This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Shuffle relations for Hodge and motivic correlators

Nikolay Malkin
Abstract.

The Hodge correlators Cor(z0,z1,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{1},\dots,z_{n}) are functions of several complex variables, defined by (Goncharov, 2008) by an explicit integral formula. They satisfy some linear relations: dihedral symmetry relations, distribution relations, and the shuffle relations.

We found new second shuffle relations. When zi{0}μNz_{i}\in\left\{0\right\}\cup\mu_{N}, where μN\mu_{N} are the NN-th roots of unity, they are expected to give almost all relations.

When ziz_{i} run through a finite subset SS of \mathbb{C}, the Hodge correlators describe the real mixed Hodge-Tate structure on the pronilpotent completion of the fundamental group π1nil(1(S{}),v)\pi_{1}^{\text{\rm nil}}(\mathbb{C}\mathbb{P}^{1}\setminus(S\cup\left\{\infty\right\}),v_{\infty}). The latter is a Lie algebra in the category of mixed \mathbb{Q}-Hodge-Tate structures. The Hodge correlators are lifted to canonical elements CorHod(z0,,zn)\text{\rm Cor}_{\text{\rm Hod}}(z_{0},\dots,z_{n}) in the Tannakian Lie coalgebra LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} of this category. We prove that these elements satisfy the second shuffle relations.

Let S¯S\subset\overline{\mathbb{Q}}. The pronilpotent fundamental group is the Betti realization of the motivic fundamental group, which is a Lie algebra in the category of mixed Tate motives over ¯\overline{\mathbb{Q}}. The Hodge correlators are lifted to elements CorMot(z0,,zn)\text{\rm Cor}_{\text{\rm Mot}}(z_{0},\dots,z_{n}) in the Tannakian Lie coalgebra LieMT\text{\rm Lie}_{\text{\rm MT}}^{\vee} of the category of mixed Tate motives. We prove the second shuffle relations for these motivic elements.

The universal enveloping algebra of LieMT\text{\rm Lie}_{\text{\rm MT}}^{\vee} was described by Goncharov via motivic multiple polylogarithms, which obey a similar yet different set of double shuffle relations. Motivic correlators have several advantages: they obey dihedral symmetry relations at all points, not only at roots of unity; they are defined for any curve, and the double shuffle relations admit a generalization to elliptic curve; and they describe elements of the motivic Lie coalgebra rather than its universal enveloping algebra.

1. Introduction and main results

1.1. Summary

The Hodge correlators Cor(z0,z1,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{1},\dots,z_{n}) are functions of several complex variables, defined by an explicit integral formula in [G6]. They satisfy some linear relations: the dihedral symmetry relations, the distribution relations, and the shuffle relations.

We found new relations, called second shuffle relations. When zi{0}μNz_{i}\in\left\{0\right\}\cup\mu_{N}, where μN\mu_{N} are the NN-th roots of unity, they should give almost all relations: the results of [G7] suggest that the other relations are sporadic, i.e., cannot be described by universal formulae.

When ziz_{i} run through a finite subset SS of \mathbb{C}, the Hodge correlators are the canonical real periods of the mixed Hodge-Tate structures on the pronilpotent completion of the fundamental group π1nil(1(S{}),v)\pi_{1}^{\text{\rm nil}}(\mathbb{C}\mathbb{P}^{1}\setminus(S\cup\left\{\infty\right\}),v_{\infty}), with the tangential base point at \infty. The latter is a Lie algebra in the category of mixed \mathbb{Q}-Hodge-Tate structures. The Hodge correlators describe the real mixed Hodge structure on this Lie algebra tensored over \mathbb{Q} by \mathbb{R}.

The category of mixed \mathbb{Q}-Hodge-Tate structures is canonically equivalent to the category of representations of a graded Lie algebra over \mathbb{Q}. Let us take its image in the representation defining π1nil(1(S{}),v)\pi_{1}^{\text{\rm nil}}(\mathbb{C}\mathbb{P}^{1}\setminus(S\cup\left\{\infty\right\}),v_{\infty}), and consider the graded dual Lie coalgebra LieHT(S)\text{\rm Lie}_{\text{\rm HT}}^{\vee}(S). The Hodge correlators were lifted in [G6] to canonical elements

(1) CorHod(z0,,zn)LieHT(S).\text{\rm Cor}_{\text{\rm Hod}}(z_{0},\dots,z_{n})\in\text{\rm Lie}_{\text{\rm HT}}^{\vee}(S).

The real numbers Cor\text{\rm Cor}_{\mathcal{H}} are the canonical real periods of these elements. We prove that our new relations can be lifted to relations on the elements (1).

Let S¯S\subset\overline{\mathbb{Q}}\subset\mathbb{C}. The Lie algebra π1nil(1(S{}),v)\pi_{1}^{\text{\rm nil}}(\mathbb{C}\mathbb{P}^{1}\setminus(S\cup\left\{\infty\right\}),v_{\infty}) is the Betti realization of the motivic fundamental group π1Mot(1(S{}),v)\pi_{1}^{\text{\rm Mot}}(\mathbb{P}^{1}\setminus(S\cup\left\{\infty\right\}),v_{\infty}). The latter is a Lie algebra in the category of mixed Tate motives over ¯\overline{\mathbb{Q}}, defined in [DG]. This category is identified with the category of representations of the motivic Galois Lie algebra. Just like in the Hodge case, we take the image of this Lie algebra in the representation provided by the motivic fundamental group, and consider the graded dual Lie coalgebra LieMT(S)\text{\rm Lie}_{\text{\rm MT}}^{\vee}(S). In [G6], the elements (1) were lifted to elements

(2) CorMot(z0,,zn)LieMT(S).\text{\rm Cor}_{\text{\rm Mot}}(z_{0},\dots,z_{n})\in\text{\rm Lie}_{\text{\rm MT}}^{\vee}(S).

We prove that our relations can be upgraded to linear relations on these elements.

The universal enveloping algebra for the Lie coalgebra LieMT(S)\text{\rm Lie}_{\text{\rm MT}}^{\vee}(S) was described in [G4] via motivic multiple polylogarithms. The motivic double shuffle relations for them were proved in [G5]. The explicit relation between motivic correlators and multiple polylogarithms is an interesting open problem.

The multiple polylogarithms obey a similar system of double shuffle relations, but the dihedral symmetry relation holds only at roots of unity. The combinatorics of those relations, originally described by [G2]-[G4], were studied further by [R].

The motivic correlator description of π1Mot(1(S{}),v)\pi_{1}^{\text{\rm Mot}}(\mathbb{P}^{1}\setminus(S\cup\left\{\infty\right\}),v_{\infty}) has several advantages. Most importantly, motivic correlators are defined for any algebraic curve, not only 𝔸1S\mathbb{A}^{1}\setminus S, and the double shuffle relations admit a generalization to elliptic curves [M]. The motivic correlators obey double shuffle and cyclic symmetry relations at all points. Motivic correlators describe elements of the Lie coalgebra rather than its universal enveloping algebra. Finally, they give the best way to describe the mysterious connection between the Lie coalgebra LieMT({0}μN)\text{\rm Lie}_{\text{\rm MT}}^{\vee}(\left\{0\right\}\cup\mu_{N}) and modular manifolds [G7].

Acknowledgements

I am grateful to A.B. Goncharov for introducing me to this problem, for many helpful discussions and explanations, and for comments on a draft of this paper.

This material is based upon work supported by the National Science Foundation under grant DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2019 semester. The author also acknowledges support from NSF grants DMS-1107452, 1107263, 1107367 “RNMS: Geometric Structures and Representation Varieties” (the GEAR Network).

1.2. Hodge correlators and shuffle relations

We describe a family of functions of several complex variables, the Hodge correlators ([G6]).111In this paper, “Hodge correlators” will refer only to Hodge correlators associated to the curve 1\mathbb{P}^{1}. Our main result is a set of functional equations on the Hodge correlators and the Hodge-theoretic and motivic upgrades of these relations.

1.2.1. Definition

Let z0,,znz_{0},\dots,z_{n}\in\mathbb{C}. We define the Hodge correlator of weight nn, Cor(z0,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}).

Draw a disc in the plane with a sequence of points V={v0,,vn}V^{\partial}=\left\{v_{0},\dots,v_{n}\right\} placed counterclockwise around the boundary, and label viv_{i} by the value ziz_{i}. Choose a plane trivalent tree TT inside the disc with leaves at the labeled boundary vertices. Such a tree has n1n-1 interior vertices VV^{\circ} and 2n12n-1 edges E={E0,,E2n2}E=\left\{E_{0},\dots,E_{2n-2}\right\}. The embedding into the plane gives a canonical orientation OrT{±1}\rm{Or}_{T}\in\left\{\pm 1\right\} (a choice of component of E\mathbb{R}^{\wedge E}, i.e., ordering of the edges up to even permutation).

Let us assign to each edge EjE_{j} a function fjf_{j} on

𝐗:=V×V.{\mathbf{X}}:=\mathbb{C}^{V^{\circ}}\times\mathbb{C}^{V^{\partial}}.

Precisely, to an edge Ei=(u,v)E_{i}=(u,v), assign fi=(2πi)1log|xuxv|f_{i}=(2\pi i)^{-1}\log\left|x_{u}-x_{v}\right|, where xux_{u} is the coordinate on 𝐗\mathbf{X} corresponding to a vertex uu. Then fix the coordinate at each boundary vertex viv_{i} to be ziz_{i}. Abusing notation, also denote by fjf_{j} the restriction of fjf_{j} to V\mathbb{C}^{V^{\circ}} with the boundary coordinates fixed.

Setting d=¯d^{\mathbb{C}}=\partial-\overline{\partial}, we define:

(3) cT(z0,,zn)=(4)n1(2n2n1)1OrTVf0df1df2n2,c_{T}(z_{0},\dots,z_{n})=(-4)^{n-1}\binom{2n-2}{n-1}^{-1}\mathrm{Or}_{T}\int_{\mathbb{C}^{V^{\circ}}}f_{0}\,d^{\mathbb{C}}f_{1}\wedge\dots\wedge d^{\mathbb{C}}f_{2n-2},

This expression is independent of the numbering of the edges. The Hodge correlator is defined as the sum of these integrals over all plane trivalent trees TT:

Cor(z0,,zn)=TcT(z0,,zn).\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n})=\sum_{T}c_{T}(z_{0},\dots,z_{n}).

It takes values in (2πi)n(2\pi i)^{-n}\mathbb{R}. The simplest example, in weight 1, is shown in Fig. 1.2.1.

[Uncaptioned image]

Figure 1.2.1. Cor(z0,z1)=(2πi)1log|z0z1|\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{1})=(2\pi i)^{-1}\log\left|z_{0}-z_{1}\right|.

In weight 2, the Hodge correlators are given by

Cor(z0,z1,z2)\displaystyle\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{1},z_{2}) =18x(2πi)3log|xz0|dlog|xz1|dlog|xz2|.\displaystyle=-\frac{1}{8}\int_{x}(2\pi i)^{-3}\log\left|x-z_{0}\right|\,d^{\mathbb{C}}\log\left|x-z_{1}\right|\wedge d^{\mathbb{C}}\log\left|x-z_{2}\right|.

This integral is described by the Feynman diagram in Fig. 1.2.1.

[Uncaptioned image]

Figure 1.2.1.

Recall the single-valued version of the dilogarithm, called the Bloch-Wigner function:

2(z)=(Li2(z))+log|z|arg(1z),(a+bi):=b.\mathcal{L}_{2}(z)=\Im\left(\text{\rm Li}_{2}(z)\right)+\log\left|z\right|\arg(1-z),\quad\Im(a+bi):=b.

The weight 2 Hodge correlator integral can be calculated explicitly as

(4) Cor(z0,z1,z2)=(2πi)22(z1z0z2z0).\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{1},z_{2})=(2\pi i)^{-2}\mathcal{L}_{2}\left(\frac{z_{1}-z_{0}}{z_{2}-z_{0}}\right).

1.2.2. Properties

The Hodge correlators satisfy dihedral symmetry relations:

Cor(z0,z1,,zn)\displaystyle\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{1},\dots,z_{n}) =Cor(z1,,zn,z0)\displaystyle=\text{\rm Cor}_{\mathcal{H}}(z_{1},\dots,z_{n},z_{0})
=(1)n+1Cor(zn,,z1,z0).\displaystyle=(-1)^{n+1}\text{\rm Cor}_{\mathcal{H}}(z_{n},\dots,z_{1},z_{0}).

One can show using (3) that the Hodge correlators are invariant under an additive shift of the arguments. In weight >1>1, they are also invariant under a multiplicative shift:

Cor(z0,,zn)\displaystyle\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}) =Cor(z0+a,,zn+a),\displaystyle=\text{\rm Cor}_{\mathcal{H}}(z_{0}+a,\dots,z_{n}+a),
Cor(z0,,zn)\displaystyle\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}) =Cor(az0,,azn)(a,n>1).\displaystyle=\text{\rm Cor}_{\mathcal{H}}(az_{0},\dots,az_{n})\quad(a\in\mathbb{C}^{*},n>1).

Furthermore, the Hodge correlators satisfy shuffle relations: for r,s1r,s\geq 1 and z0,,zr+sz_{0},\dots,z_{r+s}\in\mathbb{C},

(5) σΣr,sCor(z0,zσ1(1),zσ1(2),,zσ1(r+s))=0,\sum_{\sigma\in\Sigma_{r,s}}\text{\rm Cor}_{\mathcal{H}}(z_{0},z_{\sigma^{-1}(1)},z_{\sigma^{-1}(2)},\dots,z_{\sigma^{-1}(r+s)})=0,

where Σr,sSr+s\Sigma_{r,s}\subset S_{r+s} is the set of (r,s)(r,s)-shuffles, consisting of the permutations σ\sigma such that

σ(1)<<σ(r),σ(r+1)<<σ(r+s).\sigma(1)<\dots<\sigma(r),\quad\sigma(r+1)<\dots<\sigma(r+s).

For example, the (1,1)(1,1)-shuffle relation states:

Cor(z0,z1,z2)+Cor(z0,z2,z1)=0;\text{\rm Cor}_{\mathcal{H}}(z_{0},{\color[rgb]{0,0,1}z_{1}},{\color[rgb]{1,0,0}z_{2}})+\text{\rm Cor}_{\mathcal{H}}(z_{0},{\color[rgb]{1,0,0}z_{2}},{\color[rgb]{0,0,1}z_{1}})=0;

the (2,1)(2,1)-shuffle relation is:

Cor(z0,z1,z2,z3)+Cor(z0,z1,z3,z2)+Cor(z0,z3,z1,z2)=0.\text{\rm Cor}_{\mathcal{H}}(z_{0},{\color[rgb]{0,0,1}z_{1}},{\color[rgb]{0,0,1}z_{2}},{\color[rgb]{1,0,0}z_{3}})+\text{\rm Cor}_{\mathcal{H}}(z_{0},{\color[rgb]{0,0,1}z_{1}},{\color[rgb]{1,0,0}z_{3}},{\color[rgb]{0,0,1}z_{2}})+\text{\rm Cor}_{\mathcal{H}}(z_{0},{\color[rgb]{1,0,0}z_{3}},{\color[rgb]{0,0,1}z_{1}},{\color[rgb]{0,0,1}z_{2}})=0.

The shuffle relations may be considered “easy” because they hold on the level of the sum over trees of the integrands in (3).

1.2.3. Second shuffle relation

We found another relation on the Hodge correlators. Together, the two relations form the double shuffle relations. To state the new relations, we must introduce some notation.

Because of the multiplicative invariance (in weight >1>1) of Hodge correlators, it is possible and convenient to introduce an inhomogeneous notation for them, where the arguments are represented by the quotients between successive nonzero values and the number of 0s between them. Precisely, given w0,,wkw_{0},\dots,w_{k}\in\mathbb{C}^{*} such that w0w1wk=1w_{0}w_{1}\dots w_{k}=1, define

Cor(w0|n0,w1|n1,,wk|nk):=\displaystyle\text{\rm Cor}_{\mathcal{H}}^{*}(w_{0}|n_{0},w_{1}|n_{1},\dots,w_{k}|n_{k}):=
=Cor(0,,0n0,1,0,,0n1,w1,0,,0n2,w1w2,,0,,0nk,w1wk).\displaystyle=\text{\rm Cor}_{\mathcal{H}}(\underbrace{0,\dots,0}_{n_{0}},1,\underbrace{0,\dots,0}_{n_{1}},w_{1},\underbrace{0,\dots,0}_{n_{2}},w_{1}w_{2},\dots,\underbrace{0,\dots,0}_{n_{k}},w_{1}\dots w_{k}).

This definition is illustrated in Fig. 1.2.3.

[Uncaptioned image] [Uncaptioned image] wi=zizi1\displaystyle w_{i}=\frac{z_{i}}{z_{i-1}}

Figure 1.2.3. Cor(z0,0,,0n1,z1,0,,0n2,z2,0,,0n0)Cor(w1|n1,w2|n2,w3|n3)\text{\rm Cor}_{\mathcal{H}}(z_{0},\underbrace{0,\dots,0}_{n_{1}},z_{1},\underbrace{0,\dots,0}_{n_{2}},z_{2},\underbrace{0,\dots,0}_{n_{0}})\equiv\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},w_{2}|n_{2},w_{3}|n_{3}).

Define the depth of an expression Cor(z0,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}) to be one less than the number of arguments in the multiplicative notation, that is, kk in the formula above.

Our new shuffle relation states:

(6) σΣr,sCor(wσ1(1)|nσ1(1),,wσ1(r+s)|nσ1(r+s),w0|n0)+lower-depth terms=0.\sum_{\sigma\in\Sigma_{r,s}}\text{\rm Cor}_{\mathcal{H}}^{*}(w_{\sigma^{-1}(1)}|n_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(r+s)}|n_{\sigma^{-1}(r+s)},w_{0}|n_{0})+\text{lower-depth terms}=0.

That is, we shuffle two ordered sets of expressions (wi|ni)(w_{i}|n_{i}), while leaving the segment (w0|n0)(w_{0}|n_{0}) fixed. For example the (1,1)(1,1)-shuffle relation begins:

[Uncaptioned image] [Uncaptioned image]
Cor(w1|n1,w2|n2,w0|n0)\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},w_{2}|n_{2},w_{0}|n_{0}) +Cor(w2|n2,w1|n1,w0|n0)+\>\text{\rm Cor}_{\mathcal{H}}^{*}(w_{2}|n_{2},w_{1}|n_{1},w_{0}|n_{0})

To describe the lower-depth terms, we need the notion of quasishuffle. Let A={a1<<ar}A=\left\{a_{1}<\dots<a_{r}\right\} and B={b1<<bs}B=\left\{b_{1}<\dots<b_{s}\right\} be two ordered sets. A quasishuffle of AA and BB is a sequence of slots {1,,M}\left\{1,\dots,M\right\} and a placement of each element of ABA\cup B in a slot, such that each slot is filled with one of:

  • some aiAa_{i}\in A,

  • some bjBb_{j}\in B,

  • a pair {ai,bj}\left\{a_{i},b_{j}\right\},

and the sequence of slots containing the a1,,ara_{1},\dots,a_{r} and the sequence of slots containing the b1,,bsb_{1},\dots,b_{s} are ordered left to right. If aia_{i} and bjb_{j} share a slot, they are said to collide. If no elements collide, the quasishuffle is said to be a shuffle.

Let A={1,,r}A=\left\{1,\dots,r\right\} and B={r+1,,r+s}B=\left\{r+1,\dots,r+s\right\} with the natural orders. Then, equivalently, the quasishuffles are the surjective maps {1,,r+s}𝜎{1,,Mσ}\left\{1,\dots,r+s\right\}\xrightarrow{\sigma}\left\{1,\dots,M_{\sigma}\right\} that are strictly increasing on 1,,r1,\dots,r and r+1,,r+sr+1,\dots,r+s.

Indices i{1,,r}i\in\left\{1,\dots,r\right\} collide with indices j{r+1,,r+s}j\in\left\{r+1,\dots,r+s\right\} whenever σ(i)=σ(j)\sigma(i)=\sigma(j). Let Σ¯r,s\overline{\Sigma}_{r,s} be the set of such quasishuffles.

A quasishuffle σ\sigma is a shuffle if Mσ=r+sM_{\sigma}=r+s. Recall the set of (r,s)(r,s)-shuffles Σr,sSr+s\Sigma_{r,s}\subset S_{r+s}. We naturally identify Σr,s\Sigma_{r,s} with the subset of the shuffles in Σ¯r,s\overline{\Sigma}_{r,s}.

The lower-depth terms in (6) come in two kinds:

  1. (1)

    Terms coming from the (r,s)(r,s)-quasishuffles that are not proper shuffles. Whenever the segments (wi|nj)(w_{i}|n_{j}) and (wj|nj)(w_{j}|n_{j}) collide, we get a new segment (wiwj|ni+nj+1)(w_{i}w_{j}|n_{i}+n_{j}+1) in their place – a 0 is inserted – and the term picks up a negative sign.

    For the (1,1)(1,1)-shuffle relation, there is only one quasishuffle that is not a shuffle. In this quasishuffle, the two segments (w1|n1)(w_{1}|n_{1}) and (w2|n2)(w_{2}|n_{2}) collide:

    [Uncaptioned image]
    Cor(w1w2|n1+n2+1,w0|n0)-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}w_{2}|n_{1}+n_{2}+1,w_{0}|n_{0})
  2. (2)

    Two extra terms: one where the segments w1,,wrw_{1},\dots,w_{r} appear in order and the remaining segments wr+1,,wr+s,w0w_{r+1},\dots,w_{r+s},w_{0} collapse; another where the segments wr+1,,wr+sw_{r+1},\dots,w_{r+s} appear in order and w1,,wr,w0w_{1},\dots,w_{r},w_{0} collapse. These terms come with a negative sign.

    For the (1,1)(1,1)-shuffle relation:

    [Uncaptioned image] [Uncaptioned image]
    Cor(w1|n1,w2w0|n2+n0+1)-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},w_{2}w_{0}|n_{2}+n_{0}+1) Cor(w2|n2,w1w0|n1+n0+1)-\>\text{\rm Cor}_{\mathcal{H}}^{*}(w_{2}|n_{2},w_{1}w_{0}|n_{1}+n_{0}+1)

In summary, the (1,1)(1,1)-shuffle relation states, for w0,w1,w2w_{0},w_{1},w_{2}\in\mathbb{C}^{*} and w0w1w2=1w_{0}w_{1}w_{2}=1,

Cor(w1|n1,w2|n2,w0|n0)\displaystyle\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},w_{2}|n_{2},w_{0}|n_{0}) +Cor(w2|n1,w1|n1,w0|n0)\displaystyle+\text{\rm Cor}_{\mathcal{H}}^{*}(w_{2}|n_{1},w_{1}|n_{1},w_{0}|n_{0})
Cor(w1w2|n1+n2+1,w0|n0)\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}w_{2}|n_{1}+n_{2}+1,w_{0}|n_{0})
Cor(w1|n1,w2w0|n2+n0+1)\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},w_{2}w_{0}|n_{2}+n_{0}+1)
Cor(w2|n2,w1w0|n1+n0+1)\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{2}|n_{2},w_{1}w_{0}|n_{1}+n_{0}+1) =0.\displaystyle=0.

It is already a nontrivial relation, which is not easy to prove from the definition (3) even for n0=n1=n2=0n_{0}=n_{1}=n_{2}=0.

By formula (4), Hodge correlators in weight 2 are expressed in a simple way in terms of the Bloch-Wigner function 2\mathcal{L}_{2}. The (1,1)(1,1)-shuffle relation with n0=n1=n2=0n_{0}=n_{1}=n_{2}=0 is equivalent to the five-term relation,

2(1w11w1w2)+2(1w21w1w2)+2(1w1w2)+2(w1)+2(w2)=0.\mathcal{L}_{2}\left(\frac{1-w_{1}}{1-w_{1}w_{2}}\right)+\mathcal{L}_{2}\left(\frac{1-w_{2}}{1-w_{1}w_{2}}\right)+\mathcal{L}_{2}(1-w_{1}w_{2})+\mathcal{L}_{2}(w_{1})+\mathcal{L}_{2}(w_{2})=0.

According to [B3], this is essentially the only functional equation for 2\mathcal{L}_{2}. It follows that the dihedral symmetry and shuffle relations are the only relations between the Hodge correlators in weight 2.

For further illustration, let us write out the (2,1)(2,1)-shuffle relation for the Hodge correlator

Cor(w1|0,w2|1|w3|1,w4|0),\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|0,w_{2}|1|w_{3}|1,w_{4}|0),

where w1\color[rgb]{0,0,1}{w_{1}} and w2\color[rgb]{0,0,1}{w_{2}} will be shuffled with w3\color[rgb]{1,0,0}{w_{3}}:

  1. (0)

    There are three terms from the shuffles:

    w1w2w3\color[rgb]{0,0,1}{w_{1}}\,\color[rgb]{0,0,1}{w_{2}}\,\color[rgb]{1,0,0}{w_{3}} w1w3w2\color[rgb]{0,0,1}{w_{1}}\,\color[rgb]{1,0,0}{w_{3}}\,\color[rgb]{0,0,1}{w_{2}} w3w1w2\color[rgb]{1,0,0}{w_{3}}\,\color[rgb]{0,0,1}{w_{1}}\,\color[rgb]{0,0,1}{w_{2}}
    [Uncaptioned image] [Uncaptioned image] [Uncaptioned image]
  2. (1)

    There are two terms from the quasishuffles that are not shuffles:

    [w1w3]w2\begin{bmatrix}\color[rgb]{0,0,1}{w_{1}}\\ \color[rgb]{1,0,0}{w_{3}}\end{bmatrix}\,\color[rgb]{0,0,1}{w_{2}} w1[w2w3]\color[rgb]{0,0,1}{w_{1}}\,\begin{bmatrix}\color[rgb]{0,0,1}{w_{2}}\\ \color[rgb]{1,0,0}{w_{3}}\end{bmatrix}
    [Uncaptioned image] [Uncaptioned image]
  3. (2)

    There are two additional terms:

    [Uncaptioned image] [Uncaptioned image]

The full relation is then

Cor(w1|0,w2|1,w3|1,w4|0)\displaystyle\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|0,w_{2}|1,w_{3}|1,w_{4}|0) +Cor(w1|0,w3|1,w2|1,w4|0)+Cor(w3|1,w1|0,w2|1,w4|0)\displaystyle+\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|0,w_{3}|1,w_{2}|1,w_{4}|0)+\text{\rm Cor}_{\mathcal{H}}^{*}(w_{3}|1,w_{1}|0,w_{2}|1,w_{4}|0)
Cor(w1w3|2,w2|1,w4|0)Cor(w1|0,w2w3|3,w4|0)\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}w_{3}|2,w_{2}|1,w_{4}|0)-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|0,w_{2}w_{3}|3,w_{4}|0)
Cor(w1|0,w2|1,(w1w2)1|2)Cor(w3|1,w31|3)\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|0,w_{2}|1,(w_{1}w_{2})^{-1}|2)-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{3}|1,w_{3}^{-1}|3) =0,\displaystyle=0,

where the 3+2+23+2+2 terms in the three rows match the 3+2+23+2+2 pictures above.

We now write out the general relation:

Theorem 1.
  1. (a)

    Suppose that r,s>1r,s>1 and that not all ni=0n_{i}=0 or not all wi=1w_{i}=1. Then the Hodge correlators satisfy the relation:

    σΣ¯r,s(1)r+sMσCor(wσ1(1)|nσ1(1),,wσ1(Mσ)|nσ1(Mσ),w0|n0)\displaystyle\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}\text{\rm Cor}_{\mathcal{H}}^{*}(w_{\sigma^{-1}(1)}|n_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})}|n_{\sigma^{-1}(M_{\sigma})},w_{0}|n_{0})
    Cor(w1|n1,,wr|nr,w{r+1,,r+s,0}|n{r+1,,r+s,0})\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},\dots,w_{r}|n_{r},w_{\left\{r+1,\dots,r+s,0\right\}}|n_{\left\{r+1,\dots,r+s,0\right\}})
    Cor(wr+1|nr+1,,wr+s|nr+s,w{1,,r,0}|n{1,,r,0})\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{r+1}|n_{r+1},\dots,w_{r+s}|n_{r+s},w_{\left\{1,\dots,r,0\right\}}|n_{\left\{1,\dots,r,0\right\}}) =0,\displaystyle=0,

    where

    nS=iS(ni+1)1,wS=iSwi.n_{S}=\sum_{i\in S}(n_{i}+1)-1,\quad w_{S}=\prod_{i\in S}w_{i}.
  2. (b)

    The Hodge correlators satisfy all specializations of this relation as any subset of the wiw_{i} (1in)(1\leq i\leq n) approaches 0.

1.2.4. Applications

Theorem 1 gives simple proofs of certain results of [GR].

Corollary 2 ([GR], Proposition 2.8).

For n>2n>2, every Hodge correlator of weight nn is a linear combination of Hodge correlators of weight nn and depth at most n2n-2.

Precisely, for z1,,znz_{1},\dots,z_{n}\in\mathbb{C}^{*}, we have

Cor(z1,,zn,0)\displaystyle\text{\rm Cor}_{\mathcal{H}}(z_{1},\dots,z_{n},0) =i=1nCor(z1,,zi1,zi,ziz1zn,,zn1z1zn,znz1zn)\displaystyle=\sum_{i=1}^{n}\text{\rm Cor}_{\mathcal{H}}\left(z_{1},\dots,z_{i-1},z_{i},z_{i}\frac{z_{1}}{z_{n}},\dots,z_{n-1}\frac{z_{1}}{z_{n}},z_{n}\frac{z_{1}}{z_{n}}\right)
i=2nCor(z1,,zi1,0,ziz1zn,,zn1z1zn,znz1zn)\displaystyle\quad-\sum_{i=2}^{n}\text{\rm Cor}_{\mathcal{H}}\left(z_{1},\dots,z_{i-1},0,z_{i}\frac{z_{1}}{z_{n}},\dots,z_{n-1}\frac{z_{1}}{z_{n}},z_{n}\frac{z_{1}}{z_{n}}\right)
(7) Cor(z1,z1z1zn,0,,0).\displaystyle\quad-\text{\rm Cor}_{\mathcal{H}}\left(z_{1},z_{1}\frac{z_{1}}{z_{n}},0,\dots,0\right).

In weight 3, we deduce the Hodge correlator version of relations (27) and (29) from [GR].

Corollary 3.

The Hodge correlators in weight 3 satisfy the relations:

(8) Cor(1,0,0,x)\displaystyle\text{\rm Cor}_{\mathcal{H}}(1,0,0,x) +Cor(1,0,0,1x)+Cor(1,0,0,1x1)=Cor(1,0,0,1),\displaystyle+\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-x)+\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-x^{-1})=\text{\rm Cor}_{\mathcal{H}}(1,0,0,1),
Cor(0,x,1,y)\displaystyle\text{\rm Cor}_{\mathcal{H}}(0,x,1,y) =Cor(1,0,0,1x1)Cor(1,0,0,1y1)Cor(1,0,0,yx)\displaystyle=-\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-x^{-1})-\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-y^{-1})-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{y}{x}\right)
(9) Cor(1,0,0,1y1x)+Cor(1,0,0,1y11x1)+Cor(1,0,0,1).\displaystyle\quad-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-y}{1-x}\right)+\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-y^{-1}}{1-x^{-1}}\right)+\text{\rm Cor}_{\mathcal{H}}(1,0,0,1).

We have noted that the double shuffle and dihedral symmetry relations give all relations between Hodge correlators in weight 2.

In weight 3, the Hodge correlators of depth 1 are expressed in terms of the single-valued trilogarithm 3\mathcal{L}_{3} (see §6.0.4). By the results of [GR], the relations (9) imply the general functional equation for 3\mathcal{L}_{3} ([G1]). We conclude that the double shuffle relations for Hodge correlators imply all functional equations for 2\mathcal{L}_{2} and 3\mathcal{L}_{3}.

1.3. Quasidihedral Lie coalgebras

Let GG be an abelian group. We use the multiplicative notation for GG; the identity element is 1G1\in G. Typically, GG will be the multiplicative group of a field F×F^{\times} or the group of NN-th roots of unity μN\mu_{N}. We adjoin to GG a formal element 0, where 0g=00\cdot g=0 for gG{0}g\in G\cup\left\{0\right\}.

We define the quasidihedral Lie coalgebra 𝒟(G)\mathcal{D}(G). It generalizes the dihedral Lie coalgebra of [G3]; the latter is the associated graded for the depth filtration of of 𝒟(G)\mathcal{D}(G). The aim of the construction of 𝒟(G)\mathcal{D}(G) is twofold:

  1. (1)

    It is the main combinatorial ingredient in the proof of the double shuffle relations for correlators.

