This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Shedding New Light on (D(s)()){\cal R}(D_{(s)}^{(\ast)}) and |Vcb||V_{cb}| from Semileptonic B¯(s)D(s)()ν¯\bar{B}_{(s)}\to D_{(s)}^{(\ast)}\ell\bar{\nu}_{\ell} Decays

Bo-Yan Cui [email protected]    Yong-Kang Huang [email protected]    Yu-Ming Wang correspondence author: [email protected]    Xue-Chen Zhao correspondence author: [email protected] School of Physics, Nankai University, Weijin Road 94, Tianjin 300071, P.R. China
Abstract

We compute for the first time the next-to-leading-order QCD corrections to the B¯(s)D(s)()\bar{B}_{(s)}\to D_{(s)}^{(\ast)} form factors at large hadronic recoil. Both the charm-quark-mass and the strange-quark-mass dependent pieces can generate the leading-power contributions to these form factors. Including further various power-suppressed contributions, we perform the combined fits of the considered form factors to both our large-recoil theory predictions and the lattice QCD results, thus improving upon the previous determinations of the lepton-flavour-universality ratios (D()){\cal R}(D^{(\ast)}) significantly.

I Introduction

The flagship semileptonic B¯(s)D(s)()ν¯\bar{B}_{(s)}\to D_{(s)}^{(\ast)}\ell\bar{\nu}_{\ell} decay processes are of extraordinary phenomenological importance for the precise determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcb||V_{cb}| and for probing the non-standard flavour-changing dynamics above the electroweak scale Glattauer et al. (2016); Abdesselam et al. (2017); Waheed et al. (2019); Aaij et al. (2020a, b); Prim et al. (2023). The persisting discrepancy between the exclusive and inclusive extractions of |Vcb||V_{cb}| at the level of 2σ3σ2\,\sigma\sim 3\,\sigma has triggered enormous efforts on uncovering the ultimate mystery of this intriguing puzzle in the Standard Model (SM) and beyond (see for instance Altmannshofer et al. (2019); Gambino et al. (2020); Boyle et al. (2022); Kronfeld et al. (2022); Di Canto and Meinel (2022)). Moreover, the state-of-the-art theory predictions for the two lepton-flavour-universality (LFU) ratios (D()){\cal R}({D^{(\ast)}}) Bernlochner et al. (2022) appear to be in tension with the HFLAV-averaged experimental measurements Amhis et al. (2022) (at the 3σ3\,\sigma level when combined together) as well, thus stimulating intensive investigations on a wide range of other interesting LFU observables Bernlochner and Ligeti (2017); Bernlochner et al. (2018); Cohen et al. (2018); Das and Dutta (2022); Gubernari et al. (2022); Bernlochner et al. (2023); Patnaik and Singh (2023); Patnaik et al. (2023); Penalva et al. (2023). Apparently, disentangling the potential new physics (NP) signals from the unaccounted theoretical uncertainties in the SM computations in a robust manner will be indispensable for the unambiguous interpretation of these emerged flavour anomalies. It remains important to remark that the updated LHCb measurements for the electron-muon universality rations (K()){\cal R}(K^{(\ast)}) in the flavour-changing neutral current loop processes BK()e+eB\to K^{(\ast)}e^{+}e^{-} and BK()μ+μB\to K^{(\ast)}\mu^{+}\mu^{-} Aaij et al. (2022a, b) do not necessarily lead to conclude the tauon-muon universality in the neutral current bs¯b\to s\ell\bar{\ell} transitions Singh Chundawat (2023); Alok et al. (2023), let alone in the flavour-changing charged current tree decays B¯(s)D(s)()ν¯\bar{B}_{(s)}\to D_{(s)}^{(\ast)}\ell\bar{\nu}_{\ell} Algueró et al. (2023). Actually, introducing new CP-violating couplings in the weak effective Hamiltonian for bs¯b\to s\ell\bar{\ell} can bring about the significant space to violate the electron-muon universality, while accommodating the new LHCb result for the (K){\cal R}(K) ratio simultaneously Fleischer et al. (2023).

The model-independent descriptions of the heavy-to-heavy bottom-meson decay form factors in the low recoil regime can be naturally formulated by adopting the heavy quark effective theory (HQET) based upon an expansion in powers of ΛQCD/mb,c\Lambda_{\rm QCD}/m_{b,\,c}, yielding a tower of the non-perturbative Isgur-Wise (IW) functions. In order to better constrain the desirable shape of these form factors, an attractive prescription to derive the unitarity constraints for the form-factor expansion coefficients has been developed from the fundamental field-theoretical principles Boyd et al. (1995, 1996, 1997); Caprini and Macesanu (1996); Caprini et al. (1998); Bourrely et al. (2009). Additionally, we have witnessed the substantial progress on the encouraging lattice QCD calculations of the B¯D()ν¯¯\bar{B}\to D^{(\ast)}\ell\bar{\nu}_{\bar{\ell}} form factors Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022) and the B¯sDs()ν¯¯\bar{B}_{s}\to D_{s}^{(\ast)}\ell\bar{\nu}_{\bar{\ell}} form factors Bailey et al. (2012); McLean et al. (2020); Harrison and Davies (2022) at non-zero recoil. By contrast, the continuum QCD determinations of such fundamental heavy-to-heavy form factors at large recoil are mainly achieved by evaluating only the leading-order QCD contributions at the twist-four accuracy Faller et al. (2009); Gubernari et al. (2019), apart from the currently available higher-order QCD computations of the B¯D\bar{B}\to D form factors Wang et al. (2017); Gao et al. (2022).

In view of the noticeable significance of implementing the large-recoil theory predictions in the numerical fit of the exclusive bottom-meson decay form factors Arnesen et al. (2005); Cui et al. (2023); Bigi et al. (2017a); Gambino et al. (2019); Bordone et al. (2020a, b); Jaiswal et al. (2017, 2020); Biswas et al. (2022); Cheung et al. (2021), accomplishing the next-to-leading-order (NLO) computations to the semileptonic B¯(s)D(s)ν¯¯\bar{B}_{(s)}\to D_{(s)}^{\ast}\ell\bar{\nu}_{\bar{\ell}} form factors will therefore be in high demand for pinning down the obtained uncertainties of their shape parameters from the combined zz-series fitting procedure. To achieve this goal, we will first establish the NLO factorization formulae for the appropriate bottom-meson-to-vacuum correlation functions at leading power (LP) in the soft-collinear effective theory (SCET) framework and then construct the large logarithmic resummation improved light-cone sum rules (LCSR) for the considered form factors. In particular, we will report on a novel observation of the LP 𝒪(αs){\cal O}(\alpha_{s}) contribution to the longitudinal form factors due to the unsuppressed charm-quark mass dependent pieces in the SCET Lagrangian, when applying the preferable power-counting scheme mc𝒪(ΛQCDmb)m_{c}\sim{\cal O}\left(\sqrt{\Lambda_{\rm QCD}\,m_{b}}\right) Boos et al. (2006a, b). Phenomenological implications of the simultaneous Boyd-Grinstein-Lebed (BGL) expansion fitting Boyd et al. (1995, 1996, 1997) to both the SCET sum rules predictions and the lattice simulation data points will be further explored with the focus on the updated extractions of the LFU quantities (D(s)()){\cal R}(D_{(s)}^{(\ast)}) and the CKM matrix element |Vcb||V_{cb}|.

II General analysis

We adopt the customary definitions of the bottom-meson decay form factors {V,A0,A1,A2}\{V,\,A_{0},\,A_{1},\,A_{2}\} as displayed in Gao et al. (2020). Implementing the matching program QCDSCETI{\rm QCD}\to{\rm SCET_{I}} for these form factors enables us to derive the factorization formulae in terms of the SCET form factors

𝒱(np)\displaystyle{\cal V}(n\cdot p) =\displaystyle= CV(A0)(np)ξ(np)+CV(A1,mc)(np)ξ,mc(np)+01𝑑τCV(B1)(τ,np)Ξ(τ,np)+𝒱NLP(np),\displaystyle C_{V}^{(\rm A0)}\left(n\cdot p\right)\xi_{\perp}(n\cdot p)+C_{V}^{({\rm A1},\,m_{c})}\,\left(n\cdot p\right)\,\xi_{\perp,\,m_{c}}(n\cdot p)+\int_{0}^{1}d\tau\,C_{V}^{(\rm B1)}\left(\tau,n\cdot p\right)\Xi_{\perp}(\tau,n\cdot p)+{\cal V}^{\rm NLP}(n\cdot p)\,,\hskip 14.22636pt
𝒜0(np)\displaystyle{\cal A}_{0}(n\cdot p) =\displaystyle= Cf0(A0)(np)ξ(np)+Cf0(A1,mc)(np)ξ,mc(np)+01𝑑τCf0(B1)(τ,np)Ξ(τ,np)+𝒜0NLP(np),\displaystyle C_{f_{0}}^{(\rm A0)}\left(n\cdot p\right)\xi_{\|}(n\cdot p)+C_{f_{0}}^{({\rm A1},\,m_{c})}\,\left(n\cdot p\right)\,\xi_{\|,\,m_{c}}(n\cdot p)+\int_{0}^{1}d\tau\,C_{f_{0}}^{(\rm B1)}\left(\tau,n\cdot p\right)\Xi_{\|}(\tau,n\cdot p)+{\cal A}_{0}^{\rm NLP}(n\cdot p),\hskip 14.22636pt
𝒜1(np)\displaystyle{\cal A}_{1}(n\cdot p) =\displaystyle= CV(A0)(np)ξ(np)+CA1(A1,mc)(np)ξ,mc(np)+01𝑑τCV(B1)(τ,np)Ξ(τ,np)+𝒜1NLP(np),\displaystyle C_{V}^{(\rm A0)}\left(n\cdot p\right)\xi_{\perp}(n\cdot p)+C_{A_{1}}^{({\rm A1},\,m_{c})}\,\left(n\cdot p\right)\,\xi_{\perp,\,m_{c}}(n\cdot p)+\int_{0}^{1}d\tau\,C_{V}^{(\rm B1)}\left(\tau,n\cdot p\right)\Xi_{\perp}(\tau,n\cdot p)+{\cal A}_{1}^{\rm NLP}(n\cdot p)\,,\hskip 14.22636pt
𝒜12(np)\displaystyle{\cal A}_{12}(n\cdot p) =\displaystyle= Cf+(A0)(np)ξ(np)+Cf+(A1,mc)(np)ξ,mc(np)+01𝑑τCf+(B1)(τ,np)Ξ(τ,np)+𝒜12NLP(np).\displaystyle C_{f_{+}}^{(\rm A0)}\left(n\cdot p\right)\xi_{\|}(n\cdot p)+C_{f_{+}}^{({\rm A1},\,m_{c})}\,\left(n\cdot p\right)\,\xi_{\|,\,m_{c}}(n\cdot p)+\int_{0}^{1}d\tau\,C_{f_{+}}^{(\rm B1)}\left(\tau,n\cdot p\right)\Xi_{\|}(\tau,n\cdot p)+{\cal A}_{12}^{\rm NLP}(n\cdot p).\hskip 14.22636pt (1)

