This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp spectral transition for embedded eigenvalues of perturbed periodic Dirac operators

Kang Lyu School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People’s Republic of China [email protected] https://kanglyu.github.io/index.html  and  Chuanfu Yang School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People’s Republic of China [email protected]
Abstract.

We consider the Dirac equation on L2()L2()L^{2}(\mathbb{R})\oplus L^{2}(\mathbb{R})

Ly=(0110)(y1y2)+(pqqp)(y1y2)+V(y1y2)=λy,\displaystyle Ly=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\begin{pmatrix}y_{1}\\ y_{2}\end{pmatrix}^{\prime}+\begin{pmatrix}p&q\\ q&-p\end{pmatrix}\begin{pmatrix}y_{1}\\ y_{2}\end{pmatrix}+V\begin{pmatrix}y_{1}\\ y_{2}\end{pmatrix}=\lambda y,

where y=y(x,λ)=(y1(x,λ)y2(x,λ))y=y(x,\lambda)=\tbinom{y_{1}(x,\lambda)}{y_{2}(x,\lambda)}, pp and qq are real 11-periodic, and

V=(V(x)00V(x))\displaystyle V=\begin{pmatrix}V(x)&0\\ 0&-V(x)\end{pmatrix}

is the perturbation which satisfies V(x)=o(1)V(x)=o(1) as |x|.\left\lvert x\right\rvert\to\infty. Under such perturbation, the essential spectrum of LL coincides with that there is no perturbation. We prove that if V(x)=o(1)1+|x|V(x)=\frac{o(1)}{1+\left\lvert x\right\rvert} as xx\to\infty or xx\to-\infty, then there is no embedded eigenvalues (eigenvalues appear in the essential spectrum). For any given finite set inside of the essential spectrum which satisfies the non-resonance assumption, we construct smooth potentials with V(x)=O(1)1+|x|V(x)=\frac{O(1)}{1+\left\lvert x\right\rvert} as |x|\left\lvert x\right\rvert\to\infty so that the set becomes embedded eigenvalues. For any given countable set inside of the essential spectrum which satisfies the non-resonance assumption, we construct smooth potentials with V(x)<|h(x)|1+|x|V(x)<\frac{\left\lvert h(x)\right\rvert}{1+\left\lvert x\right\rvert} as |x|\left\lvert x\right\rvert\to\infty so that the set becomes embedded eigenvalues, where h(x)h(x) is any given function with limx±|h(x)|=.\lim_{x\to\pm\infty}\left\lvert h(x)\right\rvert=\infty.

Key words and phrases:
Dirac operator, essential spectrum, embedded eigenvalues.
2020 Mathematics Subject Classification. Primary: 34L15. Secondary: 34A30

1. Introduction and main results

Consider the Dirac equation on L2()L2()L^{2}(\mathbb{R})\oplus L^{2}(\mathbb{R})

(1) Ly=(0110)(y1y2)+(pqqp)(y1y2)+V(y1y2)=λy,\displaystyle Ly=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\begin{pmatrix}y_{1}\\ y_{2}\end{pmatrix}^{\prime}+\begin{pmatrix}p&q\\ q&-p\end{pmatrix}\begin{pmatrix}y_{1}\\ y_{2}\end{pmatrix}+V\begin{pmatrix}y_{1}\\ y_{2}\end{pmatrix}=\lambda y,

where y=y(x,λ)=(y1(x,λ)y2(x,λ))y=y(x,\lambda)=\tbinom{y_{1}(x,\lambda)}{y_{2}(x,\lambda)}, pp and qq are real 11-periodic, and

V=(V(x)00V(x))\displaystyle V=\begin{pmatrix}V(x)&0\\ 0&-V(x)\end{pmatrix}

is the perturbation. In the following, we always assume that

(2) V()L,V(x)=o(1),|x|.\displaystyle V(\cdot)\in L^{\infty},\ V(x)=o(1),\left\lvert x\right\rvert\to\infty.

When V0V\equiv 0, we have an unperturbed 11-periodic Dirac equation

(3) L0g=(0110)(g1g2)+(pqqp)(g1g2)=λg,\displaystyle L_{0}g=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\begin{pmatrix}g_{1}\\ g_{2}\end{pmatrix}^{\prime}+\begin{pmatrix}p&q\\ q&-p\end{pmatrix}\begin{pmatrix}g_{1}\\ g_{2}\end{pmatrix}=\lambda g,

where g=g(x,λ)=(g1(x,λ)g2(x,λ))g=g(x,\lambda)=\tbinom{g_{1}(x,\lambda)}{g_{2}(x,\lambda)}.

The spectrum of L0L_{0} consists of a class of intervals:

σ(L0)=σess(L0)=j=[aj,bj],\displaystyle\sigma(L_{0})=\sigma_{ess}(L_{0})=\cup_{j=-\infty}^{\infty}[a_{j},b_{j}],

where aj,bja_{j},b_{j} are eigenvalues of L0g=λg,x(0,1)L_{0}g=\lambda g,\ x\in(0,1) with periodic or anti-periodic boundary conditions. Under the assumption (2), by Weyl’s criterion, one has

σess(L)=σess(L0)=j=[aj,bj].\displaystyle\sigma_{ess}(L)=\sigma_{ess}(L_{0})=\cup_{j=-\infty}^{\infty}[a_{j},b_{j}].

For any λσess(L0)\lambda\in\sigma_{ess}(L_{0}), let g(x,λ)g(x,\lambda) be the corresponding Floquet solution with

(4) g(x+1,λ)=eik(λ)g(x,λ),\displaystyle g(x+1,\lambda)=e^{ik(\lambda)}g(x,\lambda),

where k(λ)k(\lambda) is the quasimomentum. By Floquet theory, k(λ)k(\lambda) monotonically decreases from π\pi to 0 or monotonically increases from 0 to π\pi on each interval [aj,bj][a_{j},b_{j}] ( for example, see [3]).

The problem of embedded eigenvalues into the essential spectrum or absolutely continuous spectrum has been widely studied on Schrödinger operators. For example, for the Schrödinger operator on L2(0,)L^{2}(0,\infty), given by

Hu=u′′+Vu.\displaystyle Hu=-u^{\prime\prime}+Vu.

Kato’s result [9] shows that there is no embedded eigenvalues larger than a2a^{2}, where a=lim supx|xV(x)|a=\limsup_{x\to\infty}\left\lvert xV(x)\right\rvert. Classical Wigner-von Neumann type potential

V(x)=a1+xsin(kx+θ)\displaystyle V(x)=\frac{a}{1+x}\sin\left(kx+\theta\right)

provides with a decaying oscillatory perturbation which creates a single embedded eigenvalue [30]. Wigner-von Neumann type potentials play an important role in problems of spectral analysis ([24, 26, 25, 6, 4, 29, 23]), even the sharp bound for single embedded eigenvalue is obtained by the sign function of Wigner-von Neumann type potential ([1, 19]).

For many embedded eigenvalues, Naboko [27] constructed potentials with countably many embedded (rationally independent) eigenvalues, and Simon [28] improved the result with no restrictions on eigenvalues. In recent years, this direction has more fertile results [12, 20, 15, 18, 16, 11, 10, 7, 8, 5, 21, 22, 17, 19]. For example, in [7, 8], Judge, Naboko, and Wood introduced perturbations that create embedded eigenvalues for Jacobi operators. In [5], Jitomirskaya and Liu introduced a novel idea to construct embedded eigenvalues for Laplacian on manifolds and this approach has been developed for various operators in [21, 22, 17].

