This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharpness of phase transition for Voronoi percolation in hyperbolic space

Xinyi Li Beijing International Center for Mathematical Research, Peking University [email protected]  and  Yu Liu School of Mathematical Sciences, Peking University [email protected]
Abstract.

In this paper, we consider Voronoi percolation in the hyperbolic space d\mathbb{H}^{d} (d2d\geq 2) and show that the phase transition is sharp. More precisely, we show that for Voronoi percolation with parameter pp generated by a homogeneous Poisson point process with intensity λ\lambda, there exists pc:=pc(λ,d)p_{c}:=p_{c}(\lambda,d) such that the probability of a monochromatic path from the origin reaching a distance of nn decays exponentially fast in nn. We also prove the mean-field lower bound λ,p(0)c(ppc)\mathbb{P}_{\lambda,p}(0\leftrightarrow\infty)\geq c(p-p_{c}) for p>pcp>p_{c}.

1. Introduction

Percolation theory was first introduced by Broadbent and Hammersley in [BH57] as a mathematical model for the study of liquids or gas penetrating through porous media. Since then, with a wide range of open questions and many applications in statistical physics, it has received considerable scholarly attention. We refer the reader to [Gri99] and [BR06b] for a general introduction to percolation theory.

The most fundamental question in the study of percolation is the existence of phase transition, that is to say, the sheer difference of the behaviour of the model between subcritical and supercritical regimes. In answering this question, Aizenman and Barsky [AB87] and Menshikov [Men86] gave the first proofs of sharp phase transition for Bernoulli percolation on d\mathbb{Z}^{d}. More precisely, they showed that there is the exponential decay of the probability of one-arm events in the subcritical regime and the mean-field lower bound in the supercritical phase. Later, more proofs in this direction emerged; see e.g. [Gri99], [DCT16] for more thorough discussion on this matter.

In parallel with the growing understanding of discrete percolation models, many works have been dedicated to the study of continuum percolation, including Poisson boolean model and Voronoi model, where new challenges arise due to spatial dependencies. We refer readers to [MR96] for more on continuum percolation. Recently, more properties concerning continuum model such as noise sensitivity ([ABGM14], [AB18]), sharp phase transition of Poisson boolean model ([ATT18]) and rate of convergence for the crossing probability of quenched Voronoi percolation ([AGMT16], [AdlRG21]) have also been developed.

One of the most important examples of the continuum percolation model is Poisson Voronoi percolation, in which one colours the Voronoi cells generated by a Poisson point process in d\mathbb{R}^{d} black with probability pp and white with probability (1p)(1-p), independently of the colours of all other Voronoi cells. In [BR06a], Bollobás and Riordan proved that the planar Voronoi percolation undergoes a sharp phase transition at p=1/2p=1/2, and the exponential decay of connection probability in subcritical regime in d\mathbb{R}^{d} for every d2d\geq 2 was studied in [DCRT19a].

The Voronoi percolation model can also be constructed in the hyperbolic space d\mathbb{H}^{d} (see [BS01]). Here, different from the Euclidean case, the intensity λ\lambda of the Poisson point process in d\mathbb{H}^{d} does matter, and we denote the law of the random colouring of d\mathbb{H}^{d} by λ,p\mathbb{P}_{\lambda,p}. For Voronoi percolation in hyperbolic spaces, Hansen and Müller proved that the critical probability for the existence of an infinite cluster tends to 1/21/2 as the intensity of the Poisson point process λ\lambda tends to infinity in [HM21a] and asymptotically equals to πλ/3{\pi\lambda}/{3} as λ\lambda tends to 0 in [HM21b]. In this paper we are going to offer a proof of sharpness of phase transition of Voronoi percolation on d\mathbb{H}^{d}. Instead of giving the formal definition here, we first roughly describe our main result of this paper:

Theorem 1.

For d2d\geq 2 and λ>0\lambda>0, there exists pc:=pc(λ,d)p_{c}:=p_{c}(\lambda,d) such that:
1. For every p<pcp<p_{c}, there exists a constant cp:=cp(λ,d)>0c_{p}:=c_{p}(\lambda,d)>0 such that

λ,p(0 is connected to distance n by a black path)exp(cpn).\mathbb{P}_{\lambda,p}(0\text{\ is\ connected\ to\ distance\ }n\text{\ by\ a\ black\ path})\leq\exp(-c_{p}n).

2. There exists c=c(λ,d)>0c=c(\lambda,d)>0 such that for all p>pcp>p_{c},

λ,p(0 is contained in an unbounded black connected component)c(ppc).\mathbb{P}_{\lambda,p}(0\text{\ is\ contained\ in an\ unbounded\ black connected component})\geq c(p-p_{c}).

While extending existing proofs of sharp phase transition for discrete models to this model is not easy, a new approach making use of randomized algorithms and the OSSS inequality introduced in [OSSS05], has been developed in [DCRT19b]. In this work, we also follow the line of [DCRT19a], adapting the arguments to the hyperbolic case.

Finally, let us remark that in [LPY21], the authors offered a new version of the OSSS inequality for functionals of a general Poisson process, providing another plausibly feasible approach of Theorem 1. However, in this paper we still chose to discretize the hyperbolic space and apply the original OSSS inequality as it is enough to provide a concise proof of our main result.

This work is organized as follows: in Section 2 we introduce basic notations and give a few preliminary results that will be used in proof of Theorem 1 which is wrapped up in Section 3

Acknowledgments: The research of the authors is supported by NSFC (No. 12071012) and the National Key R&D Program of China (No. 2020YFA0712900).

2. Notation and preliminaries

2.1. Hyperbolic space

Hyperbolic dd-space (d2d\geq 2), denoted by d\mathbb{H}^{d}, is the maximally symmetric, simply connected, dd-dimensional Riemannian manifold with a constant negative sectional curvature. Typically, people study hyperbolic space by constructing models in order to utilize the Euclidean space to describe the hyperbolic space. In our following arguments, we choose the Poincaré ball model to represent d\mathbb{H}^{d} and now we are going to provide a brief summary of its definitions.

The Poincaré ball model can be constructed through equipping the open unit ball d={xd:x<1}\mathcal{B}^{d}=\{x\in\mathbb{R}^{d}:\|x\|<1\} with a hyperbolic distance dpd_{p} and a metric tensor. Here, \|\cdot\| represents the Euclidean norm.

For points x,ydx,y\in\mathcal{B}^{d}, the hyperbolic distance is defined by

dp(x,y)2arsinh(xy(1x2)(1y2)),d_{p}(x,y)\coloneqq 2\operatorname{arsinh}\left(\frac{\|x-y\|}{\sqrt{(1-\|x\|^{2})(1-\|y\|^{2})}}\right),

where arsinh\operatorname{arsinh} is the inverse function of hyperbolic sine.

The metric tensor in the Poincaré ball model is

ds2=4dx2(1x2)2.\text{d}s^{2}=\frac{4\|\text{d}x\|^{2}}{(1-\|x\|^{2})^{2}}.

In this paper we will consider both Euclidean balls and hyperbolic balls, and thus in the following context we will use subscripts to distinguish them. For example, we use Bp(x,r)\operatorname{B}_{p}(x,r) and Be(x,r)\operatorname{B}_{e}(x,r) respectively to represent the hyperbolic ball and the Euclidean ball centered at xx with radius rr. Similarly, the hyperbolic sphere centered at xx with radius rr is denoted by Bp(x,r)\operatorname{\partial B}_{p}(x,r). Also notice that every hyperbolic sphere centered at the origin is also an Euclidean sphere centered at the origin. More precisely,

Bp(0,r)=Be(0,tanh(r2)),r>0.\operatorname{\partial B}_{p}(0,r)=\operatorname{\partial B}_{e}(0,\tanh(\frac{r}{2})),\ \ r>0.

