This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Shear induced polarization: Collisional contributions

Shu Lin [email protected] School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China Ziyue Wang [email protected] Department of Physics, Tsinghua University, Beijing 100084, China
Abstract

It has been realized that thermal shear plays a similar role as thermal vorticity in polarizing spin of particles in heavy ion collisions. We point out that shear has a fundamental difference that it leads to particle redistribution in the medium. The redistribution gives rise to an additional contribution to spin polarization through the self-energy, which is parametrically the same order as the one considered so far in the literature. The self-energy contribution is in general gauge dependent. We introduce double gauge links stretching along the Schwinger-Keldysh contour to restore gauge invariance. We also generalize the straight path to adapt to the Schwinger-Keldysh contour. We find another contribution associated with the gauge link, which is also parametrically the same order. We illustrate the two contributions with a massive probe fermion in massless QED plasma with shear. A modest suppression of spin polarization is found from the combined contributions when the probe fermion has momentum much greater than the temperature.

1 Introduction

It has been suggested that orbital angular momentum carried by participants in off-central heavy ion collisions (HIC) can result in spin polarization of final state particles [1, 2]. Realistic model calculations have indicated that significant vorticity is present in quark-gluon plasma (QGP) produced in HIC [3, 4, 5]. Theoretical predictions of final particle spin polarization have been made based on a spin-orbit coupling picture [6, 7, 8]. Such a picture is indeed consistent with early experimental measurement of Lambda hyperon global polarization [9]. However, recent measurement of Lambda hyperon local polarization [10] shows an overall sign difference from theoretical predictions [11, 12, 13]. Different explanations have been proposed to understand the puzzle [14, 15], yet no consensus has been reached.

Recently it has been realized that shear can also contribute to spin polarization [16, 17]. In particular, it has been found based on a free theory analysis that spin responds to thermal vorticity and thermal shear in the same way. Phenomenological implementations have shown the right trend toward the measured local polarization results [18, 19, 20, 21, 22]. However, as we shall show in this paper, the contribution discussed so far is still incomplete. Vorticity and shear differ in one important aspect: the former does not change the particle distribution while the latter necessarily does. The redistribution of particles by shear flow leads to an extra contribution to spin polarization. The extra contribution can be consistently described in the framework of quantum kinetic theory (QKT), see [23] for a review and references therein. Rapid development of QKT has been made to include collisional term systematically via self-energy over the past few years[24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. The QKT is formulated using the Wigner function, whose axial component can be related to spin polarization. The axial component of Wigner function for fermion in a collisional QKT is given by [28, 37, 38]111The definitions of Wigner function in [28] and [37] differ by a sign. We use the latter definition.

𝒜μ=2π[aμfA+ϵμνρσPρuσ𝒟νf2(Pu+m)]δ(P2m2),\displaystyle{\cal A}^{\mu}=-2{\pi}\hbar\left[a^{\mu}f_{A}+\frac{{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}P_{\rho}u_{\sigma}{\cal D}_{\nu}f}{2(P\cdot u+m)}\right]{\delta}(P^{2}-m^{2}), (1)

with PP and uu being momentum of particle and flow velocity. aμfAa^{\mu}f_{A} is a dynamical contribution [38, 39, 40, 41, 42]. 𝒟ν{\cal D}_{\nu} is a covariant derivative acting on the distribution function ff defined as 𝒟ν=νΣν>Σν<1ff{\cal D}_{\nu}={\partial}_{\nu}-{\Sigma}_{\nu}^{>}-{\Sigma}_{\nu}^{<}\frac{1-f}{f}. The partial derivative term is what has been considered so far, the extra contribution comes from self-energies Σ>/<{\Sigma}^{>/<}. Naively one may expect the self-energy term to be suppressed by powers of coupling in a weakly coupled system described by the QKT. In fact this is not true. In a simple relaxation time approximation, the self-energy contribution can be estimated as δfτR\frac{{\delta}f}{{\tau}_{R}}. The appearance of δf{\delta}f follows from the fact that the self-energy contribution in the covariant derivative vanishes in equilibrium by detailed balance. The combination δfτR\frac{{\delta}f}{{\tau}_{R}} can be further related to f0{\partial}f_{0} by kinetic equation with f0f_{0} being local equilibrium distribution. Consequently the self-energy contribution is at the same order as the derivative one, with the dependence on coupling completely canceled between 1τR\frac{1}{{\tau}_{R}} and δf{\delta}f.

A second question we attempt to address is the gauge dependence of spin polarization. Since theoretical calculation is usually done in the QGP phase while experiments measure particle after freezeout. The gauge dependence is only present in the partonic level calculations. On general ground, we expect that it is a gauge invariant spin polarization that is passed through freezeout. However, (1) is expressed in terms of self-energy, which is in general gauge dependent. It is necessary to include gauge link contribution to restore gauge invariance. Since collisions are mediated by off-shell particles, it is essential to consider quantum gauge field fluctuations in the gauge link. The quantum gauge field fluctuation also feels the flow via interaction with on-shell fermions. It turns out that there is a similar contribution associated with the gauge link, which is also at the same order as the derivative one. As a conceptual development, we generalize the definition of gauge link to the Schwinger-Keldysh contour, in which the collisional QKT is naturally derived. We also adapt the straight path widely used for background gauge field to the Schwinger-Keldysh contour to allow for consistent treatment of quantum gauge field fluctuations.

The aim of the paper is to evaluate the two contributions mentioned above. We illustrate the calculations by using a massive probe fermion in a massless QED plasma. While the method we use is applicable to arbitrary hydrodynamic flow, we consider the plasma with shear flow only for simplicity. The paper is organized as follows: in Section II, we briefly review the classical limit of QKT, which is the Boltzmann equation widely used in early studies of transport coefficients. By solving the Boltzmann equation we determines the particle redistribution in the presence of shear flow. The information of particle redistribution will be used to calculate the self-energy contribution and the gauge link contribution in Section III and IV respectively. Analytic results can be obtained at the leading logarithmic order. The results will be discussed and compared with the derivative contribution in Section V. Finally we summarize and provide outlook in Section VI.

2 Particle redistribution in shear flow

We consider a QED plasma with NfN_{f} flavor of massless fermions in a shear flow. The shear flow relaxes on the hydrodynamic scale, which is much slower than the relaxation of plasma constituents, thus we can take a steady shear flow. The presence of shear flow leads to redistribution of fermions and photons, which gives rise to off-equilibrium contribution to energy-momentum tensor responsible for shear viscosity. The kinetic equation addressing this problem has been written down long ago [43, 44, 45]. The kinetic equation is simply the Boltzmann equation with collision term given by elastic and inelastic scatterings. For simplicity we keep to the leading-logarithmic (LL) order, for which the inelastic scatterings are irrelevant. The resulting Boltzmann equations for fermion and photon read respectively

(t+p^x)fp=\displaystyle\left({\partial}_{t}+{\hat{p}}\cdot\nabla_{x}\right)f_{p}= 12p,k,k(2π)4δ4(P+KPK)116p0k0p0k0×\displaystyle-\frac{1}{2}\int_{p^{\prime},k^{\prime},k}(2{\pi})^{4}{\delta}^{4}(P+K-P^{\prime}-K^{\prime})\frac{1}{16p_{0}k_{0}p_{0}^{\prime}k_{0}^{\prime}}\times
[||Coul,f2(fpfk(1fp)(1fk)fpfk(1fp)(1fk))\displaystyle\bigg{[}\;\;|{\cal M}|_{\text{Coul},f}^{2}\left(f_{p}f_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})-f_{p^{\prime}}f_{k^{\prime}}(1-f_{p})(1-f_{k})\right)
+||Comp,f2(fpf~k(1+f~p)(1fk)f~pfk(1fp)(1+f~k))\displaystyle+|{\cal M}|_{\text{Comp},f}^{2}\left(f_{p}\tilde{f}_{k}(1+\tilde{f}_{p^{\prime}})(1-f_{k^{\prime}})-\tilde{f}_{p^{\prime}}f_{k^{\prime}}(1-f_{p})(1+\tilde{f}_{k})\right)
+||anni,f2(fpfk(1+f~p)(1+f~k)f~pf~k(1fp)(1fk))],\displaystyle+|{\cal M}|_{\text{anni},f}^{2}\left(f_{p}f_{k}(1+\tilde{f}_{p^{\prime}})(1+\tilde{f}_{k^{\prime}})-\tilde{f}_{p^{\prime}}\tilde{f}_{k^{\prime}}(1-f_{p})(1-f_{k})\right)\bigg{]}, (2a)
(t+p^x)f~p=\displaystyle\left({\partial}_{t}+{\hat{p}}\cdot\nabla_{x}\right)\tilde{f}_{p}= 12p,k,k(2π)4δ4(P+KPK)116p0k0p0k0×\displaystyle-\frac{1}{2}\int_{p^{\prime},k^{\prime},k}(2{\pi})^{4}{\delta}^{4}(P+K-P^{\prime}-K^{\prime})\frac{1}{16p_{0}k_{0}p_{0}^{\prime}k_{0}^{\prime}}\times
[||Comp,γ2(f~pfk(1fp)(1+f~k)fpf~k(1+f~p)(1fk))\displaystyle\bigg{[}\;\;|{\cal M}|_{\text{Comp},{\gamma}}^{2}\left(\tilde{f}_{p}f_{k}(1-f_{p^{\prime}})(1+\tilde{f}_{k^{\prime}})-f_{p^{\prime}}\tilde{f}_{k^{\prime}}(1+\tilde{f}_{p})(1-f_{k})\right)
+2Nf||anni,γ2(f~pf~k(1f~p)(1f~k)fpfk(1+f~p)(1+f~k))].\displaystyle+2N_{f}|{\cal M}|_{\text{anni},{\gamma}}^{2}\left(\tilde{f}_{p}\tilde{f}_{k}(1-\tilde{f}_{p^{\prime}})(1-\tilde{f}_{k^{\prime}})-f_{p^{\prime}}f_{k^{\prime}}(1+\tilde{f}_{p})(1+\tilde{f}_{k})\right)\bigg{]}. (2b)

We have used fpf_{p} and f~p\tilde{f}_{p} to denote distribution functions for fermions and photon carrying momentum pp respectively. ||2|{\cal M}|^{2} is partially summed amplitude square with the subscripts “Coul”, “Comp” and “anni” indicate Coulomb, Compton and annihilation processes respectively. The subscripts ff and γ{\gamma} distinguish the fermionic and photonic amplitude squares, whose explicit expressions we shall present shortly. The overall factor 12\frac{1}{2} on the RHS coming from spin average and pd3p(2π)3\int_{p}\equiv\int\frac{d^{3}p}{(2{\pi})^{3}}. When there is imbalance between electron and position, there should be a separate equation for position. We restrict ourselves to neutral plasma, in which the positron distribution is identical to that of anti-fermion.

Now we can work out the redistribution of particles in the presence of thermal shear, given by solution to the Boltzmann equation. We solve (2) by noting that fpf_{p} and f~p\tilde{f}_{p} on the LHS are the local equilibrium distributions and deviations of equilibrium distributions appear only on the RHS. We can parametrize the local equilibrium distribution by thermal velocity βμ=βuμ{\beta}_{\mu}={\beta}u_{\mu} as fp(0)=1ePβ+1f^{(0)}_{p}=\frac{1}{e^{P\cdot{\beta}}+1} and f~p(0)=1ePβ1{\tilde{f}}^{(0)}_{p}=\frac{1}{e^{P\cdot{\beta}}-1} and the thermal shear is given by

Sij=12(iβj+jβi)13δijβ.\displaystyle S_{ij}=\frac{1}{2}\left({\partial}_{i}{\beta}_{j}+{\partial}_{j}{\beta}_{i}\right)-\frac{1}{3}{\delta}_{ij}{\partial}\cdot{\beta}. (3)

When only thermal shear is present, we can evaluate the LHS as

p^iifp(0)=fp(0)(1fp(0))iβjpipjEp=fp(0)(1fp(0))SijIijpp,\displaystyle{\hat{p}}_{i}\nabla_{i}f^{(0)}_{p}=-f^{(0)}_{p}(1-f^{(0)}_{p}){\partial}_{i}{\beta}_{j}\frac{p_{i}p_{j}}{E_{p}}=-f^{(0)}_{p}(1-f^{(0)}_{p})S_{ij}I^{p}_{ij}p,
p^iif~p(0)=f~p(0)(1+f~p(0))iβjpipjEp=f~p(0)(1+f~p(0))SijIijpp,\displaystyle{\hat{p}}_{i}\nabla_{i}{\tilde{f}}^{(0)}_{p}=-{\tilde{f}}^{(0)}_{p}(1+{\tilde{f}}^{(0)}_{p}){\partial}_{i}{\beta}_{j}\frac{p_{i}p_{j}}{E_{p}}=-{\tilde{f}}^{(0)}_{p}(1+{\tilde{f}}^{(0)}_{p})S_{ij}I^{p}_{ij}p, (4)

with Iijp=p^ip^j13δijI^{p}_{ij}={\hat{p}}_{i}{\hat{p}}_{j}-\frac{1}{3}{\delta}_{ij} being a symmetric traceless tensor defined with 3-momentum pp. We have also replaced PiPjP_{i}P_{j} by its traceless part by traceless property of SijS_{ij}. Following the method in [44], we parametrize the deviation of distributions by

fp(1)=fp(0)(1fp(0))f^p,f~p(1)=f~p(0)(1+f~p(0))f~^p,\displaystyle f^{(1)}_{p}=f^{(0)}_{p}(1-f^{(0)}_{p}){\hat{f}_{p}},\quad{\tilde{f}}^{(1)}_{p}={\tilde{f}}^{(0)}_{p}(1+{\tilde{f}}^{(0)}_{p}){\hat{\tilde{f}}_{p}}, (5)

with the superscripts (0)(0) and (1)(1) counting the order of gradient. To linear order in gradient, the parametrization adopts simple relations for the collision term

fpfk(1fp)(1fk)(p,kp,k)=fp(0)fk(0)(1fp(0))(1fk(0))(f^p+f^kf^pf^k),\displaystyle f_{p}f_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})-(p,k\leftrightarrow p^{\prime},k^{\prime})=f^{(0)}_{p}f^{(0)}_{k}(1-f^{(0)}_{p^{\prime}})(1-f^{(0)}_{k^{\prime}})({\hat{f}_{p}}+{\hat{f}_{k}}-{\hat{f}_{p^{\prime}}}-{\hat{f}_{k^{\prime}}}),
fpf~k(1+f~p)(1fk)(p,kp,k)=fp(0)f~k(0)(1+f~p(0))(1fk(0))(f^p+f~^kf~^pf^k),\displaystyle f_{p}\tilde{f}_{k}(1+\tilde{f}_{p^{\prime}})(1-f_{k^{\prime}})-(p,k\leftrightarrow p^{\prime},k^{\prime})=f^{(0)}_{p}{\tilde{f}}^{(0)}_{k}(1+{\tilde{f}}^{(0)}_{p^{\prime}})(1-f^{(0)}_{k^{\prime}})({\hat{f}_{p}}+{\hat{\tilde{f}}_{k}}-{\hat{\tilde{f}}_{p^{\prime}}}-{\hat{f}_{k^{\prime}}}),
fpfk(1+f~p)(1+fk)(p,kp,k)=fp(0)fk(0)(1+f~p(0))(1+f~k(0))(f^p+f^kf~^pf~^k).\displaystyle f_{p}f_{k}(1+\tilde{f}_{p^{\prime}})(1+f_{k^{\prime}})-(p,k\leftrightarrow p^{\prime},k^{\prime})=f^{(0)}_{p}f^{(0)}_{k}(1+{\tilde{f}}^{(0)}_{p^{\prime}})(1+{\tilde{f}}^{(0)}_{k^{\prime}})({\hat{f}_{p}}+{\hat{f}_{k}}-{\hat{\tilde{f}}_{p^{\prime}}}-{\hat{\tilde{f}}_{k^{\prime}}}). (6)