The newly introduced form factors 𝒱{\cal V}, 𝒜0{\cal A}_{0}, 𝒜1{\cal A}_{1} and 𝒜12{\cal A}_{12} can be expressed in terms of the linear combinations of the conventional form factors as displayed in (1) of the Supplemental Material. The explicit definitions of ξ,\xi_{\|,\,\perp} and Ξ,\Xi_{\|,\,\perp} take the same form as the ones for the exclusive heavy-to-light transitions Beneke and Yang (2006), while the remaining two effective form factors ξ,mc\xi_{\|,\,m_{c}} and ξ,mc\xi_{\perp,\,m_{c}} can be defined by

Dq(p,ϵ)|(ξ¯Wc)2mcinDcγ5hv|B¯v\displaystyle\langle D_{q}^{\ast}(p,\epsilon^{\ast})|(\bar{\xi}W_{c})\,{\not{n}\over 2}{m_{c}\over-in\cdot\overleftarrow{D}_{c}}\gamma_{5}\,h_{v}|\bar{B}_{v}\rangle
=np(ϵv)ξ,mc(np),\displaystyle=-n\cdot p\,\left(\epsilon^{\ast}\cdot v\right)\,\xi_{\|,\,m_{c}}(n\cdot p), (2)
Dq(p,ϵ)|(ξ¯Wc)2mcinDcγ5γμhv|B¯v\displaystyle\langle D_{q}^{\ast}(p,\epsilon^{\ast})|(\bar{\xi}W_{c})\,{\not{n}\over 2}{m_{c}\over-in\cdot\overleftarrow{D}_{c}}\gamma_{5}\gamma_{\mu\perp}\,h_{v}|\bar{B}_{v}\rangle
=np(ϵμϵvn¯μ)ξ,mc(np).\displaystyle=-n\cdot p\,\left(\epsilon^{\ast}_{\mu}-\epsilon^{\ast}\cdot v\,\bar{n}_{\mu}\right)\,\xi_{\perp,\,m_{c}}(n\cdot p)\,. (3)

The analytic expressions for the short-distance coefficients Ci(A0)C_{i}^{(\rm A0)} and Ci(B1)C_{i}^{(\rm B1)} (determined from Beneke et al. (2004); Hill et al. (2004)) as well as Ci(A1,mc)C_{i}^{({\rm A1},\,m_{c})} are collected in (2) of the Supplemental Material. We will therefore dedicate the next section to the transparent computations of the effective form factors at 𝒪(αs){\cal O}(\alpha_{s}), including further the tree-level determinations of the next-to-leading power (NLP) corrections.

III NLO corrections to the form factors

In analogy to the strategy for computing the heavy-to-light bottom-meson decay matrix elements De Fazio et al. (2006, 2008) (see also Khodjamirian et al. (2005, 2007)), we can derive the LCSR for ξ(np)\xi_{\|}(n\cdot p) by exploring the particular SCETI{\rm SCET_{I}} correlation function

Πν,(A0)=d4xeipx0|T{jξq,ν(2)(x),O(A0)(0)}|B¯v\displaystyle\Pi_{\nu,\,\|}^{\rm(A0)}=\int d^{4}x\,e^{ip\cdot x}\,\langle 0|{\rm T}\{j_{\xi q,\|\nu}^{(2)}(x),\,\,O_{\|}^{\rm(A0)}(0)\}|\bar{B}_{v}\rangle
+d4xeipxd4y\displaystyle+\int d^{4}x\,e^{ip\cdot x}\,\int d^{4}y\,
0|T{jξξ,ν(0)(x),iξq(2)(y),O(A0)(0)}|B¯v\displaystyle\hskip 8.5359pt\langle 0|{\rm T}\{j_{\xi\xi,\|\nu}^{(0)}(x),\,\,i{\cal L}_{\xi q}^{(2)}(y),\,\,O_{\|}^{\rm(A0)}(0)\}|\bar{B}_{v}\rangle
+d4xeipxd4yd4z\displaystyle+\int d^{4}x\,e^{ip\cdot x}\,\int d^{4}y\,\int d^{4}z\,
0|T{jξξ,ν(0)(x),iξq(1)(y),iξmc(0)(z),O(A0)(0)}|B¯v\displaystyle\hskip 8.5359pt\langle 0|{\rm T}\{j_{\xi\xi,\|\nu}^{(0)}(x),\,\,i{\cal L}_{\xi q}^{(1)}(y),\,\,i{\cal L}_{\xi m_{c}}^{(0)}(z),\,\,O_{\|}^{\rm(A0)}(0)\}|\bar{B}_{v}\rangle
+d4xeipxd4y\displaystyle+\int d^{4}x\,e^{ip\cdot x}\,\int d^{4}y\,
0|T{jξξ,ν(0)(x),iξq,mq(2)(y),O(A0)(0)}|B¯v,\displaystyle\hskip 8.5359pt\langle 0|{\rm T}\{j_{\xi\xi,\|\nu}^{(0)}(x),\,\,i{\cal L}_{\xi q,m_{q}}^{(2)}(y),\,\,O_{\|}^{\rm(A0)}(0)\}|\bar{B}_{v}\rangle\,, (4)

where the manifest representations of jξξ,ν(0)j_{\xi\xi,\|\nu}^{(0)}, jξq,ν(2)j_{\xi q,\|\nu}^{(2)}, ξq(1){\cal L}_{\xi q}^{(1)} and ξq(2){\cal L}_{\xi q}^{(2)} have been presented in Beneke and Feldmann (2003); Gao et al. (2020). The remaining effective Lagrangian densities and the SCETI{\rm SCET_{I}} weak current are presented in (3) of the Supplemental Material. Since the charm-quark mass dependent term ξmc(0){\cal L}_{\xi m_{c}}^{(0)} describes the unsuppressed interaction between the collinear fields Leibovich et al. (2003), the third term in the correlation function (4) will result in the power-enhanced contribution to the correlation function (4). Moreover, the spectator-quark mass contributions from the second and the fourth terms on the right-hand side of (4) can further give rise to the LP effects (see also Leibovich et al. (2003); Böer (2018); Cui et al. (2023)).

Matching the determined spectral representation of Πν,(A0)\Pi_{\nu,\,\|}^{\rm(A0)} with the corresponding hadronic dispersion relation leads to the desired NLO sum rules

ξ\displaystyle\xi_{\|} =\displaystyle= 2Bq(μ)fDq,mBqmDq(np)20ωs𝑑ωexp[mDq2npωnpωM]\displaystyle 2\,\frac{{\cal F}_{B_{q}}(\mu)}{f_{D_{q}^{\ast},\|}}\,{m_{B_{q}}m_{D_{q}^{\ast}}\over(n\cdot p)^{2}}\,\int_{0}^{\omega_{s}}d\omega^{\prime}\,{\rm exp}\left[{m_{D_{q}^{\ast}}^{2}-n\cdot p\,\omega^{\prime}\over n\cdot p\,\omega_{M}}\right] (5)
[ϕB,eff(ω)mcωϕB,eff+,mc(ω)+mqωϕB,eff+,mq(ω)]\displaystyle\left[\phi_{B,\,{\rm eff}}^{-}(\omega^{\prime})-{m_{c}\over\omega^{\prime}}\,\phi_{B,\,{\rm eff}}^{+,\,m_{c}}(\omega^{\prime})+{m_{q}\over\omega^{\prime}}\,\phi_{B,\,{\rm eff}}^{+,\,m_{q}}(\omega^{\prime})\right]
\displaystyle\equiv ξ^+ξ^mc+ξ^mq,\displaystyle\hat{\xi}_{\|}+\hat{\xi}_{\|}^{\,m_{c}}+\hat{\xi}_{\|}^{\,m_{q}}\,,

where the two decay constants Bq{\cal F}_{B_{q}} and fDq,f_{D_{q}^{\ast},\|} are defined with the conventions of Gao et al. (2020). The lengthy expressions for ϕB,eff\phi_{B,\,{\rm eff}}^{-}, ϕB,eff+,mc\phi_{B,\,{\rm eff}}^{+,\,m_{c}} and ϕB,eff+,mq\phi_{B,\,{\rm eff}}^{+,\,m_{q}} are summarized in the Supplemental Material. Remarkably, the SCETI{\rm SCET_{I}} diagram (b) in Figure 1 of the Supplemental Material does not lead to the power-enhanced contribution (but does generate the LP contribution) to the sum rules of ξ\xi_{\|} after implementing the continuum subtraction. Applying the established computational strategy further allows for the construction of the SCET sum rules for the effective form factors ξ,mc\xi_{\|,\,m_{c}} and Ξ\Xi_{\|} (shown in (8) and (12) of the Supplemental Material) by investigating the appropriate correlation functions. Along the same vein, we can readily derive the NLO sum rules for the transverse form factors ξ\xi_{\perp}, ξ,mc\xi_{\perp,\,m_{c}} and Ξ\Xi_{\perp} as collected in the Supplemental Material.

We then proceed to construct the subleading-power sum rules for the B¯qDq\bar{B}_{q}\to D_{q}^{\ast} form factors from four distinct sources: I) the off-light-cone corrections from the two-body nonlocal HQET matrix elements, II) the yet higher-twist corrections from the three-particle BqB_{q}-meson distribution amplitudes Geyer and Witzel (2005); Braun et al. (2017), III) the subleading-power corrections from the effective matrix element of (ξ¯Wc)Γ[i/(2mb)]hv(\bar{\xi}W_{c})\,\Gamma\,[i\,\not{D}_{\rm\top}/(2m_{b})]\,h_{v} Beneke and Feldmann (2003), IV) the higher-order terms from expanding the hard-collinear charm-quark propagator. The tree-level LCSR for the power-suppressed terms 𝒱NLP{\cal V}^{\rm NLP}, 𝒜0NLP{\cal A}_{0}^{\rm NLP}, 𝒜1NLP{\cal A}_{1}^{\rm NLP} and 𝒜12NLP{\cal A}_{12}^{\rm NLP} will be presented explicitly in a forthcoming longer write-up.

IV Numerical analysis

We are now in a position to explore phenomenological implications of the newly determined SCET sum rules with the three-parameter ansätz for the bottom-meson distribution amplitudes Beneke et al. (2018) (see also Bell et al. (2013); Wang and Shen (2015); Wang (2016); Wang and Shen (2018); Shen et al. (2020); Wang et al. (2022); Feldmann et al. (2022)), which fulfills simultaneously the non-trivial equations-of-motion constraints Beneke et al. (2018), the sum rule determinations of the two inverse moments λBd,s\lambda_{B_{d,s}} Braun et al. (2004); Khodjamirian et al. (2020) and the HQET parameters λE,H2\lambda_{E,\,H}^{2} Grozin and Neubert (1997); Nishikawa and Tanaka (2014); Rahimi and Wald (2023), and the asymptotic behaviours at small quark and gluon momenta Braun et al. (2017). It is perhaps worth mentioning an attractive method for the first-principles determination of the BB-meson light-cone distribution amplitude based upon the large momentum effective theory and the lattice simulation technique Wang et al. (2020). The leptonic decay constants of the pseudoscalar bottom mesons have been extracted from the lattice calculations precisely Aoki et al. (2022). We further employ the QCD sum rule computations Pullin and Zwicky (2021) for both the longitudinal and transverse DqD_{q}^{\ast} decay constants. The allowed intervals of the intrinsic LCSR parameters M2=npωMM^{2}=n\cdot p\,\omega_{M} and s0=npωss_{0}=n\cdot p\,\omega_{s} are consistent with the previous determinations Khodjamirian et al. (2009); Duplancic and Melic (2015); Li et al. (2020); Khodjamirian et al. (2021). The choices for the additional parameters in our numerical studies are identical to the ones summarized in Cui et al. (2023).

