This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp lower bounds for moments of ζ(ρ)\zeta^{\prime}(\rho)

Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, P. R. China [email protected]
Abstract.

We study the 2k2k-th discrete moment of the derivative of the Riemann zeta-function at nontrivial zeros to establish sharp lower bounds for all real k0k\geq 0 under the Riemann hypothesis (RH).

Mathematics Subject Classification (2010): 11M06, 11M26

Keywords: lower bounds, moments, nontrivial zeros, Riemman zeta-function

1. Introduction

Various types of moments of the Riemann zeta function ζ(s)\zeta(s) have been extensively studied in the literature. In this paper, we are interested in the 2k2k-th discrete moment of the derivative of ζ(s)\zeta(s) at nontrivial zeros denoted by

Jk(T):=1N(T)0<(ρ)T|ζ(ρ)|2k,\displaystyle J_{k}(T):=\frac{1}{N(T)}\sum_{0<\Im(\rho)\leq T}|\zeta^{\prime}(\rho)|^{2k},

where we write ρ\rho for the nontrivial zeros of ζ(s)\zeta(s) and

N(T)=0<(ρ)T1.\displaystyle N(T)=\sum_{0<\Im(\rho)\leq T}1.

In [Gonek], S. M. Gonek initiated the study on Jk(T)J_{k}(T) to show that under the truth of the Riemann hypothesis (RH), one has asymptotically

J1(T)112(logT)3.\displaystyle J_{1}(T)\sim\frac{1}{12}(\log T)^{3}.

Regarding the order of magnitude for Jk(T)J_{k}(T), S. M. Gonek [Gonek1] and D. Hejhal [Hejhal] independently conjectured that for any real kk,

(1.1) Jk(T)(logT)k(k+2).\displaystyle J_{k}(T)\asymp(\log T)^{k(k+2)}.

A precisely asymptotic formula is further conjectured by C. P. Hughes, J. P. Keating and N. O’Connell in [HKO], building on connections with the random matrix theory. The evidence from the random matrix side also suggests that (1.1) may not be valid for k3/2k\leq-3/2.

A proof of (1.1) for the case of k=2k=2 is given by N. Ng [Ng] assuming RH. Under RH and the additional assumption that the zeros of ζ(s)\zeta(s) are simple, S. M. Gonek [Gonek1] obtained a lower bound for J1(T)J_{-1}(T) of the conjectured order of magnitude. An explicit estimation for the constant involved is further given by M. B. Milinovich and N. Ng [MN]. In [MN1], M. B. Milinovich and N. Ng also proved that for all natural number kk,

(1.2) Jk(T)k(logT)k(k+2).\displaystyle J_{k}(T)\gg_{k}(\log T)^{k(k+2)}.

On the other hand, M. B. Milinovich [Milinovich] proved that under RH, for any natural number kk and any ε>0\varepsilon>0,

(1.3) Jk(T)k,ε(logT)k(k+2)+ε.\displaystyle J_{k}(T)\ll_{k,\varepsilon}(\log T)^{k(k+2)+\varepsilon}.

In [Kirila], S. Kirila obtained sharp upper bounds for Jk(T)J_{k}(T) for all real k>0k>0 under RH. In particular, this implies the validity of (1.3) for natural numbers kk without the extra ε\varepsilon power. Together with (1.2), we see that (1.1) is valid for all natural numbers kk.

The approach taken by M. B. Milinovich and N. Ng to obtain their result concerning (1.2) follows from a simple and powerful method developed by Z. Rudnick and K. Soundararajan in [R&Sound, R&Sound1] for establishing lower bounds for moments of families of LL-functions, while the approach taken by S. Kirila follows from a method of K. Soundararajan [Sound01] together with its refinement by A. J. Harper [Harper] for establishing upper bounds for moments of families of LL-functions.

There are now a few more approaches towards establishing sharp bounds for moments of LL-functions, notably the upper bounds principal of M. Radziwiłł and K. Soundararajan [Radziwill&Sound] and the lower bounds principal of W. Heap and K. Soundararajan [H&Sound]. One then expects to apply these approaches to obtain sharp bounds concerning Jk(T)J_{k}(T). In fact, it is pointed out in [Kirila] that one should be able to establish sharp lower bounds for all real k>0k>0 using the approaches in [Radziwill&Sound, Radziwill&Sound1]. The aim of this paper is to achieve this and our main result is as follows.

Theorem 1.1.

Assuming RH. For large TT and any k0k\geq 0, we have

Jk(T)k(logT)k(k+2).\displaystyle J_{k}(T)\gg_{k}(\log T)^{k(k+2)}.

We shall instead apply the lower bounds principal of W. Heap and K. Soundararajan [H&Sound] in the proof of Theorem 1.1. The proof also uses the arguments by A. J. Harper in [Harper] and by S. Kirila in [Kirila]. Combining Theorem 1.1 and the above mentioned result of S. Kirila in [Kirila], we immediately obtain the following result concerning the order of magnitude of Jk(T)J_{k}(T).

Corollary 1.2.

Assuming RH. For large TT, the estimation given in (1.1) is valid for all real k0k\geq 0.

2. Preliminaries

We now introduce some notations and auxiliary results used in the paper. We assume the truth of RH throughout so that we may write each nontrivial zero ρ\rho of ζ(s)\zeta(s) as ρ=12+iγ\rho=\tfrac{1}{2}+i\gamma, where we denote γ\gamma\in\mathbb{R} for the imaginary part of ρ\rho. We denote ω(n)\omega(n) for the number of distinct prime factors of nn and Ω(n)\Omega(n) for the number of prime powers dividing nn. We note the following estimation (see [MVa, Theorem 2.10]) for ω(n)\omega(n),

(2.1) ω(n)lognloglogn(1+O(1loglogn)),n3.\displaystyle\omega(n)\leq\frac{\log n}{\log\log n}(1+O(\frac{1}{\log\log n})),\quad n\geq 3.

We also define Λj(n)\Lambda_{j}(n) for all integers j0j\geq 0 to be the coefficient of nsn^{-s} in the Dirichlet series expansion of (1)jζ(j)(s)/ζ(s)(-1)^{j}\zeta^{(j)}(s)/\zeta(s). In particular, we have Λ1(n)=Λ(n)\Lambda_{1}(n)=\Lambda(n), the usual von Mangoldt function. We extend the definition of Λ\Lambda to all real numbers xx by defining Λ(x)=0\Lambda(x)=0 when xx is not an integer and we note the following uniform version of Landau’s formula [Landau1912], originally proved by S. M. Gonek [Gonek93].

Lemma 2.1.

Assume RH. Then we have for TT large and any positive integers a,ba,b,

(2.2) T<γ2T(a/b)iγ={N(T,2T),a=b,T2πΛ(a/b)a/b+O(ab(logT)2),a>b,T2πΛ(b/a)b/a+O(ab(logT)2),b>a,\displaystyle\begin{split}\sum_{T<\gamma\leq 2T}(a/b)^{i\gamma}=\begin{cases}N(T,2T),\quad a=b,\\ \displaystyle-\frac{T}{2\pi}\frac{\Lambda(a/b)}{\sqrt{a/b}}+O\big{(}\sqrt{ab}(\log T)^{2}\big{)},\quad a>b,\\ \displaystyle-\frac{T}{2\pi}\frac{\Lambda(b/a)}{\sqrt{b/a}}+O\big{(}\sqrt{ab}(\log T)^{2}\big{)},\quad b>a,\end{cases}\end{split}

where we denote N(T,2T)N(T,2T) for the number of nontrivial zeros ρ\rho such that T<(ρ)2TT<\Im(\rho)\leq 2T.

The cases when aba\neq b of Lemma 2.1 are given in [Kirila, Lemma 5.1] while the case a=ba=b of Lemma 2.1 is trivial. Recall that the Riemann–von Mangoldt formula asserts (see [Da, Chapter 15]) that

N(T)=T2πlogT2πe+O(logT).\displaystyle N(T)=\frac{T}{2\pi}\log\frac{T}{2\pi e}+O(\log T).

It follows from this and the relation N(T,2T)=N(2T)N(T)N(T,2T)=N(2T)-N(T) that

(2.3) N(T,2T)TlogT.\displaystyle N(T,2T)\ll T\log T.

We reserve the letter pp for a prime number in this paper and we note that Λ2(n)\Lambda_{2}(n) is supported on integers nn with ω(n)2\omega(n)\leq 2 satisfying for primes p,q,pqp,q,p\neq q and positive integers i,ji,j,

(2.4) Λ2(pi)i(logp)2,Λ2(piqj)(logp)(logq).\displaystyle\Lambda_{2}(p^{i})\ll i(\log p)^{2},\quad\Lambda_{2}(p^{i}q^{j})\ll(\log p)(\log q).

We recall the following well-known Mertens’ formula (see [MVa1, Theorem 2.7]).

Lemma 2.2.

Let x2x\geq 2. We have, for some constant bb,

px1p=loglogx+b+O(1logx).\sum_{p\leq x}\frac{1}{p}=\log\log x+b+O\Big{(}\frac{1}{\log x}\Big{)}.

We end this section by including a mean value theorem given in [MN1, Lemma 4.1] concerning integrals over Dirichlet polynomials.

Lemma 2.3.

Let {an}\{a_{n}\} and {bn}\{b_{n}\} be sequences of complex numbers. Let T1T_{1} and T2T_{2} be positive real numbers and g(t)g(t) be a real-valued function that is continuously differentiable on the interval [T1,T2][T_{1},T_{2}]. Then

T1T2g(t)(n=1annit)(n=1bnnit)𝑑t=T1T2g(t)𝑑tn=1anbn+O((|g(T1)|+|g(T2)|+T1T2|g(t)|𝑑t)(n=1n|an|2)1/2(n=1n|bn|2)1/2).\displaystyle\begin{split}&\int^{T_{2}}_{T_{1}}g(t)\left(\sum^{\infty}_{n=1}a_{n}n^{-it}\right)\left(\sum^{\infty}_{n=1}b_{n}n^{it}\right)dt\\ =&\int^{T_{2}}_{T_{1}}g(t)dt\sum^{\infty}_{n=1}a_{n}b_{n}+O\left(\left(|g(T_{1})|+|g(T_{2})|+\int^{T_{2}}_{T_{1}}|g^{\prime}(t)|dt\right)\left(\sum^{\infty}_{n=1}n|a_{n}|^{2}\right)^{1/2}\left(\sum^{\infty}_{n=1}n|b_{n}|^{2}\right)^{1/2}\right).\end{split}

3. Proof of Theorem 1.1

3.1. The lower bound principle

We assume that TT is a large number throughout the proof. As the case k=0k=0 is trivial, we only consider the case k>0k>0 in the proof. Moreover, we note that in the rest of the paper, the explicit constants involved in estimations using \ll or the big-OO notations depend on kk only and are uniform with respect to ρ\rho. We further make the convention that an empty product is defined to be 11.

We follow the ideas of A. J. Harper in [Harper] and the notations of S. Kirila in [Kirila] to define for a large number MM depending on kk only,

α0=0,αj=20j1(loglogT)2j1,𝒥=k,T=1+max{j:αj10M}.\alpha_{0}=0,\;\;\;\;\;\alpha_{j}=\frac{20^{j-1}}{(\log\log T)^{2}}\;\;\;\forall\;j\geq 1,\quad\mathcal{J}=\mathcal{I}_{k,T}=1+\max\{j:\alpha_{j}\leq 10^{-M}\}.

It follows from the above notations and Lemma 2.2 that we have for 1j𝒥11\leq j\leq\mathcal{J}-1 and TT large enough,

(3.1) Tαj<pTαj+11p=logαj+1logαj+o(1)=log20+o(1)10.\displaystyle\sum_{T^{\alpha_{j}}<p\leq T^{\alpha_{j+1}}}\frac{1}{p}=\log\alpha_{j+1}-\log\alpha_{j}+o(1)=\log 20+o(1)\leq 10.

We denote for any real number \ell and any xx\in\mathbb{R},

E(x)=j=0xjj!.\displaystyle E_{\ell}(x)=\sum_{j=0}^{\lceil\ell\rceil}\frac{x^{j}}{j!}.

