This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Set–theoretical entropies of weighted generalized shifts

Fatemah Ayatollah Zadeh Shirazi, Arezoo Hosseini,
Lida Mousavi, Reza Rezavand
Abstract.

In this paper for a finite field FF, a nonempty set Γ\Gamma, a self–map φ:ΓΓ\varphi:\Gamma\to\Gamma and a weight vector 𝔴FΓ\mathfrak{w}\in F^{\Gamma}, we show that the set–theoretical entropy of the weighted generalized shift σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is either zero or ++\infty, moreover it is equal to zero if and only if σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is quasi–periodic. On the other hand after characterizing all conditions under which σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, we show that the contravariant set–theoretical entropy of a finite fibre σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} depends only on φ\varphi and supp(𝔴)\rm{supp}(\mathfrak{w}). In final sections we study the restriction of σφ,𝔴\sigma_{\varphi,\mathfrak{w}} to the direct sum ΓF\mathop{\bigoplus}\limits_{\Gamma}F.

2020 Mathematics Subject Classification: 03E20, 37B99
Keywords:
Contravariant set– theoretical entropy, Covariant set–theoretical entropy, Infinite anti–orbit number, Infinite orbit number, Weighted generalized shift.

1. Introduction

As it has been mentioned in several texts “Entropy” could be defined as the (numerical) value of dynamicity/ uncertainty/ complexity in a system. Let’s name some types of entropy: measure entropy [13, 19, 20], topological entropy [1, 2], algebraic entropy [10, 21], adjoint entropy [9].
Bernoulli shifts and entropy are the common interests of many not only old researches [15, 16], but also new ones [17]. According to the preface of [18], Ornstein (and others) have shown “that a large class of transformations of physical and mathematical interest are isomorphic to Bernoulli shifts”. During the works of Ornstein and other mathematicains, we sense strongly that Bernoulli shifts are classical and the simplest examples in ergodic and entropy theory (see e.g. the third paragraph of [15]). Without any doubt, the left Bernoulli shift {1,,k}{1,,k}(xn)n1(xn+1)n1\mathop{\{1,\ldots,k\}^{\mathbb{N}}\to\{1,\ldots,k\}^{\mathbb{N}}}\limits_{(x_{n})_{n\geq 1}\mapsto(x_{n+1})_{n\geq 1}} and two–sided Bernoulli shift {1,,k}{1,,k}(xn)n(xn+1)n\mathop{\{1,\ldots,k\}^{\mathbb{Z}}\to\{1,\ldots,k\}^{\mathbb{Z}}}\limits_{(x_{n})_{n\in\mathbb{Z}}\mapsto(x_{n+1})_{n\in\mathbb{Z}}} have great part to inspiring generalized shift. “Generalized shifts” form a class of examples inspired by Bernoulli shifts, Bernoulli shifts are special generalized shifts and there are several papers dedicated to compute the entropy of generalized shifts [3, 4, 14]. “Weighted generalized shifts” are a further generalization of generalized shifts, in functional analysis and complex analysis courses they are known as weighted composition operators, under a different point of view (see subsection 2.2).
Amongst different types of entropy, we study the covariant and the contravariant set–theoretical entropies of self–maps of a nonempty set (see subsection 2.1) with a focus on the weighted generalized shifts.
Let’s bring our main results in this stage accompanying with their full assumptions. For a finite field FF, a nonempty set Γ\Gamma, an arbitrary self–map φ:ΓΓ\varphi:\Gamma\to\Gamma and a weight vector 𝔴=(𝔴α)αΓFΓ\mathfrak{w}=(\mathfrak{w}_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma} also supp(𝔴):={αΓ:𝔴α0}\rm{supp}(\mathfrak{w}):=\{\alpha\in\Gamma:\mathfrak{w}_{\alpha}\neq 0\}, our results on the weighted generalized shift σφ,𝔴:FΓFΓ(xα)αΓ(𝔴αxφ(α))αΓ\mathop{\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma}\>\>\>\>\>\>\>\>\>\>}\limits_{(x_{\alpha})_{\alpha\in\Gamma}\mapsto(\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in\Gamma}} can be divided into types “structural results” and “numerical results”. As the structural results we show:

  • -

    σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is quasi–periodic if and only if it is pointwise quasi–periodic (see Corollary 3.5 also for definitions of quasi periodicity and pointwise quasi–periodicity see 2.3), moreover, this proposition is not valid in general self–maps by Example 2.1,

  • -

    the weighted generalized shift σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, if and only if Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite,

  • -

    σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F if and only if φsupp(𝔴):supp(𝔴)Γ\varphi\restriction_{{\rm supp}(\mathfrak{w})}:{\rm supp}(\mathfrak{w})\to\Gamma is of finite fibre. Moreover, in this case, σφ,𝔴ΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F} is of finite fibre if and only if σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre,

In the numerical results, we compute covariant and contravariant set–theoretical entropies of σφ,𝔴\sigma_{\varphi,\mathfrak{w}}, i.e.:

  • -

    covariant set–theoretical entropy of the weighted generalized shift σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} has no finite values different from zero, moreover it takes value zero if and only if σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is quasi–periodic,

  • -

    contravariant set–theoretical entropy of the finite fibre weighted generalized shift σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} has no finite values different from zero, as a matter of fact entcset(σφ,𝔴)=+{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})=+\infty if and only if one of the following conditions occurs:

    • a.

      φ\varphi has a non–quasi–periodic point in {φn(supp(𝔴)):n0}\bigcap\{\varphi^{-n}({\rm supp}({\mathfrak{w}})):n\geq 0\},

    • b.

      all points of {φn(supp(𝔴)):n0}\bigcap\{\varphi^{-n}({\rm supp}({\mathfrak{w}})):n\geq 0\} are quasi–periodic points of φ\varphi and sup{per(α):αPer(φ)({φn(supp(𝔴)):n0})}=+\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi)\cap(\bigcap\{\varphi^{-n}({\rm supp}({\mathfrak{w}})):n\geq 0\})\}=+\infty,

  • -

    In addition whenever σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F, then:

    • a.

      covariant set–theoretical entropy of σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F has no finite values different from zero, moreover it takes ++\infty if and only if there exists a one to one φ\varphi-anti–orbit sequence in supp(𝔴){\rm supp}(\mathfrak{w}),

    • b.

      contravariant set–theoretical entropy of finite fibre σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F has no finite values different from zero, moreover it takes ++\infty if and only if there exists a one to one φ\varphi-orbit sequence in supp(𝔴){\rm supp}(\mathfrak{w}).

2. Some required backgrounds

Covariant set–theoretical entropy, contravariant set–theoretical entropy and weighted generalized shifts are our main objects in this paper. Let’s have a glance at them via the following two subsections which are followed by a subsection devoted to primary notations.

2.1. Background on covariant set–theoretical and contravariant set–theoretical entropies

For a nonempty set AA and a self–map f:AAf:A\to A, we say that the sequence S={an}n1S=\{a_{n}\}_{n\geq 1} is:

  • an ff-orbit, if for each n1n\geq 1, we have f(an)=an+1f(a_{n})=a_{n+1},

  • an ff-anti–orbit, if for each n1n\geq 1, we have f(an+1)=anf(a_{n+1})=a_{n},

  • one to one if amana_{m}\neq a_{n} for all m>n1m>n\geq 1.

The string number or infinite orbit number of self–map f:AAf:A\to A is [3, 7]:

𝗈(f):=sup({0}{n1:thereexistnonetoonepairwisedisjointforbitsinA}),\mathsf{o}(f):=\sup(\{0\}\cup\{n\geq 1:{\rm there\>exist\>}n\>{\rm one\>to\>one\>pairwise\>disjoint\>}f\!-\!{\rm orbits\>in\>}A\}),

and the antistring number or infinite anti–orbit number of self–map f:AAf:A\to A is [4, 7]:

𝖺(f):=sup({0}{n1:thereexistnonetoonepairwisedisjointfantiorbitsinA}).\mathsf{a}(f):=\sup(\{0\}\cup\{n\geq 1:\!{\rm there\>exist\>}n\>{\rm one\>to\>one\>pairwise\>disjoint\>}f\!-\!{\rm anti\!-\!orbits\>in\>}A\}).

For a finite subset DD of AA let (whereby |D||D| we mean the cardinality of DD):

𝔥(f,D):=limn|Df(D)f2(D)fn1(D)|n\mathfrak{h}(f,D):={\displaystyle\lim_{n\to\infty}\frac{|D\cup f(D)\cup f^{2}(D)\cup\cdots\cup f^{n-1}(D)|}{n}}

where the limit exists by [4, Lemma 2.6], and we call entset(f):=sup{𝔥(f,D):D{\rm ent}_{\rm set}(f):=\sup\{\mathfrak{h}(f,D):D is a finite subset of A}A\}, covariant set–theoretical entropy of f:AAf:A\to A (or briefly set–theoretical entropy of f:AAf:A\to A), moreover, entset(f)=𝗈(f){\rm ent}_{\rm set}(f)=\mathsf{o}(f) [4, Proposition 2.16]. Set–theoretical entropy of a self–map has been introduced for the first time in [4].
On the other hand for f:AAf:A\to A, we have {fn(A):n1}={DA:f(D)=D}\bigcap\{f^{n}(A):n\geq 1\}=\bigcup\{D\subseteq A:f(D)=D\} so sc(f)={fn(A):n1}{\rm sc}(f)=\bigcap\{f^{n}(A):n\geq 1\} as surjective core of f:AAf:A\to A is the biggest subset DD of AA, such that fD:DDf\restriction_{D}:D\to D is surjective. Also the sequence {an}n1\{a_{n}\}_{n\geq 1} is an ff-anti–orbit if and only if it is an fsc(f)f\restriction_{{\rm sc}(f)}-anti–orbit, hence 𝖺(fsc(f))=𝖺(f)\mathsf{a}(f\restriction_{{\rm sc}(f)})=\mathsf{a}(f).
Let’s mention that f:ABf:A\to B is of finite fibre if f1(y)f^{-1}(y) is finite for all yBy\in B.
For a surjective finite fibre f:AAf:A\to A and a finite subset DD of AA, let

𝔥(f,D):=lim supn|Df1(D)f2(D)fn+1(D)|n,\mathfrak{h}^{*}(f,D):={\displaystyle\limsup_{n\to\infty}\frac{|D\cup f^{-1}(D)\cup f^{-2}(D)\cup\cdots\cup f^{-n+1}(D)|}{n}}\>,

then we call entcset(f):=sup{𝔥(f,D):D{\rm ent}_{\rm cset}(f):=\sup\{\mathfrak{h}^{*}(f,D):D is a finite subset of A}A\}, contravariant set–theoretical entropy of ff, moreover entcset(f)=𝖺(f){\rm ent}_{\rm cset}(f)=\mathsf{a}(f). So for a finite fibre self–map f:AAf:A\to A, we may consider contravariant set–theoretical entropy of ff as entcset(f):=𝖺(fsc(f))=𝖺(f){\rm ent}_{\rm cset}(f):=\mathsf{a}(f\restriction_{{\rm sc}(f)})=\mathsf{a}(f), see [8, Definition 3.2.18, Definition 3.2.19, Proposition 3.2.34, Theorem 3.2.39].

2.2. Background on generalized and weighted generalized shifts

Let’s recall that for the nonempty sets M,ΓM,\Gamma and the self–map φ:ΓΓ\varphi:\Gamma\to\Gamma, the generalized shift σφ:MΓMΓ\sigma_{\varphi}:M^{\Gamma}\to M^{\Gamma} with σφ((xα)αΓ)=(xφ(α))αΓ\sigma_{\varphi}((x_{\alpha})_{\alpha\in\Gamma})=(x_{\varphi(\alpha)})_{\alpha\in\Gamma} has been introduced for the first time in [6] as a generalization of the left Bernoulli shift and the two–sided shift. Moreover, for a bounded vector (rn)n1()(r_{n})_{n\geq 1}(\in{\mathbb{C}}^{\mathbb{N}}), the weighted shift σ:22\sigma:\ell^{2}\to\ell^{2} with σ((xn)n1)=(rnxn+1)n1\sigma((x_{n})_{n\geq 1})=(r_{n}x_{n+1})_{n\geq 1} is of great interest in functional analysis.
Weighted generalized shifts can be considered as a common generalization of weighted shifts and generalized shifts in the following way: Suppose MM is a module over ring RR, Γ\Gamma is a nonempty set, φ:ΓΓ\varphi:\Gamma\to\Gamma is an arbitrary self–map, and 𝔴=(𝔴α)αΓRΓ\mathfrak{w}=(\mathfrak{w}_{\alpha})_{\alpha\in\Gamma}\in R^{\Gamma}, then we call σφ,𝔴:MΓMΓ\sigma_{\varphi,\mathfrak{w}}:M^{\Gamma}\to M^{\Gamma} with σφ,𝔴((xα)αΓ)=(𝔴αxφ(α))αΓ\sigma_{\varphi,\mathfrak{w}}((x_{\alpha})_{\alpha\in\Gamma})=(\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in\Gamma} a weighted generalized shift [5], moreover σφ,𝔴=𝔴σφ\sigma_{\varphi,\mathfrak{w}}={\mathfrak{w}}\sigma_{\varphi}. Also if 11 is the unit element of RR and 𝔴=(1)αΓ\mathfrak{w}=(1)_{\alpha\in\Gamma}, then σφ,𝔴=σφ\sigma_{\varphi,\mathfrak{w}}=\sigma_{\varphi}.
For the connections between topological (algebraic) entropy and set– theoretical entropies in generalized shifts see [7]. In other point of view for computing the topological, algebraic and set–theoretical entropies of a generalized shift see [3, 4, 12, 14].