Refer to caption
Figure 1: Breakdown of the distinct dynamical mechanisms contributing to the form factor 𝒜0{\cal A}_{0} for B¯Dν¯\bar{B}\to D^{\ast}\,\ell\,\bar{\nu}_{\ell} in the kinematic range q2[3.0, 2.0]GeV2q^{2}\in[-3.0,\,2.0]\,{\rm GeV^{2}} with the uncertainties from varying the hard and hard-collinear matching scales.
B¯D()\bar{B}\to D^{(\ast)}   Form Factors B¯sDs()\bar{B}_{s}\to D_{s}^{(\ast)}   Form Factors
Parameters Lattice Lattice \oplus LCSR Lattice \oplus LCSR \oplus Exp. Lattice Lattice \oplus LCSR Lattice \oplus LCSR \oplus Exp.
b0f+b_{0}^{f_{+}}  0.0137±0.0001\ \ \,0.0137\pm 0.0001  0.0137±0.0001\ \ \,0.0137\pm 0.0001  0.0138±0.0001\ \ \,0.0138\pm 0.0001  0.0041±0.0001\ \ \,0.0041\pm 0.0001  0.0041±0.0001\ \ \,0.0041\pm 0.0001  0.0042±0.0001\ \ \,0.0042\pm 0.0001
b1f+b_{1}^{f_{+}} 0.0414±0.0034-0.0414\pm 0.0034 0.0417±0.0033\,\,-0.0417\pm 0.0033\,\, 0.0398±0.0032-0.0398\pm 0.0032 0.0029±0.0019-0.0029\pm 0.0019 0.0030±0.0019\,\,-0.0030\pm 0.0019\,\, 0.0034±0.0015-0.0034\pm 0.0015
b2f+b_{2}^{f_{+}}  0.1178±0.2007\ \ \,0.1178\pm 0.2007  0.0415±0.1124\ \ \,0.0415\pm 0.1124  0.1123±0.0713\ \ \,0.1123\pm 0.0713 0.0584±0.0096-0.0584\pm 0.0096 0.0588±0.0093-0.0588\pm 0.0093 0.0608±0.0078-0.0608\pm 0.0078
b1f0b_{1}^{f_{0}} 0.2064±0.0155-0.2064\pm 0.0155 0.2072±0.0147-0.2072\pm 0.0147 0.2004±0.0144-0.2004\pm 0.0144 0.0610±0.0112-0.0610\pm 0.0112 0.0617±0.0111-0.0617\pm 0.0111 0.0571±0.0108-0.0571\pm 0.0108
b2f0b_{2}^{f_{0}}  0.5572±0.9626\ \ \,0.5572\pm 0.9626  0.1880±0.5330\ \ \,0.1880\pm 0.5330  0.5581±0.3297\ \ \,0.5581\pm 0.3297 0.0264±0.0768-0.0264\pm 0.0768 0.0233±0.0767-0.0233\pm 0.0767 0.0359±0.0756-0.0359\pm 0.0756
b0gb_{0}^{g}  0.0259±0.0009\ \ \,0.0259\pm 0.0009  0.0256±0.0009\ \ \,0.0256\pm 0.0009  0.0251±0.0008\ \ \,0.0251\pm 0.0008  0.0080±0.0009\ \ \,0.0080\pm 0.0009  0.0072±0.0007\ \ \,0.0072\pm 0.0007  0.0071±0.0007\ \ \,0.0071\pm 0.0007
b1gb_{1}^{g} 0.1093±0.0786-0.1093\pm 0.0786 0.1005±0.0456-0.1005\pm 0.0456 0.1104±0.0396-0.1104\pm 0.0396  0.0212±0.0218\ \ \,0.0212\pm 0.0218 0.0017±0.0106-0.0017\pm 0.0106 0.0005±0.0105-0.0005\pm 0.0105
b2gb_{2}^{g} 0.4505±4.3691-0.4505\pm 4.3691  0.2587±0.6564\ \ \,0.2587\pm 0.6564  0.2050±0.6107\ \ \,0.2050\pm 0.6107 0.0089±0.1334-0.0089\pm 0.1334 0.1067±0.0848-0.1067\pm 0.0848 0.0964±0.0841-0.0964\pm 0.0841
b0fb_{0}^{f}  0.0108±0.0002\ \ \,0.0108\pm 0.0002  0.0109±0.0002\ \ \,0.0109\pm 0.0002  0.0106±0.0002\ \ \,0.0106\pm 0.0002  0.0035±0.0001\ \ \,0.0035\pm 0.0001  0.0036±0.0001\ \ \,0.0036\pm 0.0001  0.0036±0.0001\ \ \,0.0036\pm 0.0001
b1fb_{1}^{f} 0.0012±0.0168-0.0012\pm 0.0168  0.0081±0.0101\ \ \,0.0081\pm 0.0101  0.0112±0.0082\ \ \,0.0112\pm 0.0082  0.0041±0.0036\ \ \,0.0041\pm 0.0036  0.0060±0.0034\ \ \,0.0060\pm 0.0034  0.0059±0.0032\ \ \,0.0059\pm 0.0032
b2fb_{2}^{f} 0.0379±1.1507-0.0379\pm 1.1507  0.0693±0.2140\ \ \,0.0693\pm 0.2140 0.0713±0.1583-0.0713\pm 0.1583 0.0055±0.0531-0.0055\pm 0.0531  0.0287±0.0447\ \ \,0.0287\pm 0.0447  0.0419±0.0437\ \ \,0.0419\pm 0.0437
b1F1b_{1}^{F_{1}} 0.0046±0.0031-0.0046\pm 0.0031 0.0024±0.0020-0.0024\pm 0.0020  0.0015±0.0014\ \ \,0.0015\pm 0.0014  0.0013±0.0009\ \ \,0.0013\pm 0.0009  0.0013±0.0008\ \ \,0.0013\pm 0.0008  0.0019±0.0007\ \ \,0.0019\pm 0.0007
b2F1b_{2}^{F_{1}} 0.0460±0.1944-0.0460\pm 0.1944 0.0155±0.0388-0.0155\pm 0.0388 0.0089±0.0251-0.0089\pm 0.0251 0.0188±0.0156-0.0188\pm 0.0156 0.0221±0.0126-0.0221\pm 0.0126 0.0177±0.0122-0.0177\pm 0.0122
b1F2b_{1}^{F_{2}} 0.2949±0.0742-0.2949\pm 0.0742 0.2097±0.0581-0.2097\pm 0.0581 0.1364±0.0490-0.1364\pm 0.0490 0.0078±0.0190-0.0078\pm 0.0190 0.0093±0.0145-0.0093\pm 0.0145  0.0001±0.0136\ \ \,0.0001\pm 0.0136
b2F2b_{2}^{F_{2}}  0.5476±4.0297\ \ \,0.5476\pm 4.0297  0.5667±0.8789\ \ \,0.5667\pm 0.8789  0.5660±0.7406\ \ \,0.5660\pm 0.7406 0.2242±0.1756-0.2242\pm 0.1756 0.1906±0.1521-0.1906\pm 0.1521 0.1480±0.1495-0.1480\pm 0.1495
χ2/dof\chi^{2}/{\rm dof} 7.71/87.71/8 30.76/7630.76/76 118.31/140118.31/140 7.71/87.71/8 30.76/7630.76/76 118.31/140118.31/140
R(Dq)R(D_{q})  0.3004±0.0143\ \ \,0.3004\pm 0.0143  0.3066±0.0081\ \ \,0.3066\pm 0.0081  0.2986±0.0042\ \ \,0.2986\pm 0.0042  0.2993±0.0046\ \ \,0.2993\pm 0.0046  0.2996±0.0045\ \ \,0.2996\pm 0.0045  0.2971±0.0042\ \ \,0.2971\pm 0.0042
R(Dq)R(D_{q}^{\ast})  0.2718±0.0300\ \ \,0.2718\pm 0.0300  0.2585±0.0054\ \ \,0.2585\pm 0.0054  0.2500±0.0016\ \ \,0.2500\pm 0.0016  0.2488±0.0058\ \ \,0.2488\pm 0.0058  0.2506±0.0040\ \ \,0.2506\pm 0.0040  0.2461±0.0024\ \ \,0.2461\pm 0.0024
Table 1: Theory predictions for the zz-series expansion coefficients in the semileptonic B¯(s)D(s)()ν¯\bar{B}_{(s)}\to D_{(s)}^{(\ast)}\,\ell\,\bar{\nu}_{\ell} form factors determined by carrying out the BGL fitting against the “only lattice QCD” data points Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022); McLean et al. (2020); Harrison and Davies (2022) (shown in the second and the fifth columns), by performing the simultaneous fitting to both the lattice QCD results Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022); McLean et al. (2020); Harrison and Davies (2022) and the updated LCSR computations (shown in the third and the sixth columns), and by further implementing the available experimental data points Glattauer et al. (2016); Waheed et al. (2019); Aaij et al. (2020a, b) in the combined BGL fit procedure (shown in the fourth and the last columns).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Theory predictions for the momentum transfer dependence of the complete set of the exclusive B¯D()ν¯\bar{B}\to D^{(\ast)}\,\ell\,\bar{\nu}_{\ell} form factors in the entire kinematic region from I) the BGL zz-series fit against the “only lattice QCD” data points Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022); McLean et al. (2020); Harrison and Davies (2022), II) the simultaneous fit to both the lattice QCD results Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022); McLean et al. (2020); Harrison and Davies (2022) and our LCSR predictions, III) the combined numerical fit including further the available experimental data points Glattauer et al. (2016); Waheed et al. (2019); Aaij et al. (2020a, b).

Inspecting the numerical features for the distinct classes of higher-order contributions indicates that the newly determined NLL QCD corrections can reduce the corresponding tree-level LP predictions by an amount of 𝒪(20%){\cal O}(20\,\%). As displayed in Figure 1, the particular charm-quark mass dependent contribution ξ^mc\hat{\xi}_{\|}^{\,m_{c}} in (5) appears to bring about the 𝒪(5%){\cal O}(5\,\%) enhancement of the LP prediction of the form factor 𝒜0{\cal A}_{0} with q2[3.0, 2.0]GeV2q^{2}\in[-3.0,\,2.0]\,{\rm GeV^{2}}. We further note that the effective form factor ξ,mc\xi_{\|,\,m_{c}} defined in (2) can only result in the negligible impact on the numerical prediction for 𝒜0{\cal A}_{0} in the large recoil region due to the kinematical suppression of the multiplication hard coefficient. It remains important to remark that the yielding uncertainties of our NLLNLP{\rm NLL\oplus NLP} LCSR predictions arise, on the one hand, from the SCET computations of the bottom-meson-to-vacuum correlation functions and, on the other hand, from the extraction of the ground-state charmed meson contribution with the parton-hadron duality ansätz and the Borel transformation. In order to determine the mean values and theoretical uncertainties of the B¯qDq\bar{B}_{q}\to D_{q}^{\ast} form factors, we employ the statistical procedure discussed in Sentitemsu Imsong et al. (2015); Leljak et al. (2021) by simultaneously scanning the complete set of input parameters (displayed in Table I of the Supplemental Material) in the adopted intervals with the prior distribution. It is worthwhile mentioning further that the systematic uncertainty due to the parton-hadron duality ansätz has been addressed in a wide range of QCD computations (e.g., Chibisov et al. (1997); Shifman (2000); Bigi and Uraltsev (2001); Cata et al. (2005); Beylich et al. (2011); Jamin (2011); Dingfelder and Mannel (2016); Boito et al. (2018); Pich (2021); Pich and Rodríguez-Sánchez (2022)), leading to the encouraging observation on the smallness of duality violations in the inclusive hadron production in e+ee^{+}\,e^{-} annihilations Pich (2021), in the hadronic decays of the τ\tau-lepton Pich and Rodríguez-Sánchez (2022), and in the semileptonic bottom-meson decays Dingfelder and Mannel (2016). In an attempt to obtain more conservative predictions of our SCET sum rules, we nevertheless increase the default intervals of the sum-rule parameters M2M^{2} and s0s_{0} by a factor of two in the ultimate error estimates. As elaborated further in the Supplemental Material, one of the principal benefits from our LCSR analysis consists in the yielding strong correlations between the LCSR data points at distinct q2q^{2}-values, which are expected to be particularly insensitive to the duality approximation.