By rotational symmetry, we expect

f^p=SijIijpχ(p),f~^p=SijIijpγ(p).\displaystyle{\hat{f}}_{p}=S_{ij}I^{p}_{ij}{\chi}(p),\quad{\hat{\tilde{f}}}_{p}=S_{ij}I^{p}_{ij}{\gamma}(p). (7)

Using (2) and (7), we obtain a linearized Boltzmann equation from (2):

fp(1fp)SijIijpp=12p,k,k(2π)δ4(P+KPK)116p0k0p0k0Sij×\displaystyle-f_{p}(1-f_{p})S_{ij}I^{p}_{ij}p=-\frac{1}{2}\int_{p^{\prime},k^{\prime},k}(2{\pi}){\delta}^{4}(P+K-P^{\prime}-K^{\prime})\frac{1}{16p_{0}k_{0}p_{0}^{\prime}k_{0}^{\prime}}S_{ij}\times
[||Coul,f2(Iijpχp+IijkχkIijpχpIijkχk)fpfk(1fp)(1fk)\displaystyle\qquad\qquad\qquad\bigg{[}|{\cal M}|_{\text{Coul},f}^{2}\left(I^{p}_{ij}{\chi}_{p}+I^{k}_{ij}{\chi}_{k}-I^{p^{\prime}}_{ij}{\chi}_{p^{\prime}}-I^{k^{\prime}}_{ij}{\chi}_{k^{\prime}}\right)f_{p}f_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})
+||Comp,f2(Iijpχp+IijkγkIijpγpIijkχk)fpf~k(1+f~p)(1fk)\displaystyle\qquad\qquad\qquad+|{\cal M}|_{\text{Comp},f}^{2}\left(I^{p}_{ij}{\chi}_{p}+I^{k}_{ij}{\gamma}_{k}-I^{p^{\prime}}_{ij}{\gamma}_{p^{\prime}}-I^{k^{\prime}}_{ij}{\chi}_{k^{\prime}}\right)f_{p}\tilde{f}_{k}(1+\tilde{f}_{p^{\prime}})(1-f_{k^{\prime}})
+||anni,f2(Iijpχp+IijkχkIijpγpIijkγk)fpfk(1+f~p)(1+f~k)],\displaystyle\qquad\qquad\qquad{\color[rgb]{0,0,0}+}|{\cal M}|_{\text{anni},f}^{2}\left(I^{p}_{ij}{\chi}_{p}+I^{k}_{ij}{\chi}_{k}-I^{p^{\prime}}_{ij}{\gamma}_{p^{\prime}}-I^{k^{\prime}}_{ij}{\gamma}_{k^{\prime}}\right)f_{p}f_{k}(1+\tilde{f}_{p^{\prime}})(1+\tilde{f}_{k^{\prime}})\bigg{]},
f~p(1+f~p)SijIijpp=12p,k,k(2π)δ4(P+KPK)116p0k0p0k0Sij×\displaystyle-\tilde{f}_{p}(1+\tilde{f}_{p})S_{ij}I^{p}_{ij}p=-\frac{1}{2}\int_{p^{\prime},k^{\prime},k}(2{\pi}){\delta}^{4}(P+K-P^{\prime}-K^{\prime})\frac{1}{16p_{0}k_{0}p_{0}^{\prime}k_{0}^{\prime}}S_{ij}\times
[||Comp,γ2(Iijpγp+IijkχkIijpχpIijkγk)f~pfk(1fp)(1+f~k)\displaystyle\qquad\qquad\qquad\bigg{[}|{\cal M}|_{\text{Comp},{\gamma}}^{2}\left(I^{p}_{ij}{\gamma}_{p}+I^{k}_{ij}{\chi}_{k}-I^{p^{\prime}}_{ij}{\chi}_{p^{\prime}}-I^{k^{\prime}}_{ij}{\gamma}_{k^{\prime}}\right)\tilde{f}_{p}f_{k}(1-f_{p^{\prime}})(1+\tilde{f}_{k^{\prime}})
+||anni,γ2(Iijpγp+IijkγkIijpχpIijkχk)f~pf~k(1fp)(1fk)],\displaystyle\qquad\qquad\qquad{\color[rgb]{0,0,0}+}|{\cal M}|_{\text{anni},{\gamma}}^{2}\left(I^{p}_{ij}{\gamma}_{p}+I^{k}_{ij}{\gamma}_{k}-I^{p^{\prime}}_{ij}{\chi}_{p^{\prime}}-I^{k^{\prime}}_{ij}{\chi}_{k^{\prime}}\right)\tilde{f}_{p}\tilde{f}_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})\bigg{]}, (8)

where we have used short-hand notations χp=χ(p){\chi}_{p}={\chi}(p) and γp=γ(p){\gamma}_{p}={\gamma}(p). SijS_{ij} is arbitrary, thus we can equate its coefficient on two sides. The resulting tensor equations can be converted to scalar ones by contracting with IijpI^{p}_{ij}. The flavor dependence in the amplitude squares can be expressed in terms of elementary amplitude squares as

||Coul,f2=2Nf||Coul2\displaystyle|{\cal M}|_{\text{Coul},f}^{2}=2N_{f}|{\cal M}|_{\text{Coul}}^{2}
||Comp,f2=||Comp2,||Comp,γ2=2Nf||Comp2\displaystyle|{\cal M}|_{\text{Comp},f}^{2}=|{\cal M}|_{\text{Comp}}^{2},\quad|{\cal M}|_{\text{Comp},{\gamma}}^{2}=2N_{f}|{\cal M}|_{\text{Comp}}^{2}
||anni,f2=12||anni2,||anni,γ2=Nf||anni2,\displaystyle|{\cal M}|_{\text{anni},f}^{2}=\frac{1}{2}|{\cal M}|_{\text{anni}}^{2},\quad|{\cal M}|_{\text{anni},{\gamma}}^{2}=N_{f}|{\cal M}|_{\text{anni}}^{2}, (9)

with

||Coul2=8e4s2+u2t2\displaystyle|{\cal M}|_{Coul}^{2}=8e^{4}\frac{s^{2}+u^{2}}{t^{2}}
||Comp2=8e4st\displaystyle|{\cal M}|_{Comp}^{2}=8e^{4}\frac{s}{-t}
||anni2=8e4(ut+tu).\displaystyle|{\cal M}|_{anni}^{2}=8e^{4}\left(\frac{u}{t}+\frac{t}{u}\right).

The factor 2Nf2N_{f} in Coulomb case comes from scattering with NfN_{f} fermions and anti-fermions. For scattering between identical fermions, the symmetry factor 12\frac{1}{2} in the final state is compensated by an identical uu-channel contribution to the LL accuracy. Similarly the factor 2Nf2N_{f} in the Compton case comes from scattering of photon with NfN_{f} fermions and anti-fermions. The factor NfN_{f} in photon pair annihilation corresponds to NfN_{f} possible final states and 12\frac{1}{2} in fermion pair annihilation is a final state symmetry factor.

The phase space integrations are performed in appendix A. The results turn the linearized Boltzmann equations (2) into

fp(0)(1fp(0))2p3=\displaystyle f^{(0)}_{p}(1-f^{(0)}_{p})\frac{2p}{3}= e4lne11(2π)4[8Nfπ3cosh2βp2(6χp+p((2+βptanhβp2)χppχp′′))72p2β3\displaystyle e^{4}\ln e^{-1}\frac{1}{(2{\pi})^{4}}\Big{[}8N_{f}\frac{{\pi}^{3}\cosh^{-2}\frac{{\beta}p}{2}\left(6{\chi}_{p}+p((-2+{\beta}p\tanh\frac{{\beta}p}{2}){\chi}_{p}^{\prime}-p{\chi}_{p}^{\prime\prime})\right)}{72p^{2}{\beta}^{3}}
+2χpγppπ28β24π3fp(0)(1+f~p(0))]\displaystyle\qquad\qquad\qquad+2\frac{{\chi}_{p}-{\gamma}_{p}}{p}\frac{{\pi}^{2}}{8{\beta}^{2}}\frac{4{\pi}}{3}f^{(0)}_{p}(1+{\tilde{f}}^{(0)}_{p})\Big{]}
f~p(0)(1+f~p(0))2p3=\displaystyle{\tilde{f}}^{(0)}_{p}(1+{\tilde{f}}^{(0)}_{p})\frac{2p}{3}= e4lne11(2π)44Nfγpχppπ28β24π3f~p(0)(1fp(0)).\displaystyle e^{4}\ln e^{-1}\frac{1}{(2{\pi})^{4}}4N_{f}\frac{{\gamma}_{p}-{\chi}_{p}}{p}\frac{{\pi}^{2}}{8{\beta}^{2}}\frac{4{\pi}}{3}{\tilde{f}}^{(0)}_{p}(1-f^{(0)}_{p}). (10)

The second equation of (2) is algebraic. It is solved by

γpχp(2π)3=1e4lne12β2π2Nfp21+f~p(0)1fp(0).\displaystyle\frac{{\gamma}_{p}-{\chi}_{p}}{(2{\pi})^{3}}=\frac{1}{e^{4}\ln e^{-1}}\frac{2{\beta}^{2}}{{\pi}^{2}N_{f}}p^{2}\frac{1+{\tilde{f}}^{(0)}_{p}}{1-f^{(0)}_{p}}. (11)

The first equation is differential and need to be solved numerically. In the limit βp1{\beta}p\gg 1, the differential terms are subleading, reducing it to an algebraic equation. Combining with (11), we find the following asymptotic solution

χ(p)(2π)3=1e4lne13(1+2Nf)β2p24π2Nf2.\displaystyle\frac{{\chi}(p\to\infty)}{(2{\pi})^{3}}=\frac{1}{e^{4}\ln e^{-1}}\frac{3(1+2N_{f}){\beta}^{2}p^{2}}{4{\pi}^{2}N_{f}^{2}}. (12)

We have combined χp{\chi}_{p} and γp{\gamma}_{p} with 1(2π)3\frac{1}{(2{\pi})^{3}} in (11) and (12). It is convenient as the same factor will appear in phase space integration measure.

Refer to caption
Figure 1: χe4lne1/(2π)3{\chi}e^{4}\ln e^{-1}/(2{\pi})^{3} versus p/Tp/T for massless QED with Nf=2N_{f}=2. Solid and dashed lines correspond to numerical solution and approximate analytic solution (12). At low pp, the approximate solution is slightly below the numerical one.

The numerical solution is obtained with the boundary condition (12) and χ(p=0)=0{\chi}(p=0)=0222A series analysis of the differential equation in (2) around p=0p=0 indicate χ(p)p2{\chi}(p)\sim p^{2}.. In fact, it has been pointed out in [44] that the ansatz χp,γpp2{\chi}_{p},{\gamma}_{p}\sim p^{2} gives very good approximation to the numerical solution. Fig. 1 compares (12) with numerical solution, confirming this point. As a further check, we calculate shear viscosity for plasma at constant temperature. In this case Tij=ηTSijT_{ij}=\eta TS_{ij}. Expressing TijT_{ij} using kinetic theory, we obtain

η=115pp[4Nffp(1fp)χp+2f~p(1+f~p)γp].\displaystyle\eta=\frac{1}{15}\int_{p}p\left[4N_{f}f_{p}(1-f_{p}){\chi}_{p}+2\tilde{f}_{p}(1+\tilde{f}_{p}){\gamma}_{p}\right]. (13)

Integrations with numerical solution reproduces the corresponding entries in Table I of [45]. Integrations with approximate solution (11) and (12) gives results with an error of about 1%1\% for Nf=1N_{f}=1 and about 3%3\% for Nf=2N_{f}=2. We will simply use the approximate solution in the analysis below.

3 Self-energy correction

In the previous section, we have determined the redistribution of constituents in plasma with thermal shear. Now we introduce a massive probe fermion to the plasma and study its polarization in the shear flow. To this end, we need to calculate self-energy correction to axial component of its Wigner function (1). In general both Coulomb and Compton scatterings contribute to the self-energy333For probe fermion, pair annihilation is irrelevant.. Following [26], we take the heavy probe limit meTm\gg eT so that the Coulomb scattering dominates in the self-energy. The Coulomb contribution to the self-energy diagram is depicted in Fig. 2.

Refer to caption
Figure 2: Self-energy of probe fermion from Coulomb scattering with medium fermion. The massive probe fermion carries momentum PP and the massless medium fermions run in the loop.

We evaluate the self-energy as444Σ>(x,y){\Sigma}^{>}(x,y) is defined by e2(x)ψ(x)ψ¯(y)(y)-e^{2}\langle{\not{A}}(x){\psi}(x)\bar{{\psi}}(y){\not{A}}(y)\rangle.

Σ>(P)=\displaystyle{\Sigma}^{>}(P)= +e4NfP,K,K(2π)4δ4(P+KPK)γμS>(P)γνDμβ22(Q)Dαν11(Q)\displaystyle{\color[rgb]{0,0,0}+}e^{4}N_{f}\int_{P^{\prime},K^{\prime},K}(2{\pi})^{4}{\delta}^{4}(P+K-P^{\prime}-K^{\prime}){\gamma}^{\mu}S^{>}(P^{\prime}){\gamma}^{\nu}D_{{\mu}{\beta}}^{22}(-Q)D_{{\alpha}{\nu}}^{11}(-Q)
×tr[γαS¯<(K)γβS¯>(K)],\displaystyle\times\text{tr}[{\gamma}^{\alpha}\underline{S}^{<}(K){\gamma}^{\beta}\underline{S}^{>}(K^{\prime})], (14)

with P=d4P(2π)4\int_{P}=\int\frac{d^{4}P}{(2{\pi})^{4}} and Q=PPQ=P^{\prime}-P. Σ<{\Sigma}^{<} can be obtained by the replacement ><>\leftrightarrow<, 112211\leftrightarrow 22. The propagators in (3) are given by

S>(P)=2πϵ(p0)(+m)(1fp)δ(P2m2),\displaystyle S^{>}(P)=2{\pi}{\epsilon}(p_{0})({\not{P}}+m)(1-f_{p}){\delta}(P^{2}-m^{2}),
S¯>(K)=2πϵ(k0)(1fk)δ(K2),\displaystyle\underline{S}^{>}(K)=2{\pi}{\epsilon}(k_{0}){\not{K}}(1-f_{k}){\delta}(K^{2}),
Dμβ22(Q)=igμβQ2,Dαν11(Q)=igανQ2.\displaystyle D_{{\mu}{\beta}}^{22}(-Q)=\frac{ig_{{\mu}{\beta}}}{Q^{2}},\quad D_{{\alpha}{\nu}}^{11}(-Q)=\frac{-ig_{{\alpha}{\nu}}}{Q^{2}}. (15)

