This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp bound for embedded eigenvalues of Dirac operators with decaying potentials

Vishwam Khapre Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA [email protected] Kang Lyu School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People’s Republic of China [email protected]  and  Andrew Yu Phillips Academy, 180 Main St, Andover, MA 01810, USA [email protected]
Abstract.

We study eigenvalues of the Dirac operator with canonical form

Lp,q(uv)=(0110)ddt(uv)+(pqqp)(uv),L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\frac{d}{dt}\begin{pmatrix}u\\ v\end{pmatrix}+\begin{pmatrix}-p&q\\ q&p\end{pmatrix}\begin{pmatrix}u\\ v\end{pmatrix},

where pp and qq are real functions. Under the assumption that

lim supxxp2(x)+q2(x)<,\limsup_{x\to\infty}x\sqrt{p^{2}(x)+q^{2}(x)}<\infty,

the essential spectrum of Lp,qL_{p,q} is (,)(-\infty,\infty). We prove that Lp,qL_{p,q} has no eigenvalues if

lim supxxp2(x)+q2(x)<12.\limsup_{x\to\infty}x\sqrt{p^{2}(x)+q^{2}(x)}<\frac{1}{2}.

Given any A12A\geq\frac{1}{2} and any λ\lambda\in\mathbb{R}, we construct functions pp and qq such that lim supxxp2(x)+q2(x)=A\limsup_{x\to\infty}x\sqrt{p^{2}(x)+q^{2}(x)}=A and λ\lambda is an eigenvalue of the corresponding Dirac operator Lp,qL_{p,q}. We also construct functions pp and qq so that the corresponding Dirac operator Lp,qL_{p,q} has any prescribed set (finitely or countably many) of eigenvalues.

Key words and phrases:
Dirac operators, canonical form, embedded eigenvalues, essential spectrum
2020 Mathematics Subject Classification. Primary: 34L15. Secondary: 34A30

1. Introduction and main results

The Schrödinger operator given by

(1) Hu=u′′+Vu\displaystyle Hu=-u^{\prime\prime}+Vu

and the Dirac operator given by

(2) L(uv)=(0110)ddx(uv)+(p11p12p21p22)(uv)L\begin{pmatrix}u\\ v\end{pmatrix}=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\frac{d}{dx}\begin{pmatrix}u\\ v\end{pmatrix}+\begin{pmatrix}p_{11}&p_{12}\\ p_{21}&p_{22}\end{pmatrix}\begin{pmatrix}u\\ v\end{pmatrix}

are two basic models in mathematics and physics. We are interested in the embedded eigenvalue (eigenvalue embeds into the essential spectrum) problem of Schrödinger operators and Dirac operators. For Schrödinger operators, the problem is well understood. Kato’s classical results [9] show that if lim supx|xV(x)|=A\limsup_{x\to\infty}\left\lvert xV(x)\right\rvert=A, then the Schrödinger operator has no eigenvalues larger than A2A^{2}. Wigner and von Neumann’s examples [25] imply that there exist potentials with A=8A=8, such that λ=1\lambda=1 is an eigenvalue of the associated Schrödinger operator. Finally, (see the survey [23] for the history), Atkinson and Everitt [1] obtained the sharp bound 4A2π2\frac{4A^{2}}{\pi^{2}}. They proved that there are no eigenvalues larger than 4A2π2\frac{4A^{2}}{\pi^{2}}, and for any 0<λ<4A2π20<\lambda<\frac{4A^{2}}{\pi^{2}}, there are potentials with lim supx|xV(x)|=A\limsup_{x\to\infty}\left\lvert xV(x)\right\rvert=A so that λ\lambda is an eigenvalue of the associated Schrödinger operator.

The connection between equations (1) and (2) is straightforward. For example, by letting p11=V,p_{11}=V, and p12=p21=p22=0p_{12}=p_{21}=p_{22}=0, one can directly obtain

u′′+λVu=λ2u\displaystyle-u^{\prime\prime}+\lambda Vu=\lambda^{2}u

by

L(uv)=λ(uv).L\begin{pmatrix}u\\ v\end{pmatrix}=\lambda\begin{pmatrix}u\\ v\end{pmatrix}.

