilde{d}^{3}_{1,i}} and the signed angles ϑ~i3\mathrm{\tilde{\vartheta}_{i}^{3}} and ϑi3\mathrm{\vartheta_{i}^{3}} have the same type, therefore, according to Theorem 4.24-part c)

giS𝔼(2)s.t.gi:Ni3N~i3;4<i<n3.\displaystyle\mathrm{\exists g_{i}\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 11.38109ptg_{i}:N^{3}_{i}\longmapsto\tilde{N}^{3}_{i};\hskip 14.22636pt4<i<n-3}. (20)

Now, through the following steps, we prove that gi\mathrm{g_{i}}s are identical.

Step 1.

By (20)

gi[pi,pi+3][p~i,p~i+3]andgi+3[pi,pi+3][p~i,p~i+3]\displaystyle\mathrm{g_{i}\cdot[p_{i},p_{i+3}]\longmapsto[\tilde{p}_{i},\tilde{p}_{i+3}]}\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\mathrm{g_{i+3}\cdot[p_{i},p_{i+3}]\longmapsto[\tilde{p}_{i},\tilde{p}_{i+3}]}

which, according to Lemma 4.3, result in gi=gi+3\mathrm{g_{i}=g_{i+3}} and thus there would be only the following three group transformations:

{g0:Ni3N~i3where i=0mod3,g1:Ni3N~i3where i=1mod3,g2:Ni3N~i3where i=2mod3.\begin{cases}\vspace{-1mm}\mathrm{g_{0}:N^{3}_{i}\longmapsto\tilde{N}^{3}_{i}}\hskip 17.07164pt&\text{where }\hskip 7.11317pt\mathrm{i=0\hskip 2.84526ptmod3},\vspace{-1mm}\\ \vspace{-1mm}\mathrm{g_{1}:N^{3}_{i}\longmapsto\tilde{N}^{3}_{i}}\hskip 17.07164pt&\text{where }\hskip 7.11317pt\mathrm{i=1\hskip 2.84526ptmod3},\vspace{-1mm}\\ \vspace{-1mm}\mathrm{g_{2}:N^{3}_{i}\longmapsto\tilde{N}^{3}_{i}}\hskip 17.07164pt&\text{where }\hskip 7.11317pt\mathrm{i=2\hskip 2.84526ptmod3}.\end{cases} (21)

which we need to show they are equal.

Step 2.

Let i=0mod3\mathrm{i=0\hskip 5.69054ptmod3}. From (20), we have (3,1)-d1,i=(3,1)-d~1,i\mathrm{(3,1)\mbox{-}d_{1,i}=(3,1)\mbox{-}\tilde{d}_{1,i}} and additionally

(3,1)\mathrm{\hskip 59.75095pt(3,1)}-κ𝔼(pi)=\mathrm{\kappa^{\vartriangle}_{\mathbb{E}}(p_{i})=} (3,1)\mathrm{(3,1)}-κ𝔼(p~i)and(3,1)\mathrm{\kappa^{\vartriangle}_{\mathbb{E}}(\tilde{p}_{i})\hskip 14.22636pt\mbox{and}\hskip 17.07164pt(3,1)}-ϑ0,i=\mathrm{\vartheta_{0,i}=} (3,1)\mathrm{(3,1)}-ϑ~0,i\mathrm{\tilde{\vartheta}_{0,i}}.

Therefore, with regard to Theorem 4.24-part a)

gi0S𝔼(2)s.t.gi0:(3,1)-Ni(3,1)-N~i;4<i<n2.\displaystyle\mathrm{\exists g^{0}_{i}\in S\mathbb{E}(2)\hskip 11.38109pt\mbox{s.t.}\hskip 11.38109ptg^{0}_{i}:(3,1)\mbox{-}N_{i}\longmapsto(3,1)\mbox{-}\tilde{N}_{i};\hskip 14.22636pt4<i<n-2}. (22)