We have indicated propagators of medium fermions by an underline. S¯<\underline{S}^{<} can be obtained by the replacement 1fkfk1-f_{k}\to-f_{k}. Feynman gauge is used for photon propagators. The component of self-energy contributing to polarization is Σ>λ=14tr[Σ>(P)γλ]{\Sigma}^{>{\lambda}}=\frac{1}{4}\text{tr}\left[{\Sigma}^{>}(P){\gamma}^{\lambda}\right]. The traces involved in this component are evaluated as

tr[γμS>(P)γνγλ]=\displaystyle\text{tr}\left[{\gamma}^{\mu}S^{>}(P^{\prime}){\gamma}^{\nu}{\gamma}^{\lambda}\right]= 4(Pgνλμ+PgμλνPgμνλ)2πϵ(p0)δ(P2m2)(1fp),\displaystyle 4\left(P^{\prime}{}^{\mu}g^{{\nu}{\lambda}}+P^{\prime}{}^{\nu}g^{{\mu}{\lambda}}-P^{\prime}{}^{\lambda}g^{{\mu}{\nu}}\right)2{\pi}{\epsilon}(p_{0}^{\prime}){\delta}(P^{\prime}{}^{2}-m^{2})(1-f_{p^{\prime}}),
tr[γαS<(K)γβS>(K)]=\displaystyle\text{tr}\left[{\gamma}^{\alpha}S^{<}(K){\gamma}^{\beta}S^{>}(K^{\prime})\right]= 4(KαK+βKβKαKKgαβ)(2π)2ϵ(k0)ϵ(k0)×\displaystyle 4\left(K^{\alpha}K^{\prime}{}^{\beta}+K^{\beta}K^{\prime}{}^{\alpha}-K\cdot K^{\prime}g^{{\alpha}{\beta}}\right)(2{\pi})^{2}{\epsilon}(k_{0}){\epsilon}(k_{0}^{\prime})\times
δ(K2)δ(K)2(fk)(1fk).\displaystyle{\delta}(K^{2}){\delta}(K^{\prime}{}^{2})(-f_{k})(1-f_{k}^{\prime}). (16)

Note that the LL contribution arises from the regime qP,Kq\ll P,K, we may replace ϵ(p0)ϵ(p0)=1{\epsilon}(p_{0}^{\prime})\simeq{\epsilon}(p_{0})=1 for probe fermion and ϵ(k0)ϵ(k0)ϵ(k0)2=1{\epsilon}(k_{0}){\epsilon}(k_{0}^{\prime})\simeq{\epsilon}(k_{0})^{2}=1. Below we assume an equilibrium distribution for probe fermion for illustration purpose. Relaxation of this assumption only involves unnecessary complication. It can be important for realistic modeling of phenomenology, which will be studied elsewhere. The medium fermions is off-equilibrium, with the distribution determined in the previous section. The combination needed for polarization is fpΣk>(P)(1fp)Σk<(P)-f_{p}{\Sigma}_{k}^{>}(P)-(1-f_{p}){\Sigma}_{k}^{<}(P). Using (3) and (3), we obtain

fpΣk>(P)(1fp)Σk<(P)\displaystyle-f_{p}{\Sigma}_{k}^{>}(P)-(1-f_{p}){\Sigma}_{k}^{<}(P)
=\displaystyle= 16e4Nfd3kd3q1(2π)5δ(p0+k0p0k0)18p0k0k0[2kkPKqkPK]1(Q2)2\displaystyle{\color[rgb]{0,0,0}-}16e^{4}N_{f}\int d^{3}kd^{3}q\frac{1}{(2{\pi})^{5}}{\delta}(p_{0}+k_{0}-p_{0}^{\prime}-k_{0}^{\prime})\frac{1}{8p_{0}^{\prime}k_{0}k_{0}^{\prime}}\left[2k_{k}P\cdot K-q_{k}P\cdot K\right]\frac{1}{\left(Q^{2}\right)^{2}}
×(fp(1fp)fk(1fk)fp(1fp)fk(1fk))\displaystyle\times\left(f_{p}(1-f_{p^{\prime}})f_{k}(1-f_{k^{\prime}})-f_{p^{\prime}}(1-f_{p})f_{k^{\prime}}(1-f_{k})\right)
=\displaystyle= 16e4Nfd3kd4q1(2π)5δ(p0p0+q0)δ(k0k0q0)18p0k0k0[kkPK+kkPK]\displaystyle{\color[rgb]{0,0,0}-}16e^{4}N_{f}\int d^{3}kd^{4}q\frac{1}{(2{\pi})^{5}}{\delta}(p_{0}-p_{0}^{\prime}+q_{0}){\delta}(k_{0}-k_{0}^{\prime}-q_{0})\frac{1}{8p_{0}^{\prime}k_{0}k_{0}^{\prime}}\left[k_{k}P\cdot K^{\prime}+k_{k}^{\prime}P\cdot K\right]
1(Q2)2Sij(IijkχkIijkχk)fp(0)fk(0)(1fp(0))(1fk(0))\displaystyle\frac{1}{\left(Q^{2}\right)^{2}}S_{ij}\left(I^{k}_{ij}{\chi}_{k}-I^{k^{\prime}}_{ij}{\chi}_{k^{\prime}}\right)f^{(0)}_{p}f^{(0)}_{k}(1-f^{(0)}_{p^{\prime}})(1-f^{(0)}_{k^{\prime}})
\displaystyle\equiv SijRijk.\displaystyle S_{ij}R_{ijk}. (17)

We have inserted a factor of 22 corresponding to fermions and anti-fermion in the loop and kept term up to O(q2)O(q^{2}) in the square bracket. In the second equality, we have used the assumption that only the distribution of medium fermions is off-equilibrium. RijkR_{ijk} involves complicated tensor integrals of k{{\vec{k}}} and k{{\vec{k}}}^{\prime}. They are evaluated by first converting to tensor integrals of q{{\vec{q}}} by rotational symmetry and δ(k0k0q0){\delta}(k_{0}-k_{0}^{\prime}-q_{0}), which correlates k{\vec{k}} and q{\vec{q}}. The resulting tensor integrals of q{\vec{q}} are further performed with rotational symmetry and δ(p0p0+q0){\delta}(p_{0}-p_{0}^{\prime}+q_{0}). Details of the evaluation can be found in appendix B. In the end, we find the following component relevant for spin polarization

𝒜i=2πϵijkpjRmnkSmn2(p0+m)δ(P2m2)1p0+m(I2+I3)ϵimlpnplSmnp5δ(P2m2)Cf,\displaystyle{\cal A}^{i}=2{\pi}\frac{{\epsilon}^{ijk}p_{j}R_{mnk}S_{mn}}{2(p_{0}+m)}{\delta}(P^{2}-m^{2})\simeq{\color[rgb]{0,0,0}-}\frac{1}{p_{0}+m}(I_{2}+I_{3})\frac{{\epsilon}^{iml}p_{n}p_{l}S_{mn}}{p^{5}}{\delta}(P^{2}-m^{2})C_{f}, (18)

with

I2=\displaystyle I_{2}= π2cosh2βp02((15p487p2p02+72p04)ln(p0pp0+p)+8p5p0126p3p0+144pp03)72β\displaystyle\frac{{\pi}^{2}\cosh^{-2}\frac{{\beta}p_{0}}{2}\left((15p^{4}-87p^{2}p_{0}^{2}+72p_{0}^{4})\ln(\frac{p_{0}-p}{p_{0}+p})+\frac{8p^{5}}{p_{0}}-126p^{3}p_{0}+144pp_{0}^{3}\right)}{72{\beta}}
+3cosh2βp02((12p2p012p03)lnp0pp0+p+28p328p53p0224pp02)ζ(3)8β2,\displaystyle+\frac{3\cosh^{-2}\frac{{\beta}p_{0}}{2}\left((12p^{2}p_{0}-12p_{0}^{3})\ln\frac{p_{0}-p}{p_{0}+p}+28p^{3}-\frac{28p^{5}}{3p_{0}^{2}}-24pp_{0}^{2}\right)\zeta(3)}{8{\beta}^{2}},
I3=\displaystyle I_{3}= ((p49p2p02+8p04)lnp0pp0+p38p0p33+16p03p)(π29tanhβp02ζ(3))4β(1+cosh(βp0)).\displaystyle-\frac{\left((p^{4}-9p^{2}p_{0}^{2}+8p_{0}^{4})\ln\frac{p_{0}-p}{p_{0}+p}-\frac{38p_{0}p^{3}}{3}+16p_{0}^{3}p\right)\left({\pi}^{2}-9\tanh\frac{{\beta}p_{0}}{2}\zeta(3)\right)}{4{\beta}\left(1+\cosh({\beta}p_{0})\right)}. (19)

and Cf=3Nf(1+2Nf)4π2Nf2C_{f}=\frac{3N_{f}(1+2N_{f})}{4{\pi}^{2}N_{f}^{2}}. We reiterate that the self-energy correction scales as f(0){\partial}f^{(0)}, with the dependence on coupling cancels as follows: e4e^{4} from vertices and lne1\ln e^{-1} from LL enhancement combine to give 1τRe4lne1\frac{1}{{\tau}_{R}}\sim e^{4}\ln e^{-1}, which is canceled by a counterpart in f(1)f(0)e4lne1f^{(1)}\sim\frac{{\partial}f^{(0)}}{e^{4}\ln e^{-1}}.

Before closing this section, we wish to comment on the gauge dependence of (3). We illustrate this with a comparison of Feynman gauge and Coulomb gauge. Let us rewrite (3) as

Σ>=e2QγμS>(P)γνDμβ22(Q)Dαν11(Q)Π<αβ(Q),\displaystyle{\Sigma}^{>}=e^{2}\int_{Q}{\gamma}^{\mu}S^{>}(P^{\prime}){\gamma}^{\nu}D_{{\mu}{\beta}}^{22}(-Q)D_{{\alpha}{\nu}}^{11}(-Q){\Pi}^{<{\alpha}{\beta}}(Q), (20)

with Π<αβ(Q){\Pi}^{<{\alpha}{\beta}}(Q) being the off-equilibrium photon self-energy. In the presence of shear flow, the self-energy can be decomposed into four independent tensor structures as

Π<αβ(Q)=PTαβΠT<+PLαβΠL<+PTTαβΠTT<+PLTαβΠLT<.\displaystyle{\Pi}^{<{\alpha}{\beta}}(Q)=P_{T}^{{\alpha}{\beta}}{\Pi}_{T}^{<}+P_{L}^{{\alpha}{\beta}}{\Pi}_{L}^{<}+P_{TT}^{{\alpha}{\beta}}{\Pi}_{TT}^{<}+P_{LT}^{{\alpha}{\beta}}{\Pi}_{LT}^{<}. (21)

Here PT/LP_{T/L} are transverse and longitudinal projectors defined by

PTαβ=PαβPαμPβνQμQνq2,PLαβ=PαβPTαβ,\displaystyle P^{{\alpha}{\beta}}_{T}=P^{{\alpha}{\beta}}-\frac{P^{{\alpha}{\mu}}P^{{\beta}{\nu}}Q_{\mu}Q_{\nu}}{q^{2}},\quad P^{{\alpha}{\beta}}_{L}=P^{{\alpha}{\beta}}-P^{{\alpha}{\beta}}_{T}, (22)

with Pαβ=uαuβgαβP^{{\alpha}{\beta}}=u^{\alpha}u^{\beta}-g^{{\alpha}{\beta}}. PTTαβP_{TT}^{{\alpha}{\beta}} and PLTαβP_{LT}^{{\alpha}{\beta}} are emergent projectors owning to the shear flow, which are constructed as555The obvious structure constructed by sandwiching SρσS_{{\rho}{\sigma}} with two PLP_{L} is not independent.

PTTαβ=PTαρSρσPTσβ,PLTαβ=PLαρSρσPTσβ+(LT).\displaystyle P_{TT}^{{\alpha}{\beta}}=P_{T}^{{\alpha}{\rho}}S_{{\rho}{\sigma}}P_{T}^{{\sigma}{\beta}},\quad P_{LT}^{{\alpha}{\beta}}=P_{L}^{{\alpha}{\rho}}S_{{\rho}{\sigma}}P_{T}^{{\sigma}{\beta}}+(L\leftrightarrow T). (23)

Note that photon self-energy is gauge invariant but propagator is not. Now we illustrate gauge dependence is generically present by using Feynman and Coulomb gauges.

For LL accuracy, we can simply use bare photon propagators in (20). For spacelike momentum QQ relevant for our case, we have a simple relation Dαβ11=Dαβ22=iDαβRD^{11}_{{\alpha}{\beta}}=-D^{22}_{{\alpha}{\beta}}=-iD^{R}_{{\alpha}{\beta}}. The retarded propagator in Feynman and Coulomb gauges have the following representations

Feynman:\displaystyle\text{Feynman}: DαβR=PαβT1Q2+(Q2q2uαuβq0(uαQβ+uβQα)q2+QαQβq2)1Q2\displaystyle\;D_{{\alpha}{\beta}}^{R}=P_{{\alpha}{\beta}}^{T}\frac{-1}{Q^{2}}+\left(\frac{Q^{2}}{q^{2}}u^{\alpha}u^{\beta}-\frac{q_{0}(u^{\alpha}Q^{\beta}+u^{\beta}Q^{\alpha})}{q^{2}}+\frac{Q^{\alpha}Q^{\beta}}{q^{2}}\right)\frac{-1}{Q^{2}}
Coulomb:\displaystyle\text{Coulomb}: DαβR=PαβT1Q2+(Q2q2uαuβ)1Q2.\displaystyle\;D_{{\alpha}{\beta}}^{R}=P_{{\alpha}{\beta}}^{T}\frac{-1}{Q^{2}}+\left(\frac{Q^{2}}{q^{2}}u^{\alpha}u^{\beta}\right)\frac{-1}{Q^{2}}. (24)

Using (21) and (3), we easily seen contribution to Σ>{\Sigma}^{>} from ΠT<{\Pi}_{T}^{<} and ΠTT<{\Pi}_{TT}^{<} are identical in two gauges. For contribution from ΠL<{\Pi}_{L}^{<} and ΠLT<{\Pi}_{LT}^{<}, we use Ward identity ΠαβQα=0{\Pi}^{{\alpha}{\beta}}Q_{\alpha}=0 and transverse conditions PT/LαβQa=0P_{T/L}^{{\alpha}{\beta}}Q_{a}=0, PTabuα=0P_{T}^{a\\ b}u_{\alpha}=0 to find the following structures, which are present only in Feynman gauge

ΠL<PLαβuαuβQμQν,ΠL<PLαβuαuβuμQν+(μν),ΠLT<PLαβuαQμPβνT+(μν).\displaystyle{\Pi}_{L}^{<}P^{{\alpha}{\beta}}_{L}u_{\alpha}u_{\beta}Q_{\mu}Q_{\nu},\quad{\Pi}_{L}^{<}P^{{\alpha}{\beta}}_{L}u_{\alpha}u_{\beta}u_{\mu}Q_{\nu}+({\mu}\leftrightarrow{\nu}),\quad{\Pi}_{LT}^{<}P^{{\alpha}{\beta}}_{L}u_{\alpha}Q_{\mu}P^{T}_{{\beta}{\nu}}+({\mu}\leftrightarrow{\nu}). (25)

We have also confirmed the gauge dependence of self-energy contribution by explicit calculations.

4 Gauge link contribution

The gauge dependence we found in the previous section should not be a surprise. The reason is the underlying quantum kinetic theory is derived using a gauge fixed propagators. For Wigner function of the probe fermion, its gauge dependence can be removed by inserting a gauge link. If the gauge field in the link is external, i.e. a classical background, the gauge link simply becomes a complex phase. However, when we consider self-energy of fermions arising from exchanging quantum gauge fields, we need to worry about ordering of quantum field operators from expanding the gauge link and interaction vertex. A systematic treatment of the ordering is still not available at present. We will follow a different approach. Since we have already obtained the axial component of Wigner function without gauge link, we will find correction from expanding the gauge link that contributing at the same order.