  2. (2)

    The Lie coalgebra 𝒟(G)\mathcal{D}(G) describes the coproduct of motivic correlators.

1.3.1. Cyclic Lie coalgebra

Let VV be the \mathbb{Q}-vector space with basis indexed by G{0}G\cup\left\{0\right\}

Let T(V)=n0VnT(V)=\bigoplus_{n\geq 0}V^{\otimes n} be the tensor algebra of VV over \mathbb{Q}. We impose a grading by weight, where VnV^{\otimes n} has weight n1n-1. Then define the cyclic Lie coalgebra, as a vector space, by

𝒞(G)=T(V)cyclic symmetry.\mathcal{C}(G)=\frac{T(V)}{\text{cyclic symmetry}}.

It is positively graded and generated in weight nn by elements x0xnx_{0}\otimes\dots\otimes x_{n} modulo the relation x0xn=x1xnx0x_{0}\otimes\dots\otimes x_{n}=x_{1}\otimes\dots\otimes x_{n}\otimes x_{0}. We can represent these elements by elements of G{0}G\cup\left\{0\right\} written counterclockwise at marked points on a circle.

The coproduct on 𝒞(G)\mathcal{C}(G) is defined on such a generator by splitting the circle into two arcs that share exactly one point. That is, consider a line inside the circle, starting at a marked point and ending between two marked points. It splits the circle into two parts, representing generators xx^{\prime} and x′′x^{\prime\prime}, and the coproduct of x0xnx_{0}\otimes\dots\otimes x_{n} is the sum of xx′′x^{\prime}\wedge x^{\prime\prime} over all such cuts.

[Uncaptioned image]

Precisely, the coproduct is defined by

(10) δ(x0xn)=cyci=1n1(x0x1xi)(x0xi+1xn).\delta\left(x_{0}\otimes\dots\otimes x_{n}\right)=\sum_{\rm cyc}\sum_{i=1}^{n-1}\left(x_{0}\otimes x_{1}\otimes\dots\otimes x_{i}\right)\wedge\left(x_{0}\otimes x_{i+1}\otimes\dots\otimes x_{n}\right).

It respects the weight grading and satisfies the co-Jacobi identity.

We will write elements of 𝒞(G)\mathcal{C}(G) as

C(x0,,xn)=x0xn.C(x_{0},\dots,x_{n})=x_{0}\otimes\dots\otimes x_{n}.

Also introduce a notation, analogous to that for Hodge correlators, for w0,,wkGw_{0},\dots,w_{k}\in G with w0wk=1w_{0}\dots w_{k}=1:

C(w0|n0,w1|n1,,wk|nk):=\displaystyle C^{*}(w_{0}|n_{0},w_{1}|n_{1},\dots,w_{k}|n_{k}):=
=C(0,,0n0,1,0,,0n1,w1,0,,0n2,,w1wk1,0,,0nk,w1wk).\displaystyle=C(\underbrace{0,\dots,0}_{n_{0}},1,\underbrace{0,\dots,0}_{n_{1}},w_{1},\underbrace{0,\dots,0}_{n_{2}},\dots,w_{1}\dots w_{k-1},\underbrace{0,\dots,0}_{n_{k}},w_{1}\dots w_{k}).

1.3.2. Relations

A first shuffle in 𝒞(G)\mathcal{C}(G) is an element of the form

σΣr,sC(x0,xσ1(1),xσ1(2),,xσ1(r+s)).\sum_{\sigma\in\Sigma_{r,s}}C(x_{0},x_{\sigma^{-1}(1)},x_{\sigma^{-1}(2)},\dots,x_{\sigma^{-1}(r+s)}).

Define

𝒟~(G)=𝒞(G)first shuffles, scaling relations, distribution relations.\widetilde{\mathcal{D}}(G)=\frac{\mathcal{C}(G)}{\text{first shuffles, scaling relations, distribution relations}}.

The scaling relations we impose are:

  1. (1)

    In weight 1, we have C(0,0)=0C(0,0)=0 and C(ab,ac)=C(0,a)+C(b,c)C(ab,ac)=C(0,a)+C(b,c) for aGa\in G.

  2. (2)

    In weight >1>1, multiplicative invariance:

    C(x0,,xn)=C(ax0,,axn),aG.C(x_{0},\dots,x_{n})=C(ax_{0},\dots,ax_{n}),\quad a\in G.

The distribution relations are the following. For l>0l\in\mathbb{Z}_{>0}, let GlG_{l} denote the ll-torsion of GG. Suppose that GlG_{l} is finite and ll divides |Gl|\left|G_{l}\right|, and suppose x0,,xnG{0}x_{0},\dots,x_{n}\in G\cup\left\{0\right\} are divisible by ll (note 0 is always divisible by ll). Let mm be the number of 0s among the xix_{i}. Then the relation is

(11) C(x0,,xn)=lm|Gl|yil=xiC(y0,,yn),C(x_{0},\dots,x_{n})=\frac{l^{m}}{\left|G_{l}\right|}\sum_{y_{i}^{l}=x_{i}}C(y_{0},\dots,y_{n}),

except in the case that n=1n=1 and x0=x1x_{0}=x_{1}.

The following is immediate from the constructions of [G3] (Theorem 4.3).

Theorem 4.

The first shuffles, scaling relations, and distribution relations generate a coideal in 𝒞(G)\mathcal{C}(G). The coproduct on 𝒞(G)\mathcal{C}(G) descends to a well-defined coproduct on 𝒟~(G)\widetilde{\mathcal{D}}^{\vee}(G).

Abusing notation, denote also by CC and CC^{*} the images in 𝒟~(G)\widetilde{\mathcal{D}}(G) of the elements C,CC,C^{*} in 𝒞(G)\mathcal{C}(G).

A second shuffle in 𝒞(G)\mathcal{C}(G) is an element of the form suggested by Theorem 1:

σΣ¯r,s(1)r+sMσC(wσ1(1)|nσ1(1),,wσ1(Mσ)|nσ1(Mσ),w0|n0)\displaystyle\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}C^{*}(w_{\sigma^{-1}(1)}|n_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})}|n_{\sigma^{-1}(M_{\sigma})},w_{0}|n_{0})
C(w1|n1,,wr|nr,w{r+1,,r+s,0}|n{r+1,,r+s,0})\displaystyle-C^{*}(w_{1}|n_{1},\dots,w_{r}|n_{r},w_{\left\{r+1,\dots,r+s,0\right\}}|n_{\left\{r+1,\dots,r+s,0\right\}})
C(wr+1|nr+1,,wr+s|nr+s,w{1,,r,0}|n{1,,r,0}),\displaystyle-C^{*}(w_{r+1}|n_{r+1},\dots,w_{r+s}|n_{r+s},w_{\left\{1,\dots,r,0\right\}}|n_{\left\{1,\dots,r,0\right\}}),

where

nS=iS(ni+1)1,wS=iSwi.n_{S}=\sum_{i\in S}(n_{i}+1)-1,\quad w_{S}=\prod_{i\in S}w_{i}.

Define the quasidihedral Lie coalgebra

𝒟(G)=𝒟~(G)second shuffles.\mathcal{D}(G)=\frac{\widetilde{\mathcal{D}}(G)}{\text{second shuffles}}.

Then we prove:

Theorem 5.

The second shuffles form a coideal in 𝒟~(G)\widetilde{\mathcal{D}}(G). The coproduct on 𝒟~(G)\widetilde{\mathcal{D}}(G) descends to a well-defined coproduct on 𝒟(G)\mathcal{D}(G).

Theorem 5 provides us with a Lie coalgebra generated by sequences of elements of G{0}G\cup\left\{0\right\} that satisfies dihedral symmetry, scaling, and the two shuffle relations.

Let 𝒞(G)\mathcal{C}^{\circ}(G) the subspace of 𝒞(G)\mathcal{C}(G) generated by elements C(x0,,xn)C(x_{0},\dots,x_{n}) where not all xix_{i} are equal. It is a subcoalgebra, which we call the restricted cyclic Lie coalgebra. The image of 𝒞(G)\mathcal{C}^{\circ}(G) in 𝒟(G)\mathcal{D}(G) is the restricted quasidihedral Lie coalgebra, denoted 𝒟(G)\mathcal{D}^{\circ}(G).

The Hodge correlators satisfy cyclic symmetry, first shuffle, distribution, and scaling relations. Equivalently, the function Cor\text{\rm Cor}_{\mathcal{H}}^{*} factors through 𝒟~()\widetilde{\mathcal{D}}(\mathbb{C}^{*}) and a map

C(w0|n0,,wk|nk)Cor(w0|n0,,wk|nk).C^{*}(w_{0}|n_{0},\dots,w_{k}|n_{k})\mapsto\text{\rm Cor}_{\mathcal{H}}^{*}(w_{0}|n_{0},\dots,w_{k}|n_{k}).

An equivalent form of Theorem 1 is that, restricted to the set of arguments where not all wi=1w_{i}=1 or not all ni=0n_{i}=0, this function factors through the quotient 𝒟()\mathcal{D}^{\circ}(\mathbb{C}^{*}).

1.3.3. Depth filtration

The Lie coalgebra 𝒟(G)\mathcal{D}(G) is filtered by the depth, where a generator has depth dd if it includes d+1d+1 elements of GG (not counting 0s). Consider grD𝒟(G)\text{\rm gr}^{D}\mathcal{D}(G). In this coalgebra, the second shuffle relations lose their lower-depth terms.

1.4. Relations for motivic correlators: Hodge realization

We present the construction of motivic correlators of [G6] and state our main result in this setting.

This section concerns the Hodge realization of motivic correlators. They are objects in the fundamental Lie coalgebra of the category of \mathbb{R}-mixed Hodge structures, and are Hodge-theoretic upgrades of the Hodge correlator functions.

1.4.1. Summary

In [G6], given any collection of complex numbers z0,,znz_{0},\dots,z_{n}, the Hodge correlators Cor(z0,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}) were upgraded to elements of the Tannakian Lie coalgebra LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} of the category of real mixed Hodge structures:

(12) CorHod(z0,,zn)LieHT.\text{\rm Cor}_{\text{\rm Hod}}(z_{0},\dots,z_{n})\in\text{\rm Lie}_{\text{\rm HT}}^{\vee}.

Furthermore, if follows easily from the construction of the upgraded Hodge correlators (12) that they satisfy the dihedral and first shuffle relations, and that their coproduct in the coalgebra LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} is given precisely by the formula (10).

One of the main results of this paper is that the elements (12) satisfy the second shuffle relations. In other words, they provide a map of Lie coalgebras 𝒟()LieHT\mathcal{D}^{\circ}(\mathbb{C}^{*})\to\text{\rm Lie}_{\text{\rm HT}}^{\vee}.

1.4.2. Hodge-theoretic setup

Let MHT\mathrm{MHT}_{\mathbb{R}} of be the tensor category of \mathbb{R}-mixed Hodge-Tate structures and HT\mathrm{HT}_{\mathbb{R}} the category of \mathbb{R}-pure Hodge-Tate structures. Every object of MHT\mathrm{MHT}_{\mathbb{R}} is filtered by weight, and MHT\mathrm{MHT}_{\mathbb{R}} is generated by the simple objects (n)\mathbb{R}(n), the pure Hodge-Tate structures of weight n-n. The cohomology of a punctured projective line is a mixed Hodge-Tate structure, nontrivial in weights 0 and 1.

The Galois Lie algebra of the category of mixed Hodge-Tate structures, LieHT\text{\rm Lie}_{\text{\rm HT}}, is the algebra of tensor derivations of the functor grW:MHTHT\text{\rm gr}^{W}:\mathrm{MHT}_{\mathbb{R}}\to\mathrm{HT}_{\mathbb{R}}. It is a graded Lie algebra in the category HT\mathrm{HT}_{\mathbb{R}}, and MHT\mathrm{MHT}_{\mathbb{R}} is equivalent to the category of graded LieHT\text{\rm Lie}_{\text{\rm HT}}-modules in HT\mathrm{HT}_{\mathbb{R}}. Let LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} be its graded dual. A canonical period map

p:LieHTp:\text{\rm Lie}_{\text{\rm HT}}^{\vee}\to\mathbb{R}

was defined in [G6].

Let X=1()X=\mathbb{P}^{1}(\mathbb{C}), SXS\subset X a finite set of punctures containing \infty, and v=1z2zv_{\infty}=\frac{-1}{z^{2}}\frac{\partial}{\partial z} a distinguished tangent vector at \infty. The pronilpotent completion π1nil(X(S{}),v)\pi_{1}^{\text{\rm nil}}(X\setminus(S\cup\left\{\infty\right\}),v_{\infty}) of the fundamental group π1(XS,)\pi_{1}(X\setminus S,\infty) carries a mixed Hodge-Tate structure, depending on vv_{\infty}, and thus there is a map

LieHTDer(grWπ1nil(XS,v)).\text{\rm Lie}_{\text{\rm HT}}\to\text{\rm Der}\left(\text{\rm gr}^{W}\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty})\right).

1.4.3. Hodge correlator coalgebra

The Hodge correlator coalgebra is defined by [G6] as

𝒞X,S,v:=T([S{}])relationsH2(X).\mathcal{CL}_{X,S,v_{\infty}}^{\vee}:=\frac{T(\mathbb{C}\left[S\setminus\left\{\infty\right\}\right]^{\vee})}{\text{relations}}\otimes H_{2}(X).

Note that H2(X)(1)H_{2}(X)\cong\mathbb{R}(1). If [h]H2(X)[h]\in H_{2}(X) is the fundamental class, we write x(1)x(1) for x[h]x\otimes[h].

The relations are the following:

  1. (1)

    Cyclic symmetry: x0xn=x1xnx0x_{0}\otimes\dots\otimes x_{n}=x_{1}\otimes\dots\otimes x_{n}\otimes x_{0}.

  2. (2)

    (First) shuffle relations:

    σΣp,qx0xσ1(1)xσ1(p+q)=0.\sum_{\sigma\in\Sigma_{p,q}}x_{0}\otimes x_{\sigma^{-1}(1)}\otimes\dots\otimes x_{\sigma^{-1}(p+q)}=0.
  3. (3)

    Take the quotient by the weight 1-1 elements (x0)(x_{0}).

There is a Lie coalgebra structure on 𝒞X,S,v0\mathcal{CL}_{X,S,v_{0}}^{\vee}, defined by the same formula as for the cyclic Lie coalgebra:

(13) δ((x0xn)(1))=cyci=1n1((x0x1xi)(1))((x0xi+1xn)(1)).\delta\left((x_{0}\otimes\dots\otimes x_{n})(1)\right)=\sum_{\rm cyc}\sum_{i=1}^{n-1}\left((x_{0}\otimes x_{1}\otimes\dots\otimes x_{i})(1)\right)\wedge\left((x_{0}\otimes x_{i+1}\otimes\dots\otimes x_{n})(1)\right).

An action of the graded dual Lie algebra 𝒞X,S,v\mathcal{CL}_{X,S,v_{\infty}} by derivations on LX,S,s0L_{X,S,s_{0}} was constructed by [G6]. The action

𝒞X,S,vDer(LX,S,v)\mathcal{CL}_{X,S,v_{\infty}}\to\text{\rm Der}\left(L_{X,S,v_{\infty}}\right)

is injective. Its image consists of the special derivations DerS(LX,S,v)\text{\rm Der}^{S}\left(L_{X,S,v_{\infty}}\right), those which act by 0 on the loop around \infty and preserve the conjugacy classes of all the loops sS{}s\in S\setminus\left\{\infty\right\}.

Dualizing this map composed with the action of LieHT\text{\rm Lie}_{\text{\rm HT}}, we get the Hodge correlator map of Lie coalgebras:

CorHod:𝒞X,S,vLieHT.\text{\rm Cor}_{\text{\rm Hod}}:\mathcal{CL}^{\vee}_{X,S,v_{\infty}}\to\text{\rm Lie}_{\text{\rm HT}}^{\vee}.

We will also write CorHod(x0,,xn)\text{\rm Cor}_{\text{\rm Hod}}(x_{0},\dots,x_{n}) for CorHod((x0xn)(1))\text{\rm Cor}_{\text{\rm Hod}}\left((x_{0}\otimes\dots\otimes x_{n})(1)\right), and similarly define

CorHod(w0|n0,,wk|nk).\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{0}|n_{0},\dots,w_{k}|n_{k}).

1.4.4. Period map and Hodge correlator functions

Recall that the Hodge correlator functions Cor(x0,,xn)\text{\rm Cor}_{\mathcal{H}}(x_{0},\dots,x_{n}) satisfy cyclic symmetry and shuffle relations, so we may also denote by Cor\text{\rm Cor}_{\mathcal{H}} the function

Cor:𝒞X,S,v\displaystyle\text{\rm Cor}_{\mathcal{H}}:\mathcal{CL}^{\vee}_{X,S,v_{\infty}} ,\displaystyle\to\mathbb{C},
(x0xn)(1)\displaystyle(x_{0}\otimes\dots\otimes x_{n})(1) Cor(x0,,xn).\displaystyle\mapsto\text{\rm Cor}_{\mathcal{H}}(x_{0},\dots,x_{n}).

The dual to the Hodge correlator Cor:𝒞X,S,v𝒞\text{\rm Cor}_{\mathcal{H}}:\mathcal{CL}_{X,S,v_{\infty}}^{\vee}\to\mathcal{C}, an element of 𝒞X,S,v\mathcal{CL}_{X,S,v_{\infty}}, is called the Green operator 𝐆v\mathbf{G}_{v_{\infty}}. It can be viewed as a special derivation of grWπ1nil(XS,v)\text{\rm gr}^{W}\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty})\otimes\mathbb{C}, and defines a real mixed Hodge structure on π1nil(XS,v)\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty}). An element x𝒞X,S,vx\in\mathcal{CL}^{\vee}_{X,S,v_{\infty}} provides a framing (n)gr2nWπ1nil(XS,v)\mathbb{R}(n)\to\text{\rm gr}_{2n}^{W}\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty}), and CorHod(x)\text{\rm Cor}_{\text{\rm Hod}}(x) is the element of LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} induced by this framing.

As made precise by a main result of [G6], Cor\text{\rm Cor}_{\mathcal{H}} factors through the Hodge correlator map to LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} and the period map LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee}\to\mathbb{C}, and the resulting mixed Hodge structure on π1nil\pi_{1}^{\text{\rm nil}} coincides with the standard one.

Theorem 6 ([G6], Theorem 1.12).
  1. (a)

    Let x𝒞X,S,vx\in\mathcal{CL}^{\vee}_{X,S,v_{\infty}} be homogeneous of weight nn. Then Cor(x)=(2πi)np(CorHod(x))\text{\rm Cor}_{\mathcal{H}}(x)=(2\pi i)^{-n}p(\text{\rm Cor}_{\text{\rm Hod}}(x)), where pp is the canonical period map LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee}\to\mathbb{R}.

  2. (b)

    The mixed Hodge structure on π1nil\pi_{1}^{\text{\rm nil}} determined by the dual Hodge correlator map coincides with the standard mixed Hodge structure on π1nil\pi_{1}^{\text{\rm nil}}.

1.4.5. Second shuffle relations

We state the version of the main result for the Hodge correlators, on the level of the map CorHod\text{\rm Cor}_{\text{\rm Hod}}.

Theorem 7.
  1. (a)

    Restricted to the subspace of 𝒞X,S,v\mathcal{CL}_{X,S,v_{\infty}}^{\vee} generated by elements (x0xn)(1)(x_{0}\otimes\dots\otimes x_{n})(1) with not all xix_{i} equal, the map CorHod\text{\rm Cor}_{\text{\rm Hod}} factors through 𝒟()\mathcal{D}^{\circ}(\mathbb{C}^{*}).

  2. (b)

    Suppose that r,s>1r,s>1 and that not all ni=0n_{i}=0 or not all wi=1w_{i}=1. Then the Hodge correlators satisfy the relation:

    σΣ¯r,s(1)r+sMσCorHod(wσ1(1)|nσ1(1),,wσ1(Mσ)|nσ1(Mσ),w0|n0)\displaystyle\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{\sigma^{-1}(1)}|n_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})}|n_{\sigma^{-1}(M_{\sigma})},w_{0}|n_{0})
    CorHod(w1|n1,,wr|nr,w{r+1,,r+s,0}|n{r+1,,r+s,0})\displaystyle-\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{1}|n_{1},\dots,w_{r}|n_{r},w_{\left\{r+1,\dots,r+s,0\right\}}|n_{\left\{r+1,\dots,r+s,0\right\}})
    CorHod(wr+1|nr+1,,wr+s|nr+s,w{1,,r,0}|n{1,,r,0})\displaystyle-\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{r+1}|n_{r+1},\dots,w_{r+s}|n_{r+s},w_{\left\{1,\dots,r,0\right\}}|n_{\left\{1,\dots,r,0\right\}}) =0,\displaystyle=0,

    where

    nS=iS(ni+1)1,wS=iSwi.n_{S}=\sum_{i\in S}(n_{i}+1)-1,\quad w_{S}=\prod_{i\in S}w_{i}.
  3. (c)

    The Hodge correlators satisfy all specializations of this relation as any subset of the wiw_{i} (1in)(1\leq i\leq n) approaches 0.

While Theorem 1 was an equality between functions, Theorem 7 is a relation in the fundamental Lie coalgebra of mixed Hodge-Tate structures. Theorem 1 follows immediately from Theorem 7 by applying the period map.

1.5. Relations for motivic correlators over a number field

We now state the most general version of the result by upgrading the constructions of the previous section from mixed Hodge structures to mixed motives over a number field.

1.5.1. Motivic setup

Let FF be a number field and 𝒯F\mathcal{MTM}_{F} the category of mixed Tate motives over FF. It is generated by objects (n)=(1)n\mathbb{Q}(n)=\mathbb{Q}(1)^{\otimes n} for nn\in\mathbb{Z}, where (1)\mathbb{Q}(1) is the Tate motive, pure of weight 1-1. This induces a canonical weight filtration on objects of 𝒯F\mathcal{MTM}_{F}. There is a functor grW:𝒯F𝒫F\text{\rm gr}^{W}:\mathcal{MTM}_{F}\to\mathcal{PM}_{F}, where 𝒫F\mathcal{PM}_{F} is the category of pure motives over FF.

The fundamental (motivic Tate) Lie algebra LieMT/F\text{\rm Lie}_{\text{\rm MT}/F} is the algebra of tensor derivations of the functor grW\text{\rm gr}^{W}, a graded Lie algebra in the category 𝒫F\mathcal{PM}_{F}, and 𝒯F\mathcal{MTM}_{F} is equivalent to the category of graded LieMT/F\text{\rm Lie}_{\text{\rm MT}/F}-modules.

An embedding σ:F\sigma:F\to\mathbb{C} induces a realization functor r:𝒯FMHTr:\mathcal{MTM}_{F}\to\mathrm{MHT}_{\mathbb{R}} and a map r:LieMT/FLieHTr:\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\to\text{\rm Lie}_{\text{\rm HT}}^{\vee}.

Let X=1X=\mathbb{P}^{1}, SX(F)S\subset X(F) a finite set of punctures containing \infty, and vv_{\infty} the distinguished tangent vector at \infty. Deligne and Goncharov’s motivic fundamental group ([DG]) π1Mot(XS,v)un\pi_{1}^{\text{\rm Mot}}(X\setminus S,v_{\infty})_{\rm un} is a prounipotent group scheme in the category 𝒯F\mathcal{MTM}_{F}. The Hodge realization of its Lie algebra is π1nil(XS,v)\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty}). As it is an object in 𝒯F\mathcal{MTM}_{F}, there is an action LieMT/FDer(grWπ1Mot)\text{\rm Lie}_{\text{\rm MT}/F}\to\text{\rm Der}\left(\text{\rm gr}^{W}\pi_{1}^{\text{\rm Mot}}\right).

1.5.2. Motivic correlator coalgebra

The construction of the Hodge correlator coalgebra 𝒞X,S,v\mathcal{CL}^{\vee}_{X,S,v_{\infty}} can be upgraded to the motivic setting. The definition of the motivic correlator coalgebra mimics that of its Hodge realization:

(𝒞X,S,vMot):=T(((1)S{}))relationsH2(X),\left(\mathcal{CL}^{\text{\rm Mot}}_{X,S,v_{\infty}}\right)^{\vee}:=\frac{T\left((\mathbb{Q}(1)^{S\setminus\left\{\infty\right\}})^{\vee}\right)}{\text{relations}}\otimes H_{2}(X),

a graded Lie coalgebra in the category of pure motives over FF, where the relations imposed are the cyclic symmetry, first shuffles, and quotient by weight 0. Then 𝒞X,S,v0Mot\mathcal{CL}^{\text{\rm Mot}}_{X,S,v_{0}} is isomorphic to the algebra of special derivations of grWπ1Mot(XS,v)\text{\rm gr}^{W}\pi_{1}^{\text{\rm Mot}}(X-S,v_{\infty}), and there is a map

CorMot:(𝒞X,S,vMot)LieMT/F.\text{\rm Cor}_{\text{\rm Mot}}:\left(\mathcal{CL}^{\text{\rm Mot}}_{X,S,v_{\infty}}\right)^{\vee}\to\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}.

We will write CorMot(x0,,xn)\text{\rm Cor}_{\text{\rm Mot}}(x_{0},\dots,x_{n}) for CorMot((x0xn)(1))\text{\rm Cor}_{\text{\rm Mot}}(\left(x_{0}\otimes\dots\otimes x_{n}\right)(1)), and likewise CorMot(w0|n0,,wk|nk)\text{\rm Cor}_{\text{\rm Mot}}(w_{0}|n_{0},\dots,w_{k}|n_{k}).

Let us describe how motivic correlators are related to Hodge correlators. Fix an embeding r:Fr:F\to\mathbb{C}. The Hodge realization provides coalgebra maps LieMT/FLieHT\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\to\text{\rm Lie}_{\text{\rm HT}}^{\vee} and

r:(𝒞X,S,vMot)𝒞X,S,v,r:\left(\mathcal{CL}^{\text{\rm Mot}}_{X,S,v_{\infty}}\right)^{\vee}\otimes\mathbb{C}\to\mathcal{CL}^{\vee}_{X,S,v_{\infty}}\otimes\mathbb{C},

and thus a period map

Corr:(𝒞X,S,vMot)𝒞X,S,v.\text{\rm Cor}_{\mathcal{H}}\circ r:\left(\mathcal{CL}^{\text{\rm Mot}}_{X,S,v_{\infty}}\right)^{\vee}\otimes\mathbb{C}\to\mathcal{CL}_{X,S,v_{\infty}}^{\vee}\otimes\mathbb{C}\to\mathbb{C}.

By Theorem 6, it coincides with the composition

(𝒞X,S,vMot)LieMotLieHT.\left(\mathcal{CL}^{\text{\rm Mot}}_{X,S,v_{\infty}}\right)^{\vee}\to\text{\rm Lie}_{\text{\rm Mot}}^{\vee}\to\text{\rm Lie}_{\text{\rm HT}}^{\vee}\to\mathbb{C}.

We can summarize the objects and maps defined thus far as follows:

DerS(grWπ1Mot(XS,v))\textstyle{\text{\rm Der}^{S}(\text{\rm gr}^{W}\pi_{1}^{\text{\rm Mot}}(X\setminus S,v_{\infty}))^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(𝒞X,S,vMot)\textstyle{(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}})^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CorMot\scriptstyle{\quad\text{\rm Cor}_{\text{\rm Mot}}}r\scriptstyle{r}LieMT/F\textstyle{\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}r\scriptstyle{r}DerS(grWπ1nil(XS,v0))\textstyle{\text{\rm Der}^{S}(\text{\rm gr}^{W}\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{0}))^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(𝒞X,S,v)\textstyle{(\mathcal{CL}_{X,S,v_{\infty}}^{\vee})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CorHod\scriptstyle{\quad\text{\rm Cor}_{\text{\rm Hod}}}(2πi)wCor\scriptstyle{(2\pi i)^{w}\text{\rm Cor}_{\mathcal{H}}}LieHT\textstyle{\text{\rm Lie}_{\text{\rm HT}}^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}.\textstyle{\mathbb{R}.}

Under certain conditions, relations on motivic correlators hold can be proven by showing that they hold in the Hodge realization under any complex embedding. This is a key fact in the proof of the motivic upgrade of our relations on Hodge correlators:

Lemma 8.

Let XSX\setminus S be a rational curve over FF. Suppose x(𝒞X,S,vMot)x\in\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee} has weight >1>1, δCorMot(x)=0\delta\text{\rm Cor}_{\text{\rm Mot}}(x)=0, and Cor(r(x))=0\text{\rm Cor}_{\mathcal{H}}(r(x))=0 for every embedding r:Fr:F\to\mathbb{C}. Then CorMot(x)=0\text{\rm Cor}_{\text{\rm Mot}}(x)=0.

1.5.3. Dependence on SS

If SSS\subseteq S^{\prime}, there is an induced inclusion ι:(𝒞X,S,v0Mot)(𝒞X,S,v0Mot)\iota:(\mathcal{CL}_{X,S,v_{0}}^{\text{\rm Mot}})^{\vee}\to(\mathcal{CL}_{X,S^{\prime},v_{0}}^{\text{\rm Mot}})^{\vee}.

The following diagram commutes:

(𝒞X,S,vMot)\textstyle{(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}})^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι\scriptstyle{\iota}CorMot\scriptstyle{\text{\rm Cor}_{\text{\rm Mot}}}Corr\scriptstyle{\text{\rm Cor}_{\mathcal{H}}\circ r}(𝒞X,S,vMot)\textstyle{(\mathcal{CL}_{X,S^{\prime},v_{\infty}}^{\text{\rm Mot}})^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CorMot\scriptstyle{\text{\rm Cor}_{\text{\rm Mot}}}Corr\scriptstyle{\text{\rm Cor}_{\mathcal{H}}\circ r}LieMT/F\textstyle{\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr\scriptstyle{p\circ r}.\textstyle{\mathbb{C}.}

This allows us to write down elements of (𝒞X,S,v0Mot)(\mathcal{CL}_{X,S,v_{0}}^{\text{\rm Mot}})^{\vee} without explicitly specifying SS.

1.5.4. Second shuffle relations

We are ready to state the most general version of the main result.

Theorem 9.

Let FF be a number field.

  1. (a)

    Restricted to the subspace of (𝒞X,S,vMot)\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee} generated by elements (x0xn)(1)(x_{0}\otimes\dots\otimes x_{n})(1) with not all xix_{i} equal, the map CorMot\text{\rm Cor}_{\text{\rm Mot}} factors through 𝒟(F×)\mathcal{D}^{\circ}(F^{\times}).

  2. (b)

    Suppose that r,s>1r,s>1 and that not all ni=0n_{i}=0 or not all wi=1w_{i}=1. Then the motivic correlators satisfy the same relation as in Theorem 7, with CorHod\text{\rm Cor}_{\text{\rm Hod}}^{*} replaced by CorMot\text{\rm Cor}_{\text{\rm Mot}}^{*}.

  3. (c)

    The motivic correlators satisfy all specializations of this relation as any subset of the wiw_{i} (1in)(1\leq i\leq n) approaches 0.

2. Background: Hodge and motivic correlators

2.1. Hodge realization of motivic correlators

2.1.1. Mixed Hodge theory

We recall the relevant definitions from [D3]. A real mixed Hodge structure consists of the following data:

  1. (1)

    A real vector space VV;

  2. (2)

    An increasing weight filtration WW_{\bullet} on VV;

  3. (3)

    A decreasing Hodge filtration FF^{\bullet} on its complexification V=VV_{\mathbb{C}}=V\otimes_{\mathbb{R}}\mathbb{C}, with conjugate F¯\overline{F}^{\bullet},

such that FF^{\bullet} and F¯\overline{F}^{\bullet} induce a pure real Hodge structure of weight nn on grnWV\text{\rm gr}_{n}^{W}V_{\mathbb{C}}, i.e.,

grnWV=p+q=nF(n)pF¯(n)q,F(n)p=Fp(Wn)+(Wn1)(Wn1),F¯(n)q=.\text{\rm gr}^{W}_{n}V_{\mathbb{C}}=\bigoplus_{p+q=n}F_{(n)}^{p}\cap\overline{F}_{(n)}^{q},\quad F_{(n)}^{p}=\frac{F^{p}\cap(W_{n})_{\mathbb{C}}+(W_{n-1})_{\mathbb{C}}}{(W_{n-1})_{\mathbb{C}}},\quad\overline{F}_{(n)}^{q}=\dots.

A mixed Hodge structure is a mixed Hodge-Tate structure if Vp,q=0V_{\mathbb{C}}^{p,q}=0 for pqp\neq q. For the real mixed Hodge structures that are Tate, which are the ones we consider, the associated graded pure Hodge-Tate structures are trivial in odd weight. Therefore, we reindex the filtration by semiweight (so (1)\mathbb{R}(1) has weight 1-1, rather than 2-2).