Identity (22), along with (20), indicates that

g0[pi3,pi][p~i3,p~i]andgi0[pi3,pi][p~i3,p~i]\displaystyle\mathrm{g_{0}\cdot[p_{i-3},p_{i}]\longmapsto[\tilde{p}_{i-3},\tilde{p}_{i}]}\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\mathrm{g^{0}_{i}\cdot[p_{i-3},p_{i}]\longmapsto[\tilde{p}_{i-3},\tilde{p}_{i}]}

which, according to Lemma 4.3, results in gi0=g0\mathrm{g^{0}_{i}=g_{0}}. Hence, by (22)

g0:(3,1)-Ni(3,1)-N~i;4<i<n2.\displaystyle\mathrm{\exists\hskip 1.42262ptg_{0}:(3,1)\mbox{-}N_{i}\longmapsto(3,1)\mbox{-}\tilde{N}_{i};\hskip 14.22636pt4<i<n-2}. (23)

Step 3.

Consider now the triangles (pi,pi+1,pi+3)\mathrm{\bigtriangleup(p_{i},p_{i+1},p_{i+3})} and (p~i,p~i+1,p~i+3)\mathrm{\bigtriangleup(\tilde{p}_{i},\tilde{p}_{i+1},\tilde{p}_{i+3})}. From (20) and (23)

di,i+3=d~i,i+3,di=d~i,and<(pi+1,pi,pi+3)=<(p~i+1,p~i,p~i+3).\displaystyle\mathrm{d_{i,i+3}=\tilde{d}_{i,i+3}},\hskip 8.53581pt\mathrm{d_{i}=\tilde{d}_{i}},\hskip 8.53581pt\mbox{and}\hskip 11.38109pt\mathrm{<(p_{i+1},p_{i},p_{i+3})=<(\tilde{p}_{i+1},\tilde{p}_{i},\tilde{p}_{i+3})}.

Accordingly, (1,2)-triangles at pi+1γ\mathrm{p_{i+1}\in\gamma^{\vartriangle}} and p~i+1γ~\mathrm{\tilde{p}_{i+1}\in\tilde{\gamma}^{\vartriangle}} are congruent, where 4<i<n2\mathrm{4<i<n-2}, resulting

g0:(1,2)-Ni+1(1,2)-N~i+1\displaystyle\mathrm{g_{0}:(1,2)\mbox{-}N_{i+1}\longmapsto(1,2)\mbox{-}\tilde{N}_{i+1}} (24)

and

g0:(1,2)-Ni2(1,2)-N~i2\displaystyle\mathrm{g_{0}:(1,2)\mbox{-}N_{i-2}\longmapsto(1,2)\mbox{-}\tilde{N}_{i-2}} (25)

which, along with (23), result in

(2,1)-d1,i=(2,1)-d~1,i,(2,1)-ϑi=(2,1)-ϑ~i,and(2,1)-d2,i=(2,1)-d~2,i\mathrm{\hskip 34.14322pt(2,1)\mbox{-}d_{1,i}=(2,1)\mbox{-}\tilde{d}_{1,i},\hskip 8.53581pt(2,1)\mbox{-}\vartheta_{i}=(2,1)\mbox{-}\tilde{\vartheta}_{i},\hskip 8.53581pt\mbox{and}\hskip 11.38109pt(2,1)\mbox{-}d_{2,i}=(2,1)\mbox{-}\tilde{d}_{2,i}}.

In other words, we have

g0:(2,1)-Ni(2,1)-N~i;6<i<n3.\displaystyle\mathrm{g_{0}:(2,1)\mbox{-}N_{i}\longmapsto(2,1)\mbox{-}\tilde{N}_{i};\hskip 14.22636pt6<i<n-3}. (26)

Step 4.

From (23) and (26)

g1[pi2,pi+1][p~i2,p~i+1]andg0[pi2,pi+1][p~i2,p~i+1]\mathrm{\hskip 51.21504ptg_{1}\cdot[p_{i-2},p_{i+1}]\longmapsto[\tilde{p}_{i-2},\tilde{p}_{i+1}]\hskip 11.38109pt\mbox{and}\hskip 12.80373ptg_{0}\cdot[p_{i-2},p_{i+1}]\longmapsto[\tilde{p}_{i-2},\tilde{p}_{i+1}]}

which, according to Lemma 4.3, result in g1=g0\mathrm{g_{1}=g_{0}}.