We then define for any real number α\alpha and any 1j𝒥1\leq j\leq\mathcal{J},

𝒫j(s)=\displaystyle{\mathcal{P}}_{j}(s)= pIj1ps,𝒩j(s,α)=Ee2kαj3/4(α𝒫j(s)),𝒩(s,α)=j=1𝒥𝒩j(s,α).\displaystyle\sum_{p\in I_{j}}\frac{1}{p^{s}},\quad{\mathcal{N}}_{j}(s,\alpha)=E_{e^{2}k\alpha^{-3/4}_{j}}\Big{(}\alpha{\mathcal{P}}_{j}(s)\Big{)},\quad{\mathcal{N}}(s,\alpha)=\prod^{\mathcal{J}}_{j=1}{\mathcal{N}}_{j}(s,\alpha).

Denote g(n)g(n) for the multiplicative function given on prime powers by g(pr)=1/r!g(p^{r})=1/r! and define functions bj(n),1j𝒥b_{j}(n),1\leq j\leq{\mathcal{J}} such that bj(n)=0b_{j}(n)=0 or 11 and that bj(n)=1b_{j}(n)=1 only when nn is composed of at most e2kαj3/4\lceil e^{2}k\alpha^{-3/4}_{j}\rceil primes, all from the interval IjI_{j}. We then have

𝒩j(s,α)=njαΩ(nj)g(nj)bj(nj)1njs,1j𝒥.\displaystyle{\mathcal{N}}_{j}(s,\alpha)=\sum_{n_{j}}\frac{\alpha^{\Omega(n_{j})}}{g(n_{j})}b_{j}(n_{j})\frac{1}{n^{s}_{j}},\quad 1\leq j\leq{\mathcal{J}}.

Note that each 𝒩j(s,α){\mathcal{N}}_{j}(s,\alpha) is a short Dirichlet polynomial of length at most Tαje2kαj3/4T^{\alpha_{j}\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}. By taking TT large enough, we notice that

j=1𝒥αje2kαj3/440e2k10M/4.\displaystyle\sum^{\mathcal{J}}_{j=1}\alpha_{j}\lceil e^{2}k\alpha^{-3/4}_{j}\rceil\leq 40e^{2}k10^{-M/4}.

It follows that 𝒩(s,α){\mathcal{N}}(s,\alpha) is also a short Dirichlet polynomial of length at most T40e2k10M/4T^{40e^{2}k10^{-M/4}}.

Moreover, we write for simplicity that

(3.2) 𝒩(s,α)=naα(n)ns.\displaystyle{\mathcal{N}}(s,\alpha)=\sum_{n}\frac{a_{\alpha}(n)}{n^{s}}.

We note that aα(n)0a_{\alpha}(n)\neq 0 only when n=1j𝒥njn=\prod_{1\leq j\leq\mathcal{J}}n_{j}, in which case we have

aα(n)=njαΩ(nj)g(nj)bj(nj).\displaystyle a_{\alpha}(n)=\prod_{n_{j}}\frac{\alpha^{\Omega(n_{j})}}{g(n_{j})}b_{j}(n_{j}).

Taking note also the estimation that for all integers i0i\geq 0,

αii!e|α|,\displaystyle\frac{\alpha^{i}}{i!}\ll e^{|\alpha|},

we conclude from above discussions that for all nn,

(3.3) aα(n)e|α|ω(n),ak(n)=0, when n>T40e2k10M/4.\displaystyle a_{\alpha}(n)\leq e^{|\alpha|\omega(n)},\quad a_{k}(n)=0,\text{ when }n>T^{40e^{2}k10^{-M/4}}.

We apply the above estimations and (2.1) in (3.2) to see that for (s)1/logT\Re(s)\geq-1/\log T and TT large enough,

(3.4) |𝒩(s,α)|e|α|logTloglogT(1+O(1loglogT))T40e2k10M/4(1+1/logT).\displaystyle|{\mathcal{N}}(s,\alpha)|\ll e^{|\alpha|\frac{\log T}{\log\log T}(1+O(\frac{1}{\log\log T}))}T^{40e^{2}k10^{-M/4}(1+1/\log T)}.

In the proof of Theorem 1.1, we need the following bounds concerning expressions involving with various 𝒩(s,α){\mathcal{N}}(s,\alpha) .

Lemma 3.2.

With the notations as above, we have for 0<k1/20<k\leq 1/2 and 1j𝒥1\leq j\leq\mathcal{J},

(3.5) |𝒩j(s,k)|2/k|𝒩j(s,k1)|2|𝒩j(s,k)|2(1+ee2kαj3/4)2/k+2(1ee2kαj3/4)2+|𝒬j(s,k)|2rk.\displaystyle\begin{split}|\mathcal{N}_{j}(s,k)|^{2/k}|\mathcal{N}_{j}(s,k-1)|^{2}\leq|{\mathcal{N}}_{j}(s,k)|^{2}\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{2/k+2}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}+|{\mathcal{Q}}_{j}(s,k)|^{2r_{k}}.\end{split}

We also have for k>1/2k>1/2 and 1j𝒥1\leq j\leq\mathcal{J},

(3.6) |𝒩j(s,k1)𝒩j(s,k)|2k2k1|𝒩j(s,k)|2(1+ee2kαj3/4)2k2k1(1ee2kαj3/4)2+|𝒬j(s,k)|2rk.\displaystyle\begin{split}|\mathcal{N}_{j}(s,k-1)\mathcal{N}_{j}(s,k)|^{\frac{2k}{2k-1}}\leq|{\mathcal{N}}_{j}(s,k)|^{2}\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{\frac{2k}{2k-1}}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}+|{\mathcal{Q}}_{j}(s,k)|^{2r_{k}}.\end{split}

Here the implied constants in (3.5) and (3.6) are absolute, and we define

𝒬j(s,k)=(64max(2,k+3/2)𝒫j(s)e2kαj3/4)e2kαj3/4,{\mathcal{Q}}_{j}(s,k)=\Big{(}\frac{64\max(2,k+3/2){\mathcal{P}}_{j}(s)}{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\Big{)}^{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil},

with rk=2+1/kr_{k}=2+\lceil 1/k\rceil for 0<k1/20<k\leq 1/2 and rk=1+2k/(2k1)r_{k}=1+\lceil 2k/(2k-1)\rceil for k>1/2k>1/2.

Proof.

As in the proof of [Gao2021-3, Lemma 3.4], we have for |z|aK/20|z|\leq aK/20 with 0<a20<a\leq 2,

(3.7) |r=0Kzrr!ez||z|KK!(ae20)K.\displaystyle\Big{|}\sum_{r=0}^{K}\frac{z^{r}}{r!}-e^{z}\Big{|}\leq\frac{|z|^{K}}{K!}\leq\Big{(}\frac{ae}{20}\Big{)}^{K}.

By taking z=α𝒫j(s),K=e2kαj3/4z=\alpha{\mathcal{P}}_{j}(s),K=\lceil e^{2}k\alpha^{-3/4}_{j}\rceil and a=min(|α|,2)a=\min(|\alpha|,2) in (3.7), we see that when |𝒫j(s)|e2kαj3/4/(20(1+|α|))|{\mathcal{P}}_{j}(s)|\leq\lceil e^{2}k\alpha^{-3/4}_{j}\rceil/(20(1+|\alpha|)),

𝒩j(s,α)\displaystyle{\mathcal{N}}_{j}(s,\alpha)\leq exp(α𝒫j(s))(1+exp(|α𝒫j(s)|)(ae20)e2kαj3/4)exp(α𝒫j(s))(1+ee2kαj3/4).\displaystyle\exp(\alpha{\mathcal{P}}_{j}(s))\left(1+\exp(|\alpha{\mathcal{P}}_{j}(s)|)\left(\frac{ae}{20}\right)^{e^{2}k\alpha^{-3/4}_{j}}\right)\leq\exp(\alpha{\mathcal{P}}_{j}(s))\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right).

Similarly, we have

𝒩(s,α)\displaystyle{\mathcal{N}}_{(}s,\alpha)\geq exp(α𝒫j(s))(1exp(|α𝒫j(s)|)(ae20)e2kαj3/4)exp(α𝒫j(s))(1ee2kαj3/4).\displaystyle\exp(\alpha{\mathcal{P}}_{j}(s))\left(1-\exp(|\alpha{\mathcal{P}}_{j}(s)|)\left(\frac{ae}{20}\right)^{e^{2}k\alpha^{-3/4}_{j}}\right)\geq\exp(\alpha{\mathcal{P}}_{j}(s))\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right).

We apply the above estimation to 𝒩j(s,k),𝒩j(s,k1){\mathcal{N}}_{j}(s,k),{\mathcal{N}}_{j}(s,k-1) to see that when 0<k1/20<k\leq 1/2 and |𝒫j(s)|e2kαj3/4/60|{\mathcal{P}}_{j}(s)|\leq\lceil e^{2}k\alpha^{-3/4}_{j}\rceil/60, we have

(3.8) |𝒩j(s,k)|2k|𝒩j(s,k1)|2exp(2k𝒫j(s))(1+ee2kαj3/4)2/k+2|𝒩j(s,k)|2(1+ee2kαj3/4)2/k+2(1ee2kαj3/4)2.\displaystyle\begin{split}|{\mathcal{N}}_{j}(s,k)|^{\frac{2}{k}}|{\mathcal{N}}_{j}(s,k-1)|^{2}\leq&\exp(2k\Re{\mathcal{P}}_{j}(s))\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{2/k+2}\\ \leq&|{\mathcal{N}}_{j}(s,k)|^{2}\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{2/k+2}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}.\end{split}

The above arguments also imply that when k>1/2k>1/2 and |𝒫j(s)|e2kαj3/4/60|{\mathcal{P}}_{j}(s)|\leq\lceil e^{2}k\alpha^{-3/4}_{j}\rceil/60, then

(3.9) |𝒩j(s,2k1)|2k2k1|𝒩j(s,k)|2(1+ee2kαj3/4)2k2k1(1ee2kαj3/4)2.\displaystyle\begin{split}|\mathcal{N}_{j}(s,2k-1)|^{\frac{2k}{2k-1}}\leq|{\mathcal{N}}_{j}(s,k)|^{2}\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{\frac{2k}{2k-1}}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}.\end{split}

On the other hand, when |𝒫j(s)|e2kαj3/4/60|{\mathcal{P}}_{j}(s)|\geq\lceil e^{2}k\alpha^{-3/4}_{j}\rceil/60, we have that

(3.10) 𝒩j(s,α)r=0e2kαj3/4|α𝒫j(s)|rr!|(|α|+1)𝒫j(s)|e2kαj3/4r=0e2kαj3/4(60e2kαj3/4)e2kαj3/4r1r!(64(|α|+1)|𝒫j(s)|e2kαj3/4)e2kαj3/4.\displaystyle\begin{split}{\mathcal{N}}_{j}(s,\alpha)\leq\sum_{r=0}^{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\frac{|\alpha{\mathcal{P}}_{j}(s)|^{r}}{r!}&\leq|(|\alpha|+1){\mathcal{P}}_{j}(s)|^{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\sum_{r=0}^{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\Big{(}\frac{60}{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\Big{)}^{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil-r}\frac{1}{r!}\\ &\leq\Big{(}\frac{64(|\alpha|+1)|{\mathcal{P}}_{j}(s)|}{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\Big{)}^{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}.\end{split}

We then set α=1\alpha=1 in the last expression in (3.10) to deduce that when 0<k1/20<k\leq 1/2 and |𝒫j(s)|e2kαj3/4/60|{\mathcal{P}}_{j}(s)|\geq\lceil e^{2}k\alpha^{-3/4}_{j}\rceil/60,

(3.11) |𝒩j(s,k)|2k|𝒩j(s,k1)|2|𝒬j(s,k)|2rk.\displaystyle\begin{split}|{\mathcal{N}}_{j}(s,k)|^{\frac{2}{k}}|{\mathcal{N}}_{j}(s,k-1)|^{2}\leq|{\mathcal{Q}}_{j}(s,k)|^{2r_{k}}.\end{split}

Moreover, we set α=k\alpha=k in the last expression in (3.10) to deduce that when k>1/2k>1/2 and |𝒫j(s)|e2kαj3/4/(10(1+|α|))|{\mathcal{P}}_{j}(s)|\geq\lceil e^{2}k\alpha^{-3/4}_{j}\rceil/(10(1+|\alpha|)),

(3.12) |𝒩j(s,k1)𝒩j(s,k)|2k2k1|𝒬j(s,k)|2rk.\displaystyle\begin{split}|{\mathcal{N}}_{j}(s,k-1){\mathcal{N}}_{j}(s,k)|^{\frac{2k}{2k-1}}\leq|{\mathcal{Q}}_{j}(s,k)|^{2r_{k}}.\end{split}

The assertion of the lemma now follows from (3.8), (3.9), (3.11) and (3.12). ∎

Next, we state the needed lower bounds principle of W. Heap and K. Soundararajan in [H&Sound] for our situation.