2.3. Primary notations

Let’s recall that for f:AAf:A\to A,

  • Fix(f)={xA:f(x)=x}{\rm Fix}(f)=\{x\in A:f(x)=x\} is the collection of fixed points of f:AAf:A\to A,

  • Per(f)={xA:n1fn(x)=x}{\rm Per}(f)=\{x\in A:\exists n\geq 1\>\>f^{n}(x)=x\} is the collection of periodic points of f:AAf:A\to A,

  • if xPer(f)x\in{\rm Per}(f), then per(x):=min{n1:fn(x)=x}{\rm per}(x):=\min\{n\geq 1:f^{n}(x)=x\} is the period of xx (w.r.t. ff),

  • QPer(f)={xA:m>n1fn(x)=fm(x)}{\rm QPer}(f)=\{x\in A:\exists m>n\geq 1\>\>f^{n}(x)=f^{m}(x)\} is the collection of quasi–periodic points of f:AAf:A\to A,

  • AQPer(f)A\setminus{\rm QPer}(f) is the collection of non–quasi–periodic points of f:AAf:A\to A,

  • ff is periodic if there exists n1n\geq 1 with fn=idAf^{n}=id_{A},

  • ff is quasi–periodic if there exists n>m1n>m\geq 1 with fn=fmf^{n}=f^{m},

  • ff is pointwise periodic (resp. pointwise quasi–periodic) if Per(f)=A{\rm Per}(f)=A (resp. QPer(f)=A{\rm QPer}(f)=A).

Also note that Fix(f)Per(f)QPer(f){\rm Fix}(f)\subseteq{\rm Per}(f)\subseteq{\rm QPer}(f).
Moreover, zAQPer(f)z\in A\setminus{\rm QPer}(f) if and only if for all distinct p,q1p,q\geq 1 we have fp(z)fq(z)f^{p}(z)\neq f^{q}(z), i.e. {fn(z)}n1\{f^{n}(z)\}_{n\geq 1} is one to one. Therefore AQPer(f)={xA:{fn(x)}n1A\setminus{\rm QPer}(f)=\{x\in A:\{f^{n}(x)\}_{n\geq 1} is one to one}\}.
Now we show AQPer(f)={xA:{fn(x)}n1A\setminus{\rm QPer}(f)=\{x\in A:\{f^{n}(x)\}_{n\geq 1} is infinite}\}. Let zAQPer(f)z\in A\setminus{\rm QPer}(f), then {fn(z)}n1\{f^{n}(z)\}_{n\geq 1} is one to one, therefore {fn(z)}n1\{f^{n}(z)\}_{n\geq 1} is infinite. So AQPer(f){xA:{fn(x)}n1A\setminus{\rm QPer}(f)\subseteq\{x\in A:\{f^{n}(x)\}_{n\geq 1} is infinite}\}. On the other hand if tQPer(f)t\in{\rm QPer}(f), choose p>q1p>q\geq 1 with fp(t)=fq(t)f^{p}(t)=f^{q}(t), then {fn(t):n1}={fn(t):1np}\{f^{n}(t):n\geq 1\}=\{f^{n}(t):1\leq n\leq p\} in particular {fn(t)}n1\{f^{n}(t)\}_{n\geq 1} is finite and QPer(f){xA:{fn(x)}n1{\rm QPer}(f)\subseteq\{x\in A:\{f^{n}(x)\}_{n\geq 1} is finite}\}. Therefore {xA:{fn(x)}n1\{x\in A:\{f^{n}(x)\}_{n\geq 1} is infinite}AQPer(f)\}\subseteq A\setminus{\rm QPer}(f).

Example 2.1.

Consider η:\eta:\mathbb{N}\to\mathbb{N} with η(1)=1\eta(1)=1, η(j)=j+1\eta(j)=j+1 for n(n+1)/2<j<(n+1)(n+2)/2n(n+1)/2<j<(n+1)(n+2)/2 and η((n+1)(n+2)/2)=n(n+1)/2+1\eta((n+1)(n+2)/2)=n(n+1)/2+1. So:

η(1)=1,η(2)=3,η(3)=2,η(4)=5,η(5)=6,η(6)=4,\begin{array}[]{l}\eta(1)=1\>,\\ \eta(2)=3,\>\eta(3)=2,\\ \eta(4)=5,\>\eta(5)=6,\>\eta(6)=4,\\ \vdots\end{array}

is pointwise periodic and so also pointwise quasi–periodic, however, it is neither periodic nor quasi–periodic.

Convention 2.2.

In the following text consider finite field a FF, a nonempty set Γ\Gamma, a self–map φ:ΓΓ\varphi:\Gamma\to\Gamma, a weight vector 𝔴=(𝔴α)αΓFΓ\mathfrak{w}=(\mathfrak{w}_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma} and the weighted generalized shift σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} (so σφ,𝔴(xα)αΓ=(𝔴αxφ(α))αΓ\sigma_{\varphi,\mathfrak{w}}(x_{\alpha})_{\alpha\in\Gamma}=(\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in\Gamma} for each (xα)αΓFΓ(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}). For LΓL\subseteq\Gamma and x=(xα)αΓFΓx=(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}, let

xL:=(xα)αL.x^{L}:=(x_{\alpha})_{\alpha\in L}\>.

Also, let (where φ0=idΓ:ΓΓαα\varphi^{0}=id_{\Gamma}:\mathop{\Gamma\to\Gamma}\limits_{\alpha\mapsto\alpha} is the identity map on Γ\Gamma):

𝒯:={(n,α):n0,αΓ,|{φi(α):0in}|=n+1,0in𝔴φi(α)0}.\mathcal{T}:=\{(n,\alpha):n\geq 0,\alpha\in\Gamma,|\{\varphi^{i}(\alpha):0\leq i\leq n\}|=n+1,\mathop{\prod}\limits_{0\leq i\leq n}\mathfrak{w}_{\varphi^{i}(\alpha)}\neq 0\}.

In 𝒯\mathcal{T} we search for (n,α)(n,\alpha)s such that

{(𝔴αxα,𝔴φ(α)xφ(α),,𝔴φn(α)xφn(α)):xα,xφ(α),,xφn(α)F}\{(\mathfrak{w}_{\alpha}x_{\alpha},\mathfrak{w}_{\varphi(\alpha)}x_{\varphi(\alpha)},\cdots,\mathfrak{w}_{\varphi^{n}(\alpha)}x_{\varphi^{n}(\alpha)}):x_{\alpha},x_{\varphi(\alpha)},\ldots,x_{\varphi^{n}(\alpha)}\in F\}

forms a linear vector space over FF of dimension n+1n+1. Moreover if (n,α)𝒯(n,\alpha)\in\mathcal{T}, then (i,α)𝒯(i,\alpha)\in\mathcal{T} for each i{0,1,,n}i\in\{0,1,\ldots,n\}.

In this paper Convention 2.2 is valid for whole of the text, Convention 4.11 is valid for subsection 4.2 and Convention 6.2 is valid for some parts of Section 6 and whole of Section 7.

3. Set–theoretical entropy of σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma}

In this section we prove entset(σφ,𝔴){0,+}{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})\in\{0,+\infty\}, moreover entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0 if and only if σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is quasi–periodic. Hence, σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is pointwise quasi–periodic if and only if it is quasi–periodic. Note that, for x=(xα)αΓ,y=(yα)αΓFΓx=(x_{\alpha})_{\alpha\in\Gamma},y=(y_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma} we have xy=(xαyα)αΓxy=(x_{\alpha}y_{\alpha})_{\alpha\in\Gamma}.

Lemma 3.1.

Consider 𝔲=(𝔲α)αΓFΓ\mathfrak{u}=({\mathfrak{u}}_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma} and ψ:ΓΓ\psi:\Gamma\to\Gamma, then σψ,𝔲σφ,𝔴=σφψ,𝔲σψ(𝔴)\sigma_{\psi,\mathfrak{u}}\circ\sigma_{\varphi,\mathfrak{w}}=\sigma_{\varphi\circ\psi,\mathfrak{u}\sigma_{\psi}(\mathfrak{w})}.
Also for all n1n\geq 1, we have σφ,𝔴n=σφn,𝔴σφ(𝔴)σφn1(𝔴)\sigma_{\varphi,\mathfrak{w}}^{n}=\sigma_{\varphi^{n},\mathfrak{w}\sigma_{\varphi}(\mathfrak{w})\cdots\sigma_{\varphi^{n-1}}(\mathfrak{w})}, i.e.

(3.1) (xα)αΓFΓ,σφ,𝔴n((xα)αΓ)=(𝔴α𝔴φ(α)𝔴φn1(α)xφn(α))αΓ.\forall(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma},\>\>\sigma_{\varphi,\mathfrak{w}}^{n}((x_{\alpha})_{\alpha\in\Gamma})=(\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{n-1}(\alpha)}x_{\varphi^{n}(\alpha)})_{\alpha\in\Gamma}\>.

On the other hand, σφ,𝔴(z)=𝔴σφ(z)\sigma_{\varphi,\mathfrak{w}}(z)={\mathfrak{w}}\sigma_{\varphi}(z) (for all zFΓz\in F^{\Gamma}).

Proof.

For all z=(zα)αΓFΓz=(z_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma} we have:

(3.2) σψ,𝔲σφ,𝔴(z)\displaystyle\sigma_{\psi,\mathfrak{u}}\circ\sigma_{\varphi,\mathfrak{w}}(z) =\displaystyle= σψ,𝔲(σφ,𝔴((zα)αΓ))=σψ,𝔲((𝔴αzφ(α))αΓ)\displaystyle\sigma_{\psi,\mathfrak{u}}(\sigma_{\varphi,\mathfrak{w}}((z_{\alpha})_{\alpha\in\Gamma}))=\sigma_{\psi,\mathfrak{u}}((\mathfrak{w}_{\alpha}z_{\varphi(\alpha)})_{\alpha\in\Gamma})
(3.3) =\displaystyle= (𝔲α𝔴ψ(α)zφ(ψ(α)))αΓ\displaystyle(\mathfrak{u}_{\alpha}\mathfrak{w}_{\psi(\alpha)}z_{\varphi(\psi(\alpha))})_{\alpha\in\Gamma}
(3.4) =\displaystyle= σφψ,𝔲σψ(𝔴)((zα)αΓ)=σφψ,𝔲σψ(𝔴)(z).\displaystyle\sigma_{\varphi\circ\psi,\mathfrak{u}\sigma_{\psi}(\mathfrak{w})}((z_{\alpha})_{\alpha\in\Gamma})=\sigma_{\varphi\circ\psi,\mathfrak{u}\sigma_{\psi}(\mathfrak{w})}(z)\>.

Regarding the equality in 3.3, note that if cα=𝔴αzφ(α)c_{\alpha}=\mathfrak{w}_{\alpha}z_{\varphi(\alpha)} for each αΓ\alpha\in\Gamma, then cψ(α)=𝔴ψ(α)zφ(ψ(α))c_{\psi(\alpha)}=\mathfrak{w}_{\psi(\alpha)}z_{\varphi(\psi(\alpha))} and 𝔲αcψ(α)=𝔲α𝔴ψ(α)zφ(ψ(α))\mathfrak{u}_{\alpha}c_{\psi(\alpha)}=\mathfrak{u}_{\alpha}\mathfrak{w}_{\psi(\alpha)}z_{\varphi(\psi(\alpha))} for each αΓ\alpha\in\Gamma.
Therefore:

σψ,𝔲σφ,𝔴(z)=𝔲σψ(𝔴)σφψ(z)=σφψ,𝔲σψ(𝔴)(z).\sigma_{\psi,\mathfrak{u}}\circ\sigma_{\varphi,\mathfrak{w}}(z)=\mathfrak{u}\sigma_{\psi}(\mathfrak{w})\sigma_{\varphi\circ\psi}(z)=\sigma_{\varphi\circ\psi,\mathfrak{u}\sigma_{\psi}(\mathfrak{w})}(z)\>.

Use induction on n1n\geq 1 to obtain 3.1. ∎

In the following lemma, we characterize the quasi–periodic weighted generalized shifts in terms of 𝒯{\mathcal{T}}.

Lemma 3.2.

The following statements are equivalent:

  • 1.

    σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is quasi–periodic,

  • 2.

    there exist 1n<m1\leq n<m such that, for any αΓ\alpha\in\Gamma, we have φn(α)=φm(α)\varphi^{n}(\alpha)=\varphi^{m}(\alpha) or 𝔴α𝔴φ(α)𝔴φn1(α)=0\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{n-1}(\alpha)}=0,

  • 3.

    sup({n:αΓ(n,α)𝒯}{0})<+\sup(\{n:\exists\alpha\in\Gamma\>\>(n,\alpha)\in{\mathcal{T}}\}\cup\{0\})<+\infty.

Proof.