Similarly, we can prove g2=g0\mathrm{g_{2}=g_{0}}. Thus

!gS𝔼(2)s.t.γ~=gγfor6<i<n3\mathrm{\hskip 73.97733pt\exists!\hskip 1.99168ptg\in S\mathbb{E}(2)\hskip 11.38109pts.t.\hskip 11.38109pt\tilde{\gamma}^{\vartriangle}=g\cdot\gamma^{\vartriangle}\hskip 14.22636pt\mbox{for}\hskip 8.53581pt6<i<n-3}

showing the congruence of γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} where they are closed. It also proves that for the open meshes the congruence satisfies where p2pi<pn1\mathrm{p_{2}\leq p_{i}<p_{n-1}}. In this case, adding extra conditions for the first and end points in the open case, for example ϑ4390o\mathrm{\vartheta^{3}_{4}\geq 90^{o}} or γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} have identical corresponding 3-angles ϑ0,43\mathrm{\vartheta^{3}_{0,4}} and ϑ0,n33\mathrm{\vartheta^{3}_{0,n-3}}, extends the result to the whole points.

IV.3 4.3 The Host Theorem and Signature-inverse Theorem

40 guests are supposed to sit around a dinner table. The host has asked the party planner to provide 3, 4, or 5 different types of rare wildflowers and put them on the table in front of each guest between the dinner and dessert so that the following conditions must be met.

\surd Depending on the variety in the selected flowers (2, 3, or 5), every second, third, or fourth person would receive the same type of flower.

\surd The party planner must not look at the guests. He should just step forward and put each flower on the table with his right hand.

\surd In addition, each gust must have one and only one flower.

Below we bring a general mathematical setting for this problem.

The Host Problem. Let {pi}1n2\mathrm{\{p_{i}\}^{n}_{1}\subset\mathbb{R}^{2}} be a closed ordinary mesh and 1<<m<<n. We start from p1\mathrm{p_{1}} and connect every mthm^{th} point by a straight line until getting back to p1\mathrm{p_{1}}. The question is for what “m” we meet all points of the mesh uniquely on our way.

According to the group of primitive residue classes modulo m in modular arithmetic, we bring in the following theorem.

The Host Theorem. In The Host Problem, the whole points of the given mesh are met iff after n steps we return to the start point iff gcd1(m,n)=1gcd^{1}(m,n)=1. 11footnotetext: gcd refers to the greatest common divisor.

We, therefore, have the following corollary.

Corollary. The party planner can fulfill the task by φ(n)\varphi(n) ways where φ(n)\varphi(n) denotes Euler’s totient (phi) function.

As an example, consider a 10-point mesh {pi}\mathrm{\{p_{i}\}} and let m1=3\mathrm{m_{1}=3} and m2=4\mathrm{m_{2}=4}. Since gcd(3,10)=1, every point will be met, see FIG. 17-left, and since gcd(4,10)1\mathrm{(4,10)\neq 1}, there is no way one meets all points on their way, see FIG. 17-right.

Refer to caption
Figure 17: Illustrates The Host Theorem.

As a result, since gcd(3,40)=1, the party planner must provide 3 different types of flowers and place them in different baskets behind the host and do his task with no worries.

The Host Theorem results in the following Signature-inverse Theorem for closed meshes.

The Host Theorem and Signature-inverse Theorem. Let γ,γ~MS𝔼\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset M^{S\mathbb{E}}} be two n-point unequally spaced ordinary closed meshes, where n0mod3n\neq 0\ mod\hskip 2.27621pt3. Let they have the same signed angle-type ϑi3\vartheta_{i}^{3}, corresponding length d1,i3d^{3}_{1,i}, and 2-point S𝔼3\mathrm{S\mathbb{E}^{3}}-signature resulted from identity (4). Then, γ\gamma^{\vartriangle} and γ~\tilde{\gamma}^{\vartriangle} are congruent.