And we denote the hyperbolic annulus centered at the origin with inner radius rr and outer radius RR while containing the inner boundary by

Annp(r,R){yd:rdp(0,y)<R}.\operatorname{Ann_{p}}(r,R)\coloneqq\{y\in\mathbb{H}^{d}:r\leq d_{p}(0,y)<R\}.

For a countable set of points 𝒵\mathcal{Z} in the hyperbolic plane, we denote the corresponding hyperbolic Voronoi cell of z𝒵z\in\mathcal{Z} by

Cp(z;𝒵){yd:dp(y,z)=infz𝒵dp(y,z)}.\operatorname{C}_{p}(z;\mathcal{Z})\coloneqq\{y\in\mathbb{H}^{d}:d_{p}(y,z)=\inf_{z^{\prime}\in\mathcal{Z}}d_{p}(y,z^{\prime})\}.

2.2. Hyperbolic Poisson point process and Voronoi percolation

A homogeneous Poisson point process with constant intensity λ\lambda on d\mathbb{H}^{d} can be viewed as an inhomogeneous Poisson point process on the ordinary Euclidean space with intensity

uλ𝟏𝔻(u)4(1u2)2.u\mapsto\lambda\cdot\mathbf{1}_{\mathbb{D}}(u)\frac{4}{(1-\|u\|^{2})^{2}}.

A gentle introduction to point process and Poisson point process can be found in [LP17] and in the rest of this paper we will usually use 𝒵\mathcal{Z} to denote a homogeneous Poisson point process with constant intensity λ\lambda on d\mathbb{H}^{d}.

After presenting the definition of Poisson point process on d\mathbb{H}^{d}, we attach to each point in 𝒵\mathcal{Z} a randomly chosen colour independently. Precisely, every point in 𝒵\mathcal{Z} is coloured black with probability pp and white with probability 1p1-p, and the colours of different points in 𝒵\mathcal{Z} are independent. By using 𝒵b\mathcal{Z}_{b} (resp. 𝒵w\mathcal{Z}_{w}) to denote the black points (resp. white points) after the colouring process, we can also view 𝒵b\mathcal{Z}_{b} and 𝒵w\mathcal{Z}_{w} as independent Poisson point processes on d\mathbb{H}^{d} with respective intensities λp\lambda\cdot p and λ(1p)\lambda\cdot(1-p). Let λ,p\mathbb{P}_{\lambda,p} denote the law of (𝒵b,𝒵w)(\mathcal{Z}_{b},\mathcal{Z}_{w}), or equivalently the law of 𝒵\mathcal{Z} with its colours, then the measure λ,p\mathbb{P}_{\lambda,p} induces a colouring ω\omega of the hyperbolic space d\mathbb{H}^{d} defined as follows:

ω(y)=1,z𝒵b,yCp(z;𝒵),ω(y)=0,otherwise.\omega(y)=1,\exists z\in\mathcal{Z}_{b},\ y\in\operatorname{C}_{p}(z;\mathcal{Z}),\quad\omega(y)=0,\text{otherwise}.

From now on we will use p\mathbb{P}_{p} for λ,p\mathbb{P}_{\lambda,p} when it does not cause misunderstanding since we are going to prove Theorem 1 for every fixed λ>0\lambda>0.

For x,ydx,y\in\mathbb{H}^{d}, let {xy}\{x\leftrightarrow y\} denote the event that there exists a continuous path of black points connecting xx to yy, and let {0}\{0\leftrightarrow\infty\} denotes the event that the origin belongs to a infinite-volume connected component of black points. For two subsets AA and BB of d\mathbb{H}^{d}, we use {AB}\{A\leftrightarrow B\} to denote {xA,yB such that xy}\{\exists\ x\in A,\ y\in B\text{\ such\ that }x\leftrightarrow y\}, and briefly write {xB}\{x\leftrightarrow B\} for {{x}B}\{\{x\}\leftrightarrow B\}. Also for p[0,1]p\in[0,1], λ>0\lambda>0, n0n\geq 0, define

θ(p)p(0),θn(p)p(0Bp(0,n)),pcinf{p[0,1]:θ(p)>0}.\theta(p)\coloneqq\mathbb{P}_{p}(0\leftrightarrow\infty),\quad\theta_{n}(p)\coloneqq\mathbb{P}_{p}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n)),\quad p_{c}\coloneqq\inf\{p\in[0,1]:\theta(p)>0\}.

Then we can abbreviate {0is contained in an unbounded black connected component}\{0\ \text{is\ contained\ in\ an\ unbounded\ black\ connected\ component}\} as {0}\{0\leftrightarrow\infty\} and {0is contained to distance nby a black path}\{0\ \text{is\ contained\ to\ distance\ }n\ \text{by\ a\ black\ path}\} as {0Bp(0,n)}\{0\leftrightarrow\operatorname{\partial B}_{p}(0,n)\}.

2.3. Increasing events and the FKG inequality

An event AA is said to be increasingincreasing if for every configurations (𝒵b,𝒵w)(\mathcal{Z}_{b},\mathcal{Z}_{w}) and (𝒵~b,𝒵~w)(\mathcal{\tilde{Z}}_{b},\tilde{\mathcal{Z}}_{w}),

(𝒵b,𝒵w)A,𝒵b𝒵~b,𝒵~w𝒵w}(𝒵~b,𝒵~w)A\left.\begin{aligned} &(\mathcal{Z}_{b},\mathcal{Z}_{w})\in A,\\ &\mathcal{Z}_{b}\subseteq\mathcal{\tilde{Z}}_{b},\\ &\tilde{\mathcal{Z}}_{w}\subseteq\mathcal{Z}_{w}\end{aligned}\right\}\Rightarrow(\mathcal{\tilde{Z}}_{b},\tilde{\mathcal{Z}}_{w})\in A

An event WW is said to be decreasingdecreasing if its complement WcW^{c} is increasing.

As in Bernoulli percolation model, we also have FKG inequality for Voronoi percolation in d\mathbb{H}^{d} listed in the following context. We will avoid the proof and refer the reader to [BR06b, Chapter 8] for more information about this lemma.

Lemma 1 ([BR06b],Lemma 14).

Let AA and BB be two increasing events. Then for any λ>0\lambda>0, 0p10\leq p\leq 1,

(1) p(AB)p(A)p(B).\mathbb{P}_{p}(A\cap B)\geq\mathbb{P}_{p}(A)\mathbb{P}_{p}(B).

2.4. A Russo-type formula

For an increasing event AA and a configuration (𝒵b,𝒵w)(\mathcal{Z}_{b},\mathcal{Z}_{w}), we define the set of pivotalpointspivotal\ points by

𝖯𝗂𝗏A(𝒵b,𝒵w){x𝒵:𝟏A(𝒵b{x},𝒵w{x})𝟏A(𝒵b{x},𝒵w{x})}.\mathsf{Piv}_{A}(\mathcal{Z}_{b},\mathcal{Z}_{w})\coloneqq\{x\in\mathcal{Z}:\mathbf{1}_{A}(\mathcal{Z}_{b}\setminus\{x\},\mathcal{Z}_{w}\cup\{x\})\neq\mathbf{1}_{A}(\mathcal{Z}_{b}\cup\{x\},\mathcal{Z}_{w}\setminus\{x\})\}.