(1 \Rightarrow 2): For m>n1m>n\geq 1, suppose σφ,𝔴n=σφ,𝔴m\sigma^{n}_{\varphi,\mathfrak{w}}=\sigma^{m}_{\varphi,\mathfrak{w}} and consider βΓ\beta\in\Gamma such that φn(β)φm(β)\varphi^{n}(\beta)\neq\varphi^{m}(\beta). Choose (xα)αΓFΓ(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma} such that xφn(β)=1x_{\varphi^{n}(\beta)}=1 and xφm(β)=0x_{\varphi^{m}(\beta)}=0, then

(𝔴α𝔴φ(α)𝔴φn1(α)xφn(α))αΓ\displaystyle(\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{n-1}(\alpha)}x_{\varphi^{n}(\alpha)})_{\alpha\in\Gamma} =\displaystyle= σφ,𝔴n((xα)αΓ)=σφ,𝔴m((xα)αΓ)\displaystyle\sigma^{n}_{\varphi,\mathfrak{w}}((x_{\alpha})_{\alpha\in\Gamma})=\sigma^{m}_{\varphi,\mathfrak{w}}((x_{\alpha})_{\alpha\in\Gamma})
=\displaystyle= (𝔴α𝔴φ(α)𝔴φm1(α)xφm(α))αΓ\displaystyle(\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{m-1}(\alpha)}x_{\varphi^{m}(\alpha)})_{\alpha\in\Gamma}

in particular

𝔴β𝔴φ(β)𝔴φn1(β)xφn(β)=𝔴β𝔴φ(β)𝔴φm1(β)xφm(β)\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{n-1}(\beta)}x_{\varphi^{n}(\beta)}=\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{m-1}(\beta)}x_{\varphi^{m}(\beta)}

using xφn(β)=1x_{\varphi^{n}(\beta)}=1 and xφm(β)=0x_{\varphi^{m}(\beta)}=0 we conclude that 𝔴β𝔴φ(β)𝔴φn1(β)=0\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{n-1}(\beta)}=0.
(2 \Rightarrow 3): If (2) holds, then sup({k:αΓ(k,α)𝒯}{0})m1<+\sup(\{k:\exists\alpha\in\Gamma\>\>(k,\alpha)\in{\mathcal{T}}\}\cup\{0\})\leq m-1<+\infty.
(3 \Rightarrow 1): Suppose sup({k:αΓ(k,α)𝒯}{0})\sup(\{k:\exists\alpha\in\Gamma\>\>(k,\alpha)\in{\mathcal{T}}\}\cup\{0\}) is finite, let

p=sup({k:αΓ(k,α)𝒯}{0})+1andq=(p+1)!.p=\sup(\{k:\exists\alpha\in\Gamma\>\>(k,\alpha)\in{\mathcal{T}}\}\cup\{0\})+1\>\>{\rm and}\>\>q=(p+1)!\>.

We prove that σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is quasi–periodic via the following 2 claims.
Claim A. For βΓ\beta\in\Gamma and for some q1q\geq 1 if φq(β)=β\varphi^{q}(\beta)=\beta, then

0i|F|q1𝔴φi(β)=0iq1𝔴φi(β).\mathop{\prod}\limits_{0\leq i\leq|F|q-1}\mathfrak{w}_{\varphi^{i}(\beta)}=\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\beta)}\>.

Proof of Claim A. Note that F{0}F\setminus\{0\} is a multiplicative group with |F|1|F|-1 elements and identity 11, thus x|F|1=1x^{|F|-1}=1 for each xF{0}x\in F\setminus\{0\}, hence x|F|=xx^{|F|}=x for all xFx\in F, so

0i|F|q1𝔴φi(β)=0j|F|1(qjiq(j+1)1𝔴φi(β))=0j|F|1(0iq1𝔴φqj+i(β))=0j|F|1(0iq1𝔴φi(β))=(0iq1𝔴φi(β))|F|=0iq1𝔴φi(β)\begin{array}[]{rcl}\mathop{\prod}\limits_{0\leq i\leq|F|q-1}\mathfrak{w}_{\varphi^{i}(\beta)}&=&\mathop{\prod}\limits_{0\leq j\leq|F|-1}\bigg{(}\mathop{\prod}\limits_{qj\leq i\leq q(j+1)-1}\mathfrak{w}_{\varphi^{i}(\beta)}\bigg{)}\\ &&\\ &=&\mathop{\prod}\limits_{0\leq j\leq|F|-1}\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{qj+i}(\beta)}\bigg{)}\\ &&\\ &=&\mathop{\prod}\limits_{0\leq j\leq|F|-1}\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\beta)}\bigg{)}\\ &&\\ &=&\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\beta)}\bigg{)}^{|F|}=\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\beta)}\end{array}

Claim B. Let αΓ\alpha\in\Gamma and x=(xθ)θΓFΓx=(x_{\theta})_{\theta\in\Gamma}\in F^{\Gamma}, then:

(0iq+p𝔴φi(α))xφq+p+1(α)=(0i|F|q+p𝔴φi(α))xφ|F|q+p+1(α).\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}x_{\varphi^{q+p+1}(\alpha)}=\bigg{(}\mathop{\prod}\limits_{0\leq i\leq|F|q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}x_{\varphi^{|F|q+p+1}(\alpha)}\>.

Proof of Claim B. Using the definition of pp, for every αΓ\alpha\in\Gamma, (p+1,α)𝒯(p+1,\alpha)\notin\mathcal{T}. By the definition of 𝒯\mathcal{T} and (p+1,α)𝒯(p+1,\alpha)\notin\mathcal{T}, we have:

𝔴α𝔴φ(α)𝔴φp+1(α)=0|{α,φ(α),,φp+1(α)}|<p+2.\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{p+1}(\alpha)}=0\vee|\{\alpha,\varphi(\alpha),\ldots,\varphi^{p+1}(\alpha)\}|<p+2\>.

If 𝔴α𝔴φ(α)𝔴φp+1(α)=0\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{p+1}(\alpha)}=0, then

0=(0i|F|q+p𝔴φi(α))xφ|F|q+p+1(α)=(0iq+p𝔴φi(α))xφq+p+1(α).0=\bigg{(}\mathop{\prod}\limits_{0\leq i\leq|F|q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}x_{\varphi^{|F|q+p+1}(\alpha)}=\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}x_{\varphi^{q+p+1}(\alpha)}\>.

On the other hand, if |{α,φ(α),,φp+1(α)}|<p+2|\{\alpha,\varphi(\alpha),\ldots,\varphi^{p+1}(\alpha)\}|<p+2, then there exists 0i<jp+10\leq i<j\leq p+1 such that φi(α)=φj(α)\varphi^{i}(\alpha)=\varphi^{j}(\alpha), thus φi(α)Per(φ)\varphi^{i}(\alpha)\in{\rm Per}(\varphi) with per(φi(α))jip+1{\rm per}(\varphi^{i}(\alpha))\leq j-i\leq p+1. Since φ(Per(φ))=Per(φ)\varphi({\rm Per}(\varphi))={\rm Per}(\varphi), so φp+1(α)=φ(p+1)i(φi(α))Per(φ)\varphi^{p+1}(\alpha)=\varphi^{(p+1)-i}(\varphi^{i}(\alpha))\in{\rm Per}(\varphi). Moreover, per(φp+1(α))=per(φ(p+1)i(φi(α)))=per(φi(α))p+1{\rm per}(\varphi^{p+1}(\alpha))={\rm per}(\varphi^{(p+1)-i}(\varphi^{i}(\alpha)))={\rm per}(\varphi^{i}(\alpha))\leq p+1, therefore per(φp+1(α)){\rm per}(\varphi^{p+1}(\alpha)) divides q=(p+1)!q=(p+1)! which shows φq+p+1(α)=φp+1(α)\varphi^{q+p+1}(\alpha)=\varphi^{p+1}(\alpha). By Claim A we have 0i|F|q1𝔴φi(φp+1(α))=0iq1𝔴φi(φp+1(α))\mathop{\prod}\limits_{0\leq i\leq|F|q-1}\mathfrak{w}_{\varphi^{i}(\varphi^{p+1}(\alpha))}=\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\varphi^{p+1}(\alpha))} thus:

p+1i|F|q+p𝔴φi(α)=0i|F|q1𝔴φi+p+1(α)=0iq1𝔴φi+p+1(α)=p+1iq+p𝔴φi(α)\mathop{\prod}\limits_{p+1\leq i\leq|F|q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}=\mathop{\prod}\limits_{0\leq i\leq|F|q-1}\mathfrak{w}_{\varphi^{i+p+1}(\alpha)}=\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i+p+1}(\alpha)}=\mathop{\prod}\limits_{p+1\leq i\leq q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}

therefore 0i|F|q+p𝔴φi(α)=0iq+p𝔴φi(α)\mathop{\prod}\limits_{0\leq i\leq|F|q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}=\mathop{\prod}\limits_{0\leq i\leq q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}. So (use φq+p+1(α)=φ|F|q+p+1(α)\varphi^{q+p+1}(\alpha)=\varphi^{|F|q+p+1}(\alpha)):

(0iq+p𝔴φi(α))xφq+p+1(α)=(0i|F|q+p𝔴φi(α))xφ|F|q+p+1(α),\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}x_{\varphi^{q+p+1}(\alpha)}=\bigg{(}\mathop{\prod}\limits_{0\leq i\leq|F|q+p}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}x_{\varphi^{|F|q+p+1}(\alpha)}\>,

which completes the proof of Claim B.
Now we are ready to complete the proof of Lemma 3.2. Indeed, by Claim B we have σφ,𝔴q+p+1=σφ,𝔴q|F|+p+1\sigma_{\varphi,\mathfrak{w}}^{q+p+1}=\sigma_{\varphi,\mathfrak{w}}^{q|F|+p+1} which means that σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is quasi–periodic. ∎

In order to have intuition on weighted generalized shifts with infinite set-theoretical entropy in the following example we bring a one to one map η1:\eta_{1}:\mathbb{N}\to\mathbb{N} without any periodic point and a pointwise quasi–periodic η2:\eta_{2}:\mathbb{N}\to\mathbb{N} such that for 𝔲:=(1)n\mathfrak{u}:=(1)_{n\in\mathbb{N}} both maps ση1,𝔲,ση2,𝔲:FF\sigma_{\eta_{1},\mathfrak{u}},\sigma_{\eta_{2},\mathfrak{u}}:F^{\mathbb{N}}\to F^{\mathbb{N}} has infinite set-theoretical entropy.

Example 3.3.

Consider η1,η2:\eta_{1},\eta_{2}:\mathbb{N}\to\mathbb{N} with η1(n)=n+1\eta_{1}(n)=n+1 (for nn\in\mathbb{N}) and η2=η\eta_{2}=\eta as in Example 2.1. Also let:

z1:=(1,  1,0,  1,0,0,  1,0,0,0,  1,0,0,0,0,  1,0,0,0,0,0,),z2:=(1,  1,1,  1,1,0,  1,1,0,0,  1,1,0,0,0,  1,1,0,0,0,0,),z3:=(1,  1,1,  1,1,1,  1,1,1,0,  1,1,1,0,0,  1,1,1,0,0,0,),\begin{array}[]{lcl}z_{1}&:=&(1,\>\>1,0,\;\>1,0,0,\>\>1,0,0,0,\>\>1,0,0,0,0,\>\>1,0,0,0,0,0,\>\>\cdots)\>,\\ z_{2}&:=&(1,\>\>1,1,\;\>1,1,0,\>\>1,1,0,0,\>\>1,1,0,0,0,\>\>1,1,0,0,0,0,\>\>\cdots)\>,\\ z_{3}&:=&(1,\>\>1,1,\;\>1,1,1,\>\>1,1,1,0,\>\>1,1,1,0,0,\>\>1,1,1,0,0,0,\>\>\cdots)\>,\\ &\vdots&\end{array}

then for 𝔲:=(1)n\mathfrak{u}:=(1)_{n\in\mathbb{N}}, the sequences {σηi,𝔲n(z1)}n1,{σηi,𝔲n(z2)}n1,{σηi,𝔲n(z3)}n1,\{\sigma_{\eta_{i},\mathfrak{u}}^{n}(z_{1})\}_{n\geq 1},\{\sigma_{\eta_{i},\mathfrak{u}}^{n}(z_{2})\}_{n\geq 1},\{\sigma_{\eta_{i},\mathfrak{u}}^{n}(z_{3})\}_{n\geq 1},\ldots are pairwise disjoint one to one sequences.

Theorem 3.4.

For the weighted generalized shift σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} we have:

entset(σφ,𝔴)={0,ifσφ,𝔴isquasiperiodic,+,otherwise.{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=\left\{\begin{array}[]{lc}0,&{\rm if\>}\sigma_{\varphi,\mathfrak{w}}{\rm\>is\>quasi-periodic},\\ +\infty,&{\rm otherwise\>}.\end{array}\right.
Proof.