Lemma 3.3.

With notations as above. For 0<k1/20<k\leq 1/2, we have

(3.13) 0<γTζ(ρ)𝒩(ρ,k1)𝒩(ρ¯,k)(0<γT|ζ(ρ)|2k)1/2(0<γT|ζ(ρ)|2|𝒩(ρ,k1)|2)(1k)/2×(0<γTi=1𝒥(|𝒩i(ρ,k)|2+|𝒬i(ρ,k)|2rk))k/2.\displaystyle\begin{split}\sum_{0<\gamma\leq T}\zeta^{\prime}(\rho)\mathcal{N}(\rho,k-1)\mathcal{N}(\overline{\rho},k)\ll&\Big{(}\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2k}\Big{)}^{1/2}\Big{(}\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\Big{)}^{(1-k)/2}\\ &\times\Big{(}\sum_{0<\gamma\leq T}\prod^{\mathcal{J}}_{i=1}\big{(}|{\mathcal{N}}_{i}(\rho,k)|^{2}+|{\mathcal{Q}}_{i}(\rho,k)|^{2r_{k}}\big{)}\Big{)}^{k/2}.\end{split}

For k>1/2k>1/2, we have

(3.14) 0<γTζ(ρ)𝒩(ρ,k1)𝒩(ρ¯,k)(0<γT|ζ(ρ)|2k)12k(0<γTj=1𝒥(|𝒩j(ρ,k)|2+|𝒬j(ρ,k)|2rk))2k12k.\displaystyle\begin{split}&\sum_{0<\gamma\leq T}\zeta^{\prime}(\rho)\mathcal{N}(\rho,k-1)\mathcal{N}(\overline{\rho},k)\leq\Big{(}\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2k}\Big{)}^{\frac{1}{2k}}\Big{(}\sum_{0<\gamma\leq T}\prod^{\mathcal{J}}_{j=1}\big{(}|{\mathcal{N}}_{j}(\rho,k)|^{2}+|{\mathcal{Q}}_{j}(\rho,k)|^{2r_{k}}\big{)}\Big{)}^{\frac{2k-1}{2k}}.\end{split}

The implied constants in (3.13) and (3.14) depend on kk only.

Proof.

We assume 0<k1/20<k\leq 1/2 first and apply Hölder’s inequality to see that the left side of (3.13) is

(3.15) (0<γT|ζ(ρ)|2k)1/2(0<γT|ζ(ρ)|2|𝒩(ρ,k1)|2)(1k)/2(0<γT|𝒩(ρ,k)|2/k|𝒩(ρ,k1)|2)k/2.\displaystyle\begin{split}\leq&\Big{(}\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2k}\Big{)}^{1/2}\Big{(}\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\Big{)}^{(1-k)/2}\Big{(}\sum_{0<\gamma\leq T}|\mathcal{N}(\rho,k)|^{2/k}|\mathcal{N}(\rho,k-1)|^{2}\Big{)}^{k/2}.\end{split}

We apply the estimation in (3.5) in the last sum of (3.15) above and note that, upon applying the estimation that 1eue1/u1-e^{-u}\geq e^{-1/u} for u>0u>0, we have

1j𝒥(1+ee2kαj3/4)2/k+2(1ee2kαj3/4)2\displaystyle\prod_{1\leq j\leq{\mathcal{J}}}\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{2/k+2}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}\leq 1j𝒥(1ee2kαj3/4)21j𝒥e2αj3/4/(e2k)<.\displaystyle\prod_{1\leq j\leq{\mathcal{J}}}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}\leq\prod_{1\leq j\leq{\mathcal{J}}}e^{2\alpha^{3/4}_{j}/(e^{2}k)}<\infty.

This leads to the estimation given in (3.13).

It remains to consider the case k>1/2k>1/2 and we apply Hölder’s inequality again to see that the left side of (3.14) is

(3.16) (0<γT|ζ(ρ)|2k)12k(0<γT|𝒩(ρ,k1)𝒩(ρ,k)|2k2k1)2k12k.\displaystyle\begin{split}\leq\Big{(}\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2k}\Big{)}^{\frac{1}{2k}}\Big{(}\sum_{0<\gamma\leq T}|\mathcal{N}(\rho,k-1)\mathcal{N}(\rho,k)|^{\frac{2k}{2k-1}}\Big{)}^{\frac{2k-1}{2k}}.\end{split}

We apply the estimation in (3.6) in the last sum of (3.16) above and note that the product

1j𝒥(1+ee2kαj3/4)2k2k1(1ee2kαj3/4)2<.\prod_{1\leq j\leq{\mathcal{J}}}\left(1+e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{\frac{2k}{2k-1}}\left(1-e^{-e^{2}k\alpha^{-3/4}_{j}}\right)^{-2}<\infty.

This leads to the estimation given in (3.14) and this completes the proof. ∎

It follows from the above lemma and the observation that ρ¯=1ρ\overline{\rho}=1-\rho that in order to establish Theorem 1.1, it suffices to prove the following three propositions.

Proposition 3.4.

With notations as above, we have for k>0k>0,

(3.17) 0<γTζ(ρ)𝒩(ρ,k1)𝒩(1ρ,k)T(logT)k2+2.\displaystyle\sum_{0<\gamma\leq T}\zeta^{\prime}(\rho)\mathcal{N}(\rho,k-1)\mathcal{N}(1-\rho,k)\gg T(\log T)^{k^{2}+2}.
Proposition 3.5.

With notations as above, we have for k>0k>0,

0<γTj=1𝒥(|𝒩j(ρ,k)|2+|𝒬j(ρ,k)|2rk)\displaystyle\sum_{0<\gamma\leq T}\prod^{\mathcal{J}}_{j=1}\big{(}|{\mathcal{N}}_{j}(\rho,k)|^{2}+|{\mathcal{Q}}_{j}(\rho,k)|^{2r_{k}}\big{)}\ll T(logT)k2+1.\displaystyle T(\log T)^{k^{2}+1}.
Proposition 3.6.

With notations as above, we have for 0<k1/20<k\leq 1/2,

0<γT|ζ(ρ)|2|𝒩(ρ,k1)|2T(logT)k2+3.\displaystyle\sum_{0<\gamma\leq T}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\ll T(\log T)^{k^{2}+3}.

We shall prove the above propositions in the rest of the paper.

3.7. Proof of Proposition 3.4

The proof follows largely the arguments in Section 5 of [MN1]. We begin by recalling a few results on the Riemann zeta function ζ(s)\zeta(s). Notice that ζ(s)\zeta(s) satisfies the functional equation (see [MVa, Corollary 10.4]):

(3.18) ζ(s)=χ(s)ζ(1s),\displaystyle\zeta(s)=\chi(s)\zeta(1-s),

where

χ(s)=2sπs1Γ(1s)sin(πs/2).\chi(s)=2^{s}\pi^{s-1}\Gamma(1-s)\sin(\pi s/2)\ .

Logarithmically differentiating the functional equation above implies that

(3.19) ζζ(1s)=χχ(s)ζζ(s).\displaystyle\frac{\zeta^{\prime}}{\zeta}(1-s)=\frac{\chi^{\prime}}{\chi}(s)-\frac{\zeta^{\prime}}{\zeta}(s).

Moreover, we have (see [MN1, (8)]) uniformly for 1σ2-1\leq\sigma\leq 2 and |t|1|t|\geq 1,

(3.20) χχ(σ+it)=χχ(1σit)=log(|t|2π)+O(1|t|).\displaystyle\frac{\chi^{\prime}}{\chi}(\sigma+it)=\frac{\chi^{\prime}}{\chi}(1-\sigma-it)=-\log\left(\frac{|t|}{2\pi}\right)+O(\frac{1}{|t|}).

Note that it follows from [Da, p. 108] that for every t2t\geq 2 and all nontrivial zeros ρ=12+iγ\rho=\tfrac{1}{2}+i\gamma of ζ(s)\zeta(s), there exists a number TT satisfying tTt+1t\leq T\leq t+1 such that

(3.21) ζζ(σ+it)(logT)2,for1σ2and|γT|(logT)1.\displaystyle\frac{\zeta^{\prime}}{\zeta}(\sigma+it)\ll(\log T)^{2},\quad\text{for}-1\leq\sigma\leq 2\ \ \text{and}\ \ |\gamma-T|\gg(\log T)^{-1}.

Note also that by differentiating the functional equation (3.18) above, we have

(3.22) ζ(s)=χ(s)(ζ(1s)χχ(s)ζ(1s)).\displaystyle\zeta^{\prime}(s)=-\chi(s)\left(\zeta^{\prime}(1-s)-\frac{\chi^{\prime}}{\chi}(s)\zeta(1-s)\right).

We deduce from this that if we denote the left side expression in (3.17) by SS, then

S\displaystyle S =0<γTχ(ρ)ζ(1ρ)𝒩(ρ,k1)𝒩(1ρ,k)=12πi𝒞ζζ(1s)χ(s)ζ(1s)𝒩(s,k1)𝒩(1s,k)𝑑s,\displaystyle=-\sum_{0<\gamma\leq T}\chi(\rho)\zeta^{\prime}(1-\rho)\mathcal{N}(\rho,k-1)\mathcal{N}(1-\rho,k)=\frac{1}{2\pi i}\int_{\mathcal{C}}\frac{\zeta^{\prime}}{\zeta}(1-s)\chi(s)\zeta^{\prime}(1-s)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds,

where 𝒞\mathcal{C} is the positively oriented rectangle with vertices at 1κ+i,κ+i,κ+iT,1-\kappa+i,\kappa+i,\kappa+iT, and 1κ+iT1-\kappa+iT, and κ=1+(logT)1\kappa=1+(\log T)^{-1}. Here we may choose TT to satisfy the conditions in (3.21). We then apply (3.4), (3.21) and the estimations

χ(s)T1/2σ,ζ(1s)Tσ/2+ϵ\begin{split}\chi(s)\ll T^{1/2-\sigma},\quad\zeta^{\prime}(1-s)\ll T^{\sigma/2+\epsilon}\ \end{split}

to see that the integral is bounded by O(T1ε)O(T^{1-\varepsilon}) on the horizontal edges of the contour.

Next, we deduce from (3.22) and the functional equation (3.18) that

χ(s)ζ(1s)=ζ(s)+χχ(s)ζ(s).\chi(s)\zeta^{\prime}(1-s)=-\zeta^{\prime}(s)+\frac{\chi^{\prime}}{\chi}(s)\zeta(s).

Combining this with (3.19), we see that the integral on the right edge of the contour equals

SR=12πiκ+iκ+iT(χχ(s)2ζ(s)2χχ(s)ζ(s)+ζζ(s)ζ(s))𝒩(s,k1)𝒩(1s,k)𝑑s.S_{R}=\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\left(\frac{\chi^{\prime}}{\chi}(s)^{2}\zeta(s)-2\frac{\chi^{\prime}}{\chi}(s)\zeta^{\prime}(s)+\frac{\zeta^{\prime}}{\zeta}(s)\zeta^{\prime}(s)\right)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds.