And define an increasing event AA locallocal if there exists n0n\geq 0 such that AA is measurable with respect to the σ\sigma-field generated by {ω(x)}xBp(0,n)\{\omega(x)\}_{x\in\operatorname{B}_{p}(0,n)}.

Lemma 2.

The function pp(A)p\rightarrow\mathbb{P}_{p}(A) is differentiable if AA is a local increasing event and

(2) dp(A)dp=𝔼p(|𝖯𝗂𝗏A|).\frac{\mathrm{d}\mathbb{P}_{p}(A)}{\mathrm{d}p}=\mathbb{E}_{p}(|\mathsf{Piv}A|).

The main idea of this lemma can be seen in [[DCRT19a], Lemma 4]. Here, we supplement the details for the proof of the integrability of |𝖯𝗂𝗏A||\mathsf{Piv}A| and the continuity of 𝔼s(|𝖯𝗂𝗏A|)\mathbb{E}_{s}(|\mathsf{Piv}_{A}|) which is not mentioned in the former paper.

Proof of Lemma 2.

We denote the law of 𝒵\mathcal{Z} by d𝒵\mathcal{Z} and write

p+δ(A)p(A)=𝒵p+δ(A|𝒵)p(A|𝒵)d𝒵.\mathbb{P}_{p+\delta}(A)-\mathbb{P}_{p}(A)=\int_{\mathcal{Z}}\mathbb{P}_{p+\delta}(A|\mathcal{Z})-\mathbb{P}_{p}(A|\mathcal{Z})\text{d}\mathcal{Z}.

Notice that when 𝒵\mathcal{Z} is given, the law of 𝒵b\mathcal{Z}_{b} is Bernoulli percolation with parameter pp on all points of 𝒵\mathcal{Z}. Assume that AA only depends on the σ\sigma-field generated by {ω(x)}xBp(0,n)\{\omega(x)\}_{x\in\operatorname{B}_{p}(0,n)} for a fixed nn. Then we can apply Russo’s formula for Bernoulli percolation([Gri99, Section 2.4]) to get the differentiability of p(A|𝒵)\mathbb{P}_{p}(A|\mathcal{Z}) with respect to pp and

dp(A|𝒵)dp=x𝒵𝔼p(𝟏x𝖯𝗂𝗏A|𝒵).\frac{\text{d}\mathbb{P}_{p}(A|\mathcal{Z})}{\text{d}p}=\sum_{x\in\mathcal{Z}}\mathbb{E}_{p}(\mathbf{1}_{x\in\mathsf{Piv}_{A}}|\mathcal{Z}).

Therefore, combining Fubini’s gives

p+δ(A)p(A)\displaystyle\mathbb{P}_{p+\delta}(A)-\mathbb{P}_{p}(A) =𝒵pp+δs(A|𝒵)dsd𝒵=𝒵pp+δ𝔼s(|𝖯𝗂𝗏A𝒵)dsd𝒵\displaystyle=\int_{\mathcal{Z}}\int_{p}^{p+\delta}\mathbb{P}_{s}^{\prime}(A|\mathcal{Z})\text{d}s\text{d}\mathcal{Z}\ \ \ =\int_{\mathcal{Z}}\int_{p}^{p+\delta}\mathbb{E}_{s}(|\mathsf{Piv}_{A}\|\mathcal{Z})\text{d}s\text{d}\mathcal{Z}
=pp+δ𝒵𝔼s(|𝖯𝗂𝗏A𝒵)d𝒵ds=pp+δ𝔼s(|𝖯𝗂𝗏A|)ds.\displaystyle=\int_{p}^{p+\delta}\!\!\!\!\int_{\mathcal{Z}}\mathbb{E}_{s}(|\mathsf{Piv}_{A}\|\mathcal{Z})\text{d}\mathcal{Z}\text{d}s=\int_{p}^{p+\delta}\mathbb{E}_{s}(|\mathsf{Piv}_{A}|)\text{d}s.

Therefore, it suffices to explain that |𝖯𝗂𝗏A||\mathsf{Piv}_{A}| is integrable and that 𝔼s(|𝖯𝗂𝗏A|)\mathbb{E}_{s}(|\mathsf{Piv}_{A}|) is continuous with respect to ss.

For the former question, let Dm(𝒵)𝒵D_{m}(\mathcal{Z})\subset\mathcal{Z} denote the set of points in 𝒵\mathcal{Z} whose cells intersect the ball Bp(0,m)\operatorname{B}_{p}(0,m). Then the locality of AA implies

(3) |𝖯𝗂𝗏A||Dn(𝒵)|.|\mathsf{Piv}_{A}|\leq|D_{n}(\mathcal{Z})|.

First notice that by standard estimates of the Poisson-Voronoi tessellation, there exists c1>0c_{1}>0 such that for every tnt\geq n,

(4) p(Dn(𝒵)Bp(0,4t)c)p(𝒵Bp(0,t)=)exp(c1td).\mathbb{P}_{p}(D_{n}(\mathcal{Z})\cap\operatorname{B}_{p}(0,4t)^{c}\neq\varnothing)\leq\mathbb{P}_{p}(\mathcal{Z}\cap\operatorname{B}_{p}(0,t)=\varnothing)\leq\exp(-c_{1}t^{d}).

Therefore, combining (3) (4) and separating Dn(𝒵)D_{n}(\mathcal{Z}) into disjoint annuli gives

𝔼s(|Dn(𝒵)|)\displaystyle\quad\ \mathbb{E}_{s}(|D_{n}(\mathcal{Z})|)
=𝔼s(|Dn(𝒵)Bp(0,4n)|)+k=4n𝔼s(|Dn(𝒵)Annp(k,k+1)|)\displaystyle=\mathbb{E}_{s}(|D_{n}(\mathcal{Z})\cap\operatorname{B}_{p}(0,4n)|)+\sum_{k=4n}^{\infty}\mathbb{E}_{s}(|D_{n}(\mathcal{Z})\cap\operatorname{Ann_{p}}(k,k+1)|)
𝔼s(|Dn(𝒵)Bp(0,4n)|)+k=4ns(𝒵Bp(0,k4)=)𝔼s(|𝒵Annp(k,k+1)|)<+.\displaystyle\leq\mathbb{E}_{s}(|D_{n}(\mathcal{Z})\cap\operatorname{B}_{p}(0,4n)|)+\sum_{k=4n}^{\infty}\mathbb{P}_{s}(\mathcal{Z}\cap\operatorname{B}_{p}(0,\frac{k}{4})=\varnothing)\mathbb{E}_{s}(|\mathcal{Z}\cap\operatorname{Ann_{p}}(k,k+1)|)<+\infty.

As for the second part, notice that once we prove the continuity of 𝔼s(|𝖯𝗂𝗏ABp(0,4n)|)\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)|) and 𝔼s(|𝖯𝗂𝗏AAnnp(k,k+1)|)\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{Ann_{p}}(k,k+1)|), k4nk\geq 4n, the continuity of 𝔼s(|𝖯𝗂𝗏𝖠|)\mathbb{E}_{s}(|\mathsf{Piv_{A}}|) with respect to ss then follows from the uniform convergence of

𝔼s(|𝖯𝗂𝗏ABp(0,4n)|)+k=4n𝔼s(|𝖯𝗂𝗏AAnnp(k,k+1)|).\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)|)+\sum_{k=4n}^{\infty}\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{Ann_{p}}(k,k+1)|).