In this article, we study embedded eigenvalue problems of a particular type of Dirac operators on L2[0,)L2[0,)L^{2}[0,\infty)\bigoplus L^{2}[0,\infty), namely Dirac operators with canonical form,

(3) Lp,q(uv)=(0110)ddx(uv)+(pqqp)(uv),L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\frac{d}{dx}\begin{pmatrix}u\\ v\end{pmatrix}+\begin{pmatrix}-p&q\\ q&p\end{pmatrix}\begin{pmatrix}u\\ v\end{pmatrix},

where pL2[0,)p\in L^{2}[0,\infty) and qL2[0,)q\in L^{2}[0,\infty) are real functions (referred to as potentials). The canonical form of Dirac operators plays an important role in spectral theory [19, Theorem 5.1]. In the study of  asymptotics of eigenvalues and the inverse problems of Dirac operators, it is crucial to use the canonical form [10, pp. 185-187], [27, 28]. We refer readers to [5, 4, 3, 6, 20, 7] for more recent development about various types of Dirac operators.

For any ϕ0[0,π)\phi_{0}\in[0,\pi), under the boundary condition

(4) u(0)sinϕ0v(0)cosϕ0=0,\displaystyle u(0)\sin\phi_{0}-v(0)\cos\phi_{0}=0,

the Dirac operator Lp,qL_{p,q} defined by (3) is self-adjoint.

Denote by σess(Lp,q)\sigma_{ess}(L_{p,q}) the essential spectrum of Lp,qL_{p,q}. Recall that λσess(Lp,q)\lambda\in\sigma_{ess}(L_{p,q}) if and only if there is an orthonormal sequence {φn}n=1\{\varphi_{n}\}_{n=1}^{\infty} such that

Lp,qφnλφn0,n.\displaystyle||L_{p,q}\varphi_{n}-\lambda\varphi_{n}||\to 0,\ n\to\infty.

It is well known that

σess(L0,0)=(,),\displaystyle\sigma_{ess}(L_{0,0})=(-\infty,\infty),

and L0,0L_{0,0} has no eigenvalues.

By [26, Theorem 6.4], if

p2(x)+q2(x)=o(1),\displaystyle\sqrt{p^{2}(x)+q^{2}(x)}=o(1),

as x,x\to\infty, then

σess(Lp,q)=(,).\displaystyle\sigma_{ess}(L_{p,q})=(-\infty,\infty).

In the first part of our paper, under the assumption that pp and qq are Coulomb type potentials (we ask that potentials have no singularity at x=0x=0), we study the question when Lp,qL_{p,q} has embedded eigenvalues.

Theorem 1.1.

If

lim supxxp(x)2+q(x)2=A<12,\limsup_{x\to\infty}x\sqrt{p(x)^{2}+q(x)^{2}}=A<\frac{1}{2},

then under any boundary condition (4), Lp,qL_{p,q} has no eigenvalues in (,)(-\infty,\infty).

Theorem 1.2.

For any ϕ0[0,π)\phi_{0}\in[0,\pi), λ(,),\lambda\in(-\infty,\infty), and  A12A\geq\frac{1}{2}, there exist potentials pp and qq such that

lim supxxp(x)2+q(x)2=A,\limsup_{x\to\infty}x\sqrt{p(x)^{2}+q(x)^{2}}=A,

and the Dirac operator Lp,qL_{p,q} has an eigenvalue λ\lambda under the boundary condition (4).

We say that the potential is CC^{\infty} if p,qp,q are C.C^{\infty}. In the second part of the paper, we will construct CC^{\infty} potentials with which Lp,qL_{p,q} has many embedded eigenvalues.

Theorem 1.3.

Let S={λj}j=1NS=\{\lambda_{j}\}_{j=1}^{N} be a set of distinct real numbers. Let {θj}j=1N[0,π)\{\theta_{j}\}_{j=1}^{N}\subset[0,\pi) be a set of angles. There exist CC^{\infty} potentials satisfying

p(x)2+q(x)2=O(1)1+x,\sqrt{p(x)^{2}+q(x)^{2}}=\frac{O(1)}{1+x},

where O(1)O(1) depends on SS, such that the associated Dirac operator Lp,qL_{p,q} has L2[0,)L2[0,)L^{2}[0,\infty)\bigoplus L^{2}[0,\infty) solutions (uj,vj)T(u_{j},v_{j})^{T} satisfying

Lp,q(uv)=λj(uv)\displaystyle L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\lambda_{j}\begin{pmatrix}u\\ v\end{pmatrix}

with the boundary condition

u(0)v(0)=cotθj,\displaystyle\frac{u(0)}{v(0)}=\cot\theta_{j},

for j=1,,N.j=1,\cdots,N.

Theorem 1.4.