V 5. Signature-inverse Theorem in MS𝔸\mathrm{M^{S\mathbb{A}}}

Definition 5.1. Let γ\mathrm{\gamma^{\vartriangle}} be a convex ordinary mesh. A piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} is in 𝔸\mathrm{\mathbb{A}}-signature direction (SD𝔸)\mathrm{(SD_{\mathbb{A}})} if its two-neighborhood is counterclockwise on the unique conic section passing through it. Otherwise, we say pi\mathrm{p_{i}} is in SD𝔸\mathrm{\sim SD_{\mathbb{A}}}.

In addition, two n-point convex meshes γ={pi}\mathrm{\gamma^{\vartriangle}=\{p_{i}\}} and γ~={p~i}\mathrm{\tilde{\gamma}^{\vartriangle}=\{\tilde{p}_{i}\}} are in the same 𝔸\mathrm{\mathbb{A}}-signature direction iff for 1<i<n1<i<n the corresponding points pi\mathrm{p_{i}} and p~i\mathrm{\tilde{p}_{i}} are in SD𝔸\mathrm{SD_{\mathbb{A}}} or in SD𝔸\mathrm{\sim SD_{\mathbb{A}}}.

Definition 5.2. Let γ={pi}\mathrm{\gamma^{\vartriangle}=\{p_{i}\}} denote a n-point ordinary convex mesh. For 2<i<n1\mathrm{2<i<n-1}, the 𝔸\mathrm{\mathbb{A}}-arc length set of γ\mathrm{\gamma^{\vartriangle}} at a point pi\mathrm{p_{i}} is the ordered set Li={Lki2ki+1}\mathrm{L^{i}=\{L_{k}\mid i-2\leq k\leq i+1\}} given by Theorem 2.3 in the two-neighborhood of pi\mathrm{p_{i}}.

Also, ordinary convex meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} have the same 𝔸\mathrm{\mathbb{A}}-arc length set if their corresponding points have the same 𝔸\mathrm{\mathbb{A}}-arc length set.

Definition 5.3. Let γ={pi}MS𝔸\mathrm{\gamma^{\vartriangle}=\{p_{i}\}\subset M^{S\mathbb{A}}} be an ordinary convex mesh point.

a) A positive 𝔸\mathrm{\mathbb{A}}-curvature point pi\mathrm{p_{i}} has the fine-area if the area if its approximating ellipse is not less than the area of the elliptical sector surrounded by the two-neighborhood of pi\mathrm{p_{i}}.

b) A negative 𝔸\mathrm{\mathbb{A}}-curvature point pi\mathrm{p_{i}} is in the fine-position if the points in its two-neighborhood are located on the same branch of the approximating hyperbola. In other words, the Euclidean distance between every two successive points of this neighborhood is less than μ=2Fλ12S(pi)\mathrm{\mu=2\sqrt{\frac{-F}{\lambda_{1}^{2}S}}(p_{i})} (twice the semi-major axis of the approximating hyperbola), where F and S are the first and second 𝔸\mathrm{\mathbb{A}}-invariants of γ\mathrm{\gamma^{\vartriangle}} and λ\mathrm{\lambda} is the large root of the equation (λ2(A+C)λ+S)(pi)=0\mathrm{(\lambda^{2}-(A+C)\lambda+S)(p_{i})=0} in which A and C are the affine-functions of γ\gamma^{\vartriangle}.

Definition 5.4. An ordinary convex mesh γ\mathrm{\gamma^{\vartriangle}} is called 𝔸\mathrm{\mathbb{A}}-fine if each point piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} with a positive 𝔸\mathrm{\mathbb{A}}-curvature has the fine-area and with a negative 𝔸\mathrm{\mathbb{A}}-curvature, is in the fine-position.

It is not hard to demonstrate the following classifications in the affine case.