For every fixed n1n\geq 1, for every ϵ>0\epsilon>0, using the integrability of 𝔼s(|𝒵Bp(0,4n)|)\mathbb{E}_{s}(|\mathcal{Z}\cap\operatorname{B}_{p}(0,4n)|) we can choose large KK and δ>0\delta>0 such that when |ts|<δ|t-s|<\delta,

|𝔼t(|𝖯𝗂𝗏ABp(0,4n)|)𝔼s(|𝖯𝗂𝗏ABp(0,4n)|)|\displaystyle\quad\ |\mathbb{E}_{t}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)|)-\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)|)|
{|𝒵Bp(0,4n)|K}|𝔼t(|𝖯𝗂𝗏ABp(0,4n)||𝒵)𝔼s(|𝖯𝗂𝗏ABp(0,4n)||𝒵)|d𝒵\displaystyle\leq\int_{\{|\mathcal{Z}\cap\operatorname{B}_{p}(0,4n)|\leq K\}}|\mathbb{E}_{t}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)||\mathcal{Z})-\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)||\mathcal{Z})|\text{d}\mathcal{Z}
+H=K+{|𝒵Bp(0,4n)|=H}|𝔼t(|𝖯𝗂𝗏ABp(0,4n)||𝒵)𝔼s(|𝖯𝗂𝗏ABp(0,4n)||𝒵)|d𝒵\displaystyle+\sum_{H=K}^{+\infty}\int_{\{|\mathcal{Z}\cap\operatorname{B}_{p}(0,4n)|=H\}}|\mathbb{E}_{t}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)||\mathcal{Z})-\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{B}_{p}(0,4n)||\mathcal{Z})|\text{d}\mathcal{Z}
K[1(1|ts|)K]+𝔼(|𝒵Bp(0,4n)|𝟏{|𝒵Bp(0,4n)|K})<ϵ.\displaystyle\leq K[1-(1-|t-s|)^{K}]+\mathbb{E}(|\mathcal{Z}\cap\operatorname{B}_{p}(0,4n)|\mathbf{1}_{\{|\mathcal{Z}\cap\operatorname{B}_{p}(0,4n)|\geq K\}})<\epsilon.

Similarly, we can derive the continuity of 𝔼s(|𝖯𝗂𝗏AAnnp(k,k+1)|)\mathbb{E}_{s}(|\mathsf{Piv}_{A}\cap\operatorname{Ann_{p}}(k,k+1)|) for every k4nk\geq 4n, and therefore conclude that 𝔼s(|𝖯𝗂𝗏𝖠|)\mathbb{E}_{s}(|\mathsf{Piv_{A}}|) is continuous with respect to ss.

2.5. The OSSS inequality

The OSSS inequality was introduced in [OSSS05] and states that for a given boolean function ff and a randomized algorithm 𝖳\operatorname{\mathsf{T}} determining ff, the variance of this boolean function can be controlled by the revealments of each coordinate during the process of 𝖳\operatorname{\mathsf{T}} and the influences of coordinates.

Assume that II is a countable set, (ΩI,πI)(\Omega^{I},\pi^{\otimes I}) is a product probability space and ff is a function mapping ΩI\Omega^{I} to {0,1}\{0,1\}. A decision tree 𝖳\operatorname{\mathsf{T}} determining ff is an algorithm that takes ω=(ωi)iIΩI\omega=(\omega_{i})_{i\in I}\in\Omega^{I} as an input, and reveals the coordinates of ω\omega step by step based on the values of ω\omega revealed so far. The algorithm stops when the possible values of ff no longer depend on the values of the coordinates of ω\omega that have not been revealed.

The revealment of the ii-th coordinate is defined by

δi(𝖳):=πI(ω:𝖳reveals the value of ωi),\delta_{i}(\operatorname{\mathsf{T}}):=\pi^{\otimes I}(\omega:\operatorname{\mathsf{T}}\ \text{reveals\ the\ value\ of\ }\omega_{i}),

and the influence of the ii-th coordinate is given by

Infi(f):=πI(ω:f(ω)f(ω~)),\operatorname{Inf}_{i}(f):=\pi^{\otimes I}(\omega:f(\omega)\neq f(\tilde{\omega})),

where ω~\tilde{\omega} represents the random element in ΩI\Omega^{I} which is the same as ω\omega in every coordinate while has the ii-th coordinate resampled independently.

The OSSS inequality is stated as follows.

Lemma 3 (OSSS).

For any function f:ΩI{0,1}f:\Omega^{I}\rightarrow\{0,1\} and any algorithm 𝖳\operatorname{\mathsf{T}} determining ff, which stops in finite steps almost surely, we have

(5) Var(f)iIδi(𝖳)Infi(f).\operatorname{Var}(f)\leq\sum_{i\in I}\delta_{i}(\operatorname{\mathsf{T}})\operatorname{Inf}_{i}(f).

3. Proofs

3.1. Discretization of Voronoi percolation

Before turning back to the proof of our main theorem, we first introduce an appropriate product space to encode the measure of Voronoi percolation on the Poincaré disk model so that we are able to use Lemma 3. Here, to present the idea clearly, we will only focus on the case for d=2d=2. And as for higher dimensions, using the polar coordinate to denote the volume of a measurable set and cutting the angles appropriately just like what we are going to do for d=2d=2, we can also derive Lemma 4 and give the proof of the main theorem.

First note that for d=2d=2 and every measurable subset B2B\subset\mathbb{H}^{2}, the area is given by

area2(B)=B4(1x2y2)dxdy.\operatorname{area_{\mathbb{H}^{2}}}(B)=\int\!\!\!\int_{B}\frac{4}{(1-x^{2}-y^{2})}\text{d}x\text{d}y.

Now we are going to divide the hyperbolic space 2\mathbb{H}^{2} up into countable disjoint hyperbolic annuli centered at the origin and cut each annulus into several sectors while making sure that the areas of these sectors are uniformly bounded.

Precisely, for a given ϵ>0\epsilon>0, we first regard 2\mathbb{H}^{2} as unions of annuli of the form Annp(2kϵ,2(k+1)ϵ)\operatorname{Ann_{p}}(2k\epsilon,2(k+1)\epsilon), k0k\geq 0. Define Nkϵ=[sinh((2k+1)ϵ)sinhϵ]+1N_{k}^{\epsilon}=[\frac{\sinh((2k+1)\epsilon)}{\sinh\epsilon}]+1. For each k0k\geq 0, we then divide Annp(2kϵ,2(k+1)ϵ)\operatorname{Ann_{p}}(2k\epsilon,2(k+1)\epsilon) into NkϵN_{k}^{\epsilon} annulus sectors of the form

Np(2kϵ,2(k+1)ϵ,θ1,θ2)={reiθ:2kϵdp(reiθ,0)<2(k+1)ϵ,θ[θ1,θ2)},\operatorname{N_{p}}(2k\epsilon,2(k+1)\epsilon,\theta_{1},\theta_{2})=\{re^{i\theta}:2k\epsilon\leq d_{p}(re^{i\theta},0)<2(k+1)\epsilon,\theta\in[\theta_{1},\theta_{2})\},

while making sure that each two of these sectors are disjoint and congruent.

Therefore, there exists a determined constant CC such that for every ϵ>0\epsilon>0 and each k0k\geq 0,

area2(Np(2kϵ,2(k+1)ϵ,θ1,θ2))C(sinhϵ)2.\operatorname{area_{\mathbb{H}^{2}}}(\operatorname{N_{p}}(2k\epsilon,2(k+1)\epsilon,\theta_{1},\theta_{2}))\leq C(\sinh\epsilon)^{2}.