We already know that the quasi–periodicity σφ,𝔴\sigma_{\varphi,\mathfrak{w}} implies the pointwise quasi–periodicity of σφ,𝔴\sigma_{\varphi,\mathfrak{w}}, which means that 𝗈(σφ,𝔴)=entset(σφ,𝔴)=0\mathsf{o}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0. So it remains to prove that non–quasi–periodicity of σφ,𝔴\sigma_{\varphi,\mathfrak{w}} implies entset(σφ,𝔴)=+{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=+\infty.
Suppose σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is not quasi–periodic, then by Lemma 3.2 we have sup({k:αΓ(k,α)𝒯}{0})=+\sup(\{k:\exists\alpha\in\Gamma\>\>(k,\alpha)\in{\mathcal{T}}\}\cup\{0\})=+\infty. We aim to prove that entset(σφ,𝔴)=+{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=+\infty. Using induction choose a sequence {αi}i1\{\alpha_{i}\}_{i\geq 1} (Γ\subseteq\Gamma) in the following way:

  • there exists α1\alpha_{1} such that (n1,α1)=(1,α1)𝒯(n_{1},\alpha_{1})=(1,\alpha_{1})\in\mathcal{T},

  • for k1k\geq 1, suppose (1,α1),,(k,αk)𝒯(1,\alpha_{1}),\ldots,(k,\alpha_{k})\in\mathcal{T} have been chosen such that {α1,φ(α1)},,{αk,φ(αk),,φk(αk)}\{\alpha_{1},\varphi(\alpha_{1})\},\ldots,\{\alpha_{k},\varphi(\alpha_{k}),\ldots,\varphi^{k}(\alpha_{k})\} are pairwise disjoint. There exists (nk+1,β)𝒯(n_{k+1},\beta)\in\mathcal{T} with nk+1(k+1)(k+2)+(k+1)(k+2)212+3++(k+1)n_{k+1}\geq(k+1)(k+2)+\underbrace{\frac{(k+1)(k+2)}{2}-1}_{2+3+\cdots+(k+1)}. Suppose

    H:={β,φ(β),,φnk+1(β)}({{αi,φ(αi),,φi(αi)}:1ik})H:=\{\beta,\varphi(\beta),\ldots,\varphi^{n_{k+1}}(\beta)\}\setminus(\cup\{\{\alpha_{i},\varphi(\alpha_{i}),\ldots,\varphi^{i}(\alpha_{i})\}:1\leq i\leq k\})

    is equal to: {φs1(β),φs1+1(β),,φs1+t1(β)}{φs2(β),,φs2+t2(β)}{φsp(β),,φsp+tp(β)}\{\varphi^{s_{1}}(\beta),\varphi^{s_{1}+1}(\beta),\ldots,\varphi^{s_{1}+t_{1}}(\beta)\}\cup\{\varphi^{s_{2}}(\beta),\ldots,\varphi^{s_{2}+t_{2}}(\beta)\}\cup\cdots\cup\{\varphi^{s_{p}}(\beta),\ldots,\varphi^{s_{p}+t_{p}}(\beta)\} with

    0s1s1+t1<s21<s2+t2<<sp1<sp+tpnk+10\leq s_{1}\leq s_{1}+t_{1}<s_{2}-1<s_{2}+t_{2}<\cdots<s_{p}-1<s_{p}+t_{p}\leq n_{k+1},

    then pk+1p\leq k+1 and

    |H|\displaystyle|H| =\displaystyle= (t1+1)+(t2+1)++(tp+1)\displaystyle(t_{1}+1)+(t_{2}+1)+\cdots+(t_{p}+1)
    \displaystyle\geq nk+1+1|{{αi,φ(αi),,φi(αi)}:1ik}|\displaystyle n_{k+1}+1-|\cup\{\{\alpha_{i},\varphi(\alpha_{i}),\ldots,\varphi^{i}(\alpha_{i})\}:1\leq i\leq k\}|
    \displaystyle\geq nk+1+1(2++(k+1))(k+1)(k+2)\displaystyle n_{k+1}+1-(2+\cdots+(k+1))\geq(k+1)(k+2)

    since |H|=(t1+1)+(t2+1)++(tp+1)(k+1)(k+2)|H|=(t_{1}+1)+(t_{2}+1)+\cdots+(t_{p}+1)\geq(k+1)(k+2) and pk+1p\leq k+1 there exists j{1,,p}j\in\{1,\ldots,p\} with tj+1k+2t_{j}+1\geq k+2, thus:

    (3.5) {φsj(β),φsj+1(β),,φsj+(k+1)(β)}({{αi,φ(αi),,φi(αi)}:1ik}){φsj(β),,φsj+tj(β)}({{αi,φ(αi),,φi(αi)}:1ik})=\begin{array}[]{c}\\ \{\varphi^{s_{j}}(\beta),\varphi^{s_{j}+1}(\beta),\ldots,\varphi^{s_{j}+(k+1)}(\beta)\}\cap\bigg{(}\cup\{\{\alpha_{i},\varphi(\alpha_{i}),\ldots,\varphi^{i}(\alpha_{i})\}:1\leq i\leq k\}\bigg{)}\\ \subseteq\{\varphi^{s_{j}}(\beta),\ldots,\varphi^{s_{j}+t_{j}}(\beta)\}\cap\bigg{(}\cup\{\{\alpha_{i},\varphi(\alpha_{i}),\ldots,\varphi^{i}(\alpha_{i})\}:1\leq i\leq k\}\bigg{)}=\varnothing\\ \end{array}

    let αk+1:=φsj(β)\alpha_{k+1}:=\varphi^{s_{j}}(\beta), then (k+1,αk+1)𝒯(k+1,\alpha_{k+1})\in\mathcal{T} and by 3.5

    {α1,φ(α1)},,{αk,φ(αk),,φk(αk)},{αk+1,φ(αk+1),,φk+1(αk+1)}\{\alpha_{1},\varphi(\alpha_{1})\},\ldots,\{\alpha_{k},\varphi(\alpha_{k}),\ldots,\varphi^{k}(\alpha_{k})\},\{\alpha_{k+1},\varphi(\alpha_{k+1}),\ldots,\varphi^{k+1}(\alpha_{k+1})\}

    are pairwise disjoint sets.

Using the above inductive construction {{φi(αn):0in}:n1}\{\{\varphi^{i}(\alpha_{n}):0\leq i\leq n\}:n\geq 1\} is a collection of pairwise disjoint sets and for all n1n\geq 1, i{0,,n}i\in\{0,\ldots,n\}, we have (n,αn)𝒯(n,\alpha_{n})\in\mathcal{T} in particular 𝔴φi(αn)0\mathfrak{w}_{\varphi^{i}(\alpha_{n})}\neq 0.
For m1m\geq 1, suppose pmp_{m} is the mmth prime number and let:

xαm:={1,ifα=φpmn(αpmn)forsomen1,0,otherwise,andxm:=(xαm)αΓ.x^{m}_{\alpha}:=\left\{\begin{array}[]{lc}1,&{\rm if\>}\alpha=\varphi^{p_{m}^{n}}(\alpha_{p_{m}^{n}}){\rm\>for\>some\>}n\geq 1,\\ 0,&{\rm otherwise\>,}\end{array}\right.\>\>\>\>\>{\rm and}\>\>\>\>\>x^{m}:=(x^{m}_{\alpha})_{\alpha\in\Gamma}.

For convenience let

σφ,𝔴i(xj)=(yαj,i)αΓ(i,j1).\sigma_{\varphi,\mathfrak{w}}^{i}(x^{j})=(y^{j,i}_{\alpha})_{\alpha\in\Gamma}\>\>\>\>\>(i,j\geq 1)\>.

We claim that {{σφ,𝔴n(xm)}n1:m1}\{\{\sigma_{\varphi,\mathfrak{w}}^{n}(x^{m})\}_{n\geq 1}:m\geq 1\} is a collection of pairwise disjoint one to one sequences. For this aim, consider (m,n),(s,t)×(m,n),(s,t)\in{\mathbb{N}}\times{\mathbb{N}} with (m,n)(s,t)(m,n)\neq(s,t), we show:

σφ,𝔴n(xm)σφ,𝔴t(xs)\sigma_{\varphi,\mathfrak{w}}^{n}(x^{m})\neq\sigma_{\varphi,\mathfrak{w}}^{t}(x^{s})

using the following cases:
Case 1. msm\neq s. Without any loss of generality we may suppose ntn\geq t. Choose k1k\geq 1 with pmk>np_{m}^{k}>n, then

yφpmkn(αpmk)m,n\displaystyle y_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}^{m,n} =\displaystyle= 𝔴φpmkn(αpmk)𝔴φpmkn+1(αpmk)𝔴φpmk1(αpmk)xφpmk(αpmk)m1\displaystyle\mathfrak{w}_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}\mathfrak{w}_{\varphi^{p_{m}^{k}-n+1}(\alpha_{p_{m}^{k}})}\cdots\mathfrak{w}_{\varphi^{p_{m}^{k}-1}(\alpha_{p_{m}^{k}})}\underbrace{x^{m}_{\varphi^{p_{m}^{k}}(\alpha_{p_{m}^{k}})}}_{1}
=\displaystyle= 𝔴φpmkn(αpmk)𝔴φpmk1(αpmk)0.\displaystyle\mathfrak{w}_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}\cdots\mathfrak{w}_{\varphi^{p_{m}^{k}-1}(\alpha_{p_{m}^{k}})}\neq 0\>.

Also (use the way of choosing αi\alpha_{i}s)

pmk>nt\displaystyle p_{m}^{k}>n\geq t \displaystyle\Rightarrow pmk+tn{1,,pmk}\displaystyle p_{m}^{k}+t-n\in\{1,\ldots,p_{m}^{k}\}
\displaystyle\Rightarrow r1φpsr(αpsr)φpmk+tn(αpmk)\displaystyle\forall r\geq 1\>\>\>\>\>\varphi^{p_{s}^{r}}(\alpha_{p_{s}^{r}})\neq\varphi^{p_{m}^{k}+t-n}(\alpha_{p_{m}^{k}})
\displaystyle\Rightarrow xφpmk+tn(αpmk)s=0.\displaystyle x^{s}_{\varphi^{p_{m}^{k}+t-n}(\alpha_{p_{m}^{k}})}=0\>.

And

yφpmkn(αpmk)s,t=𝔴φpmkn(αpmk)𝔴φpmkn+t1(αpmk)xφpmk+tn(αpmk)s0=0.y_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}^{s,t}=\mathfrak{w}_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}\cdots\mathfrak{w}_{\varphi^{p_{m}^{k}-n+t-1}(\alpha_{p_{m}^{k}})}\underbrace{x^{s}_{\varphi^{p_{m}^{k}+t-n}(\alpha_{p_{m}^{k}})}}_{0}=0\>.

So yφpmkn(αpmk)m,nyφpmkn(αpmk)s,ty_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}^{m,n}\neq y_{\varphi^{p_{m}^{k}-n}(\alpha_{p_{m}^{k}})}^{s,t} and σφ,𝔴n(xm)σφ,𝔴t(xs)\sigma_{\varphi,\mathfrak{w}}^{n}(x^{m})\neq\sigma_{\varphi,\mathfrak{w}}^{t}(x^{s}).
Case 2. m=sm=s and ntn\neq t. We may suppose n>tn>t. Then:

yφpmnn(αpmn)m,n\displaystyle y_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}^{m,n} =\displaystyle= 𝔴φpmnn(αpmn)𝔴φpmnn+1(αpmn)𝔴φpmn1(αpmn)xφpmn(αpmn)m1\displaystyle\mathfrak{w}_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}\mathfrak{w}_{\varphi^{p_{m}^{n}-n+1}(\alpha_{p_{m}^{n}})}\cdots\mathfrak{w}_{\varphi^{p_{m}^{n}-1}(\alpha_{p_{m}^{n}})}\underbrace{x^{m}_{\varphi^{p_{m}^{n}}(\alpha_{p_{m}^{n}})}}_{1}
=\displaystyle= 𝔴φpmnn(αpmn)𝔴φpmn1(αpmn)0\displaystyle\mathfrak{w}_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}\cdots\mathfrak{w}_{\varphi^{p_{m}^{n}-1}(\alpha_{p_{m}^{n}})}\neq 0

and

yφpmnn(αpmn)s,t\displaystyle y_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}^{s,t} =\displaystyle= yφpmnn(αpmn)m,t\displaystyle y_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}^{m,t}
=\displaystyle= 𝔴φpmnn(αpmn)𝔴φpmnn+t1(αpmn)xφpmn+tn(αpmn)m0=0\displaystyle\mathfrak{w}_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}\cdots\mathfrak{w}_{\varphi^{p_{m}^{n}-n+t-1}(\alpha_{p_{m}^{n}})}\underbrace{x^{m}_{\varphi^{p_{m}^{n}+t-n}(\alpha_{p_{m}^{n}})}}_{0}=0

so yφpmnn(αpmn)m,nyφpmnn(αpmn)s,ty_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}^{m,n}\neq y_{\varphi^{p_{m}^{n}-n}(\alpha_{p_{m}^{n}})}^{s,t} and σφ,𝔴n(xm)σφ,𝔴t(xs)\sigma_{\varphi,\mathfrak{w}}^{n}(x^{m})\neq\sigma_{\varphi,\mathfrak{w}}^{t}(x^{s}).
Using the above cases {{σφ,𝔴n(xm)}n1:m1}\{\{\sigma_{\varphi,\mathfrak{w}}^{n}(x^{m})\}_{n\geq 1}:m\geq 1\} is a collection of pairwise disjoint one to one sequences, thus entset(σφ,𝔴)=𝗈(σφ,𝔴)=+{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=\mathsf{o}(\sigma_{\varphi,\mathfrak{w}})=+\infty. ∎

Corollary 3.5.

σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is quasi–periodic if and only if it is pointwise quasi–periodic.

Proof.

We have 𝗈(σφ,𝔴)=(entset(σφ,𝔴)=)0\mathsf{o}(\sigma_{\varphi,\mathfrak{w}})=({\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=)0 if and only if σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is pointwise quasi–periodic, now use Theorem 3.4. ∎

4. Contravariant set–theoretical entropy of
finite fibre σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma}

Since σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is an endomorphism of the abelian additive group (FΓ,+)(F^{\Gamma},+), by [11, Theorem A] we have 𝖺(σφ,𝔴){0,+}\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})\in\{0,+\infty\}. In this section we characterize and show that entcset(σφ,𝔴)(=𝖺(σφ,𝔴)){\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})(=\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})) for a finite fibre σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} depends only on φ\varphi and supp(𝔴)={αΓ:𝔴α0}\rm{supp}(\mathfrak{w})=\{\alpha\in\Gamma:\mathfrak{w}_{\alpha}\neq 0\}. In this section let:

Υ:={φn(Γsupp(𝔴)):n0},Λ:={φn(supp(𝔴)):n0}=ΓΥ.\Upsilon:=\bigcup\{\varphi^{-n}(\Gamma\setminus\rm{supp}(\mathfrak{w})):n\geq 0\}\>,\>\Lambda:=\bigcap\{\varphi^{-n}({\rm supp}({\mathfrak{w}})):n\geq 0\}=\Gamma\setminus\Upsilon\>.

Note that φ(Λ)Λ\varphi(\Lambda)\subseteq\Lambda.

Example 4.1.

If 𝔴=(1)αΓ\mathfrak{w}=(1)_{\alpha\in\Gamma}, then σφ,𝔴=σφ:FΓFΓ\sigma_{\varphi,\mathfrak{w}}=\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is just a generalized shift moreover for this case supp(𝔴)=Λ=Γ\rm{supp}(\mathfrak{w})=\Lambda=\Gamma, and Υ=\Upsilon=\varnothing.

Lemma 4.2.

sc(σφ,𝔴){(xα)αΓ:βΥ,xβ=0}{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\subseteq\left\{(x_{\alpha})_{\alpha\in\Gamma}:\forall\beta\in\Upsilon,\>\>x_{\beta}=0\right\}.

Proof.

Consider (xα)αΓsc(σφ,𝔴)(x_{\alpha})_{\alpha\in\Gamma}\in{\rm sc}(\sigma_{\varphi,\mathfrak{w}}) and βΥ\beta\in\Upsilon, so there exists n0n\geq 0 with 𝔴φn(β)=0\mathfrak{w}_{\varphi^{n}(\beta)}=0. Since (xα)αΓsc(σφ,𝔴)σφ,𝔴n+1(FΓ)(x_{\alpha})_{\alpha\in\Gamma}\in{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\subseteq\sigma_{\varphi,\mathfrak{w}}^{n+1}(F^{\Gamma}) there exists (yα)αΓ(y_{\alpha})_{\alpha\in\Gamma} with σφ,𝔴n+1((yα)αΓ)=(xα)αΓ\sigma_{\varphi,\mathfrak{w}}^{n+1}((y_{\alpha})_{\alpha\in\Gamma})=(x_{\alpha})_{\alpha\in\Gamma}. In particular

xβ=𝔴β𝔴φ(β)𝔴φn(β)0yφn+1(β)=0x_{\beta}=\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\underbrace{\mathfrak{w}_{\varphi^{n}(\beta)}}_{0}y_{\varphi^{n+1}(\beta)}=0

which completes the proof. ∎


Let’s call subset MM of Γ\Gamma, φ\varphi-invariant if φ(M)M\varphi(M)\subseteq M.

Lemma 4.3.

If MM is a φ\varphi-invariant subset of Γ\Gamma, then (σφ,𝔴(x))M=σφM,𝔴M(xM)(\sigma_{\varphi,\mathfrak{w}}(x))^{M}=\sigma_{\varphi\restriction_{M},\mathfrak{w}^{M}}(x^{M}) for all xFΓx\in F^{\Gamma}.

Proof.

For x=(xα)αΓFΓx=(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}, we have:

(σφ,𝔴(x))M\displaystyle(\sigma_{\varphi,\mathfrak{w}}(x))^{M} =\displaystyle= ((𝔴αxφ(α))αΓ)M=(𝔴αxφ(α))αM\displaystyle((\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in\Gamma})^{M}=(\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in M}
=\displaystyle= (𝔴αxφM(α))αM=σφM,𝔴M(xM).\displaystyle(\mathfrak{w}_{\alpha}x_{\varphi\restriction_{M}(\alpha)})_{\alpha\in M}=\sigma_{\varphi\restriction_{M},\mathfrak{w}^{M}}(x^{M})\>.

Note that for f:AAf:A\to A, if {xn}n1\{x_{n}\}_{n\geq 1} is an ff-anti-orbit sequence, then {xn:n1}{fn(A):n1}=sc(f)\{x_{n}:n\geq 1\}\subseteq\bigcap\{f^{n}(A):n\geq 1\}={\rm sc}(f).

Corollary 4.4.

𝖺(σφ,𝔴)=𝖺(σφΛ,𝔴Λ)\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})=\mathsf{a}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}).

Proof.

If Λ=\Lambda=\varnothing, then by Lemma 4.2 we have sc(σφ,𝔴)={(0)αΓ}{\rm sc}(\sigma_{\varphi,\mathfrak{w}})=\{(0)_{\alpha\in\Gamma}\}. So 𝖺(σφ,𝔴)=𝖺(σφ,𝔴sc(σφ,𝔴))=0=𝖺(σφΛ,𝔴Λ)\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})=\mathsf{a}(\sigma_{\varphi,\mathfrak{w}}\restriction_{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})})=0=\mathsf{a}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}).
Now suppose Λ\Lambda\neq\varnothing. For m1m\geq 1 if {x1,n}n1,,{xm,n}n1\{x_{1,n}\}_{n\geq 1},\ldots,\{x_{m,n}\}_{n\geq 1} are mm one to one σφ,𝔴\sigma_{\varphi,\mathfrak{w}}-anti-orbit disjoint sequences, by Lemma 4.2 the map sc(σφ,𝔴)FΛxxΛ\mathop{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\to F^{\Lambda}}\limits_{\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>x\mapsto x^{\Lambda}} is one to one, then {x1,nΛ}n1,,{xm,nΛ}n1\{x_{1,n}^{\Lambda}\}_{n\geq 1},\ldots,\{x_{m,n}^{\Lambda}\}_{n\geq 1} are mm one to one disjoint sequences. On the other hand, by Lemma 4.3, {x1,nΛ}n1,,{xm,nΛ}n1\{x_{1,n}^{\Lambda}\}_{n\geq 1},\ldots,\{x_{m,n}^{\Lambda}\}_{n\geq 1} are σφΛ,𝔴Λ\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}-anti-orbit sequences. Hence 𝖺(σφ,𝔴)𝖺(σφΛ,𝔴Λ)\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})\leq\mathsf{a}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}).
For each x=(xα)αΛFΛx=(x_{\alpha})_{\alpha\in\Lambda}\in F^{\Lambda}, define x¯=(x¯α)αΓ\overline{x}=(\overline{x}_{\alpha})_{\alpha\in\Gamma} with x¯α:=0\overline{x}_{\alpha}:=0 for all αΓΛ=Υ\alpha\in\Gamma\setminus\Lambda=\Upsilon and x¯α:=xα\overline{x}_{\alpha}:=x_{\alpha} for all αΛ\alpha\in\Lambda, so if {z1,n}n1,,{zm,n}n1\{z_{1,n}\}_{n\geq 1},\ldots,\{z_{m,n}\}_{n\geq 1} are mm one to one σφΛ,𝔴Λ\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}-anti-orbit disjoint sequences, then {z¯1,n}n1,,{z¯m,n}n1\{\overline{z}_{1,n}\}_{n\geq 1},\ldots,\{\overline{z}_{m,n}\}_{n\geq 1} are mm one to one disjoint sequences too. Consider x=(xα)αΛ,y=(yα)αΛFΛx=(x_{\alpha})_{\alpha\in\Lambda},y=(y_{\alpha})_{\alpha\in\Lambda}\in F^{\Lambda}. By 4.2, for each αΥ\alpha\in\Upsilon we have:

(4.1) αΥ𝔴α=0φ(α)Υ𝔴α=0x¯φ(α)=0𝔴αx¯φ(α)=0\begin{array}[]{rcl}\alpha\in\Upsilon&\Rightarrow&\mathfrak{w}_{\alpha}=0\vee\varphi(\alpha)\in\Upsilon\\ &\Rightarrow&\mathfrak{w}_{\alpha}=0\vee\overline{x}_{\varphi(\alpha)}=0\\ &\Rightarrow&\mathfrak{w}_{\alpha}\overline{x}_{\varphi(\alpha)}=0\end{array}

therefore:

σφΛ,𝔴Λ(x)=y\displaystyle\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(x)=y \displaystyle\Rightarrow αΛ𝔴αxφ(α)=yα\displaystyle\forall\alpha\in\Lambda\>\>\mathfrak{w}_{\alpha}x_{\varphi(\alpha)}=y_{\alpha}
(φ(Λ)Λ)\displaystyle\mathop{\Rightarrow}\limits^{(\varphi(\Lambda)\subseteq\Lambda)} αΛ𝔴αx¯φ(α)=y¯α\displaystyle\forall\alpha\in\Lambda\>\>\mathfrak{w}_{\alpha}\overline{x}_{\varphi(\alpha)}=\overline{y}_{\alpha}
4.1\displaystyle\mathop{\Rightarrow}\limits^{\ref{JoinJoin}} (αΛ𝔴αx¯φ(α)=y¯α)(αΥ𝔴αx¯φ(α)=0=y¯α)\displaystyle(\forall\alpha\in\Lambda\>\>\mathfrak{w}_{\alpha}\overline{x}_{\varphi(\alpha)}=\overline{y}_{\alpha})\wedge(\forall\alpha\in\Upsilon\>\>\mathfrak{w}_{\alpha}\overline{x}_{\varphi(\alpha)}=0=\overline{y}_{\alpha})
\displaystyle\Rightarrow αΓ𝔴αx¯φ(α)=y¯α\displaystyle\forall\alpha\in\Gamma\>\>\mathfrak{w}_{\alpha}\overline{x}_{\varphi(\alpha)}=\overline{y}_{\alpha}
\displaystyle\Rightarrow σφ,𝔴(x¯)=y¯,\displaystyle\sigma_{\varphi,\mathfrak{w}}(\overline{x})=\overline{y}\>,

Thus σφ,𝔴(x¯)=σφΛ,𝔴Λ(x)¯\sigma_{\varphi,\mathfrak{w}}(\overline{x})=\overline{\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(x)} for all xFΛx\in F^{\Lambda}, which shows {z¯1,n}n1,,{z¯m,n}n1\{\overline{z}_{1,n}\}_{n\geq 1},\ldots,\{\overline{z}_{m,n}\}_{n\geq 1} are σφ,𝔴\sigma_{\varphi,\mathfrak{w}}-anti-orbit sequences too. Hence 𝖺(σφ,𝔴)𝖺(σφΛ,𝔴Λ)\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})\geq\mathsf{a}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}). ∎

Lemma 4.5.

If sup({n:αΓ,(n,α)𝒯}{0})<+\sup(\{n:\exists\alpha\in\Gamma,\>\>(n,\alpha)\in{\mathcal{T}}\}\cup\{0\})<+\infty, then 𝖺(σφ,𝔴)=0\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})=0.

Proof.

Suppose sup({n:αΓ,(n,α)𝒯}{0})<+\sup(\{n:\exists\alpha\in\Gamma,\>\>(n,\alpha)\in{\mathcal{T}}\}\cup\{0\})<+\infty, then by Lemma 3.2, there exist m>n1m>n\geq 1 with σφ,𝔴n=σφ,𝔴m\sigma_{\varphi,\mathfrak{w}}^{n}=\sigma_{\varphi,\mathfrak{w}}^{m}. If {xk}k1\{x_{k}\}_{k\geq 1} is a σφ,𝔴\sigma_{\varphi,\mathfrak{w}}-anti-orbit sequence, then xm=σφ,𝔴n(xn+m)=σφ,𝔴m(xn+m)=xnx_{m}=\sigma_{\varphi,\mathfrak{w}}^{n}(x_{n+m})=\sigma_{\varphi,\mathfrak{w}}^{m}(x_{n+m})=x_{n} and {xk}k1\{x_{k}\}_{k\geq 1} is not one to one, thus 𝖺(σφ,𝔴)=0\mathsf{a}(\sigma_{\varphi,\mathfrak{w}})=0. ∎

4.1. An equivalence relation

For α,βΓ\alpha,\beta\in\Gamma, let αβ\alpha\Re\beta if there exists n1n\geq 1 with φn(α)=φn(β)\varphi^{n}(\alpha)=\varphi^{n}(\beta). Then \Re is an equivalence relation on Γ\Gamma. Note that if αβ\alpha\Re\beta, then there exists n1n\geq 1 with φn(α)=φn(β)\varphi^{n}(\alpha)=\varphi^{n}(\beta) hence φn(φ(α))=φn(φ(β))\varphi^{n}(\varphi(\alpha))=\varphi^{n}(\varphi(\beta)), therefore φ(α)φ(β)\varphi(\alpha)\Re\varphi(\beta). To the above discussion φ~:ΓΓαφ(α)\tilde{\varphi}:\mathop{\frac{\Gamma}{\Re}\to\frac{\Gamma}{\Re}}\limits_{\frac{\alpha}{\Re}\mapsto\frac{\varphi(\alpha)}{\Re}} is well–defined. By [14, Lemma 3.5], 𝖺(σφ)=𝖺(σφ~)\mathsf{a}(\sigma_{\varphi})=\mathsf{a}(\sigma_{\tilde{\varphi}}), so \Re and φ~\tilde{\varphi} are useful to computing contravariant set–theoretical entropy of finite fibre σφ\sigma_{\varphi}.
Let’s bring some properties of φ~\tilde{\varphi} and \Re.