Lemma 5.5 a) In MS𝔸\mathrm{M^{S\mathbb{A}}}, there are 2 congruent classes of five-point ordinary convex meshes with 𝔸\mathrm{\mathbb{A}}-curvature κ𝔸>0\mathrm{\kappa_{\mathbb{A}}>0}, 𝔸\mathrm{\mathbb{A}}-arc length set L, and also their middle points have the fine-area. One in SD𝔸\mathrm{SD_{\mathbb{A}}} denoted by γκ𝔸>0,L,+,SD𝔸\mathrm{\gamma^{\vartriangle}_{\kappa_{\mathbb{A}}>0,L,+,SD_{\mathbb{A}}}} and another in SD𝔸\mathrm{\sim SD_{\mathbb{A}}} denoted by γκ𝔸>0,L,+,SD𝔸\mathrm{\gamma^{\vartriangle}_{\kappa_{\mathbb{A}}>0,L,+,\sim SD_{\mathbb{A}}}}.

b) In MS𝔸\mathrm{M^{S\mathbb{A}}}, there exist 2 congruent classes of five-point ordinary convex meshes with κ𝔸<0\mathrm{\kappa_{\mathbb{A}}<0}, L, and their middle points are in the fine-position. One in SD𝔸\mathrm{SD_{\mathbb{A}}} denoted by γκ𝔸<0,L,+,SD𝔸\mathrm{\gamma^{\vartriangle}_{\kappa_{\mathbb{A}}<0,L,+,SD_{\mathbb{A}}}} and another in SD𝔸\mathrm{\sim SD_{\mathbb{A}}} denoted by γκ𝔸<0,L,+,SD𝔸\mathrm{\gamma^{\vartriangle}_{\kappa_{\mathbb{A}}<0,L,+,\sim SD_{\mathbb{A}}}}.

c) In MS𝔸\mathrm{M^{S\mathbb{A}}}, there exist 2 congruent classes of five-point ordinary convex meshes with κ𝔸=0\mathrm{\kappa_{\mathbb{A}}=0} and 𝔸\mathrm{\mathbb{A}}-arc length set L. One in SD𝔸\mathrm{SD_{\mathbb{A}}} and another in SD𝔸\mathrm{\sim SD_{\mathbb{A}}} denoted respectively by γκ𝔸=0,L,SD𝔸\mathrm{\gamma^{\vartriangle}_{\kappa_{\mathbb{A}}=0,L,SD_{\mathbb{A}}}} and γκ𝔸=0,L,SD𝔸\mathrm{\gamma^{\vartriangle}_{\kappa_{\mathbb{A}}=0,L,\sim SD_{\mathbb{A}}}}.

Lemma 5.6 fel2 . The 3-point action S𝔸(2)×M3M3\mathrm{S\mathbb{A}(2)\times M^{3}\longrightarrow M^{3}} defined by

g(p1,p2,p3)(gp1,gp2,gp3)\mathrm{\hskip 113.81102ptg\cdot(p_{1},p_{2},p_{3})\longmapsto(g\cdot p_{1},g\cdot p_{2},g\cdot p_{3})}

is free on M3𝖢\mathrm{M^{3}\setminus\mathsf{C}}, where 𝖢={(p1,p2,p3)p1,p2,\mathrm{\mathsf{C}=\{(p_{1},p_{2},p_{3})\mid\ p_{1},p_{2},} and p3\mathrm{p_{3}} are collinear }\}.

Now, we present Signature-inverse Theorem in terms of identity (6).

Theorem 5.7, Signature-inverse Theorem. Ordinary 𝔸\mathrm{\mathbb{A}}-fine convex meshes γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} in MS𝔸\mathrm{M^{S\mathbb{A}}} with never-zero 𝔸\mathbb{A}-curvatures and the same 𝔸\mathrm{\mathbb{A}}-arc length set and 3-point S𝔸\mathrm{S\mathbb{A}}-signature are congruent.