In order to denote annulus sectors clearly, we introduce the definition of representative points:

  1. (1)

    For k=0k=0, let x0ϵ=0x_{0}^{\epsilon}=0 be the representative point of the degenerate annulus Annp(0,2ϵ)=Bp(0,2ϵ)\operatorname{Ann_{p}}(0,2\epsilon)=\operatorname{B}_{p}(0,2\epsilon).

  2. (2)

    For k1k\geq 1, define the representative point of Np(2kϵ,2(k+1)ϵ,θ1,θ2)\operatorname{N_{p}}(2k\epsilon,2(k+1)\epsilon,\theta_{1},\theta_{2}) as the exact point reiθ1re^{i\theta_{1}} satisfying dp(reiθ1,0)=2kϵd_{p}(re^{i\theta_{1}},0)=2k\epsilon. And denote the representative points contained in Annp(2kϵ,2(k+1)ϵ)\operatorname{Ann_{p}}(2k\epsilon,2(k+1)\epsilon) by xk,lϵx_{k,l}^{\epsilon}, l=1,2,,Nkϵl=1,2,\cdots,N_{k}^{\epsilon}.

Let KϵK_{\epsilon} be the set of all representative points, i.e., Kϵ=k=1l=1Nkϵ{xk,lϵ}{x0ϵ}.K_{\epsilon}=\cup_{k=1}^{\infty}\cup_{l=1}^{N_{k}^{\epsilon}}\{x_{k,l}^{\epsilon}\}\cup\{x_{0}^{\epsilon}\}. Then for every annulus sector Np(2kϵ,2(k+1)ϵ,θ1,θ2)\operatorname{N_{p}}(2k\epsilon,2(k+1)\epsilon,\theta_{1},\theta_{2}), there exists a unique representative point, say, xk,lϵx_{k,l}^{\epsilon} contained in this annulus sector. We then denote this region by Nxk,lϵ\operatorname{N}_{x_{k,l}^{\epsilon}} for simplicity.

For every xKϵx\in K_{\epsilon}, define

𝒵xb=𝒵bNx,𝒵xw=𝒵wNx,and𝒵x=𝒵xw𝒵xb.\mathcal{Z}^{b}_{x}=\mathcal{Z}^{b}\cap\operatorname{N}_{x},\ \mathcal{Z}^{w}_{x}=\mathcal{Z}^{w}\cap\operatorname{N}_{x},\ \text{and}\ \mathcal{Z}_{x}=\mathcal{Z}^{w}_{x}\cup\mathcal{Z}^{b}_{x}.

Let (Ωx,πx)(\Omega_{x},\pi_{x}) be the space associated with the random variable 𝒵x=(𝒵xb,𝒵xw)\mathcal{Z}_{x}=(\mathcal{Z}_{x}^{b},\mathcal{Z}_{x}^{w}), and it is obvious that the random variable 𝒵x\mathcal{Z}_{x} are independent for different xx. Then the product space (xKϵNx,xKϵπx)(\prod_{x\in K_{\epsilon}}\operatorname{N}_{x},\otimes_{x\in K_{\epsilon}}\pi_{x}) agrees with the original space and we will thus use p\mathbb{P}_{p} to denote the probability measure for the product space.

For every xKϵx\in K_{\epsilon} and every increasing event AA, we define

Infxϵ(A)=p(𝟏A(𝒵)𝟏A(𝒵~)),\operatorname{Inf}^{\epsilon}_{x}(A)=\mathbb{P}_{p}(\mathbf{1}_{A}(\mathcal{Z})\neq\mathbf{1}_{A}(\tilde{\mathcal{Z}})),

where 𝒵=(𝒵x)xKϵ\mathcal{Z}=(\mathcal{Z}_{x})_{x\in K_{\epsilon}} has law xKϵπx\otimes_{x\in K_{\epsilon}}\pi_{x}, and 𝒵~\tilde{\mathcal{Z}} is a random variable which equals to 𝒵\mathcal{Z} except on xx-coordinate which is resampled independently.

Lemma 4.

For every local increasing event AA,

(6) dp(A)dp12lim supϵ0xKϵInfxϵ(A).\frac{\mathrm{d}\mathbb{P}_{p}(A)}{\mathrm{d}p}\geq\frac{1}{2}\limsup_{\epsilon\rightarrow 0}\sum_{x\in K_{\epsilon}}\operatorname{Inf}^{\epsilon}_{x}(A).
Proof of Lemma 4.

For a fixed local increasing event AA, we assume AA only depends on colours in Bp(0,n)\operatorname{B}_{p}(0,n). First we prove that for any m1m\geq 1,

dp(A)dp12lim supϵ0xKϵBp(0,m)Infxϵ(A).\frac{\text{d}\mathbb{P}_{p}(A)}{\text{d}p}\geq\frac{1}{2}\limsup_{\epsilon\rightarrow 0}\sum_{x\in K_{\epsilon}\cap\operatorname{B}_{p}(0,m)}\operatorname{Inf}^{\epsilon}_{x}(A).

For a fixed m1m\geq 1, every xKϵBp(0,m)x\in K_{\epsilon}\cap\operatorname{B}_{p}(0,m), observe that 𝒵x=𝒵~x=\mathcal{Z}_{x}=\tilde{\mathcal{Z}}_{x}=\varnothing leads to 𝒵=𝒵~\mathcal{Z}=\tilde{\mathcal{Z}} and 𝟏A(𝒵)=𝟏A(𝒵~)\mathbf{1}_{A}(\mathcal{Z})=\mathbf{1}_{A}(\tilde{\mathcal{Z}}). Combining with the definition of Poisson point process we get that with probability O(ϵ4)O({\epsilon}^{4}), 𝒵x𝒵~x\mathcal{Z}_{x}\cup\tilde{\mathcal{Z}}_{x} contains more than one point, then

p(𝟏A(𝒵)𝟏A(𝒵~))\displaystyle\ \mathbb{P}_{p}(\mathbf{1}_{A}(\mathcal{Z})\neq\mathbf{1}_{A}(\tilde{\mathcal{Z}}))
=\displaystyle= 2p(𝟏A(𝒵)𝟏A(𝒵~),|𝒵x|=1,|𝒵~x|=0)+p(𝟏A(𝒵)𝟏A(𝒵~),|𝒵x|+|𝒵~x|2)\displaystyle\ 2\mathbb{P}_{p}(\mathbf{1}_{A}(\mathcal{Z})\neq\mathbf{1}_{A}(\tilde{\mathcal{Z}}),|\mathcal{Z}_{x}|=1,|\tilde{\mathcal{Z}}_{x}|=0)+\mathbb{P}_{p}(\mathbf{1}_{A}(\mathcal{Z})\neq\mathbf{1}_{A}(\tilde{\mathcal{Z}}),|\mathcal{Z}_{x}|+|\tilde{\mathcal{Z}}_{x}|\geq 2)
\displaystyle\leq 2p(|𝖯𝗂𝗏𝖠Nx|1,|𝒵x|=1,|𝒵~x|=0)+O(ϵ4)\displaystyle\ 2\mathbb{P}_{p}(|\mathsf{Piv_{A}}\cap\operatorname{N}_{x}|\geq 1,|\mathcal{Z}_{x}|=1,|\tilde{\mathcal{Z}}_{x}|=0)+O({\epsilon}^{4})
\displaystyle\leq 2𝔼p(|𝖯𝗂𝗏𝖠Nx|)+O(ϵ4).\displaystyle\ 2\mathbb{E}_{p}(|\mathsf{Piv_{A}}\cap\operatorname{N}_{x}|)+O({\epsilon}^{4}).