Mixed Hodge-Tate structures are iterated extensions of the one-dimensional pure mixed Hodge-Tate structures of weight n-n, denoted (n)\mathbb{R}(n). Equivalently, in the category MH\mathrm{MH}_{\mathbb{R}} of real mixed Hodge-Tate structures, the subcategory of mixed Hodge-Tate structures MHT\mathrm{MHT}_{\mathbb{R}} is the full subcategory generated by the simple objects (n)\mathbb{R}(n).

The map grW\text{\rm gr}^{W} provides a fiber functor from mixed to pure real Hodge-Tate structures:

grW:MHTHT.\text{\rm gr}^{W}:\mathrm{MHT}_{\mathbb{R}}\to\mathrm{HT}_{\mathbb{R}}.

The Tannakian reconstruction theorem implies that there is a graded Lie algebra LieHT\text{\rm Lie}_{\text{\rm HT}} in the category HT\mathrm{HT}_{\mathbb{R}} such that MHT\mathrm{MHT}_{\mathbb{R}} is equivalent to the category of finite-dimensional graded LieHT\text{\rm Lie}_{\text{\rm HT}}-modules in HT\mathrm{HT}_{\mathbb{R}}. Specifically, LieHT=DergrW\text{\rm Lie}_{\text{\rm HT}}=\text{\rm Der}^{\otimes}\text{\rm gr}^{W}, the graded Lie algebra in HT\mathrm{HT}_{\mathbb{R}} of tensor derivations of the functor grW\text{\rm gr}^{W}. That is, every mixed Hodge-Tate structure XX determines an action

LieHTDer(grWX).\text{\rm Lie}_{\text{\rm HT}}\to\text{\rm Der}\left(\text{\rm gr}^{W}X\right).

Let LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} be the graded dual of LieHT\text{\rm Lie}_{\text{\rm HT}}.

The simple objects of the category HS\mathrm{HS}_{\mathbb{R}} are (n)\mathbb{R}(n), and LieHT\text{\rm Lie}_{\text{\rm HT}} is free on

n<0ExtMHT1((0),(n))End(n)(n).\bigoplus_{n<0}\operatorname{Ext}^{1}_{\mathrm{MHT}_{\mathbb{R}}}(\mathbb{R}(0),\mathbb{R}(n))^{\vee}\otimes_{\text{\rm End}\mathbb{R}(n)}\mathbb{R}(n).

A framing of a mixed Hodge-Tate structure VV of weight nn consists of a pair of morphisms (0)gr0WV\mathbb{R}(0)\to\text{\rm gr}_{0}^{W}V, gr2nWV(n)\text{\rm gr}_{-2n}^{W}V\to\mathbb{R}(n). The isomorphism classes of framed real mixed Hodge-Tate structures generate a Hopf algebra \mathcal{H}_{\bullet}, with the structure defined by [BGSV], which is canonically isomorphic to the dual to the universal enveloping algebra of LieHT\text{\rm Lie}_{\text{\rm HT}}. An element of LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} of weight nn is represented by a framed real mixed Hodge-Tate structure of weight nn, modulo products in \mathcal{H}, that is,

(14) LieHT/B>0>0.\text{\rm Lie}_{\text{\rm HT}/B}^{\vee}\cong\frac{\mathcal{H}}{\mathcal{H}_{>0}\cdot\mathcal{H}_{>0}}.

The Ext1((0),(n))\operatorname{Ext}^{1}(\mathbb{R}(0),\mathbb{R}(n)) are trivial for n0n\geq 0 and 1-dimensional for n<0n<0, in which case

Ext1((0),(n))=((n))/(n)=(n)i.\operatorname{Ext}^{1}(\mathbb{R}(0),\mathbb{R}(n))=(\mathbb{R}(n)\otimes\mathbb{C})/\mathbb{R}(n)=\mathbb{R}(n)\otimes_{\mathbb{R}}i\mathbb{R}.

According to [G6], a choice of generators nwn_{w} of LieHT\text{\rm Lie}_{\text{\rm HT}}\otimes\mathbb{C} satisfying nw=n¯wn_{w}=-\overline{n}_{w} amounts to a map

LieHTn<0ExtMHT1((0),(n))(n)=n<0(n)i,\text{\rm Lie}_{\text{\rm HT}}^{\vee}\to\bigoplus_{n<0}\operatorname{Ext}^{1}_{\mathrm{MHT}_{\mathbb{R}}}(\mathbb{R}(0),\mathbb{R}(n))\otimes\mathbb{R}(n)^{\vee}=\bigoplus_{n<0}\mathbb{R}(n)\otimes_{\mathbb{R}}i\mathbb{R},

and thus defines a canonical period map

p:LieHT.p:\text{\rm Lie}_{\text{\rm HT}}^{\vee}\to\mathbb{R}.

Such generators were originally defined by Deligne for the larger category of real mixed Hodge structures ([D3]). However, we use the different set of generators proposed by Goncharov ([G6]), the Green’s operators GwG_{w}. They have the property that, for Hodge structures varying over a base, the Griffiths transversality condition needed to define variations of Hodge structures is expressed by a Maurer-Cartan differential equation on the GwG_{w}, which is essential for the construction of Hodge correlators. Contrary to this, the differential equations for Deligne’s generators are difficult to write.

A variation of real mixed Hodge-Tate structures on a complex variety BB is a variation of the linear data of real mixed Hodge-Tate structure that satisfies the Griffiths transversality condition. Precisely, it is a real vector bundle with flat connection (V,)(V,\nabla) with a weight filtration WW_{\bullet} on VV and a Hodge filtration FF^{\bullet} on V𝒪BV\otimes_{\mathbb{R}}\mathcal{O}_{B} such that FF and VV induce a real mixed Hodge-Tate structure over each point of XX and 0,1FpFp1ΩB1\nabla^{0,1}F^{p}\subseteq F^{p-1}\otimes\Omega_{B}^{1}.

A consequence of the transversality condition is that for n>1n>1, Ext1((0),(n))\operatorname{Ext}^{1}(\mathbb{R}(0),\mathbb{R}(n)) is rigid in the category of variations of mixed Hodge-Tate structures over BB: if the coproduct of a variation of Hodge-Tate structures of weight w>1w>1 is 0, then the variation is isomorphic to a constant one.

2.1.2. Pronilpotent fundamental group

Let X=1()X=\mathbb{P}^{1}(\mathbb{C}), SXS\subset X a finite set of punctures containing \infty, and v=1z2ddzv_{\infty}=\frac{-1}{z^{2}}\frac{d}{dz} a distringuished tangent vector at \infty. Let π1=π1(XS,)\pi_{1}=\pi_{1}(X\setminus S,\infty) be the classical fundamental group. The group algebra A=[π1]A=\mathbb{Q}[\pi_{1}] is a free group generated by loops around the points of S{}S\setminus\left\{\infty\right\}. Let =ker(A)\mathcal{I}=\ker(A\to\mathbb{Q}) be the augmentation ideal. Then form a Hopf algebra

Anil(XS,v):=lim(A/n+1A/nA),A^{\text{\rm nil}}(X\setminus S,v_{\infty}):=\lim_{\leftarrow}\left(\dots\to A/\mathcal{I}^{n+1}\to A/\mathcal{I}^{n}\to\dots\to A\right),

with coproduct defined by gggg\to g\otimes g for gπ1g\in\pi_{1}. The subset of primitive elements is denoted π1nil(XS,v)\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty}). It is actually a pronilpotent Lie algebra, the Mal’cev completion of π1\pi_{1}.

There is a canonical weight filtration on H1(XS,)H_{1}(X\setminus S,\mathbb{Q}), where the loops around punctures lie in weight 1-1. This induces a weight filtration WW on AnilA^{\text{\rm nil}}, and we have

grWAnil(XS,v)=T(grWH1(XS,)).\text{\rm gr}^{W}A^{\text{\rm nil}}(X\setminus S,v_{\infty})=T(\text{\rm gr}^{W}H_{1}(X\setminus S,\mathbb{Q})).

Furthermore, let LX,S,vL_{X,S,v_{\infty}} be the free Lie algebra generated by [S{}]\mathbb{C}\left[S\setminus\left\{\infty\right\}\right]. Then there is a canonical isomorphism

LX,S,vgrWπ1nil(XS,v).L_{X,S,v_{\infty}}\cong\text{\rm gr}^{W}\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty})\otimes\mathbb{C}.

There is a real mixed Hodge-Tate structure on π1nil(XS,v)\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty})\otimes\mathbb{R}, which depends on the choice of the tangent vector vv_{\infty}, and thus an action LieHTDer(grWπ1nil(XS,v))\text{\rm Lie}_{\text{\rm HT}}\to\text{\rm Der}\left(\text{\rm gr}^{W}\pi_{1}^{\text{\rm nil}}(X\setminus S,v_{\infty})\right).

2.1.3. Correlators in families

The construction of the Hodge correlator coalgebra (§1.4.3) can be performed over a base. Let XBX\to B be a smooth family of genus 0 curves. Generalizing from the case of BB a point, one simply replaces the punctures SS by nonintersecting sections s:BXs:B\to X and the tangential base point by a nonvanishing section v:BTX/B1v_{\infty}:B\to T^{1}_{X/B} factoring through a distinguished section s:BXs_{\infty}:B\to X. This construction yields a family of coalgebras

(15) (𝒞Xt,{(si)t},(v)t)tB.\left(\mathcal{CL}^{\vee}_{X_{t},\left\{(s_{i})_{t}\right\},(v_{\infty})_{t}}\right)_{t\in B}.

We will denote this coalgebra by 𝒞X/B,S,v\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}} when the objects X,S,vX,S,v_{\infty} vary over BB.

The Green’s function (2πi)1log|xy|(2\pi i)^{-1}\log\left|x-y\right|, used in the definition of the Hodge correlator, becomes a distribution on X×BXX\times_{B}X with logarithmic singularities along the relative divisors x=sx=s_{\infty}, y=sy=s_{\infty}, and x=yx=y. As we explain below, the higher-weight correlators also determine smooth variations over the base. In particular, the period map Cor:𝒞X,S,vCor_{\mathcal{H}}:\mathcal{CL}^{\vee}_{X,S,v_{\infty}}\to\mathbb{C} is upgraded to a map

Cor:𝒞X/B,S,v𝒜B0,\text{\rm Cor}_{\mathcal{H}}:\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}}\to\mathcal{A}^{0}_{B},

and the map CorHod\text{\rm Cor}_{\text{\rm Hod}} to a map

CorHod:𝒞X/B,S,vLieHT/B\text{\rm Cor}_{\text{\rm Hod}}:\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}}\to\text{\rm Lie}_{\text{\rm HT}/B}^{\vee}

to the fundamental Lie coalgebra of the category of variations of real mixed Hodge-Tate structures.

The case of specialization at intersecting sections, as well as degeneration to nodal curves, is related to the behavior of the Hodge structure on π1nil\pi_{1}^{\text{\rm nil}} at the boundary of the moduli space of Riemann surfaces with nn punctures. We will examine this question in §4.

As X,S,v0X,S,v_{0} vary over the moduli space 0,n\mathcal{M}_{0,n}^{\prime} of Riemann surfaces of genus 0 with nn distinct marked points and a tangential base point v0v_{0}, we get a family 𝐕\mathbf{V} of framed \mathbb{R}-mixed Hodge structures on π1nil(XS,s0)\pi_{1}^{\text{\rm nil}}(X\setminus S,s_{0}). Theorem 6 is generalized to the following.

Theorem 10 ([G6], Theorem 1.12).
  1. (a)

    There is a flat connection on 𝐕\mathbf{V} making it a variation of mixed Hodge structures over 0,n\mathcal{M}_{0,n}^{\prime}.

  2. (b)

    This variation coincides with the standard variation of mixed Hodge structures on π1nil\pi_{1}^{\text{\rm nil}}.

A consequence of Theorem 10 is that the coalgebra structure on 𝒞X,S,s0\mathcal{CL}_{X,S,s_{0}}^{\vee} should translate into differential equations on the periods over 0,n\mathcal{M}_{0,n}^{\prime}. We now describe these equations.

Extend the period map Cor\text{\rm Cor}_{\mathcal{H}} to a map

Cor:2𝒞X/B,S,v\displaystyle\text{\rm Cor}_{\mathcal{H}}:\wedge^{2}\mathcal{CL}_{X/B,S,v_{\infty}} 𝒜B1,\displaystyle\to\mathcal{A}^{1}_{B},
C1C2\displaystyle C_{1}\wedge C_{2} 2w212(w1)Cor(C2)dBCor(C1)\displaystyle\mapsto\frac{2w_{2}-1}{2(w-1)}\text{\rm Cor}_{\mathcal{H}}(C_{2})\,d_{B}^{\mathbb{C}}\text{\rm Cor}_{\mathcal{H}}(C_{1})
2w112(w1)Cor(C1)dBCor(C2),\displaystyle\quad-\frac{2w_{1}-1}{2(w-1)}\text{\rm Cor}_{\mathcal{H}}(C_{1})\,d_{B}^{\mathbb{C}}\text{\rm Cor}_{\mathcal{H}}(C_{2}),

where wi=wtCiw_{i}=\operatorname{wt}C_{i} and w=w1+w2w=w_{1}+w_{2}. Then we have a diagram that commutes in weight >1>1:

(16) 𝒞X/B,S,v\textstyle{\mathcal{CL}_{X/B,S,v_{\infty}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta}Cor\scriptstyle{\text{\rm Cor}_{\mathcal{H}}}B2𝒞X/B,S,v\textstyle{\bigwedge_{B}^{2}\mathcal{CL}_{X/B,S,v_{\infty}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Cor\scriptstyle{\text{\rm Cor}_{\mathcal{H}}}𝒜B0\textstyle{\mathcal{A}^{0}_{B}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dB\scriptstyle{d_{B}}𝒜B1.\textstyle{\mathcal{A}^{1}_{B}.}

For the simplest example, consider the Hodge correlator Cor(1,0,z)\text{\rm Cor}_{\mathcal{H}}(1,0,z) as zz varies over 1{0,1,}\mathbb{P}^{1}\setminus\left\{0,1,\infty\right\}. Noting that Cor(1,0)=0\text{\rm Cor}_{\mathcal{H}}(1,0)=0, we have

dCor(1,0,z)\displaystyle d\text{\rm Cor}_{\mathcal{H}}(1,0,z) =Cor(C(1,z)C(0,z))\displaystyle=\text{\rm Cor}_{\mathcal{H}}\left(C(1,z)\wedge C(0,z)\right)
=(2πi)2(log|z|dlog|z1|log|z1|dlog|z|)\displaystyle=(2\pi i)^{-2}\left(\log\left|z\right|\,d^{\mathbb{C}}\log\left|z-1\right|-\log\left|z-1\right|\,d^{\mathbb{C}}\log\left|z\right|\right) =12(2πi)2d2(z),\displaystyle=-\frac{1}{2}(2\pi i)^{-2}d\mathcal{L}_{2}(z),

and indeed, by (4), Cor(1,0,z)=12(2πi)22(z)\text{\rm Cor}_{\mathcal{H}}(1,0,z)=-\frac{1}{2}(2\pi i)^{-2}\mathcal{L}_{2}(z).

We emphasize that the sections have so far required to be nonintersecting. In §4 we will prove a specialization theorem, which allows to pass to the boundary of 0,n\mathcal{M}_{0,n}^{\prime}. It will imply the statement about periods:

Theorem 11.

The Hodge correlators Cor(z0,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}) are continuous on n+1{z0==zn}\mathbb{C}^{n+1}\setminus\left\{z_{0}=\dots=z_{n}\right\}.

2.1.4. Distribution relations

The formula expressing how the Hodge correlators transform under endomorphisms of XX appears in [G6], Lemma 12.3. We translate this result to our setting, showing that it gives a relation of the form (11).

Consider the map [l]:11[l]:\mathbb{P}^{1}\to\mathbb{P}^{1}, zzlz\mapsto z^{l} (l>0l\in\mathbb{Z}_{>0}). Let S=[l]1(S)S^{\prime}=[l]^{-1}(S). Then there is an induced map

[l]:𝒞X,S,v\displaystyle[l]^{*}:\mathcal{CL}_{X,S,v_{\infty}} 𝒞X,S,v,\displaystyle\to\mathcal{CL}_{X,S^{\prime},v_{\infty}},
(z0zn)(1)\displaystyle(z_{0}\otimes\dots\otimes z_{n})(1) 1l(z0zn)(1),\displaystyle\mapsto\frac{1}{l}(z_{0}^{\prime}\otimes\dots\otimes z_{n}^{\prime})(1),

where

zi={yil=zi(yi)zi0l(0)zi=0.z_{i}^{\prime}=\begin{cases}\sum_{y_{i}^{l}=z_{i}}(y_{i})&z_{i}\neq 0\\ l\cdot(0)&z_{i}=0\end{cases}.

That is, each point is pulled back to the sum of its preimages, counted with multiplicity. The factor 1l\frac{1}{l} comes from the degree of the induced map on H2(X)H_{2}(X).

Then the diagram commutes:

𝒞X,S,v\textstyle{\mathcal{CL}_{X,S,v_{\infty}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[l]\scriptstyle{[l]^{*}}CorHod\scriptstyle{\text{\rm Cor}_{\text{\rm Hod}}}𝒞X,S,v\textstyle{\mathcal{CL}_{X,S^{\prime},v_{\infty}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CorHod\scriptstyle{\text{\rm Cor}_{\text{\rm Hod}}}LieHT.\textstyle{\text{\rm Lie}_{\text{\rm HT}}^{\vee}.}

For example, in weight 1, we have

CorHod(x,y)=12(CorHod(x,y)+CorHod(x,y)+CorHod(x,y)+CorHod(x,y)),\text{\rm Cor}_{\text{\rm Hod}}(x,y)=\frac{1}{2}\left(\text{\rm Cor}_{\text{\rm Hod}}(\sqrt{x},\sqrt{y})+\text{\rm Cor}_{\text{\rm Hod}}(\sqrt{x},-\sqrt{y})+\text{\rm Cor}_{\text{\rm Hod}}(-\sqrt{x},\sqrt{y})+\text{\rm Cor}_{\text{\rm Hod}}(-\sqrt{x},-\sqrt{y})\right),

where a branch of the square root has been chosen. On the level of periods, this becomes the equality

log|xy|=12(log|xy|+log|x+y|+log|xy|+log|x+y|).\log\left|x-y\right|=\frac{1}{2}\left(\log\left|\sqrt{x}-\sqrt{y}\right|+\log\left|\sqrt{x}+\sqrt{y}\right|+\log\left|-\sqrt{x}-\sqrt{y}\right|+\log\left|-\sqrt{x}+\sqrt{y}\right|\right).

2.2. Motivic correlators over a number field

2.2.1. Mixed motives

Let FF be a number field. There is a semisimple abelian category 𝒫F\mathcal{PM}_{F} of Grothendieck pure motives over FF and a functor H:𝐒𝐦𝐏𝐫𝐨𝐣F𝒫FH:\mathbf{SmProj}_{F}\to\mathcal{PM}_{F} assigning to every smooth projective variety over FF the sum of its motivic cohomology objects:

H(X)=i=02dim(X)Hi(X).H(X)=\bigoplus_{i=0}^{2\dim(X)}H^{i}(X).

Every Weil cohomology theory 𝐒𝐦𝐏𝐫𝐨𝐣F𝐕𝐞𝐜𝐭\mathbf{SmProj}_{F}\to\mathbf{Vect} factors through HH and a realization functor 𝒫F𝑟𝐕𝐞𝐜𝐭\mathcal{PM}_{F}\xrightarrow{r}\mathbf{Vect}:

rBettiH(X)\displaystyle r_{\text{\rm Betti}}H(X) =i=02dim(X)HBettii(X,)\displaystyle=\bigoplus_{i=0}^{2\dim(X)}H^{i}_{\text{\rm Betti}}(X_{\mathbb{C}},\mathbb{Z})\otimes\mathbb{Q} (Betti),\displaystyle\text{(Betti)},
rHodH(X)\displaystyle r_{\text{\rm Hod}}H(X) =i=02dim(X)p+q=iHHodp,q(X,)\displaystyle=\bigoplus_{i=0}^{2\dim(X)}\bigoplus_{p+q=i}H^{p,q}_{\text{\rm Hod}}(X_{\mathbb{C}},\mathbb{R}) (real de Rham (Hodge)),\displaystyle\text{(real de Rham (Hodge))},
rH(X)\displaystyle r_{\ell}H(X) =i=02dim(X)Héti(XF¯,)\displaystyle=\bigoplus_{i=0}^{2\dim(X)}H^{i}_{\text{\rm\'{e}t}}(X_{\overline{F}},\mathbb{Z}_{\ell})\otimes\mathbb{Q}_{\ell} (-adic étale).\displaystyle\text{($\ell$-adic \'{e}tale)}.

This category is graded by the weight, where the weight of Hi(X)H^{i}(X) is ii. There is an invertible Tate object (1)\mathbb{Q}(1) of weight 2-2; we write M(n)M(n) for the Tate twist M(1)nM\otimes\mathbb{Q}(1)^{\otimes n}. The various realization functors respect the weight. For example, for XX a variety over FF and a fixed embedding FF\to\mathbb{C}, the rHodHi(X)r_{\text{\rm Hod}}H^{i}(X) carries a pure Hodge structure of weight ii. For XX with good reduction modulo pp, the Frobenius automorphism acts on rHi(X)r_{\ell}H^{i}(X) with eigenvalues of norm pi/2p^{i/2}.

There is a conjectural category of mixed motives F\mathcal{MM}_{F} that should extend this construction to arbitrary varieties over FF. The desired properties of F\mathcal{MM}_{F} were conjectured by Beilinson [B2], see also Deligne [D2]. It is expected to be an abelian tensor category, in which every object has a canonical weight filtration WW_{\bullet}. There should be a fiber functor grW:F𝒫F\text{\rm gr}^{W}:\mathcal{MM}_{F}\to\mathcal{PM}_{F} such that griWX\text{\rm gr}^{W}_{i}X is pure of weight ii.

The Hodge realization of a mixed motive should be a mixed Hodge structure. Deligne [D1] showed that for any complex variety XX, there is a mixed Hodge structure on HHodi(X,)\bigoplus H^{i}_{\text{\rm Hod}}(X,\mathbb{R}). In this way, grW\text{\rm gr}^{W} is a motivic lift of the associated graded functor from mixed to pure real Hodge structures: grW:MHHS\text{\rm gr}^{W}:\mathrm{MH}_{\mathbb{R}}\to\mathrm{HS}_{\mathbb{R}}.

The full tensor subcategory of F\mathcal{MM}_{F} generated by (1)\mathbb{Q}(1) is the category of mixed Tate motives 𝒯F\mathcal{MTM}_{F}. Such a category with desirable properties has been constructed by [DG]. If XX is a rational curve, then H(X)H(X) is a mixed Tate motive. The simple objects of 𝒯F\mathcal{MTM}_{F} are (n)=(1)n\mathbb{Q}(n)=\mathbb{Q}(1)^{\otimes n}, nn\in\mathbb{Z}, and every object of 𝒯F\mathcal{MTM}_{F} is an iterated extension of these objects. They satisfy

Hom((m),(n))\displaystyle\operatorname{Hom}(\mathbb{Q}(m),\mathbb{Q}(n)) =0,m<n;\displaystyle=0,\quad m<n;
Ext1((0),(n))\displaystyle\operatorname{Ext}^{1}(\mathbb{Q}(0),\mathbb{Q}(n)) ={0n0K2n1(F)n>0,\displaystyle=\begin{cases}0&n\leq 0\\ K_{2n-1}(F)\otimes\mathbb{Q}&n>0\end{cases},
Exti((0),(n))\displaystyle\operatorname{Ext}^{i}(\mathbb{Q}(0),\mathbb{Q}(n)) =0,i>1.\displaystyle=0,\quad i>1.

The real Hodge realizations of mixed Tate motives are mixed Hodge-Tate structures. The images of the (n)\mathbb{Q}(n), the real mixed Hodge-Tate structures (n)\mathbb{R}(n) generate the subcategory MHT\mathrm{MHT}_{\mathbb{R}} in MH\mathrm{MH}_{\mathbb{R}}.

We will consider only the mixed Tate motives. As in the Hodge realization, the associated graded objects of the weight filtration are trivial in odd weight, so we reindex the filtration by semiweight (so (1)\mathbb{Q}(1) has weight 1-1, rather than 2-2).

2.2.2. Fundamental Lie algebra and period map

Assume the mixed motivic formalism above. The Tannakian reconstruction theorem implies that there would be a negatively graded Lie algebra LieMT/F\text{\rm Lie}_{{\text{\rm MT}/F}} in the category 𝒫F\mathcal{PM}_{F}, the fundamental (motivic Tate) Lie algebra, such that 𝒯F\mathcal{MTM}_{F} is canonically equivalent to the category of finite-dimensional graded LieMT/F\text{\rm Lie}_{\text{\rm MT}/F}-modules in 𝒫F\mathcal{PM}_{F}. That is, for any X𝒯FX\in\mathcal{MTM}_{F}, there is an action by derivations LieMT/FDer(grWX)\text{\rm Lie}_{\text{\rm MT}/F}\to\text{\rm Der}(\text{\rm gr}^{W}X). We prefer to study its graded dual LieMT/F\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}.

This Lie coalgebra breaks into isotypical components over the isomorphism classes of simple Tate objects of 𝒫F\mathcal{PM}_{F}:

LieMT/F=[M]𝒫F(LieMT/F)MEnd(M)M.\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}=\bigoplus_{[M]\in\mathcal{PM}_{F}}\left(\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\right)_{M}\boxtimes_{\text{\rm End}(M)}M^{*}.

As a consequence, the cohomology of LieMT/F\text{\rm Lie}_{\text{\rm MT}/F}^{\vee} can be expressed as Ext-groups in the category of mixed motives:

Hi(LieMT/F𝛿2LieMT/F𝛿)=[M]ExtMT/Fi((0),M)End(M)M.H^{i}\left(\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\xrightarrow{\delta}\wedge^{2}\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\xrightarrow{\delta}\dots\right)=\bigoplus_{[M]}\operatorname{Ext}^{i}_{{\text{\rm MT}/F}}(\mathbb{Q}(0),M)\boxtimes_{\text{\rm End}(M)}M^{*}.

For FF a number field, the Exti\operatorname{Ext}^{i} in 𝒯F\mathcal{MTM}_{F} are trivial for i>1i>1; equivalently, LieMot\text{\rm Lie}_{\text{\rm Mot}}^{\vee} is free on the generators Ext𝒯F1((0),M)\operatorname{Ext}^{1}_{\mathcal{MTM}_{F}}(\mathbb{Q}(0),M).

Fix an embedding r:Fr:F\to\mathbb{C}. The Hodge realization functor induces a Lie coalgebra morphism rHod:LieMT/FLieHTr_{\text{\rm Hod}}:\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\to\text{\rm Lie}_{\text{\rm HT}}^{\vee}. This means that there is a period map prHod:LieMT/Fp\circ r_{\text{\rm Hod}}:\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\to\mathbb{R}.

For every integer n>0n>0, there is the Beilinson regulator map

reg:Ext𝒯F1((0),(n))F/σExtMHT1((0),(n)),\text{\rm reg}:\operatorname{Ext}^{1}_{\mathcal{MTM}_{F}}(\mathbb{Q}(0),\mathbb{Q}(n))\to\bigoplus_{F\to\mathbb{C}/\sigma}\operatorname{Ext}^{1}_{\mathrm{MHT}_{\mathbb{R}}}(\mathbb{R}(0),\mathbb{R}(n)),

where σ\sigma is complex conjugation. By Beilinson’s theorem ([B1]) it coincides for n>1n>1 with the Borel regulator on K2n1(F)K_{2n-1}(F), i.e., the diagram commutes:

Ext𝒯F1((0),(n))regF/σExtMHT1((0),(n))K2n1(F)regdn(F),\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 38.72072pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-38.72072pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Ext}^{1}_{\mathcal{MTM}_{F}}(\mathbb{Q}(0),\mathbb{Q}(n))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.01678pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\text{\rm reg}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.72072pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.28554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 62.72072pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bigoplus_{F\to\mathbb{C}/\sigma}\operatorname{Ext}^{1}_{\mathrm{MHT}_{\mathbb{R}}}(\mathbb{R}(0),\mathbb{R}(n))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 113.38637pt\raise-29.85222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-29.70566pt\raise-41.78554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{2n-1}(F)\otimes\mathbb{Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.01678pt\raise-36.59804pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\text{\rm reg}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 99.92085pt\raise-41.78554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 99.92085pt\raise-41.78554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{R}^{d_{n}(F)}}$}}}}}}}\ignorespaces}}}}\ignorespaces,
dn(F)={r1(F)+r2(F)n odd,r2(F)n even.d_{n}(F)=\begin{cases}r_{1}(F)+r_{2}(F)&\text{$n$ odd},\\ r_{2}(F)&\text{$n$ even}\end{cases}.

Borel’s theorem states that this regulator map – the second row in the diagram – is injective [B4]. So there is an injective map on the first cohomology of the fundamental Lie coalgebras

ker(LieMT/F𝛿2LieMT/F)F/σker(LieHT𝛿2LieHT).\ker(\text{\rm Lie}_{\text{\rm MT}/F}^{\vee}\xrightarrow{\delta}\wedge^{2}\text{\rm Lie}_{\text{\rm MT}/F}^{\vee})\to\bigoplus_{F\to\mathbb{C}/\sigma}\ker(\text{\rm Lie}_{\text{\rm HT}}^{\vee}\xrightarrow{\delta}\wedge^{2}\text{\rm Lie}_{\text{\rm HT}}^{\vee}).

In particular, we get the following basic theorem, which plays a crucial role in this paper:

Theorem 12.

If xLieMT/Fx\in\text{\rm Lie}_{\text{\rm MT}/F}^{\vee} is of weight at least 2 with δ(x)=0\delta(x)=0 and p(rHod(x))=0p(r_{\text{\rm Hod}}(x))=0 for every embedding r:Fr:F\to\mathbb{C}, then x=0x=0.

Specifically, we obtain Lemma 8:

Lemma.

Let XSX\setminus S be a rational curve over FF. Suppose x(𝒞X,S,vMot)x\in\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee} has weight >1>1, δCorMot(x)=0\delta\text{\rm Cor}_{\text{\rm Mot}}(x)=0, and Cor(r(x))=0\text{\rm Cor}_{\mathcal{H}}(r(x))=0 for every embedding r:Fr:F\to\mathbb{C}. Then CorMot(x)=0\text{\rm Cor}_{\text{\rm Mot}}(x)=0.

Proof.

CorMot(x)\text{\rm Cor}_{\text{\rm Mot}}(x) is an element of LieMT/F\text{\rm Lie}_{\text{\rm MT}/F}^{\vee} with coproduct 0. The canonical period of its Hodge realization in LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} coincides with the correlator period Cor(r(x))=0\text{\rm Cor}_{\mathcal{H}}(r(x))=0. By Theorem 12, it is 0. ∎

This does not hold in weight 1. For example, choose zz to be an element of FF that is not a root of unity, but has norm 1 under every complex embedding (e.g., F=(i)F=\mathbb{Q}(i) and z=15(3+4i)z=\frac{1}{5}\left(3+4i\right)). Then ((0)(z))(1)((0)\otimes(z))(1) has coproduct 0 and period log|σ(z)|=0\log\left|\sigma(z)\right|=0 under both of the embeddings (i)𝜎\mathbb{Q}(i)\xrightarrow{\sigma}\mathbb{C}. However, the object CorMot(0,z)\text{\rm Cor}_{\text{\rm Mot}}(0,z) is not 0 as an element of Ext𝒯/F1((0),(1))F×\operatorname{Ext}^{1}_{\mathcal{MTM}/F}(\mathbb{Q}(0),\mathbb{Q}(1))\cong F^{\times}\otimes\mathbb{Q}.

2.2.3. Distribution relations

Suppose xiFx_{i}\in F are such that xlxix^{l}-x_{i} splits in FF for all ii. Then the distribution relations from §2.1.4 hold:

CorMot(x0,,xn)=1lyil=xiCorMot(y0,,yn),\text{\rm Cor}_{\text{\rm Mot}}(x_{0},\dots,x_{n})=\frac{1}{l}\sum_{y_{i}^{l}=x_{i}}\text{\rm Cor}_{\text{\rm Mot}}(y_{0},\dots,y_{n}),

where yi=0y_{i}=0 is taken with multiplicity ll if xi=0x_{i}=0.