Consider the corresponding periodic problem of Schrödinger operator on L2()L^{2}(\mathbb{R}), given by

(5) Hu=H0u+V0u=u′′+q0u+V0u=λu,\displaystyle Hu=H_{0}u+V_{0}u=-u^{\prime\prime}+q_{0}u+V_{0}u=\lambda u,

where q0q_{0} is a real 11-periodic function and V0V_{0} is the perturbation. If there is no perturbation. Namely, V0=0V_{0}=0, then the spectrum of H=H0H=H_{0} is a union of intervals

σess(H0)=σ(H0)=j=1[cj,dj],\displaystyle\sigma_{ess}(H_{0})=\sigma(H_{0})=\cup_{j=1}^{\infty}[c_{j},d_{j}],

where cj,djc_{j},d_{j} are eigenvalues of H0u=λu,x(0,1)H_{0}u=\lambda u,\ x\in(0,1) with periodic or anti-periodic boundary conditions. The authors in [22] constructed V0CV_{0}\in C^{\infty} to embed finitely (countably) many (non-resonant) eigenvalues into the essential spectrum. We provide an overview of their construction process. In contrast to the differential equations of the (modified) Prüfer variables in [1, 17, 19], the authors need to handle a new equation coupled with a periodic term (one may obtain the speed of the decrease of eigensolutions by analyzing this differential equation, which becomes very complicated when there is a periodic term). Dealing with the Fourier expansion of the periodic term, the authors obtained a robust estimate for eigensolutions. After that, they can construct potentials so that the eigensolutions of different eigenvalues decrease one by one (when one of the eigensolutions decreases, others do not undergo significant increments), these are ensured by (34) and (37). This exploration motivates our interest in investigating periodic Dirac operators. Once we can construct perturbations with (34) and (37), following the construction in [22, 5, 17], we can handle the problem. See [13, 14, 2] for more discussions of periodic operators.

The difficulty is that there is no proper Prüfer transformation for periodic Dirac operators at hand. We mention that the classical Prüfer transformation appearing in [10] can only deal with the case that there is no periodic term. Different from the differential equations for (modified) Prüfer variables (R,θR,\theta) for periodic Schrödinger operators in [12], the differential equations for (modified) Prüfer variables (R,θ1,θ2R,\theta_{1},\theta_{2}) for periodic Dirac operators are much more complicated. First of all, there is only one Prüfer angle of periodic Schrödinger operators, but there are two Prüfer angles for periodic Dirac operators and the two Prüfer angles induce one more differential equation ((c) of Lemma 2.4 ) compared with the Schrödinger case. This causes that the differential equation for RR couples with two Prüfer angles ((b) of Lemma 2.4 ), so we need to consider one more parameter when estimating the eigensolution. Moreover, the differential equation of RR in [22] is a direct product of a periodic function and sinθ(x)x\frac{\sin\theta(x)}{x} (sinkxx\approx\frac{\sin kx}{x}), so that once they obtain the estimate of the product of a periodic function and sinkxx\frac{\sin kx}{x}, they can show Lemmas 5.1 and 5.2. However, for periodic Dirac operators, we need to estimate the integral of the product of a periodic function and (g1(x)sinθ1(x)x+g2(x)sinθ2(x)x)\left(\frac{g_{1}(x)\sin\theta_{1}(x)}{x}+\frac{g_{2}(x)\sin\theta_{2}(x)}{x}\right) at the same time. This requires a more delicate analysis. We mention that since the same pity in [22] appears here, we need the non-resonance assumption for the embedded eigenvalues, too.

The main results of this paper are as follows.

Theorem 1.1.

Suppose that VV satisfies

(6) V(x)=o(1)1+|x|,\displaystyle V(x)=\frac{o(1)}{1+\left\lvert x\right\rvert},

as xx\to\infty or xx\to-\infty, then for any λj=(aj,bj)\lambda\in\cup_{j=-\infty}^{\infty}(a_{j},b_{j}), λ\lambda is not an eigenvalue of LL.

Theorem 1.2.

Suppose {λn}n=1Nj(aj,bj)\{\lambda_{n}\}_{n=1}^{N}\subset\cup_{j}(a_{j},b_{j}) such that quasimomenta {k(λn)}n=1N\{k(\lambda_{n})\}_{n=1}^{N} are different. Suppose that for any i,j{1,2,,N},i,j\in\{1,2,\cdots,N\}, k(λi)+k(λj)π.k(\lambda_{i})+k(\lambda_{j})\neq\pi. Then there exist potentials VC()V\in C^{\infty}(\mathbb{R}) with

V(x)=O(1)1+|x|,|x|,\displaystyle V(x)=\frac{O(1)}{1+\left\lvert x\right\rvert},\ \left\lvert x\right\rvert\to\infty,

such that {λn}n=1N\{\lambda_{n}\}_{n=1}^{N} are eigenvalues of LL.

Corollary 1.3.

Choose any band (aj,bj)(a_{j},b_{j}). Let ej(aj,bj)e_{j}\in(a_{j},b_{j}) with k(ej)=π2k(e_{j})=\frac{\pi}{2}. Suppose {λn}n=1N\{\lambda_{n}\}_{n=1}^{N} is a finite set of distinct points in (aj,ej)(a_{j},e_{j}) or (ej,bj)(e_{j},b_{j}), such that quasimomenta {k(λn)}n=1N\{k(\lambda_{n})\}_{n=1}^{N} are different. Then there exist potentials VC()V\in C^{\infty}(\mathbb{R}) with

V(x)=O(1)1+|x|,|x|,\displaystyle V(x)=\frac{O(1)}{1+\left\lvert x\right\rvert},\ \left\lvert x\right\rvert\to\infty,

such that {λn}n=1N\{\lambda_{n}\}_{n=1}^{N} are eigenvalues of LL.

Theorem 1.4.

Suppose {λn}n=1j(aj,bj)\{\lambda_{n}\}_{n=1}^{\infty}\subset\cup_{j}(a_{j},b_{j}) such that quasimomenta {k(λn)}n=1\{k(\lambda_{n})\}_{n=1}^{\infty} are different. Suppose that for any i,j,k(λi)+k(λj)π.i,j,k(\lambda_{i})+k(\lambda_{j})\neq\pi. Then for any function h(x)h(x) with lim|x||h(x)|=\lim_{\left\lvert x\right\rvert\to\infty}\left\lvert h(x)\right\rvert=\infty, there exist potentials VC()V\in C^{\infty}(\mathbb{R}) with

|V(x)||h(x)|1+|x|,\displaystyle\left\lvert V(x)\right\rvert\leq\frac{\left\lvert h(x)\right\rvert}{1+\left\lvert x\right\rvert},

such that {λn}n=1\{\lambda_{n}\}_{n=1}^{\infty} are eigenvalues of LL.

2. Prüfer transformation based on Floquet solution

In this section, we modify the Prüfer transformation based on Floquet solution. In the following, we always assume that λj=(aj,bj)\lambda\in\cup_{j=-\infty}^{\infty}(a_{j},b_{j}). Recall that g=g(x,λ)g=g(x,\lambda) is the Floquet solution of (3) with g(x+1,λ)=eik(λ)g(x,λ)g(x+1,\lambda)=e^{ik(\lambda)}g(x,\lambda), one has

(7) g(x,λ)=eik(λ)xh(x,λ),\displaystyle g(x,\lambda)=e^{ik(\lambda)x}h(x,\lambda),

where h(x,λ)2h(x,\lambda)\in\mathbb{C}^{2} is a 11-periodic function with respect to xx.

Define the Wronskian

W(y,g):\displaystyle W(y,g): =y1(x,λ)g2(x,λ)y2(x,λ)g1(x,λ),\displaystyle=y_{1}(x,\lambda)g_{2}(x,\lambda)-y_{2}(x,\lambda)g_{1}(x,\lambda),

one obtains

W(g¯,g)=2iIm(g¯1(x,λ)g2(x,λ)).\displaystyle W(\bar{g},g)=2i{\rm{Im}}(\bar{g}_{1}(x,\lambda)g_{2}(x,\lambda)).
Lemma 2.1.

For any λj(aj,bj)\lambda\in\cup_{j}(a_{j},b_{j}), one has

(8) W(g¯,g)0.\displaystyle W(\bar{g},g)\neq 0.

Therefore, for any xx\in\mathbb{R}, we have g1(x,λ)0g_{1}(x,\lambda)\neq 0 and g2(x,λ)0g_{2}(x,\lambda)\neq 0.

Proof.