In order to extrapolate the LCSR predictions for the B¯qDq\bar{B}_{q}\to D_{q}^{\ast} form factors towards the large momentum transfer, we will apply the BGL parametrization Boyd et al. (1995, 1996, 1997) as widely employed in the form-factor determinations (see, for instance Bigi et al. (2017b, a); Gambino et al. (2019)) and then perform the binned χ2\chi^{2} fit of our LCSR predictions at q2{3.0,2.0,1.0, 0.0, 1.0, 2.0}GeV2q^{2}\in\left\{-3.0,\,-2.0,\,-1.0,\,0.0,\,1.0,\,2.0\right\}\,{\rm GeV}^{2}, in combination with the available lattice QCD results. Moreover, we will implement the strong unitarity constraints on the BGL coefficients bnib_{n}^{i} by including all the two-body B¯q()Dq()\bar{B}_{q}^{(\ast)}\to D_{q}^{(\ast)} channels. Consequently, we will adopt the HQET relations between these form factors at 𝒪(αs, 1/mb, 1/mc2){\cal O}(\alpha_{s},\,1/m_{b},\,1/m_{c}^{2}), allowing us to express the B¯qDq()\bar{B}_{q}^{\ast}\to D_{q}^{(\ast)} form factors in terms of the corresponding B¯qDq()\bar{B}_{q}\to D_{q}^{(\ast)} form factors, the NLP IW functions χ^2, 3(q)(ω)\hat{\chi}_{2,\,3}^{(q)}(\omega) and η^(q)(ω)\hat{\eta}^{(q)}(\omega) Neubert (1994), and the 𝒪(1/mc2){\cal O}(1/m_{c}^{2}) IW functions ^1,,6(ω)\hat{\ell}_{1,...,6}(\omega) Falk and Neubert (1993). The determined intervals of the normalization and the slop parameters of these IW functions from Bordone et al. (2020b) will therefore be employed.

Refer to caption
Figure 3: The correlated theory predictions for (D){\cal R}({D}) and (D){\cal R}({D^{\ast}}) from the combined BGL fits against the lattice data points Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022) and the NLLNLP{\rm NLL\oplus NLP} LCSR predictions. The available measurements from the BaBar Lees et al. (2012a, 2013), Belle Huschle et al. (2015); Caria et al. (2020); Hirose et al. (2017), LHCb Aaij et al. (2023a, b) and Belle II Collaborations Kojima et al. (2023) are also displayed. The red solid and dashed ellipses correspond to 95.45%95.45\,\% and 99.73%99.73\,\% confidence level contours, respectively.

Combining the obtained LCSR results for the B¯qDq\bar{B}_{q}\to D_{q}^{\ast} form factors with I) the updated SCET sum rules for the B¯qDq\bar{B}_{q}\to D_{q} form factors Gao et al. (2022), II) the lattice results for the B¯D\bar{B}\to D form factors at ω={1.00, 1.08, 1.16}\omega=\left\{1.00,\,1.08,\,1.16\right\} from the FNAL/MILC Collaboration Bailey et al. (2015a) and the synthetic data points at ω={1.01, 1.06}\omega=\left\{1.01,\,1.06\right\} from the HPQCD analysis Na et al. (2015), III) the unquenched lattice results for the B¯D\bar{B}\to D^{\ast} form factors at ω={1.03, 1.10, 1.17}\omega=\left\{1.03,\,1.10,\,1.17\right\} from the FNAL/MILC Collaboration Bazavov et al. (2022), IV) the lattice determinations of the B¯sDs\bar{B}_{s}\to D_{s} form factors at ω={1.0, 1.06, 1.12}\omega=\left\{1.0,\,1.06,\,1.12\right\} from the HPQCD analysis McLean et al. (2020), V) the lattice computations of the B¯sDs\bar{B}_{s}\to D_{s}^{\ast} form factors at ω={1.0, 1.04, 1.08}\omega=\left\{1.0,\,1.04,\,1.08\right\} Harrison and Davies (2022), we display in Table 1 the resulting zz-series coefficients from the combined BGL fitting with the truncation n=3n=3. In order to better understand the phenomenological significance of including the LCSR data points in the constrained BGL fit, we further carry out an alternative fit to the “only lattice QCD” data points of the B¯D()\bar{B}\to D^{(\ast)} form factors Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022) and the B¯sDs()\bar{B}_{s}\to D_{s}^{(\ast)} form factors McLean et al. (2020); Harrison and Davies (2022). It needs to be stressed that our major objective is to investigate whether the inclusion of the large-recoil LCSR data points in the BGL fit strategy allows us to increase effectively the precision of the yielding form factors. It is evident from Figure 2 that taking into account the NLLNLP{\rm NLL\oplus NLP} LCSR results will indeed be highly beneficial for pining down the uncertainties of the B¯D()\bar{B}\to D^{(\ast)} form factors at small momentum transfer. As the third fit model, we also carry out the statistical analysis by taking into account the experimental data points for B¯(s)D(s)()ν¯\bar{B}_{(s)}\to D_{(s)}^{(\ast)}\ell\bar{\nu}_{\ell} together with the lattice QCD results and the LCSR predictions.

We continue to present the correlated numerical predictions for (D){\cal R}({D}) and (D){\cal R}({D^{\ast}}) in Figure 3, confronting with the available measurements from the BaBar Lees et al. (2012a, 2013), Belle Huschle et al. (2015); Caria et al. (2020); Hirose et al. (2017), LHCb Aaij et al. (2023a, b) and Belle II Collaborations Kojima et al. (2023). Importantly, our determinations of (D){\cal R}({D}) and (D){\cal R}({D^{\ast}}) by encompassing the LCSR results in the numerical fit deviate from the HFLAV-averaged measurements by approximately 2.6σ2.6\,\sigma, in contrast with the 3.3σ3.3\,\sigma discrepancy between the arithmetic average of the previous SM predictions Bigi and Gambino (2016); Bordone et al. (2020a); Gambino et al. (2019) and the state-of-the-art experimental average Amhis et al. (2022). Subsequently, we carry out the simultaneous fit for |Vcb||V_{cb}| and |Vub||V_{ub}| by taking the determined B¯(s)D(s)()\bar{B}_{(s)}\to D_{(s)}^{(\ast)} form factors and the updated predictions of the B¯π\bar{B}\to\pi form factors in Cui et al. (2023) in combination with the lattice data points for the B¯(s)D(s)()\bar{B}_{(s)}\to D_{(s)}^{(\ast)} form factors Bailey et al. (2015a); Na et al. (2015); Bazavov et al. (2022); McLean et al. (2020); Harrison and Davies (2022) and for the B¯π\bar{B}\to\pi form factors Flynn et al. (2015); Bailey et al. (2015b, c) and the experimental measurements for B¯(s)D(s)()ν¯\bar{B}_{(s)}\to D_{(s)}^{(\ast)}\ell\bar{\nu}_{\ell} Glattauer et al. (2016); Waheed et al. (2019); Aaij et al. (2020a, b) and for B¯πν¯\bar{B}\to\pi\ell\bar{\nu}_{\ell} del Amo Sanchez et al. (2011); Lees et al. (2012b); Ha et al. (2011); Sibidanov et al. (2013); Adamczyk et al. (2022). The yielding intervals of |Vcb||V_{cb}| and |Vub||V_{ub}| are

{|Vcb|,|Vub|}={(39.64±0.63),(3.71±0.13)}×103,\displaystyle\left\{|V_{cb}|,|V_{ub}|\right\}=\left\{(39.64\pm 0.63),(3.71\pm 0.13)\right\}\times 10^{-3},\hskip 19.91684pt (6)

which coincide with the previous exclusive extractions for |Vcb||V_{cb}| (for instance, Bigi et al. (2017a); Grinstein and Kobach (2017); Gambino et al. (2019); Bordone et al. (2020a, b); Jaiswal et al. (2017, 2020); Biswas et al. (2022); Martinelli et al. (2022a, b, c); Iguro and Watanabe (2020)) and for |Vub||V_{ub}| (e.g., Leljak et al. (2021); Biswas et al. (2021); Biswas and Nandi (2021); Martinelli et al. (2022d)). Unsurprisingly, the obtained numerical predictions (6) remain to be in tension with the world averages of the inclusive determinations |Vcb|=(42.2±0.8)×103|V_{cb}|=(42.2\pm 0.8)\times 10^{-3} and |Vub|=(4.13±0.120.14+0.13±0.18)×103|V_{ub}|=(4.13\pm 0.12^{+0.13}_{-0.14}\pm 0.18)\times 10^{-3} Workman et al. (2022) at the level of 2.5σ2.5\,\sigma and 1.5σ1.5\,\sigma, respectively. In an attempt to understand qualitatively the systematic uncertainties due to the truncated BGL expansions, we increase the expansion order to n=4n=4 and repeat the numerical fit procedure for the form factors, yielding the theory predictions for both the LFU ratios (D()){\cal R}(D^{(\ast)}) and the CKM matrix elements |Vcb||V_{cb}| and |Vub||V_{ub}| only marginally different from the achieved results with n=3n=3.

V Conclusions

In conclusion, we have endeavored to accomplish for the first time the complete next-to-leading-order QCD computations of the B¯qDq()ν¯\bar{B}_{q}\to D_{q}^{(\ast)}\ell\bar{\nu}_{\ell} form factors at large recoil and identified explicitly the unsuppressed charm-quark-mass dependent contributions in the heavy quark expansion. Taking into account the obtained LCSR data points in the BGL zz-series fit of the B¯qDq()ν¯\bar{B}_{q}\to D_{q}^{(\ast)}\ell\bar{\nu}_{\ell} form factors enabled us to enhance significantly the achieved accuracy of the large-recoil theory predictions for the B¯D()\bar{B}\to D^{(\ast)} form factors. Implementing the determined LCSR results in the statistical analysis turned out to be advantageous to mitigate the combined (D){\cal R}({D}) and (D){\cal R}({D^{\ast}}) tension between the SM predictions and the HFLAV-averaged measurements. Our computations of the heavy-to-heavy form factors near the maximal recoil will be of notable importance for obtaining the yet higher precision predictions of the B¯qDq()ν¯\bar{B}_{q}\to D_{q}^{(\ast)}\ell\bar{\nu}_{\ell} decay observables, when combined with the upcoming lattice determinations of the bottom-meson distribution amplitudes.