Let S={λj}j=1S=\{\lambda_{j}\}_{j=1}^{\infty} be a set of distinct real numbers. Let   {θj}j=1[0,π)\{\theta_{j}\}_{j=1}^{\infty}\subset[0,\pi) be a set of angles. If h(x)h(x) is a positive function with limxh(x)=\lim_{x\to\infty}h(x)=\infty, then there exist CC^{\infty} potentials satisfying

p(x)2+q(x)2h(x)1+x,\sqrt{p(x)^{2}+q(x)^{2}}\leq\frac{h(x)}{1+x},

such that the associated Dirac operator Lp,qL_{p,q} has L2[0,)L2[0,)L^{2}[0,\infty)\bigoplus L^{2}[0,\infty) solutions (uj,vj)T(u_{j},v_{j})^{T} satisfying

Lp,q(uv)=λj(uv)\displaystyle L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\lambda_{j}\begin{pmatrix}u\\ v\end{pmatrix}

with the boundary condition

u(0)v(0)=cotθj,\displaystyle\frac{u(0)}{v(0)}=\cot\theta_{j},

for j=1,2,.j=1,2,\cdots.

For Dirac operators with single embedded eigenvalue, Evans and Harris [2] obtained the sharp bound for the separated Dirac equation with the form

L~(uv)=(0110)ddt(uv)+(p+1qqp1)(uv)=λ(uv),\displaystyle\tilde{L}\begin{pmatrix}u\\ v\end{pmatrix}=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\frac{d}{dt}\begin{pmatrix}u\\ v\end{pmatrix}+\begin{pmatrix}p+1&q\\ q&p-1\end{pmatrix}\begin{pmatrix}u\\ v\end{pmatrix}=\lambda\begin{pmatrix}u\\ v\end{pmatrix},

where their results are under the assumption that qq is locally absolutely continuous. For more results on embedded single eigenvalue, one can refer to [11, 15].

For many embedded eigenvalues of Schrödinger operators or Dirac operators, Naboko [18] constructed smooth potentials such that L0,qL_{0,q} has dense (rationally independent) embedded eigenvalues. Naboko’s constructions work for Schrödinger operators as well. Simon [22] constructed potentials such that the associated Schrödinger operator has dense embedded eigenvalues. More recently, Jitomirskaya and Liu [8] introduced a novel idea to construct embedded eigenvalues for Laplacian on manifolds, which is referred to as piecewise constructions. This approach turns out to be quite robust. Liu and his collaborators developed the approach of piecewise constructions to construct embedded eigenvalues for various models [15, 16, 17, 13]. For more results on embedded eigenvalue problems, one can refer to [21, 14, 12].

In this paper, we adapt the approach of piecewise construction to study embedded eigenvalue problems of Dirac operators. The main strategy of proofs for our main theorems follow from that of [8, 17, 13]. In the current case of Dirac operators, new difficulties and challenges arise from the Dirac operator being vector valued and its potential consisting of a pair of functions pp and qq (unlike the models in [8, 15, 16, 17, 13]).

2. Proof of Theorems 1.1 and 1.2

Let (u(x),v(x))T(u(x),v(x))^{T} be a solution of

Lp,q(uv)=λ(uv).L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\lambda\begin{pmatrix}u\\ v\end{pmatrix}.

We define the Prüfer variables  R(x)R(x) and θ(x)\theta(x) of  λ\lambda by

u(x)=R(x)cosθ(x),\displaystyle u(x)=R(x)\cos\theta(x),

and

v(x)=R(x)sinθ(x).\displaystyle v(x)=R(x)\sin\theta(x).

Clearly, we have

Proposition 2.1.

Let R(x)R(x) and θ(x)\theta(x) be the Prüfer variables of λ\lambda. Then λ\lambda is an eigenvalue of the Dirac operator if and only if RL2(0,).R\in L^{2}(0,\infty).

By the equation

Lp,q (uv)=λ(uv),L_{p,q} \begin{pmatrix}u\\ v\end{pmatrix}=\lambda\begin{pmatrix}u\\ v\end{pmatrix},

we obtain

(5) RR=q(x)cos2θ(x)p(x)sin2θ(x),\displaystyle\frac{R^{\prime}}{R}=-q(x)\cos 2\theta(x)-p(x)\sin 2\theta(x),

and

(6) θ=λ+q(x)sin2θ(x)p(x)cos2θ(x).\displaystyle\theta^{\prime}=-\lambda+q(x)\sin 2\theta(x)-p(x)\cos 2\theta(x).