Proof. According to (6) and just like the Theorem 4.9

{SF2/3(p~i)=SF2/3(pi)andSF2/3(p~i+1)SF2/3(p~i1)L~i1,i+1=SF2/3(pi+1)SF2/3(pi1)Li1,i+1\left\{\begin{array}[]{cl}\mathrm{\frac{S}{F^{2/3}}(\tilde{p}_{i})=\frac{S}{F^{2/3}}(p_{i})}\hskip 125.19194pt\mbox{and}\\[4.2679pt] \mathrm{\displaystyle\frac{\frac{S}{F^{2/3}}(\tilde{p}_{i+1})-\frac{S}{F^{2/3}}(\tilde{p}_{i-1})}{\tilde{L}_{i-1,i+1}}=\frac{\frac{S}{F^{2/3}}(p_{i+1})-\frac{S}{F^{2/3}}(p_{i-1})}{L_{i-1,i+1}}}\end{array}\right.

where 3<i<n2\mathrm{3<i<n-2}. Hence

SF2/3(p~i)=SF2/3(pi)=κ𝔸,i2<i<n1and\displaystyle\mathrm{\frac{S}{F^{2/3}}(\tilde{p}_{i})=\frac{S}{F^{2/3}}(p_{i})=\kappa_{\mathbb{A},i}\hskip 14.22636pt2<i<n-1\hskip 14.22636pt\mbox{and}} (27)
L~i1,i+1=Li1,i+1;3<i<n2.\displaystyle\mathrm{\tilde{L}_{i-1,i+1}=L_{i-1,i+1};\hskip 14.22636pt3<i<n-2}. (28)

In addition, in the two-neighborhoods of each corresponding points piγ\mathrm{p_{i}\in\gamma^{\vartriangle}} and p~iγ~\mathrm{\tilde{p}_{i}\in\tilde{\gamma}^{\vartriangle}}, we have

L~i1=Li1andL~i=Li;2<i<n1,\mathrm{\hskip 108.12054pt\tilde{L}_{i-1}=L_{i-1}\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\tilde{L}_{i}=L_{i};\hskip 14.22636pt2<i<n-1},

which, along with (27), gives

Area(p~i1,p~i,p~i+1)=Area(pi1,pi,pi+1);2<i<n1.\mathrm{\hskip 76.82234pt\mbox{Area}(\tilde{p}_{i-1},\tilde{p}_{i},\tilde{p}_{i+1})=\mbox{Area}(p_{i-1},p_{i},p_{i+1});\hskip 14.22636pt2<i<n-1}.

Therefore

giS𝔸(2)s.t.gi:(p~i1,p~i,p~i+1)(pi1,pi,pi+1);3<i<n2.\displaystyle\mathrm{\hskip 14.22636pt\exists\hskip 1.42262ptg_{i}\in S\mathbb{A}(2)\hskip 8.53581pt\mbox{s.t.}\hskip 8.53581ptg_{i}:\bigtriangleup(\tilde{p}_{i-1},\tilde{p}_{i},\tilde{p}_{i+1})\longrightarrow\bigtriangleup(p_{i-1},p_{i},p_{i+1});\hskip 14.22636pt3<i<n-2}. (29)

On the other hand, with regard to the hypothesis, Lemma 5.5 indicates that

gi0:Ni2N~i2;2<i<n1\displaystyle\mathrm{\exists\hskip 1.99168ptg^{0}_{i}:N^{2}_{i}\longrightarrow\tilde{N}^{2}_{i};\hskip 14.22636pt2<i<n-1} (30)

at any point pi\mathrm{p_{i}}.

Identities (29) and (30) along with Lemma 5.6 result in gi1=gi=gi+1=gi0\mathrm{g_{i-1}=g_{i}=g_{i+1}=g^{0}_{i}}. Hence

!gS𝔸(2)s.t.γ~=gγ;2<i<n1\displaystyle\mathrm{\exists!\hskip 1.99168ptg\in S\mathbb{A}(2)\hskip 11.38109pts.t.\hskip 11.38109pt\tilde{\gamma}^{\vartriangle}=g\cdot\gamma^{\vartriangle};\hskip 14.22636pt2<i<n-1}

which means the congruence of γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}}.