Remark 4.6.

We have:

  • 1.

    φ~:ΓΓ\tilde{\varphi}:\frac{\Gamma}{\Re}\to\frac{\Gamma}{\Re} is one to one,

  • 2.

    𝖿:sc(σφ)FΓ\mathsf{f}:{\rm sc}(\sigma_{\varphi})\to F^{\frac{\Gamma}{\Re}} with 𝖿((xα)αΓ)=(xα)αΓ\mathsf{f}((x_{\alpha})_{\alpha\in\Gamma})=(x_{\alpha})_{\frac{\alpha}{\Re}\in\frac{\Gamma}{\Re}} is (well-defined and) one to one [14, Note 3.2],

  • 3.

    if σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, then σφ~:FΓFΓ\sigma_{\tilde{\varphi}}:F^{\frac{\Gamma}{\Re}}\to F^{\frac{\Gamma}{\Re}} is of finite fibre too [14, Lemma 3.4],

  • 4.

    𝖺(σφ)=𝖺(σφ~)\mathsf{a}(\sigma_{\varphi})=\mathsf{a}(\sigma_{\tilde{\varphi}}) [14, Lemma 3.5].

Lemma 4.7.

We have:

  • {α:αPer(φ)}=Per(φ~)\{\frac{\alpha}{\Re}:\alpha\in{\rm Per}(\varphi)\}={\rm Per}(\tilde{\varphi}),

  • per(α)=per(α){\rm per}(\frac{\alpha}{\Re})={\rm per}(\alpha) for each αPer(φ)\alpha\in{\rm Per}(\varphi).

Proof.

Consider θPer(φ)\theta\in{\rm Per}(\varphi) with n=per(θ)n={\rm per}(\theta), then φ~n(θ)=φn(θ)=θ\tilde{\varphi}^{n}(\frac{\theta}{\Re})=\frac{\varphi^{n}(\theta)}{\Re}=\frac{\theta}{\Re}. So θPer(φ~)\frac{\theta}{\Re}\in{\rm Per}(\tilde{\varphi}) with m:=per(θ)per(θ)m:={\rm per}(\frac{\theta}{\Re})\leq{\rm per}(\theta). Also θ=φ~m(θ)=φm(θ)\frac{\theta}{\Re}=\tilde{\varphi}^{m}(\frac{\theta}{\Re})=\frac{\varphi^{m}(\theta)}{\Re} and there exists k1k\geq 1 with φk(θ)=φk+m(θ)\varphi^{k}(\theta)=\varphi^{k+m}(\theta), thus θ=φnk(θ)=φnkk+k(θ)=φnkk+k+m(θ)=φnk+m(θ)=φm(θ)\theta=\varphi^{nk}(\theta)=\varphi^{nk-k+k}(\theta)=\varphi^{nk-k+k+m}(\theta)=\varphi^{nk+m}(\theta)=\varphi^{m}(\theta) and per(θ)=mper(θ){\rm per}(\frac{\theta}{\Re})=m\geq{\rm per}(\theta), which leads to per(θ)=per(θ){\rm per}(\frac{\theta}{\Re})={\rm per}(\theta). Thus:

{α:αPer(φ)}Per(φ~)\{\frac{\alpha}{\Re}:\alpha\in{\rm Per}(\varphi)\}\subseteq{\rm Per}(\tilde{\varphi})

and

per(α)=per(α)(αPer(φ)).{\rm per}(\frac{\alpha}{\Re})={\rm per}(\alpha)\>\>(\forall\alpha\in{\rm Per}(\varphi))\>.

Now let βΓ\beta\in\Gamma with βPer(φ~)\frac{\beta}{\Re}\in{\rm Per}(\tilde{\varphi}), there exists t1t\geq 1 with β=φ~t(β)\frac{\beta}{\Re}=\tilde{\varphi}^{t}(\frac{\beta}{\Re}), thus φt(β)=β\frac{\varphi^{t}(\beta)}{\Re}=\frac{\beta}{\Re} and φt(β)β\varphi^{t}(\beta)\Re\beta, thus there exists l1l\geq 1 with φl+t(β)=φl(β)\varphi^{l+t}(\beta)=\varphi^{l}(\beta), hence φt(l+1)(β)=φtll+l+t(β)=φtll+l(β)=φtl(β)\varphi^{t(l+1)}(\beta)=\varphi^{tl-l+l+t}(\beta)=\varphi^{tl-l+l}(\beta)=\varphi^{tl}(\beta), therefore φt(β)Per(φ)\varphi^{t}(\beta)\in{\rm Per}(\varphi) and φt(β)=β\frac{\varphi^{t}(\beta)}{\Re}=\frac{\beta}{\Re} which shows β{α:αPer(φ)}\frac{\beta}{\Re}\in\{\frac{\alpha}{\Re}:\alpha\in{\rm Per}(\varphi)\} and completes the proof. ∎

Lemma 4.8.

The following statements are equivalent:

  • 1.

    σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre,

  • 2.

    Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite,

  • 3.

    There exists N1N\geq 1, such that for each xFΓx\in F^{\Gamma}, we have |σφ,𝔴1(x)|N|\sigma_{\varphi,\mathfrak{w}}^{-1}(x)|\leq N.

In particular, if for each αΓ\alpha\in\Gamma, 𝔴α0\mathfrak{w}_{\alpha}\neq 0, then the following statements are equivalent:

  • σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre,

  • σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre,

  • Γφ(Γ)\Gamma\setminus\varphi(\Gamma) is a finite set.

Proof.

Consider x=(xα)αΓFΓx=(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}, then:

σφ,𝔴1(σφ,𝔴(x))\displaystyle\sigma^{-1}_{\varphi,\mathfrak{w}}(\sigma_{\varphi,\mathfrak{w}}(x)) =\displaystyle= {yFΓ:σφ,𝔴(y)=σφ,𝔴(x)}\displaystyle\{y\in F^{\Gamma}:\sigma_{\varphi,\mathfrak{w}}(y)=\sigma_{\varphi,\mathfrak{w}}(x)\}
=\displaystyle= {(yα)αΓFΓ:αΓ,𝔴αyφ(α)=𝔴αxφ(α)}\displaystyle\{(y_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}:\forall\alpha\in\Gamma,\>\>\>\>\>\mathfrak{w}_{\alpha}y_{\varphi(\alpha)}=\mathfrak{w}_{\alpha}x_{\varphi(\alpha)}\}
=\displaystyle= {(yα)αΓFΓ:αsupp(𝔴),yφ(α)=xφ(α)}\displaystyle\{(y_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}:\forall\alpha\in\rm{supp}(\mathfrak{w}),\>\>\>\>\>y_{\varphi(\alpha)}=x_{\varphi(\alpha)}\}
=\displaystyle= {(yα)αΓFΓ:αφ(supp(𝔴)),yα=xα}\displaystyle\{(y_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}:\forall\alpha\in\varphi(\rm{supp}(\mathfrak{w})),\>\>\>\>\>y_{\alpha}=x_{\alpha}\}

Hence σφ,𝔴1(σφ,𝔴(x))\sigma^{-1}_{\varphi,\mathfrak{w}}(\sigma_{\varphi,\mathfrak{w}}(x)) and FΓφ(supp(𝔴))F^{\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w}))} are equipotent. Therefore σφ,𝔴\sigma_{\varphi,\mathfrak{w}} is of finite fibre if and only if Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite. ∎

Corollary 4.9.

If σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, then σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} and σφΛ,𝔴Λ:FΛFΛ\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}:F^{\Lambda}\to F^{\Lambda} are of finite fibre too.

Proof.

Suppose σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, then by Lemma 4.8, Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite. Hence Γφ(supp((1)αΓ))=Γφ(Γ)(Γφ(supp(𝔴)))\Gamma\setminus\varphi(\rm{supp}((1)_{\alpha\in\Gamma}))=\Gamma\setminus\varphi(\Gamma)(\subseteq\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w}))) is finite too. So by Lemma 4.8, σφ=σφ,(1)αΓ:FΓFΓ\sigma_{\varphi}=\sigma_{\varphi,(1)_{\alpha\in\Gamma}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre.
Moreover, for A:={(xα)αΓ:βΥ,xβ=0}A:=\{(x_{\alpha})_{\alpha\in\Gamma}:\forall\beta\in\Upsilon,\>\>x_{\beta}=0\}, σφ,𝔴A:AFΓ\sigma_{\varphi,\mathfrak{w}}\restriction_{A}:A\to F^{\Gamma} is of finite fibre too. On the other hand, for each αΥ\alpha\in\Upsilon we have:

(4.2) αΥn0𝔴φn(α)=0𝔴α=0(n1,𝔴φn(α)=0)𝔴α=0φ(α)Υ\begin{array}[]{rcl}\alpha\in\Upsilon&\Rightarrow&\exists n\geq 0\>\>\mathfrak{w}_{\varphi^{n}(\alpha)}=0\\ &\Rightarrow&\mathfrak{w}_{\alpha}=0\vee(\exists n\geq 1,\>\>\mathfrak{w}_{\varphi^{n}(\alpha)}=0)\\ &\Rightarrow&\mathfrak{w}_{\alpha}=0\vee\varphi(\alpha)\in\Upsilon\end{array}

So for each (xα)αΓA(x_{\alpha})_{\alpha\in\Gamma}\in A the following implications are valid:

(xα)αΓA\displaystyle(x_{\alpha})_{\alpha\in\Gamma}\in A \displaystyle\Rightarrow αΥxα=0\displaystyle\forall\alpha\in\Upsilon\>\>x_{\alpha}=0
4.2\displaystyle\mathop{\Rightarrow}\limits^{\ref{Join}} αΥxφ(α)=0𝔴α=0\displaystyle\forall\alpha\in\Upsilon\>\>x_{\varphi(\alpha)}=0\vee\mathfrak{w}_{\alpha}=0
\displaystyle\Rightarrow αΥ𝔴αxφ(α)=0\displaystyle\forall\alpha\in\Upsilon\>\>\mathfrak{w}_{\alpha}x_{\varphi(\alpha)}=0
\displaystyle\Rightarrow σφ,𝔴((xα)αΓ)A.\displaystyle\sigma_{\varphi,\mathfrak{w}}((x_{\alpha})_{\alpha\in\Gamma})\in A\>.

Thus σφ,𝔴(A)A\sigma_{\varphi,\mathfrak{w}}(A)\subseteq A, and σφ,𝔴A:AA\sigma_{\varphi,\mathfrak{w}}\restriction_{A}:A\to A is of finite fibre. Since k:AFΛxxΛ\mathop{k:A\to F^{\Lambda}}\limits_{x\mapsto x^{\Lambda}} is bijective and σφΛ,𝔴Λ=kσφ,𝔴Ak1\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}=k\circ\sigma_{\varphi,\mathfrak{w}}\restriction_{A}\circ k^{-1}, we have the desired result. ∎

In the above corollary stemmed from Lemma 4.8, if σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, then σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre too, the following counterexample shows that the reversed the implication is not true.

Counterexample 4.10.

Let Γ=\Gamma=\mathbb{Z}, φ:nn+1\varphi:\mathop{\mathbb{Z}\to\mathbb{Z}}\limits_{n\mapsto n+1}, 𝔴2n=0\mathfrak{w}_{2n}=0 and 𝔴2n+1=1\mathfrak{w}_{2n+1}=1 for nn\in\mathbb{Z}. Then φ(Γ)=Γ\varphi(\Gamma)=\Gamma and σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre while supp(𝔴)=Γφ(supp(𝔴))=2+1\rm{supp}(\mathfrak{w})=\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w}))=2\mathbb{Z}+1 is infinite, hence σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is not of finite fibre.

4.2. Towards computing entcset(σφ,𝔴){\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})

By Lemma 4.8, σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre if and only if Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite.

Convention 4.11.

In this subsection suppose σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, i.e. Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite.

Finite fibreness of σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} leads us to the following corollaries.

Corollary 4.12.

entcset(σφ,𝔴)=entcset(σφΛ,𝔴Λ){\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}).

Proof.

Use Corollary 4.4. ∎

Corollary 4.13.

If sup({n:αΓ,(n,α)𝒯}{0})<+\sup(\{n:\exists\alpha\in\Gamma,\>\>(n,\alpha)\in{\mathcal{T}}\}\cup\{0\})<+\infty, then entcset(σφ,𝔴)=0{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})=0.

Proof.