Also, the integral on the left edge of the contour equals

SL=12πi1κ+iT1κ+iζζ(1s)χ(s)ζ(1s)𝒩(s,k1)𝒩(1s,k)𝑑s.S_{L}=\frac{1}{2\pi i}\int_{1-\kappa+iT}^{1-\kappa+i}\frac{\zeta^{\prime}}{\zeta}(1-s)\chi(s)\zeta^{\prime}(1-s)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds.

we make a change of variable s1ss\to 1-s to see that SL=I¯LS_{L}=-\overline{I}_{L}, where

IL=12πiκ+iκ+iTχ(1s)ζζ(s)ζ(s)𝒩(1s,k1)𝒩(s,k)𝑑s.I_{L}=\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\chi(1-s)\frac{\zeta^{\prime}}{\zeta}(s)\zeta^{\prime}(s)\mathcal{N}(1-s,k-1)\mathcal{N}(s,k)\,ds.

We then conclude that

S=SRI¯L+O(T1ε).S=S_{R}-\overline{I}_{L}+O(T^{1-\varepsilon}).

We now apply (3.4), (3.20) and the bounds (see [MVa, Corollary 1.17, Theorem 6.7]) that when s=κ+its=\kappa+it,

ζ(s)\displaystyle\zeta(s)\ll (1+(|t|+4)1κ)min(1|κ1|,log(|t|+4))+1s1+O(1),\displaystyle(1+(|t|+4)^{1-\kappa})\min(\frac{1}{|\kappa-1|},\log(|t|+4))+\frac{1}{s-1}+O(1),
ζζ(s)\displaystyle\frac{\zeta^{\prime}}{\zeta}(s)\ll log(|t|+4)1s1+O(1),\displaystyle\log(|t|+4)-\frac{1}{s-1}+O(1),

to see that

(3.23) SR=12πiκ+iκ+iT(log2(t2π)ζ(s)+2log(t2π)ζ(s)+ζζ(s)ζ(s))𝒩(s,k1)𝒩(1s,k)𝑑s+O(T1ε).\displaystyle S_{R}=\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\left(\log^{2}\left(\frac{t}{2\pi}\right)\zeta(s)+2\log\left(\frac{t}{2\pi}\right)\zeta^{\prime}(s)+\frac{\zeta^{\prime}}{\zeta}(s)\zeta^{\prime}(s)\right)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds+O(T^{1-\varepsilon}).

To evaluate SRS_{R}, we define the Dirichlet convolution fgf*g for two arithmetic functions f(k),g(k)f(k),g(k) by

fg(k)=mn=kf(m)g(n).\displaystyle f*g(k)=\sum_{mn=k}f(m)g(n).

We then denote the integral given in (3.23) as a sum of three terms: SR,1,SR,2S_{R,1},S_{R,2} and SR,3S_{R,3}, where

SR,1=\displaystyle S_{R,1}= 12πiκ+iκ+iTlog2(t2π)ζ(s)𝒩(s,k1)𝒩(1s,k)𝑑s,\displaystyle\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\log^{2}\left(\frac{t}{2\pi}\right)\zeta(s)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds,
SR,2=\displaystyle S_{R,2}= 22πiκ+iκ+iTlog(t2π)ζ(s)𝒩(s,k1)𝒩(1s,k)𝑑s,\displaystyle\frac{2}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\log\left(\frac{t}{2\pi}\right)\zeta^{\prime}(s)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds,
SR,3=\displaystyle S_{R,3}= 12πiκ+iκ+iTζζ(s)ζ(s)𝒩(s,k1)𝒩(1s,k)𝑑s.\displaystyle\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\frac{\zeta^{\prime}}{\zeta}(s)\zeta^{\prime}(s)\mathcal{N}(s,k-1)\mathcal{N}(1-s,k)\,ds.

We use the notation given in (3.2) and apply Lemma 2.3 to evaluate SR,1S_{R,1} to obtain that

SR,1=\displaystyle S_{R,1}= (12π1T(log2t2π)𝑑t)n1ak1(n)ak(n)n\displaystyle\left(\frac{1}{2\pi}\int_{1}^{T}\left(\log^{2}\frac{t}{2\pi}\right)dt\right)\sum_{n}\frac{1*a_{k-1}(n)\cdot a_{k}(n)}{n}
+((log2T+1T|(log2t2π)|𝑑t)(n=1(1ak1)(n)2n2κ1)12(n=1ak(n)2n12κ)12).\displaystyle+\left(\left(\log^{2}T+\int^{T}_{1}|(\log^{2}\frac{t}{2\pi})^{\prime}|dt\right)\left(\sum^{\infty}_{n=1}\frac{(1*a_{k-1})(n)^{2}}{n^{2\kappa-1}}\right)^{\tfrac{1}{2}}\left(\sum^{\infty}_{n=1}\frac{a_{k}(n)^{2}}{n^{1-2\kappa}}\right)^{\tfrac{1}{2}}\right).

Similarly, we have

SR,2=\displaystyle S_{R,2}= 2(12π1T(logt2π)𝑑t)nlogak1(n)ak(n)n\displaystyle-2\left(\frac{1}{2\pi}\int_{1}^{T}\left(\log\frac{t}{2\pi}\right)dt\right)\sum_{n}\frac{\log*a_{k-1}(n)\cdot a_{k}(n)}{n}
+((logT+1T|(logt2π)|𝑑t)(n=1(logak1)(n)2n2κ1)12(n=1ak(n)2n12κ)12).\displaystyle+\left(\left(\log T+\int^{T}_{1}|(\log\frac{t}{2\pi})^{\prime}|dt\right)\left(\sum^{\infty}_{n=1}\frac{(\log*a_{k-1})(n)^{2}}{n^{2\kappa-1}}\right)^{\tfrac{1}{2}}\left(\sum^{\infty}_{n=1}\frac{a_{k}(n)^{2}}{n^{1-2\kappa}}\right)^{\tfrac{1}{2}}\right).

Also,

SR,3=\displaystyle S_{R,3}= (12π1T1𝑑t)n(Λlog)ak1(n)ak(n)n+((n=1(Λlog)ak1(n)2n2κ1)12(n=1ak(n)2n12κ)12).\displaystyle\left(\frac{1}{2\pi}\int_{1}^{T}1dt\right)\sum_{n}\frac{(\Lambda*\log)*a_{k-1}(n)\cdot a_{k}(n)}{n}+\left(\left(\sum^{\infty}_{n=1}\frac{(\Lambda*\log)*a_{k-1}(n)^{2}}{n^{2\kappa-1}}\right)^{\tfrac{1}{2}}\left(\sum^{\infty}_{n=1}\frac{a_{k}(n)^{2}}{n^{1-2\kappa}}\right)^{\tfrac{1}{2}}\right).

We now apply the estimations given in (3.3) to see that for TT large enough,

n=1ak(n)2n12κe4klogT/loglogTnT40e2k10M/41n12κT1ε.\displaystyle\sum^{\infty}_{n=1}\frac{a_{k}(n)^{2}}{n^{1-2\kappa}}\ll e^{4k\log T/\log\log T}\sum_{n\leq T^{40e^{2}k10^{-M/4}}}\frac{1}{n^{1-2\kappa}}\ll T^{1-\varepsilon}.

Moreover, using the estimation (Λlog)(n)lognd|nΛ(d)=log2n(\Lambda*\log)(n)\leq\log n\sum_{d|n}\Lambda(d)=\log^{2}n, we see that

(3.24) 1ak1(n)nT40e2k10M/4ak1(n)T1/2ε,(log)ak1(n)lognnT40e2k10M/4ak1(n)T1/2εlogn,(Λlog)ak1(n)log2nnT40e2k10M/4ak1(n)T1/2εlog2n.\displaystyle\begin{split}&1*a_{k-1}(n)\leq\sum_{n\leq T^{40e^{2}k10^{-M/4}}}a_{k-1}(n)\leq T^{1/2-\varepsilon},\\ &(\log)*a_{k-1}(n)\leq\log n\sum_{n\leq T^{40e^{2}k10^{-M/4}}}a_{k-1}(n)\leq T^{1/2-\varepsilon}\log n,\\ &(\Lambda*\log)*a_{k-1}(n)\leq\log^{2}n\sum_{n\leq T^{40e^{2}k10^{-M/4}}}a_{k-1}(n)\leq T^{1/2-\varepsilon}\log^{2}n.\end{split}

It follows that

n=11ak1(n)2+(log)ak1(n)2+(Λlog)ak1(n)2n2κ1T12εn=1log4nn2κ1T1ε,\displaystyle\sum^{\infty}_{n=1}\frac{1*a_{k-1}(n)^{2}+(\log)*a_{k-1}(n)^{2}+(\Lambda*\log)*a_{k-1}(n)^{2}}{n^{2\kappa-1}}\ll T^{1-2\varepsilon}\sum^{\infty}_{n=1}\frac{\log^{4}n}{n^{2\kappa-1}}\ll T^{1-\varepsilon},

where the last estimation above follows from the bound that (see [MN1, (16)]) uniformly for σ>1\sigma>1 and any integer i0i\geq 0,

(3.25) n=1loginnσ1(σ1)i+1.\displaystyle\sum^{\infty}_{n=1}\frac{\log^{i}n}{n^{\sigma}}\ll\frac{1}{(\sigma-1)^{i+1}}.

We apply the above estimations in the evaluations of SR,1,SR,2S_{R,1},S_{R,2} and SR,3S_{R,3} to see that the contributions from the error terms can be ignored. Furthermore, in the evaluation of SR,1S_{R,1}, we see that, for a monic polynomial 𝒬2\mathcal{Q}_{2} of degree 22,

12π1T(log2t2π)𝑑t=T2π𝒬2()+O(1),\displaystyle\frac{1}{2\pi}\int_{1}^{T}\left(\log^{2}\frac{t}{2\pi}\right)dt=\frac{T}{2\pi}\mathcal{Q}_{2}(\mathcal{L})+O(1),

where we denote =log(T/(2π))\mathcal{L}=\log(T/(2\pi)).

Now, error term above contributes to an negligible error term since by (3.3) and (3.24), we have

n1ak1(n)ak(n)nT1/2εnT40e2k10M/41nT1ε.\displaystyle\sum_{n}\frac{1*a_{k-1}(n)\cdot a_{k}(n)}{n}\ll T^{1/2-\varepsilon}\sum_{n\leq T^{40e^{2}k10^{-M/4}}}\frac{1}{n}\ll T^{1-\varepsilon}.

We treat the integrals in the expressions for SR,2S_{R,2} and SR,3S_{R,3} similarly to arrive that, for monic polynomials 𝒬i,i=1,2\mathcal{Q}_{i},i=1,2 of degree ii,

(3.26) SR=\displaystyle S_{R}= T2πn,mak1(m)ak(mn)mn(𝒬2()2𝒬1()(logn)+((Λlog)(n))+O(T1ε).\displaystyle\frac{T}{2\pi}\sum_{n,m}\frac{a_{k-1}(m)a_{k}(mn)}{mn}\left(\mathcal{Q}_{2}(\mathcal{L})-2\mathcal{Q}_{1}(\mathcal{L})(\log n)+((\Lambda*\log)(n)\right)+O(T^{1-\varepsilon}).

Next, we evaluate ILI_{L} using the notation given in (3.2) to see that

(3.27) IL=mnak1(m)ak(n)mk(Λlog)(k)(12πiκ+iκ+iTχ(1s)(nkm)s)ds.\displaystyle I_{L}=\sum_{m}\sum_{n}\frac{a_{k-1}(m)a_{k}(n)}{m}\sum_{k}(\Lambda*\log)(k)\left(\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\chi(1-s)\left(\frac{nk}{m}\right)^{-s}\right)\,ds\ .

To evaluate the integral above, we need the following result from [MN1, Lemma 5.2].

Lemma 3.8.