Similarly, we can prove the following theorem in terms of (6).

Theorem 5.8, Signature-inverse Theorem. Let γ,γ~MS𝔸\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset M^{S\mathbb{A}}} be two ordinary 𝔸\mathrm{\mathbb{A}}-fine convex meshes with the same area in the one-neighborhoods of the corresponding points with zero 𝔸\mathrm{\mathbb{A}}-curvatures. Also, let they have the same 𝔸\mathrm{\mathbb{A}}-arc length set and 3-point S𝔸\mathrm{S\mathbb{A}}-signatures. Then, γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are congruent.

The preceding theorem in terms of fine meshes is written as follows.

Corollary 5.9, Signature-inverse Theorem. Let γ,γ~MS𝔸\mathrm{\gamma^{\vartriangle},\tilde{\gamma}^{\vartriangle}\subset M^{S\mathbb{A}}} denote two fine convex meshes having the same area in the one-neighborhoods of the corresponding points with zero 𝔸\mathrm{\mathbb{A}}-curvatures. Let also they have the same 𝔸\mathrm{\mathbb{A}}-arc length set and 3-point S𝔸\mathrm{S\mathbb{A}}-signatures. Then, γ\mathrm{\gamma^{\vartriangle}} and γ~\mathrm{\tilde{\gamma}^{\vartriangle}} are congruent.

Just like the Euclidean case, more versions of Signature-inverse theorems can be presented in terms of (m1,m2)\mathrm{(m_{1},m_{2})} S𝔸\mathrm{S\mathbb{A}}-signatures parameterized by the identities (5), (7), and (8).

VI 6. Conclusions

This paper has considered the new formulation for 𝔾\mathrm{\mathbb{G}}-JINSs introduced in the first paper in this series. We first provided several counterexamples for Curvature-inverse Theorem and Signature-inverse Theorem in M𝔾\mathrm{M^{\mathbb{G}}}, meaning that non-congruent meshes may have the same 𝔾\mathrm{\mathbb{G}}-curvature or 𝔾\mathrm{\mathbb{G}}-JINS. To give a numerical version of Euclidean Signature-inverse Theorem in terms of the associated JINSs, we first classified equally and unequally spaced three-point meshes with respect to their curvatures and side lengths, then, we looked for conditions that make this theorem correct. Next, we brought forward The Host Theorem to prove a simpler version of Signature-inverse Theorem for closed meshes. Finally, we went through the same process for the equiaffine case by classifying five-point ordinary meshes.