Acknowledgements.

Acknowledgements

We are grateful to Thomas Mannel, Zi-Hao Mi, Ru-Ying Tang, Alejandro Vaquero, Chao Wang and Yan-Bing Wei for illuminating discussions. Y.M.W. acknowledges support from the National Natural Science Foundation of China with Grant No. 11735010 and 12075125, and the Natural Science Foundation of Tianjin with Grant No. 19JCJQJC61100.

References

Appendix A SUPPLEMENTAL MATERIAL

Appendix B Analytic Expressions for the SCET Form Factors

We first provide explicitly the conversion relations between the helicity form factors {𝒱,𝒜0,𝒜1,𝒜12}\{{\cal V},\,{\cal A}_{0},\,{\cal A}_{1},\,{\cal A}_{12}\} and the conventional form-factor basis {V,A0,A1,A2}\{V,\,A_{0},\,A_{1},\,A_{2}\} (see, for instance Beneke and Feldmann (2001))

𝒱=mBqmBq+mDqV,𝒜0=2mDqnpA0,𝒜1=mB+mDqnpA1,𝒜12=𝒜1mBmDqmBA2.\displaystyle{\cal V}={m_{B_{q}}\over m_{B_{q}}+m_{D_{q}^{\ast}}}V,\qquad{\cal A}_{0}={2\,m_{D_{q}^{\ast}}\over n\cdot p}\,A_{0},\qquad{\cal A}_{1}={m_{B}+m_{D_{q}^{\ast}}\over n\cdot p}\,A_{1},\qquad{\cal A}_{12}={\cal A}_{1}-{m_{B}-m_{D_{q}^{\ast}}\over m_{B}}\,A_{2}. (7)

We then collect the analytic expressions for the hard matching coefficients in the SCETI{\rm SCET_{I}} representations of the semileptonic B¯qDq\bar{B}_{q}\to D_{q}^{\ast} form factors at large hadronic recoil

Cf+(A0)\displaystyle C_{f_{+}}^{\rm(A0)} =\displaystyle= 1+αsCF4π[2ln2(rμ^)+5ln(rμ^)2Li2(1r)3lnrπ2126]+𝒪(αs2),\displaystyle 1+{\alpha_{s}\,C_{F}\over 4\,\pi}\,\left[-2\ln^{2}\left({r\over\hat{\mu}}\right)+5\,\ln\left({r\over\hat{\mu}}\right)-2\,{\rm Li}_{2}(1-r)-3\,\ln r-{\pi^{2}\over 12}-6\right]+{\cal O}(\alpha_{s}^{2}),
Cf0(A0)\displaystyle C_{f_{0}}^{\rm(A0)} =\displaystyle= 1+αsCF4π[2ln2(rμ^)+5ln(rμ^)2Li2(1r)35r1rlnrπ2124]+𝒪(αs2),\displaystyle 1+{\alpha_{s}\,C_{F}\over 4\,\pi}\,\left[-2\ln^{2}\left({r\over\hat{\mu}}\right)+5\,\ln\left({r\over\hat{\mu}}\right)-2\,{\rm Li}_{2}(1-r)-{3-5r\over 1-r}\,\ln r-{\pi^{2}\over 12}-4\right]+{\cal O}(\alpha_{s}^{2})\,,
CV(A0)\displaystyle C_{V}^{\rm(A0)} =\displaystyle= 1+αsCF4π[2ln2(rμ^)+5ln(rμ^)2Li2(1r)32r1rlnrπ2126]+𝒪(αs2),\displaystyle 1+{\alpha_{s}\,C_{F}\over 4\,\pi}\,\left[-2\ln^{2}\left({r\over\hat{\mu}}\right)+5\,\ln\left({r\over\hat{\mu}}\right)-2\,{\rm Li}_{2}(1-r)-{3-2\,r\over 1-r}\,\ln r-{\pi^{2}\over 12}-6\right]+{\cal O}(\alpha_{s}^{2})\,,
Cf+(A1,mc)\displaystyle C_{f_{+}}^{({\rm A1},\,m_{c})} =\displaystyle= (r1)+𝒪(αs),Cf0(A1,mc)=(1r)+𝒪(αs),CV(A1,mc)=1+𝒪(αs),CA1(A1,mc)=1+𝒪(αs),\displaystyle(r-1)+{\cal O}(\alpha_{s})\,,\hskip 5.69046ptC_{f_{0}}^{({\rm A1},\,m_{c})}=(1-r)+{\cal O}(\alpha_{s})\,,\hskip 5.69046ptC_{V}^{({\rm A1},\,m_{c})}=-1+{\cal O}(\alpha_{s})\,,\hskip 5.69046ptC_{A_{1}}^{({\rm A1},\,m_{c})}=1+{\cal O}(\alpha_{s})\,,
Cf+(B1)\displaystyle C_{f_{+}}^{\rm(B1)} =\displaystyle= (2+1r)+𝒪(αs),Cf0(B1)=(1r)+𝒪(αs),CV(B1)=0+𝒪(αs),\displaystyle\left(-2+{1\over r}\right)+{\cal O}(\alpha_{s})\,,\qquad C_{f_{0}}^{\rm(B1)}=\left(-{1\over r}\right)+{\cal O}(\alpha_{s})\,,\qquad C_{V}^{\rm(B1)}=0+{\cal O}(\alpha_{s})\,, (8)

with the two dimensionless quantities r=np/mbr=n\cdot p/m_{b} and μ^=μ/mb\hat{\mu}=\mu/m_{b}.

We present further the effective Lagrangian densities ξmc(0){\cal L}_{\xi m_{c}}^{(0)} and ξq,mq(2){\cal L}_{\xi q,m_{q}}^{(2)} together with the SCETI{\rm SCET_{I}} weak current O(A0)O_{\|}^{\rm(A0)} entering the SCET correlation function Πν,(A0)\Pi_{\nu,\,\|}^{\rm(A0)}

ξmc(0)\displaystyle{\cal L}_{\xi m_{c}}^{(0)} =\displaystyle= mcξ¯[ic,1inDc]2ξmc2ξ¯1inDc2ξ,\displaystyle m_{c}\,\bar{\xi}\left[i\not{D}_{\perp c},\,{1\over in\cdot D_{c}}\right]{\not{n}\over 2}\xi-m_{c}^{2}\,\bar{\xi}{1\over in\cdot D_{c}}{\not{n}\over 2}\xi\,,
ξq,mq(2)\displaystyle{\cal L}_{\xi q,m_{q}}^{(2)} =\displaystyle= mq[(ξ¯Wc)(Ysqs)+(q¯sYs)(Wcξ)],\displaystyle-m_{q}\,\left[\left(\bar{\xi}W_{c}\right)\,\left(Y_{s}^{\dagger}q_{s}\right)+\left(\bar{q}_{s}Y_{s}\right)\,\left(W_{c}^{\dagger}\xi\right)\right]\,,
O(A0)\displaystyle O_{\|}^{\rm(A0)} =\displaystyle= (ξ¯Wc)γ5hv,\displaystyle\left(\bar{\xi}W_{c}\right)\gamma_{5}\,h_{v}\,, (9)

which are evidently in demand for the construction of the SCET sum rules (5) for the effective form factor ξ\xi_{\|} in the main text. The sample Feynman diagrams for the one-loop computation of the correction function Πν,(A0)\Pi_{\nu,\,\|}^{\rm(A0)} with the aid of the perturbative factorization technique are collected in (a), (b) and (c) in Figure 4. In particular, the three effective bottom-meson distribution amplitudes ϕB,eff\phi_{B,\,{\rm eff}}^{-}, ϕB,eff+,mc\phi_{B,\,{\rm eff}}^{+,\,m_{c}} and ϕB,eff+,mq\phi_{B,\,{\rm eff}}^{+,\,m_{q}} in the NLO sum rules for the SCET form factor ξ\xi_{\|} can be written as

ϕB,eff(ω)\displaystyle\phi_{B,\,{\rm eff}}^{-}(\omega^{\prime}) =\displaystyle= θ(ωωc)ϕB(ωωc)+αsCF4π{0dω[θ(ωωωc)ϱ1(ω,ω)+θ(ω+ωcω)ϱ2(ω,ω)]ddωϕB(ω)\displaystyle\theta(\omega^{\prime}-\omega_{c})\,\phi_{B}^{-}(\omega^{\prime}-\omega_{c})+{\alpha_{s}\,C_{F}\over 4\,\pi}\,\bigg{\{}\int_{0}^{\infty}d\omega\left[\theta(\omega^{\prime}-\omega-\omega_{c})\,\varrho_{1}(\omega,\omega^{\prime})+\theta(\omega+\omega_{c}-\omega^{\prime})\,\varrho_{2}(\omega,\omega^{\prime})\right]\,{d\over d\omega}\,\phi_{B}^{-}(\omega)
+0dωϱ3(ω,ω)ϕB(ω)4ωc[3lnμmc+2]ddω[ϕB(ωωc)θ(ωωc)]}+𝒪(αs2),\displaystyle+\,\int_{0}^{\infty}d\omega\,\varrho_{3}(\omega,\omega^{\prime})\,\phi_{B}^{-}(\omega)-4\,\omega_{c}\left[3\,\ln{\mu\over m_{c}}+2\right]\,{d\over d\omega^{\prime}}\left[\phi_{B}^{-}(\omega^{\prime}-\omega_{c})\,\theta(\omega^{\prime}-\omega_{c})\right]\bigg{\}}+{\cal O}(\alpha_{s}^{2}),
ϕB,eff+,mc(ω)\displaystyle\phi_{B,\,{\rm eff}}^{+,\,m_{c}}(\omega^{\prime}) =\displaystyle= αsCF4πθ(ωωc)0𝑑ω[θ(ωωωc)ϱ4(ω,ω)+θ(ω+ωcω)ϱ5(ω,ω)]ddωϕB+(ω)ω+𝒪(αs2),\displaystyle-{\alpha_{s}\,C_{F}\over 4\,\pi}\,\theta(\omega^{\prime}-\omega_{c})\,\int_{0}^{\infty}d\omega\,\left[\theta(\omega^{\prime}-\omega-\omega_{c})\,\varrho_{4}(\omega,\omega^{\prime})+\theta(\omega+\omega_{c}-\omega^{\prime})\,\varrho_{5}(\omega,\omega^{\prime})\right]\,{d\over d\omega}\,{\phi_{B}^{+}(\omega)\over\omega}+{\cal O}(\alpha_{s}^{2}),
ϕB,eff+,mq(ω)\displaystyle\phi_{B,\,{\rm eff}}^{+,\,m_{q}}(\omega^{\prime}) =\displaystyle= αsCF4πθ(ωωc){0dω[θ(ωωωc)ϱ6(ω,ω)+θ(ω+ωcω)ϱ7(ω,ω)]ddωϕB+(ω)ω\displaystyle{\alpha_{s}\,C_{F}\over 4\,\pi}\,\theta(\omega^{\prime}-\omega_{c})\,\bigg{\{}\int_{0}^{\infty}d\omega\,\left[\theta(\omega^{\prime}-\omega-\omega_{c})\,\varrho_{6}(\omega,\omega^{\prime})+\theta(\omega+\omega_{c}-\omega^{\prime})\,\varrho_{7}(\omega,\omega^{\prime})\right]\,{d\over d\omega}\,{\phi_{B}^{+}(\omega)\over\omega} (10)
+0dω[θ(ωωωc)ϱ8(ω,ω)+θ(ω+ωcω)ϱ9(ω,ω)]ϕB+(ω)ω2}+𝒪(αs2),\displaystyle+\int_{0}^{\infty}d\omega\,\left[\theta(\omega^{\prime}-\omega-\omega_{c})\,\varrho_{8}(\omega,\omega^{\prime})+\theta(\omega+\omega_{c}-\omega^{\prime})\,\varrho_{9}(\omega,\omega^{\prime})\right]\,{\phi_{B}^{+}(\omega)\over\omega^{2}}\bigg{\}}+{\cal O}(\alpha_{s}^{2}),

where we have introduced the new coefficient functions ϱi\varrho_{i} (with i=1,,9i=1,...,9) for convenience