Let r,κ0>0r,\kappa_{0}>0. We have uniformly for κ0κ2\kappa_{0}\leq\kappa\leq 2 that

12πiκ+iκ+iTχ(1s)rs𝑑s=I[0,T/2π](r)e(r)+O(rκ(Tκ1/2+Tκ+1/2|T2πr|+T1/2)).\frac{1}{2\pi i}\int_{\kappa+i}^{\kappa+iT}\chi(1-s)r^{-s}\,ds=I_{[0,T/2\pi]}(r)e(r)+O\left(r^{-\kappa}\left(T^{\kappa-1/2}+\frac{T^{\kappa+1/2}}{|T-2\pi r|+T^{1/2}}\right)\right).

where we write e(x)=e2πixe(x)=e^{2\pi ix} and we denote I[0,T/2π](r)I_{[0,T/2\pi]}(r) for the indicator function of the interval [0,T2π][0,\frac{T}{2\pi}], namely, I[0,T/2π](r)=1I_{[0,T/2\pi]}(r)=1 if r[0,T2π]r\in[0,\frac{T}{2\pi}] and I[0,T/2π](r)=0I_{[0,T/2\pi]}(r)=0 otherwise.

We apply Lemma 3.8 to see that the contribution from the error term in (3.27) is

mnak1(m)ak(n)mk(Λlog)(k)(nkm)κ(Tκ1/2+Tκ+1/2|T2π(nkm)|+T1/2).\displaystyle\ll\sum_{m}\sum_{n}\frac{a_{k-1}(m)a_{k}(n)}{m}\sum_{k}(\Lambda*\log)(k)\left(\frac{nk}{m}\right)^{-\kappa}\left(T^{\kappa-1/2}+\frac{T^{\kappa+1/2}}{|T-2\pi\left(\frac{nk}{m}\right)|+T^{1/2}}\right).

Using (3.25), we see that

k=1(Λlog)(k)kκk=1log2(k)kκ1(κ1)3.\displaystyle\sum^{\infty}_{k=1}\frac{(\Lambda*\log)(k)}{k^{\kappa}}\leq\sum^{\infty}_{k=1}\frac{\log^{2}(k)}{k^{\kappa}}\ll\frac{1}{(\kappa-1)^{3}}.

We deduce from this and (3.3) that

mnak1(m)ak(n)mk(Λlog)(k)(nkm)κTκ1/2=O(T1ε).\displaystyle\ll\sum_{m}\sum_{n}\frac{a_{k-1}(m)a_{k}(n)}{m}\sum_{k}(\Lambda*\log)(k)\left(\frac{nk}{m}\right)^{-\kappa}T^{\kappa-1/2}=O(T^{1-\varepsilon}).

We now use the ideas in the proof of [CGG, Lemma 2] to estimate

mnak1(m)ak(n)mk(Λlog)(k)(nkm)κTκ+1/2|T2π(nkm)|+T1/2.\displaystyle\sum_{m}\sum_{n}\frac{a_{k-1}(m)a_{k}(n)}{m}\sum_{k}(\Lambda*\log)(k)\left(\frac{nk}{m}\right)^{-\kappa}\frac{T^{\kappa+1/2}}{|T-2\pi\left(\frac{nk}{m}\right)|+T^{1/2}}.

We break up the sum into three parts. The terms with |T2π(nkm)|>12T|T-2\pi\left(\frac{nk}{m}\right)|>\tfrac{1}{2}T contribute O(T1ε)O(T^{1-\varepsilon}) as our discussions above. The terms T12|T2π(nkm)|12TT^{\tfrac{1}{2}}\leq|T-2\pi\left(\frac{nk}{m}\right)|\leq\tfrac{1}{2}T are further divided into cases that T12T2π(nkm)12TT^{\tfrac{1}{2}}\leq T-2\pi\left(\frac{nk}{m}\right)\leq\tfrac{1}{2}T and T122π(nkm)T12TT^{\tfrac{1}{2}}\leq 2\pi\left(\frac{nk}{m}\right)-T\leq\tfrac{1}{2}T. Without loss of generality, we consider the case that T122π(nkm)T12TT^{\tfrac{1}{2}}\leq 2\pi\left(\frac{nk}{m}\right)-T\leq\tfrac{1}{2}T. This implies that T+T122π(nkm)T+12TT+T^{\tfrac{1}{2}}\leq 2\pi\left(\frac{nk}{m}\right)\leq T+\tfrac{1}{2}T. We then split the sum into logT\ll\log T sums of the shape

T+P2π(nkm)T+2P\displaystyle T+P\leq 2\pi\left(\frac{nk}{m}\right)\leq T+2P

where T12PTT^{\tfrac{1}{2}}\ll P\ll T. The above implies that

(3.28) (nk)κ(mT)κ.\displaystyle(nk)^{-\kappa}\ll(mT)^{-\kappa}.

Moreover, the sum over n,kn,k ranges over an interval of length mP\ll mP, Thus, the contribution form the corresponding terms (using ak(n)Tεa_{k}(n)\ll T^{\varepsilon}, (Λlog)(k)log2klog2(m(T+P))Tε(\Lambda*\log)(k)\ll\log^{2}k\ll\log^{2}(m(T+P))\ll T^{\varepsilon}, 1/(|T2π(nkm)|+T1/2)1/P1/(|T-2\pi\left(\frac{nk}{m}\right)|+T^{1/2})\ll 1/P) is

Tεmnak1(m)mmP(mT)κTκ+1/2PT1ε.\displaystyle T^{\varepsilon}\sum_{m}\sum_{n}\frac{a_{k-1}(m)}{m}mP(mT)^{-\kappa}\frac{T^{\kappa+1/2}}{P}\ll T^{1-\varepsilon}.

Lastly, we consider the contributions from the terms |T2π(nkm)|T12|T-2\pi\left(\frac{nk}{m}\right)|\leq T^{\tfrac{1}{2}} by noticing that in this case the estimation (3.28) is still valid. Moreover, the sum over n,kn,k ranges over an interval of length mT12\ll mT^{\tfrac{1}{2}}, Thus, the contribution form the corresponding terms is

Tεmnak1(m)mmT12(mT)κTκ+1/2T12T1ε.\displaystyle\ll T^{\varepsilon}\sum_{m}\sum_{n}\frac{a_{k-1}(m)}{m}mT^{\tfrac{1}{2}}(mT)^{-\kappa}\frac{T^{\kappa+1/2}}{T^{\tfrac{1}{2}}}\ll T^{1-\varepsilon}.

We then conclude from the above discussions that

IL=mnak1(m)ak(n)m1kmT2πne(knm)+O(T1ε).\displaystyle I_{L}=\sum_{m}\sum_{n}\frac{a_{k-1}(m)a_{k}(n)}{m}\sum_{1\leq k\leq\frac{mT}{2\pi n}}e(-\frac{kn}{m})+O(T^{1-\varepsilon}).

We now proceed as in [MN1, p. 3212-3213] to see that, for a monic polynomial 𝒫2\mathcal{P}_{2} of degree 22,

(3.29) IL=T4πn,mak1(m)ak(mn)mn𝒫2(logT2πn)+O(T1ε)+O(n,mak1(m)ak(n)mn)(m,n)(Λ2(m(m,n))+Λ(m(m,n))logT).\displaystyle\begin{split}I_{L}=&\frac{T}{4\pi}\sum_{n,m}\frac{a_{k-1}(m)a_{k}(mn)}{mn}\mathcal{P}_{2}(\log\frac{T}{2\pi n})+O(T^{1-\varepsilon})+O(\sum_{n,m}\frac{a_{k-1}(m)a_{k}(n)}{mn})(m,n)\Big{(}\Lambda_{2}(\frac{m}{(m,n)})+\Lambda(\frac{m}{(m,n)})\log T\Big{)}.\end{split}

To estimate the last error term in (3.29), we write d=(m,n),m=dL,n=dNd=(m,n),m=dL,n=dN and use the easily checked property that ak1(mn)ak1(m)ak1(n)a_{k-1}(mn)\leq a_{k-1}(m)a_{k-1}(n) to see that it is

d,Nak1(d)ak(dN)dNLak1(L)L(Λ2(L)+Λ(L)logT).\displaystyle\ll\sum_{d,N}\frac{a_{k-1}(d)a_{k}(dN)}{dN}\sum_{L}\frac{a_{k-1}(L)}{L}\Big{(}\Lambda_{2}(L)+\Lambda(L)\log T\Big{)}.

Using (2.4) and the observation from (3.3) that ak1(L)a_{k-1}(L) is bounded when LL is supported on integers LL with ω(L)2\omega(L)\leq 2 and ak1(L)0a_{k-1}(L)\neq 0 only for LT40e2k10M/4L\leq T^{40e^{2}k10^{-M/4}}, we proceed as in [MN1, p. 3213] to see that

Lak1(L)L(Λ2(L)+Λ(L)logT)10M/4log2T.\displaystyle\sum_{L}\frac{a_{k-1}(L)}{L}\Big{(}\Lambda_{2}(L)+\Lambda(L)\log T\Big{)}\ll 10^{-M/4}\log^{2}T.

We conclude from (3.26), (3.29) and the above estimation that

S\displaystyle S\geq T2πn,mak1(m)ak(mn)mn(𝒬2()2𝒬1()(logn)12𝒫2(logn)+((Λlog)(n))\displaystyle\frac{T}{2\pi}\sum_{n,m}\frac{a_{k-1}(m)a_{k}(mn)}{mn}\left(\mathcal{Q}_{2}(\mathcal{L})-2\mathcal{Q}_{1}(\mathcal{L})(\log n)-\tfrac{1}{2}\mathcal{P}_{2}(\mathcal{L}-\log n)+((\Lambda*\log)(n)\right)
+O(10M/4Tlog2Tn,mak1(m)ak(mn)mn)+O(T1ε).\displaystyle+O(10^{-M/4}T\log^{2}T\sum_{n,m}\frac{a_{k-1}(m)a_{k}(mn)}{mn})+O(T^{1-\varepsilon}).

We now take MM large enough and argue as in [MN1, p. 3214] to see that

S\displaystyle S\gg Tlog2Tn,mak1(m)ak(mn)mn.\displaystyle T\log^{2}T\sum_{n,m}\frac{a_{k-1}(m)a_{k}(mn)}{mn}.

Lastly, we apply arguments used in [Gao2021-4, Section 4] to estimate the sums above to arrive that

S\displaystyle S\gg T(logT)k2+2.\displaystyle T(\log T)^{k^{2}+2}.

This completes the proof of the proposition.

3.9. Proof of Proposition 3.5

Upon dividing the range of γ\gamma into dyadic blocks and replacing TT by 2T2T, we see that it suffices to show for large TT,

(3.30) T<γ2Tj=1𝒥(|𝒩j(ρ,k)|2+|𝒬j(ρ,k)|2rk)\displaystyle\sum_{T<\gamma\leq 2T}\prod^{\mathcal{J}}_{j=1}\big{(}|{\mathcal{N}}_{j}(\rho,k)|^{2}+|{\mathcal{Q}}_{j}(\rho,k)|^{2r_{k}}\big{)}\ll T(logT)k2+1.\displaystyle T(\log T)^{k^{2}+1}.

We apply Lemma 2.1 to evaluate the left side expression above. In this process, we may ignore the contributions from the error terms in (2.2), using arguments similar to our treatments on various error terms in the proof of Proposition 3.4. Moreover, we may also ignore the contributions from the main terms in (2.2) from the cases aba\neq b, since these terms are negative and we are seeking for an upper bound here. Thus, only the diagonal terms in the left side expression of (3.30) survive. Now applying (2.3), we conclude that

T<γ2Tj=1𝒥(|𝒩j(ρ,k)|2+|𝒬j(ρ,k)|2rk)T(logT)j=1𝒥(njk2Ω(nj)njg2(nj)bj(nj)+(64max(2,k+3/2)e2kαj3/4)2rke2kαj3/4((rke2kαj3/4)!)2Ω(nj)=rke2kαj3/4p|njpIj1njg2(nj)).\displaystyle\begin{split}&\sum_{T<\gamma\leq 2T}\prod^{\mathcal{J}}_{j=1}\big{(}|{\mathcal{N}}_{j}(\rho,k)|^{2}+|{\mathcal{Q}}_{j}(\rho,k)|^{2r_{k}}\big{)}\\ \ll&T(\log T)\prod^{\mathcal{J}}_{j=1}\Big{(}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}}{n_{j}g^{2}(n_{j})}b_{j}(n_{j})+\Big{(}\frac{64\max(2,k+3/2)}{\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}\Big{)}^{2r_{k}\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}((r_{k}\lceil e^{2}k\alpha^{-3/4}_{j}\rceil)!)^{2}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\lceil e^{2}k\alpha^{-3/4}_{j}\rceil\\ p|n_{j}\implies p\in I_{j}\end{subarray}}\frac{1}{n_{j}g^{2}(n_{j})}\Big{)}.\end{split}

The product above is analogues to the product in [Gao2021-4, (6.20)]. Using similar estimations, we see that it is (logT)k2\ll(\log T)^{k^{2}}. This implies (3.30) and completes the proof of the proposition.