VII References

References

  • (1) Aghayan, R., Ellis, T., and Dehmeshki, J., Planar numerical signature theory applied to object recognition, J. Math. Imaging Vision, vol. 48, no. 3, pp. 583-605, 2014.
  • (2) Aghayan, R., Orientation-invariant numerically invariant joint signatures in curve analysis, International Journal of Computer Mathematics, vol 3, issue 1, pp. 13-30, 2018.
  • (3) Aghayan, R., Visual groups and their Structural Equations, in: Proceedings of the 49th Annual Iranian Mathematics Conference - Geometry Section, Tehran, IRAN, August 23-26, pp. 21-35, 2018.
  • (4) Aghayan, R., Signature-inverse Theorem in Mesh Group-planes - The new formulation, in: Proceedings of the 49th Annual Iranian Mathematics Conference - Computer Science Section, Tehran, IRAN, August 23-26, pp. 2310-2332, 2018.
  • (5) Aghayan, R., Generating visual invariants applied to curve analysis, submitted and revised, 2020.
  • (6) Aghayan, R., Joint invariant level set formulation with unique segmentation results, submitted, 2020.
  • (7) Boutin, M., Numerically invariant signature curves, Int. J. Comput. Vision, vol 40, no. 3, pp. 235-248, 2000.
  • (8) Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M., Similarity invariant signatures and partially occluded planar shapes, Int. J. Comput. Vision, vol 7, no. 3, pp. 271-285, 1992.
  • (9) Bruckstein, A.M., Halt, R.J., Netravali, A.N., and Richardson, T.J., Invariant signatures for planar shape recognition under partial occlusion, CVGIP: Image Understanding, 58, pp. 49-65, 1993.
  • (10) Bruckstein, A.M., and Netravali, A.N., On differential invariants of plannar curves and recog-nizing partially occluded planar shapes, Ann. Math. Artificial Intel., vol. 13, pp. 227-250, 1995.
  • (11) Bruckstein, A.M. and Shaked, D,. Skew symmetry detection via invariant signatures, Pattern Recognition, vol. 31, no. 2, pp. 181-192, 1998.
  • (12) Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential and numeri-cally invariant signature curves applied to object recognition, Int. J. Comput. Vision, vol. 26, pp. 107-135, 1998.
  • (13) Cartan, É., La méthode du repére mobile, la théorie des groupes continus et les espaces généra-lisés, Exposés de Géométrie, no. 5, Paris, Hermann et cie, 1935.
  • (14) Čech, E., and Fubini, G., Geometria Proiettiva Differenziale, Bologna, Nicola Zanichelli, 1927.
  • (15) Faugeras, O., Cartan’s moving frame method and its application to the geometry and evolution of curves in the Euclidean, affine and projective planes, Applications of Invariance in Computer Vision, vol. 825, no. 2053, Springer-Verlag, pp. 11-16, 1994.
  • (16) Feng, S., Kogan, I., and Krim, H., Classification of curves in 2D and 3D via affine integral signatures, Acta Appl. Math., vol. 109, no. 3, pp. 903-937, 2010.
  • (17) Fels, M., Olver, P.J., Moving coframes II. Regularization and theoretical foundations, Acta Appl. Math., vol. 55, pp. 127-208, 1999.
  • (18) Halphen, G.,-H., Sure les invariants différentiels, in Oeuvres, vol. 2, Gauthier-Villars, Paris, 1913, pp. 197-253.
  • (19) Hoff, D., and Olver, P.J., Automatic solution of jigsaw puzzles, J. Math. Imaging Vision, vol. 49, pp. 234-250, 2014.
  • (20) Mumford, D., Fogarty, J., and Kirwan, F., Geometric invariant theory, 3rd\mathrm{3^{rd}} edition, Ergebnisse Math. 34, Springer-Verlag, Berlin, 1994 (the 1st edition published in 1965).
  • (21) Musso, E., and Nicolodi, L., Invariant signature of closed Planar curves, J. Math. Imaging Vision, vol. 35, pp. 68-85, 2009.
  • (22) Nagata, M., Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ., vol. 1, no. 1, pp. 87-99, 1961.
  • (23) Olver, P.J., Classical Invariant Theory, Cambridge Univ. Press, New York, 1999.
  • (24) Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., and Oosterlinck, A., Recognition of planar shapes under affine distortion, Int. J. Comput. Vision, vol. 14, pp. 49-65, 1995.
  • (25) Rathi, Y., Olver, P.J., Sapiro, G., and Tannenbaum, A.R., Affine invariant surface evolutions for 3D image segmentation, Image Processing: Algorithms and Systems, Neural Network, and Machine Learning, Editors: Dougherty, E.R., Nasrabadi, N.M., Rizv, S.A., Proc. Of SPIE-IS&T Electronic Imaging, SPTE Press, vol. 6064, pp. 606401, 2006.
  • (26) Sapiro, G., Geometrical Partial Differential Equations and Image Analysis, Cambridge University Press, 2001.
  • (27) Weyl, H., The Classical groups: Their Invariants and Representations, Princeton University Press, N. J., 1946.
  • (28) Weiss, I., Geometric invariants and object recognition, Int. J. Comput. Vision, vol. 10, no. 3, June 1993.
  • (29) Wilczynski, E.J., Projective differential geometry of curves and Ruled Surfaces, Leipzig, B. G. Teubner, New York, 1906.
  • (30) Wilczynski, E.J., Projective differential geometry of curved surface (Second Memoir), Amer. Math. Soc. Trans., vol. 9, no. 1, Jan. 1908.