3. Construction of the quasidihedral Lie coalgebra

3.1. Definitions

For an abelian group GG, we defined the Lie coalgebra 𝒟~(G)\widetilde{\mathcal{D}}(G) as the quotient of the tensor algebra of [G{0}]\mathbb{Q}[G\cup\left\{0\right\}] by cyclic symmetry, first shuffle, distribution, and scaling relations.

Recall Theorem 5:

Theorem.

The second shuffles form a coideal in 𝒟~(G)\widetilde{\mathcal{D}}(G). The coproduct on 𝒟~(G)\widetilde{\mathcal{D}}(G) descends to a well-defined coproduct on 𝒟(G)\mathcal{D}(G).

The proof of this theorem is the goal of this section.

The extra term in the scaling relation in weight 1, and the presence of terms of lower depth in the coproduct formula (10), makes the proof more difficult than that in [G3]’s construction of the dihedral Lie coalgebra. We find Theorem 5 to be a small combinatorial miracle. Unfortunately, we do not know a simpler proof.

3.1.1. Generating functions

The second shuffle relations can be expressed in a compact form in terms of generating functions. This simplifies their proof.

We package the elements of 𝒟~(G)\widetilde{\mathcal{D}}(G) into a generating function as follows:

(17) 𝚲(w0,,wk|t0,,tk):=ni0C(w0|n0,,wk|nk)i=0ktini,\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;t_{0},\dots,t_{k}\big{)}:=\sum_{n_{i}\geq 0}C^{*}(w_{0}|n_{0},\dots,w_{k}|n_{k})\prod_{i=0}^{k}t_{i}^{n_{i}},

where i=0kwi=1\prod_{i=0}^{k}w_{i}=1 and the tit_{i} are formal variables.

[Uncaptioned image]

We allow multisets of variables to appear in place of the tit_{i}: if Si={ti,1,,ti,di}S_{i}=\left\{t_{i,1},\dots,t_{i,d_{i}}\right\}, then

𝚲(w0,,wk|S1,,Sk)\displaystyle\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;S_{1},\dots,S_{k}\big{)} =ni0ni,j0j=1dini,j=nidi+1C(w0|n0,,wk|nk)i=0kj=1diti,jni,j\displaystyle=\sum_{n_{i}\geq 0}\sum_{\begin{subarray}{c}n_{i,j}\geq 0\\ \sum_{j=1}^{d_{i}}n_{i,j}=n_{i}-d_{i}+1\end{subarray}}C^{*}(w_{0}|n_{0},\dots,w_{k}|n_{k})\prod_{i=0}^{k}\prod_{j=1}^{d_{i}}t_{i,j}^{n_{i,j}}
(18) =ni,j0C(x0|N0,,xk|Nk)i=0kj=1diti,jni,j,\displaystyle=\sum_{n_{i,j}\geq 0}C^{*}(x_{0}|N_{0},\dots,x_{k}|N_{k})\prod_{i=0}^{k}\prod_{j=1}^{d_{i}}t_{i,j}^{n_{i,j}},

where in the last expression Ni=ni,1+1+ni,2+1++1+ni,djN_{i}=n_{i,1}+1+n_{i,2}+1+\dots+1+n_{i,d_{j}}. The corresponding operation on the correlator coefficients is combining adjacent segments of 0s, with additional 0s being inserted between them, such as

(ni,1 0s indexed by ti,1)(ni,2 0s indexed by ti,2)(ni,1+1+ni,2 0s indexed by {ti,1,ti,2}).\begin{subarray}{c}\displaystyle(\text{$n_{i,1}$ 0s indexed by $t_{i,1}$})\\ \displaystyle(\text{$n_{i,2}$ 0s indexed by $t_{i,2}$})\end{subarray}\to(\text{$n_{i,1}+1+n_{i,2}$ 0s indexed by $\left\{t_{i,1},t_{i,2}\right\}$}).
[Uncaptioned image]

There is a useful identity

Lemma 13.
𝚲(,w,|,{t}T,)\displaystyle\mathbf{\Lambda}^{*}\big{(}\dots,w,\dots\;|\;\dots,\left\{t\right\}\sqcup T,\dots\big{)} 𝚲(,w,|,{u}T,)\displaystyle-\mathbf{\Lambda}^{*}\big{(}\dots,w,\dots\;|\;\dots,\left\{u\right\}\sqcup T,\dots\big{)}
(19) =(tu)𝚲(,w,|,{t,u}T,).\displaystyle=(t-u)\mathbf{\Lambda}^{*}\big{(}\dots,w,\dots\;|\;\dots,\left\{t,u\right\}\sqcup T,\dots\big{)}.
Proof.

Clear by comparing the coefficients of trust^{r}u^{s}.

Theorem 5 can then be expressed in terms of the generating functions:

Theorem.

The subspace of 𝒟~(G)[[t1,,tk]]\widetilde{\mathcal{D}}(G)\left[\left[\,t_{1},\dots,t_{k}\,\right]\right] generated by elements of the form

σΣ¯r,s(1)r+sMσ𝚲(wσ1(1),,wσ1(Mσ),w0|Sσ1(1),,Sσ1(Mσ),S0)\displaystyle\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}\mathbf{\Lambda}^{*}\big{(}w_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})},w_{0}\;|\;S_{\sigma^{-1}(1)},\dots,S_{\sigma^{-1}(M_{\sigma})},S_{0}\big{)}
𝚲(w1,,wr,w{r+1,,r+s,0}|S1,,Sr,S{r+1,,r+s,0})\displaystyle-\mathbf{\Lambda}^{*}\big{(}w_{1},\dots,w_{r},w_{\left\{r+1,\dots,r+s,0\right\}}\;|\;S_{1},\dots,S_{r},S_{\left\{r+1,\dots,r+s,0\right\}}\big{)}
𝚲(wr+1,,wr+s,w{1,,r,0}|Sr+1,,Sr+s,S{1,,r,0})\displaystyle-\mathbf{\Lambda}^{*}\big{(}w_{r+1},\dots,w_{r+s},w_{\left\{1,\dots,r,0\right\}}\;|\;S_{r+1},\dots,S_{r+s},S_{\left\{1,\dots,r,0\right\}}\big{)} =0,\displaystyle=0,

where

SI=iISi,wI=iIwiS_{I}=\bigsqcup_{i\in I}S_{i},\quad w_{I}=\prod_{i\in I}w_{i}

forms a coideal.

3.1.2. Coproduct

Let us write down the formula defining the coproduct (10) in terms of the elements CC^{*}.

Lemma 14.

Let C=C(w0|n0,,wk|nk)C=C^{*}(w_{0}|n_{0},\dots,w_{k}|n_{k}) and suppose wt(C)>2\text{\rm wt}(C)>2. Then

δC=\displaystyle\delta C= cyc(i=0kni+ni′′=niC(wiwk|ni,w0|n0,,wi1|ni1)\displaystyle\sum_{\rm cyc}\bigg{(}\sum_{i=0}^{k}\sum_{n_{i}^{\prime}+n_{i}^{\prime\prime}=n_{i}}C^{*}(\underbracket{w_{i}\dots w_{k}}|n_{i}^{\prime},w_{0}|n_{0},\dots,w_{i-1}|n_{i-1})\wedge
(20) C(wi+1|ni+1,,wk|nk,w0w1wi|ni′′))\displaystyle\hskip 75.16031pt\wedge C^{*}(w_{i+1}|n_{i+1},\dots,w_{k}|n_{k},\underbracket{w_{0}w_{1}\dots w_{i}}|n_{i}^{\prime\prime})\bigg{)}
+\displaystyle+ cyc(i=1kni+ni′′=nin0+n0′′=n0+1C(w1|n1,,wi1|ni1,wiwkw0|ni+n0′′)\displaystyle\sum_{\rm cyc}\bigg{(}\sum_{i=1}^{k}\sum_{\begin{subarray}{c}n_{i}^{\prime}+n_{i}^{\prime\prime}=n_{i}\\ n_{0}^{\prime}+n_{0}^{\prime\prime}=n_{0}+1\end{subarray}}C^{*}(w_{1}|n_{1},\dots,w_{i-1}|n_{i-1},\underbracket{w_{i}\dots w_{k}w_{0}}|n_{i}^{\prime}+n_{0}^{\prime\prime})\wedge
(21) C(w0wi|n0+ni′′,wi+1|ni+1,,wk|nk))\displaystyle\hskip 86.00146pt\wedge C^{*}(\underbracket{w_{0}\dots w_{i}}|n_{0}^{\prime}+n_{i}^{\prime\prime},w_{i+1}|n_{i+1},\dots,w_{k}|n_{k})\bigg{)}
(22) +\displaystyle+ i=0kLiC(0,wi),\displaystyle\sum_{i=0}^{k}L_{i}\wedge C(0,w_{i}),

where

(23) Li={C(w0|n0,,wi|ni1,,wk|nk),ni>0,C(w0|n0,,wi1wi|ni1,wi+1|ni+1,,wk|nk)+C(w0|n0,,wi1|ni1,wiwi+1|ni+1,,wk|nk),ni=0,L_{i}=\begin{cases}C^{*}(w_{0}|n_{0},\dots,w_{i}|n_{i}-1,\dots,w_{k}|n_{k}),&n_{i}>0,\\ \begin{subarray}{c}\displaystyle\quad C^{*}(w_{0}|n_{0},\dots,\underbracket{w_{i-1}w_{i}}|n_{i-1},w_{i+1}|n_{i+1},\dots,w_{k}|n_{k})\\ \displaystyle+C^{*}(w_{0}|n_{0},\dots,w_{i-1}|n_{i-1},\underbracket{w_{i}w_{i+1}}|n_{i+1},\dots,w_{k}|n_{k})\end{subarray},&n_{i}=0\end{cases},

and the sums are taken over cyclic permutations of the indices 0,,k0,\dots,k.

If wt(C)=2\text{\rm wt}(C)=2, this formula holds modulo terms of the form C(0,a)C(0,b)C(0,a)\wedge C(0,b).

Proof.

Classify the terms CC′′C^{\prime}\wedge C^{\prime\prime} of δC\delta C by the common point of the two resulting parts CC^{\prime} and C′′C^{\prime\prime}. Let xi=w1wix_{i}=w_{1}\dots w_{i} be the point counterclockwise from the segment wiw_{i}. Up to cyclic symmetry, any cut is either:

  1. (a)

    a cut from x0x_{0} to the segment wiw_{i} (between xi1x_{i-1} and xix_{i}) (Fig. 3.1.2(a));

  2. (b)

    cut from a 0 on the segment w0w_{0} (between xkx_{k} and x0x_{0}) to the segment wiw_{i} (Fig. 3.1.2(b)).

[Uncaptioned image] [Uncaptioned image]
(a) (b)

Figure 3.1.2.

We first write the terms arising from these cuts modulo elements of form C(0,x)C(0,x).

Case (a) contributes the terms (20) and case (b) contributes the terms (21), noting that modulo elements of the form C(0,a)C(0,a) the CC^{*} have cyclic symmetry.

Now we handle the terms (22). Let w=n0+n1++nk+kw=n_{0}+n_{1}+\dots+n_{k}+k be the weight. Consider the (weight w1)(weight 1)(\text{weight $w-1$})\wedge(\text{weight 1}) terms of the coproduct.

Such elements, of form Cw1CC_{w-1}\wedge C, fall into two cases, depending on which point is present in CC but not in Cw1C_{w-1}.

  1. (1)

    0 on the segment wiw_{i} (from xi1x_{i-1} to xix_{i}).

  2. (2)

    xix_{i}.

If w>2w>2, the Cw1C_{w-1} are invariant under scaling. If w=2w=2, then the cyclic permutation of the arguments w0,,wi1wi,wi+1,,wkw_{0},\dots,w_{i-1}w_{i},w_{i+1},\dots,w_{k} and w0,,wi1,wiwi+1,,wkw_{0},\dots,w_{i-1},w_{i}w_{i+1},\dots,w_{k} in (23) modifies those terms by an element of weight 1, so the expressions in (22) are determined up to (weight 1)(weight 1)(\text{weight 1})\wedge(\text{weight 1}).

In case (1), we have

Cw1=(w0|n0,,xi|ni1,,xk|nk).C_{w-1}=(w_{0}|n_{0},\dots,x_{i}|n_{i}-1,\dots,x_{k}|n_{k}).

The only nonzero terms that appear are (Cw1(C(0,xi))(C_{w-1}\wedge(-C(0,x_{i})) (cut clockwise of xix_{i}) and Cw1C(0,xi1)C_{w-1}\wedge C(0,x_{i-1}) (cut counterclockwise of xix_{i}).

On the other hand, (20) produces no terms for these two cuts (they correspond to to i=1i=1 and i=ki=k). Thus this case contributes the terms

Cw1(C(0,xi)C(0,xi1))=Cw1C(0,wi),C_{w-1}\wedge(C(0,x_{i})-C(0,x_{i-1}))=C_{w-1}\wedge C(0,w_{i}),

which are the ni>0n_{i}>0 terms in (22).

In case (2),

Cw1=C(x0|n0,,xixi+1|ni+ni+1,,xk|nk).C_{w-1}=C^{*}(x_{0}|n_{0},\dots,x_{i}x_{i+1}|n_{i}+n_{i+1},\dots,x_{k}|n_{k}).

Let C1C_{1}^{\prime} and C1′′C_{1}^{\prime\prime} be the elements formed by xix_{i} and the point clockwise and counterclockwise from xix_{i}, respectively. Then the resulting terms are Cw1C1-C_{w-1}\wedge C_{1}^{\prime} and Cw1C1′′C_{w-1}\wedge C_{1}^{\prime\prime}.

If ni=0n_{i}=0, then C1=C(xi,xi1)=C(wi|0,wi1|0)+C(0,xi)C_{1}^{\prime}=C(x_{i},x_{i-1})=C^{*}(w_{i}|0,w_{i}^{-1}|0)+C(0,x_{i}), while (20) contributes C(wi1|0,wi|0)Cw1C^{*}(w_{i}^{-1}|0,w_{i}|0)\wedge C_{w-1}. Thus we get an added term

Cw1(C(0,xi)C(0,wi)).-C_{w-1}\wedge(C(0,x_{i})-C(0,w_{i})).

If ni0n_{i}\neq 0, then C1=C(0,xi)C_{1}^{\prime}=C(0,x_{i}), while (21) contributes 0. Thus we get a term Cw1C(0,xi)-C_{w-1}\wedge C(0,x_{i}).

Similarly, we get terms Cw1(C(0,xi)+C(0,wi+1))C_{w-1}\wedge(C(0,x_{i})+C(0,w_{i+1})) if ni+1=0n_{i+1}=0 and Cw1C(0,xi)C_{w-1}\wedge C(0,x_{i}) if ni+1>0n_{i+1}>0.

Collecting terms, the total contribution from this case is Cw1(Mi+Mi′′)C_{w-1}\wedge(M_{i}^{\prime}+M_{i}^{\prime\prime}), where

(24) Mi={C(0,xi)ni=0,0ni0,Mi′′={C(0,xi+1)ni+1=0,0ni+10.M_{i}^{\prime}=\begin{cases}C(0,x_{i})&n_{i}=0,\\ 0&n_{i}\neq 0\end{cases},\quad M_{i}^{\prime\prime}=\begin{cases}C(0,x_{i+1})&n_{i+1}=0,\\ 0&n_{i+1}\neq 0\end{cases}.

Reindexing, we get exactly the ni=0n_{i}=0 terms of (22). ∎

We remark that if a cyclic permutation is applied to the arguments in (20), so that it is written

C(w0|n0,,wi1|ni1,wiwk|ni)\displaystyle C^{*}(w_{0}|n_{0},\dots,w_{i-1}|n_{i-1},\underbracket{w_{i}\dots w_{k}}|n_{i}^{\prime})\wedge
C(w0w1wi|ni′′,wi+1|ni+1,,wk|nk)),\displaystyle\wedge C^{*}(\underbracket{w_{0}w_{1}\dots w_{i}}|n_{i}^{\prime\prime},w_{i+1}|n_{i+1},\dots,w_{k}|n_{k})\bigg{)},

then the ni=0n_{i}=0 terms in (22) disappear.

Then there is the following formula for the coproduct of generating functions:

Lemma 15.

Suppose k>2k>2 and let X=𝚲(w0,,wk|t0,,tk)X=\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;t_{0},\dots,t_{k}\big{)}. Then

δX=cyc(i=0k\displaystyle\delta X=\sum_{\rm cyc}\bigg{(}\sum_{i=0}^{k} 𝚲(wiwk,w0,,wi1,|ti,t1,,ti1)\displaystyle\mathbf{\Lambda}^{*}\big{(}\underbracket{w_{i}\dots w_{k}},w_{0},\dots,w_{i-1},\;|\;t_{i},t_{1},\dots,t_{i-1}\big{)}
(25) 𝚲(wi+1,,wk,w0wi|ti+1,,tk,ti))\displaystyle\wedge\mathbf{\Lambda}^{*}\big{(}w_{i+1},\dots,w_{k},\underbracket{w_{0}\dots w_{i}}\;|\;t_{i+1},\dots,t_{k},t_{i}\big{)}\bigg{)}
+cyc(i=1k\displaystyle+\sum_{\rm cyc}\bigg{(}\sum_{i=1}^{k} t0𝚲(w1,,wi1,wiwkw0|t1,,ti1,{ti,t0})\displaystyle t_{0}\mathbf{\Lambda}^{*}\big{(}w_{1},\dots,w_{i-1},\underbracket{w_{i}\dots w_{k}w_{0}}\;|\;t_{1},\dots,t_{i-1},\left\{t_{i},t_{0}\right\}\big{)}
(26) 𝚲(w0wi,wi+1,,wk|{ti,t0},ti+1,,tk)\displaystyle\wedge\mathbf{\Lambda}^{*}\big{(}\underbracket{w_{0}\dots w_{i}},w_{i+1},\dots,w_{k}\;|\;\left\{t_{i},t_{0}\right\},t_{i+1},\dots,t_{k}\big{)}
(27) +i=1k\displaystyle+\sum_{i=1}^{k} Lilogwi,\displaystyle L_{i}\wedge\log w_{i},

where

(28) Li=\displaystyle L_{i}= ti𝚲(w0,,wk|t0,,tk)\displaystyle t_{i}\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;t_{0},\dots,t_{k}\big{)}
(29) +𝚲(w0,,wi1wi,wi+1,,wk|t1,,ti1,ti+1,,tk)\displaystyle+\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,\underbracket{w_{i-1}w_{i}},w_{i+1},\dots,w_{k}\;|\;t_{1},\dots,t_{i-1},t_{i+1},\dots,t_{k}\big{)}
(30) +𝚲(w0,,wi1,wiwi+1,,wk|t1,,ti1,ti+1,,tk).\displaystyle+\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{i-1},\underbracket{w_{i}w_{i+1}},\dots,w_{k}\;|\;t_{1},\dots,t_{i-1},t_{i+1},\dots,t_{k}\big{)}.

If k=2k=2, this formula holds modulo terms of the form C(0,a)C(0,b)C(0,a)\wedge C(0,b).

Proof.

Directly reinterpret Lemma 14 via the definition (17) by summing the expressions (20), (21), (22) over choices of {ni}i=0k\left\{n_{i}\right\}_{i=0}^{k} taken with a monomial itini\prod_{i}t_{i}^{n_{i}}.

The expressions (20) and (21) yield (25) and (26) in an obvious manner.

The ni>0n_{i}>0 cases in (23) give the terms with (28), and the ni=0n_{i}=0 cases give (29)-(30). ∎

We also remark that if a cyclic permutation is applied to the arguments in (25), so that it is written

𝚲(w0,,wi1,wiwk|t1,,ti1,ti)\displaystyle\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{i-1},\underbracket{w_{i}\dots w_{k}}\;|\;t_{1},\dots,t_{i-1},t_{i}\big{)}
𝚲(w0wi,wi+1,,wk|ti,ti+1,,tk))\displaystyle\wedge\mathbf{\Lambda}^{*}\big{(}\underbracket{w_{0}\dots w_{i}},w_{i+1},\dots,w_{k}\;|\;t_{i},t_{i+1},\dots,t_{k}\big{)}\bigg{)}

then the terms (29) and (30) disappear.

3.1.3. Dual generating function and homogeneity

For a more complete analogy with the generating functions L,LL,L^{*} for multiple polylogarithms (§6), we define a dual generating function 𝚲\mathbf{\Lambda}:

(31) 𝚲(x0,,xk|t0,,tk)\displaystyle\mathbf{\Lambda}\big{(}x_{0},\dots,x_{k}\;|\;t_{0},\dots,t_{k}\big{)} :=ni0C(x0,0,,0n0,x1,xk,0,,0nk)i=0k(t0++ti)ni,\displaystyle:=\sum_{n_{i}\geq 0}C(x_{0},\underbrace{0,\dots,0}_{n_{0}},x_{1}\dots,x_{k},\underbrace{0,\dots,0}_{n_{k}})\prod_{i=0}^{k}(t_{0}+\dots+t_{i})^{n_{i}},

where the formal variables tit_{i} satisfy the relation i=0kti=0\sum_{i=0}^{k}t_{i}=0. The pair of generating functions 𝚲,𝚲\mathbf{\Lambda}^{*},\mathbf{\Lambda} resemble those used by [G3] in the definition of the dihedral Lie coalgebra.

The duality is made clear by the following statement:

Lemma 16.
  1. (a)

    The generating functions are related by

    (32) 𝚲(w0,,wk|t0,,tk)=𝚲(1,w0,,w0wk1|t0,t1t0,,tktk1).\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;t_{0},\dots,t_{k}\big{)}=\mathbf{\Lambda}\big{(}1,w_{0},\dots,w_{0}\dots w_{k-1}\;|\;t_{0},t_{1}-t_{0},\dots,t_{k}-t_{k-1}\big{)}.
  2. (b)

    For k>1k>1, the generating functions 𝚲\mathbf{\Lambda}^{*} are homogeneous in the tit_{i} (invariant under a shift titi+tt_{i}\mapsto t_{i}+t), and the 𝚲\mathbf{\Lambda} are homogeneous in the xix_{i} (invariant under a shift xixixx_{i}\mapsto x_{i}\cdot x).

  3. (c)

    Both generating functions are invariant under cyclic permutation of the indices.

Proof.

Part (a) is clear from the definitions.

For 𝚲\mathbf{\Lambda}^{*}, (c) is clear from the scaling relations imposed in 𝒟~(G)\widetilde{\mathcal{D}}(G). For 𝚲\mathbf{\Lambda}, (b) is also immediate. Part (c) for 𝚲\mathbf{\Lambda} would follow easily from (a) and (b,c) for 𝚲\mathbf{\Lambda}^{*}, recalling that t1++tk=0t_{1}+\dots+t_{k}=0.

The nontrivial part is (b) for 𝚲\mathbf{\Lambda}^{*}. We must show

𝚲(w0,,wk|t0+t,,tk+t)=𝚲(w0,,wk|t0,,tk).\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;t_{0}+t,\dots,t_{k}+t\big{)}=\mathbf{\Lambda}^{*}\big{(}w_{0},\dots,w_{k}\;|\;t_{0},\dots,t_{k}\big{)}.

Consider the coefficient of tnitinit^{n}\cdot\prod_{i}t_{i}^{n_{i}} on each side. If k=0k=0, the coefficients on both sides are equal. If k>0k>0, the coefficient on the left side is precisely a first shuffle relation (where the nn 0s indexed by the variable tt are shuffled with all other points, with the point 1 remainining fixed), while the right side is 0. ∎

The first shuffle relation imposed in 𝒟~(G)\widetilde{\mathcal{D}}(G) can be expressed in terms of the 𝚲\mathbf{\Lambda}:

Lemma 17.

The generating functions 𝚲\mathbf{\Lambda} obey a shuffle relation for r,s>1r,s>1:

(33) σΣr,s𝚲(xσ1(1),,xσ1(r+s),x0|tσ1(1),,tσ1(r+s),t0)=0.\sum_{\sigma\in\Sigma_{r,s}}\mathbf{\Lambda}\big{(}x_{\sigma^{-1}(1)},\dots,x_{\sigma^{-1}(r+s)},x_{0}\;|\;t_{\sigma^{-1}(1)},\dots,t_{\sigma^{-1}(r+s)},t_{0}\big{)}=0.
Proof.

Similar to the previous lemma. It follows from the shuffle relation on the coefficients, where we fix x0x_{0} and shuffle the x1,,xrx_{1},\dots,x_{r} and the zeros indexed by t1,,trt_{1},\dots,t_{r} with the other points. ∎

3.2. Proof of Theorem 5

3.2.1. Summary of the proof

The proof of the Theorem 5 will be by induction on the depth of the second shuffles.

Define

QShr,s(w1|S1,,wn|Sn,w0|S0)=\displaystyle{\rm QSh}^{r,s}(w_{1}|S_{1},\dots,w_{n}|S_{n},w_{0}|S_{0})=
=σΣ¯r,s(1)r+sMσ𝚲(wσ1(1),,wσ1(Mσ),w0|Sσ1(1),,Sσ1(Mσ),S0),\displaystyle=\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}\mathbf{\Lambda}^{*}\big{(}w_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})},w_{0}\;|\;S_{\sigma^{-1}(1)},\dots,S_{\sigma^{-1}(M_{\sigma})},S_{0}\big{)},

where wiGw_{i}\in G with iwi=1\prod_{i}w_{i}=1, and

(34) QSh¯r,s(w1|S1,,wn|Sn,w0|S0)\displaystyle\overline{{\rm QSh}}^{r,s}(w_{1}|S_{1},\dots,w_{n}|S_{n},w_{0}|S_{0}) =QShr,s(w1|S1,,wn|Sn,w0|S0)\displaystyle={\rm QSh}^{r,s}(w_{1}|S_{1},\dots,w_{n}|S_{n},w_{0}|S_{0})
(35) 𝚲(w1,,wr,w{r+1,,r+s,0}|S1,,Sr,S{r+1,,r+s,0})\displaystyle-\mathbf{\Lambda}^{*}\big{(}w_{1},\dots,w_{r},w_{\left\{r+1,\dots,r+s,0\right\}}\;|\;S_{1},\dots,S_{r},S_{\left\{r+1,\dots,r+s,0\right\}}\big{)}
(36) 𝚲(wr+1,,wr+s,w{1,,r,0}|Sr+1,,Sr+s,S{1,,r,0}).\displaystyle-\mathbf{\Lambda}^{*}\big{(}w_{r+1},\dots,w_{r+s},w_{\left\{1,\dots,r,0\right\}}\;|\;S_{r+1},\dots,S_{r+s},S_{\left\{1,\dots,r,0\right\}}\big{)}.

We must show that the elements QSh¯\overline{{\rm QSh}} form a coideal, i.e., their coproducts vanish modulo other elements of this form.

To make the notation more transparent, when rr and ss are fixed, we will relabel

T1,,Tr\displaystyle T_{1},\dots,T_{r} =S1,,Sr,\displaystyle=S_{1},\dots,S_{r},
U1,,Us\displaystyle U_{1},\dots,U_{s} =Sr+1,,Sr+s,\displaystyle=S_{r+1},\dots,S_{r+s},
V\displaystyle V =S0,\displaystyle=S_{0},
a1,,ar\displaystyle a_{1},\dots,a_{r} =w1,,wr\displaystyle=w_{1},\dots,w_{r}
b1,,bs\displaystyle b_{1},\dots,b_{s} =w1,,wr+s,\displaystyle=w_{1},\dots,w_{r+s},
c\displaystyle c =w0,\displaystyle=w_{0},

so that we consider elements

QSh¯r,s(a1|T1,,ar|Tr,b1|U1,,bs|Us,c|V).\overline{{\rm QSh}}^{r,s}(a_{1}|T_{1},\dots,a_{r}|T_{r},b_{1}|U_{1},\dots,b_{s}|U_{s},c|V).

The main steps will be the following:

  1. Step 0.

    Fix the aia_{i} and bjb_{j}. Show that it suffices to assume |Ti|=|Ui|=|V|=1\left|T_{i}\right|=\left|U_{i}\right|=\left|V\right|=1. Denote the three terms (34), (35), (36) by QQ, RAR_{A}, and RBR_{B}, respectively.

  2. Step 1.

    Show that δ(QRARB)\delta(Q-R_{A}-R_{B}) is zero modulo shuffle relations of lower depth and elements of the form C(0,x)C(0,x) (Lemma 19).

    1. (a)

      Group the terms of δQ\delta Q according to a combinatorial classification and reduce them using shuffle relations of lower depth (Lemma 21).

    2. (b)

      Group the terms of δ(RA)\delta(R_{A}) and δ(RB)\delta(R_{B}) in the same way and show that they coincide with the terms found in (a) (Lemma 27).

  3. Step 2.

    Show that the (weight 1)\wedge(weight 1\geq 1) component of δ(QRARB)\delta(Q-R_{A}-R_{B}) is 0, modulo shuffle relations of lower depth (Lemma 37).

Throughout the proof, in a term 𝚲(w1,,wk,w0|s1,,sk,s0)\mathbf{\Lambda}^{*}\big{(}w_{1},\dots,w_{k},w_{0}\;|\;s_{1},\dots,s_{k},s_{0}\big{)} appearing in the definition of QSh¯\overline{{\rm QSh}}, call the segment (w0|s0)\big{(}w_{0}\;|\;s_{0}\big{)} the distinguished segment (i.e., (c|v)\big{(}c\;|\;v\big{)} in (34) and the collapsed segments in (35) and (36)). In the following lemmas, we will always use the following classification of terms of the coproduct of a generating function (see Fig. 3.2.1).

  1. (1)

    Terms ghg\wedge h where one of the parts gg or hh contains the distinguished segment (i.e., the distinguished segment is not cut). In this case, we always write the term in the form ±gh\pm g\wedge h, where gg contains the distinguished segment.

    1. (a)

      Cut from a point xix_{i} to the segment (wj|sj)\big{(}w_{j}\;|\;s_{j}\big{)} (0i<jk0\leq i<j\leq k).

    2. (b)

      Cut from a point xjx_{j} to the segment (wi+1|si+1)\big{(}w_{i+1}\;|\;s_{i+1}\big{)} (0i<jk0\leq i<j\leq k).

    3. (c)

      Cut from a 0 on the segment (xi+1|ts+1)\big{(}x_{i+1}\;|\;t_{s+1}\big{)} to the segment (wj|tj)\big{(}w_{j}\;|\;t_{j}\big{)} (0i<jk0\leq i<j\leq k).

    4. (d)

      Cut from a 0 on the segment (xj|sj)\big{(}x_{j}\;|\;s_{j}\big{)} to the segment (wi+1|ti+1)\big{(}w_{i+1}\;|\;t_{i+1}\big{)} (0i<jk0\leq i<j\leq k).

  2. (2)

    Terms ghg\wedge h where the distinguished segment is cut. In this case, we always write ±gh\pm g\wedge h, where gg contains the point x0x_{0} and hh the point xkx_{k}.

    1. (a)

      Cut from a point xix_{i} to the distinguished segment.

    2. (b)

      Cut from a 0 on the segment (wi|si)\big{(}w_{i}\;|\;s_{i}\big{)} to the distinguished segment (0<i<k0<i<k).

    3. (c)

      Cut from a 0 on the distinguished segment to the segment (si|ti)\big{(}s_{i}\;|\;t_{i}\big{)} (0<i<k0<i<k).

[Uncaptioned image] [Uncaptioned image] [Uncaptioned image] [Uncaptioned image]
(1a) (1b) (1c) (1d)
[Uncaptioned image] [Uncaptioned image] [Uncaptioned image]
(2a) (2b) (2c)

Figure 3.2.1.

3.2.2. Step 0

As stated in Step 0 above, we fix m>0m>0 and n>0n>0, the aia_{i}, bjb_{j}, cc, and the TiT_{i}, UjU_{j}, VV, and let Q,RA,RBQ,R_{A},R_{B} be the three terms of the expression defining QSh¯\overline{{\rm QSh}}: (34), (35), and (36), respectively.

We may assume Ti={ti}T_{i}=\left\{t_{i}\right\}, Uj={uj}U_{j}=\left\{u_{j}\right\}, and V={v}V=\left\{v\right\}, by the following:

Lemma 18 (Step 0).

The shuffle relations for |Ti|=|Uj|=|V|=1\left|T_{i}\right|=\left|U_{j}\right|=\left|V\right|=1 imply the shuffle relations for general index sets.

Proof.

Obvious by induction using (19). ∎

Lemma 19 (Step 1).

Modulo shuffle relations of lower depth and elements C(0,x)C(0,x), δ(QRARB)=0\delta(Q-R_{A}-R_{B})=0.

Lemma 20 (Step 2).

Modulo lower-depth shuffle relations and terms C(0,x)C(0,y)C(0,x)\wedge C(0,y),

(37) δ(QRARB)=[i=1mC(0,ai)(tiv)+j=1nC(0,bj)(ujv)](QRARB).\delta(Q-R_{A}-R_{B})=\left[\sum_{i=1}^{m}C(0,a_{i})(t_{i}-v)+\sum_{j=1}^{n}C(0,b_{j})(u_{j}-v)\right]\wedge(Q-R_{A}-R_{B}).