3.10. Proof of Proposition 3.6

Again by dividing the range of γ\gamma into dyadic blocks and replacing TT by 2T2T, we see that it suffices to show for large TT,

(3.31) T<γ2T|ζ(ρ)|2|𝒩(ρ,k1)|2T(logT)k2+3.\displaystyle\sum_{T<\gamma\leq 2T}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\ll T(\log T)^{k^{2}+3}.

We split the interval (0,Tα𝒥](0,T^{\alpha_{\mathcal{J}}}] into disjoint subintervals Ij=(Tαj1,Tαj]I_{j}=(T^{\alpha_{j-1}},T^{\alpha_{j}}] for 1j𝒥1\leq j\leq\mathcal{J} and define

wj(n)=Λ(n)n1/(αjlogT)lognlog(Tαj/n)logTαj,w_{j}(n)=\frac{\Lambda_{\mathcal{L}}(n)}{n^{1/(\alpha_{j}\log T)}\log n}\frac{\log(T^{\alpha_{j}}/n)}{\log T^{\alpha_{j}}},

where

Λ(n)={Λ(n), if n=p or if n=p2 and n,0,otherwise.\displaystyle\Lambda_{\mathcal{L}}(n)=\begin{cases}\Lambda(n),\quad\text{ if }n=p\text{ or if }n=p^{2}\text{ and }n\leq\mathcal{L},\\ 0,\quad\text{otherwise}.\end{cases}

For 1lj𝒥1\leq l\leq j\leq\mathcal{J}, we define

Gl,j(t)=nIlwj(n)nnit.G_{l,j}(t)=\Re\sum_{n\in I_{l}}\frac{w_{j}(n)}{\sqrt{n}}n^{-it}.

Note that our definition of Gl,jG_{l,j} is slightly different from that in [Kirila], due to our definition on \mathcal{L}. However, we notice the bounds

(3.32) wj(p)1,wj(p2)12,\displaystyle\begin{split}w_{j}(p)\leq 1,\quad w_{j}(p^{2})\leq\tfrac{1}{2},\end{split}

so that it follows from the above and Lemma 2.2 that

plogTwj(p2)p=O(1).\sum_{\mathcal{L}\leq p\leq\log T}\frac{w_{j}(p^{2})}{p}=O(1).

We then deduce from [Kirila, (4.1)] the following upper bound for log|ζ(ρ)|\log|\zeta^{\prime}(\rho)|, which says that for any 1j𝒥1\leq j\leq\mathcal{J},

(3.33) log|ζ(ρ)|l=1jGl,j(γ)+loglogT+αj1+O(1).\displaystyle\begin{split}&\log|\zeta^{\prime}(\rho)|\ll\sum^{j}_{l=1}G_{l,j}(\gamma)+\log\log T+\alpha^{-1}_{j}+O(1).\end{split}

We also define the following sets:

𝒮(0)=\displaystyle\mathcal{S}(0)= {T<γ2T:|G1,l(γ)|>α13/4 for some 1l𝒥},\displaystyle\{T<\gamma\leq 2T:|G_{1,l}(\gamma)|>\alpha_{1}^{-3/4}\;\text{ for some }1\leq l\leq\mathcal{J}\},
𝒮(j)=\displaystyle\mathcal{S}(j)= {T<γ2T:|Gm,l(γ)|αm3/41mj,ml𝒥,\displaystyle\{T<\gamma\leq 2T:|G_{m,l}(\gamma)|\leq\alpha_{m}^{-3/4}\;\forall 1\leq m\leq j,\;\forall m\leq l\leq\mathcal{J},
but |Gj+1,l(γ)|>αj+13/4 for some j+1l𝒥},1j𝒥,\displaystyle\;\;\;\;\;\text{but }|G_{j+1,l}(\gamma)|>\alpha_{j+1}^{-3/4}\;\text{ for some }j+1\leq l\leq\mathcal{J}\},\quad 1\leq j\leq\mathcal{J},
𝒮(𝒥)=\displaystyle\mathcal{S}(\mathcal{J})= {T<γ2T:|Gm,𝒥(γ)|αm3/41m𝒥},\displaystyle\{T<\gamma\leq 2T:|G_{m,\mathcal{J}}(\gamma)|\leq\alpha_{m}^{-3/4}\;\forall 1\leq m\leq\mathcal{J}\},

so that

{T<γ2T}=j=0𝒥𝒮(j).\{T<\gamma\leq 2T\}=\bigcup_{j=0}^{\mathcal{J}}\mathcal{S}(j).

It follows that

(3.34) T<γ2T|ζ(ρ)|2|𝒩(ρ,k1)|2=j=0𝒥γS(j)|ζ(ρ)|2|𝒩(ρ,k1)|2.\displaystyle\sum_{T<\gamma\leq 2T}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}=\sum_{j=0}^{\mathcal{J}}\sum_{\gamma\in S(j)}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}.

We note from [Kirila, Lemma 5.5] and (2.3) that we have

(3.35) meas(𝒮(0))\displaystyle\text{meas}(\mathcal{S}(0))\ll T(logT)e(loglogT)2/10.\displaystyle T(\log T)e^{-(\log\log T)^{2}/10}.

We then deduce via the Cauchy-Schwarz inequality that

(3.36) γS(0)|ζ(ρ)|2|𝒩(ρ,k1)|2(meas(𝒮(0)))1/4(T<γ2T|ζ(ρ)|8)1/4(T<γ2T|𝒩(ρ,k1)|4)1/2.\displaystyle\begin{split}&\sum_{\gamma\in S(0)}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\leq\Big{(}\text{meas}(\mathcal{S}(0))\Big{)}^{1/4}\Big{(}\sum_{T<\gamma\leq 2T}|\zeta^{\prime}(\rho)|^{8}\Big{)}^{1/4}\Big{(}\sum_{T<\gamma\leq 2T}|\mathcal{N}(\rho,k-1)|^{4}\Big{)}^{1/2}.\end{split}

Similar to the proof of Proposition 3.5, we have that

(3.37) T<γ2T|𝒩(ρ,k1)|4T(logT)(2k2))2+1.\displaystyle\sum_{T<\gamma\leq 2T}|\mathcal{N}(\rho,k-1)|^{4}\ll T(\log T)^{(2k-2))^{2}+1}.

Also, applying (1.3) with k=4,ε=1k=4,\varepsilon=1, we see that

(3.38) T<γ2T|ζ(ρ)|8T(logT)25.\displaystyle\sum_{T<\gamma\leq 2T}|\zeta^{\prime}(\rho)|^{8}\leq T(\log T)^{25}.

We use the bounds given in (3.35), (3.37) and (3.38) in (3.36) to conclude that

(3.39) γ𝒮(0)|ζ(ρ)|2|𝒩(ρ,k1)|2T(logT)k2+3.\displaystyle\sum_{\gamma\in\mathcal{S}(0)}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\ll T(\log T)^{k^{2}+3}.

The above estimation implies that it remains to consider the cases j1j\geq 1 in (3.34). Without loss of generality, we may assume that 1j𝒥11\leq j\leq\mathcal{J}-1 here. When γ𝒮(j)\gamma\in\mathcal{S}(j), we deduce from (3.33) that

γ𝒮(j)|ζ(ρ)|2|𝒩(ρ,k1)|2(logT)2exp(2αj)γ𝒮(j)exp(2l=1jGl,j(γ))|𝒩(ρ,k1)|2.\displaystyle\begin{split}&\sum_{\gamma\in\mathcal{S}(j)}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\ll(\log T)^{2}\exp\big{(}\frac{2}{\alpha_{j}}\big{)}\sum_{\gamma\in\mathcal{S}(j)}\exp\Big{(}2\sum^{j}_{l=1}G_{l,j}(\gamma)\Big{)}|\mathcal{N}(\rho,k-1)|^{2}.\end{split}

As we have Gl,jαl3/4G_{l,j}\leq\alpha^{-3/4}_{l} when γ𝒮(j)\gamma\in\mathcal{S}(j), we apply [Kirila, Lemma 5.2] to see that

exp(2l=1jGl,j(γ))l=1jEe2kαl3/42(Gl,j(γ)).\displaystyle\begin{split}\exp\Big{(}2\sum^{j}_{l=1}G_{l,j}(\gamma)\Big{)}\ll\prod^{j}_{l=1}E^{2}_{e^{2}k\alpha^{-3/4}_{l}}(G_{l,j}(\gamma)).\end{split}

We then deduce from the description on 𝒮(j)\mathcal{S}(j) that when j1j\geq 1,

(3.40) γ𝒮(j)|ζ(ρ)|2|𝒩(ρ,k1)|2(logT)2exp(2αj)m=j+1γ𝒮(j)exp(2l=1jGl,j(γ))|𝒩(ρ,k1)|2(αj+13/4Gj+1,m(γ))21/(10αj+1)(logT)2exp(2αj)m=j+1γ𝒮(j)l=1jEe2kαl3/42(Gl,j(γ))|Ee2kαl3/4((k1)𝒫l(ρ)|2×|Ee2kαj+13/4((k1)𝒫j+1(ρ)|2(αj+13/4Gj+1,m(γ))21/(10αj+1)n=j+2𝒥|Ee2kαn3/4((2k2)𝒫n(ρ))|2.\displaystyle\begin{split}&\sum_{\gamma\in\mathcal{S}(j)}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\\ \ll&(\log T)^{2}\exp\big{(}\frac{2}{\alpha_{j}}\big{)}\sum^{\mathcal{I}}_{m=j+1}\sum_{\gamma\in\mathcal{S}(j)}\exp\Big{(}2\sum^{j}_{l=1}G_{l,j}(\gamma)\Big{)}|\mathcal{N}(\rho,k-1)|^{2}\Big{(}\alpha^{3/4}_{j+1}G_{j+1,m}(\gamma)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\\ \ll&(\log T)^{2}\exp\big{(}\frac{2}{\alpha_{j}}\big{)}\sum^{\mathcal{I}}_{m=j+1}\sum_{\gamma\in\mathcal{S}(j)}\prod^{j}_{l=1}E^{2}_{e^{2}k\alpha^{-3/4}_{l}}(G_{l,j}(\gamma))|E_{e^{2}k\alpha^{-3/4}_{l}}((k-1){\mathcal{P}}_{l}(\rho)|^{2}\\ &\times|E_{e^{2}k\alpha^{-3/4}_{j+1}}((k-1){\mathcal{P}}_{j+1}(\rho)|^{2}\Big{(}\alpha^{3/4}_{j+1}G_{j+1,m}(\gamma)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\prod^{\mathcal{J}}_{n=j+2}|E_{e^{2}k\alpha^{-3/4}_{n}}((2k-2){\mathcal{P}}_{n}(\rho))|^{2}.\end{split}