Otherwise, we have g(x,λ)=cg¯(x,λ)g(x,\lambda)=c\bar{g}(x,\lambda) for some c0.c\neq 0. Then by (4) one has

cg¯(x+1,λ)=g(x+1,λ)=eik(λ)g(x,λ)=ceik(λ)g¯(x,λ).\displaystyle c\bar{g}(x+1,\lambda)=g(x+1,\lambda)=e^{ik(\lambda)}g(x,\lambda)=ce^{ik(\lambda)}\bar{g}(x,\lambda).

Thus, by g¯(x+1,λ)=eik(λ)g¯(x,λ)\bar{g}(x+1,\lambda)=e^{-ik(\lambda)}\bar{g}(x,\lambda) one obtains the contradiction. ∎

Let

W(g¯,g)=iω(0).\displaystyle W(\bar{g},g)=i\omega(\neq 0).

Denote by

gj(x,λ)=|gj(x,λ)|eiγj(x,λ),j=1,2.\displaystyle g_{j}(x,\lambda)=\left\lvert g_{j}(x,\lambda)\right\rvert e^{i\gamma_{j}(x,\lambda)},\ j=1,2.

By (7) one has that

(9) γj(x,λ)=k(λ)x+φj(x,λ),j=1,2,\displaystyle\gamma_{j}(x,\lambda)=k(\lambda)x+\varphi_{j}(x,\lambda),\ j=1,2,

where φj(x,λ)mod2π\varphi_{j}(x,\lambda)\mod 2\pi are 11-periodic functions with respect to xx.

Proposition 2.2.

2|g1(x,λ)||g2(x,λ)|sin(γ2(x,λ)γ1(x,λ))=ω.2\left\lvert g_{1}(x,\lambda)\right\rvert\left\lvert g_{2}(x,\lambda)\right\rvert\sin(\gamma_{2}(x,\lambda)-\gamma_{1}(x,\lambda))=\omega.

γ1(x,λ)=ω(λ+p(x))2|g1(x,λ)|2,γ2(x,λ)=ω(λp(x))2|g2(x,λ)|2.\displaystyle\gamma_{1}^{\prime}(x,\lambda)=\frac{\omega(\lambda+p(x))}{2\left\lvert g_{1}(x,\lambda)\right\rvert^{2}},\ \gamma_{2}^{\prime}(x,\lambda)=\frac{\omega(\lambda-p(x))}{2\left\lvert g_{2}(x,\lambda)\right\rvert^{2}}.
Proof.

By Wronskian of g¯\bar{g} and gg we obtain

2Im(g¯1(x,λ)g2(x,λ))=ω,\displaystyle 2{\rm{Im}}(\bar{g}_{1}(x,\lambda)g_{2}(x,\lambda))=\omega,

hence one obtains the conclusion.

By (3) and

lng1(x,λ)=ln|g1(x,λ)|+iγ1(x,λ),\displaystyle\ln g_{1}(x,\lambda)=\ln\left\lvert g_{1}(x,\lambda)\right\rvert+i\gamma_{1}(x,\lambda),

one has

γ1(x,λ)\displaystyle\gamma_{1}^{\prime}(x,\lambda) =Img1(x,λ)g1(x,λ)\displaystyle={\rm{Im}}\frac{g_{1}^{\prime}(x,\lambda)}{g_{1}(x,\lambda)}
=Imλg2(x,λ)q(x)g1(x,λ)+p(x)g2(x,λ)g1(x,λ)\displaystyle={\rm{Im}}\frac{\lambda g_{2}(x,\lambda)-q(x)g_{1}(x,\lambda)+p(x)g_{2}(x,\lambda)}{g_{1}(x,\lambda)}
=λ+p(x)|g1(x,λ)|2Im(g¯1(x,λ)g2(x,λ))\displaystyle=\frac{\lambda+p(x)}{\left\lvert g_{1}(x,\lambda)\right\rvert^{2}}{\rm{Im}}(\bar{g}_{1}(x,\lambda)g_{2}(x,\lambda))
=ω(λ+p(x))2|g1(x,λ)|2.\displaystyle=\frac{\omega(\lambda+p(x))}{2\left\lvert g_{1}(x,\lambda)\right\rvert^{2}}.

The calculation of γ2(x,λ)\gamma_{2}^{\prime}(x,\lambda) is similar, we omit the steps. ∎

Now we introduce the modified Prüfer transformation based on Floquet solution.

Let y(x,λ)y(x,\lambda) be the solution of (1). Define ρ(x,λ)=|ρ(x,λ)|iη(x,λ)\rho(x,\lambda)=\left\lvert\rho(x,\lambda)\right\rvert^{i\eta(x,\lambda)} by

(10) (y1(x,λ)y2(x,λ))\displaystyle\begin{pmatrix}y_{1}(x,\lambda)\\ y_{2}(x,\lambda)\end{pmatrix} =12i[(ρ(x,λ)g1(x,λ)ρ¯(x,λ)g1¯(x,λ)ρ(x,λ)g2(x,λ)ρ¯(x,λ)g2¯(x,λ))]\displaystyle=\frac{1}{2i}\left[\begin{pmatrix}\rho(x,\lambda)g_{1}(x,\lambda)-\bar{\rho}(x,\lambda)\bar{g_{1}}(x,\lambda)\\ \rho(x,\lambda)g_{2}(x,\lambda)-\bar{\rho}(x,\lambda)\bar{g_{2}}(x,\lambda)\end{pmatrix}\right]
=Im(ρ(x,λ)g1(x,λ)ρ(x,λ)g2(x,λ)).\displaystyle={\rm{Im}}\begin{pmatrix}\rho(x,\lambda)g_{1}(x,\lambda)\\ \rho(x,\lambda)g_{2}(x,\lambda)\end{pmatrix}.

We can normalize η(x,λ)\eta(x,\lambda) by η(0,λ)(0,2π]\eta(0,\lambda)\in(0,2\pi] and η(x,λ)\eta(x,\lambda) being continuous. Denote by R(x,λ)=|ρ(x,λ)|R(x,\lambda)=\left\lvert\rho(x,\lambda)\right\rvert. Then one has

(11) yj(x,λ)=R(x,λ)|gj(x,λ)|sinθj(x,λ),j=1,2,\displaystyle y_{j}(x,\lambda)=R(x,\lambda)\left\lvert g_{j}(x,\lambda)\right\rvert\sin\theta_{j}(x,\lambda),j=1,2,

where θj(x,λ)=η(x,λ)+γj(x,λ).\theta_{j}(x,\lambda)=\eta(x,\lambda)+\gamma_{j}(x,\lambda). By (10), one can obtain

(12) ρ(x,λ)=2ωW(g¯,y).\displaystyle\rho(x,\lambda)=\frac{2}{\omega}W(\bar{g},y).
Proposition 2.3.

For some C>0C>0, we have

(13) 1C|y1(x,λ)|2+|y2(x,λ)|2R(x,λ)C|y1(x,λ)|2+|y2(x,λ)|2.\displaystyle\frac{1}{C}\sqrt{\left\lvert y_{1}(x,\lambda)\right\rvert^{2}+\left\lvert y_{2}(x,\lambda)\right\rvert^{2}}\leq R(x,\lambda)\leq C\sqrt{\left\lvert y_{1}(x,\lambda)\right\rvert^{2}+\left\lvert y_{2}(x,\lambda)\right\rvert^{2}}.
Proof.

Since

|W(g¯,y)|\displaystyle\left\lvert W(\bar{g},y)\right\rvert =|g1¯(x,λ)y2(x,λ)g2¯(x,λ)y1(x,λ)|\displaystyle=\left\lvert\bar{g_{1}}(x,\lambda)y_{2}(x,\lambda)-\bar{g_{2}}(x,\lambda)y_{1}(x,\lambda)\right\rvert
|g1(x,λ)|2+|g2(x,λ)|2|y1(x,λ)|2+|y2(x,λ)|2.\displaystyle\leq\sqrt{\left\lvert g_{1}(x,\lambda)\right\rvert^{2}+\left\lvert g_{2}(x,\lambda)\right\rvert^{2}}\sqrt{\left\lvert y_{1}(x,\lambda)\right\rvert^{2}+\left\lvert y_{2}(x,\lambda)\right\rvert^{2}}.