Summing this inequality over all points xx which belongs to KϵBp(0,m)K_{\epsilon}\cap\operatorname{B}_{p}(0,m) for every m1m\geq 1 gives

xKϵBp(0,m)Infxϵ(A)2𝔼p(|𝖯𝗂𝗏𝖠|)+o(ϵ2).\sum_{x\in K_{\epsilon}\cap\operatorname{B}_{p}(0,m)}\operatorname{Inf}^{\epsilon}_{x}(A)\leq 2\mathbb{E}_{p}(|\mathsf{Piv_{A}}|)+o(\epsilon^{2}).

Taking the lim sup\limsup and using Lemma 2 leads to

dp(A)dp12lim supϵ0xKϵBp(0,m)Infxϵ(A).\frac{\text{d}\mathbb{P}_{p}(A)}{\text{d}p}\geq\frac{1}{2}\limsup_{\epsilon\rightarrow 0}\sum_{x\in K_{\epsilon}\cap\operatorname{B}_{p}(0,m)}\operatorname{Inf}^{\epsilon}_{x}(A).

Since the inequality holds for all m1m\geq 1, we can take m=4nm=4n and derive an estimate for the influence of points in KϵBp(0,4n)cK_{\epsilon}\cap\operatorname{B}_{p}(0,4n)^{c}.

For every xKϵBp(0,4n)cx\in K_{\epsilon}\cap\operatorname{B}_{p}(0,4n)^{c}, if 𝟏A(𝒵)𝟏A(𝒵~)\mathbf{1}_{A}(\mathcal{Z})\neq\mathbf{1}_{A}(\tilde{\mathcal{Z}}), 𝒵𝒵~\mathcal{Z}\cup\mathcal{\tilde{Z}} must have at least one point in Nx\operatorname{N}_{x}, and there exists at least one point in (𝒵𝒵~)Nx(\mathcal{Z}\cup\mathcal{\tilde{Z}})\cap\operatorname{N}_{x} with its cell intersecting Bp(0,n)\operatorname{B}_{p}(0,n), i.e., Dn(𝒵)Bp(0,dp(0,x))cD_{n}(\mathcal{Z})\cap\operatorname{B}_{p}(0,d_{p}(0,x))^{c}\neq\varnothing. Therefore, combining (4) and independence of Poisson point process in disjoint regions implies

Infxϵ(A)=\displaystyle\operatorname{Inf}^{\epsilon}_{x}(A)= p(𝟏A(𝒵)𝟏A(𝒵~))\displaystyle\ \mathbb{P}_{p}(\mathbf{1}_{A}(\mathcal{Z})\neq\mathbf{1}_{A}(\tilde{\mathcal{Z}}))
\displaystyle\leq p(|(𝒵𝒵~)Nx|1)p(𝒵Bp(0,14dp(0,x))=||(𝒵𝒵~)Nx|1)\displaystyle\ \mathbb{P}_{p}(|(\mathcal{Z}\cup\mathcal{\tilde{Z}})\cap\operatorname{N}_{x}|\geq 1)\mathbb{P}_{p}(\mathcal{Z}\cap\operatorname{B}_{p}(0,\frac{1}{4}d_{p}(0,x))=\varnothing||(\mathcal{Z}\cup\mathcal{\tilde{Z}})\cap\operatorname{N}_{x}|\geq 1)
=\displaystyle= p(|(𝒵𝒵~)Nx|1)p(𝒵Bp(0,14dp(0,x))=)\displaystyle\ \mathbb{P}_{p}(|(\mathcal{Z}\cup\mathcal{\tilde{Z}})\cap\operatorname{N}_{x}|\geq 1)\mathbb{P}_{p}(\mathcal{Z}\cap\operatorname{B}_{p}(0,\frac{1}{4}d_{p}(0,x))=\varnothing)
\displaystyle\leq c2(sinhϵ)2exp(4πλsinh(dp(0,x)8)2).\displaystyle\ c_{2}(\sinh\epsilon)^{2}\exp(-4\pi\lambda\sinh(\frac{d_{p}(0,x)}{8})^{2}).

Here, c2c_{2} is a constant not depending on ϵ\epsilon. The proof then follows from summing over all xKϵBp(0,4n)cx\in K_{\epsilon}\cap\operatorname{B}_{p}(0,4n)^{c} and letting ϵ\epsilon go to zero. ∎

3.2. Construction of the algorithm

Based on the space (xKϵNx,p)(\prod_{x\in K_{\epsilon}}\operatorname{N}_{x},\mathbb{P}_{p}) introduced in Section 3.1, we are now going to construct an algorithm 𝖳k\operatorname{\mathsf{T}}_{k} determining 𝟏0Bp(0,n)\mathbf{1}_{0\leftrightarrow\operatorname{\partial B}_{p}(0,n)} with its revealment having the following upper bound.

Lemma 5.

There exists a constant c0c_{0} only depending on pp and λ\lambda such that for any k{0,,n}k\in\{0,\cdots,n\}, we can find an algorithm 𝖳k\operatorname{\mathsf{T}}_{k} determining f=𝟏0Bp(0,n)f=\mathbf{1}_{0\leftrightarrow\operatorname{\partial B}_{p}(0,n)} such that

(7) δx(𝖳k)c0p(xBp(0,k)).\delta_{x}(\operatorname{\mathsf{T}}_{k})\leq c_{0}\mathbb{P}_{p}(x\longleftrightarrow\operatorname{\partial B}_{p}(0,k)).
Proof.

We first define an auxiliary algorithm 𝖣x\operatorname{\mathsf{D}}_{x} helping us reveal the colour of Nx\operatorname{N}_{x}.

The idea of the algorithm 𝖣x\operatorname{\mathsf{D}}_{x} is to check the random variables 𝒵y\mathcal{Z}_{y} (yKϵ)(y\in K_{\epsilon}) near the fixed point xx until the colour of every point in N¯x\bar{\operatorname{N}}_{x} is known. To put it precisely, we first set a parameter k=0k=0. When k=lk=l (ll is a positive integer), if the colour of all points inside N¯x\bar{\operatorname{N}}_{x} are determined, the algorithm terminates and returns the colours of points in N¯x\bar{\operatorname{N}}_{x} as the output of 𝖣x\operatorname{\mathsf{D}}_{x}. Otherwise, the algorithm checks the value of 𝒵y\mathcal{Z}_{y} for yKϵ{y:dp(y,x)k}y\in K_{\epsilon}\cap\{y:d_{p}(y,x)\leq k\} and set k=l+1.k=l+1.

And the algorithm 𝖳k\operatorname{\mathsf{T}}_{k} is constructed as follows:

Set X0=,Z0=Bp(0,k),W0=,H0=,K0=,M0=X_{0}=\varnothing,Z_{0}=\operatorname{\partial B}_{p}(0,k),W_{0}=\varnothing,H_{0}=\varnothing,K_{0}=\varnothing,M_{0}=\varnothing, and use I=KϵBp(0,n+1)I=K_{\epsilon}\cap\operatorname{B}_{p}(0,n+1) to include the set of points we may need to check.

At every step tt, assume that XtKϵX_{t}\subset K_{\epsilon} and Zt2Z_{t}\subset\mathbb{H}^{2} have been determined. Let Mt+1={xIXt:N¯xZt}M_{t+1}=\{x\in I\setminus X_{t}:\bar{\operatorname{N}}_{x}\cap Z_{t}\neq\varnothing\}. If Mt+1=M_{t+1}=\varnothing, the algorithm terminates. If Mt+1M_{t+1}\neq\varnothing, pick yMt+1y\in M_{t+1} and the algorithm runs the following steps:

  1. (1)

    Run 𝖣y\operatorname{\mathsf{D}}_{y}.