When fluctuations of quantum gauge fields appear both in the interaction vertices and in the gauge link, it is natural to order them on the Schwinger-Keldysh contour. The latter is also the base of collisional kinetic theory in the recent development of quantum kinetic theory. However we immediately find the well-known straight path for the gauge link becomes inadequate for the Wigner function joining points on forward and backward contours. To find a proper generalization in Schwingwer-Keldysh contour, let us take a close look at the gauge transformation of the bare Wigner function S<(x,y)S^{<}(x,y):

S<(x,y)eieα2(y)S<(x,y)eieα1(x),\displaystyle S^{<}(x,y)\to e^{-ie{\alpha}_{2}(y)}S^{<}(x,y)e^{ie{\alpha}_{1}(x)}, (26)

with α1,2{\alpha}_{1,2} being gauge parameters on contour 11 and 22 respectively. If there is only classical background field, the gauge fields on contour 11 and 22 are the same, we may take α1=α2{\alpha}_{1}={\alpha}_{2}. In this case, placing the straight path on either contour is equivalent. This is no longer true when quantum fluctuations are present. We propose to use double gauge links

S¯<(x,y)=ψ1(x)ψ¯2(y)U2(y,)U1(,x),\displaystyle\bar{S}^{<}(x,y)={\psi}_{1}(x)\bar{{\psi}}_{2}(y)U_{2}(y,\infty)U_{1}(\infty,x), (27)

with Ui(y,x)=exp(ieyx𝑑wAi(w))U_{i}(y,x)=\exp\left(-ie\int_{y}^{x}dw\cdot A_{i}(w)\right) and the i=1,2i=1,2 identifying the forward and backward contours respectively. Assuming quantum fluctuations vanishes at past and future infinities, we easily arrive at the gauge invariance of (27). We have not specified the paths for the gauge links appearing in (27). A natural choice would be to take the straight line joining xx and yy and extending to future infinite. This is illustrated in Fig. 3. When there is only classical background gauge field, A1=A2A_{1}=A_{2} so that the two gauge links in (27) cancel partially, leaving a phase from the straight path between xx and yy.

Refer to caption
Figure 3: Path for the gauge link in the Schwinger-Keldysh contour. The path in the full spacetime dimension is determined by a straight path joining xx and yy, which is extended to future infinity.
Refer to caption
Figure 4: Diagram for gauge link contribution with the propagator connecting one quantum gauge field in the medium and the other in the gauge link. The dashed semi-circle denotes the gauge link. The shear gradient enters through the photon self-energy. In LL approximation, only one insertion of the self-energy is needed.

Now we are ready to evaluate possible corrections associated with the gauge link. Note that we need a correction of O(f0)O({\partial}f_{0}). Such a contribution can arise from the diagram in Fig. 4. We shall evaluate its contribution to axial component of Wigner function below. Note that the diagram in Fig.4 contains one quantum fluctuation of gauge field from the link and the other from the interaction vertex. Both fluctuations can occur on either contour 11 or 22, and they need to be contour ordered. Enumerating all possible insertions of the two gauge fields along the Schwinger-Keldysh contour, we obtain

e2S11(x,z)γλS<(z,y)(x𝑑wμDλμ11(z,w)+y𝑑wμDλμ<(z,w))\displaystyle{\color[rgb]{0,0,0}-}e^{2}S_{11}(x,z){\gamma}^{\lambda}S^{<}(z,y)\left(\int_{\infty}^{x}dw^{\mu}D_{{\lambda}{\mu}}^{11}(z,w)+\int_{y}^{\infty}dw^{\mu}D_{{\lambda}{\mu}}^{<}(z,w)\right)
+e2S<(x,z)γλS22(z,y)(x𝑑wμDλμ>(z,w)+y𝑑wμDλμ22(z,w)),\displaystyle{\color[rgb]{0,0,0}+}e^{2}S^{<}(x,z){\gamma}^{\lambda}S_{22}(z,y)\left(\int_{\infty}^{x}dw^{\mu}D_{{\lambda}{\mu}}^{>}(z,w)+\int_{y}^{\infty}dw^{\mu}D_{{\lambda}{\mu}}^{22}(z,w)\right), (28)

where the two lines corresponding to the vertex coordinate zz taking values on contour 11 and 22 respectively and the two terms in either bracket corresponding to link coordinate ww taking values on contour 11 and 22 respectively. The relative sign comes from sign difference of vertices on contour 11 and 22. Dλμ>/<D_{{\lambda}{\mu}}^{>/<} stands for resummed photon propagators in medium with shear flow.

Using S11=iSR+S<S_{11}=-iS_{R}+S^{<} and S22=S<+iSAS_{22}=S^{<}+iS_{A} and the representation

SR=ReSR+i2(S>S<)i2(S>S<),\displaystyle S_{R}=ReS_{R}+\frac{i}{2}\left(S^{>}-S^{<}\right)\simeq\frac{i}{2}\left(S^{>}-S^{<}\right),
SA=ReSRi2(S>S<)i2(S>S<),\displaystyle S_{A}=ReS_{R}-\frac{i}{2}\left(S^{>}-S^{<}\right)\simeq-\frac{i}{2}\left(S^{>}-S^{<}\right), (29)

we obtain S11S2212(S>+S<)S_{11}\simeq S_{22}\simeq\frac{1}{2}\left(S^{>}+S^{<}\right) with ReSRReS_{R} ignored in the quasi-particle approximation. Similar expressions can be obtained for DRD_{R}. Plugging the resulting expressions into (4), we have

e22[S>(x,z)γλS<(z,y)yx𝑑wμDλμ<(z,w)S<(x,z)γλS>(z,y)yx𝑑wμDλμ>(z,w)]\displaystyle{\color[rgb]{0,0,0}-}\frac{e^{2}}{2}\big{[}S^{>}(x,z){\gamma}^{\lambda}S^{<}(z,y)\int_{y}^{x}dw^{\mu}D_{{\lambda}{\mu}}^{<}(z,w)-S^{<}(x,z){\gamma}^{\lambda}S^{>}(z,y)\int_{y}^{x}dw^{\mu}D_{{\lambda}{\mu}}^{>}(z,w)\big{]}
e22S<(x,z)γλS<(z,y)yx𝑑wμ(Dλμ<(z,w)Dλμ>(z,w))\displaystyle{\color[rgb]{0,0,0}-}\frac{e^{2}}{2}S^{<}(x,z){\gamma}^{\lambda}S^{<}(z,y)\int_{y}^{x}dw^{\mu}\left(D_{{\lambda}{\mu}}^{<}(z,w)-D_{{\lambda}{\mu}}^{>}(z,w)\right)
e2S11(x,z)γλS<(z,y)x𝑑wμ12(Dλμ>(z,w)Dλμ<(z,w))\displaystyle{\color[rgb]{0,0,0}-}e^{2}S_{11}(x,z){\gamma}^{\lambda}S^{<}(z,y)\int_{\infty}^{x}dw^{\mu}\frac{1}{2}\left(D_{{\lambda}{\mu}}^{>}(z,w)-D_{{\lambda}{\mu}}^{<}(z,w)\right)
e2S<(x,z)γλS22(z,y)y𝑑wμ12(Dλμ>(z,w)Dλμ<(z,w)).\displaystyle{\color[rgb]{0,0,0}-}e^{2}S^{<}(x,z){\gamma}^{\lambda}S_{22}(z,y)\int_{y}^{\infty}dw^{\mu}\frac{1}{2}\left(D_{{\lambda}{\mu}}^{>}(z,w)-D_{{\lambda}{\mu}}^{<}(z,w)\right). (30)

The first line is very similar to what we have considered in self-energy correction. The other lines are all proportional to the photon spectral density ρλμ(z,w)=Dλμ>(z,w)Dλμ<(z,w){\rho}_{{\lambda}{\mu}}(z,w)=D_{{\lambda}{\mu}}^{>}(z,w)-D_{{\lambda}{\mu}}^{<}(z,w), which is medium independent, thus the other lines are subleading compared to the first one. Below we keep only the first line.

The spin polarization of probe fermion comes from axial component of the Wigner function. We apply Wigner transform to the first line of (4). Since the two terms are simply related by ><>\leftrightarrow<, we focus on the evaluation of the first term. Its Wigner transform is given by

e22s,z,weiPsP1,P2,QS>(P1)γλS<(P2)Dλρ<(Q)eiP1(xz)iP2(zy)+iQ(zw).\displaystyle-\frac{e^{2}}{2}\int_{s,z,w}e^{iP\cdot s}\int_{P_{1},P_{2},Q}S^{>}(P_{1}){\gamma}^{\lambda}S^{<}(P_{2})D_{{\lambda}{\rho}}^{<}(-Q)e^{-iP_{1}\cdot(x-z)-iP_{2}\cdot(z-y)+iQ\cdot(z-w)}. (31)

The zz-integration imposes momentum conservation as zei(P1P2+Q)z=δ(P1P2+Q)\int_{z}e^{i(P_{1}-P_{2}+Q)\cdot z}={\delta}(P_{1}-P_{2}+Q), which allows us to simplify the remaining exponentials as eiPseiP1(xy)+iQ(yw)e^{iP\cdot s}e^{-iP_{1}\cdot(x-y)+iQ\cdot(y-w)}. The ww-integration is performed along the straight line

yx𝑑wρeiQ(wy)=01𝑑tsρeitQssρ,\displaystyle\int_{y}^{x}dw^{\rho}e^{-iQ\cdot(w-y)}=\int_{0}^{1}dts^{\rho}e^{-itQ\cdot s}\simeq s^{\rho}, (32)

where we have used Qs1Q\cdot s\ll 1. The condition corresponds to exchange of soft photon, which is necessary for LL enhancement as we already know from the self-energy calculations. We finally replace sρiPρs^{\rho}\to-i\frac{{\partial}}{{\partial}P_{\rho}} to arrive at

ie22PρQS>(P)γλS<(P+Q)Dλρ<(Q).\displaystyle\frac{ie^{2}}{2}\frac{{\partial}}{{\partial}P_{\rho}}\int_{Q}S^{>}(P){\gamma}^{\lambda}S^{<}(P+Q)D_{{\lambda}{\rho}}^{<}(-Q). (33)

For the axial component, we need the following trace

14tr[(+m)γλ(++m)γμγ5]=iϵαλβμPαQβ.\displaystyle\frac{1}{4}\text{tr}\left[({\not{P}}+m){\gamma}^{\lambda}\left({\not{P}}+{\not{Q}}+m\right){\gamma}^{\mu}{\gamma}^{5}\right]=-i{\epsilon}^{{\alpha}{\lambda}{\beta}{\mu}}P_{\alpha}Q_{\beta}. (34)

Collecting everything, we obtain the following contributions to axial component of Wigner function

e22Pρ\displaystyle-\frac{e^{2}}{2}\frac{{\partial}}{{\partial}P_{\rho}} [Q((1fp)fpDλρ>(Q)fp(1fp)Dλρ<(Q))ϵαλβμPαQβ(2π)2\displaystyle\Big{[}\int_{Q}\left((1-f_{p})f_{p^{\prime}}D_{{\lambda}{\rho}}^{>}(Q)-f_{p}(1-f_{p^{\prime}})D_{{\lambda}{\rho}}^{<}(Q)\right){\epsilon}^{{\alpha}{\lambda}{\beta}{\mu}}P_{\alpha}Q_{\beta}(2{\pi})^{2}
×δ(P2m2)δ(P2m2)],\displaystyle\times{\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2})\Big{]}, (35)

with P=P+QP^{\prime}=P+Q. We further use explicit representation of photon propagators in Feynman gauge

Dλρ>(Q)=(1)2Nfe2Ktr[γαγβ](1fk)(fk)igλαQ2igρβQ2(2π)2δ(K2)δ(K)2,\displaystyle D_{{\lambda}{\rho}}^{>}(Q)=(-1)2N_{f}e^{2}\int_{K}\text{tr}[{\not{K}}{\gamma}^{\alpha}{\not{K}}^{\prime}{\gamma}^{\beta}](1-f_{k})(-f_{k^{\prime}})\frac{-ig_{{\lambda}{\alpha}}}{Q^{2}}\frac{ig_{{\rho}{\beta}}}{Q^{2}}(2{\pi})^{2}{\delta}(K^{2}){\delta}(K^{\prime}{}^{2}), (36)

with K=KQK^{\prime}=K-Q. For the purpose of extracting LL result, we have used bare propagators for photons. The factor of 2Nf2N_{f} arises from equal contributions from NfN_{f} flavors of fermion and anti-fermion in the medium. A similar expression for Dλμ<(Q)D_{{\lambda}{\mu}}^{<}(Q) can be obtained by interchanging KK and KK^{\prime} in (36). Plugging (36) into (4), we have

+NfPρ\displaystyle{\color[rgb]{0,0,0}+}N_{f}\frac{{\partial}}{{\partial}P_{\rho}} [d3kd4Q(2π)52k2p02k((1fp)fp(1fk)fk+fp(1fp)fk(1fk))\displaystyle\Big{[}\int\frac{d^{3}kd^{4}Q}{(2{\pi})^{5}2k2p_{0}^{\prime}2k^{\prime}}\left(-(1-f_{p})f_{p^{\prime}}(1-f_{k})f_{k^{\prime}}+f_{p}(1-f_{p^{\prime}})f_{k}(1-f_{k^{\prime}})\right)
×4(KλKρ+KρKλ)1(Q2)2δ(2KQ)ϵαλβμPαQβδ(P2m2)δ(P2m2)].\displaystyle\times 4(K_{\lambda}K_{\rho}^{\prime}+K_{\rho}K_{\lambda}^{\prime})\frac{1}{(Q^{2})^{2}}{\delta}(2K\cdot Q){\epsilon}^{{\alpha}{\lambda}{\beta}{\mu}}P_{\alpha}Q_{\beta}{\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2})\Big{]}. (37)

It has a similar structure with loss and gain terms as the self-energy counterpart (3), thus a result proportional to the shear gradient is expected when we take into account redistribution of particles through ff(0)+f(1)f\to f^{(0)}+f^{(1)}. The remaining task of evaluating the phase space integrals are tedious but straightforward with method sketched in the previous section. Here we simply list the final results with details collected in appendix C

𝒜i=1(2π)Cf9ζ(3)2β4(J1+J2+J3+J4)ϵimlpnplSmn2p5fp(1fp)δ(P2m2),\displaystyle{\cal A}^{i}={\color[rgb]{0,0,0}}\frac{1}{(2{\pi})}C_{f}\frac{9\zeta(3)}{2{\beta}^{4}}(J_{1}+J_{2}+J_{3}+J_{4})\frac{{\epsilon}^{iml}p_{n}p_{l}S_{mn}}{2p^{5}}f_{p}(1-f_{p}){\delta}(P^{2}-m^{2}), (38)

with

J1=8πβ2p3p0,\displaystyle J_{1}=\frac{8{\pi}{\beta}^{2}p^{3}}{p_{0}},
J2=8πβ2p5p03,\displaystyle J_{2}=-\frac{8{\pi}{\beta}^{2}p^{5}}{p_{0}^{3}},
J3=4πβ2(8p556p3p02+66pp04+(6p4p039p2p03+33p05)lnp0pp0+p)9p03,\displaystyle J_{3}=-\frac{4{\pi}{\beta}^{2}\left(8p^{5}-56p^{3}p_{0}^{2}+66pp_{0}^{4}+(6p^{4}p_{0}-39p^{2}p_{0}^{3}+33p_{0}^{5})\ln\frac{p_{0}-p}{p_{0}+p}\right)}{9p_{0}^{3}},
J4=1+eβp01+eβp02πβ3(2p2+11p02)(4p3+6pp02+(3p033p2p0)lnp0pp0+p)9p02.\displaystyle J_{4}=-\frac{-1+e^{{\beta}p_{0}}}{1+e^{{\beta}p_{0}}}\frac{2{\pi}{\beta}^{3}(-2p^{2}+11p_{0}^{2})\left(-4p^{3}+6pp_{0}^{2}+(3p_{0}^{3}-3p^{2}p_{0})\ln\frac{p_{0}-p}{p_{0}+p}\right)}{9p_{0}^{2}}. (39)

5 Discussion

Let us put together different contributions666Note that we have assumed the probe fermion has an equilibrium distribution fp=fp(0)f_{p}=f^{(0)}_{p}.