Use Lemma 4.5. ∎

In the following propositions, we restrict ourselves to conditions which make us closer to σφ\sigma_{\varphi}’s situation. Also we will use \Re and φ~\tilde{\varphi} in the proof of the following theorem.

Theorem 4.14.

Suppose supp(𝔴)=Γ{\rm supp}(\mathfrak{w})=\Gamma and at least one of the following conditions occurs:

  • φ\varphi has a non–quasi–periodic point αΓ\alpha\in\Gamma,

  • Per(φ){\rm Per}(\varphi)\neq\varnothing and sup{per(α):αPer(φ)}=+\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi)\}=+\infty,

then entcset(σφ,𝔴)=entcset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi})=+\infty.

Proof.

For rFr\in F, let:

(4.3) r:={0,r=0,1,r0.r^{*}:=\left\{\begin{array}[]{lc}0,&r=0\>,\\ 1,&r\neq 0\>.\end{array}\right.

Consider h:FΓ{0,1}Γh:F^{\Gamma}\to\{0,1\}^{\Gamma} with h((rα)αΓ)=(rα)αΓh((r_{\alpha})_{\alpha\in\Gamma})=(r^{*}_{\alpha})_{\alpha\in\Gamma} ((rα)αΓFΓ(r_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}). For each (xα)αΓFΓ(x_{\alpha})_{\alpha\in\Gamma}\in F^{\Gamma}, we have:

h(σφ,𝔴((xα)αΓ))\displaystyle h(\sigma_{\varphi,\mathfrak{w}}((x_{\alpha})_{\alpha\in\Gamma})) =\displaystyle= h((𝔴αxφ(α))αΓ)\displaystyle h((\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in\Gamma})
=\displaystyle= ((𝔴αxφ(α)))αΓ=(𝔴αxφ(α))αΓ\displaystyle((\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})^{*})_{\alpha\in\Gamma}=(\mathfrak{w}^{*}_{\alpha}x^{*}_{\varphi(\alpha)})_{\alpha\in\Gamma}
=\displaystyle= (1xφ(α))αΓ=(xφ(α))αΓ\displaystyle(1x^{*}_{\varphi(\alpha)})_{\alpha\in\Gamma}=(x^{*}_{\varphi(\alpha)})_{\alpha\in\Gamma}
=\displaystyle= σφ((xα)αΓ)=σφ(h((xα)αΓ))\displaystyle\sigma_{\varphi}((x^{*}_{\alpha})_{\alpha\in\Gamma})=\sigma_{\varphi}(h((x_{\alpha})_{\alpha\in\Gamma}))

Hence hσφ,𝔴=σφhh\circ\sigma_{\varphi,\mathfrak{w}}=\sigma_{\varphi}\circ h and the following diagram commutes:

FΓ\textstyle{F^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σφ,𝔴\scriptstyle{\sigma_{\varphi,\mathfrak{w}}}h\scriptstyle{h}FΓ\textstyle{F^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}{0,1}Γ\textstyle{\{0,1\}^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σφ\scriptstyle{\sigma_{\varphi}}{0,1}Γ\textstyle{\{0,1\}^{\Gamma}}

It’s evident that h:FΓ{0,1}Γh:F^{\Gamma}\to\{0,1\}^{\Gamma} is surjective, moreover, by Corollary 4.9, σφ:{0,1}Γ{0,1}Γ\sigma_{\varphi}:\{0,1\}^{\Gamma}\to\{0,1\}^{\Gamma} is of finite fibre. By  [8, Lemma 3.2.22 (b)] we have:

(4.4) entcset(σφ)entcset(σφ,𝔴).{\rm ent}_{\rm cset}(\sigma_{\varphi})\leq{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})\>.

By Lemma 4.7, at least one of the following conditions occurs:
\bullet φ~\tilde{\varphi} has a non–quasi periodic point in Γ\frac{\Gamma}{\Re},
\bullet Per(φ~){\rm Per}(\tilde{\varphi})\neq\varnothing and sup{per(D):DPer(φ~)}=sup{per(α):αPer(φ)}=+\sup\{{\rm per}(D):D\in{\rm Per}(\tilde{\varphi})\}=\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi)\}=+\infty,
then by [14, Corollary 3.9]

(4.5) entcset(σφ)=+.{\rm ent}_{\rm cset}(\sigma_{\varphi})=+\infty\>.

Using 4.4 and 4.5 we have entcset(σφ,𝔴)=entcset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi})=+\infty. ∎

Lemma 4.15.

Suppose Per(φ)=Fix(φ){\rm Per}(\varphi)={\rm Fix}(\varphi), and QPer(φ)=supp(𝔴)=Γ{\rm QPer}(\varphi)={\rm supp}(\mathfrak{w})=\Gamma, then:

  • 1.

    σφFix(φ),𝔴Fix(φ):FFix(φ)FFix(φ)\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}:F^{{\rm Fix}(\varphi)}\to F^{{\rm Fix}(\varphi)} is bijective,

  • 2.

    𝔭:sc(σφ,𝔴)FFix(φ)\mathfrak{p}:{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\to F^{{\rm Fix}(\varphi)} with 𝔭(x)=xFix(φ)\mathfrak{p}(x)=x^{{\rm Fix}(\varphi)}, is bijective,

  • 3.

    entcset(σφ,𝔴)=entcset(σφFix(φ),𝔴Fix(φ))=0{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}})=0.

Proof.

Using QPer(φ)=Γ{\rm QPer}(\varphi)=\Gamma we have Per(φ){\rm Per}(\varphi)\neq\varnothing. therefor Fix(φ){\rm Fix}(\varphi)\neq\varnothing, since Per(φ)=Fix(φ){\rm Per}(\varphi)={\rm Fix}(\varphi).
1) Note that φFix(φ)=idFix(φ)\varphi\restriction_{{\rm Fix}(\varphi)}=id_{{\rm Fix}(\varphi)}, moreover, for each (xα)αFix(φ),(yα)αFix(φ)FFix(φ)(x_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}},(y_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}\in F^{{\rm Fix}(\varphi)}, we have:

σφFix(φ),𝔴Fix(φ)((𝔴α1yα)αFix(φ))=(yα)αFix(φ)\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}((\mathfrak{w}_{\alpha}^{-1}y_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}})=(y_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}

and

σφFix(φ),𝔴Fix(φ)((xα)αFix(φ))\displaystyle\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}((x_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}) =\displaystyle= σφFix(φ),𝔴Fix(φ)((yα)αFix(φ))\displaystyle\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}((y_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}})
\displaystyle\Rightarrow (𝔴αxα)αFix(φ)=(𝔴αyα)αFix(φ)\displaystyle(\mathfrak{w}_{\alpha}x_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}=(\mathfrak{w}_{\alpha}y_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}
\displaystyle\Rightarrow αFix(φ)𝔴αxα=𝔴αyα\displaystyle\forall{\alpha\in{{\rm Fix}(\varphi)}}\>\>\>\>\>\mathfrak{w}_{\alpha}x_{\alpha}=\mathfrak{w}_{\alpha}y_{\alpha}
\displaystyle\Rightarrow αFix(φ)𝔴α1𝔴αxα=𝔴α1𝔴αyα\displaystyle\forall{\alpha\in{{\rm Fix}(\varphi)}}\>\>\>\>\>\mathfrak{w}_{\alpha}^{-1}\mathfrak{w}_{\alpha}x_{\alpha}=\mathfrak{w}_{\alpha}^{-1}\mathfrak{w}_{\alpha}y_{\alpha}
\displaystyle\Rightarrow αFix(φ)xα=yα\displaystyle\forall{\alpha\in{{\rm Fix}(\varphi)}}\>\>\>\>\>x_{\alpha}=y_{\alpha}
\displaystyle\Rightarrow (xα)αFix(φ)=(yα)αFix(φ)\displaystyle(x_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}=(y_{\alpha})_{\alpha\in{{\rm Fix}(\varphi)}}

hence σφFix(φ),𝔴Fix(φ):FFix(φ)FFix(φ)\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}:F^{{\rm Fix}(\varphi)}\to F^{{\rm Fix}(\varphi)} is bijective.
2) We prove this item via the following claims:
Claim I. For βΓ\beta\in\Gamma, q2q\geq 2 with φq(β)Fix(φ)\varphi^{q}(\beta)\in{\rm Fix}(\varphi) and x=(xα)αΓsc(σφ,𝔴)x=(x_{\alpha})_{\alpha\in\Gamma}\in{\rm sc}(\sigma_{\varphi,\mathfrak{w}}), we have xβ=𝔴φq(β)q𝔴β𝔴φ(β)𝔴φq1(β)xφq(β)x_{\beta}=\mathfrak{w}_{\varphi^{q}(\beta)}^{-q}\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{q-1}(\beta)}x_{\varphi^{q}(\beta)}.
Proof of Claim I. Consider x=(xα)αΓsc(σφ,𝔴)x=(x_{\alpha})_{\alpha\in\Gamma}\in{\rm sc}(\sigma_{\varphi,\mathfrak{w}}). For βΓ\beta\in\Gamma, there exists q2q\geq 2 such that φq(β)Fix(φ)\varphi^{q}(\beta)\in{\rm Fix}(\varphi). There exists z=(zα)αΓz=(z_{\alpha})_{\alpha\in\Gamma} with σφ,𝔴q(z)=x\sigma_{\varphi,\mathfrak{w}}^{q}(z)=x.

σφ,𝔴q(z)=x\displaystyle\sigma_{\varphi,\mathfrak{w}}^{q}(z)=x \displaystyle\Rightarrow αΓ𝔴α𝔴φq1(α)zφq(α)=xα\displaystyle\forall\alpha\in\Gamma\>\>\mathfrak{w}_{\alpha}\cdots\mathfrak{w}_{\varphi^{q-1}(\alpha)}z_{\varphi^{q}(\alpha)}=x_{\alpha}
\displaystyle\Rightarrow s0𝔴φs(β)𝔴φs+q1(β)zφs+q(β)=xφs(β)\displaystyle\forall s\geq 0\>\>\mathfrak{w}_{\varphi^{s}(\beta)}\cdots\mathfrak{w}_{\varphi^{s+q-1}(\beta)}z_{\varphi^{s+q}(\beta)}=x_{\varphi^{s}(\beta)}
\displaystyle\Rightarrow s0𝔴φs(β)𝔴φs+q1(β)zφq(β)=xφs(β)\displaystyle\forall s\geq 0\>\>\mathfrak{w}_{\varphi^{s}(\beta)}\cdots\mathfrak{w}_{\varphi^{s+q-1}(\beta)}z_{\varphi^{q}(\beta)}=x_{\varphi^{s}(\beta)}
\displaystyle\Rightarrow s0𝔴φs(β)xφs+1(β)=xφs(β)𝔴φs+q(β)\displaystyle\forall s\geq 0\>\>\mathfrak{w}_{\varphi^{s}(\beta)}x_{\varphi^{s+1}(\beta)}=x_{\varphi^{s}(\beta)}\mathfrak{w}_{\varphi^{s+q}(\beta)}
\displaystyle\Rightarrow s0𝔴φs(β)xφs+1(β)=xφs(β)𝔴φq(β)\displaystyle\forall s\geq 0\>\>\mathfrak{w}_{\varphi^{s}(\beta)}x_{\varphi^{s+1}(\beta)}=x_{\varphi^{s}(\beta)}\mathfrak{w}_{\varphi^{q}(\beta)}

Therefore:

xβ\displaystyle x_{\beta} =\displaystyle= 𝔴φq(β)1𝔴βxφ(β)\displaystyle\mathfrak{w}_{\varphi^{q}(\beta)}^{-1}\mathfrak{w}_{\beta}x_{\varphi(\beta)}
=\displaystyle= 𝔴φq(β)2𝔴β𝔴φ(β)xφ2(β)\displaystyle\mathfrak{w}_{\varphi^{q}(\beta)}^{-2}\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}x_{\varphi^{2}(\beta)}
=\displaystyle= 𝔴φq(β)3𝔴β𝔴φ(β)𝔴φ2(β)xφ3(β)\displaystyle\mathfrak{w}_{\varphi^{q}(\beta)}^{-3}\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\mathfrak{w}_{\varphi^{2}(\beta)}x_{\varphi^{3}(\beta)}
\displaystyle\vdots
=\displaystyle= 𝔴φq(β)q𝔴β𝔴φ(β)𝔴φq1(β)xφq(β)\displaystyle\mathfrak{w}_{\varphi^{q}(\beta)}^{-q}\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{q-1}(\beta)}x_{\varphi^{q}(\beta)}

Claim II. 𝔭:sc(σφ,𝔴)FFix(φ)\mathfrak{p}:{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\to F^{{\rm Fix}(\varphi)} is one to one.
Proof of Claim II. Consider x=(xα)αΓ,y=(yα)αΓsc(σφ,𝔴)x=(x_{\alpha})_{\alpha\in\Gamma},y=(y_{\alpha})_{\alpha\in\Gamma}\in{\rm sc}(\sigma_{\varphi,\mathfrak{w}}) with 𝔭(x)=𝔭(y)\mathfrak{p}(x)=\mathfrak{p}(y). Choose βΓ\beta\in\Gamma, there exists q2q\geq 2 with φq(β)Fix(φ)\varphi^{q}(\beta)\in{\rm Fix}(\varphi), now we have:
𝔭(x)=𝔭(y)\mathfrak{p}(x)=\mathfrak{p}(y)