Then by (12) and the periodicity of |g1(x,λ)|2+|g2(x,λ)|2\left\lvert g_{1}(x,\lambda)\right\rvert^{2}+\left\lvert g_{2}(x,\lambda)\right\rvert^{2}, one has that for some C>0C>0,

R(x,λ)C|y1(x,λ)|2+|y2(x,λ)|2.\displaystyle R(x,\lambda)\leq C\sqrt{\left\lvert y_{1}(x,\lambda)\right\rvert^{2}+\left\lvert y_{2}(x,\lambda)\right\rvert^{2}}.

By (10) and the periodicity of |g1(x,λ)|2+|g2(x,λ)|2\left\lvert g_{1}(x,\lambda)\right\rvert^{2}+\left\lvert g_{2}(x,\lambda)\right\rvert^{2}, one directly obtains the left half. ∎

By (13), one has that y(,λ)L2()L2()y(\cdot,\lambda)\in L^{2}(\mathbb{R})\oplus L^{2}(\mathbb{R}) is equivalent to that R(,λ)L2()R(\cdot,\lambda)\in L^{2}(\mathbb{R}). Recall that the perturbation

V=(V(x)00V(x)),\displaystyle V=\begin{pmatrix}V(x)&0\\ 0&-V(x)\end{pmatrix},

we have the following Lemma.

Lemma 2.4.
ρ(x,λ)ρ(x,λ)=\displaystyle\frac{\rho^{\prime}(x,\lambda)}{\rho(x,\lambda)}= 2V(x)ω|g1(x,λ)|2eiθ1(x,λ)sinθ1(x,λ)\displaystyle\frac{2V(x)}{\omega}\left\lvert g_{1}(x,\lambda)\right\rvert^{2}e^{-i\theta_{1}(x,\lambda)}\sin\theta_{1}(x,\lambda)
2V(x)ω|g2(x,λ)|2eiθ2(x,λ)sinθ2(x,λ).\displaystyle-\frac{2V(x)}{\omega}\left\lvert g_{2}(x,\lambda)\right\rvert^{2}e^{-i\theta_{2}(x,\lambda)}\sin\theta_{2}(x,\lambda).
R(x,λ)R(x,λ)=V(x)ω(|g1(x,λ)|2sin2θ1(x,λ)|g2(x,λ)|2sin2θ2(x,λ)).\displaystyle\frac{R^{\prime}(x,\lambda)}{R(x,\lambda)}=\frac{V(x)}{\omega}\bigg{(}\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\sin 2\theta_{1}(x,\lambda)-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin 2\theta_{2}(x,\lambda)\bigg{)}.

For j=1,2j=1,2,

θj(x,λ)=\displaystyle\theta_{j}^{\prime}(x,\lambda)= γj(x,λ)\displaystyle\gamma_{j}^{\prime}(x,\lambda)
2V(x)ω(|g1(x,λ)|2sin2θ1(x,λ)|g2(x,λ)|2sin2θ2(x,λ)).\displaystyle-\frac{2V(x)}{\omega}\bigg{(}\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\sin^{2}\theta_{1}(x,\lambda)-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin^{2}\theta_{2}(x,\lambda)\bigg{)}.
Proof.

By (1), (3) and (12), one has

ρ(x,λ)=\displaystyle\rho^{\prime}(x,\lambda)= 2ω(g1¯(x,λ)y2(x,λ)+g1¯(x,λ)y2(x,λ)\displaystyle\frac{2}{\omega}(\bar{g_{1}}^{\prime}(x,\lambda)y_{2}(x,\lambda)+\bar{g_{1}}(x,\lambda)y_{2}^{\prime}(x,\lambda)
g2¯(x,λ)y1(x,λ)g2¯(x,λ)y1(x,λ))\displaystyle-\bar{g_{2}}^{\prime}(x,\lambda)y_{1}(x,\lambda)-\bar{g_{2}}(x,\lambda)y_{1}^{\prime}(x,\lambda))
=\displaystyle= 2ω(V(x)g1¯(x,λ)y1(x,λ)V(x)g¯2(x,λ)y2(x,λ)).\displaystyle\frac{2}{\omega}(V(x)\bar{g_{1}}(x,\lambda)y_{1}(x,\lambda)-V(x)\bar{g}_{2}(x,\lambda)y_{2}(x,\lambda)).

Therefore, by (10) we can obtain (a).

Taking the real part of

(14) (lnρ(x,λ))=(lnR(x,λ))+iη(x,λ),\displaystyle(\ln\rho(x,\lambda))^{\prime}=(\ln R(x,\lambda))^{\prime}+i\eta^{\prime}(x,\lambda),

one obtains (b). Taking the imaginary part of (14) and applying θj(x,λ)=γj(x,λ)+η(x,λ)\theta_{j}(x,\lambda)=\gamma_{j}(x,\lambda)+\eta(x,\lambda) one has (c). ∎

Proof of Theorem 1.1.

By the assumption in the theorem, we suppose that for some small ε>0\varepsilon>0, for any x>x0>0x>x_{0}>0, one has

|V(x)|εx.\displaystyle\left\lvert V(x)\right\rvert\leq\frac{\varepsilon}{x}.

Therefore, by (b) of Lemma 2.4 , one has

lnR(x,λ)lnR(x0,λ)\displaystyle\ln R(x,\lambda)-\ln R(x_{0},\lambda) Cεx0x1t𝑑t\displaystyle\geq-C\varepsilon\int_{x_{0}}^{x}\frac{1}{t}dt
=Cεlnxx0,\displaystyle=-C\varepsilon\ln\frac{x}{x_{0}},

where C>0C>0 so that for any xx\in\mathbb{R}, |g1(x,λ)|2+|g2(x,λ)|2<ωC\left\lvert g_{1}(x,\lambda)\right\rvert^{2}+\left\lvert g_{2}(x,\lambda)\right\rvert^{2}<\omega C. Let ε\varepsilon be small so that Cε<12C\varepsilon<\frac{1}{2}. One has that for any large enough xx,

R(x,λ)x12.\displaystyle R(x,\lambda)\geq x^{-\frac{1}{2}}.

Therefore, R(,λ)L2()R(\cdot,\lambda)\notin L^{2}(\mathbb{R}). Hence, for any λj=1(aj,bj)\lambda\in\cup_{j=1}^{\infty}(a_{j},b_{j}), λ\lambda is not an eigenvalue of LL. ∎

3. Preparations

Denote by

Γ1(x,λ):=2γ2(x,λ)2γ1(x,λ),\displaystyle\Gamma_{1}(x,\lambda):=2\gamma_{2}(x,\lambda)-2\gamma_{1}(x,\lambda),

by (9), we know that Γ1(x,λ)mod2π\Gamma_{1}(x,\lambda)\mod 2\pi is a 11-periodic function in xx. By the defintion of θ(x,λ)\theta(x,\lambda), one has

2θ2(x,λ)2θ1(x,λ)=Γ1(x,λ).\displaystyle 2\theta_{2}(x,\lambda)-2\theta_{1}(x,\lambda)=\Gamma_{1}(x,\lambda).

Therefore,

|g1(x,λ)|2sin2θ1(x,λ)|g2(x,λ)|2sin2θ2(x,λ)\displaystyle\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\sin 2\theta_{1}(x,\lambda)-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin 2\theta_{2}(x,\lambda)
=\displaystyle= |g1(x,λ)|2sin2θ1(x,λ)|g2(x,λ)|2sin(2θ1(x,λ)+Γ1(x,λ))\displaystyle\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\sin 2\theta_{1}(x,\lambda)-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin(2\theta_{1}(x,\lambda)+\Gamma_{1}(x,\lambda))
(15) =\displaystyle= sin2θ1(x,λ)(|g1(x,λ)|2|g2(x,λ)|2cosΓ1(x,λ))\displaystyle\sin 2\theta_{1}(x,\lambda)\left(\left\lvert g_{1}(x,\lambda)\right\rvert^{2}-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\cos\Gamma_{1}(x,\lambda)\right)
|g2(x,λ)|2sinΓ1(x,λ)cos2θ1(x,λ).\displaystyle-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin\Gamma_{1}(x,\lambda)\cos 2\theta_{1}(x,\lambda).