𝒜i=2π2(p0+m)ϵimlpnplSmnfp(1fp)δ(P2m2),\displaystyle{\cal A}^{i}_{\partial}=\frac{2{\pi}}{2(p_{0}+m)}{\epsilon}^{iml}p_{n}p_{l}S_{mn}f_{p}(1-f_{p}){\delta}(P^{2}-m^{2}),
𝒜Σi=Cf1(p0+m)p5ϵimlpnplSmn(I2+I3)δ(P2m2),\displaystyle{\cal A}^{i}_{\Sigma}={\color[rgb]{0,0,0}-}C_{f}\frac{1}{(p_{0}+m)p^{5}}{\epsilon}^{iml}p_{n}p_{l}S_{mn}(I_{2}+I_{3}){\delta}(P^{2}-m^{2}),
𝒜Ui=12π9ζ(3)2β4Cf12p5ϵimlpnplSmn(J1+J2+J3+J4)fp(1fp)δ(P2m2).\displaystyle{\cal A}^{i}_{U}={\color[rgb]{0,0,0}}\frac{1}{2{\pi}}\frac{9{\zeta}(3)}{2{\beta}^{4}}C_{f}\frac{1}{2p^{5}}{\epsilon}^{iml}p_{n}p_{l}S_{mn}(J_{1}+J_{2}+J_{3}+J_{4})f_{p}(1-f_{p}){\delta}(P^{2}-m^{2}). (40)

The first two lines come from partial derivative and self-energy terms in (1) respectively777In arriving at the first line, an identity similar to (2) needs to be used. The third line comes from the gauge link contribution. The first one is known in the literature [16, 17]. The second and third ones are the main results of the paper. The expressions of II and JJ can be found in (3) and (4).

It is instructive to take limits to gain some insights from the long expressions. We consider the limit p0Tp_{0}\gg T, which allows us to replace in (3) the cosh\cosh functions by Boltzmann factors and tanh\tanh function by unity. Similarly fp(1fp)f_{p}(1-f_{p}) can also be replaced by Boltzmann factor. The limits further allows us to neglect the second line in I2I_{2} and J1J_{1} through J3J_{3}. On top of this, we consider separately non-relativistic mpm\gg p and relativistic limit mpm\ll p. For the former mpm\gg p, we have

𝒜iπ2mϵimlpnplSmneβp0δ(P2m2),\displaystyle{\cal A}_{\partial}^{i}\simeq\frac{{\pi}}{2m}{\epsilon}^{iml}p_{n}p_{l}S_{mn}e^{-{\beta}p_{0}}{\delta}(P^{2}-m^{2}),
𝒜Σi9ζ(3)Cf5βm2ϵimlpnplSmneβp0δ(P2m2),\displaystyle{\cal A}_{\Sigma}^{i}\simeq{\color[rgb]{0,0,0}-}\frac{9{\zeta}(3)C_{f}}{5{\beta}m^{2}}{\epsilon}^{iml}p_{n}p_{l}S_{mn}e^{-{\beta}p_{0}}{\delta}(P^{2}-m^{2}),
𝒜Ui11ζ(3)Cf5βm2ϵimlpnplSmneβp0δ(P2m2).\displaystyle{\cal A}_{U}^{i}\simeq{\color[rgb]{0,0,0}-}\frac{11{\zeta}(3)C_{f}}{5{\beta}m^{2}}{\epsilon}^{iml}p_{n}p_{l}S_{mn}e^{-{\beta}p_{0}}{\delta}(P^{2}-m^{2}). (41)

The fact that the non-relativistic limit is regular in pp is a non-trivial: it follows from a cancellation between powers of pp from expansion of II’s and JJ’s in the numerator and p5p^{5} in the denominator in (5), which holds separately for self-energy and gauge link contribution. Since we expect the spin polarization to be well-defined in the non-relativistic limit. The regularity of the results serves as a check of our results. For the relativistic limit mpm\ll p888Note that we can still have meTm\gg eT such that Ignoring Compton scattering is justified., we have

𝒜iπpϵimlpnplSmneβp0δ(P2m2),\displaystyle{\cal A}_{\partial}^{i}\simeq\frac{{\pi}}{p}{\epsilon}^{iml}p_{n}p_{l}S_{mn}e^{-{\beta}p_{0}}{\delta}(P^{2}-m^{2}),
𝒜Σi(2π2135ζ(3))Cf9βp2ϵimlpnplSmneβp0δ(P2m2),\displaystyle{\cal A}_{\Sigma}^{i}\simeq{\color[rgb]{0,0,0}}\frac{(2{\pi}^{2}-135{\zeta}(3))C_{f}}{9{\beta}p^{2}}{\epsilon}^{iml}p_{n}p_{l}S_{mn}e^{-{\beta}p_{0}}{\delta}(P^{2}-m^{2}),
𝒜Ui9ζ(3)Cf2βp2ϵimlpnplSmneβp0δ(P2m2).\displaystyle{\cal A}_{U}^{i}\simeq{\color[rgb]{0,0,0}-}\frac{9{\zeta}(3)C_{f}}{2{\beta}p^{2}}{\epsilon}^{iml}p_{n}p_{l}S_{mn}e^{-{\beta}p_{0}}{\delta}(P^{2}-m^{2}). (42)

The regularity of the results is also non-trivial in that the logarithmically divergent factor lnp0pp0+p\ln\frac{p_{0}-p}{p_{0}+p} as pm\frac{p}{m}\to\infty is compensated by a vanishing prefactor in both self-energy and gauge link contributions in the relativistic limit. It is worth mentioning that in both limits 𝒜Σi{\cal A}_{\Sigma}^{i} and 𝒜Ui{\cal A}_{U}^{i} have opposite sign to 𝒜i{\cal A}_{\partial}^{i}. The magnitude of 𝒜Ui{\cal A}_{U}^{i} is larger(smaller) than 𝒜Σi{\cal A}_{\Sigma}^{i} in the non-relativistic(relativistic) limit. In the limit p0Tp_{0}\gg T we consider, 𝒜Σi{\cal A}_{\Sigma}^{i} and 𝒜Ui{\cal A}_{U}^{i} are suppressed by the factor 1βm\frac{1}{{\beta}m} or 1βp\frac{1}{{\beta}p} compared to 𝒜i{\cal A}_{\partial}^{i}. The suppression factor can be easily understood from (5): 𝒜i{\cal A}_{\partial}^{i} depends on the temperature through the factor fp(1fp)f_{p}(1-f_{p}), which arises from our local equilibrium assumption on the distribution function of the probe fermion. The other two contributions originate from collisions between probe fermion and medium fermion, thus is characterized by at least one power of temperature, giving rise to a factor Tp0\frac{T}{p_{0}} or Tp\frac{T}{p}, which is consistent with the explicit limits we have. The medium dependence is also reflected in the constant CfC_{f}, which encodes the field content of the medium. In view of application to spin polarization in heavy ion collisions, the contributions from self-energy and gauge link depend on the numerical factors. We plot in Fig. 5 three contributions for phenomenologically motivated parameters, with the caveat that our QED calculation is only meant to provide insights to QCD case. We take m=100m=100 MeV, T=150T=150 MeV and pp in the range of a few GeV. The plot shows for a combined contribution from self-energy and gauge link leads to a modest suppression of the derivative contribution.

Refer to caption
Figure 5: BM/BB_{M}/B_{\partial} versus p/Tp/T for probe fermion mass m=100m=100 MeV at T=150T=150 MeV for Nf=2N_{f}=2. BMB_{M} are defined by 𝒜Mi=BMϵimlpnplSmn{\cal A}^{i}_{M}=B_{M}{\epsilon}^{iml}p_{n}p_{l}S_{mn} with M=,Σ,UM={\partial},{\Sigma},U.

6 Summary and Outlook

We have revisited spin polarization in a shear flow and found two new contributions. The first one is the self-energy contribution arising from particle redistribution in the shear flow. We illustrate it with a massive probe fermion in a massless QED plasma. It is found that the self-energy contribution is parametrically the same as the derivative contribution considered in the literature.

The self-energy contribution is gauge dependent. In order to restore the gauge invariance of spin polarization, we have proposed a gauge invariant Wigner function, which contains double gauge links stretching along the Schwinger-Keldysh contour. This allows us to include gauge field fluctuations in both forward and backward contours, which is needed for consistent description of gauge field mediated collisions. We have found a second contribution associated with the gauge link, which is also parametrically of the same order.

Both contributions come from particle redistribution in the medium due to the shear flow. The particle redistribution is determined in a steady shear flow, thus the two contributions correspond to non-dynamical ones. A complete description of spin polarization still lacks a dynamical contribution corresponding to the term aμfAa^{\mu}f_{A} in (1). It is worth pointing out that current phenomenological studies seem to indicate an insufficient magnitude from the derivative contribution as compared to measured spin polarization data [19, 20]. The suppression from the new contributions found in this work seems to point to an important role by the dynamical contribution. Initial efforts have already been made already in [46, 47].

For phenomenological application, several generalizations of the present work are needed: first of all it is crucial to generalize the QED analysis to QCD case. Such a generalization in collisionless limit has been made in [48, 49]. In the collisional case, we expect the redistribution of both quarks and gluons to play a role; secondly going beyond the LL order is necessary to understand the significance of Compton and annihilation processes in the spin polarization problem; last but not least it is also important to relax our assumption of the equilibrium distribution for the probe fermion. These will be reported elsewhere.

Acknowledgments

We are grateful to Jian-hua Gao, Yun Guo and Shi Pu for fruitful discussions. This work is in part supported by NSFC under Grant Nos 12075328, 11735007 (S.L.) and 12005112 (Zy.W.).

Appendix A Phase space integrations in Boltzmann equation

In this appendix, we perform the phase space integral of the RHS of (2). As we remarked earlier, the actual integral equation we solve is with SijS_{ij} replaced by IijpI_{ij}^{p}. We first rewrite the integral measure as

p,k,k(2π)4δ4(P+KPK)=d3kd3qdq0(2π)6δ(p0p0+q0)δ(k0k0q0),\displaystyle\int_{p^{\prime},k^{\prime},k}(2{\pi})^{4}{\delta}^{4}(P+K-P^{\prime}-K^{\prime})=\int\frac{d^{3}kd^{3}qdq_{0}}{(2{\pi})^{6}}{\delta}(p_{0}-p_{0}^{\prime}+q_{0}){\delta}(k_{0}-k_{0}^{\prime}-q_{0}), (43)

with Q=PP=KKQ=P^{\prime}-P=K-K^{\prime}. We then decompose the vector q{\vec{q}} and k{\vec{k}} as

q=qcosθp^+q,k=kcosθp^+k,\displaystyle{\vec{q}}=q\cos{\theta}{\hat{p}}+{\vec{q}}_{\perp},\quad{\vec{k}}=k\cos{\theta}^{\prime}{\hat{p}}+{\vec{k}}_{\perp}, (44)

with θ{\theta}(θ{\theta}^{\prime}) being angles between q{\vec{q}}(k{\vec{k}}) and p{\vec{p}}. This allows us to rewrite the integration measure as

d3kd3q=q2𝑑qdcosθdϕqpk2dkdcosθdϕkp,\displaystyle\int d^{3}kd^{3}q=\int q^{2}dqd\cos{\theta}d{\phi}_{qp}k^{2}dkd\cos{\theta}^{\prime}d{\phi}_{kp}, (45)

where ϕqp{\phi}_{qp} and ϕkp{\phi}_{kp} are azimuthal angles of q{\vec{q}} and k{\vec{k}}.

The evaluation of the integral simplifies significantly in the LL approximation, which is known to arise in the region qp,kq\ll p,k such that we can perform an expansion in qq [44]. Let us do a power counting in qq. The two delta functions can be used to eliminate integration of q0q_{0} and one factor of qq, which can be counted effectively as 1q2\frac{1}{q^{2}}. The remaining power counting depends on the scattering processes. To be specific, we illustrate with Coulomb scattering amplitude

||Coul,f2=8e4s2+u2t2=16e44p2k2(q02q2)2(1cosθ)2.\displaystyle|{\cal M}|_{\text{Coul},f}^{2}=8e^{4}\frac{s^{2}+u^{2}}{t^{2}}=16e^{4}\frac{4p^{2}k^{2}}{(q_{0}^{2}-q^{2})^{2}}\left(1-\cos{\theta}^{\prime}\right)^{2}. (46)

It contains a factor 1q4\frac{1}{q^{4}}. On the other hand, the combination Iijpχp+IijkχkIijpχpIijkχkI^{p}_{ij}{\chi}_{p}+I^{k}_{ij}{\chi}_{k}-I^{p^{\prime}}_{ij}{\chi}_{p^{\prime}}-I^{k^{\prime}}_{ij}{\chi}_{k^{\prime}} can contribute a factor of qq as it vanishes in the limit q0,q0q_{0},q\to 0. Combining with q4q^{4} in the phase space, we obtain an overall power 1q\frac{1}{q}. This appears to be more severe than logarithmic divergence. However, we will find an extra factor of qq in the actual evaluation. To be safe, we keep correction up to O(q)O(q) in the phase space integration.