3.2.3. Proof of Step 1

Lemma-Computation 21 (Step 1(a)).

Modulo shuffle relations of lower depth and elements C(0,x)C(0,x), δQ\delta Q is given by the sum of expressions

(80)-(84) below.

Group all terms of δQ\delta Q by the type of cut as defined in the outline above. Some computational lemmas will simplify the contributions to δQ\delta Q coming from the cuts of each type. The contribution of cuts (1a/b/c/d) is computed in Lemma 22, and cuts (2a/b/c) are dealt with in Lemma 26.

Lemma-Computation 22.

The contribution of cuts of type (1a/b/c/d) to δQ\delta Q, modulo shuffle relations of lower depth and elements C(0,x)C(0,x), is given by (63) below.

The cuts of types (1a) and (1b) contribute terms of the form (25), while cuts of types (1c) and (1d) contribute terms of the form (26) below.

Consider the upper parts gg of terms ±gh\pm g\wedge h as shown in Fig. 3.2.1; by cyclic invariance modulo C(0,x)C(0,x) we may write

g=𝚲(w1,,wl,c|S1,,Sl,V).g=\mathbf{\Lambda}^{*}\big{(}w_{1},\dots,w_{l},c\;|\;S_{1},\dots,S_{l},V\big{)}.

Let (wp|Sp)\big{(}w_{p}\;|\;S_{p}\big{)} be the new segment arising from the cut (that is, the bracketed segment in (25) or (26)).

We say that aia_{i} appears in gg if either the segment (ai|ti)\big{(}a_{i}\;|\;t_{i}\big{)} or some (aibj|{ti,uj})\big{(}a_{i}b_{j}\;|\;\left\{t_{i},u_{j}\right\}\big{)} is present in gg as one of the (wl|Sl)\big{(}w_{l}\;|\;S_{l}\big{)} (lil\neq i), and similarly for bjb_{j}. Then the set of segments that do not appear in gg (“appear below g”) is determined by the w1,,wp^,,wlw_{1},\dots,\widehat{w_{p}},\dots,w_{l} and consists of consecutively indexed elements aia_{i} and bjb_{j}, i.e., ai0,,ai1a_{i_{0}},\dots,a_{i_{1}} and bj0,,bj1b_{j_{0}},\dots,b_{j_{1}}, where by convention i0=i1+1i_{0}=i_{1}+1 if no aia_{i} appear, and likewise for j0,j1j_{0},j_{1}.

Group the terms ghg\wedge h by the sequence of segments w1,,wp^,,wlw_{1},\dots,\widehat{w_{p}},\dots,w_{l}. To shorten notation, write

g~(S)=𝚲(w1,,wp,,wl,c|S1,,Sp=S,,Sl,V).\widetilde{g}\left(S\right)=\mathbf{\Lambda}^{*}\big{(}w_{1},\dots,w_{p},\dots,w_{l},c\;|\;S_{1},\dots,S_{p}=S,\dots,S_{l},V\big{)}.

There are three cases:

  1. (1)

    i1i0>0i_{1}-i_{0}>0 and j1j0>0j_{1}-j_{0}>0: at least two aia_{i} and two bjb_{j} appear below gg (Lemma-Computation 23).

  2. (2)

    i1i0=1i_{1}-i_{0}=-1 or j1j0=1j_{1}-j_{0}=-1: only aia_{i}’s or only bjb_{j}’s appear below gg (Lemma-Computation 24).

  3. (3)

    i1i0=0i_{1}-i_{0}=0 or j1j0=0j_{1}-j_{0}=0: only one aia_{i} or only one bjb_{j} appear below gg (Lemma-Computation 25).

We compute the contribution of each case in the next three lemmas.

Lemma-Computation 23.

Case 1 (i1i0>0i_{1}-i_{0}>0 and j1j0>0j_{1}-j_{0}>0) contributes 0 to δQ\delta Q.

Proof.

Consider a term ghg\wedge h coming from a cut in Case 1.

Let i0i0i_{0}^{\prime}\geq i_{0} be minimal such that ai0a_{i_{0}^{\prime}} appears in hh, and i1i1i_{1}^{\prime}\leq i_{1} be maximal such that ai1a_{i_{1}^{\prime}} appears in hh. Define j0,j1j_{0}^{\prime},j_{1}^{\prime} in the analogous way. For example, for cuts of type (1a), i0=i0i_{0}^{\prime}=i_{0}; for cuts of type (1c),

i0={i0if (w|S) is (bi0|ui0)i0+1if (w|S) is (ai0|ti0) or (ai0bi0|{ti0,uj0}),i_{0}^{\prime}=\begin{cases}i_{0}&\text{if $\big{(}w\;|\;S\big{)}$ is $\big{(}b_{i_{0}}\;|\;u_{i_{0}}\big{)}$}\\ i_{0}+1&\text{if $\big{(}w\;|\;S\big{)}$ is $\big{(}a_{i_{0}}\;|\;t_{i_{0}}\big{)}$ or $\big{(}a_{i_{0}}b_{i_{0}}\;|\;\left\{t_{i_{0}},u_{j_{0}}\right\}\big{)}$}\end{cases},

where (w|S)\big{(}w\;|\;S\big{)} is the segment that contains the vertex of the cut.

Notice that i0i01i_{0}^{\prime}-i_{0}\leq 1 and j0j01j_{0}-j_{0}^{\prime}\leq 1, and i1i0>0i_{1}-i_{0}>0 implies i1i01i_{1}^{\prime}-i_{0}^{\prime}\geq-1.

Group all terms of δQ\delta Q coming from Case 1 by the type of cut and by i0,j0,i1,j1i_{0}^{\prime},j_{0}^{\prime},i_{1}^{\prime},j_{1}^{\prime}. These groups can be expressed in terms of

g~(S1)QSh(\displaystyle\widetilde{g}\left(S_{1}\right)\wedge{\rm QSh}\big{(} ai0,,ai1,bj0,,bj1,(ai0ai1bj0bj1)1|\displaystyle a_{i_{0}^{\prime}},\dots,a_{i_{1}^{\prime}},b_{j_{0}^{\prime}},\dots,b_{j_{1}^{\prime}},\left(a_{i_{0}^{\prime}}\dots a_{i_{1}^{\prime}}\cdot b_{j_{0}^{\prime}}\dots b_{j_{1}^{\prime}}\right)^{-1}\;|\;
ti0,,ti1,uj0,,uj1,S2)\displaystyle t_{i_{0}^{\prime}},\dots,t_{i_{1}^{\prime}},u_{j_{0}^{\prime}},\dots,u_{j_{1}^{\prime}},S_{2}\big{)}

for some S1,S2S_{1},S_{2}. Indeed, the arrangements of segments that may occur in the lower part of the cut, given i0,j0i_{0},j_{0} and i1,j1i_{1}^{\prime},j_{1}^{\prime}, are precisely the quasishuffles. Applying the lower-weight shuffle relations, this expression becomes

g~(S1)\displaystyle\widetilde{g}\left(S_{1}\right) (𝚲(ai0,,ai1,(ai0ai1)1|ti0,,ti1,{uj0,,uj1}S2))\displaystyle\wedge\left(\mathbf{\Lambda}^{*}\big{(}a_{i_{0}^{\prime}},\dots,a_{i_{1}^{\prime}},\left(a_{i_{0}^{\prime}}\dots a_{i_{1}^{\prime}}\right)^{-1}\;|\;t_{i_{0}^{\prime}},\dots,t_{i_{1}^{\prime}},\left\{u_{j_{0}^{\prime}},\dots,u_{j_{1}^{\prime}}\right\}\sqcup S_{2}\big{)}\right)
(38) +g~(S1)\displaystyle+\,\widetilde{g}\left(S_{1}\right) (𝚲(bj0,,bj1,(bj0bj1)1|uj0,,uj1,{ti0,,ti1}S2)).\displaystyle\wedge\left(\mathbf{\Lambda}^{*}\big{(}b_{j_{0}^{\prime}},\dots,b_{j_{1}^{\prime}},\left(b_{j_{0}^{\prime}}\dots b_{j_{1}^{\prime}}\right)^{-1}\;|\;u_{j_{0}^{\prime}},\dots,u_{j_{1}^{\prime}},\left\{t_{i_{0}^{\prime}},\dots,t_{i_{1}^{\prime}}\right\}\sqcup S_{2}\big{)}\right).

Fix i0,i1,j0,j1i_{0}^{\prime},i_{1}^{\prime},j_{0}^{\prime},j_{1}^{\prime}, and introduce the notation

f~A(i0,i1,S)\displaystyle\widetilde{f}_{A}(i_{0}^{\prime},i_{1}^{\prime},S) =𝚲(ai0,,ai1,(ai0ai1)1|ti0,,ti1,{uj0+1,,uj11}S),\displaystyle=\mathbf{\Lambda}^{*}\big{(}a_{i_{0}^{\prime}},\dots,a_{i_{1}^{\prime}},\left(a_{i_{0}^{\prime}}\dots a_{i_{1}^{\prime}}\right)^{-1}\;|\;t_{i_{0}^{\prime}},\dots,t_{i_{1}^{\prime}},\left\{u_{j_{0}+1},\dots,u_{j_{1}-1}\right\}\sqcup S\big{)},
f~B(j0,j1,S)\displaystyle\widetilde{f}_{B}(j_{0}^{\prime},j_{1}^{\prime},S) =𝚲(bj0,,bj1,(bj0bj1)1|uj0,,uj1,{ti0+1,,ti11}S).\displaystyle=\mathbf{\Lambda}^{*}\big{(}b_{j_{0}^{\prime}},\dots,b_{j_{1}^{\prime}},\left(b_{j_{0}^{\prime}}\dots b_{j_{1}^{\prime}}\right)^{-1}\;|\;u_{j_{0}^{\prime}},\dots,u_{j_{1}^{\prime}},\left\{t_{i_{0}+1},\dots,t_{i_{1}-1}\right\}\sqcup S\big{)}.

The expressions in (38) can be rewritten with f~A\widetilde{f}_{A} and f~B\widetilde{f}_{B}.

Now let us collect these terms coming from different cuts and show that they yield 0. By symmetry, it suffices to show this for three kinds of terms f~A(i0,i1,j0,j1,S2)\widetilde{f}_{A}(i_{0}^{\prime},i_{1}^{\prime},j_{0}^{\prime},j_{1}^{\prime},S_{2}): where i0=i0i_{0}^{\prime}=i_{0} and i1=i1i_{1}^{\prime}=i_{1}; where i0=i0i_{0}^{\prime}=i_{0} and i1=i11i_{1}^{\prime}=i_{1}-1; and where i0=i0+1i_{0}^{\prime}=i_{0}+1 and i1=i11i_{1}^{\prime}=i_{1}-1.

Look at the terms with i0=i0i_{0}^{\prime}=i_{0} and i1=i1i_{1}^{\prime}=i_{1} (all aia_{i} that are not in gg are in fAf_{A}). They arise from cuts (1a) and (1b) where the cut segment is bi0+1b_{i_{0}+1} or bi11b_{i_{1}-1} and from cuts (1c) and (1d) where the cut segment and the segment containing the vertex are bi0+1b_{i_{0}+1} and bi11b_{i_{1}-1}, or vice versa. These cases give:

g~(uj1)\displaystyle-\widetilde{g}\left(u_{j_{1}}\right) f~A(i0,i1,{uj0}{uj1}),\displaystyle\wedge\widetilde{f}_{A}(i_{0},i_{1},\left\{u_{j_{0}}\right\}\sqcup\left\{u_{j_{1}}\right\}),
g~(uj0)\displaystyle\widetilde{g}\left(u_{j_{0}}\right) f~A(i0,i1,{uj1}{uj0}),\displaystyle\wedge\widetilde{f}_{A}(i_{0},i_{1},\left\{u_{j_{1}}\right\}\sqcup\left\{u_{j_{0}}\right\}),
(uj1uj0)g~({uj0,uj1})\displaystyle(u_{j_{1}}-u_{j_{0}})\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) f~A(i0,i1,{uj0,uj1}),\displaystyle\wedge\widetilde{f}_{A}(i_{0},i_{1},\left\{u_{j_{0}},u_{j_{1}}\right\}),

the sum of which is 0 by (19).

The terms with i0=i0i_{0}^{\prime}=i_{0} and i1=i11i_{1}^{\prime}=i_{1}-1 (all aia_{i} that are not in gg, except the last, are in fAf_{A}) come from three sources:

  • cuts of type (1a) where the cut segment x2x_{2} is either ai1a_{i_{1}} or ai1bj1a_{i_{1}}b_{j_{1}};

  • cuts of type (1c) and (1d) where the segment x1x_{1} containing the vertex and the segment x2x_{2} that is cut are bj0b_{j_{0}} and ai1a_{i_{1}}, or vice versa;

  • cuts of type (1c) and (1d) where the segment x1x_{1} containing the vertex and the segment x2x_{2} that is cut are bj0b_{j_{0}} and ai1bj1a_{i_{1}}b_{j_{1}}, or vice versa.

A similar computation shows their total contribution is 0.

Finally, consider terms with i0=i0+1i_{0}^{\prime}=i_{0}+1 and i1=i11i_{1}^{\prime}=i_{1}-1 (all aia_{i} not in gg except the first and last are in fAf_{A}). They arise from cuts of type (1c) and (1d), where the segment x1x_{1} is either ai0a_{i_{0}} or ai0bj0a_{i_{0}}b_{j_{0}} and the segment x2x_{2} is either ai1a_{i_{1}} or ai1bj1a_{i_{1}}b_{j_{1}}, yielding four cases:

(x1,x2)=(ai0,aj1),(ai0bj0,aj1),(ai0,aj1bj1),(ai0bj0,ai1bj1).(x_{1},x_{2})=(a_{i_{0}},a_{j_{1}}),(a_{i_{0}}b_{j_{0}},a_{j_{1}}),(a_{i_{0}},a_{j_{1}}b_{j_{1}}),(a_{i_{0}}b_{j_{0}},a_{i_{1}}b_{j_{1}}).

The sum of their contributions is also 0.

Lemma-Computation 24.

The contribution of Case 2 (i1i0=1i_{1}-i_{0}=-1) to the δQ\delta Q is given by the sum of expressions (39)-(42) below.

Proof.

Suppose that i1i0=1i_{1}-i_{0}=-1. The cuts of types (1a), (1b), (1c), and (1d) contribute

(39) g~(uj1)\displaystyle-\widetilde{g}\left(u_{j_{1}}\right) f~B(j0,j11,uj1),\displaystyle\wedge\widetilde{f}_{B}(j_{0},j_{1}-1,u_{j_{1}}),
(40) g~(uj0)\displaystyle\widetilde{g}\left(u_{j_{0}}\right) f~B(j0+1,j1,uj0),\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1},u_{j_{0}}),
(41) uj0g~({uj0,uj1})\displaystyle-u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) f~B(j0+1,j11,{uj0,uj1}),\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\}),
(42) uj1g~({uj0,uj1})\displaystyle u_{j_{1}}\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) f~B(j0+1,j11,{uj0,uj1}),\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\}),

respectively. ∎

By symmetry, analogous expressions will result if j1j0=1j_{1}-j_{0}=-1.

Lemma-Computation 25.

The contribution of Case 3 (i1i0=0i_{1}-i_{0}=0) to the δQ\delta Q is given by the sum of expressions (51) and (52) below.

Proof.

Suppose i1i0=0i_{1}-i_{0}=0, so only one segment aia_{i} occurs below gg.

If j1j0=0j_{1}-j_{0}=0, then it is easy to see that only cuts of type (1a) and (1b) contribute nonzero terms, and that the (1a) terms cancel with the (1b) terms. So assume j1j0>0j_{1}-j_{0}>0.

The cuts of type (1a) fall into three classes depending on which segment is cut: (i) ai0a_{i_{0}}, (ii) bj1b_{j_{1}}, or (iii) ai0bj1a_{i_{0}}b_{j_{1}}. The first two contribute

(43) g~(ti0)\displaystyle-\widetilde{g}\left(t_{i_{0}}\right) f~B(j0,j1,ti0),\displaystyle\wedge\widetilde{f}_{B}(j_{0},j_{1},t_{i_{0}}),
g~(uj1)\displaystyle-\widetilde{g}\left(u_{j_{1}}\right) QSh1,j1j0(ai0,bj0,,bj11,(ai0bj0bj11)1|\displaystyle\wedge{\rm QSh}^{1,j_{1}-j_{0}}\big{(}a_{i_{0}},b_{j_{0}},\dots,b_{j_{1}-1},\left(a_{i_{0}}b_{j_{0}}\dots b_{j_{1}-1}\right)^{-1}\;|\;
ti0,uj0,,uj11,uj1)\displaystyle\quad\quad\quad\quad\quad\quad t_{i_{0}},u_{j_{0}},\dots,u_{j_{1}-1},u_{j_{1}}\big{)}
g~(uj1)\displaystyle\equiv-\widetilde{g}\left(u_{j_{1}}\right) (f~B(j0,j11,{ti0,uj1})\displaystyle\wedge\biggl{(}\widetilde{f}_{B}(j_{0},j_{1}-1,\left\{t_{i_{0}},u_{j_{1}}\right\})
(44) +𝚲(ai0,ai01|ti0,{uj0,,uj1})),\displaystyle\quad\quad+\mathbf{\Lambda}^{*}\big{(}a_{i_{0}},a_{i_{0}}^{-1}\;|\;t_{i_{0}},\left\{u_{j_{0}},\dots,u_{j_{1}}\right\}\big{)}\biggr{)},

respectively, where we have used that the sequences that may occur in the lower part of the cut are precisely the shuffles of aia_{i} and bjb_{j} appearing below gg, except the cut segment bj1b_{j_{1}}. Finally, the third class gives

1ti0uj1(g~(ti0)\displaystyle\frac{1}{t_{i_{0}}-u_{j_{1}}}\biggl{(}\widetilde{g}\left(t_{i_{0}}\right) f~B(j0,j11,ti0)\displaystyle\wedge\widetilde{f}_{B}(j_{0},j_{1}-1,t_{i_{0}})
(45) g~(uj1)\displaystyle-\widetilde{g}\left(u_{j_{1}}\right) f~B(j0,j11,uj1)),\displaystyle\wedge\widetilde{f}_{B}(j_{0},j_{1}-1,u_{j_{1}})\biggr{)},

where we have applied (19) to break the generating functions with {ti0,uj1}\left\{t_{i_{0}},u_{j_{1}}\right\} into ones with only ti0t_{i_{0}} or uj1u_{j_{1}}.

The cuts of type (1c) fall into five classes, depending on the segment where the vertex of the cut lies and the segment that is cut: (i) vertex on ai0a_{i_{0}} and bj1b_{j_{1}} is cut, (ii) vertex on bj0b_{j_{0}} and bj1b_{j_{1}} is cut, (iii) vertex on bj0b_{j_{0}} and ai0a_{i_{0}} is cut, (iv) vertex on bj0b_{j_{0}} and ai0bj1a_{i_{0}}b_{j_{1}} is cut, (v) vertex on ai0bj0a_{i_{0}}b_{j_{0}} and bj1b_{j_{1}} is cut. They contribute the following terms:

(46) ti0g~({ti0,uj1})\displaystyle-t_{i_{0}}\widetilde{g}\left(\left\{t_{i_{0}},u_{j_{1}}\right\}\right) f~B(j0,j11,{ti0,uj1}),\displaystyle\wedge\widetilde{f}_{B}(j_{0},j_{1}-1,\left\{t_{i_{0}},u_{j_{1}}\right\}),
uj0g~({uj0,uj1})\displaystyle-u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) QSh1,j1j01(ai0,bj0+1,,bj11,(ai0bj0+1bj11)1|\displaystyle\wedge{\rm QSh}^{1,j_{1}-j_{0}-1}\big{(}a_{i_{0}},b_{j_{0}+1},\dots,b_{j_{1}-1},\left(a_{i_{0}}b_{j_{0}+1}\dots b_{j_{1}-1}\right)^{-1}\;|\;
ti0,uj0+1,,uj11,{uj0,uj1})\displaystyle\quad\quad\quad\quad\quad\quad\quad t_{i_{0}},u_{j_{0}+1},\dots,u_{j_{1}-1},\left\{u_{j_{0}},u_{j_{1}}\right\}\big{)}
uj0g~({uj0,uj1})\displaystyle\equiv-u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) (f~B(j0+1,j11,{ti0,uj0,uj1})\displaystyle\wedge\biggl{(}\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{t_{i_{0}},u_{j_{0}},u_{j_{1}}\right\})
(47) +𝚲(ai0,ai01|ti0,{uj0,,uj1})),\displaystyle\quad\quad+\mathbf{\Lambda}^{*}\big{(}a_{i_{0}},a_{i_{0}}^{-1}\;|\;t_{i_{0}},\left\{u_{j_{0}},\dots,u_{j_{1}}\right\}\big{)}\biggr{)},
(48) uj0g~({uj0,ti0})\displaystyle-u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},t_{i_{0}}\right\}\right) f~B(j0+1,j1,{uj0,tj0}),\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1},\left\{u_{j_{0}},t_{j_{0}}\right\}),
1ti0uj1(uj0g~({uj0,ti0})\displaystyle\frac{1}{t_{i_{0}}-u_{j_{1}}}\biggl{(}u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},t_{i_{0}}\right\}\right) f~B(j0+1,j11,{uj0,ti0})\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},t_{i_{0}}\right\})
(49) uj0g~({uj0,uj1})\displaystyle-u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) f~B(j0+1,j11,{uj0;uj1})),\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}};u_{j_{1}}\right\})\biggr{)},
1ti0uj0(ti0g~({ti0,uj1})\displaystyle\frac{1}{t_{i_{0}}-u_{j_{0}}}\biggl{(}t_{i_{0}}\widetilde{g}\left(\left\{t_{i_{0}},u_{j_{1}}\right\}\right) f~B(j0+1,j11,{ti0,uj1})\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{t_{i_{0}},u_{j_{1}}\right\})
(50) uj0g~({uj0,uj1})\displaystyle-u_{j_{0}}\widetilde{g}\left(\left\{u_{j_{0}},u_{j_{1}}\right\}\right) f~B(j0+1,j11,{uj0,uj1})).\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\})\biggr{)}.

The cuts (1b) and (1d) contribute antisymmetric terms, i.e., uj0u_{j_{0}} and uj1u_{j_{1}} are exchanged and f~B(j0+d0,j1d1,S)\widetilde{f}_{B}(j_{0}+d_{0},j_{1}-d_{1},S) becomes f~B(j0+d1,j1d0,S)-\widetilde{f}_{B}(j_{0}+d_{1},j_{1}-d_{0},S). The entire contribution of case 3 is then the

symmetrization of the sum of expressions (43)-(50).

The expression (43) with its symmetrization cancels to 0.

The remaining terms form the contribution of Case 3, and are simplified to

(51) g~({ti0,uj1})\displaystyle\widetilde{g}\left(\left\{t_{i_{0}},u_{j_{1}}\right\}\right) f~B(j0,j11,uj1)g~({ti0,uj0})\displaystyle\wedge\widetilde{f}_{B}(j_{0},j_{1}-1,u_{j_{1}})-\widetilde{g}\left(\left\{t_{i_{0}},u_{j_{0}}\right\}\right) f~B(j0+1,j1,uj0)\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1},u_{j_{0}})
(52) (uj1uj0)g~({t,uj0,uj1})\displaystyle-(u_{j_{1}}-u_{j_{0}})\widetilde{g}\left(\left\{t,u_{j_{0}},u_{j_{1}}\right\}\right) f~B(j0+1,j11,{uj0,uj1}).\displaystyle\wedge\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\}).

Analogous expressions result if j1j0=0j_{1}-j_{0}=0. ∎

Proof of Lemma 22.

Let us collect the terms obtained from cases 2 and 3: (39)-(42), (51), and (52).

Consider first the expressions of the form f~B(j0,j11,uj1)\widetilde{f}_{B}(j_{0},j_{1}-1,u_{j_{1}}), arising from (39) and (51). (The notation f~B(\widetilde{f}_{B}(), which by definition depends on i0i_{0} and i1i_{1}, is unambiguous here since no aia_{i} appear in the expression for f~B(\widetilde{f}_{B}() when i1i00i_{1}-i_{0}\leq 0.) We claim that for fixed j0j_{0} and j1j_{1}, the sum of these terms over all gg is precisely

QShm,n(j1j0)(\displaystyle-{\rm QSh}^{m,n-(j_{1}-j_{0})}\big{(} a1,,ar,b1,,bj0bj1,,bs,c|\displaystyle a_{1},\dots,a_{r},b_{1},\dots,\underbracket{b_{j_{0}}\dots b_{j_{1}}},\dots,b_{s},c\;|\;
(53) t1,,tr,u1,,uj1,,us,v)f~B(j0,j11,uj1).\displaystyle t_{1},\dots,t_{r},u_{1},\dots,u_{j_{1}},\dots,u_{s},v\big{)}\quad\quad\quad\wedge\,\widetilde{f}_{B}(j_{0},j_{1}-1,u_{j_{1}}).

Indeed, the term that appears on the left side for a fixed gg is g~(uj1)-\widetilde{g}\left(u_{j_{1}}\right) if i1i0=1i_{1}-i_{0}=-1 and g~({ti0,uj1})\widetilde{g}\left(\left\{t_{i_{0}},u_{j_{1}}\right\}\right) if i1i0=0i_{1}-i_{0}=0

. The quasishuffles for which the underlined segment collides with no aia_{i} provides the terms with i1i0=1i_{1}-i_{0}=-1, while the quasishuffles for which the underlined segment collides with some aia_{i} provide the terms with i0=i1=ii_{0}=i_{1}=i.

In a similar way, the expressions with uj0f~B(j0+1,j11,{uj0,uj1})u_{j_{0}}\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\}), coming from (52) and (41), yield

u0QShm,n(j1j0)(\displaystyle-u_{0}{\rm QSh}^{m,n-(j_{1}-j_{0})}\big{(} a1,,ar,b1,,bj0bj1,,bs,c|\displaystyle a_{1},\dots,a_{r},b_{1},\dots,\underbracket{b_{j_{0}}\dots b_{j_{1}}},\dots,b_{s},c\;|\;
(54) t1,,tr,u1,,{uj0,uj1},,us,v)f~B(j0+1,j11,{uj0,uj1}).\displaystyle t_{1},\dots,t_{r},u_{1},\dots,\left\{u_{j_{0}},u_{j_{1}}\right\},\dots,u_{s},v\big{)}\quad\quad\quad\wedge\,\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\}).

The expressions with f~B(j0+1,j1,uj1)\widetilde{f}_{B}(j_{0}+1,j_{1},u_{j_{1}}) and uj1f~B(j0+1,j11,{uj0,uj1})u_{j_{1}}\widetilde{f}_{B}(j_{0}+1,j_{1}-1,\left\{u_{j_{0}},u_{j_{1}}\right\}) give the antisymmetric terms.

Applying the shuffle relations of lower depth to (53) and (54), we get the total contribution of cases 2 and 3 for fixed j0j_{0} and j1j_{1}:

(𝚲(a1,,ar,b1bsc|t1,,tr,{u1,,uj01,uj1,uj1+1,,us,v})\displaystyle-\biggl{(}\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},b_{1}\dots b_{s}\cdot c\;|\;t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{j_{0}-1},u_{j_{1}},u_{j_{1}+1},\dots,u_{s},v\right\}\big{)}
+𝚲(b1,,bj0bj1,,bs,a1arc|u1,,uj1,,us,{t1,,tr,v}))\displaystyle\quad\quad+\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{0}}\dots b_{j_{1}},\dots,b_{s},a_{1}\dots a_{r}\cdot c\;|\;u_{1},\dots,u_{j_{1}},\dots,u_{s},\left\{t_{1},\dots,t_{r},v\right\}\big{)}\biggr{)}
(55) 𝚲(bj0,bj0+1,,bj11,(bj0bj11)1|uj0,uj0+1,,uj11,uj1)\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}},b_{j_{0}+1},\dots,b_{j_{1}-1},\left(b_{j_{0}}\dots b_{j_{1}-1}\right)^{-1}\;|\;u_{j_{0}},u_{j_{0}+1},\dots,u_{j_{1}-1},u_{j_{1}}\big{)}
+(𝚲(a1,,ar,b1bsc|t1,,tr,{u1,,uj01,uj0,uj1+1,,us,v})\displaystyle+\biggl{(}\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},b_{1}\dots b_{s}\cdot c\;|\;t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{j_{0}-1},u_{j_{0}},u_{j_{1}+1},\dots,u_{s},v\right\}\big{)}
+𝚲(b1,,bj0bj1,,bs,a1arc|u1,,uj1,,us,{t1,,tr,v}))\displaystyle\quad\quad+\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{0}}\dots b_{j_{1}},\dots,b_{s},a_{1}\dots a_{r}\cdot c\;|\;u_{1},\dots,u_{j_{1}},\dots,u_{s},\left\{t_{1},\dots,t_{r},v\right\}\big{)}\biggr{)}
(56) 𝚲(bj0+1,,bj11,bj1,(bj0+1bj1)1|uj0+1,,uj11,uj1,uj0)\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}+1},\dots,b_{j_{1}-1},b_{j_{1}},\left(b_{j_{0}+1}\dots b_{j_{1}}\right)^{-1}\;|\;u_{j_{0}+1},\dots,u_{j_{1}-1},u_{j_{1}},u_{j_{0}}\big{)}
+(uj1uj0)(𝚲(a1,,ar,b1bsc|t1,,tr,{u1,,uj01,uj0,uj1,uj1+1,,us,v})\displaystyle+(u_{j_{1}}-u_{j_{0}})\biggl{(}\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},b_{1}\dots b_{s}\cdot c\;|\;t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{j_{0}-1},u_{j_{0}},u_{j_{1}},u_{j_{1}+1},\dots,u_{s},v\right\}\big{)}
+𝚲(b1,,bj0bj1,,bs,a1arc|u1,,{uj0,uj1},,us,{t1,,tr,v}))\displaystyle\quad\quad+\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{0}}\dots b_{j_{1}},\dots,b_{s},a_{1}\dots a_{r}\cdot c\;|\;u_{1},\dots,\left\{u_{j_{0}},u_{j_{1}}\right\},\dots,u_{s},\left\{t_{1},\dots,t_{r},v\right\}\big{)}\biggr{)}
(57) 𝚲(bj0+1,,bj11,(bj1bj11)1|uj0+1,,uj11,{uj0,uj1}).\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}+1},\dots,b_{j_{1}-1},\left(b_{j_{1}}\dots b_{j_{1}-1}\right)^{-1}\;|\;u_{j_{0}+1},\dots,u_{j_{1}-1},\left\{u_{j_{0}},u_{j_{1}}\right\}\big{)}.

Notice that this expression does not depend on i0,i1i_{0},i_{1}, and all but one of the segments in each generating function ff depends only on the aia_{i} or only on the bjb_{j}.

Reindexing leads to cancelation of all terms f(a1,,ar,)f(a_{1},\dots,a_{r},\dots) except the term in (55) where j0=1j_{0}=1 and the term in (56) where j1=nj_{1}=n. That is, if j01j_{0}\neq 1 and j1nj_{1}\neq n, then this expression becomes

F(j0,j1):=\displaystyle F(j_{0},j_{1}):= (𝚲(b1,,bj0bj1,,bs,a1arc|u1,,uj1,,us,{t1,,tr,v}))\displaystyle-\biggl{(}\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{0}}\dots b_{j_{1}},\dots,b_{s},a_{1}\dots a_{r}\cdot c\;|\;u_{1},\dots,u_{j_{1}},\dots,u_{s},\left\{t_{1},\dots,t_{r},v\right\}\big{)}\biggr{)}
(58) 𝚲(bj0,bj0+1,,bj11,(bj0bj11)1|uj0,uj0+1,,uj11,uj1)\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}},b_{j_{0}+1},\dots,b_{j_{1}-1},\left(b_{j_{0}}\dots b_{j_{1}-1}\right)^{-1}\;|\;u_{j_{0}},u_{j_{0}+1},\dots,u_{j_{1}-1},u_{j_{1}}\big{)}
+(𝚲(b1,,bj0bj1,,bs,a1arc|u1,,uj0,,us,{t1,,tr,v}))\displaystyle+\biggl{(}\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{0}}\dots b_{j_{1}},\dots,b_{s},a_{1}\dots a_{r}\cdot c\;|\;u_{1},\dots,u_{j_{0}},\dots,u_{s},\left\{t_{1},\dots,t_{r},v\right\}\big{)}\biggr{)}
(59) 𝚲(bj0+1,,bj11,bj1,(bj0+1bj1)1|uj0+1,,uj11,uj1,uj0)\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}+1},\dots,b_{j_{1}-1},b_{j_{1}},\left(b_{j_{0}+1}\dots b_{j_{1}}\right)^{-1}\;|\;u_{j_{0}+1},\dots,u_{j_{1}-1},u_{j_{1}},u_{j_{0}}\big{)}
+(uj1uj0)(𝚲(b1,,bj0bj1,,bs,a1arc|u1,,{uj0,uj1},,us,{t1,,tr,v}))\displaystyle+(u_{j_{1}}-u_{j_{0}})\biggl{(}\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{0}}\dots b_{j_{1}},\dots,b_{s},a_{1}\dots a_{r}\cdot c\;|\;u_{1},\dots,\left\{u_{j_{0}},u_{j_{1}}\right\},\dots,u_{s},\left\{t_{1},\dots,t_{r},v\right\}\big{)}\biggr{)}
(60) 𝚲(bj0+1,,bj11,(bj1bj11)1|uj0+1,,uj11,{uj0,uj1}).\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}+1},\dots,b_{j_{1}-1},\left(b_{j_{1}}\dots b_{j_{1}-1}\right)^{-1}\;|\;u_{j_{0}+1},\dots,u_{j_{1}-1},\left\{u_{j_{0}},u_{j_{1}}\right\}\big{)}.