Denote by

Ψ(x,λ)=\displaystyle\Psi(x,\lambda)= ((|g1(x,λ)|2|g2(x,λ)|2cosΓ1(x,λ))2\displaystyle\bigg{(}\left(\left\lvert g_{1}(x,\lambda)\right\rvert^{2}-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\cos\Gamma_{1}(x,\lambda)\right)^{2}
+(|g2(x,λ)|2sinΓ1(x,λ))2)12\displaystyle+\left(\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin\Gamma_{1}(x,\lambda)\right)^{2}\bigg{)}^{\frac{1}{2}}
=\displaystyle= (|g1(x,λ)|4+|g2(x,λ)|42|g1(x,λ)|2|g2(x,λ)|2cosΓ1(x,λ))12.\displaystyle\left(\left\lvert g_{1}(x,\lambda)\right\rvert^{4}+\left\lvert g_{2}(x,\lambda)\right\rvert^{4}-2\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\cos\Gamma_{1}(x,\lambda)\right)^{\frac{1}{2}}.

Clearly, Ψ(x,λ)\Psi(x,\lambda) is a 11-periodic function in xx. We mention that for any xx\in\mathbb{R}, Ψ(x,λ)>0.\Psi(x,\lambda)>0. Otherwise, one has

|g1(x,λ)|4+|g2(x,λ)|42|g1(x,λ)|2|g2(x,λ)|2cosΓ1(x,λ)=0.\displaystyle\left\lvert g_{1}(x,\lambda)\right\rvert^{4}+\left\lvert g_{2}(x,\lambda)\right\rvert^{4}-2\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\cos\Gamma_{1}(x,\lambda)=0.

Then we can obtain

|g1(x,λ)|=|g2(x,λ)|,\displaystyle\left\lvert g_{1}(x,\lambda)\right\rvert=\left\lvert g_{2}(x,\lambda)\right\rvert,

and

γ2(x,λ)γ1(x,λ)=Γ1(x,λ)2=n0π,\displaystyle\gamma_{2}(x,\lambda)-\gamma_{1}(x,\lambda)=\frac{\Gamma_{1}(x,\lambda)}{2}=n_{0}\pi,

for some n0n_{0}\in\mathbb{Z}. Then we have

g1(x,λ)=±g2(x,λ),\displaystyle g_{1}(x,\lambda)=\pm g_{2}(x,\lambda),

which can not happen by the fact W(g¯,g)0W(\bar{g},g)\neq 0. Hence, by (15), we have

|g1(x,λ)|2sin2θ1(x,λ)|g2(x,λ)|2sin2θ2(x,λ)\displaystyle\left\lvert g_{1}(x,\lambda)\right\rvert^{2}\sin 2\theta_{1}(x,\lambda)-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin 2\theta_{2}(x,\lambda)
(16) =\displaystyle= Ψ(x,λ)sin(2θ1(x,λ)+Γ2(x,λ)),\displaystyle\Psi(x,\lambda)\sin(2\theta_{1}(x,\lambda)+\Gamma_{2}(x,\lambda)),

where Γ2(x,λ)mod2π\Gamma_{2}(x,\lambda)\mod 2\pi is also a 11-periodic function in xx, and

sinΓ2(x,λ)\displaystyle\sin\Gamma_{2}(x,\lambda) =|g2(x,λ)|2sinΓ1(x,λ)Ψ(x,λ),\displaystyle=-\frac{\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\sin\Gamma_{1}(x,\lambda)}{\Psi(x,\lambda)},
cosΓ2(x,λ)\displaystyle\cos\Gamma_{2}(x,\lambda) =|g1(x,λ)|2|g2(x,λ)|2cosΓ1(x,λ)Ψ(x,λ).\displaystyle=\frac{\left\lvert g_{1}(x,\lambda)\right\rvert^{2}-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}\cos\Gamma_{1}(x,\lambda)}{\Psi(x,\lambda)}.

Let ξ(x,λ)=2θ1(x,λ)+Γ2(x,λ)\xi(x,\lambda)=2\theta_{1}(x,\lambda)+\Gamma_{2}(x,\lambda), one obtains

Lemma 3.1.

We have

(17) R(x,λ)R(x,λ)=V(x)ωΨ(x,λ)sinξ(x,λ),\displaystyle\frac{R^{\prime}(x,\lambda)}{R(x,\lambda)}=\frac{V(x)}{\omega}\Psi(x,\lambda)\sin\xi(x,\lambda),

and

ξ(x,λ)=\displaystyle\xi^{\prime}(x,\lambda)= 2k(λ)+δ(x,λ)\displaystyle 2k(\lambda)+\delta^{\prime}(x,\lambda)
(18) 2V(x)ω(|g1(x,λ)2||g2(x,λ)|2Ψ(x,λ)cosξ(x,λ)),\displaystyle-\frac{2V(x)}{\omega}\left(\left\lvert g_{1}(x,\lambda)^{2}\right\rvert-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}-\Psi(x,\lambda)\cos\xi(x,\lambda)\right),

where δ(x,λ)=2φ1(x,λ)+Γ2(x,λ)\delta(x,\lambda)=2\varphi_{1}(x,\lambda)+\Gamma_{2}(x,\lambda) and δ(x,λ)mod2π\delta(x,\lambda)\mod 2\pi is a 11-periodic function in xx.

Proof.

One directly obtains (17) by (b) of Lemma 2.4 and (16). By (9), (16) and (c) of Lemma 2.4, one can obtain (18). ∎

4. Oscillatory Intergral estimate

Lemma 4.1.

[17, Lemma 3.1] Let β1>0,β2>0\beta_{1}>0,\beta_{2}>0 and a0a\neq 0 be constants. Suppose β1+β2>1,β2>12\beta_{1}+\beta_{2}>1,\beta_{2}>\frac{1}{2}. Suppose that θ(x)\theta(x) satisfies

(19) θ(x)=a+O(1)1+|x|β1,|x|.\displaystyle\theta^{\prime}(x)=a+\frac{O(1)}{1+\left\lvert x\right\rvert^{\beta_{1}}},\ \left\lvert x\right\rvert\to\infty.

Let β=min{β2,β1+β21,2β21}\beta=\min\{\beta_{2},\beta_{1}+\beta_{2}-1,2\beta_{2}-1\}. Then for any xx0>1x\geq x_{0}>1, one has

(20) x0xsinθ(t)tβ2𝑑t=O(1)x0β,\displaystyle\int_{x_{0}}^{x}\frac{\sin\theta(t)}{t^{\beta_{2}}}dt=\frac{O(1)}{x_{0}^{\beta}},

and

(21) x0xcosθ(t)tβ2𝑑t=O(1)x0β.\displaystyle\int_{x_{0}}^{x}\frac{\cos\theta(t)}{t^{\beta_{2}}}dt=\frac{O(1)}{x_{0}^{\beta}}.

The following Lemma has been essentially proved in [22, Prop. 5.1], for completeness, we provide with the proof by using Lemma 4.1.

Lemma 4.2.

Assume that γ(x)mod2π,Γ(x)\gamma(x)\mod 2\pi,\Gamma(x) are continuous 11-periodic functions on \mathbb{R}. Let a2πa\in\mathbb{R}\setminus 2\pi\mathbb{Z}. Suppose that θ(x)\theta(x) satisfies

(22) θ(x)=a+γ(x)+O(1)|x|,|x|,\displaystyle\theta^{\prime}(x)=a+\gamma^{\prime}(x)+\frac{O(1)}{\left\lvert x\right\rvert},\ \left\lvert x\right\rvert\to\infty,

then one has for any x>x0>1x>x_{0}>1,

(23) x0xΓ(t)sinθ(t)t𝑑t=O(1)x0,\displaystyle\int_{x_{0}}^{x}\frac{\Gamma(t)\sin\theta(t)}{t}dt=\frac{O(1)}{x_{0}},

and for any x<x0<1x<x_{0}<-1,

(24) xx0Γ(t)sinθ(t)t𝑑t=O(1)x0.\displaystyle\int_{x}^{x_{0}}\frac{\Gamma(t)\sin\theta(t)}{{t}}dt=\frac{O(1)}{{x_{0}}}.
Proof.