We will first perform angular integrations using two delta functions, which can be written as

δ(p0p0+q0)δ(qcosθq22psin2θ+q0),\displaystyle{\delta}(p_{0}-p_{0}^{\prime}+q_{0})\simeq{\delta}(-q\cos{\theta}-\frac{q^{2}}{2p}\sin^{2}{\theta}+q_{0}),
δ(k0k0q0)δ(qcosΩq22ksin2Ωq0),\displaystyle{\delta}(k_{0}-k_{0}^{\prime}-q_{0})\simeq{\delta}(q\cos{\Omega}-\frac{q^{2}}{2k}\sin^{2}{\Omega}-q_{0}), (47)

where Ω{\Omega} is the angle between q{\vec{q}} and k{\vec{k}} and corrections to the arguments higher order in qq have been ignored. We first perform the azimuthal angle integration

𝑑ϕqp𝑑ϕkpδ(k0k0q0)=𝑑ϕ¯𝑑Δϕδ(qcosΩq22ksin2Ωq0)\displaystyle\int d{\phi}_{qp}d{\phi}_{kp}{\delta}(k_{0}-k_{0}^{\prime}-q_{0})=\int d\bar{{\phi}}d{\Delta}{\phi}{\delta}(q\cos{\Omega}-\frac{q^{2}}{2k}\sin^{2}{\Omega}-q_{0})
\displaystyle\simeq 2π2q(1+q0k)1(cos2θ+2cosθcosΩ+1cos2θcos2Ω)1/2.\displaystyle 2{\pi}\frac{2}{q(1+\frac{q_{0}}{k})}\frac{1}{\left(-\cos^{2}{\theta}^{\prime}+2\cos{\theta}^{\prime}\cos{\Omega}+1-\cos^{2}{\theta}-\cos^{2}{\Omega}\right)^{1/2}}. (48)

Here ϕ¯\bar{{\phi}} and Δϕ{\Delta}{\phi} are the average and difference of ϕqp{\phi}_{qp} and ϕkp{\phi}_{kp}. The delta function fixes Δϕ{\Delta}{\phi} through cosΩ=cosθcosθ+sinθsinθcosΔϕ\cos{\Omega}=\cos{\theta}\cos{\theta}^{\prime}+\sin{\theta}\sin{\theta}^{\prime}\cos{\Delta}{\phi}. The square root constrains the integration domain of cosθ\cos{\theta}^{\prime} as: cosθcosΩsinθsinΩ<cosθ<cosθcosΩ+sinθsinΩ\cos{\theta}\cos{\Omega}-\sin{\theta}\sin{\Omega}<\cos{\theta}^{\prime}<\cos{\theta}\cos{\Omega}+\sin{\theta}\sin{\Omega}. The other delta function is easily integrated to give

dcosθδ(p0p0+q0)1q(1q0p).\displaystyle\int d\cos{\theta}{\delta}(p_{0}-p_{0}^{\prime}+q_{0})\simeq\frac{1}{q\left(1-\frac{q_{0}}{p}\right)}. (49)

Combining (A) and (49) with 116p0k0p0k0\frac{1}{16p_{0}k_{0}p_{0}^{\prime}k_{0}^{\prime}}, we obtain a simpler expression

2π2q(1+q0k)1(cos2θ+2cosθcosΩ+1cos2θcos2Ω)1/21q(1q0p)116p0k0p0k0\displaystyle 2{\pi}\frac{2}{q(1+\frac{q_{0}}{k})}\frac{1}{\left(-\cos^{2}{\theta}^{\prime}+2\cos{\theta}^{\prime}\cos{\Omega}+1-\cos^{2}{\theta}-\cos^{2}{\Omega}\right)^{1/2}}\frac{1}{q\left(1-\frac{q_{0}}{p}\right)}\frac{1}{16p_{0}k_{0}p_{0}^{\prime}k_{0}^{\prime}}
\displaystyle\simeq 2π2q21(cos2θ+2cosθcosΩ+1cos2θcos2Ω)1/2116p2k2.\displaystyle 2{\pi}\frac{2}{q^{2}}\frac{1}{\left(-\cos^{2}{\theta}^{\prime}+2\cos{\theta}^{\prime}\cos{\Omega}+1-\cos^{2}{\theta}-\cos^{2}{\Omega}\right)^{1/2}}\frac{1}{16p^{2}k^{2}}. (50)

It remains to perform the tensor contractions

IppIijp(IijpχpIijpχp)=23χp((p^p^)213)χp,\displaystyle I_{pp}\equiv I_{ij}^{p}\left(I_{ij}^{p}{\chi}_{p}-I_{ij}^{p^{\prime}}{\chi}_{p^{\prime}}\right)=\frac{2}{3}{\chi}_{p}-\left(({\hat{p}}\cdot{\hat{p}}^{\prime})^{2}-\frac{1}{3}\right){\chi}_{p^{\prime}},
IpkIijp(IijkχkIijkχk)=((p^k^)213)χk((p^k^)213)χk.\displaystyle I_{pk}\equiv I_{ij}^{p}\left(I_{ij}^{k}{\chi}_{k}-I_{ij}^{k^{\prime}}{\chi}_{k^{\prime}}\right)=\left(({\hat{p}}\cdot{\hat{k}})^{2}-\frac{1}{3}\right){\chi}_{k}-\left(({\hat{p}}\cdot{\hat{k}}^{\prime})^{2}-\frac{1}{3}\right){\chi}_{k^{\prime}}. (51)

Using the following relations

p^p^=p+qcosθp+q0,p^k^=cosθ,p^k^=kcosθqcosθkq0,\displaystyle{\hat{p}}\cdot{\hat{p}}^{\prime}=\frac{p+q\cos{\theta}}{p+q_{0}},\quad{\hat{p}}\cdot{\hat{k}}=\cos{\theta}^{\prime},\quad{\hat{p}}\cdot{\hat{k}}^{\prime}=\frac{k\cos{\theta}^{\prime}-q\cos{\theta}}{k-q_{0}}, (52)

and expanding χp=χp+q0χp+12q02χp′′{\chi}_{p^{\prime}}={\chi}_{p}+q_{0}{\chi}_{p}^{\prime}+\frac{1}{2}q_{0}^{2}{\chi}_{p}^{\prime\prime}, χk=χkq0χk+12q02χk′′{\chi}_{k^{\prime}}={\chi}_{k}-q_{0}{\chi}_{k}^{\prime}+\frac{1}{2}q_{0}^{2}{\chi}_{k}^{\prime\prime}, we find the following types of integrals

cosθcosnθ(cos2θ+2cosθcosΩ+1cos2θcos2Ω)1/2,\displaystyle\int\cos{\theta}^{\prime}\frac{\cos^{n}{\theta}^{\prime}}{\left(-\cos^{2}{\theta}^{\prime}+2\cos{\theta}^{\prime}\cos{\Omega}+1-\cos^{2}{\theta}-\cos^{2}{\Omega}\right)^{1/2}}, (53)

with n=0,1,2,3,4n=0,1,2,3,4. These integrals evaluate to polynomials in cosθcosΩ\cos{\theta}\cos{\Omega} and sinθsinΩ\sin{\theta}\sin{\Omega}, whose values are already fixed by delta functions. We can then perform integrations over q0q_{0} and qq in order. It turns out that all the potentially 1q\frac{1}{q} divergence vanish after integration over q0q_{0}. This occurs because the integrand is odd in q0q_{0}, leaving a logarithmic divergence. The divergence can be rendered finite by screening effect through self-energy of soft photon. Fortunately to extract the LL result, we can simply impose cutoffs in the integral eTTdqq\int_{eT}^{T}\frac{dq}{q} without explicit inclusion of self-energy, which gives the LL enhancement factor lne1\ln e^{-1} [44]. Another significant simplification arises because terms depending on χk{\chi}_{k} and its derivatives vanish identically. It follows that the remaining kk-integration can be performed explicitly, turning the integro-differential equation into a differential equations. We have for the contribution to RHS from Coulomb scattering

π3cosh2βp2(6χp+p(2+βptanhβp2)χppχp′′)72β3p2.\displaystyle\frac{{\pi}^{3}\cosh^{-2}\frac{{\beta}p}{2}\left(6{\chi}_{p}+p(-2+{\beta}p\tanh\frac{{\beta}p}{2}){\chi}_{p}^{\prime}-p{\chi}_{p}^{\prime\prime}\right)}{72{\beta}^{3}p^{2}}. (54)

Appendix B Evaluation of self-energy contribution

We reproduce RmnkR_{mnk} defined in (3) below for convenience

Rmnk=\displaystyle R_{mnk}= 16e4Nf𝑑q0d3qd3k1(2π)5δ(p0p0+q0)δ(k0k0q0)[kkPK+kkPK]\displaystyle{\color[rgb]{0,0,0}-}16e^{4}N_{f}\int dq_{0}d^{3}qd^{3}k\frac{1}{(2{\pi})^{5}}{\delta}(p_{0}-p_{0}^{\prime}+q_{0}){\delta}(k_{0}-k_{0}^{\prime}-q_{0})[k_{k}P^{\prime}\cdot K^{\prime}+k_{k}^{\prime}P^{\prime}\cdot K]
×1(Q2)218p0k0k0(ImnkχkImnkχk)fp(0)fk(0)(1fp(0))(1fk(0)).\displaystyle\times\frac{1}{\left(Q^{2}\right)^{2}}\frac{1}{8p_{0}^{\prime}k_{0}^{\prime}k_{0}}\left(I_{mn}^{k}{\chi}_{k}-I_{mn}^{k^{\prime}}{\chi}_{k^{\prime}}\right)f^{(0)}_{p}f^{(0)}_{k}(1-f^{(0)}_{p^{\prime}})(1-f^{(0)}_{k^{\prime}}). (55)

Defining

Tkmn=(k0kk+k0kk)(ImnkχkImnkχk),\displaystyle T_{kmn}=\left(k_{0}k_{k}^{\prime}+k_{0}^{\prime}k_{k}\right)\left(I_{mn}^{k}{\chi}_{k}-I_{mn}^{k^{\prime}}{\chi}_{k^{\prime}}\right),
Tjlmn=(kjkl+kjkl)(ImnkχkImnkχk),\displaystyle T_{jlmn}=\left(k_{j}k_{l}^{\prime}+k_{j}^{\prime}k_{l}\right)\left(I_{mn}^{k}{\chi}_{k}-I_{mn}^{k^{\prime}}{\chi}_{k^{\prime}}\right),

we can rewrite the tensor structures in (B) as

[kkPK+kkPK](ImnkχkImnkχk)=p0TkmnplTklmn.\displaystyle[k_{k}P^{\prime}\cdot K^{\prime}+k_{k}^{\prime}P^{\prime}\cdot K]\left(I_{mn}^{k}{\chi}_{k}-I_{mn}^{k^{\prime}}{\chi}_{k^{\prime}}\right)=p_{0}^{\prime}T_{kmn}-p_{l}^{\prime}T_{klmn}. (56)

By rotational symmetry and the fact the k{\vec{k}} and q{\vec{q}} is correlated by δ(k0k0q0){\delta}(k_{0}-k_{0}^{\prime}-q_{0}), we can convert d3kδ(k0k0q0)(TkmnandTklmn)\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})\left(T_{kmn}\;\text{and}\;T_{klmn}\right) to tensors of q{\vec{q}}. Note that Tmnk(Tklmn)T_{mnk}(T_{klmn}) is traceless and symmetric in mnmn and TklmnT_{klmn} is also symmetric in klkl, they can be decomposed using the tensor basis constructed out of q{\vec{q}} with the same symmetry properties as

d3kδ(k0k0q0)Tkmn=A3Imnqqk+B3(qmδnk+qnδmk23δmnqk),\displaystyle\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})T_{kmn}=A_{3}I_{mn}^{q}q_{k}+B_{3}\left(q_{m}{\delta}_{nk}+q_{n}{\delta}_{mk}-\frac{2}{3}{\delta}_{mn}q_{k}\right),
d3kδ(k0k0q0)Tjlmn=A4Imnqqjql+B4Imnqq2δjl\displaystyle\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})T_{jlmn}=A_{4}I_{mn}^{q}q_{j}q_{l}+B_{4}I_{mn}^{q}q^{2}{\delta}_{jl}
+C4(12(qmδnjql+qnδmjql+jl)23δmnqjql)+D4q2(djmδln+δjnδlm23δmnδjl).\displaystyle+C_{4}\left(\frac{1}{2}\left(q_{m}{\delta}_{nj}q_{l}+q_{n}{\delta}_{mj}q_{l}+j\leftrightarrow l\right)-\frac{2}{3}{\delta}_{mn}q_{j}q_{l}\right)+D_{4}q^{2}\left(d_{jm}{\delta}_{ln}+{\delta}_{jn}{\delta}_{lm}-\frac{2}{3}{\delta}_{mn}{\delta}_{jl}\right). (57)

The coefficients are scalar functions of q{\vec{q}}, which can be evaluated by contracting (B) with the tensor basis

(23q243q243q2203q2)(A3B3)=(K31K32),\displaystyle\begin{pmatrix}\frac{2}{3}q^{2}&\frac{4}{3}q^{2}\\ \frac{4}{3}q^{2}&\frac{20}{3}q^{2}\end{pmatrix}\begin{pmatrix}A_{3}\\ B_{3}\end{pmatrix}=\begin{pmatrix}K_{31}\\ K_{32}\end{pmatrix},
(23q423q443q443q423q42q443q4043q443q4143q4203q443q40203q420q4)(A4B4C4D4)=(K41K42K43K44),\displaystyle\begin{pmatrix}\frac{2}{3}q^{4}&\frac{2}{3}q^{4}&\frac{4}{3}q^{4}&\frac{4}{3}q^{4}\\ \frac{2}{3}q^{4}&2q^{4}&\frac{4}{3}q^{4}&0\\ \frac{4}{3}q^{4}&\frac{4}{3}q^{4}&\frac{14}{3}q^{4}&\frac{20}{3}q^{4}\\ \frac{4}{3}q^{4}&0&\frac{20}{3}q^{4}&20q^{4}\end{pmatrix}\begin{pmatrix}A_{4}\\ B_{4}\\ C_{4}\\ D_{4}\end{pmatrix}=\begin{pmatrix}K_{41}\\ K_{42}\\ K_{43}\\ K_{44}\end{pmatrix}, (58)

with

K31=d3kδ(k0k0q0)(k0kq+k0kq)[((k^q^)213)χk(kk)],\displaystyle K_{31}=\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})\left(k_{0}{\vec{k}}^{\prime}\cdot{\vec{q}}+k_{0}^{\prime}{\vec{k}}\cdot{\vec{q}}\right)\left[\left(({\hat{k}}\cdot{\hat{q}})^{2}-\frac{1}{3}\right){\chi}_{k}-(k\to k^{\prime})\right],
K32d3kδ(k0k0q0)[(4k0kq23k0kq23k0kq)(kk)],\displaystyle K_{32}\simeq\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})\big{[}\left(4k_{0}^{\prime}{\vec{k}}\cdot{\vec{q}}-\frac{2}{3}k_{0}{\vec{k}}^{\prime}\cdot{\vec{q}}-\frac{2}{3}k_{0}^{\prime}{\vec{k}}\cdot{\vec{q}}\right)-(k\leftrightarrow k^{\prime})\big{]},
K41d3kδ(k0k0q0)2kqkq[((k^q^)213)χk(kk)],\displaystyle K_{41}\simeq\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})2{\vec{k}}\cdot{\vec{q}}{\vec{k}}^{\prime}\cdot{\vec{q}}\left[\left(({\hat{k}}\cdot{\hat{q}})^{2}-\frac{1}{3}\right){\chi}_{k}-(k\to k^{\prime})\right],
K42d3kδ(k0k0q0)2k0k0q2[((k^q^)213)χk(kk)],\displaystyle K_{42}\simeq\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})2k_{0}k_{0}^{\prime}q^{2}\left[\left(({\hat{k}}\cdot{\hat{q}})^{2}-\frac{1}{3}\right){\chi}_{k}-(k\to k^{\prime})\right],
K43d3kδ(k0k0q0)[(23kqkq+2(kq)2k0k0)χk(kk)],\displaystyle K_{43}\simeq\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})\left[\left(\frac{2}{3}{\vec{k}}\cdot{\vec{q}}\,{\vec{k}}^{\prime}\cdot{\vec{q}}+2({\vec{k}}\cdot{\vec{q}})^{2}\frac{k_{0}^{\prime}}{k_{0}}\right){\chi}_{k}-(k\leftrightarrow k^{\prime})\right],
K44d3kδ(k0k0q0)83k0k0q2[χkχk].\displaystyle K_{44}\simeq\int d^{3}k{\delta}(k_{0}-k_{0}^{\prime}-q_{0})\frac{8}{3}k_{0}k_{0}^{\prime}q^{2}\left[{\chi}_{k}-{\chi}_{k^{\prime}}\right]. (59)

We have again dropped terms higher order in qq. For later use, we perform a counting of the leading order result of KK’s. Note that kqkqcosΩkq0{\vec{k}}\cdot{\vec{q}}\simeq kq\cos{\Omega}\simeq kq_{0} and the square brackets are of O(q0)O(q_{0}), we deduce K31,K32O(q)K_{31},K_{32}\sim O(q), K41,K42,K43,K44q0qK_{41},K_{42},K_{43},K_{44}\sim q_{0}q. It follows that to leading order A3,B3O(1/q)A_{3},B_{3}\sim O(1/q), A4,B4,C4,D4q0/q2A_{4},B_{4},C_{4},D_{4}\sim q_{0}/q^{2}. The explicit results can be obtained by using similar tricks used in appendix A. The expressions are lengthy and not shown here.