Set q(x)=V(x)cosφ(x),p(x)=V(x)sinφ(x)q(x)=V(x)\cos\varphi(x),p(x)=V(x)\sin\varphi(x). Note that pp and qq are completely determined by VV and φ\varphi. By (5) and (6), one has

(7) RR=V(x)cos(2θ(x)φ(x)),\displaystyle\frac{R^{\prime}}{R}=-V(x)\cos(2\theta(x)-\varphi(x)),

and

(8) θ=λ+V(x)sin(2θ(x)φ(x)).\displaystyle\theta^{\prime}=-\lambda+V(x)\sin(2\theta(x)-\varphi(x)).

It is obvious that equations (7) and (8) are equivalent to

Lp,q (uv)=λ(uv).L_{p,q} \begin{pmatrix}u\\ v\end{pmatrix}=\lambda\begin{pmatrix}u\\ v\end{pmatrix}.

By Proposition 2.1, we only need to study (7) and (8).

Proof of Theorem 1.1.

Assume

(9) lim supx|xV(x)|=lim supxxp(x)2+q(x)2=A<12.\displaystyle\limsup_{x\to\infty}|xV(x)|=\limsup_{x\to\infty}x\sqrt{p(x)^{2}+q(x)^{2}}=A<\frac{1}{2}.

For any ϵ>0\epsilon>0 (small enough so that A+ϵ<12A+\epsilon<\frac{1}{2}), there exists x0x_{0} so that for any x>x0x>x_{0}, one has

|V(x)|A+ϵ1+x.|V(x)|\leq\frac{A+\epsilon}{1+x}.

By (7) and (9), we have

lnR(x)\displaystyle\ln R(x) =lnR(x0)x0xV(t)cos(2θ(t)φ(t))𝑑t\displaystyle=\ln R(x_{0})-\int_{x_{0}}^{x}V(t)\cos(2\theta(t)-\varphi(t))dt
O(1)(A+ϵ)x0x11+t𝑑t\displaystyle\geq O(1)-(A+\epsilon)\int_{x_{0}}^{x}\frac{1}{1+t}dt
=O(1)(A+ϵ)lnx.\displaystyle=O(1)-(A+\epsilon)\ln x.

By the assumption, there exists a positive constant kk such that, for large xx, we have

R(x)kx12.R(x)\geq kx^{-\frac{1}{2}}.

This implies that RL2(0,)R\notin L^{2}(0,\infty). Hence by Proposition 2.1, λ\lambda is not an eigenvalue of Lp,qL_{p,q}. ∎

Proof of Theorem 1.2 for A>12A>\frac{1}{2}.

We construct pp and qq as follows:

V(x)=A1+x,x0,\displaystyle V(x)=\frac{A}{1+x},\ x\geq 0,

and

φ(x)=2λx+2θ(0),x0.\displaystyle\varphi(x)=-2\lambda x+2\theta(0),\ x\geq 0.

By (8) and the uniqueness theorem (see for example [24, Theorem 2.2]),  one has for any x0,x\geq 0,

2θ(x)φ(x)0.2\theta(x)-\varphi(x)\equiv 0.

Thus from (7) we obtain

lnR(x)\displaystyle\ln R(x) =lnR(0)0xA1+t𝑑t\displaystyle=\ln R(0)-\int_{0}^{x}\frac{A}{1+t}dt
=O(1)Alnx.\displaystyle=O(1)-A\ln x.

We immediately obtain that for some small ϵ>0\epsilon>0 and any large xx,

R(x)x12ϵ.R(x)\leq x^{-\frac{1}{2}-\epsilon}.

Therefore, RL2(0,)R\in L^{2}(0,\infty) and by Proposition 2.1, λ\lambda is an eigenvalue of the corresponding Dirac operator Lp,qL_{p,q}. ∎

Proof of Theorem 1.2 for A=12A=\frac{1}{2}.

Let ϵn=12n\epsilon_{n}=\frac{1}{2n}, an=en3a_{n}=e^{n^{3}}. Set

V(x)=A+ϵnx, x[an,an+1),\displaystyle V(x)=\frac{A+\epsilon_{n}}{x}, \ x\in[a_{n},a_{n+1}),

and

φ(x)=2λx+2θ(0).\displaystyle\varphi(x)=-2\lambda x+2\theta(0).

By (8) and the uniqueness theorem,  one has for any x0x\geq 0,

2θ(x)φ(x)0.2\theta(x)-\varphi(x)\equiv 0.

By (7), one has

lnR(an+1)lnR(an)\displaystyle\ln R(a_{n+1})-\ln R(a_{n}) =anan+1A+ϵnx𝑑x\displaystyle=-\int_{a_{n}}^{a_{n+1}}\frac{A+\epsilon_{n}}{x}dx
(10) =(A+ϵn)lnan+1an.\displaystyle=-(A+\epsilon_{n})\ln\frac{a_{n+1}}{a_{n}}.