We only give the proof of (23), then one can obtain (24) by letting t=st=-s. Denote by

θ~(x)=θ(x)γ(x).\displaystyle\tilde{\theta}(x)=\theta(x)-\gamma(x).

Then one has

(25) θ~(x)=a+O(1)|x|,|x|,\displaystyle\tilde{\theta}^{\prime}(x)=a+\frac{O(1)}{\left\lvert x\right\rvert},\ \left\lvert x\right\rvert\to\infty,

and

sinθ(x)=cosγ(x)sinθ~(x)+sinγ(x)cosθ~(x).\displaystyle\sin\theta(x)=\cos\gamma(x)\sin\tilde{\theta}(x)+\sin\gamma(x)\cos\tilde{\theta}(x).

Hence, we only need to prove

(26) x0xΓ(t)cosγ(t)sinθ~(t)t𝑑t=O(1)x0,\displaystyle\int_{x_{0}}^{x}\frac{\Gamma(t)\cos\gamma(t)\sin\tilde{\theta}(t)}{{t}}dt=\frac{O(1)}{x_{0}},

and

(27) x0xΓ(t)sinγ(t)cosθ~(t)t𝑑t=O(1)x0.\displaystyle\int_{x_{0}}^{x}\frac{\Gamma(t)\sin\gamma(t)\cos\tilde{\theta}(t)}{{t}}dt=\frac{O(1)}{x_{0}}.

To avoid repetition, we only prove (26). We mention that Γ(x)cosγ(x)\Gamma(x)\cos\gamma(x) is still 11-periodic. Consider the Fourier expansion of Γ(x)cosγ(x)\Gamma(x)\cos\gamma(x),

Γ(x)cosγ(x)=a02+n=1ancos(2πnx)+bnsin(2πnx).\displaystyle\Gamma(x)\cos\gamma(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{n}\cos(2\pi nx)+b_{n}\sin(2\pi nx).

To prove (26), by the fact that an2+bn2<,\sum a_{n}^{2}+b_{n}^{2}<\infty, we only need to show

x0xsinθ~(t)t𝑑t=O(1)x0,\displaystyle\int_{x_{0}}^{x}\frac{\sin\tilde{\theta}(t)}{t}dt=\frac{O(1)}{x_{0}},

and for any n>0n>0,

x0xcos(2πnt)sinθ~(t)t𝑑t=1nO(1)x0,\displaystyle\int_{x_{0}}^{x}\frac{\cos(2\pi nt)\sin\tilde{\theta}(t)}{t}dt=\frac{1}{n}\frac{O(1)}{x_{0}},

and

(28) x0xsin(2πnt)sinθ~(t)t𝑑t=1nO(1)x0.\displaystyle\int_{x_{0}}^{x}\frac{\sin(2\pi nt)\sin\tilde{\theta}(t)}{t}dt=\frac{1}{n}\frac{O(1)}{x_{0}}.

By the same reason, we only prove (28). Since

sin(2πnt)sinθ~(t)=12(cos(2πntθ~(t))cos(2πnt+θ~(t))),\displaystyle\sin(2\pi nt)\sin\tilde{\theta}(t)=\frac{1}{2}\left(\cos(2\pi nt-\tilde{\theta}(t))-\cos(2\pi nt+\tilde{\theta}(t))\right),

we have

x0xsin(2πnt)sinθ~(t)t𝑑t=\displaystyle\int_{x_{0}}^{x}\frac{\sin(2\pi nt)\sin\tilde{\theta}(t)}{t}dt= x0xcos(2πntθ~(t))2t𝑑t\displaystyle\int_{x_{0}}^{x}\frac{\cos(2\pi nt-\tilde{\theta}(t))}{2t}dt
x0xcos(2πnt+θ~(t))2t𝑑t.\displaystyle-\int_{x_{0}}^{x}\frac{\cos(2\pi nt+\tilde{\theta}(t))}{2t}dt.

Change variables with s=nts=nt, by (25) and the fact that a2πa\in\mathbb{R}\setminus 2\pi\mathbb{Z}, applying Lemma 4.1 with β1=β2=1\beta_{1}=\beta_{2}=1, one obtains the result. ∎

5. Construction

We assume that λ\lambda and λj\lambda_{j} are different values in j=(aj,bj)\cup_{j=-\infty}^{\infty}(a_{j},b_{j}) with k(λ),k(λj)π2k(\lambda),k(\lambda_{j})\neq\frac{\pi}{2}, k(λ)k(λj)k(\lambda)\neq k(\lambda_{j}) and k(λ)+k(λj)πk(\lambda)+k(\lambda_{j})\neq\pi. Denote by

k\displaystyle k =k(λ),kj=k(λj),δ(x)=δ(x,λ),δj(x)=δ(x,λj),\displaystyle=k(\lambda),\ k_{j}=k(\lambda_{j}),\ \delta(x)=\delta(x,\lambda),\delta_{j}(x)=\delta(x,\lambda_{j}),
R(x)\displaystyle R(x) =R(x,λ),Rj(x)=R(x,λj),ξ(x)=ξ(x,λ),ξj(x)=ξ(x,λj)\displaystyle=R(x,\lambda)\ ,R_{j}(x)=R(x,\lambda_{j}),\ \xi(x)=\xi(x,\lambda),\ \xi_{j}(x)=\xi(x,\lambda_{j})
Ψ(x)\displaystyle\Psi(x) =Ψ(x,λ),Ψj(x)=Ψ(x,λj).\displaystyle=\Psi(x,\lambda),\ \Psi_{j}(x)=\Psi(x,\lambda_{j}).

We mention that δ(x),Ψ(x),δj(x),Ψj(x)\delta(x),\Psi(x),\delta_{j}(x),\Psi_{j}(x) are independent of VV. Next, we will give the construction of potentials VV on [a,)[a,\infty) and on (,a](-\infty,a] for some large a>0a>0, the potential on (a,a)(-a,a) will not influence the speed of the decreases of RR and RjR_{j}. Consider the nonlinear differential equation for x>b>0x>b>0,

(29) ξ(x,λ,a,b,ξ0)=\displaystyle\xi^{\prime}(x,\lambda,a,b,\xi_{0})= 2k+δ(x)\displaystyle 2k+\delta^{\prime}(x)
+2Csinξ(x)xb(|g1(x,λ)|2|g2(x,λ)|2Ψ(x)cosξ(x)),\displaystyle+\frac{2C\sin\xi(x)}{x-b}\left(\left\lvert g_{1}(x,\lambda)\right\rvert^{2}-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}-\Psi(x)\cos\xi(x)\right),

and for x<bx<-b,

(30) ξ(x,λ,a,b,ξ1)=\displaystyle\xi^{\prime}(x,\lambda,a,b,\xi_{1})= 2k+δ(x)\displaystyle 2k+\delta^{\prime}(x)
+2Csinξ(x)x+b(|g1(x,λ)|2|g2(x,λ)|2Ψ(x)cosξ(x)),\displaystyle+\frac{2C\sin\xi(x)}{x+b}\left(\left\lvert g_{1}(x,\lambda)\right\rvert^{2}-\left\lvert g_{2}(x,\lambda)\right\rvert^{2}-\Psi(x)\cos\xi(x)\right),

where C>0C>0 is a large constant will be defined later. Solve (29) on [a,)[a,\infty) with the initial condition ξ(a)=ξ0\xi(a)=\xi_{0}, where a>ba>b, we can obtain a unique solution ξ(x)=ξ(x,λ,a,b,ξ0)\xi(x)=\xi(x,\lambda,a,b,\xi_{0}) on [a,)[a,\infty). Solve (30) on (,a](-\infty,a] with the initial condition ξ(a)=ξ1\xi(-a)=\xi_{1}, we can obtain a unique solution ξ(x)=ξ(x,λ,a,b,ξ1)\xi(x)=\xi(x,\lambda,a,b,\xi_{1}) on (,a](-\infty,a]. Let

(31) V(x,λ,a,b,ξ0)=ωCxbsinξ(x,λ,a,b,ξ0),x[a,),\displaystyle V(x,\lambda,a,b,\xi_{0})=-\frac{\omega C}{x-b}\sin\xi(x,\lambda,a,b,\xi_{0}),\ x\in[a,\infty),

and

(32) V(x,λ,a,b,ξ1)=ωCx+bsinξ(x,λ,a,b,ξ1),x(,a].\displaystyle V(x,\lambda,a,b,\xi_{1})=-\frac{\omega C}{x+b}\sin\xi(x,\lambda,a,b,\xi_{1}),\ x\in(-\infty,a].