If j0=1j_{0}=1 or j1=sj_{1}=s, the following terms remain, respectively:

FL(j1):=\displaystyle F_{L}(j_{1}):= 𝚲(a1,,ar,b1bsc|t1,,tr,{uj1,uj1+1,,us,v})\displaystyle-\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},b_{1}\dots b_{s}\cdot c\;|\;t_{1},\dots,t_{r},\left\{u_{j_{1}},u_{j_{1}+1},\dots,u_{s},v\right\}\big{)}
(61) 𝚲(b1,,bj11,(b1bj11)1|u1,,uj11,uj1),\displaystyle\quad\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{j_{1}-1},\left(b_{1}\dots b_{j_{1}-1}\right)^{-1}\;|\;u_{1},\dots,u_{j_{1}-1},u_{j_{1}}\big{)},
FR(j0):=\displaystyle F_{R}(j_{0}):=\, 𝚲(a1,,ar,b1bsc|t1,,tr,{u1,,uj0,v})\displaystyle\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},b_{1}\dots b_{s}\cdot c\;|\;t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{j_{0}},v\right\}\big{)}
(62) 𝚲(bj0+1,,bs,(bj0+1bs)1|uj0+1,,us,uj0).\displaystyle\wedge\,\mathbf{\Lambda}^{*}\big{(}b_{j_{0}+1},\dots,b_{s},\left(b_{j_{0}+1}\dots b_{s}\right)^{-1}\;|\;u_{j_{0}+1},\dots,u_{s},u_{j_{0}}\big{)}.

Identical terms G(i0,i1)G(i_{0},i_{1}), GL(i1)G_{L}(i_{1}), GR(i0)G_{R}(i_{0}) with the (ai|ti)\big{(}a_{i}\;|\;t_{i}\big{)} and (bj|uj)\big{(}b_{j}\;|\;u_{j}\big{)} exchanged appear in the cases j1j0=0 or 1j_{1}-j_{0}=\text{$0$ or $-1$}.

So the total contribution of cuts of type 1 is

1j0,j1sj1j01F(j0,j1)\displaystyle\sum_{\begin{subarray}{c}1\leq j_{0},j_{1}\leq s\\ j_{1}-j_{0}\geq-1\end{subarray}}F(j_{0},j_{1}) +1i0,i1ri1i01G(i0,i1)\displaystyle+\sum_{\begin{subarray}{c}1\leq i_{0},i_{1}\leq r\\ i_{1}-i_{0}\geq-1\end{subarray}}G(i_{0},i_{1})
(63) +1j1sFL(j1)+1j0sFR(j0)\displaystyle+\sum_{1\leq j_{1}\leq s}F_{L}(j_{1})+\sum_{1\leq j_{0}\leq s}F_{R}(j_{0}) +1i1rGL(i1)+1i0rGR(i0)\displaystyle+\sum_{1\leq i_{1}\leq r}G_{L}(i_{1})+\sum_{1\leq i_{0}\leq r}G_{R}(i_{0})

finishing the computation. ∎

Lemma-Computation 26.

Computation of cuts of type (2).

Proof.

A cut of type (2a/b/c) divides the circle into a left part gg and a right part hh (see Fig. 3.2.1). Let i0i_{0} be maximal such that ai0a_{i_{0}} appears in gg and i1i_{1} minimal such that ai1a_{i_{1}} appears in hh, with i0=1i_{0}=-1 or i1=m+1i_{1}=m+1 if the corresponding segments do not appear. Define j0,j1j_{0},j_{1} in the same manner, for the bjb_{j}.

Let

fL(i0,j0,S)\displaystyle f_{L}(i_{0},j_{0},S) =𝚲(a1,,ai0,(a1ai0)1|t1,,ti0,{u1,,uj0}S),\displaystyle=\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{i_{0}},\left(a_{1}\dots a_{i_{0}}\right)^{-1}\;|\;t_{1},\dots,t_{i_{0}},\left\{u_{1},\dots,u_{j_{0}}\right\}\sqcup S\big{)},
fR(i1,j1,S)\displaystyle f_{R}(i_{1},j_{1},S) =𝚲(ai1,,ar,(ai1ar)1|ti1,,tr,{uj1,,um}S),\displaystyle=\mathbf{\Lambda}^{*}\big{(}a_{i_{1}},\dots,a_{r},\left(a_{i_{1}}\dots a_{r}\right)^{-1}\;|\;t_{i_{1}},\dots,t_{r},\left\{u_{j_{1}},\dots,u_{m}\right\}\sqcup S\big{)},

and define gL(i0,j0,S)g_{L}(i_{0},j_{0},S) and gR(i1,j1,S)g_{R}(i_{1},j_{1},S) in a similar way for the (bj|uj)\big{(}b_{j}\;|\;u_{j}\big{)}. (As usual, one interprets these expressions as 0 if the index set is empty.) Also let

qL(i0,j0,S)\displaystyle q_{L}(i_{0},j_{0},S) =QShi0,j0(a1,,ai0,b1,,bj0,(a1ai0b1bj0)1|t1,,ti0,u1,,uj0,S),\displaystyle={\rm QSh}^{i_{0},j_{0}}\big{(}a_{1},\dots,a_{i_{0}},b_{1},\dots,b_{j_{0}},\left(a_{1}\dots a_{i_{0}}\cdot b_{1}\dots b_{j_{0}}\right)^{-1}\;|\;t_{1},\dots,t_{i_{0}},u_{1},\dots,u_{j_{0}},S\big{)},
=fL(i0,j0,S)+gL(i0,j0,S)\displaystyle=f_{L}(i_{0},j_{0},S)+g_{L}(i_{0},j_{0},S)
qR(i1,j1,S)\displaystyle q_{R}(i_{1},j_{1},S) =QShri1+1,sj1+1(ai1,,ar,bj1,,bs,(ai1arbj1bs)1|ti1,,tr,uj1,,us,S)\displaystyle={\rm QSh}^{r-i_{1}+1,s-j_{1}+1}\big{(}a_{i_{1}},\dots,a_{r},b_{j_{1}},\dots,b_{s},\left(a_{i_{1}}\dots a_{r}\cdot b_{j_{1}}\dots b_{s}\right)^{-1}\;|\;t_{i_{1}},\dots,t_{r},u_{j_{1}},\dots,u_{s},S\big{)}
=fR(i1,j1,S)+gR(i1,j1,S).\displaystyle=f_{R}(i_{1},j_{1},S)+g_{R}(i_{1},j_{1},S).

Consider cuts (2a) for fixed i0,i1,j0,j1i_{0},i_{1},j_{0},j_{1}. For such cuts,

i1i0=j1j0=1,1i0r,1j0s.i_{1}-i_{0}=j_{1}-j_{0}=1,\quad-1\leq i_{0}\leq r,\quad-1\leq j_{0}\leq s.

The gg that occur in the resulting terms are exactly the quasishuffles of {ai:ii0}\left\{a_{i}:i\leq i_{0}\right\} and {bj:jj0}\left\{b_{j}:j\leq j_{0}\right\}. The analogous statement holds for hh. The contribution of cuts (2a) is

(64) qL(i0,j0,v)qR(i0+1,j0+1,v).\displaystyle-q_{L}(i_{0},j_{0},v)\wedge q_{R}(i_{0}+1,j_{0}+1,v).

Now look at cuts (2b) and (2c). The non-distinguished segment containing the vertex or the cut is either ai0+1a_{i_{0}+1} (i0<ri_{0}<r), bj0+1b_{j_{0}+1} (j0<sj_{0}<s), or ai0+1bj0+1a_{i_{0}+1}b_{j_{0}+1} (i0<r,j0<si_{0}<r,j_{0}<s). The terms coming from the sum of (2b) and (2c) are, for these three cases respectively,

(65) (vti0+1)qL(i0,j0,{ti0+1,v})\displaystyle(v-t_{i_{0}+1})q_{L}(i_{0},j_{0},\left\{t_{i_{0}+1},v\right\}) qR(i0+2,j0+1,{ti0+1,v}),\displaystyle\wedge q_{R}(i_{0}+2,j_{0}+1,\left\{t_{i_{0}+1},v\right\}),
(66) (vuj0+1)qL(i0,j0,{uj0+1,v})\displaystyle(v-u_{j_{0}+1})q_{L}(i_{0},j_{0},\left\{u_{j_{0}+1},v\right\}) qR(i0+1,j0+2,{uj0+1,v}),\displaystyle\wedge q_{R}(i_{0}+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\}),
1ti0+1uj0+1((vti0+1)qL(i0,j0,{ti0+1,v})\displaystyle\frac{-1}{t_{i_{0}+1}-u_{j_{0}+1}}\biggl{(}(v-t_{i_{0}+1})q_{L}(i_{0},j_{0},\left\{t_{i_{0}+1},v\right\}) qR(i0+2,j0+2,{ti0+1,v})\displaystyle\wedge q_{R}(i_{0}+2,j_{0}+2,\left\{t_{i_{0}+1},v\right\})
(67) (vui0+1)qL(i0,j0,{uj0+1,v})\displaystyle-(v-u_{i_{0}+1})q_{L}(i_{0},j_{0},\left\{u_{j_{0}+1},v\right\}) qR(i0+2,j0+2,{uj0+1,v})).\displaystyle\wedge q_{R}(i_{0}+2,j_{0}+2,\left\{u_{j_{0}+1},v\right\})\biggr{)}.

Let us assemble the terms of the form fLgRf_{L}\wedge g_{R} and gLgRg_{L}\wedge g_{R} coming from application of the shuffle relations to the qLq_{L} and qRq_{R}. (The terms gLfRg_{L}\wedge f_{R} and fLfRf_{L}\wedge f_{R} are symmetrical.)

The terms fLgRf_{L}\wedge g_{R}, for 1i0<r-1\leq i_{0}<r and 1j0<s-1\leq j_{0}<s, are:

fL(i0,j0,v)\displaystyle-f_{L}(i_{0},j_{0},v) gR(i0+1,j0+1,v)\displaystyle\wedge g_{R}(i_{0}+1,j_{0}+1,v)
+(vti0+1)fL(i0,j0,{ti0+1,v})\displaystyle+(v-t_{i_{0}+1})f_{L}(i_{0},j_{0},\left\{t_{i_{0}+1},v\right\}) gR(i0+2,j0+1,{ti0+1,v}),\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+1,\left\{t_{i_{0}+1},v\right\}),
+(vuj0+1)fL(i0,j0,{uj0+1,v})\displaystyle+(v-u_{j_{0}+1})f_{L}(i_{0},j_{0},\left\{u_{j_{0}+1},v\right\}) gR(i0+1,j0+2,{uj0+1,v}),\displaystyle\wedge g_{R}(i_{0}+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\}),
1ti0+1uj0+1((vti0+1)fL(i0,j0,{ti0+1,v})\displaystyle-\frac{1}{t_{i_{0}+1}-u_{j_{0}+1}}\biggl{(}(v-t_{i_{0}+1})f_{L}(i_{0},j_{0},\left\{t_{i_{0}+1},v\right\}) gR(i0+2,j0+2,{ti0+1,v})\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+2,\left\{t_{i_{0}+1},v\right\})
(vui0+1)fL(i0,j0,{uj0+1,v})\displaystyle-(v-u_{i_{0}+1})f_{L}(i_{0},j_{0},\left\{u_{j_{0}+1},v\right\}) gR(i0+2,j0+2,{uj0+1,v}))\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+2,\left\{u_{j_{0}+1},v\right\})\biggr{)}
=fL(i0,j0,ti0+1)\displaystyle=f_{L}(i_{0},j_{0},t_{i_{0}+1}) gR(i0+1,j0+1,v)\displaystyle\wedge g_{R}(i_{0}+1,j_{0}+1,v)
fL(i0,j0+1,ti0+1)\displaystyle-f_{L}(i_{0},j_{0}+1,t_{i_{0}+1}) gR(i0+1,j0+2,v).\displaystyle\wedge g_{R}(i_{0}+1,j_{0}+2,v).

Summing this over j0j_{0} leaves

(68) fL(i0,0,ti0+1)gR(i0+1,1,v)\displaystyle f_{L}(i_{0},0,t_{i_{0}+1})\wedge g_{R}(i_{0}+1,1,v) fL(i0,s,{us,v})gR(i0+1,s+1,v)\displaystyle-f_{L}(i_{0},s,\left\{u_{s},v\right\})\wedge g_{R}(i_{0}+1,s+1,v)
(69) =fL(i0,0,ti0+1)gR(i0+1,1,v)\displaystyle=f_{L}(i_{0},0,t_{i_{0}+1})\wedge g_{R}(i_{0}+1,1,v) =GL(i0+1).\displaystyle=-G_{L}(i_{0}+1).

If i0=r,j0<si_{0}=r,j_{0}<s, then from (64) and (66) we also have the terms

(70) fL(r,j0,v)\displaystyle-f_{L}(r,j_{0},v) gR(r+1,j0+1,v),\displaystyle\wedge g_{R}(r+1,j_{0}+1,v),
(vuj0+1)fL(r,j0,{uj0+1,v})\displaystyle(v-u_{j_{0}+1})f_{L}(r,j_{0},\left\{u_{j_{0}+1},v\right\}) gR(r+1,j0+2,{uj0+1,v})\displaystyle\wedge g_{R}(r+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\})
(71) =fL(r,j0+1,v)\displaystyle=f_{L}(r,j_{0}+1,v) (gR(r+1,j0+2,v)gR(r+1,j0+2,uj0+1)).\displaystyle\wedge\left(g_{R}(r+1,j_{0}+2,v)-g_{R}(r+1,j_{0}+2,u_{j_{0}+1})\right).

The last term fL(r,j0+1,v)gR(r+1,j0+2,uj0+1)f_{L}(r,j_{0}+1,v)\wedge g_{R}(r+1,j_{0}+2,u_{j_{0}+1}) is FR(j0+1)F_{R}(j_{0}+1). The remaining term and (70) mostly cancel when summed over j0j_{0}, leaving only

Z:=fL(r,0,v)gR(r+1,1,v)+fL(r,s,v)gR(r+1,s+1,v)\displaystyle Z:=-f_{L}(r,0,v)\wedge g_{R}(r+1,1,v)+f_{L}(r,s,v)\wedge g_{R}(r+1,s+1,v)
(72) =𝚲(a1,,ar,jbjc|t1,,tr,v)𝚲(b1,,bs,iaic|u1,,us,v).\displaystyle=-\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\;t_{1},\dots,t_{r},v\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{s},\prod_{i}a_{i}\cdot c\;|\;u_{1},\dots,u_{s},v\big{)}.

If j0=s,i0<rj_{0}=s,i_{0}<r, there are terms

fL(i0,s,v)\displaystyle-f_{L}(i_{0},s,v) gR(i0+1,s+1,v)\displaystyle\wedge g_{R}(i_{0}+1,s+1,v) =0,\displaystyle=0,
(73) (vti0+1)fL(i0,s,{ti0+1,v})\displaystyle(v-t_{i_{0}+1})f_{L}(i_{0},s,\left\{t_{i_{0}+1},v\right\}) gR(i0+2,s+1,{ti0+1,v})\displaystyle\wedge g_{R}(i_{0}+2,s+1,\left\{t_{i_{0}+1},v\right\}) =0.\displaystyle=0.

Finally, i0=r,j0=si_{0}=r,j_{0}=s also produces 0.

Thus the sum of terms fLgRf_{L}\wedge g_{R} is

(74) Zi0=0r1GL(i0+1)j0=0s1FR(j0+1).Z-\sum_{i_{0}=0}^{r-1}G_{L}(i_{0}+1)-\sum_{j_{0}=0}^{s-1}F_{R}(j_{0}+1).

Similarly, terms of the form gLfRg_{L}\wedge f_{R} give

(75) Zj0=0s1FL(j0+1)i0=0r1GR(i0+1).-Z-\sum_{j_{0}=0}^{s-1}F_{L}(j_{0}+1)-\sum_{i_{0}=0}^{r-1}G_{R}(i_{0}+1).

The terms gLgRg_{L}\wedge g_{R} where i0<ri_{0}<r, j0<sj_{0}<s are, similarly:

gL(i0,j0,ti0+1)\displaystyle-g_{L}(i_{0},j_{0},t_{i_{0}+1}) gR(i0+2,j0+1,{ti0+1,v})\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+1,\left\{t_{i_{0}+1},v\right\})
(76) +gL(i0,j0,{ti0+1,uj0+1})\displaystyle+g_{L}(i_{0},j_{0},\left\{t_{i_{0}+1},u_{j_{0}+1}\right\}) gR(i0+2,j0+2,{ti0+1,v}).\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+2,\left\{t_{i_{0}+1},v\right\}).

If i0=r,j0<si_{0}=r,j_{0}<s, we get the terms

gL(r,j0,v)\displaystyle-g_{L}(r,j_{0},v) gR(r+1,j0+1,v),\displaystyle\wedge g_{R}(r+1,j_{0}+1,v),
(77) (vuj0+1)gL(r,j0,{uj0+1,v})\displaystyle(v-u_{j_{0}+1})g_{L}(r,j_{0},\left\{u_{j_{0}+1},v\right\}) gR(r+1,j0+2,{uj0+1,v}).\displaystyle\wedge g_{R}(r+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\}).

If j0=s,i0<rj_{0}=s,i_{0}<r, there are terms

gL(i0,s,v)\displaystyle-g_{L}(i_{0},s,v) gR(i0+1,s+1,v)\displaystyle\wedge g_{R}(i_{0}+1,s+1,v) =0,\displaystyle=0,
(78) (vti0+1)gL(i0,s,{ti0+1,v})\displaystyle(v-t_{i_{0}+1})g_{L}(i_{0},s,\left\{t_{i_{0}+1},v\right\}) gR(i0+2,s+1,{ti0+1,v})\displaystyle\wedge g_{R}(i_{0}+2,s+1,\left\{t_{i_{0}+1},v\right\}) =0.\displaystyle=0.

The case i0=ri_{0}=r, j0=sj_{0}=s again contributes 0.

The terms fLfRf_{L}\wedge f_{R} are symmetrical.

Assembling (75)-(77), the total contribution of cuts (2a/b/c) is

(79) i=1rGL(i)\displaystyle-\sum_{i=1}^{r}G_{L}(i) j=1sFR(j)\displaystyle-\sum_{j=1}^{s}F_{R}(j)
(80) +i0=0r1j0=0s1(gL(i0,j0,ti0+1)\displaystyle+\sum_{i_{0}=0}^{r-1}\sum_{j_{0}=0}^{s-1}\biggl{(}-g_{L}(i_{0},j_{0},t_{i_{0}+1}) gR(i0+2,j0+1,{ti0+1,v})\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+1,\left\{t_{i_{0}+1},v\right\})
(81) +gL(i0,j0,{ti0+1,uj0+1})\displaystyle+g_{L}(i_{0},j_{0},\left\{t_{i_{0}+1},u_{j_{0}+1}\right\}) gR(i0+2,j0+2,{ti0+1,v}))\displaystyle\wedge g_{R}(i_{0}+2,j_{0}+2,\left\{t_{i_{0}+1},v\right\})\biggr{)}
(82) +j0=0s1(gL(r,j0,v)\displaystyle+\sum_{j_{0}=0}^{s-1}\biggl{(}-g_{L}(r,j_{0},v) gR(r+1,j0+1,v)\displaystyle\wedge g_{R}(r+1,j_{0}+1,v)
(83) +(vuj0+1)gL(r,j0,{uj0+1,v})\displaystyle+(v-u_{j_{0}+1})g_{L}(r,j_{0},\left\{u_{j_{0}+1},v\right\}) gR(r+1,j0+2,{uj0+1,v})),\displaystyle\wedge g_{R}(r+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\})\biggr{)},

plus symmetrical terms. ∎

Proof of Lemma 21.

Cancellation of (63) with (79) leaves

(84) 1j0,j1sj1j01F(j0,j1)\sum_{\begin{subarray}{c}1\leq j_{0},j_{1}\leq s\\ j_{1}-j_{0}\geq-1\end{subarray}}F(j_{0},j_{1})

plus the symmetrical term.

Thus δQ\delta Q is the symmetrized sum of expressions (80)-(84). ∎

Lemma-Computation 27 (Step 1(b)).

Modulo elements C(0,x)C(0,x), δRB\delta R_{B} and δRA\delta R_{A} are given by expression (97) below and its symmetric expression, respectively.

Proof of Lemma 27.

We compute δRB\delta R_{B}.

Recall that the distinguished segment of RBR_{B} is jaic\prod_{j}a_{i}\cdot c. We use the above classification of cuts of type (1a/b/c/d) and (2a/b/c).

Consider first the terms fgf\wedge g coming from cuts of type (1). For each such term, let j0,j1j_{0},j_{1} be the minimal and maximal indices of bjb_{j} that do not appear in gg. For fixed j0,j1j_{0},j_{1}, the cuts of type (1a), (1b), and (1c/d) produce precisely the expressions (58), (59), and (60) above. Thus the contribution of cuts of type (1) is F(j0,j1)F(j_{0},j_{1}), and the total contribution is

(85) 0j0,j1sj1j01F(j0,j1).\sum_{\begin{subarray}{c}0\leq j_{0},j_{1}\leq s\\ j_{1}-j_{0}\geq-1\end{subarray}}F(j_{0},j_{1}).

Next, we look at cuts of type (2). We will need a simplified formula for terms where either the vertex or the cut are on a segment indexed with S={s1,,sk}S=\left\{s_{1},\dots,s_{k}\right\}. If k=1k=1 and the vertex is at a nonzero point, we get terms of the form

𝚲(|,s1)𝚲(|s1,).\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,s_{1}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;s_{1},\dots\big{)}.

Applying (19), it is easy to show by induction that, for general kk, the resulting terms are

(86) i=1k𝚲(|,{s1,,si})𝚲(|{si,,sk},).\sum_{i=1}^{k}\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,\left\{s_{1},\dots,s_{i}\right\}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\left\{s_{i},\dots,s_{k}\right\},\dots\big{)}.

For example, if k=2k=2, this becomes

𝚲(|,s1)𝚲(|{s1,s2},)\displaystyle\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,s_{1}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\left\{s_{1},s_{2}\right\},\dots\big{)} +𝚲(|,{s1,s2})𝚲(|s2,)\displaystyle+\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,\left\{s_{1},s_{2}\right\}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;s_{2},\dots\big{)}
=1s1s2(𝚲(|,s1)𝚲(|s1,)\displaystyle=\frac{1}{s_{1}-s_{2}}\biggl{(}\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,s_{1}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;s_{1},\dots\big{)} +𝚲(|,s2)𝚲(|s2,)),\displaystyle+\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,s_{2}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;s_{2},\dots\big{)}\biggr{)},

agreeing with the formula following directly from (19) that has been used in the previous computations.

Similarly, if the vertex is on some segment ss^{\prime}, the term for k=1k=1,

s𝚲(|,{s1,s})𝚲(|{s1,s},),s^{\prime}\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,\left\{s_{1},s^{\prime}\right\}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\left\{s_{1},s^{\prime}\right\},\dots\big{)},

expands into

(87) si=1k𝚲(|,{s1,,si,s})𝚲(|{si,,sk,s},).s^{\prime}\sum_{i=1}^{k}\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,\left\{s_{1},\dots,s_{i},s^{\prime}\right\}\big{)}\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\left\{s_{i},\dots,s_{k},s^{\prime}\right\},\dots\big{)}.

Finally, if the vertex is at a 0 on the segment sis_{i} and the cut is on the segment ss^{\prime}, we get terms

i=1ksi𝚲(|,{s1,,si,s})\displaystyle\sum_{i=1}^{k}s_{i}\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,\left\{s_{1},\dots,s_{i},s^{\prime}\right\}\big{)} 𝚲(|{si,,sk,s},)\displaystyle\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\left\{s_{i},\dots,s_{k},s^{\prime}\right\},\dots\big{)}
(88) +i=1k1𝚲(|,{s1,,si,s})\displaystyle+\sum_{i=1}^{k-1}\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\dots,\left\{s_{1},\dots,s_{i},s^{\prime}\right\}\big{)} 𝚲(|{si+1,,sk,s},).\displaystyle\wedge\mathbf{\Lambda}^{*}\big{(}\dots\;|\;\left\{s_{i+1},\dots,s_{k},s^{\prime}\right\},\dots\big{)}.

These identities can also be shown combinatorially, by interpreting the definition of the multiple generating functions in terms of collapsing segments.

For a term fgf\wedge g coming from a cut of type (2), let j0j_{0} be the maximal index of bjb_{j} appearing in ff and j1j_{1} the minimal index in gg, so j1j0=1j_{1}-j_{0}=1 for cuts (2a) and j1j0=2j_{1}-j_{0}=2 for cuts (2b/c). By (86), for fixed j0j_{0}, the cuts of type (2a) contribute

(89) i=1mgL(i,j0,)\displaystyle-\sum_{i=1}^{m}g_{L}(i,j_{0},\emptyset) gR(i,j0+1,v)\displaystyle\wedge g_{R}(i,j_{0}+1,v)
(90) +gL(r,j0,v)\displaystyle+\,g_{L}(r,j_{0},v) gR(r+1,j0+1,v).\displaystyle\wedge g_{R}(r+1,j_{0}+1,v).

By (87), the cuts of type (2b) contribute

(91) i=1muj0+1gL(i,j0,uj0+1)\displaystyle-\sum_{i=1}^{m}u_{j_{0}+1}g_{L}(i,j_{0},u_{j_{0}+1}) gR(i,j0+2,{uj0+1,v})\displaystyle\wedge g_{R}(i,j_{0}+2,\left\{u_{j_{0}+1},v\right\})
(92) uj0+1gL(r,j0,{uj0+1,v})\displaystyle-\,u_{j_{0}+1}g_{L}(r,j_{0},\left\{u_{j_{0}+1},v\right\}) gR(r+1,j0+2,{uj0+1,v}).\displaystyle\wedge g_{R}(r+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\}).

By (88), the cuts of type (2c) contribute

(93) i=1mtigL(i,j0,uj0+1)\displaystyle\sum_{i=1}^{m}t_{i}g_{L}(i,j_{0},u_{j_{0}+1}) gR(i,j0+2,{uj0+1,v})\displaystyle\wedge g_{R}(i,j_{0}+2,\left\{u_{j_{0}+1},v\right\})
(94) +vgL(r,j0,{uj0+1,v})\displaystyle+\,vg_{L}(r,j_{0},\left\{u_{j_{0}+1},v\right\}) gR(r+1,j0+2,{uj0+1,v})\displaystyle\wedge g_{R}(r+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\})
(95) +i=1mgL(i,j0,uj0+1)\displaystyle+\sum_{i=1}^{m}g_{L}(i,j_{0},u_{j_{0}+1}) gR(i+1,j0+2,{uj0+1,v}).\displaystyle\wedge g_{R}(i+1,j_{0}+2,\left\{u_{j_{0}+1},v\right\}).

The sum of expressions (91), (93), and (95) simplifies to

(96) gL(i,j0,uj0+1)gR(i,j0+2,v).g_{L}(i,j_{0},u_{j_{0}+1})\wedge g_{R}(i,j_{0}+2,v).

Then, letting HB(j0)H_{B}(j_{0}) be the sum of expressions (89), (90), (92), (94), and (96), the coproduct of RBR_{B} is

(97) 0j0,j1sj1j01F(j0,j1)+j=0s1HB(j).\sum_{\begin{subarray}{c}0\leq j_{0},j_{1}\leq s\\ j_{1}-j_{0}\geq-1\end{subarray}}F(j_{0},j_{1})+\sum_{j=0}^{s-1}H_{B}(j).

The coproduct of RAR_{A} is the symmetric expression. ∎

Proof of Lemma 19.

We now compare the results of the computations in Lemmas 21 and 27.

We have computed that δQ\delta Q is the symmetrization of

(80)+(81)+(82)+(83)+(84)(\ref{eqn:dq_2_total2})+(\ref{eqn:dq_2_total2v})+(\ref{eqn:dq_2_total3v})+(\ref{eqn:dq_2_total3})+(\ref{eqn:dq_sum_ffgg})

and δRB+δRA\delta R_{B}+\delta R_{A} is the symmerization of

(85)+j=0n1[(89)+(90)+(92)+(94)+(96)].(\ref{eqn:dr_1})+\sum_{j=0}^{n-1}\bigl{[}(\ref{eqn:dr_2a})+(\ref{eqn:dr_2av})+(\ref{eqn:dr_2bv})+(\ref{eqn:dr_2cv})+(\ref{eqn:dr_2bc})\bigr{]}.

Obviously (85)=(84)(\ref{eqn:dr_1})=(\ref{eqn:dq_sum_ffgg}). Now

(80)=(89),(81)=(96),(82)=(90),(83)=[(92)+(94)],(\ref{eqn:dq_2_total2})=\sum(\ref{eqn:dr_2a}),\quad(\ref{eqn:dq_2_total2v})=\sum(\ref{eqn:dr_2bc}),\quad(\ref{eqn:dq_2_total3v})=\sum(\ref{eqn:dr_2av}),\quad(\ref{eqn:dq_2_total3})=\sum\left[(\ref{eqn:dr_2bv})+(\ref{eqn:dr_2cv})\right],

which finishes the proof. ∎

3.2.4. Proof of Step 2

Here we show the terms of weight (1)(w1)(1)\wedge(w-1) coming from δQδRAδRB\delta Q-\delta R_{A}-\delta R_{B} are 0.

Proof.

We first examine the relevant terms of δQ\delta Q. Let us compute the coefficient LiAL_{i}^{A} occurring with C(0,ai)C(0,a_{i}). These come from shuffles containing segment (ai|ti)\big{(}a_{i}\;|\;t_{i}\big{)}, a segment (aibj|{ti,uj})\big{(}a_{i}b_{j}\;|\;\left\{t_{i},u_{j}\right\}\big{)}, and the segment (c|v)\big{(}c\;|\;v\big{)} (where we write c=iai1jbj1c=\prod_{i}a_{i}^{-1}\prod_{j}b_{j}^{-1}).

Inspect the generating functions of depth 1 𝚲(w,w1|s1,s2)\mathbf{\Lambda}^{*}\big{(}w,w^{-1}\;|\;s_{1},s_{2}\big{)} that appeared in the proof of Lemma 19. All generating functions in the lower half of cuts (1a/b/c/d) were written in a form where (w|s1)\big{(}w\;|\;s_{1}\big{)} is the first segment counterclockwise of the distinguished segment, rather than with the segment counterclockwise of the vertex of the cut as in (25)).

So, by the remark following Lemma 15,

the terms (30) vanish in the coproduct, so the terms arising from these cuts are canceled by the lower-depth shuffle relations in Lemma 19. Similarly, for cuts of type (2), we only have terms (28) contributing the coefficient of C(0,ai1)C(0,a_{i}^{-1}).

For quasishuffles in which (ai|ti)\big{(}a_{i}\;|\;t_{i}\big{)} appears, the terms (29) where some bjb_{j} appears immediately clockwise of aia_{i} gives terms

(98) QSh(ij)r,s(a1,,ai,,ar,b1,,bj,c|\displaystyle{\rm QSh}^{r,s}_{(ij)}\big{(}a_{1},\dots,a_{i},\dots,a_{r},b_{1},\dots,b_{j},c\;|\; t1,,,,tr,u1,,uj,,us,v),\displaystyle t_{1},\dots,\emptyset,\dots,t_{r},u_{1},\dots,u_{j},\dots,u_{s},v\big{)},

where QSh(ij)r,s{\rm QSh}^{r,s}_{(ij)} denotes the sum over only those quasishuffles where aia_{i} collapses with bjb_{j}.