For t[an,an+1)t\in[a_{n},a_{n+1}), we have

lnR(t)lnR(an)\displaystyle\ln R(t)-\ln R(a_{n}) =antA+ϵnx𝑑x\displaystyle=-\int_{a_{n}}^{t}\frac{A+\epsilon_{n}}{x}dx
(11) =(A+ϵn)lntan.\displaystyle=-(A+\epsilon_{n})\ln\frac{t}{a_{n}}.

From (2), we obtain

lnR(an)=lnR(a0)j=0n1(A+ϵj)lnaj+1aj.\displaystyle\ln R(a_{n})=\ln R(a_{0})-\sum_{j=0}^{n-1}(A+\epsilon_{j})\ln\frac{a_{j+1}}{a_{j}}.

Therefore, one has

R(an)\displaystyle R(a_{n}) =O(1)ej=0n1(A+ϵj)lnaj+1aj\displaystyle=O(1)e^{-\sum_{j=0}^{n-1}(A+\epsilon_{j})\ln\frac{a_{j+1}}{a_{j}}}
=O(1)j=0n1aj+1(A+ϵj)ajA+ϵj\displaystyle=O(1)\prod_{j=0}^{n-1}a_{j+1}^{-(A+\epsilon_{j})}a_{j}^{A+\epsilon_{j}}
=O(1)j=1naj(A+ϵj1)j=1n1ajA+ϵj\displaystyle=O(1)\prod_{j=1}^{n}a_{j}^{-(A+\epsilon_{j-1})}\prod_{j=1}^{n-1}a_{j}^{A+\epsilon_{j}}
(12) =O(1)an(A+ϵn1)j=1n1ajϵjϵj1.\displaystyle=O(1)a_{n}^{-(A+\epsilon_{n-1})}\prod_{j=1}^{n-1}a_{j}^{\epsilon_{j}-\epsilon_{j-1}}.

By (2) and (2), we conclude

R(t)\displaystyle R(t) =O(1)R(an)e(A+ϵn)lntan\displaystyle=O(1)R(a_{n})e^{-(A+\epsilon_{n})\ln\frac{t}{a_{n}}}
=O(1)R(an)t(A+ϵn)anA+ϵn\displaystyle=O(1)R(a_{n})t^{-(A+\epsilon_{n})}a_{n}^{A+\epsilon_{n}}
(13) =O(1)j=1najϵjϵj1t(A+ϵn).\displaystyle=O(1)\prod_{j=1}^{n}a_{j}^{\epsilon_{j}-\epsilon_{j-1}}t^{-(A+\epsilon_{n})}.

It follows that

anan+1R(t)2𝑑t\displaystyle\int_{a_{n}}^{a_{n+1}}R(t)^{2}dt =O(1)anan+1j=1naj1j1j1t11ndt\displaystyle=O(1)\int_{a_{n}}^{a_{n+1}}\prod_{j=1}^{n}a_{j}^{\frac{1}{j}-\frac{1}{j-1}}t^{-1-\frac{1}{n}}dt
O(1)j=1nejnen2\displaystyle\leq O(1)\prod_{j=1}^{n}e^{-j}\frac{n}{e^{n^{2}}}
(14) O(1)nen2.\displaystyle\leq O(1)\frac{n}{e^{n^{2}}}.

This implies that RL2(0,)R\in L^{2}(0,\infty),  by Proposition 2.1, λ\lambda is an eigenvalue of the corresponding Dirac operator Lp,qL_{p,q}.   ∎

3. Proof of Theorems 1.3 and 1.4

We assume that λ\lambda and λj\lambda_{j} are different values. Denote the Prüfer variables of λ\lambda and λj\lambda_{j} by R(x),θ(x)R(x),\theta(x) and Rj(x),θj(x)R_{j}(x),\theta_{j}(x), respectively.

Recall that V(x)V(x) and φ(x)\varphi(x) uniquely determine pp and qq. Define  V(x)=V(x,b)V(x)=V(x,b) and φ(x)=φ(x,λ,a,φ0)\varphi(x)=\varphi(x,\lambda,a,\varphi_{0}) on [a,)[a,\infty) by

(15) V(x,b)=C1+xb,V(x,b)=\frac{C}{1+x-b},

and

(16) φ(x,λ,a,θ0)=2λ(xa)+2φ0,\displaystyle\varphi(x,\lambda,a,\theta_{0})=-2\lambda(x-a)+2\varphi_{0},

where CC is a constant will be defined later, a>ba>b and φ0=θ(a).\varphi_{0}=\theta(a).