Denote by

(33) V(x,λ,a,b,ξ0,ξ1)={V(x,λ,a,b,ξ0),x[a,),V(x,λ,a,b,ξ1),x(,a].\displaystyle V(x,\lambda,a,b,\xi_{0},\xi_{1})=\begin{cases}V(x,\lambda,a,b,\xi_{0}),\ x\in[a,\infty),\\ V(x,\lambda,a,b,\xi_{1}),\ x\in(-\infty,-a].\end{cases}
Lemma 5.1.

Suppose kπ2k\neq\frac{\pi}{2}. Let VV be difined by (33), then for any ±x>a\pm x>a, we have

(34) lnR(x)lnR(±a)100ln±xbab+C,\displaystyle\ln R(x)-\ln R(\pm a)\leq-100\ln\frac{\pm x-b}{a-b}+C,

and

(35) lnR(x)lnR(±a).\displaystyle\ln R(x)\leq\ln R(\pm a).
Proof.

Without loss of generality, assume b=0b=0, and we only consider the case x>ax>a, since we can directly obtain the result by letting t=xt=-x. By (17) and (31), one has

lnR(x)lnR(a)=\displaystyle\ln R(x)-\ln R(a)= axCΨ(t)tsin2ξ(t)dt\displaystyle\int_{a}^{x}-\frac{C\Psi(t)}{t}\sin^{2}\xi(t)dt
=\displaystyle= axCΨ(t)2t(1cos2ξ(t))\displaystyle\int_{a}^{x}-\frac{C\Psi(t)}{2t}\left(1-\cos 2\xi(t)\right)
(36) =\displaystyle= axCΨ(t)2tdt+axC2Ψ(t)tsin(2ξ(t)+π2)𝑑t.\displaystyle\int_{a}^{x}-\frac{C\Psi(t)}{2t}dt+\int_{a}^{x}\frac{C}{2}\frac{\Psi(t)}{t}\sin\left(2\xi(t)+\frac{\pi}{2}\right)dt.

By (29), we have

(2ξ(t)+π2)=4k+2δ(t)+O(1)t,\displaystyle\left(2\xi(t)+\frac{\pi}{2}\right)^{\prime}=4k+2\delta^{\prime}(t)+\frac{O(1)}{t},

as t.t\to\infty. Then applying (23) one obtains

axC2Ψ(t)tsin(2ξ(t)+π2)𝑑t=O(1),\displaystyle\int_{a}^{x}\frac{C}{2}\frac{\Psi(t)}{t}\sin\left(2\xi(t)+\frac{\pi}{2}\right)dt=O(1),

by (36) one has

lnR(x)lnR(a)=O(1)axCΨ(t)2t𝑑t.\displaystyle\ln R(x)-\ln R(a)=O(1)-\int_{a}^{x}\frac{C\Psi(t)}{2t}dt.

Therefore, the result follows from that Ψ(x)>0\Psi(x)>0 and the periodicity of Ψ(x)\Psi(x). ∎

Lemma 5.2.

Suppose that kkjk\neq k_{j}, k+kjπk+k_{j}\neq\pi. Let VV be defined by (33), then for any ±x>x0a\pm x>x_{0}\geq a and large enough x0bx_{0}-b one has

(37) Rj(x)1.5Rj(±x0).\displaystyle R_{j}(x)\leq 1.5R_{j}(\pm x_{0}).
Proof.

We only show the case of x>x0ax>x_{0}\geq a, then we can obtain the result by letting t=xt=-x. By (18) and (31), one has

lnRj(x)lnRj(x0)\displaystyle\ln R_{j}(x)-\ln R_{j}(x_{0})
=\displaystyle= x0xCΨj(t)tbsinξ(t)sinξj(t)dt\displaystyle\int_{x_{0}}^{x}-\frac{C\Psi_{j}(t)}{t-b}\sin\xi(t)\sin\xi_{j}(t)dt
=\displaystyle= x0xCΨj(t)2(tb)cos(ξ(t)ξj(t))dt+x0xCΨj(t)2(tb)cos(ξ(t)+ξj(t))𝑑t.\displaystyle\int_{x_{0}}^{x}-\frac{C\Psi_{j}(t)}{2(t-b)}\cos(\xi(t)-\xi_{j}(t))dt+\int_{x_{0}}^{x}\frac{C\Psi_{j}(t)}{2(t-b)}\cos(\xi(t)+\xi_{j}(t))dt.

By (18), (29) and (31), we have

(ξ(t)±ξj(t)+π2)=2k±2kj+δ(t)±δj(t)+O(1)tb,\displaystyle\left(\xi(t)\pm\xi_{j}(t)+\frac{\pi}{2}\right)^{\prime}=2k\pm 2k_{j}+\delta^{\prime}(t)\pm\delta^{\prime}_{j}(t)+\frac{O(1)}{t-b},

then by (23) one obtains the result. ∎

Proposition 5.3.

Let λ\lambda and A={λj}j=1NA=\{\lambda_{j}\}_{j=1}^{N} be in j=(aj,bj)\cup_{j=-\infty}^{\infty}(a_{j},b_{j}). Suppose that kkjk\neq k_{j}, kπ2k\neq\frac{\pi}{2} and k+kjπk+k_{j}\neq\pi for any j{1,2,,N}j\in\{1,2,\cdots,N\}. Suppose ξ0,ξ1[0,π]\xi_{0},\xi_{1}\in[0,\pi]. Let x1>x0>bx_{1}>x_{0}>b. Then there exist constants K(λ,A),C(λ,A)K(\lambda,A),C(\lambda,A) (independent of x,x0x,x_{0} and bb) and the potential V~(x,λ,x0,x1,b,ξ0,ξ1)\tilde{V}(x,\lambda,x_{0},x_{1},b,\xi_{0},\xi_{1}) such that for x0b>K(λ,A)x_{0}-b>K(\lambda,A) the following holds:

V~C0((x0,x1)(x1,x0))\tilde{V}\in C_{0}^{\infty}((x_{0},x_{1})\cup(-x_{1},-x_{0})), and

(38) |V~(x,λ,A,x0,x1,b,ξ0,ξ1)|\displaystyle\left\lvert\tilde{V}(x,\lambda,A,x_{0},x_{1},b,\xi_{0},\xi_{1})\right\rvert C(λ,A)±xb,x0<±x<x1.\displaystyle\leq\frac{C(\lambda,A)}{\pm x-b},\ x_{0}<\pm x<x_{1}.
(39) R(±x1)C(λ,A)(x1bx0b)100R(±x0),\displaystyle R(\pm x_{1})\leq C(\lambda,A)\left(\frac{x_{1}-b}{x_{0}-b}\right)^{-100}R(\pm x_{0}),

and for x0<±x<x1x_{0}<\pm x<x_{1},

(40) R(x)2R(±x0).\displaystyle R(x)\leq 2R(\pm x_{0}).

for any x0<±xx1x_{0}<\pm x\leq x_{1},

(41) Rj(x)2Rj(±x0).\displaystyle R_{j}(x)\leq 2R_{j}(\pm x_{0}).
Proof.