For the axial component of Wigner function in (1), we need to integrate the structures ϵijkpj(p0TmnkplTklmn){\epsilon}^{ijk}p_{j}\left(p_{0}^{\prime}T_{mnk}-p_{l}^{\prime}T_{klmn}\right) with 𝑑q0d3qδ(p0p0+q0)\int dq_{0}d^{3}q{\delta}(p_{0}-p_{0}^{\prime}+q_{0}). The tensor integrals can be simplified by noting that the results are expected to be pseudotensors and the only pseudotensor symmetric in mnmn is ϵimlpnpl+mn{\epsilon}^{iml}p_{n}p_{l}+m\leftrightarrow n. We can then project the tensor integrands as

ϵijkpjTkmn=12p4(ϵimlpnpl+mn)(TkjnpjpnpkTkknpnp2),\displaystyle{\epsilon}^{ijk}p_{j}T_{kmn}=\frac{1}{2p^{4}}\left({\epsilon}^{iml}p_{n}p_{l}+m\leftrightarrow n\right)\left(T_{kjn}p_{j}p_{n}p_{k}-T_{kkn}p_{n}p^{2}\right),
ϵijkphpjTkhmn=12p4(ϵimlpnpl+mn)(TkhjnphpjpnpkTkhknphpnp2),\displaystyle{\epsilon}^{ijk}p_{h}p_{j}T_{khmn}=\frac{1}{2p^{4}}\left({\epsilon}^{iml}p_{n}p_{l}+m\leftrightarrow n\right)\left(T_{khjn}p_{h}p_{j}p_{n}p_{k}-T_{khkn}p_{h}p_{n}p^{2}\right), (60)

with the understanding that the equal sign hold only after integrating over k{\vec{k}} and q{\vec{q}}. Summation over repeated indices is implied. Using (B), we can express the tensor contractions on the RHS of (B) as

Tkjnpkpnpj=pq[((pq)2q213p2)A3+43p2B3],\displaystyle T_{kjn}p_{k}p_{n}p_{j}={\vec{p}}\cdot{\vec{q}}\left[\left(\frac{({\vec{p}}\cdot{\vec{q}})^{2}}{q^{2}}-\frac{1}{3}p^{2}\right)A_{3}+\frac{4}{3}p^{2}B_{3}\right],
Tjjnpn=pq(23A3+103B3),\displaystyle T_{jjn}p_{n}={\vec{p}}\cdot{\vec{q}}\left(\frac{2}{3}A_{3}+\frac{10}{3}B_{3}\right),
Tkhjnphpkpnpj=((pq)2q213p2)((pq)2A4+p2q2B4)+43p2(pq)2C4+43p2q2D4,\displaystyle T_{khjn}p_{h}p_{k}p_{n}p_{j}=\left(\frac{({\vec{p}}\cdot{\vec{q}})^{2}}{q^{2}}-\frac{1}{3}p^{2}\right)\left(({\vec{p}}\cdot{\vec{q}})^{2}A_{4}+p^{2}q^{2}B_{4}\right)+\frac{4}{3}p^{2}({\vec{p}}\cdot{\vec{q}})^{2}C_{4}+\frac{4}{3}p^{2}q^{2}D_{4},
Tjhjnphpn=(pq)223(A4+B4)+(116(pq)2+12p2q2)C4+103p2q2D4.\displaystyle T_{jhjn}p_{h}p_{n}=({\vec{p}}\cdot{\vec{q}})^{2}\frac{2}{3}(A_{4}+B_{4})+\left(\frac{11}{6}({\vec{p}}\cdot{\vec{q}})^{2}+\frac{1}{2}p^{2}q^{2}\right)C_{4}+\frac{10}{3}p^{2}q^{2}D_{4}. (61)

With the projection, we can simplify the integral as

ϵijkpjRmnkSmn\displaystyle{\epsilon}^{ijk}p_{j}R_{mnk}S_{mn}
=16e4Nf𝑑q0𝑑qk2𝑑kdcosθ4π1(2π)5(p0TkmnplTklmn)1(Q2)218pk2\displaystyle={\color[rgb]{0,0,0}-}16e^{4}N_{f}\int dq_{0}dqk^{2}dkd\cos{\theta}^{\prime}4{\pi}\frac{1}{(2{\pi})^{5}}\left(p_{0}^{\prime}T_{kmn}-p_{l}^{\prime}T_{klmn}\right)\frac{1}{(Q^{2})^{2}}\frac{1}{8pk^{2}}
×1(cos2θ+2cosθcosθcosΩ+1cos2θcos2Ω)1/2fp(0)fk(0)(1fp(0))(1fk(0)),\displaystyle\times\frac{1}{\left(-\cos^{2}{\theta}^{\prime}+2\cos{\theta}^{\prime}\cos{\theta}\cos{\Omega}+1-\cos^{2}{\theta}-\cos^{2}{\Omega}\right)^{1/2}}f^{(0)}_{p}f^{(0)}_{k}(1-f^{(0)}_{p^{\prime}})(1-f^{(0)}_{k^{\prime}}),
=42πIϵimlpnplSmn2p5Cf,\displaystyle={\color[rgb]{0,0,0}-}\frac{4}{2{\pi}}I\frac{{\epsilon}^{iml}p_{n}p_{l}S_{mn}}{2p^{5}}C_{f}, (62)

with the second equality defines II. We have also factored out the flavor dependent factors from the overall NfN_{f} and χ{\chi} into the constant Cf=3Nf(1+2Nf)4π2Nf2C_{f}=\frac{3N_{f}(1+2N_{f})}{4{\pi}^{2}N_{f}^{2}}.

Let us see how logarithmic divergence occurs in II by the following power counting. From the leading order power counting for the coefficients made earlier and using pqp0q0{\vec{p}}\cdot{\vec{q}}\simeq p_{0}q_{0} from δ(p0p0+q0){\delta}(p_{0}-p_{0}^{\prime}+q_{0}), we deduce the LHS of (B) are of O(q0/q)\sim O(q_{0}/q)999We have regarded q02q2q_{0}^{2}\sim q^{2} and keep only explicit odd power of q0q_{0} in the estimate.. This is to be combined with power counting in the remainder of the integral

q0q1qq41q4q0q2,\displaystyle\frac{q_{0}}{q}\frac{1}{q}q^{4}\frac{1}{q^{4}}\sim\frac{q_{0}}{q^{2}}, (63)

with the second to fourth factors on the LHS of (63) coming from δ(p0p0+q0){\delta}(p_{0}-p_{0}^{\prime}+q_{0}), dq0d3qdq_{0}d^{3}q and 1(Q2)2\frac{1}{(Q^{2})^{2}} respectively. Similar to the analysis in appendix A, the leading order result vanishes upon integration over q0q_{0} because of the oddness of integrand in q0q_{0}. We need to expand to next to leading order (NLO). It is instructive to split II into three parts:

I1:ϵijkpjp0Tkmnϵijkpjq0Tkmn,ϵijkpjplTklmnϵijkpjqlTklmn\displaystyle I_{1}:{\epsilon}^{ijk}p_{j}p_{0}^{\prime}T_{kmn}\to{\epsilon}^{ijk}p_{j}q_{0}T_{kmn},\quad{\epsilon}^{ijk}p_{j}p_{l}^{\prime}T_{klmn}\to{\epsilon}^{ijk}p_{j}q_{l}T_{klmn}
with LOA3,B3,A4,,D4,andfpfk(1fp)(1fk)fpfk(1fp)(1fk),\displaystyle\text{with LO}\;A_{3},B_{3},A_{4},\dots,D_{4},\;\text{and}\;f_{p}f_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})\to f_{p}f_{k}(1-f_{p})(1-f_{k}),
I2:ϵijkpjp0Tkmnϵijkpjp0Tkmn,ϵijkpjplTklmnϵijkpjplTklmn\displaystyle I_{2}:{\epsilon}^{ijk}p_{j}p_{0}^{\prime}T_{kmn}\to{\epsilon}^{ijk}p_{j}p_{0}T_{kmn},\quad{\epsilon}^{ijk}p_{j}p_{l}^{\prime}T_{klmn}\to{\epsilon}^{ijk}p_{j}p_{l}T_{klmn}
with NLOA3,B3,A4,,D4,andfpfk(1fp)(1fk)fpfk(1fp)(1fk),\displaystyle\text{with NLO}\;A_{3},B_{3},A_{4},\dots,D_{4},\;\text{and}\;f_{p}f_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})\to f_{p}f_{k}(1-f_{p})(1-f_{k}),
I3:ϵijkpjp0Tkmnϵijkpjp0Tkmn,ϵijkpjplTklmnϵijkpjplTklmn\displaystyle I_{3}:{\epsilon}^{ijk}p_{j}p_{0}^{\prime}T_{kmn}\to{\epsilon}^{ijk}p_{j}p_{0}T_{kmn},\quad{\epsilon}^{ijk}p_{j}p_{l}^{\prime}T_{klmn}\to{\epsilon}^{ijk}p_{j}p_{l}T_{klmn}
with LOA3,B3,A4,,D4,andfpfk(1fp)(1fk)expanded toO(q0).\displaystyle\text{with LO}\;A_{3},B_{3},A_{4},\dots,D_{4},\;\text{and}\;f_{p}f_{k}(1-f_{p^{\prime}})(1-f_{k^{\prime}})\;\text{expanded to}\;O(q_{0}). (64)

It turns out I1I_{1} vanishes identically. The other two II’s are obtained by integration with approximate χk{\chi}_{k} from (12)

I2\displaystyle I_{2} =π2cosh2βp02((15p487p2p02+72p04)ln(p0pp0+p)+8p5p0126p3p0+144pp03)72β\displaystyle=\frac{{\pi}^{2}\cosh^{-2}\frac{{\beta}p_{0}}{2}\left((15p^{4}-87p^{2}p_{0}^{2}+72p_{0}^{4})\ln(\frac{p_{0}-p}{p_{0}+p})+\frac{8p^{5}}{p_{0}}-126p^{3}p_{0}+144pp_{0}^{3}\right)}{72{\beta}}
+3cosh2βp02((12p2p012p03)lnp0pp0+p+28p328p53p0224pp02)ζ(3)8β2,\displaystyle+\frac{3\cosh^{-2}\frac{{\beta}p_{0}}{2}\left((12p^{2}p_{0}-12p_{0}^{3})\ln\frac{p_{0}-p}{p_{0}+p}+28p^{3}-\frac{28p^{5}}{3p_{0}^{2}}-24pp_{0}^{2}\right)\zeta(3)}{8{\beta}^{2}},
I3\displaystyle I_{3} =((p49p2p02+8p04)lnp0pp0+p38p0p33+16p03p)(π29tanhβp02ζ(3))4β(1+cosh(βp0)).\displaystyle=\frac{\left((p^{4}-9p^{2}p_{0}^{2}+8p_{0}^{4})\ln\frac{p_{0}-p}{p_{0}+p}-\frac{38p_{0}p^{3}}{3}+16p_{0}^{3}p\right)\left({\pi}^{2}-9\tanh\frac{{\beta}p_{0}}{2}\zeta(3)\right)}{4{\beta}\left(1+\cosh({\beta}p_{0})\right)}. (65)

Appendix C Evaluation of gauge link contribution

Let us define

Pρ[(fp(0)(1fp(0))Dλρ<(Q)fp(0)(1fp(0))Dλρ>(Q))ϵαλβμPαQβδ(P2m2)δ(P2m2)]\displaystyle\frac{{\partial}}{{\partial}P_{\rho}}\left[\left(f^{(0)}_{p}(1-f^{(0)}_{p^{\prime}})D^{<}_{{\lambda}{\rho}}(Q)-f^{(0)}_{p^{\prime}}(1-f^{(0)}_{p})D^{>}_{{\lambda}{\rho}}(Q)\right){\epsilon}^{{\alpha}{\lambda}{\beta}{\mu}}P_{\alpha}Q_{\beta}{\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2})\right]
Pρ[Fρμ(P,Q)δ(P2m2)δ(P2m2)].\displaystyle\equiv\frac{{\partial}}{{\partial}P_{\rho}}\left[F_{\rho}^{\mu}(P,Q){\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2})\right]. (66)

We consider p0>0p_{0}>0. Since qpq\ll p, we have also p0>0p_{0}^{\prime}>0, allowing us to localize the delta functions in (C) to the particle contributions

Pρ(δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+qFρμ(p0=Ep))\displaystyle\frac{{\partial}}{{\partial}P_{\rho}}\left(\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}F_{\rho}^{\mu}(p_{0}=E_{p})\right)
=\displaystyle= uρδ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+qFρμ(p0=Ep)+\displaystyle u^{\rho}\frac{{\delta}^{\prime}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}F_{\rho}^{\mu}(p_{0}=E_{p})+
EpPρ[δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+qδ(p0Ep)2Ep2δ(Ep+q0Ep+q)2Ep+q\displaystyle\frac{{\partial}E_{p}}{{\partial}P_{\rho}}\big{[}-\frac{{\delta}^{\prime}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}-\frac{{\delta}(p_{0}-E_{p})}{2E_{p}^{2}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}
+δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+q+δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+qp0]Fρμ(p0=Ep)\displaystyle+\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}^{\prime}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}+\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}\frac{{\partial}}{{\partial}p_{0}}\big{]}F_{\rho}^{\mu}(p_{0}=E_{p})
Ep+qPρ[δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+q2+δ(p0Ep)2Epδ(Eq+q0Ep+q)2Ep+q2]Fρμ(p0=Ep)\displaystyle-\frac{{\partial}E_{p+q}}{{\partial}P_{\rho}}\big{[}\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}^{\prime}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}^{2}}+\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{q}+q_{0}-E_{p+q})}{2E_{p+q}^{2}}\big{]}F_{\rho}^{\mu}(p_{0}=E_{p})
+δ(p0Ep)2Epδ(Eq+q0Ep+q)2Ep+qPρλPλFρμ(p0=Ep).\displaystyle+\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{q}+q_{0}-E_{p+q})}{2E_{p+q}}P^{{\rho}{\lambda}}\frac{{\partial}}{{\partial}P_{\lambda}}F_{\rho}^{\mu}(p_{0}=E_{p}). (67)

The above should be viewed as a function of p0p_{0}. We find then the term δ(p0Ep)\propto{\delta}^{\prime}(p_{0}-E_{p}) vanishes identically. The remaining terms can be combined by using EpPρ=PρλPλEp\frac{{\partial}E_{p}}{{\partial}P_{\rho}}=\frac{P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}}, Ep+qPρ=Pρλ(Pλ+Qλ)Ep+q\frac{{\partial}E_{p+q}}{{\partial}P_{\rho}}=\frac{P^{{\rho}{\lambda}}(P_{\lambda}+Q_{\lambda})}{E_{p+q}} as

(PρλPλEpPρλ(Pλ+Qλ)Ep+q)δ(p0Ep)2Epδ(Ep+q0Ep+q)2EqFρμ(p0=Ep)\displaystyle\left(\frac{P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}}-\frac{P^{{\rho}{\lambda}}(P_{\lambda}+Q_{\lambda})}{E_{p+q}}\right)\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}^{\prime}(E_{p}+q_{0}-E_{p+q})}{2E_{q}}F_{\rho}^{\mu}(p_{0}=E_{p})
(PρλPλEp2+Pρλ(Pλ+Qλ)Ep+q2)δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+qFρμ(p0=Ep)\displaystyle-\left(\frac{P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}^{2}}+\frac{P^{{\rho}{\lambda}}(P_{\lambda}+Q_{\lambda})}{E_{p+q}^{2}}\right)\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}F_{\rho}^{\mu}(p_{0}=E_{p})
+(PρλPλEpFρμ(p0=Ep)p0+PρλFρμ(p0=Ep)Pλ)δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+q.\displaystyle+\left(\frac{P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}}\frac{{\partial}F_{\rho}^{\mu}(p_{0}=E_{p})}{{\partial}p_{0}}+P^{{\rho}{\lambda}}\frac{{\partial}F_{\rho}^{\mu}(p_{0}=E_{p})}{{\partial}P_{\lambda}}\right)\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}}. (68)