Note that

(3.41) γ𝒮(j)l=1jEe2kαl3/42(Gl,j(γ))|Ee2kαl3/4((k1)𝒫l(ρ)|2×|Ee2kαj+13/4((k1)𝒫j+1(ρ)|2(αj+13/4Gj+1,m(γ))21/(10αj+1)n=j+2𝒥|Ee2kαn3/4((2k2)𝒫n(ρ))|2T<γ2Tl=1jEe2kαl3/42(Gl,j(γ))|Ee2kαl3/4((k1)𝒫l(ρ)|2×|Ee2kαj+13/4((k1)𝒫j+1(ρ)|2(αj+13/4Gj+1,m(γ))21/(10αj+1)n=j+2𝒥|Ee2kαn3/4((2k2)𝒫n(ρ))|2.\displaystyle\begin{split}&\sum_{\gamma\in\mathcal{S}(j)}\prod^{j}_{l=1}E^{2}_{e^{2}k\alpha^{-3/4}_{l}}(G_{l,j}(\gamma))|E_{e^{2}k\alpha^{-3/4}_{l}}((k-1){\mathcal{P}}_{l}(\rho)|^{2}\\ &\times|E_{e^{2}k\alpha^{-3/4}_{j+1}}((k-1){\mathcal{P}}_{j+1}(\rho)|^{2}\Big{(}\alpha^{3/4}_{j+1}G_{j+1,m}(\gamma)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\prod^{\mathcal{J}}_{n=j+2}|E_{e^{2}k\alpha^{-3/4}_{n}}((2k-2){\mathcal{P}}_{n}(\rho))|^{2}\\ \leq&\sum_{T<\gamma\leq 2T}\prod^{j}_{l=1}E^{2}_{e^{2}k\alpha^{-3/4}_{l}}(G_{l,j}(\gamma))|E_{e^{2}k\alpha^{-3/4}_{l}}((k-1){\mathcal{P}}_{l}(\rho)|^{2}\\ &\times|E_{e^{2}k\alpha^{-3/4}_{j+1}}((k-1){\mathcal{P}}_{j+1}(\rho)|^{2}\Big{(}\alpha^{3/4}_{j+1}G_{j+1,m}(\gamma)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\prod^{\mathcal{J}}_{n=j+2}|E_{e^{2}k\alpha^{-3/4}_{n}}((2k-2){\mathcal{P}}_{n}(\rho))|^{2}.\end{split}

We shall apply Lemma 2.1 to evaluate the last sum above. As in the case for the proof of Proposition 3.4, we may only focus on the main term in the process. To facilitate our evaluation of the last sum above, we follow the treatments in [Kirila] by introducing a sequence of independent random variables {Xp}\{X_{p}\} such that each XpX_{p} is uniformly distributed on the unit circle in the complex plane. We also define

Xn=Xp1h1XprhrX_{n}=X_{p_{1}}^{h_{1}}\cdots X_{p_{r}}^{h_{r}}

for n=p1h1prhrn=p_{1}^{h_{1}}\cdots p_{r}^{h_{r}} so that XnX_{n} is a random completely multiplicative function. We then define random models Gl,j(X)G_{l,j}(X) for 1lj𝒥1\leq l\leq j\leq{\mathcal{J}} by

Gl,j(X)=nIlwj(n)nXn,𝒫j(X)=pIj1pXp.G_{l,j}(X)=\Re\sum_{n\in I_{l}}\frac{w_{j}(n)}{\sqrt{n}}X_{n},\quad{\mathcal{P}}_{j}(X)=\sum_{p\in I_{j}}\frac{1}{\sqrt{p}}X_{p}.

Similar to [Kirila, Lemma 5.3], we have under RH and other than a negligible error term, for 1lj𝒥1\leq l\leq j\leq{\mathcal{J}} and non-negative integers nl,1,nl,2,nl,3n_{l,1},n_{l,2},n_{l,3} satisfying max(nl,1/2,nl,2,nl,3)max(e2kαl3/4,21/(10αj+1))\max(n_{l,1}/2,n_{l,2},n_{l,3})\leq\max(\lceil e^{2}k\alpha^{-3/4}_{l}\rceil,2\lceil 1/(10\alpha_{j+1})\rceil),

T<γ2Tl=1𝒥Gl,jnl,1(γ)𝒫lnl,2(ρ)𝒫lnl,3(ρ¯)N(T,2T)𝔼(l=1𝒥Gl,jnl,1(X)𝒫lnl,2(X)𝒫lnl,3(X¯)).\displaystyle\begin{split}&\sum_{T<\gamma\leq 2T}\prod^{{\mathcal{J}}}_{l=1}G^{n_{l,1}}_{l,j}(\gamma){\mathcal{P}}^{n_{l,2}}_{l}(\rho){\mathcal{P}}^{n_{l,3}}_{l}(\overline{\rho})\leq N(T,2T)\mathbb{E}\Big{(}\prod^{{\mathcal{J}}}_{l=1}G^{n_{l,1}}_{l,j}(X){\mathcal{P}}^{n_{l,2}}_{l}(X){\mathcal{P}}^{n_{l,3}}_{l}(\overline{X})\Big{)}.\end{split}

We now proceed as in the proof of [Kirila, Lemma 5.5] to see that, under RH and other than a negligible error term, the last sum in (3.41) is

(αj+13/4)21/(10αj+1)N(T,2T)𝔼(Gj+1,m(X)21/(10αj+1)exp(2l=1jGl,j(X)+2(k1)n=1𝒥𝒫n(X)))=(αj+13/4)21/(10αj+1)N(T,2T)𝔼(exp(2G1,j(X)+2(k1)𝒫1(X)))l=2j𝔼(exp(2Gl,j(X)+2(k1)𝒫l(X)))×𝔼(Gj+1,m(X)21/(10αj+1)exp(2(k1)𝒫j+1(X)))×l=j+2𝒥𝔼(exp(2(k1)𝒫l(X)).\displaystyle\begin{split}\ll&\Big{(}\alpha^{3/4}_{j+1}\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}N(T,2T)\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\exp\Big{(}2\sum^{j}_{l=1}G_{l,j}(X)+2(k-1)\sum^{{\mathcal{J}}}_{n=1}\Re{\mathcal{P}}_{n}(X)\Big{)}\Big{)}\\ =&\Big{(}\alpha^{3/4}_{j+1}\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}N(T,2T)\mathbb{E}\Big{(}\exp\Big{(}2G_{1,j}(X)+2(k-1)\Re{\mathcal{P}}_{1}(X)\Big{)}\Big{)}\prod^{j}_{l=2}\mathbb{E}\Big{(}\exp\Big{(}2G_{l,j}(X)+2(k-1)\Re{\mathcal{P}}_{l}(X)\Big{)}\Big{)}\\ &\times\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\exp\Big{(}2(k-1)\Re{\mathcal{P}}_{j+1}(X)\Big{)}\Big{)}\times\prod^{{\mathcal{J}}}_{l=j+2}\mathbb{E}\Big{(}\exp\Big{(}2(k-1)\Re{\mathcal{P}}_{l}(X)\Big{)}.\end{split}

Similar to the evaluation done on [Kirila, p. 492], we see that

(3.42) l=2j𝔼(exp(2Gl,j(X)+2(k1)𝒫l(X)))=l=2jpIlI0(2wj(p)p+2(k1)p),l=j+2𝒥𝔼(exp(2(k1)𝒫l(X)))=l=j+2𝒥pIlI0(2(k1)1p),\displaystyle\begin{split}\prod^{j}_{l=2}\mathbb{E}\Big{(}\exp\Big{(}2G_{l,j}(X)+2(k-1)\Re{\mathcal{P}}_{l}(X)\Big{)}\Big{)}=&\prod^{j}_{l=2}\prod_{p\in I_{l}}I_{0}\big{(}\frac{2w_{j}(p)}{\sqrt{p}}+\frac{2(k-1)}{\sqrt{p}}\big{)},\\ \prod^{{\mathcal{J}}}_{l=j+2}\mathbb{E}\Big{(}\exp\Big{(}2(k-1)\Re{\mathcal{P}}_{l}(X)\Big{)}\Big{)}=&\prod^{{\mathcal{J}}}_{l=j+2}\prod_{p\in I_{l}}I_{0}\big{(}2(k-1)\frac{1}{\sqrt{p}}\big{)},\end{split}

where I0(z)=n=0(z/2)2n(n!)2I_{0}(z)=\sum_{n=0}^{\infty}\frac{(z/2)^{2n}}{(n!)^{2}} is the modified Bessel function of the first kind.

Next, using the arguments similar to those in [Kirila, (6.3)], we have that

𝔼(exp(2G1,j(X)+2(k1)𝒫1(X)))=pI1p>logTI0(2wj(p)p+2(k1)p)×𝔼(exp(plogT(2wj(p)p+2(k1)p)Xp+plogT4wj(p2)p(Xp2)plogT4wj(p2)p)).\displaystyle\begin{split}&\mathbb{E}\Big{(}\exp\Big{(}2G_{1,j}(X)+2(k-1)\Re{\mathcal{P}}_{1}(X)\Big{)}\Big{)}\\ =&\prod_{\begin{subarray}{c}p\in I_{1}\\ p>\log T\end{subarray}}I_{0}\big{(}\frac{2w_{j}(p)}{\sqrt{p}}+\frac{2(k-1)}{\sqrt{p}}\big{)}\\ &\times\mathbb{E}\Big{(}\exp\Big{(}\sum_{p\leq\log T}\big{(}\frac{2w_{j}(p)}{\sqrt{p}}+\frac{2(k-1)}{\sqrt{p}}\big{)}\Re X_{p}+\sum_{p\leq\log T}\frac{4w_{j}(p^{2})}{\sqrt{p}}(\Re X_{p}^{2})-\sum_{p\leq\log T}\frac{4w_{j}(p^{2})}{\sqrt{p}}\Big{)}\Big{)}.\end{split}

We apply the bounds given in (3.32) and proceed as in [Kirila, p. 492-493] to deduce that the last expression above is

pI1I0(2wj(p)p+2(k1)p).\displaystyle\begin{split}\ll\prod_{\begin{subarray}{c}p\in I_{1}\end{subarray}}I_{0}\big{(}\frac{2w_{j}(p)}{\sqrt{p}}+\frac{2(k-1)}{\sqrt{p}}\big{)}.\end{split}

Furthermore, we notice that

(3.43) 𝔼(Gj+1,m(X)21/(10αj+1)exp(2(k1)𝒫j+1(X)))=n=0𝔼(Gj+1,m(X)21/(10αj+1)(2(k1)𝒫j+1(X))nn!)=n=0𝔼(Gj+1,m(X)21/(10αj+1)(2(k1)𝒫j+1(X))2n(2n)!)n=0𝔼((2𝒫j+1(X))21/(10αj+1)+2n(2n)!),\displaystyle\begin{split}&\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\exp\Big{(}2(k-1)\Re{\mathcal{P}}_{j+1}(X)\Big{)}\Big{)}\\ =&\sum^{\infty}_{n=0}\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\frac{(2(k-1)\Re{\mathcal{P}}_{j+1}(X))^{n}}{n!}\Big{)}\\ =&\sum^{\infty}_{n=0}\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\frac{(2(k-1)\Re{\mathcal{P}}_{j+1}(X))^{2n}}{(2n)!}\Big{)}\\ \leq&\sum^{\infty}_{n=0}\mathbb{E}\Big{(}\frac{(2\Re{\mathcal{P}}_{j+1}(X))^{2\lceil 1/(10\alpha_{j+1})\rceil+2n}}{(2n)!}\Big{)},\end{split}

where the last estimation above follows from the observation that, upon using (3.32) and noting that 0<k1/20<k\leq 1/2, we have for any integer n0n\geq 0,

(3.44) 𝔼(Gj+1,m(X)21/(10αj+1)(2(k1)𝒫j+1(X))2n(2n)!)𝔼((2𝒫j+1(X))21/(10αj+1)+2n(2n)!).\displaystyle\begin{split}&\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\frac{(2(k-1)\Re{\mathcal{P}}_{j+1}(X))^{2n}}{(2n)!}\Big{)}\leq\ \mathbb{E}\Big{(}\frac{(2\Re{\mathcal{P}}_{j+1}(X))^{2\lceil 1/(10\alpha_{j+1})\rceil+2n}}{(2n)!}\Big{)}.\end{split}

Observe that for any positive integer mm,

𝔼[(Xp)m]={(2hh)2mif m=2h,0if m is odd.\mathbb{E}[(\Re X_{p})^{m}]=\begin{cases}\displaystyle\binom{2h}{h}2^{-m}&\hbox{if }m=2h,\\ \displaystyle 0&\hbox{if }m\text{ is odd}.\end{cases}

It follows from this that if we denote {p|pIj+1}={p1,,ps}\{p|p\in I_{j+1}\}=\{p_{1},\cdots,p_{s}\}, then we have for any positive integer mm,