  2. (2)

    Define Xt+1=Xt{y}X_{t+1}=X_{t}\cup\{y\}.

  3. (3)

    Let

    Ht+1={all the black points in ωNyconnected to Zt},\displaystyle H_{t+1}=\{\text{all\ the\ black\ points\ in\ }\omega\cap\operatorname{N}_{y}\ \text{connected to\ }Z_{t}\},
    Kt+1={all the black points in ωNynot connected to Zt}.\displaystyle K_{t+1}=\{\text{all\ the\ black\ points\ in\ }\omega\cap\operatorname{N}_{y}\ \text{not\ connected to\ }Z_{t}\}.
  4. (4)

    Set Lt+1={all the points in Wtconnected to ZtHt+1}.L_{t+1}=\{\text{all\ the\ points\ in\ }W_{t}\ \text{connected to\ }Z_{t}\cup H_{t+1}\}. Here, Lt+1L_{t+1} denote those black points in the first tt steps which are not discovered to be connected to Bp(0,k)\operatorname{\partial B}_{p}(0,k) until the t+1t+1 step runs.

  5. (5)

    Set

    Zt+1=ZtHt+1Lt+1,\displaystyle Z_{t+1}=Z_{t}\cup H_{t+1}\cup L_{t+1},
    Wt+1=(WtLt+1)Kt+1,\displaystyle W_{t+1}=(W_{t}\setminus L_{t+1})\cup K_{t+1},

    where Wt+1W_{t+1} represents those black points in the first t+1t+1 steps that, based on what are revealed now, we cannot determine whether they are connected to Bp(0,k)\operatorname{\partial B}_{p}(0,k).

The algorithm 𝖳k\operatorname{\mathsf{T}}_{k} clearly determines 𝟏0Bp(0,n)\mathbf{1}_{0\leftrightarrow\operatorname{\partial B}_{p}(0,n)} since it actually reveals all the black connected components of Bp(0,k)\operatorname{\partial B}_{p}(0,k) in ωBp(0,n)\omega\cap\operatorname{B}_{p}(0,n). Furthermore, every auxiliary algorithm 𝖣x\operatorname{\mathsf{D}}_{x} only needs to discover finite points almost surely due to the integrability of 𝔼p(|Dn(𝒵)|)\mathbb{E}_{p}(|D_{n}(\mathcal{Z})|), therefore the algorithm 𝖳k\operatorname{\mathsf{T}}_{k} will terminate in a finite time.

And we only need to prove the desired inequality (7), which is trivial for xKϵBp(0,n+1)x\in K_{\epsilon}\setminus\operatorname{B}_{p}(0,n+1) since those points will never be discovered in 𝖳k\operatorname{\mathsf{T}}_{k}. For xKϵBp(0,n+1)x\in K_{\epsilon}\cap\operatorname{B}_{p}(0,n+1), if xx is revealed during the process, there exists yN¯xy\in\bar{\operatorname{N}}_{x} such that yBp(0,k)y\longleftrightarrow\operatorname{\partial B}_{p}(0,k). For every representative point xx we can first fix a zx2z_{x}\in\mathbb{H}^{2} satisfying N¯xBp(zx,1)\bar{\operatorname{N}}_{x}\subset\operatorname{B}_{p}(z_{x},1). Then xx is revealed during the process implies N¯xBp(0,k)\bar{\operatorname{N}}_{x}\leftrightarrow\operatorname{\partial B}_{p}(0,k).

Combining Lemma 1 and p[δ,1δ]p\in[\delta,1-\delta] we have

δx(𝖳k)=p(N¯xBp(0,k))=p(xBp(0,k))p(xBp(0,k)|N¯xBp(0,k))\displaystyle\delta_{x}(\operatorname{\mathsf{T}}_{k})=\mathbb{P}_{p}(\bar{\operatorname{N}}_{x}\leftrightarrow\operatorname{\partial B}_{p}(0,k))=\frac{\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))}{\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k)|\bar{\operatorname{N}}_{x}\leftrightarrow\operatorname{\partial B}_{p}(0,k))}
\displaystyle\leq p(xBp(0,k))p(Sx all black |N¯xBp(0,k))\displaystyle\ \frac{\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))}{\mathbb{P}_{p}(S_{x}\text{\ all\ black\ }|\bar{\operatorname{N}}_{x}\leftrightarrow\operatorname{\partial B}_{p}(0,k))}
(1)\displaystyle\overset{\eqref{FKG}}{\leq} p(xBp(0,k))p(Sx all black )p(xBp(0,k))δ(Bp(zx,1) all black ).\displaystyle\ \frac{\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))}{\mathbb{P}_{p}(S_{x}\text{\ all\ black\ })}\leq\frac{\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))}{\mathbb{P}_{\delta}(\operatorname{B}_{p}(z_{x},1)\text{\ all\ black\ })}.

Denote 1c0=δ(Bp(zx,1) all black)\frac{1}{c_{0}}=\mathbb{P}_{\delta}(\operatorname{B}_{p}(z_{x},1)\text{\ all\ black}), then for every k{0,,n}k\in\{0,\cdots,n\}, the constructed algorithm 𝖳k\operatorname{\mathsf{T}}_{k} satisfies δx(𝖳k)c0p(xBp(0,k)).\delta_{x}(\operatorname{\mathsf{T}}_{k})\leq c_{0}\mathbb{P}_{p}(x\longleftrightarrow\operatorname{\partial B}_{p}(0,k)).

3.3. Proof of Theorem 1

Before proving Theorem 1, we first introduce a lemma that converts the proof of Theorem 1 to showing a family of differential inequalities.

Lemma 6.

Consider a converging sequence of increasing differential function fn:[α0,α1][0,M]f_{n}:[\alpha_{0},\alpha_{1}]\rightarrow[0,M] such that for all n1n\geq 1,

fnnΣnfn,f_{n}^{\prime}\geq\frac{n}{\Sigma_{n}}f_{n},

where Σn=k=0n1fk\Sigma_{n}=\sum_{k=0}^{n-1}f_{k}. Then, there exists x1[α0,α1]x_{1}\in[\alpha_{0},\alpha_{1}] such that:
1. For any x<x1x<x_{1}, there exists cx>0c_{x}>0 such that for any large nn , fn(x)exp(cxn).f_{n}(x)\leq\exp(-c_{x}n).
2. For any x>x1x>x_{1}, let f(x)=limn+fn(x)f(x)=\lim\limits_{n\to+\infty}f_{n}(x), then f(x)xx1f(x)\geq x-x_{1}.

The proof of this lemma can be found in [[DCRT19a], Lemma 3.1].

Proof of Theorem 1.

By Lemma 6, it suffices to show that for every 0<δ<120<\delta<\frac{1}{2}, there exists c=c(δ)>0c=c(\delta)>0 such that n1,p[δ,1δ]\forall n\geq 1,\ p\in[\delta,1-\delta], Sn(p):=k=0n1θk(p)S_{n}(p):=\sum_{k=0}^{n-1}\theta_{k}(p),

(8) θn(p)cnSn(p)θn(p).\theta_{n}^{\prime}(p)\geq\frac{cn}{S_{n}(p)}\theta_{n}(p).

Indeed, combining the fact that 0<pc<10<p_{c}<1 [[BS01], Theorem 1.5], the result follows from applying Lemma 6 to α0:=δ<pc<1δ=:α1\alpha_{0}:=\delta<p_{c}<1-\delta=:\alpha_{1} and fn=θncf_{n}=\frac{\theta_{n}}{c}.