ϱ1(ω,ω)\displaystyle\varrho_{1}(\omega,\omega^{\prime}) =\displaystyle= lnωωωcωωc[(1ωcω)24lnωcωωωc2lnμ2npω2],\displaystyle\ln{\omega^{\prime}-\omega-\omega_{c}\over\omega^{\prime}-\omega_{c}}\,\left[\left(1-{\omega_{c}\over\omega^{\prime}}\right)^{2}-4\,\ln{\omega_{c}\over\omega^{\prime}-\omega-\omega_{c}}-2\,\ln{\mu^{2}\over n\cdot p\,\omega^{\prime}}-2\right]\,,
ϱ2(ω,ω)\displaystyle\varrho_{2}(\omega,\omega^{\prime}) =\displaystyle= lnω+ωcωωωc[(1ωcω)2+4lnμωωc+2lnωnp+2]+2Li2(ωcωcω)\displaystyle\ln{\omega+\omega_{c}-\omega^{\prime}\over\omega^{\prime}-\omega_{c}}\,\left[\left(1-{\omega_{c}\over\omega^{\prime}}\right)^{2}+4\,\ln{\mu\over\omega^{\prime}-\omega_{c}}+2\,\ln{\omega^{\prime}\over n\cdot p}+2\right]+2\,{\rm Li}_{2}\left({\omega_{c}\over\omega_{c}-\omega^{\prime}}\right)
+lnωcωωc[(1ωcω)22lnωcω2]ln2μ2np(ωωc)ωcω5π26,\displaystyle+\ln{\omega_{c}\over\omega^{\prime}-\omega_{c}}\,\left[\left(1-{\omega_{c}\over\omega^{\prime}}\right)^{2}-2\,\ln{\omega_{c}\over\omega^{\prime}}-2\right]-\ln^{2}{\mu^{2}\over n\cdot p\,(\omega^{\prime}-\omega_{c})}-{\omega_{c}\over\omega^{\prime}}-{5\,\pi^{2}\over 6}\,,
ϱ3(ω,ω)\displaystyle\varrho_{3}(\omega,\omega^{\prime}) =\displaystyle= θ(ωωωc)1ω+ωcω[4lnωωωc(ωωωcωω)2]+θ(ω+ωcω)2ω,\displaystyle\theta(\omega^{\prime}-\omega-\omega_{c})\,{1\over\omega+\omega_{c}-\omega^{\prime}}\,\left[4\,\ln{\omega^{\prime}-\omega\over\omega_{c}}-\left({\omega^{\prime}-\omega-\omega_{c}\over\omega^{\prime}-\omega}\right)^{2}\right]+\theta(\omega+\omega_{c}-\omega^{\prime})\,{2\over\omega}\,,
ϱ4(ω,ω)\displaystyle\varrho_{4}(\omega,\omega^{\prime}) =\displaystyle= (ωωc)2ωlnωωωcωωcωlnωωωωωcωω,\displaystyle{(\omega^{\prime}-\omega_{c})^{2}\over\omega^{\prime}}\,\ln{\omega^{\prime}-\omega-\omega_{c}\over\omega^{\prime}-\omega_{c}}-\omega^{\prime}\,\ln{\omega^{\prime}-\omega\over\omega^{\prime}}-{\omega\,\omega_{c}\over\omega^{\prime}-\omega}\,,
ϱ5(ω,ω)\displaystyle\varrho_{5}(\omega,\omega^{\prime}) =\displaystyle= (ωωc)2ωln(ω+ωcω)ωc(ωωc)2ωlnωcω,\displaystyle{(\omega^{\prime}-\omega_{c})^{2}\over\omega^{\prime}}\,\ln{(\omega+\omega_{c}-\omega^{\prime})\,\omega_{c}\over(\omega^{\prime}-\omega_{c})^{2}}-\omega^{\prime}\,\ln{\omega_{c}\over\omega^{\prime}}\,,
ϱ6(ω,ω)\displaystyle\varrho_{6}(\omega,\omega^{\prime}) =\displaystyle= [2ω+ωc(1+ωcω)]lnωωcωωcω,\displaystyle\left[2\,\omega^{\prime}+\omega_{c}\,\left(1+{\omega_{c}\over\omega^{\prime}}\right)\right]\,\ln{\omega^{\prime}-\omega_{c}\over\omega^{\prime}-\omega_{c}-\omega}\,,
ϱ7(ω,ω)\displaystyle\varrho_{7}(\omega,\omega^{\prime}) =\displaystyle= [2ω+ωc(1+ωcω)]ln(ωωc)2ωc(ω+ωcω)(2lnμ2mc2+5)ω+ωc,\displaystyle\left[2\,\omega^{\prime}+\omega_{c}\,\left(1+{\omega_{c}\over\omega^{\prime}}\right)\right]\,\ln{(\omega^{\prime}-\omega_{c})^{2}\over\omega_{c}\,(\omega+\omega_{c}-\omega^{\prime})}-\left(2\,\ln{\mu^{2}\over m_{c}^{2}}+5\right)\,\omega^{\prime}+\omega_{c}\,,
ϱ8(ω,ω)\displaystyle\varrho_{8}(\omega,\omega^{\prime}) =\displaystyle= 2ω[lnωωω+2lnωωcωωcω]+ωωcωω,\displaystyle 2\,\omega^{\prime}\,\left[\ln{\omega^{\prime}-\omega\over\omega^{\prime}}+2\,\ln{\omega^{\prime}-\omega_{c}\over\omega^{\prime}-\omega_{c}-\omega}\right]+{\omega\,\omega_{c}\over\omega-\omega^{\prime}}\,,
ϱ9(ω,ω)\displaystyle\varrho_{9}(\omega,\omega^{\prime}) =\displaystyle= ω[4lnμωωc+2lnωnp+5]+ωc.\displaystyle-\omega^{\prime}\,\left[4\,\ln{\mu\over\omega^{\prime}-\omega_{c}}+2\,\ln{\omega^{\prime}\over n\cdot p}+5\right]+\omega_{c}\,. (11)
Refer to caption
Figure 4: Sample diagrams for the two bottom-meson-to-vacuum correlation functions Πν,(A0)\Pi_{\nu,\,\|}^{\rm(A0)} and Πν,(A1),mc\Pi_{\nu,\,\|}^{{\rm(A1)},m_{c}} in SCETI{\rm SCET_{I}}.

Along the same vein, we can establish the desired LCSR for the effective form factor ξ,mc\xi_{\|,\,m_{c}} by employing the bottom-meson-to-vacuum correction function

Πν,(A1,mc)=d4xeipxd4yd4z0|T{jξξ,ν(0)(x),iξq(1)(y),iξmc(0)(z),O(A1,mc)(0)}|B¯v,\displaystyle\Pi_{\nu,\,\|}^{({\rm A1},\,m_{c})}=\int d^{4}x\,e^{ip\cdot x}\,\int d^{4}y\,\int d^{4}z\,\langle 0|{\rm T}\{j_{\xi\xi,\|\nu}^{(0)}(x),\,i{\cal L}_{\xi q}^{(1)}(y),\,i{\cal L}_{\xi m_{c}}^{(0)}(z),\,O_{\|}^{({\rm A1},\,m_{c})}(0)\}|\bar{B}_{v}\rangle, (12)

where the manifest form of the A1{\rm A1}-type SCETI{\rm SCET}_{\rm I} current is given by

O(A1,mc)(0)=(ξ¯Wc)2mcinDcγ5hv.\displaystyle O_{\|}^{({\rm A1},\,m_{c})}(0)=(\bar{\xi}W_{c})\,{\not{n}\over 2}{m_{c}\over-in\cdot\overleftarrow{D}_{c}}\gamma_{5}\,h_{v}\,. (13)

It turns out that only the diagram (d) in Figure 4 can yield the non-vanishing contribution to the correlation function (12) at 𝒪(αs){\cal O}(\alpha_{s}). Equating the obtained partonic representation with the counterpart hadronic dispersion relation allows us to derive the new sum rules for ξ,mc\xi_{\|,\,m_{c}}

ξ,mc\displaystyle\xi_{\|,\,m_{c}} =\displaystyle= 2Bq(μ)fDq,mBqmDq(np)20ωs𝑑ωexp[mDq2npωnpωM][ωcωϕB,eff+,mc(ω)],\displaystyle 2\,\frac{{\cal F}_{B_{q}}(\mu)}{f_{D_{q}^{\ast},\|}}{m_{B_{q}}m_{D_{q}^{\ast}}\over(n\cdot p)^{2}}\int_{0}^{\omega_{s}}d\omega^{\prime}{\rm exp}\left[{m_{D_{q}^{\ast}}^{2}-n\cdot p\,\omega^{\prime}\over n\cdot p\,\omega_{M}}\right]\,\left[{\omega_{c}\over\omega^{\prime}}\,\phi_{B,\,{\rm eff}}^{+,\,m_{c}}(\omega^{\prime})\right], (14)

with ωc=mc2/np\omega_{c}=m_{c}^{2}/n\cdot p. We mention in passing that the default power counting rules for ωs\omega_{s}, ωM\omega_{M} and ωc\omega_{c} are

ωcωs𝒪(ΛQCD),(ωsωc)𝒪(ΛQCD3/2/mb1/2),ωM𝒪(ΛQCD3/2/mb1/2),\displaystyle\omega_{c}\sim\omega_{s}\sim{\cal O}(\Lambda_{\rm QCD}),\qquad(\omega_{s}-\omega_{c})\sim{\cal O}(\Lambda_{\rm QCD}^{3/2}/m_{b}^{1/2}),\qquad\omega_{M}\sim{\cal O}(\Lambda_{\rm QCD}^{3/2}/m_{b}^{1/2}), (15)

which differ from the conventional counting schemes for the exclusive charmless bottom-hadron decays Wang and Shen (2015, 2016); Wang (2016); Wang and Shen (2018); Shen et al. (2020).