𝔼((2𝒫j+1(X))2m)=m1,m2,ms0m1+m2++ms=m(2m2m1,,2ms)i=1s(2pi)2mi𝔼(Xp)2mi=22mm1,m2,ms0m1+m2++ms=m(2m2m1,,2ms)i=1s(2mimi)(4pi)mi(2m)!22mm!(pIj+14p)m.\displaystyle\begin{split}\mathbb{E}\Big{(}(2\Re{\mathcal{P}}_{j+1}(X))^{2m}\Big{)}=&\sum_{\begin{subarray}{c}m_{1},m_{2}\cdots,m_{s}\geq 0\\ m_{1}+m_{2}+\cdots+m_{s}=m\end{subarray}}\binom{2m}{2m_{1},\cdots,2m_{s}}\prod^{s}_{i=1}(\frac{2}{\sqrt{p_{i}}})^{2m_{i}}\mathbb{E}(\Re X_{p})^{2m_{i}}\\ =&2^{-2m}\sum_{\begin{subarray}{c}m_{1},m_{2}\cdots,m_{s}\geq 0\\ m_{1}+m_{2}+\cdots+m_{s}=m\end{subarray}}\binom{2m}{2m_{1},\cdots,2m_{s}}\prod^{s}_{i=1}\binom{2m_{i}}{m_{i}}(\frac{4}{p_{i}})^{m_{i}}\\ \leq&\frac{(2m)!}{2^{2m}m!}(\sum_{p\in I_{j+1}}\frac{4}{p})^{m}.\end{split}

We apply the above estimation to the last expression in (3.44) to deduce that

(3.45) 𝔼(Gj+1,m(X)21/(10αj+1)(2(k1)𝒫j+1(X))2n(2n)!)(21/(10αj+1)+2n)!221/(10αj+1)+2n(1/(10αj+1)+n)!(2n)!(pIj+14p)1/10αj+1+n.\displaystyle\begin{split}&\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\frac{(2(k-1)\Re{\mathcal{P}}_{j+1}(X))^{2n}}{(2n)!}\Big{)}\\ \leq&\ \frac{(2\lceil 1/(10\alpha_{j+1})\rceil+2n)!}{2^{2\lceil 1/(10\alpha_{j+1})\rceil+2n}(\lceil 1/(10\alpha_{j+1})\rceil+n)!(2n)!}\bigg{(}\sum_{p\in I_{j+1}}\frac{4}{p}\bigg{)}^{\lceil 1/10\alpha_{j+1}\rceil+n}.\end{split}

Using the bounds

(3.46) (ne)nn!n(ne)n,\displaystyle(\frac{n}{e})^{n}\leq n!\leq n(\frac{n}{e})^{n},

we see that the last expression in (3.45) is

(3.47) (21/(10αj+1)+2n)(2n)!(1/(10αj+1)+neTαj<pTαj+14p)1/(10αj+1)+n.\displaystyle\begin{split}\ll\frac{(2\lceil 1/(10\alpha_{j+1})\rceil+2n)}{(2n)!}\bigg{(}\frac{\lceil 1/(10\alpha_{j+1})\rceil+n}{e}\sum_{T^{\alpha_{j}}<p\leq T^{\alpha_{j+1}}}\frac{4}{p}\bigg{)}^{\lceil 1/(10\alpha_{j+1})\rceil+n}.\end{split}

Notice that when n21/(10αj+1)n\geq 2\lceil 1/(10\alpha_{j+1})\rceil, the expression above is

3n(2n)!(3n2eTαj<pTαj+14p)3n/23n(e2n)2n(60ne)3n/2,\displaystyle\begin{split}\leq\frac{3n}{(2n)!}\bigg{(}\frac{3n}{2e}\sum_{T^{\alpha_{j}}<p\leq T^{\alpha_{j+1}}}\frac{4}{p}\bigg{)}^{3n/2}\leq 3n(\frac{e}{2n})^{2n}\bigg{(}\frac{60n}{e}\bigg{)}^{3n/2},\end{split}

where the last estimation above follows from (3.1) and (3.46). As the sum of the last term above over nn is convergent, we see that the contribution of these terms to the last sum of (3.43) is O(1)O(1) and may be ignored.

Now for 141/(10αj+1)n<21/(10αj+1)\frac{1}{4}\lceil 1/(10\alpha_{j+1})\rceil\leq n<2\lceil 1/(10\alpha_{j+1})\rceil, we apply (3.1) to see that the expression in (3.47) is

61/(10αj+1)(2n)!(31/(10αj+1)eTαj<pTαj+14p)1/(10αj+1)(5neTαj<pTαj+14p)n61/(10αj+1)(2n)!(1201/(10αj+1)e)1/(10αj+1)(200ne)n.\displaystyle\begin{split}\leq&\frac{6\lceil 1/(10\alpha_{j+1})\rceil}{(2n)!}\bigg{(}\frac{3\lceil 1/(10\alpha_{j+1})\rceil}{e}\sum_{T^{\alpha_{j}}<p\leq T^{\alpha_{j+1}}}\frac{4}{p}\bigg{)}^{\lceil 1/(10\alpha_{j+1})\rceil}\cdot\bigg{(}\frac{5n}{e}\sum_{T^{\alpha_{j}}<p\leq T^{\alpha_{j+1}}}\frac{4}{p}\bigg{)}^{n}\\ \leq&\frac{6\lceil 1/(10\alpha_{j+1})\rceil}{(2n)!}\bigg{(}\frac{120\lceil 1/(10\alpha_{j+1})\rceil}{e}\bigg{)}^{\lceil 1/(10\alpha_{j+1})\rceil}\cdot\bigg{(}\frac{200n}{e}\bigg{)}^{n}.\end{split}

Applying (3.46) again, we see that the sum of the last term above over nn is convergent so that the contribution of these terms to the last sum of (3.43) is

(3.48) 1/(10αj+1)(1201/(10αj+1)e)1/(10αj+1).\displaystyle\begin{split}\ll\lceil 1/(10\alpha_{j+1})\rceil\bigg{(}\frac{120\lceil 1/(10\alpha_{j+1})\rceil}{e}\bigg{)}^{\lceil 1/(10\alpha_{j+1})\rceil}.\end{split}

Lastly, for n<141/(10αj+1)n<\frac{1}{4}\lceil 1/(10\alpha_{j+1})\rceil, we apply (3.1) and (3.46) one more time to see that the expression in (3.47) is

51/(10αj+1)/2(2n)!(51/(10αj+1)4eTαj<pTαj+14p)51/(10αj+1)/451/(10αj+1)/2(2n)!(2001/(10αj+1)4e)51/(10αj+1)/4.\displaystyle\begin{split}\leq&\frac{5\lceil 1/(10\alpha_{j+1})\rceil/2}{(2n)!}\bigg{(}\frac{5\lceil 1/(10\alpha_{j+1})\rceil}{4e}\sum_{T^{\alpha_{j}}<p\leq T^{\alpha_{j+1}}}\frac{4}{p}\bigg{)}^{5\lceil 1/(10\alpha_{j+1})\rceil/4}\\ \leq&\frac{5\lceil 1/(10\alpha_{j+1})\rceil/2}{(2n)!}\bigg{(}\frac{200\lceil 1/(10\alpha_{j+1})\rceil}{4e}\bigg{)}^{5\lceil 1/(10\alpha_{j+1})\rceil/4}.\end{split}

Upon summing over nn, we see that the contribution of these terms to the last sum of (3.43) is

(3.49) 1/(10αj+1)(2001/(10αj+1)4e)51/(10αj+1)/4.\displaystyle\begin{split}\ll\lceil 1/(10\alpha_{j+1})\rceil\bigg{(}\frac{200\lceil 1/(10\alpha_{j+1})\rceil}{4e}\bigg{)}^{5\lceil 1/(10\alpha_{j+1})\rceil/4}.\end{split}

We apply the bounds (3.48) and (3.49) in (3.43) to conclude that

𝔼(Gj+1,m(X)21/(10αj+1)exp(2(k1)𝒫j+1(X)))1/(10αj+1)(1201/(10αj+1)e)51/(10αj+1)/4.\displaystyle\begin{split}&\mathbb{E}\Big{(}G_{j+1,m}(X)^{2\lceil 1/(10\alpha_{j+1})\rceil}\exp\Big{(}2(k-1)\Re{\mathcal{P}}_{j+1}(X)\Big{)}\Big{)}\ll\lceil 1/(10\alpha_{j+1})\rceil\bigg{(}\frac{120\lceil 1/(10\alpha_{j+1})\rceil}{e}\bigg{)}^{5\lceil 1/(10\alpha_{j+1})\rceil/4}.\end{split}

We combine (3.42), (3.43) and the last estimation above to see that, via using (3.32), the last expression in (3.41) is

(αj+13/4)21/(10αj+1)1/(10αj+1)(1201/(10αj+1)e)51/(10αj+1)/4N(T,2T)l=1𝒥pIlI0(2wj(p)p+2(k1)p)(1αj+1)1/(10αj+1)/8N(T,2T)l=1𝒥pIlI0(2kp).\displaystyle\begin{split}\ll&\Big{(}\alpha^{3/4}_{j+1}\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\lceil 1/(10\alpha_{j+1})\rceil\bigg{(}\frac{120\lceil 1/(10\alpha_{j+1})\rceil}{e}\bigg{)}^{5\lceil 1/(10\alpha_{j+1})\rceil/4}N(T,2T)\prod^{{\mathcal{J}}}_{l=1}\prod_{p\in I_{l}}I_{0}\big{(}\frac{2w_{j}(p)}{\sqrt{p}}+\frac{2(k-1)}{\sqrt{p}}\big{)}\\ \ll&\Big{(}\frac{1}{\alpha_{j+1}}\Big{)}^{-\lceil 1/(10\alpha_{j+1})\rceil/8}N(T,2T)\prod^{{\mathcal{J}}}_{l=1}\prod_{p\in I_{l}}I_{0}\big{(}\frac{2k}{\sqrt{p}}\big{)}.\end{split}

Using further the estimation that I0(2x)ex2I_{0}(2x)\leq e^{x^{2}}, we deduce from the above that the last expression in (3.41) is

(3.50) (1αj+1)1/(10αj+1)/8N(T,2T)exp(pTα𝒥k2p)(1αj+1)1/(10αj+1)/8T(logT)k2+1,\displaystyle\begin{split}\ll\Big{(}\frac{1}{\alpha_{j+1}}\Big{)}^{-\lceil 1/(10\alpha_{j+1})\rceil/8}N(T,2T)\exp\Big{(}\sum_{p\leq T^{\alpha_{{\mathcal{J}}}}}\frac{k^{2}}{p}\Big{)}\ll\Big{(}\frac{1}{\alpha_{j+1}}\Big{)}^{-\lceil 1/(10\alpha_{j+1})\rceil/8}T(\log T)^{k^{2}+1},\end{split}

where the last estimation above follows from (3.50) and (2.3).

As 20/αj+1=1/αj20/\alpha_{j+1}=1/\alpha_{j}, we conclude from (3.34), (3.39), (3.40), (3.41) and (3.50) and that

T<γ2T|ζ(ρ)|2|𝒩(ρ,k1)|2j=1𝒥γS(j)|ζ(ρ)|2|𝒩(ρ,k1)|2+T(logT)k2+3T(logT)k2+3j=1𝒥(1αj+1)1/(10αj+1)/(10).\displaystyle\begin{split}\sum_{T<\gamma\leq 2T}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}\ll&\sum_{j=1}^{\mathcal{J}}\sum_{\gamma\in S(j)}|\zeta^{\prime}(\rho)|^{2}|\mathcal{N}(\rho,k-1)|^{2}+T(\log T)^{k^{2}+3}\\ \ll&T(\log T)^{k^{2}+3}\sum_{j=1}^{\mathcal{J}}\Big{(}\frac{1}{\alpha_{j+1}}\Big{)}^{-\lceil 1/(10\alpha_{j+1})\rceil/(10)}.\end{split}

As the sum of the right side expression over jj converges, we see that the above estimation implies (3.31) and this completes the proof of Proposition 3.6.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082.

References