Let VV be defined by (33) with a=x0a=x_{0}. Applying Lemmas 5.1 and 5.2 with x=x1x=x_{1} and a=x0a=x_{0}, one can obtain (39), (40) and (41) with the coefficients 22 being replaced by 1.51.5. We need to modify the potential VV so that VC0V\in C_{0}^{\infty}. By (17) and (18) we know that a small change on VV will not cause much influence on RR and RjR_{j} on [x0,x1][x1,x0][x_{0},x_{1}]\cup[-x_{1},-x_{0}], thus Lemmas 5.1 and 5.2 still hold, and we can obtain the result. ∎

Proof of Theorems 1.2 and 1.4..

Once we obtain Proposition 5.3, we can construct potentials for Theorems 1.2 and 1.4 step by step, which has been well established in [5, 17, 22].

We only give an outline of the construction here. For example, we want λ\lambda and λ1\lambda_{1} to be embedded eigenvalues, then we need to construct potentials so that R(x)R(x) and R1(x)R_{1}(x) decrease quickly enough to be L2L^{2} near ±\pm\infty. First of all, let VV be in Propsition 5.3 on some intervals (T1,T0][T0,T1)(-T_{1},T_{0}]\cup[T_{0},T_{1}), then by (39) and (41) we know that R(x)R(x) decreases very fast and R1(x)R_{1}(x) will not undergo a significant increment. Next let VV be in Propsition 5.3 on some intervals (T2,T1][T1,T2)(-T_{2},T_{1}]\cup[T_{1},T_{2}) with λ\lambda and λ1\lambda_{1} exchanged, then by (39) and (41) we know that R1(x)R_{1}(x) will decreases very fast and R(x)R(x) will not undergo a significant increment. By choosing intervals (Tj+1,Tj][Tj,Tj+1)(-T_{j+1},T_{j}]\cup[T_{j},T_{j+1}) properly, one can obtain that R(x)R(x) and R1(x)R_{1}(x) are L2L^{2} near ±\pm\infty.

For many embedded eigenvalues. Let {Nr}r+\{N_{r}\}_{r\in\mathbb{Z}^{+}} be a non-decreasing sequence which goes to infinity slowly depending on h(x)h(x). We further assume Nr+1=Nr+1N_{r+1}=N_{r}+1 when Nr+1>NrN_{r+1}>N_{r}. At the rrth step, we take NrN_{r} eigenvalues {λ1,λ2,,λNr1,λNr}\{\lambda_{1},\lambda_{2},\cdots,\lambda_{N_{r}-1},\lambda_{N_{r}}\} into consideration. Applying Proposition 5.3, we construct potentials with NrN_{r} pieces, where each piece comes from (33) with λ\lambda being an eigenvalue. The main difficulty is to control the size TrTr1T_{r}-T_{r-1} of each piece. The construction in [5, 22, 17] only uses inequalities (38), (39), (40) and (41) to obtain appropriate TrTr1T_{r}-T_{r-1} and NrN_{r}. Hence Proposition 5.3 implies Theorems 1.2 and 1.4. ∎

Acknowledgments

The authors are supported by the National Natural Science Foundation of China (11871031).

References

  • [1] F. V. Atkinson and W. N. Everitt. Bounds for the point spectrum for a Sturm-Liouville equation. Proc. Roy. Soc. Edinburgh Sect. A, 80(1-2):57–66, 1978.
  • [2] J. Behrndt, P. Schmitz, G. Teschl, and C. Trunk. Perturbations of periodic Sturm-Liouville operators. Adv. Math., 422:Paper No. 109022, 22, 2023.
  • [3] B. M. Brown, M. S. P. Eastham, and K. M. Schmidt. Periodic differential operators, volume 230 of Operator Theory: Advances and Applications. Birkhäuser/Springer Basel AG, Basel, 2013.
  • [4] J. Janas and S. Simonov. A Weyl-Titchmarsh type formula for a discrete Schrödinger operator with Wigner–von Neumann potential. Studia Math., 201(2):167–189, 2010.
  • [5] S. Jitomirskaya and W. Liu. Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian. Geom. Funct. Anal., 29(1):238–257, 2019.
  • [6] E. Judge, S. Naboko, and I. Wood. Eigenvalues for perturbed periodic Jacobi matrices by the Wigner–von Neumann approach. Integral Equations Operator Theory, 85(3):427–450, 2016.
  • [7] E. Judge, S. Naboko, and I. Wood. Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach. J. Difference Equ. Appl., 24(8):1247–1272, 2018.
  • [8] E. Judge, S. Naboko, and I. Wood. Spectral results for perturbed periodic Jacobi matrices using the discrete Levinson technique. Studia Math., 242(2):179–215, 2018.
  • [9] T. Kato. Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. Pure Appl. Math., 12:403–425, 1959.
  • [10] V. Khapre, K. Lyu, and A. Yu. Sharp bound for embedded eigenvalues of Dirac operators with decaying potentials. New York J. Math., 28:1317–1328, 2022.
  • [11] A. Kiselev. Imbedded singular continuous spectrum for Schrödinger operators. J. Amer. Math. Soc., 18(3):571–603, 2005.
  • [12] A. Kiselev, C. Remling, and B. Simon. Effective perturbation methods for one-dimensional Schrödinger operators. J. Differential Equations, 151(2):290–312, 1999.
  • [13] E. Korotyaev and D. Mokeev. Periodic Dirac operator with dislocation. J. Differential Equations, 296:369–411, 2021.
  • [14] E. Korotyaev and D. Mokeev. Dubrovin equation for periodic Dirac operator on the half-line. Appl. Anal., 101(1):337–365, 2022.
  • [15] H. Krüger. On the existence of embedded eigenvalues. J. Math. Anal. Appl., 395(2):776–787, 2012.
  • [16] W. Liu. The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators. Pure Appl. Funct. Anal., 4(3):589–602, 2019.
  • [17] W. Liu. Criteria for eigenvalues embedded into the absolutely continuous spectrum of perturbed Stark type operators. J. Funct. Anal., 276(9):2936–2967, 2019.
  • [18] W. Liu. Sharp bounds for finitely many embedded eigenvalues of perturbed Stark type operators. Math. Nachr., 293(9):1776–1790, 2020.
  • [19] W. Liu. Criteria for embedded eigenvalues for discrete Schrödinger operators. Int. Math. Res. Not. IMRN, (20):15803–15832, 2021.
  • [20] W. Liu. Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues. Geom. Funct. Anal., 32(1):1–30, 2022.
  • [21] W. Liu and K. Lyu. One dimensional discrete Schrödinger operators with resonant embedded eigenvalues. In From complex analysis to operator theory—a panorama, volume 291 of Oper. Theory Adv. Appl., pages 619–636. Birkhäuser/Springer, Cham, [2023] ©2023.
  • [22] W. Liu and D. C. Ong. Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators. J. Anal. Math., 141(2):625–661, 2020.
  • [23] V. Lotoreichik and S. Simonov. Spectral analysis of the half-line Kronig-Penney model with Wigner–Von Neumann perturbations. Rep. Math. Phys., 74(1):45–72, 2014.
  • [24] M. Lukić. Schrödinger operators with slowly decaying Wigner-von Neumann type potentials. J. Spectr. Theory, 3(2):147–169, 2013.
  • [25] M. Lukić. A class of Schrödinger operators with decaying oscillatory potentials. Comm. Math. Phys., 326(2):441–458, 2014.
  • [26] M. Lukić and D. C. Ong. Wigner-von Neumann type perturbations of periodic Schrödinger operators. Trans. Amer. Math. Soc., 367(1):707–724, 2015.
  • [27] S. N. Naboko. On the dense point spectrum of Schrödinger and Dirac operators. Teoret. Mat. Fiz., 68(1):18–28, 1986.
  • [28] B. Simon. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc., 125(1):203–208, 1997.
  • [29] S. Simonov. Zeroes of the spectral density of the Schrödinger operator with the slowly decaying Wigner–von Neumann potential. Math. Z., 284(1-2):335–411, 2016.
  • [30] J. von Neumann and E. P. Wigner. Über merkwürdige diskrete eigenwerte. pages 291–293, 1993.