Now we turn to derive the SCET sum rules for the B1{\rm B1}-type longitudinal form factor Ξ\Xi_{\|} by investigating the bottom-meson-to-vacuum correlation function

Πν,(B1)=np2πd4xeipx𝑑reinpτrd4y0|T{jξξ,ν(0)(x),iξq(1)(y),O(B1)(rn)}|B¯v,\displaystyle\Pi_{\nu,\,\|}^{({\rm B1})}={n\cdot p\over 2\pi}\int d^{4}x\,e^{ip\cdot x}\,\int dr\,e^{-in\cdot p\,\tau\,r}\,\int d^{4}y\,\,\langle 0|{\rm T}\{j_{\xi\xi,\|\nu}^{(0)}(x),\,i{\cal L}_{\xi q}^{(1)}(y),\,\,O_{\|}^{({\rm B1})}(r\,n)\}|\bar{B}_{v}\rangle, (16)

where the non-local effective current O(B1)O_{\|}^{({\rm B1})} reads

O(B1)=(ξ¯Wc)(0)γ5(WcicWc)(rn)hv(0).\displaystyle O_{\|}^{({\rm B1})}=(\bar{\xi}W_{c})(0)\,\gamma_{5}\,(W_{c}^{{\dagger}}\,i\not{D}_{c\perp}\,W_{c})(rn)\,h_{v}(0)\,. (17)

It is then straightforward to construct the one-loop LCSR for the non-local form factor Ξ\Xi_{\|} with the HQET bottom-meson distribution amplitude Gao et al. (2020)

Ξ=αsCFπBq(μ)fDq,mBqmDqnpmbτ¯θ(τ)θ(τ¯ωcωs)ωc/τ¯ωs𝑑ωexp[mDq2npωnpωM]ωωc/τ¯+dωωϕB+(ω),\displaystyle\Xi_{\|}=-{\alpha_{s}\,C_{F}\over\pi}\,\frac{{\cal F}_{B_{q}}(\mu)}{f_{D_{q}^{\ast},\|}}{m_{B_{q}}m_{D_{q}^{\ast}}\over n\cdot p\,m_{b}}\,\bar{\tau}\,\theta(\tau)\,\theta\left(\bar{\tau}-{\omega_{c}\over\omega_{s}}\right)\,\int_{\omega_{c}/\bar{\tau}}^{\omega_{s}}d\omega^{\prime}\,{\rm exp}\left[{m_{D_{q}^{\ast}}^{2}-n\cdot p\,\omega^{\prime}\over n\cdot p\,\omega_{M}}\right]\int_{\omega^{\prime}-\omega_{c}/\bar{\tau}}^{+\infty}\,{d\omega\over\omega}\,\phi_{B}^{+}(\omega), (18)

with τ¯=1τ\bar{\tau}=1-\tau. Adopting the factorization scale of order mbΛQCD\sqrt{m_{b}\,\Lambda_{\rm QCD}}, we continue to perform the next-to-leading-logarithmic (NLL) resummation for the enhanced logarithms in the final expressions of the considered QCD form factors by employing the standard renormalization-group (RG) formalism (see Cui et al. (2023); Gao et al. (2022) for further details).

Parameter Value/Interval Unit Prior Source/Comments
Quark-Gluon Coupling and Quark Masses
αs(5)(mZ)\alpha_{s}^{(5)}(m_{Z}) [0.1170, 0.1188][0.1170,\,0.1188] Workman et al. (2022)
m¯b(m¯b)\overline{m}_{b}(\overline{m}_{b}) [4.192, 4.214][4.192,\,4.214] GeV gaussian @@ 68%68\% Workman et al. (2022)
mbPS(2GeV)m^{\rm PS}_{b}({\rm 2\,GeV}) [4.493, 4.545][4.493,\,4.545] GeV gaussian @@ 68%68\% Beneke et al. (2015)
m¯c(m¯c)\overline{m}_{c}(\overline{m}_{c}) [1.265, 1.291][1.265,\,1.291] GeV gaussian @@ 68%68\% Aoki et al. (2022)
m¯s(2GeV)\overline{m}_{s}({\rm 2\,GeV}) [92.5, 93.7][92.5,\,93.7] MeV gaussian @@ 68%68\% Workman et al. (2022)
m¯u(2GeV)\overline{m}_{u}({\rm 2\,GeV}) [2.12, 2.28][2.12,\,2.28] MeV gaussian @@ 68%68\% Workman et al. (2022)
md¯(2GeV)\overline{m_{d}}({\rm 2\,GeV}) [4.64, 4.74][4.64,\,4.74] MeV gaussian @@ 68%68\% Workman et al. (2022)
Hadron Masses
mBm_{B} 5279.66 MeV Workman et al. (2022)
mBsm_{B_{s}} 5366.92 MeV Workman et al. (2022)
mDm_{D} 1869.66 MeV Workman et al. (2022)
mDm_{D^{*}} 2010.26 MeV Workman et al. (2022)
mDsm_{D_{s}} 1968.35 MeV Workman et al. (2022)
mDsm_{D_{s}^{*}} 2112.2 MeV Workman et al. (2022)
Decay Constants
fBd|Nf=2+1+1f_{B_{d}}|_{N_{f}=2+1+1} [0.1887, 0.1913][0.1887,\,0.1913] GeV gaussian @@ 68%68\% Aoki et al. (2022)
fBs|Nf=2+1+1f_{B_{s}}|_{N_{f}=2+1+1} [0.2290, 0.2316][0.2290,\,0.2316] GeV gaussian @@ 68%68\% Aoki et al. (2022)
fD|Nf=2+1+1f_{D}|_{N_{f}=2+1+1} [0.2113, 0.2127][0.2113,\,0.2127] GeV gaussian @@ 68%68\% Aoki et al. (2022)
fDs|Nf=2+1+1f_{D_{s}}|_{N_{f}=2+1+1} [0.2494, 0.2504][0.2494,\,0.2504] GeV gaussian @@ 68%68\% Aoki et al. (2022)
fD,f_{D^{\ast},\|} [0.210, 0.245][0.210,\,0.245] GeV gaussian @@ 68%68\% Pullin and Zwicky (2021)
fD,(ν)f_{D^{\ast},\perp}(\nu) [0.186, 0.218][0.186,\,0.218] GeV gaussian @@ 68%68\% Pullin and Zwicky (2021)
fDs,f_{D_{s}^{\ast},\|} [0.260, 0.298][0.260,\,0.298] GeV gaussian @@ 68%68\% Pullin and Zwicky (2021)
fDs,(ν)f_{D_{s}^{\ast},\perp}(\nu) [0.239, 0.272][0.239,\,0.272] GeV gaussian @@ 68%68\% Pullin and Zwicky (2021)
Shape Parameters of the Bottom-Meson LCDAs
λBd(μ0)\lambda_{B_{d}}(\mu_{0}) [200, 500][200,\,500] MeV uniform @@ 100%100\% Beneke et al. (2020); Shen et al. (2020)
λBs(μ0)\lambda_{B_{s}}(\mu_{0}) [250, 550][250,\,550] MeV uniform @@ 100%100\% Beneke et al. (2020); Shen et al. (2020)
{σ^1(μ0),σ^2(μ0)}\left\{\hat{\sigma}_{1}(\mu_{0}),\,\hat{\sigma}_{2}(\mu_{0})\right\} [{0.7,6.0},{0.7, 6.0}]\left[\{-0.7,\,-6.0\},\,\,\{0.7,\,6.0\}\right] uniform @@ 100%100\% Beneke et al. (2020); Shen et al. (2020)
λE2(μ0)/λH2(μ0)\lambda_{E}^{2}(\mu_{0})/\lambda_{H}^{2}(\mu_{0}) [0.40, 0.60][0.40,\,0.60] uniform @@ 100%100\% Beneke et al. (2018)
2λE2(μ0)+λH2(μ0)2\,\lambda_{E}^{2}(\mu_{0})+\lambda_{H}^{2}(\mu_{0}) [100, 400][100,\,400] MeV uniform @@ 100%100\% Beneke et al. (2018)
Sum Rule Parameters and Scales
μ\mu [1.0, 2.0][1.0,\,2.0] GeV uniform @@ 100%100\% Cui et al. (2023)
μh\mu_{h} [mb/2, 2mb][m_{b}/2,\,2\,m_{b}] GeV ln(μh)\ln(\mu_{h}) uniform @@ 100%100\% Cui et al. (2023)
M2M^{2} [3.5, 5.5][3.5,\,5.5] GeV2 uniform @@ 100%100\% Wang et al. (2017); Khodjamirian et al. (2021); Gao et al. (2022)
s0D(s0D)s^{D}_{0}\,(s^{D^{\ast}}_{0}) [6.5, 7.5][6.5,\,7.5] GeV2 uniform @@ 100%100\% Wang et al. (2017); Khodjamirian et al. (2021); Gao et al. (2022)
s0Ds(s0Ds)s^{D_{s}}_{0}\,(s^{D_{s}^{\ast}}_{0}) [7.0, 8.0][7.0,\,8.0] GeV2 uniform @@ 100%100\% Duplancic and Melic (2015); Li et al. (2020)
Table 2: Numerical values of the input parameters employed in the LCSR determinations of the exclusive B¯qDq()ν¯\bar{B}_{q}\to D_{q}^{(\ast)}\ell\bar{\nu}_{\ell} form factors. The quoted transverse DqD_{q}^{\ast} decay constants are evaluated at the renormalization scale ν=1.67GeV\nu=1.67\,{\rm GeV} Pullin and Zwicky (2021). The full prior distribution is determined by the product of the uncorrelated individual priors, which are either uniform or Guassian distributed. The uniform priors cover the listed intervals with 100%100\,\% probability, while the Gaussian ones adopt the listed intervals such that the central values correspond to the modes and the intervals contain 68%68\,\% of accumulated probability Sentitemsu Imsong et al. (2015); Leljak et al. (2021).

Likewise, we can construct the SCET sum rules for the transverse form factors ξ\xi_{\perp}, ξ,mc\xi_{\perp,\,m_{c}} and Ξ\Xi_{\perp} by adopting three additional correlation functions Πμνρ,(A0)\Pi_{\mu\nu\rho,\,\perp}^{\rm(A0)}, Πμνρ,(A1,mc)\Pi_{\mu\nu\rho,\,\perp}^{({\rm A1},\,m_{c})} and Πμνρ,(B1)\Pi_{\mu\nu\rho,\,\perp}^{\rm(B1)}, which can be obtained from the counterpart longitudinal correlation functions Πν,(A0)\Pi_{\nu,\,\|}^{\rm(A0)}, Πν,(A1,mc)\Pi_{\nu,\,\|}^{({\rm A1},\,m_{c})} and Πν,(B1)\Pi_{\nu,\,\|}^{({\rm B1})} with the appropriate replacement rules (see Gao et al. (2020)).

jξq,ν(0,2)jξq,νρ(0,2),O(A0)O,μ(A0),O(A1,mc)O,μ(A1,mc),O(B1)O,μ(B1).\displaystyle j_{\xi q,\,\|\nu}^{(0,2)}\to j_{\xi q,\,\perp\nu\rho}^{(0,2)}\,,\qquad O_{\|}^{(\rm A0)}\to O_{\perp,\,\mu}^{(\rm A0)}\,,\qquad O_{\|}^{({\rm A1},\,m_{c})}\to O_{\perp,\,\mu}^{({\rm A1},\,m_{c})}\,,\qquad O_{\|}^{(\rm B1)}\to O_{\perp,\,\mu}^{(\rm B1)}\,. (19)