The terms (29) where either ai1a_{i-1} or some ai1bja_{i-1}b_{j} appears immediately clockwise of aia_{i} sum to

(99) QShr1,s(a1,,ai1ai,ai+1,,ar,b1,,bs,c|t1,,ti1,ti+1,,tr,u1,,us,v).\displaystyle{\rm QSh}^{r-1,s}\big{(}a_{1},\dots,a_{i-1}a_{i},a_{i+1},\dots,a_{r},b_{1},\dots,b_{s},c\;|\;t_{1},\dots,t_{i-1},t_{i+1},\dots,t_{r},u_{1},\dots,u_{s},v\big{)}.

Finally, the terms (28) contribute to LiAL^{A}_{i} the terms

(100) tiQSh(i)r,s(a1,,ar,b1,,bs,c|t1,,tr,u1,,us,v)\displaystyle t_{i}{\rm QSh}^{r,s}_{(i)}\big{(}a_{1},\dots,a_{r},b_{1},\dots,b_{s},c\;|\;t_{1},\dots,t_{r},u_{1},\dots,u_{s},v\big{)}

where QSh(i){\rm QSh}_{(i)} denotes the the quasishuffles in which aia_{i} does not collapse with any bjb_{j}.

For quasishuffles in which some (aibj|{ti,uj})\big{(}a_{i}b_{j}\;|\;\left\{t_{i},u_{j}\right\}\big{)} appears, the terms (29) contribute 0, since they arise from cuts of segments containing no 0s. The terms (28) give

1tiuj(tiQSh(ij)r,s(a1,,ai,,ar,b1,,bj,,bs,c|\displaystyle\frac{-1}{t_{i}-u_{j}}\biggl{(}t_{i}{\rm QSh}^{r,s}_{(ij)}\big{(}a_{1},\dots,a_{i},\dots,a_{r},b_{1},\dots,b_{j},\dots,b_{s},c\;|\; t1,,ti,,tr,u1,,,,us,v)\displaystyle t_{1},\dots,t_{i},\dots,t_{r},u_{1},\dots,\emptyset,\dots,u_{s},v\big{)}
ujQSh(ij)r,s(a1,,ai,,ar,u1,,uj,,us,v|\displaystyle-u_{j}{\rm QSh}^{r,s}_{(ij)}\big{(}a_{1},\dots,a_{i},\dots,a_{r},u_{1},\dots,u_{j},\dots,u_{s},v\;|\; t1,,,,tr,u1,,uj,,us,v))\displaystyle t_{1},\dots,\emptyset,\dots,t_{r},u_{1},\dots,u_{j},\dots,u_{s},v\big{)}\biggr{)}
(101) =tiQSh(ij)r,s(a1,,ai,,ar,b1,,bs,c|\displaystyle=-t_{i}{\rm QSh}^{r,s}_{(ij)}\big{(}a_{1},\dots,a_{i},\dots,a_{r},b_{1},\dots,b_{s},c\;|\; t1,,ti,,tr,u1,,uj,,us,v)\displaystyle t_{1},\dots,t_{i},\dots,t_{r},u_{1},\dots,u_{j},\dots,u_{s},v\big{)}
(102) QSh(ij)r,s(a1,,ai,,ar,b1,,bs,c|\displaystyle-{\rm QSh}^{r,s}_{(ij)}\big{(}a_{1},\dots,a_{i},\dots,a_{r},b_{1},\dots,b_{s},c\;|\; t1,,,,tr,u1,,uj,,us,v).\displaystyle t_{1},\dots,\emptyset,\dots,t_{r},u_{1},\dots,u_{j},\dots,u_{s},v\big{)}.

For the segment (c|v)\big{(}c\;|\;v\big{)}, which includes a factor of ai1a_{i}^{-1}, we get a contribution of

(103) vQShr,s(a1,,ar,b1,,bs,c|t1,,tr,u1,,us,v)=vQ.\displaystyle-v{\rm QSh}^{r,s}\big{(}a_{1},\dots,a_{r},b_{1},\dots,b_{s},c\;|\;t_{1},\dots,t_{r},u_{1},\dots,u_{s},v\big{)}=-vQ.

from (28) and

QShr1,s(a1,,am1,b1,,bs,arc|\displaystyle-{\rm QSh}^{r-1,s}\big{(}a_{1},\dots,a_{m-1},b_{1},\dots,b_{s},a_{r}c\;|\; t1,,tr1,u1,,us,tr)\displaystyle t_{1},\dots,t_{r-1},u_{1},\dots,u_{s},t_{r}\big{)}
QShr,s1(a1,,ar,b1,,bn1,bsc|\displaystyle-{\rm QSh}^{r,s-1}\big{(}a_{1},\dots,a_{r},b_{1},\dots,b_{n-1},b_{s}c\;|\; t1,,tr,u1,,us1,us)\displaystyle t_{1},\dots,t_{r},u_{1},\dots,u_{s-1},u_{s}\big{)}
+QShr1,s1(a1,,am1,b1,,bn1,arbsc|\displaystyle+{\rm QSh}^{r-1,s-1}\big{(}a_{1},\dots,a_{m-1},b_{1},\dots,b_{n-1},a_{r}b_{s}c\;|\; t1,,tr1,u1,,us1,{tr,us}),\displaystyle t_{1},\dots,t_{r-1},u_{1},\dots,u_{s-1},\left\{t_{r},u_{s}\right\}\big{)},

from (29), with three terms, depending on which segment (ara_{r}, bsb_{s}, or arbsa_{r}b_{s}) appears clockwise of cc. By the lower-depth shuffle relations, this simplifies to

(104) 𝚲(a1,,ar,jbjc|\displaystyle-\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\; t1,,tr,{u1,,us})\displaystyle t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{s}\right\}\big{)}
(105) 𝚲(b1,,bs,iaic|\displaystyle-\mathbf{\Lambda}^{*}\big{(}b_{1},\dots,b_{s},\prod_{i}a_{i}\cdot c\;|\; u1,,us,{t1,,tr}).\displaystyle u_{1},\dots,u_{s},\left\{t_{1},\dots,t_{r}\right\}\big{)}.

The terms (98) cancel with (102). Summing (101) over jj and adding to (100) results in

(106) tiQShr,s(a1,,ar,b1,,bs,c|t1,,tr,u1,,us,v)=tiQ.t_{i}{\rm QSh}^{r,s}\big{(}a_{1},\dots,a_{r},b_{1},\dots,b_{s},c\;|\;t_{1},\dots,t_{r},u_{1},\dots,u_{s},v\big{)}=t_{i}Q.

Thus LiAL_{i}^{A} is the sum of (99), (103), (104), (105) and (106). Applying lower-depth shuffle relations and (19), this sum simplifies to

(107) LiA=𝚲(a1,,ai1ai,ai+1,,ar,jbjc|\displaystyle L_{i}^{A}=\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{i-1}a_{i},a_{i+1},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\; t1,,ti1,ti+1,,tr,{u1,,us}{v})\displaystyle t_{1},\dots,t_{i-1},t_{i+1},\dots,t_{r},\left\{u_{1},\dots,u_{s}\right\}\sqcup\left\{v\right\}\big{)}
(108) 𝚲(a1,,ar,jbjc|\displaystyle-\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\; t1,,tr,{u1,,us})\displaystyle t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{s}\right\}\big{)}
(109) +(tiv)(QRB).\displaystyle+(t_{i}-v)(Q-R_{B}).

Now let us compute the coefficient MiAM_{i}^{A} occuring with C(0,ai)C(0,a_{i}) in δ(RA)\delta(R_{A}). For the segment (ai|ti)\big{(}a_{i}\;|\;t_{i}\big{)} in RAR_{A}, (28) and (29) contribute the terms

(110) ti𝚲(a1,,ai,,ar,jbjc|\displaystyle t_{i}\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{i},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\; t1,,ti,,tr,{u1,,us}{v})\displaystyle t_{1},\dots,t_{i},\dots,t_{r},\left\{u_{1},\dots,u_{s}\right\}\sqcup\left\{v\right\}\big{)} =tiRA,\displaystyle=t_{i}R_{A},
(111) 𝚲(a1,,ai1ai,ai+1,,ar,jbjc|\displaystyle\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{i-1}a_{i},a_{i+1},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\; t1,,ti1,ti+1,,tr,{u1,,us}{v}),\displaystyle t_{1},\dots,t_{i-1},t_{i+1},\dots,t_{r},\left\{u_{1},\dots,u_{s}\right\}\sqcup\left\{v\right\}\big{)},

where the second term appears only if i>1i>1.

The distinguished segment (iai1|{uj}{v})\big{(}\prod_{i}a_{i}^{-1}\;|\;\left\{u_{j}\right\}\sqcup\left\{v\right\}\big{)} contributes only a term (28). By an argument similar to that in Lemma 27, this term can be written

(112) vRA𝚲(a1,,ar,jbjc|t1,,tr,{u1,,us}).\displaystyle-vR_{A}-\mathbf{\Lambda}^{*}\big{(}a_{1},\dots,a_{r},\prod_{j}b_{j}\cdot c\;|\;t_{1},\dots,t_{r},\left\{u_{1},\dots,u_{s}\right\}\big{)}.

Combining (107)-(112), we find that

(LiAMiA)=(tiv)(QRARB).(L_{i}^{A}-M_{i}^{A})=(t_{i}-v)(Q-R_{A}-R_{B}).

Therefore, adding the symmetric terms for the C(0,bj)C(0,b_{j}),

δ(QRARB)=[i=1rC(0,ai)(tiv)+j=1sC(0,bj)(ujv)](QRARB)\delta(Q-R_{A}-R_{B})=\left[\sum_{i=1}^{r}C(0,a_{i})(t_{i}-v)+\sum_{j=1}^{s}C(0,b_{j})(u_{j}-v)\right]\wedge(Q-R_{A}-R_{B})

modulo lower-depth shuffle relations and elements (weight 1)(weight 1)(\text{weight 1})\wedge(\text{weight 1}).

3.2.5. Conclusion

We are ready to use the coproduct we have computed to reduce the proof of the relations to a simple base case.

Proof of Theorem 5(a).

We induct on the depth r+sr+s. When r=0r=0 or s=0s=0, QSh¯r,s\overline{{\rm QSh}}^{r,s} is identically 0.

If r,s>0r,s>0, taking coproduct on both sides of (37) and using that δ2=0\delta^{2}=0, one deduces that δ(QRARB)=0\delta(Q-R_{A}-R_{B})=0 modulo shuffle relations of depth <r+s<r+s and terms (weight 1)(weight 1)\text{(weight 1)}\wedge\text{(weight 1)}.

When no terms C(0,x)C(0,y)C(0,x)\wedge C(0,y) are present in the coproduct, Lemma 18 and Lemma 37 imply that δ(QRARB)\delta(Q-R_{A}-R_{B}) lies in the ideal generated by lower-depth relations.

These terms appear only in a base case: the constant term of the shuffle relation for r=s=1r=s=1. Showing the coproduct of this term is 0 amounts to proving the identity

(113) δ([C(a|0,b|0,c|0)+C(b|0,a|0,c|0)C(ab|1,c|0)]C(a|0,bc|1)C(b|0,ac|1))=0.\delta\left(\left[C^{*}(a|0,b|0,c|0)+C^{*}(b|0,a|0,c|0)-C^{*}(ab|1,c|0)\right]-C^{*}(a|0,bc|1)-C^{*}(b|0,ac|1)\right)=0.

We compute directly that the left side of (113) is

C(1,a)C(1,ab)+C(1,ab)(C(1,b)+C(0,a))+(C(1,b)+C(0,a))\displaystyle\quad C(1,a)\wedge C(1,ab)+C(1,ab)\wedge(C(1,b)+C(0,a))+(C(1,b)+C(0,a)) C(1,a)\displaystyle\wedge C(1,a)
+C(1,b)C(1,ab)+C(1,ab)(C(1,a)+C(0,b))+(C(1,a)+C(0,b))\displaystyle+\,C(1,b)\wedge C(1,ab)+C(1,ab)\wedge(C(1,a)+C(0,b))+(C(1,a)+C(0,b)) C(1,b)\displaystyle\wedge C(1,b)
C(1,ab)C(0,ab)+C(1,a)C(0,a)+C(1,b)\displaystyle-\,C(1,ab)\wedge C(0,ab)+C(1,a)\wedge C(0,a)+C(1,b) C(0,b)\displaystyle\wedge C(0,b)
=C(1,ab)C(0,a)+C(0,a)\displaystyle=\quad C(1,ab)\wedge C(0,a)+C(0,a) C(1,a)\displaystyle\wedge C(1,a)
+C(1,ab)C(0,b)+C(0,b)\displaystyle+\,C(1,ab)\wedge C(0,b)+C(0,b) C(1,b)\displaystyle\wedge C(1,b)
C(1,ab)C(0,ab)+C(1,a)C(0,a)+C(1,b)\displaystyle-\,C(1,ab)\wedge C(0,ab)+C(1,a)\wedge C(0,a)+C(1,b) C(0,b)\displaystyle\wedge C(0,b) =0.\displaystyle=0.

The theorem is proved. ∎

4. Specialization theorem for Hodge correlators

We now study how the Hodge correlators over a base BB behave when the sections collide. This will require extending the theory of Hodge correlators to nodal curves.

4.0.1. The correlator Lie coalgebra for nodal curves

Recall the moduli space 0,n\mathcal{M}_{0,n}^{\prime} of nn distinct points and a distinguished tangent vector on 1\mathbb{P}^{1}. Its Deligne-Mumford compactification ¯0,n\overline{\mathcal{M}}_{0,n}^{\prime} consists of the nodal curves of genus 0, i.e., those whose dual graph is a tree and in which every component is a punctured projective line. with nn marked points and a distinguished tangent vector vv_{\infty}.

Let X=iXiX=\bigcup_{i}X_{i} be a genus 0 nodal curve with a set of punctures SS. Let TT be the dual tree of XX, with vertices indexed by ii corresponding to XiX_{i}, rooted at the component 0 with the base point s0X0s_{0}\in X_{0}, oriented away from the root (write iji\to j if (i,j)(i,j) is an edge). Choose a coordinate ziz_{i} on each XiX_{i} such that the point joining the component to its parent XjX_{j} is (zi=,zj=vji)(z_{i}=\infty,z_{j}=v_{ji}), and the base point on X0X_{0} is at z0=z_{0}=\infty with tangent vector vv_{\infty}. Let SiS_{i} be the set of punctures on XiX_{i}. Let Ni={vij:ij}N_{i}=\left\{v_{ij}:i\to j\right\}.

We define the correlator Lie coalgebra for the nodal curve XX by

(114) 𝒞X,S,v=i𝒞Xi,SiNi,vi,\mathcal{CL}^{\vee}_{X,S,v_{\infty}}=\bigoplus_{i}\mathcal{CL}^{\vee}_{X_{i},S_{i}\cup N_{i},v_{i}},

where viv_{i} is the tangent vector 1zi2zi\frac{-1}{z_{i}^{2}}\frac{\partial}{\partial z_{i}} at zi=z_{i}=\infty.

It coincides with the usual definition if XX is smooth, justifying the notation. If XX is not smooth, it is different from 𝒞~X,S,s0\widetilde{\mathcal{CL}}^{\vee}_{X,S,s_{0}}, the coalgebra naively defined as the tensor algebra of SS modulo cyclic symmetry and shuffle relations with a H2(X)H_{2}(X) coefficient. They are related in the following way. For each ii, there is a surjective coalgebra morphism to the component of the direct sum corresponding to XiX_{i}:

𝒞~X,S,s0πi𝒞Xi,SiNi,vi.\widetilde{\mathcal{CL}}^{\vee}_{X,S,s_{0}}\xrightarrow{\pi_{i}}\mathcal{CL}^{\vee}_{X_{i},S_{i}\cup N_{i},v_{i}}.

To define it on a generator (x1xn)[Xi](x_{1}\otimes\dots\otimes x_{n})\otimes[X_{i}], let pp be the common parent of the components containing the xjx_{j}. If pip\neq i, the ii-th component of the map is 0. Otherwise, set

πi(x)={x,xXizi=vijNi,xXk, where  path ijk,\displaystyle\pi_{i}(x)=\begin{cases}x,&x\in X_{i}\\ z_{i}=v_{ij}\in N_{i},&\text{$x\in X_{k}$, where $\exists$ path $i\to j\to\dots\to k$}\end{cases},

extended to preserve the tensor product. That is, points in XiX_{i} remain, while points in components below XiX_{i} collapse to the nearest node on XiX_{i}. Evidently this map preserves the coproduct and defining relations. Taking the direct sum of the maps πi\pi_{i}, we have produced a coalgebra morphism:

π:𝒞~X,S,v𝒞X,S,v.\pi:\widetilde{\mathcal{CL}}^{\vee}_{X,S,v_{\infty}}\to\mathcal{CL}^{\vee}_{X,S,v_{\infty}}.

It preserves the decomposition of the domain by H2(X)=iH2(Xi)H_{2}(X)=\bigoplus_{i}H_{2}(X_{i}).

In particular, if (X,S,v0)(X,S,v_{0}) vary over a base B0,nB\to\mathcal{M}_{0,n}^{\prime}, and the variation extends to B¯¯0,n\overline{B}\to\overline{\mathcal{M}}_{0,n}^{\prime}, with D=B¯BD=\overline{B}\setminus B, then we have a degeneration map

(115) πD:𝒞X/B,S,v𝒞~X/D,S,v𝒞X/D,S,v,\pi_{D}:\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}}\to\widetilde{\mathcal{CL}}^{\vee}_{X/D,S,v_{\infty}}\to\mathcal{CL}^{\vee}_{X/D,S,v_{\infty}},

where the first map simply applies the induced map on H2H_{2} and the second map is the quotient defined above. The composition forgets the way in which the sections in SS collided at boundary of BB.

4.0.2. Specialization theorem

Recall that an element of 𝒞X/B,S,v\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}} over a base B0,nB\to\mathcal{M}_{0,n}^{\prime} determines, by the map CorHod\text{\rm Cor}_{\text{\rm Hod}}, a variation of Hodge structures over BB, and, by the period map pp, a smooth function on BB. The maps CorHod\text{\rm Cor}_{\text{\rm Hod}} and pp also exist for XX a nodal curve, extended by linearity from the definition (114).

Theorem 28.

Suppose B0,nB\to\mathcal{M}_{0,n}^{\prime} is a family of curves (X,S,v)(X,S,v_{\infty}) extending to B¯¯0,n\overline{B}\to\overline{\mathcal{M}}_{0,n}^{\prime}, with D=B¯BD=\overline{B}\setminus B a normal crossings divisor, and suppose x𝒞X/B,S,s0x\in\mathcal{CL}^{\vee}_{X/B,S,s_{0}} of weight n>1n>1.

  1. (a)

    The Deligne’s canonical extension to DD of the variation of framed mixed Hodge structures determined by CorHod(x)\text{\rm Cor}_{\text{\rm Hod}}(x) is independent of the normal vector to DD. Thus there is a specialized map SpecDCorHod:(𝒞X/B,S,vLieHT/D)w>1\operatorname{Spec}_{D}\text{\rm Cor}_{\text{\rm Hod}}:\left(\mathcal{CL}_{X/B,S,v_{\infty}}\to\text{\rm Lie}_{\text{\rm HT}/D}^{\vee}\right)_{w>1}.

  2. (b)

    This specialized map coincides with the Hodge correlator of the degeneration map:

    (𝒞X/B,S,v)w>1πDCorHod(𝒞X/D,S,v)w>1CorHod(LieHT/B)SpecD(LieHT/D)..\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 24.63057pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-21.14938pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\left(\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}}\right)_{w>1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.46535pt\raise 5.19028pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.82361pt\hbox{$\scriptstyle{\pi_{D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 47.19424pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-24.63057pt\raise-20.94443pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\text{\rm Cor}_{\text{\rm Hod}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.49998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 47.19424pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\left(\mathcal{CL}^{\vee}_{X/D,S,v_{\infty}}\right)_{w>1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 68.34363pt\raise-20.94443pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\text{\rm Cor}_{\text{\rm Hod}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 68.34363pt\raise-30.49998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-21.41154pt\raise-41.88885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\text{\rm Lie}_{\text{\rm HT}/B}^{\vee})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.36319pt\raise-35.81386pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\operatorname{Spec}_{D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 45.41154pt\raise-41.88885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 45.41154pt\raise-41.88885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\text{\rm Lie}_{\text{\rm HT}/D}^{\vee}).}$}}}}}}}\ignorespaces}}}}\ignorespaces.
  3. (c)

    Let t=0t=0 be a local equation for DD. Then

    limt0p(CorHod(xt))=p(CorHod(xt=0)).\lim_{t\to 0}p(\text{\rm Cor}_{\text{\rm Hod}}(x_{t}))=p(Cor_{H}od(x_{t=0})).
Proof.

Let x𝒞X/B,S,vx\in\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}} be a generator of weight w>1w>1. For any vv a normal vector to DD, we get the specialized framed mixed Hodge-Tate structure SpecDvCorHod(x)\operatorname{Spec}_{D}^{v}\text{\rm Cor}_{\text{\rm Hod}}(x).

We must show that:

  1. (1)

    The periods of CorHod(x)\text{\rm Cor}_{\text{\rm Hod}}(x) extend continuously to DD.

  2. (2)

    The coproduct of SpecDvCorHod(x)\operatorname{Spec}_{D}^{v}\text{\rm Cor}_{\text{\rm Hod}}(x) does not depend on the direction of specialization vv at any smooth point of DD.

  3. (3)

    The periods of the specializations (i.e., the limits of the periods at DD) coincide with the periods of the degeneration to DD.

We will prove (1-3) by induction on the weight. First, let us see how they imply the result.

Assuming (2), the coproduct of SpecDvCorHod(x)\operatorname{Spec}_{D}^{v}\text{\rm Cor}_{\text{\rm Hod}}(x) is independent of vv. Because the coproduct commutes with SpecDv\operatorname{Spec}_{D}^{v}, this element is independent of vv up to Ext1((0),(n))\operatorname{Ext}^{1}(\mathbb{R}(0),\mathbb{R}(n)), which is 1-dimensional and controlled by the period. By (1), the period is independent of the direction of specialization, which gives (a). By (3), it coincides with the period of the degeneration, which gives (b). Then (c) follows by the definitions from (b).

To show (1), we let {εi=0}\left\{\varepsilon_{i}=0\right\} be a set of smooth local equations for DD and prove that p(CorHod(x))p(\text{\rm Cor}_{\text{\rm Hod}}(x)) can be represented locally as a polynomial in the logεi\log\varepsilon_{i} such that the terms with logεi\log\varepsilon_{i} appearing in positive degree have coefficients vanishing along {εi=0}\left\{\varepsilon_{i}=0\right\} (tame logarithmic singularities). This will follow from the differential equations on the periods. Note that in weight 1, the period of C(x,y)C(x,y) has a (not tame) logarithmic singularity along x=yx=y. In weight >1>1, we proceed by induction.

Consider a simple element x=x0xn𝒞X/B,S,vx=x_{0}\otimes\dots\otimes x_{n}\in\mathcal{CL}^{\vee}_{X/B,S,v_{\infty}} (n>1n>1). Suppose that not all xix_{i} collide on DD, so we must only consider the summand of the nodal 𝒞X/D,S,s0\mathcal{CL}^{\vee}_{X/D,S,s_{0}} corresponding to the component containing the base point. The terms of δ(x)\delta(x) can be grouped into those of two forms:

  1. (i)

    xx′′x^{\prime}\wedge x^{\prime\prime}, where not all sections in xx^{\prime} and in x′′x^{\prime\prime} collide to the same section on DD;

  2. (ii)

    x(x1′′x2′′)x^{\prime}\wedge(x^{\prime\prime}_{1}-x^{\prime\prime}_{2}), where not all sections in xx^{\prime} collapse on DD, but x1′′x^{\prime\prime}_{1} and x2′′x^{\prime\prime}_{2} coincide on DD.

By the inductive hypothesis, the specialization of δ(x)\delta(x) does not depend on the direction of specialization: for terms (i), xx^{\prime} and x′′x^{\prime\prime} satisfy (2), while in terms (ii) the x1′′x2′′x^{\prime\prime}_{1}-x^{\prime\prime}_{2} vanish under specialization to DD. This gives (2).

For (1), from the differential equations on the periods (16), we see that dBp(CorHod(x))d_{B}p(\text{\rm Cor}_{\text{\rm Hod}}(x)) is a sum of terms that are smooth over BB with logarithmic singularities along DD (from type (i)) and terms that vanish along DD by the inductive hypothesis (from type (ii)). We conclude that pv(x)p^{v_{\infty}}(x) has tame logarithmic singularities along DD.

If all xix_{i} collide on DD, we simply pass to their common parent component and apply the same argument.

We conclude with (3). We have shown that the specializations of CorHodv0\text{\rm Cor}_{\text{\rm Hod}}^{v_{0}} and its coproduct to DD exist at every point and their periods are independent of vv, and thus the specialized period map pCorHodp\circ\text{\rm Cor}_{\text{\rm Hod}} is equal to the period of the degeneration up to adding a constant for each smooth component of the smooth locus of DD. We must show the constant 0.

It is enough to show this for DD a lowest-codimension boundary stratum in ¯g,n\overline{\mathcal{M}}_{g,n}^{\prime}. We are done by the next lemma.

Lemma 29.

Let II be a proper subset of {0,1,,n}\left\{0,1,\dots,n\right\} (n>1n>1) and x0,,xnx_{0},\dots,x_{n}\in\mathbb{C}^{*} with xixjx_{i}\neq x_{j} if iji\neq j and either i,jIi,j\in I or i,jIi,j\notin I. Let

xi(t)={txiiI,xiiI.x_{i}(t)=\begin{cases}tx_{i}&i\in I,\\ x_{i}&i\notin I\end{cases}.

Then

Cor(x0(t),x1(t),,xn(t))\text{\rm Cor}_{\mathcal{H}}(x_{0}(t),x_{1}(t),\dots,x_{n}(t))

is continuous at t=0t=0.

Proof.

For n=2n=2, this amounts to continuity of 2\mathcal{L}_{2} at 1.

In the proof of Theorem 28 it was established that

limt0Cor(x0(t),x1(t),,xn(t))Cor(x0(0),x1(0),,xn(0))\lim_{t\to 0}\text{\rm Cor}_{\mathcal{H}}(x_{0}(t),x_{1}(t),\dots,x_{n}(t))-\text{\rm Cor}_{\mathcal{H}}(x_{0}(0),x_{1}(0),\dots,x_{n}(0))

is independent of the xix_{i}, for generic xix_{i}. Let us integrate this difference over (x0,,xn)(S1)n+1(x_{0},\dots,x_{n})\in(S^{1})^{n+1}, with respect to the standard measures μ(xi)\mu(x_{i}) of volume 1 on S1={|z|=1}S^{1}=\left\{\left|z\right|=1\right\}\subset\mathbb{C}.

The limit is uniform in the directions xix_{i} (iIi\in I), and so

limt0Cor(x0(t),x1(t),,xn(t))dμ(xi)=limt0Cor(x0(t),x1(t),,xn(t))dμ(xi).\int\lim_{t\to 0}\text{\rm Cor}_{\mathcal{H}}(x_{0}(t),x_{1}(t),\dots,x_{n}(t))\,\prod d\mu(x_{i})=\lim_{t\to 0}\int\text{\rm Cor}_{\mathcal{H}}(x_{0}(t),x_{1}(t),\dots,x_{n}(t))\,\prod d\mu(x_{i}).

To conclude, it suffices to show that

(116) Cor(x0(t),x1(t),,xn(t))dμ(xi)=0.\int\text{\rm Cor}_{\mathcal{H}}(x_{0}(t),x_{1}(t),\dots,x_{n}(t))\,\prod d\mu(x_{i})=0.

for all tt.

For any tree TT entering into the Feynman integral expression for (116), choose a pair of boundary vertices (without loss of generality, labeled x0x_{0} and x1x_{1}) incident to a common internal vertex vv with corresponding variable xvx_{v}, and let xwx_{w} be variable corresponding to the third vertex incident to vv. Then the integral over the xix_{i} contains the term

x0,x1(2(xwx0(t)xwx1(t))(terms independent of x0(t),x1(t)))𝑑μ(x0)𝑑μ(x1).\int_{x_{0},x_{1}}\left(\int\mathcal{L}_{2}\left(\frac{x_{w}-x_{0}(t)}{x_{w}-x_{1}(t)}\right)\wedge(\text{terms independent of $x_{0}(t),x_{1}(t)$})\right)\,d\mu(x_{0})\,d\mu(x_{1}).

Exchanging the two integrals and noting that 2(zazb)\mathcal{L}_{2}(\frac{z-a}{z-b}) changes sign under the involution

aa¯z2|z|2,bb¯z2|z|2,a\mapsto\overline{a}\frac{z^{2}}{\left|z\right|^{2}},\quad b\mapsto\overline{b}\frac{z^{2}}{\left|z\right|^{2}},

we conclude that this expression is 0. ∎

The specialization theorem states is that when the punctures labeling an element of 𝒞\mathcal{CL}^{\vee} collide, only the nearest possible to the base point component of the resulting nodal curve determines the limit Hodge correlator. We obtain as a corollary Theorem 11:

Theorem.

The Hodge correlators Cor(z0,,zn)\text{\rm Cor}_{\mathcal{H}}(z_{0},\dots,z_{n}) are continuous on n+1{z0==zn}\mathbb{C}^{n+1}\setminus\left\{z_{0}=\dots=z_{n}\right\}.

For example, 2\mathcal{L}_{2} is continuous with a tame logarithmic singularity at 1, but 2(acbc)\mathcal{L}_{2}\left(\frac{a-c}{b-c}\right) has no limit as a,b,c0a,b,c\to 0.

5. The second shuffle relations

5.1. Proofs of Theorems 7 and 9

In this section we will prove the second shuffle relations for Hodge and motivic correlators.

5.1.1. Proof for Hodge correlators

Recall Theorem 7:

Theorem.
  1. (a)

    Restricted to the subspace of 𝒞X,S,v\mathcal{CL}_{X,S,v_{\infty}}^{\vee} generated by elements (x0xn)(1)(x_{0}\otimes\dots\otimes x_{n})(1) with not all xix_{i} equal, the map CorHod\text{\rm Cor}_{\text{\rm Hod}} factors through 𝒟()\mathcal{D}^{\circ}(\mathbb{C}^{*}).

  2. (b)

    Suppose that r,s>1r,s>1 and that not all ni=0n_{i}=0 or not all wi=1w_{i}=1. Then the Hodge correlators satisfy the relation:

    σΣ¯r,s(1)r+sMσCorHod(wσ1(1)|nσ1(1),,wσ1(Mσ)|nσ1(Mσ),w0|n0)\displaystyle\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{\sigma^{-1}(1)}|n_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})}|n_{\sigma^{-1}(M_{\sigma})},w_{0}|n_{0})
    CorHod(w1|n1,,wr|nr,w{r+1,,r+s,0}|n{r+1,,r+s,0})\displaystyle-\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{1}|n_{1},\dots,w_{r}|n_{r},w_{\left\{r+1,\dots,r+s,0\right\}}|n_{\left\{r+1,\dots,r+s,0\right\}})
    CorHod(wr+1|nr+1,,wr+s|nr+s,w{1,,r,0}|n{1,,r,0})\displaystyle-\text{\rm Cor}_{\text{\rm Hod}}^{*}(w_{r+1}|n_{r+1},\dots,w_{r+s}|n_{r+s},w_{\left\{1,\dots,r,0\right\}}|n_{\left\{1,\dots,r,0\right\}}) =0,\displaystyle=0,

    where

    nS=iS(ni+1)1,wS=iSwi.n_{S}=\sum_{i\in S}(n_{i}+1)-1,\quad w_{S}=\prod_{i\in S}w_{i}.
  3. (c)

    The Hodge correlators satisfy all specializations of this relation as any subset of the wiw_{i} (1in)(1\leq i\leq n) approaches 0.

Proof.

For fixed rr, ss, and nin_{i}, consider the (r,s)(r,s)-second shuffle relation in (b). It is a family of framed mixed Hodge-Tate structures over

S={(w0,,wn)()n+1:w0wn=1}.S=\left\{(w_{0},\dots,w_{n})\in(\mathbb{C}^{*})^{n+1}:w_{0}\dots w_{n}=1\right\}.

To show (b), it suffices to show the family is trivial as an element of LieHT\text{\rm Lie}_{\text{\rm HT}}^{\vee} over every point of SS, except at (1,,1)(1,\dots,1) if all ni=0n_{i}=0. This is equivalent to (a) by the definitions, as the Hodge correlators are already known to satisfy the defining relations in 𝒟~()\widetilde{\mathcal{D}}^{\circ}(\mathbb{C}^{*}).