Lemma 3.1.

Fix b>0b>0. Let  V(x)V(x) be defined by (15). Let φ(x)\varphi(x) be defined by (16), and λλj.\lambda\neq\lambda_{j}. Let θj(x)\theta_{j}(x) be a solution of

(17) θj(x)=λj+V(x)sin(2θj(x)φ(x)),\theta_{j}^{\prime}(x)=-\lambda_{j}+V(x)\sin(2\theta_{j}(x)-\varphi(x)),

then we have

(18) x0x11+tbcos(2θj(t)φ(t))𝑑t=O(1)x0b,\displaystyle\int_{x_{0}}^{x}\frac{1}{1+t-b}\cos(2\theta_{j}(t)-\varphi(t))dt=\frac{O(1)}{x_{0}-b},

for any x>x0>ax>x_{0}>a.

Proof.

By (16) and (17) we have

2θj(t)φ(t)=2(λλj)+O(1)1+tb,\displaystyle 2\theta_{j}^{\prime}(t)-\varphi^{\prime}(t)=2(\lambda-\lambda_{j})+\frac{O(1)}{1+t-b},

and

2θj′′(t)φ′′(t)=O(1)1+tb.\displaystyle 2\theta_{j}^{\prime\prime}(t)-\varphi^{\prime\prime}(t)=\frac{O(1)}{1+t-b}.

It follows that

x0x11+tbcos(2θj(t)φ(t))𝑑t\displaystyle\int_{x_{0}}^{x}\frac{1}{1+t-b}\cos(2\theta_{j}(t)-\varphi(t))dt
=\displaystyle= sin(2θj(t)φ(t))2(λλj)+O(1)1+tb11+tb|x0x+O(1)x0x1(1+tb)2𝑑t\displaystyle\frac{\sin(2\theta_{j}(t)-\varphi(t))}{2(\lambda-\lambda_{j})+\frac{O(1)}{1+t-b}}\frac{1}{1+t-b}\Bigg{|}^{x}_{x_{0}}+O(1)\int_{x_{0}}^{x}\frac{1}{(1+t-b)^{2}}dt
=\displaystyle= O(1)x0b.\displaystyle\frac{O(1)}{x_{0}-b}.

Lemma 3.2.

Fix b>0b>0. Let V(x)V(x) be defined by (15) on [a,)[a,\infty). Let φ(x)\varphi(x) be defined by (16) on [a,)[a,\infty), and λλj.\lambda\neq\lambda_{j}. Let R(x),θ(x)R(x),\theta(x) and Rj(x),θj(x)R_{j}(x),\theta_{j}(x) be the Prüfer variables of λ\lambda and λj\lambda_{j}, respectively. For any x>ax>a,

(19) lnR(x)lnR(a)100lnxbab+C,\displaystyle\ln R(x)-\ln R(a)\leq-100\ln\frac{x-b}{a-b}+C,
(20) lnR(x)lnR(a),\displaystyle\ln R(x)\leq{\ln R(a)},

where CC is a large constant depending on λ\lambda and λj\lambda_{j}, and for any x>x0ax>x_{0}\geq a with large enough x0bx_{0}-b, we have

(21) Rj(x)1.5Rj(x0).\displaystyle R_{j}(x)\leq 1.5R_{j}(x_{0}).
Proof.

By (8), (15) and (16), and the uniqueness theorem, one has

2θ(x)φ(x)=0.\displaystyle 2\theta(x)-\varphi(x)=0.

Therefore, by (7) and (15), we have

lnR(x)\displaystyle\ln R(x) =lnR(a)axC1+tb𝑑t\displaystyle=\ln R(a)-\int_{a}^{x}\frac{C}{1+t-b}dt
=lnR(a)Cln1+xb1+ab.\displaystyle=\ln R(a)-C\ln\frac{1+x-b}{1+a-b}.

Then we immediately obtain (19) and (20).

By (5) and (18), we have

lnRj(x)\displaystyle\ln R_{j}(x) =lnRj(x0)x0xCcos(2θj(t)φ(t))1+tb𝑑t\displaystyle=\ln R_{j}(x_{0})-\int_{x_{0}}^{x}\frac{C\cos(2\theta_{j}(t)-\varphi(t))}{1+t-b}dt
=lnRj(x0)+O(1)x0b.\displaystyle=\ln R_{j}(x_{0})+\frac{O(1)}{x_{0}-b}.

Hence we obtain (21). ∎

Proposition 3.3.