The interpolating currents jξq,νρ(0,2)j_{\xi q,\,\perp\nu\rho}^{(0,2)} and the necessary SCET weak currents are given by

jξq,νρ(0)\displaystyle j_{\xi q,\,\perp\nu\rho}^{(0)} =\displaystyle= ξ¯2γρξn¯ν,jξq,νρ(2)=(ξ¯Wc2γρYsq+q¯Ys2γρWcξ)n¯ν,\displaystyle\bar{\xi}\,{\not{n}\over 2}\,\gamma_{\perp\rho}\,\xi\,\bar{n}_{\nu}\,,\qquad j_{\xi q,\,\perp\nu\rho}^{(2)}=\left(\bar{\xi}W_{c}\,\,{\not{n}\over 2}\,\gamma_{\perp\rho}\,\,Y_{s}^{{\dagger}}q+\bar{q}Y_{s}\,\,{\not{n}\over 2}\,\gamma_{\perp\rho}\,\,W_{c}^{{\dagger}}\xi\right)\bar{n}_{\nu}\,,
O,μ(A0)\displaystyle O_{\perp,\,\mu}^{(\rm A0)} =\displaystyle= (ξ¯Wc)γ5γμhv,O,μ(A1,mc)=mc(ξ¯Wc)21inDcγ5γμhv,\displaystyle\left(\bar{\xi}W_{c}\right)\gamma_{5}\,\gamma_{\perp\mu}\,h_{v}\,,\qquad O_{\perp,\,\mu}^{({\rm A1},\,m_{c})}=m_{c}\,(\bar{\xi}W_{c})\,{\not{n}\over 2}{1\over-in\cdot\overleftarrow{D}_{c}}\gamma_{5}\,\gamma_{\perp\mu}\,h_{v}\,,
O,μ(B1)\displaystyle O_{\perp,\,\mu}^{(\rm B1)} =\displaystyle= (ξ¯Wc)(0)γ5γμ(WcicWc)(rn)hv(0).\displaystyle(\bar{\xi}W_{c})(0)\,\gamma_{5}\,\gamma_{\perp\mu}\,(W_{c}^{{\dagger}}\,i\not{D}_{c\perp}\,W_{c})(rn)\,h_{v}(0)\,. (20)

Interestingly, the effective form factor ξ,mc\xi_{\perp,\,m_{c}} vanishes at one loop in the four-dimensional space-time. The resulting SCET sum rules for the effective transverse form factors ξ\xi_{\perp} and Ξ\Xi_{\perp} at 𝒪(αs){\cal O}(\alpha_{s}) can be explicitly written as

ξ\displaystyle\xi_{\perp} =\displaystyle= Bq(μ)fDq,mBqnp0ωs𝑑ωexp[mDq2npωnpωM]{[ϕB,eff(ω)+ΔϕB,eff(ω)]+mqω[ϕB,eff+,mq(ω)+ΔϕB,eff+,mq(ω)]},\displaystyle\frac{{\cal F}_{B_{q}}(\mu)}{f_{D_{q}^{\ast},\perp}}\,{m_{B_{q}}\over n\cdot p}\,\int_{0}^{\omega_{s}}d\omega^{\prime}\,{\rm exp}\left[{m_{D_{q}^{\ast}}^{2}-n\cdot p\,\omega^{\prime}\over n\cdot p\,\omega_{M}}\right]\,\left\{\left[\phi_{B,\,{\rm eff}}^{-}(\omega^{\prime})+\Delta\phi_{B,\,{\rm eff}}^{-}(\omega^{\prime})\right]+{m_{q}\over\omega^{\prime}}\,\left[\phi_{B,\,{\rm eff}}^{+,\,m_{q}}(\omega^{\prime})+\Delta\phi_{B,\,{\rm eff}}^{+,\,m_{q}}(\omega^{\prime})\right]\right\},
Ξ\displaystyle\Xi_{\perp} =\displaystyle= αsCF2πBq(μ)fDq,mBqmbτ¯θ(τ)θ(τ¯ωcωs)ωc/τ¯ωs𝑑ωexp[mDq2npωnpωM]ωωc/τ¯+dωωϕB+(ω),\displaystyle-{\alpha_{s}\,C_{F}\over 2\,\pi}\,\frac{{\cal F}_{B_{q}}(\mu)}{f_{D_{q}^{\ast},\perp}}{m_{B_{q}}\over m_{b}}\,\bar{\tau}\,\theta(\tau)\,\theta\left(\bar{\tau}-{\omega_{c}\over\omega_{s}}\right)\,\int_{\omega_{c}/\bar{\tau}}^{\omega_{s}}d\omega^{\prime}\,{\rm exp}\left[{m_{D_{q}^{\ast}}^{2}-n\cdot p\,\omega^{\prime}\over n\cdot p\,\omega_{M}}\right]\,\int_{\omega^{\prime}-\omega_{c}/\bar{\tau}}^{+\infty}\,{d\omega\over\omega}\,\phi_{B}^{+}(\omega), (21)

where we have introduced two additional coefficient functions ΔϕB,eff\Delta\phi_{B,\,{\rm eff}}^{-} and ΔϕB,eff+,mq\Delta\phi_{B,\,{\rm eff}}^{+,\,m_{q}} for brevity

ΔϕB,eff(ω)\displaystyle\Delta\phi_{B,\,{\rm eff}}^{-}(\omega^{\prime}) =\displaystyle= αsCF4πθ(ωωc)0dω{θ(ωωωc)(1ωc2ω2)lnωωωcωωc\displaystyle{\alpha_{s}\,C_{F}\over 4\,\pi}\,\theta(\omega^{\prime}-\omega_{c})\,\int_{0}^{\infty}d\omega\,\bigg{\{}\theta(\omega^{\prime}-\omega-\omega_{c})\,\left(1-{\omega_{c}^{2}\over\omega^{\prime 2}}\right)\,\ln{\omega^{\prime}-\omega-\omega_{c}\over\omega^{\prime}-\omega_{c}}
+θ(ω+ωcω)[lnμ2mc2+(1ωc2ω2)lnωc(ω+ωcω)(ωωc)2+ωcω]}ddωϕB(ω)+𝒪(αs2),\displaystyle+\,\theta(\omega+\omega_{c}-\omega^{\prime})\,\left[\ln{\mu^{2}\over m_{c}^{2}}+\left(1-{\omega_{c}^{2}\over\omega^{\prime 2}}\right)\,\ln{\omega_{c}\,(\omega+\omega_{c}-\omega^{\prime})\over(\omega^{\prime}-\omega_{c})^{2}}+{\omega_{c}\over\omega^{\prime}}\right]\bigg{\}}\,{d\over d\omega}\,\phi_{B}^{-}(\omega)+{\cal O}(\alpha_{s}^{2}),
ΔϕB,eff+,mq(ω)\displaystyle\Delta\phi_{B,\,{\rm eff}}^{+,\,m_{q}}(\omega^{\prime}) =\displaystyle= αsCF4πθ(ωωc)0dω{θ(ωωωc)[ωc(ωωc)ωlnωωcωωcωddωϕB+(ω)ω+ωωcωωϕB+(ω)ω2]\displaystyle{\alpha_{s}\,C_{F}\over 4\,\pi}\,\theta(\omega^{\prime}-\omega_{c})\,\int_{0}^{\infty}d\omega\,\bigg{\{}\theta(\omega^{\prime}-\omega-\omega_{c})\,\left[{\omega_{c}\,(\omega^{\prime}-\omega_{c})\over\omega^{\prime}}\,\ln{\omega^{\prime}-\omega_{c}\over\omega^{\prime}-\omega_{c}-\omega}\,{d\over d\omega}\,{\phi_{B}^{+}(\omega)\over\omega}+{\omega\,\omega_{c}\over\omega^{\prime}-\omega}\,{\phi_{B}^{+}(\omega)\over\omega^{2}}\right] (22)
+θ(ω+ωcω)[ωc(ωωc)ωln(ωωc)2ωc(ω+ωcω)ddωϕB+(ω)ω+ωωcωddωϕB+(ω)]}+𝒪(αs2).\displaystyle+\,\theta(\omega+\omega_{c}-\omega^{\prime})\,\left[{\omega_{c}\,(\omega^{\prime}-\omega_{c})\over\omega^{\prime}}\,\ln{(\omega^{\prime}-\omega_{c})^{2}\over\omega_{c}\,(\omega+\omega_{c}-\omega^{\prime})}\,{d\over d\omega}\,{\phi_{B}^{+}(\omega)\over\omega}+{\omega^{\prime}-\omega_{c}\over\omega}\,{d\over d\omega}\,\phi_{B}^{+}(\omega)\right]\bigg{\}}+{\cal O}(\alpha_{s}^{2})\,.

Appendix C Detailed Numerical Results for the Exclusive Bottom-Meson Decay Form Factors

We summarize explicitly the numerical values of all input parameters employed in our LCSR analysis and their prior density functions in Table 2, including further their sources. As already discussed in the main text, the statistical procedure previously discussed in Sentitemsu Imsong et al. (2015); Leljak et al. (2021) is then implemented to determine the mean values and theoretical uncertainties for the form factors of our interest. In order to facilitate the future phenomenological explorations, we collect the yielding numerical results of the semileptonic B¯(s)D(s)()\bar{B}_{(s)}\to D_{(s)}^{(\ast)} decay form factors as well as their correlation matrix at the six representative kinematic points q2{3.0,2.0,1.0, 0.0, 1.0, 2.0}GeV2q^{2}\in\left\{-3.0,\,-2.0,\,-1.0,\,0.0,\,1.0,\,2.0\right\}\,{\rm GeV}^{2} from our NLLNLP{\rm NLL\oplus NLP} LCSR computations in the ancillary file InputLCSR.txt attached to the arXiv preprint version of this letter. Our numerical explorations indicate that the dominating theory uncertainties of the current LCSR computations for the exclusive bcν¯b\to c\ell\bar{\nu}_{\ell} form factors arise from the variations of non-perturbative shape parameters dictating the two-particle bottom-meson distribution amplitudes in HQET. The most prominent feature of our LCSR predictions consists in the strong correlations of the obtained data points at the different q2q^{2}-values, which can be attributed to the universal hadronic inputs appearing in the analytical sum rules for the complete set of the B¯qDq()\bar{B}_{q}\to D_{q}^{(\ast)} form factors. This essential pattern is in sharp contrast with the more conventional sum rules for the heavy-to-light BB-meson form factors, employing the light-meson distribution amplitudes in QCD Belyaev et al. (1993); Ali et al. (1994); Ball and Braun (1997); Duplancic et al. (2008); Khodjamirian et al. (2011). It is then naturally expected that the obtained correlation matrix for the LCSR data points would be insensitive to the parton-hadron duality violation contributions (see Chibisov et al. (1997); Shifman (2000); Bigi and Uraltsev (2001); Cata et al. (2005); Beylich et al. (2011); Jamin (2011); Dingfelder and Mannel (2016); Boito et al. (2018); Pich (2021); Pich and Rodríguez-Sánchez (2022) for further discussions in different contexts). On the phenomenological aspect, the duality violation contribution in the LCSR framework can be probed by adopting the different alternatives for the duality ansätz with the inclusion of the radial excited or continuum states and with the increased effective threshold Colangelo and Khodjamirian (2000).

In addition, we provide manifestly the correlation matrices of the obtained BGL expansion coefficients for the B¯(s)D(s)()\bar{B}_{(s)}\to D_{(s)}^{(\ast)} form factors with the three different fitting strategies (as discussed in the main text) in the ancillary file BGLCoeff.txt attached to the arXiv preprint version for completeness. Having at our disposal the correlated zz-series coefficients, we are then prepared to arrive at the major phenomenological predictions for the considered form factors and the gold-plated LFU quantities as presented in Figure 2 and 3 of the main text.