The first two lines and the last line of (C) come from derivatives on δ(P2m2){\delta}(P^{2}-m^{2}), δ(P2m2){\delta}(P^{\prime}{}^{2}-m^{2}) and that on FρμF_{\rho}^{\mu} in (C) respectively. From the definition of FρμF_{\rho}^{\mu}, it is clear that the last line is nonvanishing only if Pρ\frac{{\partial}}{{\partial}P_{\rho}} acts on fp(0)(1fp(0))-f^{(0)}_{p}(1-f^{(0)}_{p^{\prime}}). Therefore in the last line, we may keep only the corresponding contribution. (C) can be further simplified by noting that with an extra factor of QQ in (C) as compared to the self-energy contribution. It is sufficient to approximate factors by their leading order expansion in QQ. Using Ep+qEpE_{p+q}\simeq E_{p}, PρλPλEpPρλ(Pλ+Qλ)Ep+q=PρλQλEp+PρλPλpqEp3\frac{P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}}-\frac{P^{{\rho}{\lambda}}(P_{\lambda}+Q_{\lambda})}{E_{p+q}}=-\frac{P^{{\rho}{\lambda}}Q_{\lambda}}{E_{p}}+\frac{P^{{\rho}{\lambda}}P_{\lambda}{\vec{p}}\cdot{\vec{q}}}{E_{p}^{3}} and integrating by part, we obtain

[(PρλQλEpPρλPλpqEp3)Fρμq02PρλPλEp2Fρμ+PρλPλEpFρμp0]δ(P2m2)δ(P2m2),\displaystyle\bigg{[}\left(\frac{P^{{\rho}{\lambda}}Q_{\lambda}}{E_{p}}-\frac{P^{{\rho}{\lambda}}P_{\lambda}{\vec{p}}\cdot{\vec{q}}}{E_{p}^{3}}\right)\frac{{\partial}F_{\rho}^{\mu}}{{\partial}q_{0}}-\frac{2P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}^{2}}F_{\rho}^{\mu}+\frac{P^{{\rho}{\lambda}}P_{\lambda}}{E_{p}}\frac{{\partial}F_{\rho}^{\mu}}{{\partial}p_{0}}\bigg{]}{\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2}), (69)

with the understanding that the derivative p0\frac{{\partial}}{{\partial}p_{0}} acting on fp(0)(1fp(0))-f^{(0)}_{p}(1-f^{(0)}_{p^{\prime}}) inside FρμF_{\rho}^{\mu} only. We have also replaced δ(p0Ep)2Epδ(Ep+q0Ep+q)2Ep+q\frac{{\delta}(p_{0}-E_{p})}{2E_{p}}\frac{{\delta}(E_{p}+q_{0}-E_{p+q})}{2E_{p+q}} by δ(P2m2)δ(P2m2){\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2}). (69) can be evaluated by the same method discussed in appendix B. We shall not spell out details here but just stress a subtle point related to q0\frac{{\partial}}{{\partial}q_{0}}: As before, we will replace pq{\vec{p}}\cdot{\vec{q}} by p0q0p_{0}q_{0}. It becomes ambiguous whether the replacement should be made before or after the q0q_{0}-derivative. The correct way is to first replace in all possible places and then take the derivative. The reason is that the projection onto the pseudotensor in (B) is justified only after angular integrations, which imposes pq=p0q0{\vec{p}}\cdot{\vec{q}}=p_{0}q_{0}.

Taking μ=i{\mu}=i and factoring out the flavor dependent constant CfC_{f} as before, we obtain the following results

QPρFρiδ(P2m2)δ(P2m2)\displaystyle\int_{Q}\frac{{\partial}}{{\partial}P_{\rho}}F_{\rho}^{i}{\delta}(P^{2}-m^{2}){\delta}(P^{\prime}{}^{2}-m^{2})
=𝑑k1p2(2π)4LϵimlpnplSmn2p4fp(0)(1fp(0))Cfδ(P2m2),\displaystyle=\int dk\frac{1}{p}\frac{2}{(2{\pi})^{4}}L\frac{{\epsilon}^{iml}p_{n}p_{l}S_{mn}}{2p^{4}}f^{(0)}_{p}(1-f^{(0)}_{p^{\prime}})C_{f}{\delta}(P^{2}-m^{2}), (70)

with L=L1+L2+L3+L4L=L_{1}+L_{2}+L_{3}+L_{4} corresponding to four terms in (69) respectively. The explicit expressions are given below

L1=8πβ2k3p3p0,\displaystyle L_{1}=\frac{8{\pi}{\beta}^{2}k^{3}p^{3}}{p_{0}},
L2=8πβ2k3p5p03,\displaystyle L_{2}=-\frac{8{\pi}{\beta}^{2}k^{3}p^{5}}{p_{0}^{3}},
L3=4πβ2k3(8p556p3p02+66pp04+(6p4p039p2p03+33p05)lnp0pp0+p)9p03,\displaystyle L_{3}=-\frac{4{\pi}{\beta}^{2}k^{3}\left(8p^{5}-56p^{3}p_{0}^{2}+66pp_{0}^{4}+(6p^{4}p_{0}-39p^{2}p_{0}^{3}+33p_{0}^{5})\ln\frac{p_{0}-p}{p_{0}+p}\right)}{9p_{0}^{3}},
L4=2πβ3tanhβp02k3(2p2+11p02)(4p3+6pp02+(3p2p0+3p03)lnp0pp0+p)9p02.\displaystyle L_{4}=-\frac{2{\pi}{\beta}^{3}\tanh\frac{{\beta}p_{0}}{2}k^{3}(-2p^{2}+11p_{0}^{2})\left(-4p^{3}+6pp_{0}^{2}+(3p^{2}p_{0}+3p_{0}^{3})\ln\frac{p_{0}-p}{p_{0}+p}\right)}{9p_{0}^{2}}. (71)

The kk-integrals are easily performed to give (38).

References

  • [1] Zuo-Tang Liang and Xin-Nian Wang. Globally polarized quark-gluon plasma in non-central A+A collisions. Phys. Rev. Lett., 94:102301, 2005. [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
  • [2] Zuo-Tang Liang and Xin-Nian Wang. Spin alignment of vector mesons in non-central A+A collisions. Phys. Lett. B, 629:20–26, 2005.
  • [3] Wei-Tian Deng and Xu-Guang Huang. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C, 85:044907, 2012.
  • [4] Long-Gang Pang, Hannah Petersen, Qun Wang, and Xin-Nian Wang. Vortical Fluid and Λ\Lambda Spin Correlations in High-Energy Heavy-Ion Collisions. Phys. Rev. Lett., 117(19):192301, 2016.
  • [5] Xiao-Liang Xia, Hui Li, Ze-Bo Tang, and Qun Wang. Probing vorticity structure in heavy-ion collisions by local Λ\Lambda polarization. Phys. Rev. C, 98:024905, 2018.
  • [6] Jian-Hua Gao, Shou-Wan Chen, Wei-tian Deng, Zuo-Tang Liang, Qun Wang, and Xin-Nian Wang. Global quark polarization in non-central A+A collisions. Phys. Rev. C, 77:044902, 2008.
  • [7] Xu-Guang Huang, Pasi Huovinen, and Xin-Nian Wang. Quark Polarization in a Viscous Quark-Gluon Plasma. Phys. Rev. C, 84:054910, 2011.
  • [8] Yin Jiang, Zi-Wei Lin, and Jinfeng Liao. Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys. Rev. C, 94(4):044910, 2016. [Erratum: Phys.Rev.C 95, 049904 (2017)].
  • [9] L. Adamczyk et al. Global Λ\Lambda hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature, 548:62–65, 2017.
  • [10] Jaroslav Adam et al. Polarization of Λ\Lambda (Λ¯\bar{\Lambda}) hyperons along the beam direction in Au+Au collisions at sNN\sqrt{s_{{}_{NN}}} = 200 GeV. Phys. Rev. Lett., 123(13):132301, 2019.
  • [11] F. Becattini and Iu. Karpenko. Collective Longitudinal Polarization in Relativistic Heavy-Ion Collisions at Very High Energy. Phys. Rev. Lett., 120(1):012302, 2018.
  • [12] De-Xian Wei, Wei-Tian Deng, and Xu-Guang Huang. Thermal vorticity and spin polarization in heavy-ion collisions. Phys. Rev. C, 99(1):014905, 2019.
  • [13] Baochi Fu, Kai Xu, Xu-Guang Huang, and Huichao Song. Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions. Phys. Rev. C, 103(2):024903, 2021.
  • [14] Hong-Zhong Wu, Long-Gang Pang, Xu-Guang Huang, and Qun Wang. Local spin polarization in high energy heavy ion collisions. Phys. Rev. Research., 1:033058, 2019.
  • [15] Shuai Y. F. Liu, Yifeng Sun, and Che Ming Ko. Spin Polarizations in a Covariant Angular-Momentum-Conserved Chiral Transport Model. Phys. Rev. Lett., 125(6):062301, 2020.
  • [16] Shuai Y. F. Liu and Yi Yin. Spin polarization induced by the hydrodynamic gradients. JHEP, 07:188, 2021.
  • [17] F. Becattini, M. Buzzegoli, and A. Palermo. Spin-thermal shear coupling in a relativistic fluid. Phys. Lett. B, 820:136519, 2021.
  • [18] Baochi Fu, Shuai Y. F. Liu, Longgang Pang, Huichao Song, and Yi Yin. Shear-Induced Spin Polarization in Heavy-Ion Collisions. Phys. Rev. Lett., 127(14):142301, 2021.
  • [19] F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, and A. Palermo. Local Polarization and Isothermal Local Equilibrium in Relativistic Heavy Ion Collisions. Phys. Rev. Lett., 127(27):272302, 2021.
  • [20] Cong Yi, Shi Pu, and Di-Lun Yang. Reexamination of local spin polarization beyond global equilibrium in relativistic heavy ion collisions. Phys. Rev. C, 104(6):064901, 2021.
  • [21] Baochi Fu, Longgang Pang, Huichao Song, and Yi Yin. Signatures of the spin Hall effect in hot and dense QCD matter. 1 2022.
  • [22] Xiang-Yu Wu, Cong Yi, Guang-You Qin, and Shi Pu. Local and global polarization of Λ\Lambda hyperons across RHIC-BES energies: the roles of spin hall effect, initial condition and baryon diffusion. 4 2022.
  • [23] Yoshimasa Hidaka, Shi Pu, Qun Wang, and Di-Lun Yang. Foundations and Applications of Quantum Kinetic Theory. 1 2022.
  • [24] Yoshimasa Hidaka, Shi Pu, and Di-Lun Yang. Relativistic Chiral Kinetic Theory from Quantum Field Theories. Phys. Rev. D, 95(9):091901, 2017.
  • [25] Jun-jie Zhang, Ren-hong Fang, Qun Wang, and Xin-Nian Wang. A microscopic description for polarization in particle scatterings. Phys. Rev. C, 100(6):064904, 2019.
  • [26] Shiyong Li and Ho-Ung Yee. Quantum Kinetic Theory of Spin Polarization of Massive Quarks in Perturbative QCD: Leading Log. Phys. Rev. D, 100(5):056022, 2019.
  • [27] Stefano Carignano, Cristina Manuel, and Juan M. Torres-Rincon. Chiral kinetic theory from the on-shell effective field theory: Derivation of collision terms. Phys. Rev. D, 102(1):016003, 2020.
  • [28] Di-Lun Yang, Koichi Hattori, and Yoshimasa Hidaka. Effective quantum kinetic theory for spin transport of fermions with collsional effects. JHEP, 07:070, 2020.
  • [29] Ziyue Wang, Xingyu Guo, and Pengfei Zhuang. Equilibrium Spin Distribution From Detailed Balance. Eur. Phys. J. C, 81(9):799, 2021.
  • [30] Shuzhe Shi, Charles Gale, and Sangyong Jeon. From chiral kinetic theory to relativistic viscous spin hydrodynamics. Phys. Rev. C, 103(4):044906, 2021.
  • [31] Nora Weickgenannt, Enrico Speranza, Xin-li Sheng, Qun Wang, and Dirk H. Rischke. Generating Spin Polarization from Vorticity through Nonlocal Collisions. Phys. Rev. Lett., 127(5):052301, 2021.
  • [32] Defu Hou and Shu Lin. Polarization Rotation of Chiral Fermions in Vortical Fluid. Phys. Lett. B, 818:136386, 2021.
  • [33] Naoki Yamamoto and Di-Lun Yang. Chiral Radiation Transport Theory of Neutrinos. Astrophys. J., 895(1):56, 2020.
  • [34] Nora Weickgenannt, Enrico Speranza, Xin-li Sheng, Qun Wang, and Dirk H. Rischke. Derivation of the nonlocal collision term in the relativistic Boltzmann equation for massive spin-1/2 particles from quantum field theory. Phys. Rev. D, 104(1):016022, 2021.
  • [35] Xin-Li Sheng, Nora Weickgenannt, Enrico Speranza, Dirk H. Rischke, and Qun Wang. From Kadanoff-Baym to Boltzmann equations for massive spin-1/2 fermions. Phys. Rev. D, 104(1):016029, 2021.
  • [36] Ziyue Wang and Pengfei Zhuang. Damping and polarization rates in near equilibrium state. 5 2021.
  • [37] Shu Lin. Quantum kinetic theory for quantum electrodynamics. Phys. Rev. D, 105(7):076017, 2022.
  • [38] Koichi Hattori, Yoshimasa Hidaka, and Di-Lun Yang. Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass. Phys. Rev. D, 100(9):096011, 2019.
  • [39] Nora Weickgenannt, Xin-Li Sheng, Enrico Speranza, Qun Wang, and Dirk H. Rischke. Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism. Phys. Rev. D, 100(5):056018, 2019.
  • [40] Jian-Hua Gao and Zuo-Tang Liang. Relativistic Quantum Kinetic Theory for Massive Fermions and Spin Effects. Phys. Rev. D, 100(5):056021, 2019.
  • [41] Yu-Chen Liu, Kazuya Mameda, and Xu-Guang Huang. Covariant Spin Kinetic Theory I: Collisionless Limit. Chin. Phys. C, 44(9):094101, 2020. [Erratum: Chin.Phys.C 45, 089001 (2021)].
  • [42] Xingyu Guo. Massless Limit of Transport Theory for Massive Fermions. Chin. Phys. C, 44(10):104106, 2020.
  • [43] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Effective kinetic theory for high temperature gauge theories. JHEP, 01:030, 2003.
  • [44] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Transport coefficients in high temperature gauge theories. 1. Leading log results. JHEP, 11:001, 2000.
  • [45] Peter Brockway Arnold, Guy D Moore, and Laurence G. Yaffe. Transport coefficients in high temperature gauge theories. 2. Beyond leading log. JHEP, 05:051, 2003.
  • [46] Shuo Fang, Shi Pu, and Di-Lun Yang. Quantum kinetic theory for dynamical spin polarization from QED-type interaction. 4 2022.
  • [47] Ziyue Wang. Spin evolution of massive fermion in QED plasma. 5 2022.
  • [48] Xiao-Li Luo and Jian-Hua Gao. Covariant chiral kinetic equation in non-Abelian gauge field from “covariant gradient expansion”. JHEP, 11:115, 2021.
  • [49] Di-Lun Yang. Quantum kinetic theory for spin transport of quarks with background chromo-electromagnetic fields. 12 2021.