Now let f=𝟏0Bp(0,n)f=\mathbf{1}_{0\leftrightarrow\operatorname{\partial B}_{p}(0,n)}, 𝖳k\operatorname{\mathsf{T}}_{k} is an algorithm determining the function ff, applying the OSSS inequality (5) then leads to

(9) θn(p)(1θn(p))xKϵδx(𝖳k)Infxϵ(0Bp(0,n)).\theta_{n}(p)(1-\theta_{n}(p))\leq\sum_{x\in K_{\epsilon}}\delta_{x}(\operatorname{\mathsf{T}}_{k})\operatorname{Inf}^{\epsilon}_{x}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n)).

For every δ(0,12)\delta\in(0,\frac{1}{2}), p[δ,1δ]p\in[\delta,1-\delta], it is easy to see that

(10) θn(δ)θn(p)θn(1δ)θ1(1δ).\theta_{n}(\delta)\leq\theta_{n}(p)\leq\theta_{n}(1-\delta)\leq\theta_{1}(1-\delta).

Combining inequalities (7) and (10) yields

θn(p)\displaystyle\theta_{n}(p)\leq 11θ1(1δ)xKϵδx(𝖳k)Infxϵ(0Bp(0,n))\displaystyle\ \frac{1}{1-\theta_{1}(1-\delta)}\sum_{x\in K_{\epsilon}}\delta_{x}(\operatorname{\mathsf{T}}_{k})\operatorname{Inf}^{\epsilon}_{x}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n))
(7)\displaystyle\overset{\eqref{revealment}}{\leq} c01θ1(1δ)xKϵp(xBp(0,k))Infxϵ(0Bp(0,n)).\displaystyle\ \frac{c_{0}}{1-\theta_{1}(1-\delta)}\sum_{x\in K_{\epsilon}}\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))\operatorname{Inf}^{\epsilon}_{x}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n)).

Summing the above inequality from 11 to nn and dividing by nn gives

(11) θn(p)c3nxKϵk=1np(xBp(0,k))Infxϵ(0Bp(0,n)).\theta_{n}(p)\leq\frac{c_{3}}{n}\sum_{x\in K_{\epsilon}}\sum_{k=1}^{n}\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))\operatorname{Inf}^{\epsilon}_{x}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n)).

We also have

(12) k=1np(xBp(0,k))k=1nθd(x,Bp(0,k))(p)2k=1nθk(p)=2Sn(p).\sum_{k=1}^{n}\mathbb{P}_{p}(x\leftrightarrow\operatorname{\partial B}_{p}(0,k))\leq\sum_{k=1}^{n}\theta_{d(x,\operatorname{\partial B}_{p}(0,k))}(p)\leq 2\sum_{k=1}^{n}\theta_{k}(p)=2S_{n}(p).

Taking c=14c3c=\frac{1}{4c_{3}}, using (11), (12) and (6), we then have for all p[δ,1δ],n1,p\in[\delta,1-\delta],n\geq 1,

θn(p)\displaystyle\theta_{n}(p) (12)2c3nSn(p)xKϵInfxϵ(0Bp(0,n))\displaystyle\overset{\eqref{sumbound}}{\leq}\frac{2c_{3}}{n}S_{n}(p)\sum_{x\in K_{\epsilon}}\operatorname{Inf}^{\epsilon}_{x}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n))
(6)4c3nSn(p)×dp(0Bp(0,n))dp=1cnSn(p)θn(p),\displaystyle\overset{\eqref{derivative}}{\leq}\frac{4c_{3}}{n}S_{n}(p)\times\frac{\text{d}\mathbb{P}_{p}(0\leftrightarrow\operatorname{\partial B}_{p}(0,n))}{\text{d}p}=\frac{1}{cn}S_{n}(p)\theta_{n}^{\prime}(p),\qquad

which corresponds to the form of inequality (8) and therefore concludes the proof.

References

  • [AB87] Michael Aizenman and David J. Barsky. Sharpness of the phase transition in percolation models. Communications in Mathematical Physics, 108(3):489–526, 1987.
  • [AB18] Daniel Ahlberg and Rangel Baldasso. Noise sensitivity and voronoi percolation. Electronic Journal of Probability, 23:1–21, 2018.
  • [ABGM14] Daniel Ahlberg, Erik Broman, Simon Griffiths, and Robert Morris. Noise sensitivity in continuum percolation. Israel Journal of Mathematics, 201(2):847–899, 2014.
  • [AdlRG21] Daniel Ahlberg, Daniel de la Riva, and Simon Griffiths. On the rate of convergence in quenched voronoi percolation. arXiv:2103.01870, 2021.
  • [AGMT16] Daniel Ahlberg, Simon Griffiths, Robert Morris, and Vincent Tassion. Quenched voronoi percolation. Advances in Mathematics, 286:889–911, 2016.
  • [ATT18] Daniel Ahlberg, Vincent Tassion, and Augusto Teixeira. Sharpness of the phase transition for continuum percolation in 2\mathbb{R}^{2}. Probability Theory and Related Fields, 172(1):525–581, 2018.
  • [BH57] Simon R Broadbent and John M Hammersley. Percolation processes: I. crystals and mazes. In Mathematical proceedings of the Cambridge philosophical society, volume 53, pages 629–641. Cambridge University Press, 1957.
  • [BR06a] Béla Bollobás and Oliver Riordan. The critical probability for random voronoi percolation in the plane is 1/2. Probability theory and related fields, 136(3):417–468, 2006.
  • [BR06b] Béla Bollobás and Oliver Riordan. Percolation. Cambridge University Press, 2006.
  • [BS01] Itai Benjamini and Oded Schramm. Percolation in the hyperbolic plane. Journal of the American Mathematical Society, 14(2):487–507, 2001.
  • [DCRT19a] Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion. Exponential decay of connection probabilities for subcritical voronoi percolation in d\mathbb{R}^{d}. Probability Theory and Related Fields, 173(1-2):479–490, 2019.
  • [DCRT19b] Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion. Sharp phase transition for the random-cluster and potts models via decision trees. Annals of Mathematics, 189(1):75–99, 2019.
  • [DCT16] Hugo Duminil-Copin and Vincent Tassion. A new proof of the sharpness of the phase transition for bernoulli percolation and the ising model. Communications in Mathematical Physics, 343(2):725–745, 2016.
  • [Gri99] Geoffrey Grimmett. Percolation. Springer Berlin Heidelberg, 1999.
  • [HM21a] Benjamin T Hansen and Tobias Müller. The critical probability for voronoi percolation in the hyperbolic plane tends to 1/21/2. Random Structures &\& Algorithms, 2021.
  • [HM21b] Benjamin T. Hansen and Tobias Müller. Poisson-voronoi percolation in the hyperbolic plane with small intensities, 2021.
  • [LP17] Günter Last and Mathew Penrose. Lectures on the Poisson process, volume 7. Cambridge University Press, 2017.
  • [LPY21] Günter Last, Giovanni Peccati, and D. Yogeshwaran. Phase transitions and noise sensitivity on the Poisson space via stopping sets and decision trees. arXiv:2103.01870, 2021.
  • [Men86] Mikhail V Menshikov. Coincidence of critical points in percolation problems. In Soviet Mathematics Doklady, volume 33, pages 856–859, 1986.
  • [MR96] Ronald Meester and Rahul Roy. Continuum Percolation. Cambridge University Press, 1996.
  • [OSSS05] Ryan O’Donnell, Mike Saks, Oded Schramm, and Rocco Servedio. Every decision tree has an influential variable. In Proceedings of the 46th Annual Symposium on Foundations of Computer Science (FOCS), 2005.