Let  λ\lambda and S={λj}j=1kS=\{{\lambda}_{j}\}_{j=1}^{k} be distinct real numbers. Given  φ0[0,π)\varphi_{0}\in[0,\pi), if x1>x0>bx_{1}>x_{0}>b, then there exist constants K(λ,S)K(\lambda,S), C(λ,S)C(\lambda,S) (independent of b,x0b,x_{0} and x1x_{1}) and V~(x,λ,S,x0,x1,b)C\widetilde{V}(x,\lambda,S,x_{0},x_{1},b)\in C^{\infty} and φ(x,λ,S,x0,x1,b,φ0)\varphi(x,\lambda,S,x_{0},x_{1},b,\varphi_{0}) such that  for x0b>K(λ,S)x_{0}-b>K(\lambda,S) the following holds:

(1):

for x0xx1x_{0}\leq x\leq x_{1}, supp(V~)(x0,x1){\rm supp}(\widetilde{V})\subset(x_{0},x_{1}),  and

(22) |V~(x,λ,S,x0,x1,b)|C(λ,S)xb.|\widetilde{V}(x,\lambda,S,x_{0},x_{1},b)|\leq\frac{C(\lambda,S)}{x-b}.
(2):

the solution of Dirac  equation

Lp,q(uv)=λ(uv),L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\lambda\begin{pmatrix}u\\ v\end{pmatrix},

with the boundary condition u(x0)v(x0)=cotφ0\frac{u(x_{0})}{v(x_{0})}=\cot\varphi_{0} satisfies

(23) R(x1)C(λ,S)(x1bx0b)100R(x0),R(x_{1})\leq C(\lambda,S)\left(\frac{x_{1}-b}{x_{0}-b}\right)^{-100}R(x_{0}),

and  for x0<x<x1x_{0}<x<x_{1},

(24) R(x) 2R(x0).R(x)\leq 2R(x_{0}).
(3):

the solution of Dirac equation

Lp,q(uv)=λj(uv),L_{p,q}\begin{pmatrix}u\\ v\end{pmatrix}=\lambda_{j}\begin{pmatrix}u\\ v\end{pmatrix},

with any boundary condition  satisfies for x0<xx1x_{0}<x\leq x_{1},

(25) Rj(x) 2Rj(x0).R_{j}(x)\leq 2R_{j}(x_{0}).
Proof.

Let V(x)V(x) be given by (15) and φ(x)\varphi(x) be given by (16), with a=x0a=x_{0} and C=C(λ,S)C=C(\lambda,S). Let x=x1x=x_{1} in (19), (20) and (21). We smooth V(x)V(x) near x0,x1x_{0},x_{1} to obtain V~(x)\widetilde{V}(x). Notice that by (7), a small perturbation of V(x)V(x) will only give a small change of R(x)R(x) and Rj(x)R_{j}(x). Hence Lemma 3.2 still holds with slightly larger constants. We complete the proof. ∎

Proof of Theorems 1.3 and 1.4..

With the help of Proposition 3.3, the proofs of Theorems 1.3 and 1.4 follow from the construction step by step as appearing in [8, 17, 13]. (We mention that although the models in [8, 17, 13] are second-order differential equations, the construction still works here because it only relies on Proposition 3.3.) We only give an outline of the  proof here. Let {Nr}r+\{N_{r}\}_{r\in\mathbb{Z}^{+}} be a non-decreasing sequence which goes to infinity arbitrarily slowly depending on h(x)h(x) 111For most rr\in\mathbb{N}, we have Nr+1=NrN_{r+1}=N_{r},  and when Nr+1>NrN_{r+1}>N_{r}, we take Nr+1=Nr+1N_{r+1}=N_{r}+1. This will  ensure NrN_{r} increases to infinity  slowly.. We further assume Nr+1=Nr+1N_{r+1}=N_{r}+1 when Nr+1>NrN_{r+1}>N_{r}. At the rrth step, we take NrN_{r} eigenvalues into consideration. Applying Proposition 3.3, we construct potentials with NrN_{r} pieces, where each piece comes from (22) with λ\lambda being an eigenvalue. The main difficulty is to control the size of each piece (denote by TrT_{r}). The construction in [8, 17, 13] only uses inequalities (22), (23) and (24) to obtain appropriate TrT_{r} and NrN_{r}. Hence Proposition 3.3 implies Theorems 1.3 and 1.4.

Acknowledgments

This work was completed as part of the 2022 High School and Undergraduate Research Program “STODO” (Spectral Theory Of Differential Operators) at Texas A&M University. We would like to thank Wencai Liu for managing the program, introducing this project and many inspiring discussions. The authors are also grateful to the anonymous referee, whose comments led to an improvement of our manuscript. This work was partially supported by NSF DMS-2015683 and DMS-2000345.