Each term of this relation is an element

CorHod(1,z1,,zn),\text{\rm Cor}_{\text{\rm Hod}}(1,z_{1},\dots,z_{n}),

where each zkz_{k} is either 0 or monomial in the wiw_{i}. By Theorem 10, it is a variation 𝐕\mathbf{V} of framed mixed Hodge-Tate structures over

T={(z1,,zn)()n}(diagonals).T=\left\{(z_{1},\dots,z_{n})\in(\mathbb{C}^{*})^{n}\right\}\setminus\left(\text{\rm diagonals}\right).

We first show by induction on the weight nn that all such variations is trivial.

In the base case n=1n=1, there are no second shuffle relations.

For the induction hypothesis, suppose n>1n>1 and (b) holds in weights 1<w<n1<w<n. Fix rr, ss, and nin_{i} and let 𝐕\mathbf{V} be the variation defined above. By the induction hypothesis, δCorHod(𝐕)\delta\text{\rm Cor}_{\text{\rm Hod}}(\mathbf{V}) vanishes, and thus, by rigidity, 𝐕\mathbf{V} is a constant variation, determined pointwise as an element of Ext1((0),(n))\operatorname{Ext}^{1}(\mathbb{R}(0),\mathbb{R}(n)) by the period. We show the period is 0.

The specialization theorem (§4) implies that the period of 𝐕\mathbf{V} is continuous away from the main diagonal in n+1\mathbb{C}^{n+1}. Unless all ni=0n_{i}=0 or all wi=1w_{i}=1, in no term of the relation (b) do all points collide to the main diagonal. By Corollary 11, the specialization of the period at w1,,wn=0w_{1},\dots,w_{n}=0 is equal to the substitution wi=0w_{i}=0. Under this substitution, the period of each term of the relation becomes

Cor(1,0,,0)=0.\text{\rm Cor}_{\mathcal{H}}(1,0,\dots,0)=0.

Therefore, 𝐕\mathbf{V} is trivial over TT.

Because TT is dense in n\mathbb{C}^{n}, the relation at all points – except w1==wn=1w_{1}=\dots=w_{n}=1 if all ni=0n_{i}=0 – follows by the specialization theorem. This completes the proof of (b) and (c). ∎

Applying the period map, we immediately obtain Theorem 1:

Theorem.
  1. (a)

    Suppose that r,s>1r,s>1 and that not all ni=0n_{i}=0 or not all wi=1w_{i}=1. Then the Hodge correlators satisfy the relation:

    σΣ¯r,s(1)r+sMσCor(wσ1(1)|nσ1(1),,wσ1(Mσ)|nσ1(Mσ),w0|n0)\displaystyle\sum_{\sigma\in\overline{\Sigma}_{r,s}}(-1)^{r+s-M_{\sigma}}\text{\rm Cor}_{\mathcal{H}}^{*}(w_{\sigma^{-1}(1)}|n_{\sigma^{-1}(1)},\dots,w_{\sigma^{-1}(M_{\sigma})}|n_{\sigma^{-1}(M_{\sigma})},w_{0}|n_{0})
    Cor(w1|n1,,wr|nr,w{r+1,,r+s,0}|n{r+1,,r+s,0})\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{1}|n_{1},\dots,w_{r}|n_{r},w_{\left\{r+1,\dots,r+s,0\right\}}|n_{\left\{r+1,\dots,r+s,0\right\}})
    Cor(wr+1|nr+1,,wr+s|nr+s,w{1,,r,0}|n{1,,r,0})\displaystyle-\text{\rm Cor}_{\mathcal{H}}^{*}(w_{r+1}|n_{r+1},\dots,w_{r+s}|n_{r+s},w_{\left\{1,\dots,r,0\right\}}|n_{\left\{1,\dots,r,0\right\}}) =0,\displaystyle=0,

    where

    nS=iS(ni+1)1,wS=iSwi.n_{S}=\sum_{i\in S}(n_{i}+1)-1,\quad w_{S}=\prod_{i\in S}w_{i}.
  2. (b)

    The Hodge correlators satisfy all specializations of this relation as any subset of the wiw_{i} (1in)(1\leq i\leq n) approaches 0.

5.1.2. Proof for motivic correlators

Recall Theorem 9:

Theorem.

Let FF be a number field.

  1. (a)

    Restricted to the subspace of (𝒞X,S,vMot)\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee} generated by elements (x0xn)(1)(x_{0}\otimes\dots\otimes x_{n})(1) with not all xix_{i} equal, the map CorMot\text{\rm Cor}_{\text{\rm Mot}} factors through 𝒟(F×)\mathcal{D}^{\circ}(F^{\times}).

  2. (b)

    Suppose that r,s>1r,s>1 and that not all ni=0n_{i}=0 or not all wi=1w_{i}=1. Then the motivic correlators satisfy the same relation as in Theorem 7, with CorHod\text{\rm Cor}_{\text{\rm Hod}}^{*} replaced by CorMot\text{\rm Cor}_{\text{\rm Mot}}^{*}.

  3. (c)

    The motivic correlators satisfy all specializations of this relation as any subset of the wiw_{i} (1in)(1\leq i\leq n) approaches 0.

Proof.

Fix an embedding F𝑟F\xrightarrow{r}\mathbb{C}. It induces a map 𝒟(F×)𝒟(F×)\mathcal{D}^{\circ}(F^{\times})\to\mathcal{D}^{\circ}(F^{\times}), which we also denote by rr.

Denoting by 𝒞\mathcal{CL}^{\vee\circ} the subalgebras generated by elements (x1xn)(1)(x_{1}\otimes\dots\otimes x_{n})(1) where not all xix_{i} are equal, we have the diagram

(𝒞X,S,vMot)CorMotrLieMT/Fr𝒟(F×)r𝒞X,S,vCorHodLieHTp𝒟()
,
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 25.61159pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\\&&&\\&\\}}}\ignorespaces{\hbox{\kern-25.61159pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 51.77693pt\raise 6.075pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\text{\rm Cor}_{\text{\rm Mot}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 110.15886pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-41.46997pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{r}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-71.55109pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 49.76714pt\raise-30.60191pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 64.963pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 110.15886pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{\rm Lie}_{{\text{\rm MT}/F}}^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 128.07332pt\raise-41.46997pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{r}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 128.07332pt\raise-71.55109pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-41.7611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 49.76714pt\raise-41.7611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{D}^{\circ}(F^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 118.71687pt\raise-6.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 67.963pt\raise-82.85732pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{r}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 67.963pt\raise-112.81744pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-18.45601pt\raise-82.93996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{CL}_{X,S,v_{\infty}}^{\vee\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 50.84354pt\raise-113.6384pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 44.72136pt\raise-76.85385pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\text{\rm Cor}_{\text{\rm Hod}}\quad\quad}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 114.21498pt\raise-82.93996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 64.963pt\raise-82.93996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 114.21498pt\raise-82.93996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{\rm Lie}_{\text{\rm HT}}^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 147.60988pt\raise-77.75246pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{p}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 169.98778pt\raise-82.93996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 169.98778pt\raise-82.93996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{R}}$}}}}}}}{\hbox{\kern-3.0pt\raise-123.95354pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 50.84354pt\raise-123.95354pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{D}^{\circ}(\mathbb{C}^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 120.87126pt\raise-87.85329pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces,

where the lower half commutes by Theorem 7 and the vertical maps are induced by rr.

It is necessary to show the dashed arrow is well-defined, i.e., that CorMot\text{\rm Cor}_{\text{\rm Mot}} vanishes on the kernel of the map (𝒞X,S,vMot)𝒟(F×)\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee\circ}\to\mathcal{D}^{\circ}(F^{\times}).

Commutativity of the diagram for every embedding rr implies the result. Precisely, we argue by induction.

In weight 1, then there are no first or second shuffles, and the shuffle relations are mapped to 0 by CorMot\text{\rm Cor}_{\text{\rm Mot}}. Indeed, we have CorMot(0,0)=0\text{\rm Cor}_{\text{\rm Mot}}(0,0)=0 and CorMot(ab,ac)=CorMot(0,a)+CorMot(b,c)\text{\rm Cor}_{\text{\rm Mot}}(ab,ac)=\text{\rm Cor}_{\text{\rm Mot}}(0,a)+\text{\rm Cor}_{\text{\rm Mot}}(b,c), since

CorMot(a,b)=(ab)(LieMT/F)w=1F×.\text{\rm Cor}_{\text{\rm Mot}}(a,b)=(a-b)\in(\text{\rm Lie}_{\text{\rm MT}/F})^{\vee}_{w=1}\cong F^{\times}\otimes\mathbb{Q}.

For the inductive step, if x(𝒞X,S,vMot)x\in\left(\mathcal{CL}_{X,S,v_{\infty}}^{\text{\rm Mot}}\right)^{\vee\circ}, homogeneous of weight >1>1, vanishes in 𝒟(F×)\mathcal{D}^{\circ}(F^{\times}), then CorHod(r(x))=0LieHT\text{\rm Cor}_{\text{\rm Hod}}(r(x))=0\in\text{\rm Lie}_{\text{\rm HT}}^{\vee} under every embedding rr, and CorMot(x)=0\partial\text{\rm Cor}_{\text{\rm Mot}}(x)=0 by the inductive hypothesis. By Lemma 8, CorMot(x)=0\text{\rm Cor}_{\text{\rm Mot}}(x)=0. ∎

5.2. Applications

5.2.1. Additive shuffle relation

Specializing all wiw_{i} to 1 in the second shuffle relation, where all ni=0n_{i}=0, we extract an additive second shuffle relation, which does not have lower-depth terms:

Corollary 30.

Let m,n>0m,n>0. The additive shuffle

σΣm,nCor(εσ1(1),εσ1(1)+εσ1(2),,εσ1(1)++εσ1(m+n),0).\sum_{\sigma\in\Sigma_{m,n}}\text{\rm Cor}_{\mathcal{H}}(\varepsilon_{\sigma^{-1}(1)},\varepsilon_{\sigma^{-1}(1)}+\varepsilon_{\sigma^{-1}(2)},\dots,\varepsilon_{\sigma^{-1}(1)}+\dots+\varepsilon_{\sigma^{-1}(m+n)},0).

is a constant independent of ε1,,εnn0\varepsilon_{1},\dots,\varepsilon_{n}\in\mathbb{C}^{n}\setminus 0.

It is easy to see that this constant is 0 if m+nm+n is even. If m+nm+n is odd, it is equal, in particular, to a sum of Hodge correlators at roots of unity.

5.2.2. Proofs of Corollaries 2 and 3

Recall Corollary 2

Corollary ([GR], Proposition 2.8).

For n>2n>2, every Hodge correlator of weight nn is a linear combination of Hodge correlators of weight nn and depth at most n2n-2.

Precisely, for z1,,znz_{1},\dots,z_{n}\in\mathbb{C}^{*}, we have

Cor(z1,,zn,0)\displaystyle\text{\rm Cor}_{\mathcal{H}}(z_{1},\dots,z_{n},0) =i=1nCor(z1,,zi1,zi,ziz1zn,,zn1z1zn,znz1zn)\displaystyle=\sum_{i=1}^{n}\text{\rm Cor}_{\mathcal{H}}\left(z_{1},\dots,z_{i-1},z_{i},z_{i}\frac{z_{1}}{z_{n}},\dots,z_{n-1}\frac{z_{1}}{z_{n}},z_{n}\frac{z_{1}}{z_{n}}\right)
i=2nCor(z1,,zi1,0,ziz1zn,,zn1z1zn,znz1zn)\displaystyle\quad-\sum_{i=2}^{n}\text{\rm Cor}_{\mathcal{H}}\left(z_{1},\dots,z_{i-1},0,z_{i}\frac{z_{1}}{z_{n}},\dots,z_{n-1}\frac{z_{1}}{z_{n}},z_{n}\frac{z_{1}}{z_{n}}\right)
(117) Cor(z1,z1z1zn,0,,0).\displaystyle\quad-\text{\rm Cor}_{\mathcal{H}}\left(z_{1},z_{1}\cdot\frac{z_{1}}{z_{n}},0,\dots,0\right).
Proof.

By multiplicative invariance, we may assume z1=1z_{1}=1. Then this is precisely the (n1,1)(n-1,1)-second shuffle relation applied to the segments

(z2/z10),(z3/z20),,(zn/zn10)\left(z_{2}/z_{1}\mid 0\right),\left(z_{3}/z_{2}\mid 0\right),\dots,\left(z_{n}/z_{n-1}\mid 0\right)

and

(z1/zn0),\left(z_{1}/z_{n}\mid 0\right),

where the segment (1|0)(1|0) is left fixed. Indeed, the two summations come from the nn shuffles and the n1n-1 additional quasishuffles, with the remaining terms giving the left side and the last summand.

All terms on the right side have at least two coinciding arguments. After an additive shift, they have at least two arguments equal to 0, so they are equal to those of depth at most n2n-2. ∎

Recall Corollary 3:

Corollary.

The Hodge correlators in weight 3 satisfy the relations:

(118) Cor(1,0,0,x)\displaystyle\text{\rm Cor}_{\mathcal{H}}(1,0,0,x) +Cor(1,0,0,1x)+Cor(1,0,0,1x1)=Cor(1,0,0,1),\displaystyle+\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-x)+\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-x^{-1})=\text{\rm Cor}_{\mathcal{H}}(1,0,0,1),
Cor(0,x,1,y)\displaystyle\text{\rm Cor}_{\mathcal{H}}(0,x,1,y) =Cor(1,0,0,1x1)Cor(1,0,0,1y1)Cor(1,0,0,yx)\displaystyle=-\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-x^{-1})-\text{\rm Cor}_{\mathcal{H}}(1,0,0,1-y^{-1})-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{y}{x}\right)
(119) Cor(1,0,0,1y1x)+Cor(1,0,0,1y11x1)+Cor(1,0,0,1).\displaystyle\quad-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-y}{1-x}\right)+\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-y^{-1}}{1-x^{-1}}\right)+\text{\rm Cor}_{\mathcal{H}}(1,0,0,1).
Proof.

Apply the (1,1)(1,1)-second shuffle relation to the segments (x0)\left(x\mid 0\right) and (x11)\left(x^{-1}\mid 1\right), keeping the segment (11)\left(1\mid 1\right) fixed:

Cor(1,x,0,0)\displaystyle\text{\rm Cor}_{\mathcal{H}}(1,x,0,0) +Cor(1,0,x1,1)Cor(1,0,0,1)\displaystyle+\text{\rm Cor}_{\mathcal{H}}(1,0,x^{-1},1)-\text{\rm Cor}_{\mathcal{H}}(1,0,0,1)
Cor(1,x,0,0)Cor(1,0,x1,0)\displaystyle-\text{\rm Cor}_{\mathcal{H}}(1,x,0,0)-\text{\rm Cor}_{\mathcal{H}}(1,0,x^{-1},0) =0.\displaystyle=0.

Multiplicative invariance and the first shuffle relation imply

Cor(1,x,0,0)Cor(1,0,x1,0)=Cor(1,0,0,x).-\text{\rm Cor}_{\mathcal{H}}(1,x,0,0)-\text{\rm Cor}_{\mathcal{H}}(1,0,x^{-1},0)=\text{\rm Cor}(1,0,0,x).

Rearranging terms and applying additive invariance gives (118).

Now apply (117) to Cor(x,1,y,0)\text{\rm Cor}_{\mathcal{H}}(x,1,y,0) and apply the dihedral symmetry and additive invariance to change all terms to the form Cor(1,0,0,z)\text{\rm Cor}_{\mathcal{H}}(1,0,0,z):

Cor(0,x,1,y)\displaystyle\text{\rm Cor}_{\mathcal{H}}(0,x,1,y) =Cor(1,0,0,1yxy)+Cor(1,0,0,1x11y1)+Cor(1,0,0,x1xy)\displaystyle=\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-y}{x-y}\right)+\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-x^{-1}}{1-y^{-1}}\right)+\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{x-1}{x-y}\right)
Cor(1,0,0,1y1)Cor(1,0,0,x1)Cor(1,0,0,xy).\displaystyle\quad-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,1-y^{-1}\right)-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,x^{-1}\right)-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{x}{y}\right).

Finally, by (118),

Cor(1,0,0,1yxy)+Cor(1,0,0,x1xy)=Cor(1,0,0,1)Cor(1,0,0,1x1y),\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-y}{x-y}\right)+\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{x-1}{x-y}\right)=\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,1\right)-\text{\rm Cor}_{\mathcal{H}}\left(1,0,0,\frac{1-x}{1-y}\right),

which gives the result. ∎

6. Appendix: Multiple polylogarithms

We review the properties of multiple polylogarithms ([G2]).

It is well known that these functions obey a family of double shuffle relations similar to our relations for the Hodge correlators. However, they do not enjoy some of their other properties. They are multi-valued and do not satisfy dihedral symmetry relations. The shuffle relations between multiple polylogarithms involve products, while for Hodge correlators they are linear.

6.0.1. Multiple polylogarithms

The multiple polylogarithms are defined by

(120) Lin1,,nr(z1,,zr)=0<k1<<krz1k1zrkrk1n1krnr,n1,,nr>0.\text{\rm Li}_{n_{1},\dots,n_{r}}(z_{1},\dots,z_{r})=\sum_{0<k_{1}<\dots<k_{r}}\frac{z_{1}^{k_{1}}\dots z_{r}^{k_{r}}}{k_{1}^{n_{1}}\dots k_{r}^{n_{r}}},\quad{n_{1},\dots,n_{r}>0}.

(The depth of this formal expression is rr and the weight is w:=n1++nrw:=n_{1}+\dots+n_{r}.) These series converge for |zi|<1\left|z_{i}\right|<1 and have analytic continuations to multivalued functions with singularities on r\mathbb{C}^{r}. The multivalued structure is encoded by a smooth variation of mixed Hodge-Tate structures of weight ww over a dense open subset of r\mathbb{C}^{r}.

When r=1r=1, the multiple polylogarithms are the classical polylogarithms Lin(z)\text{\rm Li}_{n}(z). Their monodromy and associated mixed Hodge-Tate structures are well understood ([H]).

We can form an algebra LL generated over \mathbb{Q} by the multiple polylogarithms, filtered by the weight and the depth. The expression (120) yields expansions for products of polylogarithms, which shows that LL has a well-defined multiplication. For example,

Lin1(z1)Lin2(z2)\displaystyle\text{\rm Li}_{n_{1}}(z_{1})\text{\rm Li}_{n_{2}}(z_{2}) =(0<k1z1k1k1n1)(0<k2z2k2k2n2)=[0<k1<k2+0<k2<k1+0<k1=k2]z1k1z1k2k1n1k2n2\displaystyle=\left(\sum_{0<k_{1}}\frac{z_{1}^{k_{1}}}{k_{1}^{n_{1}}}\right)\left(\sum_{0<k_{2}}\frac{z_{2}^{k_{2}}}{k_{2}^{n_{2}}}\right)=\left[\sum_{0<k_{1}<k_{2}}+\sum_{0<k_{2}<k_{1}}+\sum_{0<k_{1}=k_{2}}\right]\frac{z_{1}^{k_{1}}z_{1}^{k_{2}}}{k_{1}^{n_{1}}k_{2}^{n_{2}}}
=Lin1,n2(z1,z2)+Lin2,n1(z2,z1)+Lin1+n2(z1z2).\displaystyle=\text{\rm Li}_{n_{1},n_{2}}(z_{1},z_{2})+\text{\rm Li}_{n_{2},n_{1}}(z_{2},z_{1})+\text{\rm Li}_{n_{1}+n_{2}}(z_{1}z_{2}).

Notice that the left side and all terms on the right side have weight n1+n2n_{1}+n_{2}; however, the left side and the first two terms on the right side have depth 2, while Lin1+n2(z1z2)\text{\rm Li}_{n_{1}+n_{2}}(z_{1}z_{2}) has depth 1.

The general relation is:

Lin1,,nr(z1,,zr)Linr+1,,nr+s(zr+1,,zr+s)\displaystyle\text{\rm Li}_{n_{1},\dots,n_{r}}(z_{1},\dots,z_{r})\text{\rm Li}_{n_{r+1},\dots,n_{r+s}}(z_{r+1},\dots,z_{r+s})
(121) =σΣr,sLinσ1(1),,nσ1(r+s)(zσ1(1),,zσ1(r+s))+lower-depth terms,\displaystyle=\sum_{\sigma\in\Sigma_{r,s}}\text{\rm Li}_{n_{\sigma^{-1}(1)},\dots,n_{\sigma^{-1}(r+s)}}(z_{\sigma^{-1}(1)},\dots,z_{\sigma^{-1}(r+s)})+\text{lower-depth terms},

Expressions (121) are called first shuffle relations for multiple polylogarithms. It is convenient to express them with generating functions. Let

L(z1,,zr|t1::tr)nr>0Lin1,,nr(z1,,zr)itini1;L\big{(}z_{1},\dots,z_{r}\;|\;t_{1}:\dots:t_{r}\big{)}\sum_{n_{r}>0}\text{\rm Li}_{n_{1},\dots,n_{r}}(z_{1},\dots,z_{r})\prod_{i}t_{i}^{n_{i}-1};

then

L(z1,,zr|t1::tr)L(zr+1,,zr+s|tr+1,,tr+s)=\displaystyle L\big{(}z_{1},\dots,z_{r}\;|\;t_{1}:\dots:t_{r}\big{)}L\big{(}z_{r+1},\dots,z_{r+s}\;|\;t_{r+1},\dots,t_{r+s}\big{)}=
(122) =σΣr,sL(zσ1(1),,zσ1(r+s)|tσ1(1)::tσ1(r+s))+lower-depth terms.\displaystyle=\sum_{\sigma\in\Sigma_{r,s}}L\big{(}z_{\sigma^{-1}(1)},\dots,z_{\sigma^{-1}(r+s)}\;|\;t_{\sigma^{-1}(1)}:\dots:t_{\sigma^{-1}(r+s)}\big{)}+\text{lower-depth terms}.

To describe the lower-depth terms in the right side of (121), one needs to work with the set of quasishuffles Σ~r,s\widetilde{\Sigma}_{r,s}. Then

Lin1,,nr(z1,,zr)Linr+1,,nr+s(zr+1,,zr+s)=\displaystyle\text{\rm Li}_{n_{1},\dots,n_{r}}(z_{1},\dots,z_{r})\text{\rm Li}_{n_{r+1},\dots,n_{r+s}}(z_{r+1},\dots,z_{r+s})=
(123) =σΣ~r,sLin~σ1(1),,n~σ1(Mσ)(z~σ1(1),,z~σ1(Mσ)),\displaystyle=\sum_{\sigma\in\widetilde{\Sigma}_{r,s}}\text{\rm Li}_{\tilde{n}_{\sigma^{-1}(1)},\dots,\tilde{n}_{\sigma^{-1}(M_{\sigma})}}(\tilde{z}_{\sigma^{-1}(1)},\dots,\tilde{z}_{\sigma^{-1}(M_{\sigma})}),

where

n~σ1(i)=σ(j)=inj,z~σ1(i)=σ(j)=izj.\tilde{n}_{\sigma^{-1}(i)}=\sum_{\sigma(j)=i}n_{j},\quad\tilde{z}_{\sigma^{-1}(i)}=\prod_{\sigma(j)=i}z_{j}.

Such relations are easily proved by interpreting the terms as the simplicial decomposition of the product of an rr-simplex and an ss-simplex.

6.0.2. Iterated integrals

The analytic continuation of the multiple polylogarithms has a presentation in terms of iterated integrals. Let

In1,,nr(z1:z2::zr+1)=γdtz1tdttdttn1dtzrtdttdttnr,I_{n_{1},\dots,n_{r}}(z_{1}:z_{2}:\dots:z_{r+1})=\int_{\gamma}\underbrace{\frac{dt}{z_{1}-t}\circ\frac{dt}{t}\circ\dots\circ\frac{dt}{t}}_{n_{1}}\circ\dots\circ\underbrace{\frac{dt}{z_{r}-t}\circ\frac{dt}{t}\circ\dots\circ\frac{dt}{t}}_{n_{r}},

where γ:[0,1]\gamma:\left[0,1\right]\to\mathbb{C} is a path from 0 to zr+1z_{r+1}. Here, for 1-forms ω1,,ωr\omega_{1},\dots,\omega_{r},

γω1ωr:=0t1tr1i=1mγωi(ti)\int_{\gamma}\omega_{1}\circ\dots\circ\omega_{r}:=\int_{0\leq t_{1}\leq\dots\leq t_{r}\leq 1}\bigwedge_{i=1}^{m}\gamma^{*}\omega_{i}(t_{i})

is Chen’s iterated path integral ([C]). Then ([G2], Theorem 2.1)

(124) Lin1,,nr(z1,,zr)=In1,,nr(1:z1:z1z2::z1zr).\text{\rm Li}_{n_{1},\dots,n_{r}}(z_{1},\dots,z_{r})=I_{n_{1},\dots,n_{r}}(1:z_{1}:z_{1}z_{2}:\dots:z_{1}\dots z_{r}).

Iterated path integrals also satisfy a shuffle product formula, whose terms correspond to the top-dimensional cells of a decomposition of the product of two simplices:

γω1ωrγωm+1ωm+n=σΣm,nωσ1(1)ωσ1(m+n).\int_{\gamma}\omega_{1}\circ\dots\circ\omega_{r}\int_{\gamma}\omega_{m+1}\circ\dots\circ\omega_{m+n}=\sum_{\sigma\in\Sigma_{m,n}}\omega_{\sigma^{-1}(1)}\circ\dots\circ\omega_{\sigma^{-1}(m+n)}.

This gives a different kind of shuffle relations (second shuffle relations) on the iterated integrals In1,,nrI_{n_{1},\dots,n_{r}}, which can also be expressed in terms of generating functions. Let

L(z1::zr+1|t1,,tr)=\displaystyle L^{\prime}\big{(}z_{1}:\dots:z_{r+1}\;|\;t_{1},\dots,t_{r}\big{)}=
(125) =\displaystyle= ni>0In1,,nr(z1::zr+1)t1n11(t1+t2)n21(t1++tr)nr1,\displaystyle\sum_{n_{i}>0}I_{n_{1},\dots,n_{r}}\left(z_{1}:\dots:z_{r+1}\right)t_{1}^{n_{1}-1}(t_{1}+t_{2})^{n_{2}-1}\dots(t_{1}+\dots+t_{r})^{n_{r}-1},

so

(126) L(z1,,zr|t1::tr)=L(1:z1::z1zr|t1,t2t1,,trtr1).L\big{(}z_{1},\dots,z_{r}\;|\;t_{1}:\dots:t_{r}\big{)}=L^{\prime}\big{(}1:z_{1}:\dots:z_{1}\dots z_{r}\;|\;t_{1},t_{2}-t_{1},\dots,t_{r}-t_{r-1}\big{)}.

Then

L(z1::zr:1|t1,,tr)L(zr+1::zr+s:1|tr+1,,tr+s)=\displaystyle L^{\prime}\big{(}z_{1}:\dots:z_{r}:1\;|\;t_{1},\dots,t_{r}\big{)}L^{\prime}\big{(}z_{r+1}:\dots:z_{r+s}:1\;|\;t_{r+1},\dots,t_{r+s}\big{)}=
(127) =σΣr,sL(zσ1(1)::zσ1(r+s):1|tσ1(1),,tσ1(r+s)).\displaystyle=\sum_{\sigma\in\Sigma_{r,s}}L^{\prime}\big{(}z_{\sigma^{-1}(1)}:\dots:z_{\sigma^{-1}(r+s)}:1\;|\;t_{\sigma^{-1}(1)},\dots,t_{\sigma^{-1}(r+s)}\big{)}.

6.0.3. Double shuffle relations

Note the similarity between (122) and (127). There is a duality between the relations with homogeneous and inhomogeneous ziz_{i} and tit_{i} arguments. Together, they form systems of double shuffle relations.

The combinatorics of such relations are studied by [G2, G4], allowing them to describe a connection between an algebra of values of the multiple polylogarithms at roots of unity and the geometry of some locally symmetric spaces for GLn()\mathrm{GL}_{n}(\mathbb{Z}) (n=2,3n=2,3; and recently for n=4n=4 in [G7]).

6.0.4. Relation to Hodge correlators

In depth 1, the Hodge correlators are related to the multiple polylogarithms. We have seen this in weights 1 and 2. In higher weight, define a single-valued version of the polylogarithm by

n(z)={n oddn even(k=0n1βklogk|z|Link(z))(n2),\mathcal{L}_{n}(z)=\begin{cases}\Re&\text{$n$ odd}\\ \Im&\text{$n$ even}\end{cases}\left(\sum_{k=0}^{n-1}\beta_{k}\log^{k}\left|z\right|\cdot\text{\rm Li}_{n-k}(z)\right)\quad(n\geq 2),

where βk\beta_{k}, close relatives of the Bernoulli numbers, are the coefficients of the Taylor expansion 2xe2x1=βkxk\frac{2x}{e^{2x}-1}=\sum\beta_{k}x^{k}. Then

(128) Cor(1,0,,0n1,z)=(2πi)n(2n2n1)1k even0kn2(2nk3n1)2k+1(k+1)!nk(z)logk|z|.\text{\rm Cor}_{\mathcal{H}}(1,\underbrace{0,\dots,0}_{n-1},z)=-(2\pi i)^{-n}\binom{2n-2}{n-1}^{-1}\sum_{\stackrel{{\scriptstyle 0\leq k\leq n-2}}{{\text{$k$ even}}}}\binom{2n-k-3}{n-1}\frac{2^{k+1}}{(k+1)!}\mathcal{L}_{n-k}(z)\log^{k}\left|z\right|.

The precise relationship between the multiple polylogarithms and Hodge correlators in depth >1>1 is unknown.

References

  • [B1] A.A. Beilinson. Higher regulators and values of L-functions. Journal of Soviet Mathematics, 30(2):2036–2070, 1985.
  • [B2] A.A. Beilinson. Height pairing between algebraic cycles. In KK-theory, arithmetic, and geometry, volume 1289 of LNM, pages 1–26. Springer, 1987.
  • [B3] S.J. Bloch. Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. 1978.
  • [B4] A. Borel. Stable real cohomology of arithmetic groups. Annales scientifiques de l’École Normale Supérieure, 7(2):235–272, 1974.
  • [BGSV] A. Beilinson, A.B. Goncharov, V. Schechtman, and A. Varchenko. Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane. In The Grothendieck Festschrift, volume 86, pages 131–172. Birkhäuser Boston, 1990.
  • [C] K.-T. Chen. Iterated path integrals. Bull. AMS, 83(5):831–879, 09 1977.
  • [D1] P. Deligne. Théorie de Hodge: III. Publications Mathématiques de l’IHÉS, 44:5–77, 1974.
  • [D2] P. Deligne. A quoi servent les motifs? In Motives, volume 55 of Symp. Pure Math., pages 142–151. AMS, 1994.
  • [D3] P. Deligne. Structures de Hodge mixtes réeles. In Motives, volume 55 of Symp. Pure Math., pages 509–514. AMS, 1994.
  • [DG] P. Deligne and A.B. Goncharov. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Normale Sup., 2003.
  • [G1] A.B. Goncharov. Geometry of configurations, polylogarithms and motivic cohomology. Advances in Mathematics, 114:197–318, 1995.
  • [G2] A.B. Goncharov. Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett., 5:497–516, 1998. arXiv:1105.2076.
  • [G3] A.B. Goncharov. The dihedral Lie algebras and Galois symmetries of π1(l)(1({0,}μN))\pi^{(l)}_{1}({\mathbb{P}}^{1}-(\{0,\infty\}\cup\mu_{N})). Duke Math. Journal, 110(3):397–487, 2001.
  • [G4] A.B. Goncharov. Multiple polylogarithms and mixed Tate motives. 2001. arXiv:math/0103059.
  • [G5] A.B. Goncharov. Periods and mixed motives. 2002. arXiv:math/0202154.
  • [G6] A.B. Goncharov. Hodge correlators. arxiv:0803.0297v4, 2008.
  • [G7] A.B. Goncharov. Motivic fundamental group of 𝔾mμN{\mathbb{G}}_{m}\setminus\mu_{N} and modular manifolds. 2019. arXiv:1910.10321.
  • [GR] A.B. Goncharov and D. Rudenko. Motivic correlators, cluster varieties, and Zagier’s conjecture on ζF(4)\zeta_{F}(4). 2018. arXiv:1803.08585.
  • [H] R.M. Hain. Classical polylogarithms. 1992. arXiv:9202.022v2.
  • [M] N. Malkin. Double shuffle relations for elliptic motivic correlators. 2020. To appear.
  • [R] G. Racinet. Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publications Mathématiques de l’IHÉS, 95(1):185–231, 2002.