References

  • [1] F. V. Atkinson and W. N. Everitt. Bounds for the point spectrum for a Sturm-Liouville equation. Proc. Roy. Soc. Edinburgh Sect. A, 80(1-2):57–66, 1978.
  • [2] W. D. Evans and B. J. Harris. Bounds for the point spectra of separated Dirac operators. Proc. Roy. Soc. Edinburgh Sect. A, 88(1-2):1–15, 1981.
  • [3] F. Gesztesy and R. Nichols. On absence of threshold resonances for Schrödinger and Dirac operators. Discrete Contin. Dyn. Syst. Ser. S, 13(12):3427–3460, 2020.
  • [4] F. Gesztesy and A. Sakhnovich. The inverse approach to Dirac-type systems based on the AA-function concept. J. Funct. Anal., 279(6):108609, 40, 2020.
  • [5] F. Gesztesy and M. Zinchenko. Renormalized oscillation theory for Hamiltonian systems. Adv. Math., 311:569–597, 2017.
  • [6] B. J. Harris. Bounds for the eigenvalues of separated Dirac operators. Proc. Roy. Soc. Edinburgh Sect. A, 95(3-4):341–366, 1983.
  • [7] Y. Hu, N. P. Bondarenko, C. Shieh, and C. Yang. Traces and inverse nodal problems for Dirac-type integro-differential operators on a graph. Appl. Math. Comput., 363:124606, 10, 2019.
  • [8] S. Jitomirskaya and W. Liu. Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian. Geom. Funct. Anal., 29(1):238–257, 2019.
  • [9] T. Kato. Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. Pure Appl. Math., 12:403–425, 1959.
  • [10] B. M. Levitan and I. S. Sargsjan. Sturm-Liouville and Dirac operators, volume 59 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian.
  • [11] W. Liu. Sharp bound on the largest positive eigenvalue for one-dimensional Schrödinger operators. arXiv preprint arXiv:1709.05611, 2017.
  • [12] W. Liu. The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators. Pure Appl. Funct. Anal., 4(3):589–602, 2019.
  • [13] W. Liu. Criteria for eigenvalues embedded into the absolutely continuous spectrum of perturbed Stark type operators. J. Funct. Anal., 276(9):2936–2967, 2019.
  • [14] W. Liu. Sharp bounds for finitely many embedded eigenvalues of perturbed Stark type operators. Math. Nachr., 293(9):1776–1790, 2020.
  • [15] W. Liu. Criteria for embedded eigenvalues for discrete Schrödinger operators. Int. Math. Res. Not. IMRN, (20):15803–15832, 2021.
  • [16] W. Liu and K. Lyu. One dimensional discrete Schrödinger operators with resonant embedded eigenvalues. arXiv preprint arXiv:2207.00194, 2022.
  • [17] W. Liu and D. C. Ong. Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators. J. Anal. Math., 141(2):625–661, 2020.
  • [18] S. N. Naboko. On the dense point spectrum of Schrödinger and Dirac operators. Teoret. Mat. Fiz., 68(1):18–28, 1986.
  • [19] C. Remling. Spectral theory of canonical systems, volume 70 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2018.
  • [20] C. Remling and K. Scarbrough. The essential spectrum of canonical systems. J. Approx. Theory, 254:105395, 11, 2020.
  • [21] K. M. Schmidt. Dense point spectrum for the one-dimensional Dirac operator with an electrostatic potential. Proc. Roy. Soc. Edinburgh Sect. A, 126(5):1087–1096, 1996.
  • [22] B. Simon. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc., 125(1):203–208, 1997.
  • [23] B. Simon. Tosio Kato’s work on non-relativistic quantum mechanics: part 1. Bull. Math. Sci., 8(1):121–232, 2018.
  • [24] G. Teschl. Ordinary differential equations and dynamical systems, volume 140 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
  • [25] J. von Neumann and E. Wigner. Über merkwürdige diskrete Eigenwerte. Phys. Zeit., 30:467–470, 1929.
  • [26] J. Weidmann. Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math. Z., 119:349–373, 1971.
  • [27] C. Yang and Z. Huang. Inverse spectral problems for 2m2m-dimensional canonical Dirac operators. Inverse Problems, 23(6):2565–2574, 2007.
  • [28] R. Zhang, C. Yang, and N. P. Bondarenko. Inverse spectral problems for the Dirac operator with complex-valued weight and discontinuity. J. Differential Equations, 278:100–110, 2021.