\displaystyle\Rightarrow αFix(φ),xα=yα\displaystyle\forall\alpha\in{\rm Fix}(\varphi),\>\>x_{\alpha}=y_{\alpha}
φq(β)Fix(φ)\displaystyle\mathop{\Rightarrow}\limits^{\varphi^{q}(\beta)\in{\rm Fix}(\varphi)} xφq(β)=yφq(β)\displaystyle x_{\varphi^{q}(\beta)}=y_{\varphi^{q}(\beta)}
\displaystyle\Rightarrow 𝔴φq(β)q𝔴β𝔴φ(β)𝔴φq1(β)xφq(β)=𝔴φq(β)q𝔴β𝔴φ(β)𝔴φq1(β)yφq(β)\displaystyle\mathfrak{w}_{\varphi^{q}(\beta)}^{-q}\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{q-1}(\beta)}x_{\varphi^{q}(\beta)}=\mathfrak{w}_{\varphi^{q}(\beta)}^{-q}\mathfrak{w}_{\beta}\mathfrak{w}_{\varphi(\beta)}\cdots\mathfrak{w}_{\varphi^{q-1}(\beta)}y_{\varphi^{q}(\beta)}
(ClaimI)\displaystyle\mathop{\Rightarrow}\limits^{({\rm Claim\>I})} xβ=yβ\displaystyle x_{\beta}=y_{\beta}

Since xβ=yβx_{\beta}=y_{\beta} for all βΓ\beta\in\Gamma, we have x=yx=y and 𝔭\mathfrak{p} is one to one.
Claim III. For all x=(xα)αFix(φ),y=(yα)αFix(φ)FFix(φ)x=(x_{\alpha})_{\alpha\in{\rm Fix}(\varphi)},y=(y_{\alpha})_{\alpha\in{\rm Fix}(\varphi)}\in F^{{\rm Fix}(\varphi)} and n1n\geq 1 we have σφFix(φ),𝔴Fix(φ)n(y)=x\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}^{n}(y)=x if and only if 𝔴θnyθ=xθ\mathfrak{w}_{\theta}^{n}y_{\theta}=x_{\theta} for all θFix(φ)\theta\in{\rm Fix}(\varphi).
Proof of Claim III. We have:

σφFix(φ),𝔴Fix(φ)n(y)=x\displaystyle\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}^{n}(y)=x \displaystyle\Rightarrow θFix(φ)𝔴θ𝔴φ(θ)𝔴φn1(θ)yφn(θ)=xθ\displaystyle\forall\theta\in{\rm Fix}(\varphi)\>\>\mathfrak{w}_{\theta}\mathfrak{w}_{\varphi(\theta)}\cdots\mathfrak{w}_{\varphi^{n-1}(\theta)}y_{\varphi^{n}(\theta)}=x_{\theta}
\displaystyle\Rightarrow θFix(φ)𝔴θnyθ=xθ\displaystyle\forall\theta\in{\rm Fix}(\varphi)\>\>\mathfrak{w}_{\theta}^{n}y_{\theta}=x_{\theta}

Claim IV. 𝔭:sc(σφ,𝔴)FFix(φ)\mathfrak{p}:{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\to F^{{\rm Fix}(\varphi)} is surjective.
Proof of Claim IV. Choose x=(xα)αFix(φ)FFix(φ)x=(x_{\alpha})_{\alpha\in{\rm Fix}(\varphi)}\in F^{{\rm Fix}(\varphi)}. For n1n\geq 1, there exists y=(yα)αFix(φ)FFix(φ)y=(y_{\alpha})_{\alpha\in{\rm Fix}(\varphi)}\in F^{{\rm Fix}(\varphi)} with σφFix(φ),𝔴Fix(φ)n(y)=x\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}^{n}(y)=x. For each βΓ\beta\in\Gamma, choose qβ2q_{\beta}\geq 2 such that φqβ(β)Fix(φ)\varphi^{q_{\beta}}(\beta)\in{\rm Fix}(\varphi). Let:

A:=(𝔴φqα(α)qα𝔴α𝔴φ(α)𝔴φqα1(α)xφqα(α))αΓ,A:=(\mathfrak{w}_{\varphi^{q_{\alpha}}(\alpha)}^{-q_{\alpha}}\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{q_{\alpha}-1}(\alpha)}x_{\varphi^{q_{\alpha}}(\alpha)})_{\alpha\in\Gamma}\>,
B:=(𝔴φqα(α)qα𝔴α𝔴φ(α)𝔴φqα1(α)yφqα(α))αΓ.B:=(\mathfrak{w}_{\varphi^{q_{\alpha}}(\alpha)}^{-q_{\alpha}}\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{q_{\alpha}-1}(\alpha)}y_{\varphi^{q_{\alpha}}(\alpha)})_{\alpha\in\Gamma}\>.

Note that for each αΓ\alpha\in\Gamma and m0m\geq 0 we have φqα(α)=φqα+m(α)\varphi^{q_{\alpha}}(\alpha)=\varphi^{q_{\alpha}+m}(\alpha) and:

(4.6) 𝔴φqα+m(α)qαm𝔴α𝔴φ(α)𝔴φqα+m1(α)=𝔴φqα(α)qα𝔴α𝔴φ(α)𝔴φqα1(α).\mathfrak{w}_{\varphi^{q_{\alpha}+m}(\alpha)}^{-q_{\alpha}-m}\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{q_{\alpha}+m-1}(\alpha)}=\mathfrak{w}_{\varphi^{q_{\alpha}}(\alpha)}^{-q_{\alpha}}\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{q_{\alpha}-1}(\alpha)}\>.

So AA and BB don’t depend on the way of choosing qαq_{\alpha}s. Moreover, for each αΓ\alpha\in\Gamma, we have (using 4.6 we may suppose qα=qφn(α)=:qq_{\alpha}=q_{\varphi^{n}(\alpha)}=:q):

α\alphath coordinate of σφ,𝔴n(B)=𝔴α𝔴φ(α)𝔴φn1(α)(φn(α)thcoordinateofB)\sigma_{\varphi,\mathfrak{w}}^{n}(B)=\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{n-1}(\alpha)}(\varphi^{n}(\alpha)th{\rm\>coordinate\>of\>}B)

=(0in1𝔴φi(α))𝔴φqφn(α)(φn(α))qφn(α)(0iqφn(α)1𝔴φi(φn(α)))yφqφn(α)(φn(α))=\bigg{(}\mathop{\prod}\limits_{0\leq i\leq n-1}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}\mathfrak{w}_{\varphi^{q_{\varphi^{n}(\alpha)}}(\varphi^{n}(\alpha))}^{-q_{\varphi^{n}(\alpha)}}\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q_{\varphi^{n}(\alpha)}-1}\mathfrak{w}_{\varphi^{i}(\varphi^{n}(\alpha))}\bigg{)}y_{\varphi^{q_{\varphi^{n}(\alpha)}}(\varphi^{n}(\alpha))}

=\displaystyle= (0in1𝔴φi(α))𝔴φq(φn(α))q(0iq1𝔴φi(φn(α)))yφq(φn(α))\displaystyle\bigg{(}\mathop{\prod}\limits_{0\leq i\leq n-1}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}\mathfrak{w}_{\varphi^{q}(\varphi^{n}(\alpha))}^{-q}\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\varphi^{n}(\alpha))}\bigg{)}y_{\varphi^{q}(\varphi^{n}(\alpha))}
=\displaystyle= (0iq+n1𝔴φi(α))𝔴φq(φn(α))qyφq(φn(α))\displaystyle\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q+n-1}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}\mathfrak{w}_{\varphi^{q}(\varphi^{n}(\alpha))}^{-q}y_{\varphi^{q}(\varphi^{n}(\alpha))}
=φq(α)Fix(φ)\displaystyle\mathop{=}\limits^{\varphi^{q}(\alpha)\in{\rm Fix(\varphi)}} (0iq+n1𝔴φi(α))𝔴φq(α)qyφq(α)\displaystyle\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q+n-1}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}\mathfrak{w}_{\varphi^{q}(\alpha)}^{-q}y_{\varphi^{q}(\alpha)}
=iqφi(α)=φq(α)\displaystyle\mathop{=}\limits^{\forall i\geq q\>\varphi^{i}(\alpha)=\varphi^{q}(\alpha)} (0iq1𝔴φi(α))𝔴φq(α)q+nyφq(α)\displaystyle\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}\mathfrak{w}_{\varphi^{q}(\alpha)}^{-q+n}y_{\varphi^{q}(\alpha)}
=(ClaimIII)\displaystyle\mathop{=}\limits^{({\rm Claim\>III})} (0iq1𝔴φi(α))𝔴φq(α)qxφq(α)=αthcoordinateofA\displaystyle\bigg{(}\mathop{\prod}\limits_{0\leq i\leq q-1}\mathfrak{w}_{\varphi^{i}(\alpha)}\bigg{)}\mathfrak{w}_{\varphi^{q}(\alpha)}^{-q}x_{\varphi^{q}(\alpha)}=\alpha{\rm th\>coordinate\>of\>}A

Thus A=σφ,𝔴n(B)σφ,𝔴n(FΓ)A=\sigma_{\varphi,\mathfrak{w}}^{n}(B)\in\sigma_{\varphi,\mathfrak{w}}^{n}(F^{\Gamma}) which leads to A{σφ,𝔴n(FΓ):n1}=sc(σφ,𝔴)A\in\bigcap\{\sigma_{\varphi,\mathfrak{w}}^{n}(F^{\Gamma}):n\geq 1\}={\rm sc}(\sigma_{\varphi,\mathfrak{w}}), on the other hand, 𝔭(A)=x\mathfrak{p}(A)=x and 𝔭:sc(σφ,𝔴)FFix(φ)\mathfrak{p}:{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\to F^{{\rm Fix}(\varphi)} is surjective.
3) Consider the following commutative diagram:

sc(σφ,𝔴)\textstyle{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σφ,𝔴sc(σφ,𝔴)\scriptstyle{\sigma_{\varphi,\mathfrak{w}}\restriction_{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})}}p\scriptstyle{p}sc(σφ,𝔴)\textstyle{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}FFix(φ)\textstyle{F^{{\rm Fix}(\varphi)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σφFix(φ),𝔴Fix(φ)\scriptstyle{\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}}FFix(φ)\textstyle{F^{{\rm Fix}(\varphi)}}

So σφ,𝔴sc(σφ,𝔴)=𝔭1σφFix(φ),𝔴Fix(φ)𝔭\sigma_{\varphi,\mathfrak{w}}\restriction_{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})}=\mathfrak{p}^{-1}\circ\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}\circ\mathfrak{p}. Hence (note that for finite fibre f:XXf:X\to X, a sequence is an ff-anti–orbit if and only if it is an fsc(f)f\restriction_{{\rm sc}(f)}-anti–orbit, also use [8, Lemma 3.2.22 (c)]):

entcset(σφ,𝔴)\displaystyle{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}) =\displaystyle= 𝖺(σφ,𝔴sc(σφ,𝔴))=𝖺(𝔭1σφFix(φ),𝔴Fix(φ)𝔭)\displaystyle\mathsf{a}(\sigma_{\varphi,\mathfrak{w}}\restriction_{{\rm sc}(\sigma_{\varphi,\mathfrak{w}})})=\mathsf{a}(\mathfrak{p}^{-1}\circ\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}\circ\mathfrak{p})
=\displaystyle= entcset(𝔭1σφFix(φ),𝔴Fix(φ)𝔭)=entcset(σφFix(φ),𝔴Fix(φ)).\displaystyle{\rm ent}_{\rm cset}(\mathfrak{p}^{-1}\circ\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}}\circ\mathfrak{p})={\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}})\>.

Moreover, by Lemma 4.5, 𝖺(σφFix(φ),𝔴Fix(φ))=0\mathsf{a}(\sigma_{\varphi\restriction_{{\rm Fix}(\varphi)},\mathfrak{w}^{{\rm Fix}(\varphi)}})=0, which completes the proof. ∎

Lemma 4.16.

If supp(𝔴)=Γ{\rm supp}(\mathfrak{w})=\Gamma, QPer(φ)=Γ{\rm QPer}(\varphi)=\Gamma and sup{per(α):αPer(φ)}<+\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi)\}<+\infty, then entcset(σφ,𝔴)=entcset(σφ)=0{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi})=0.

Proof.

By Corollary 4.9, σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre too. Let 𝔲=(𝔲α)αΓ=(1)αΓ\mathfrak{u}=(\mathfrak{u}_{\alpha})_{\alpha\in\Gamma}=(1)_{\alpha\in\Gamma}. Suppose sup{per(α):αPer(φ)}=N<+\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi)\}=N<+\infty. All periodic points of φN\varphi^{N} are fixed points of φN\varphi^{N} and all points of Γ\Gamma are quasi–periodic points of φN\varphi^{N}, by Lemma 4.15:

entcset(σφN,𝔲)=entcset(σφN,𝔴σφ(𝔴)σφN1(𝔴))=0.{\rm ent}_{\rm cset}(\sigma_{\varphi^{N},\mathfrak{u}})={\rm ent}_{\rm cset}(\sigma_{\varphi^{N},\mathfrak{w}\sigma_{\varphi}(\mathfrak{w})\cdots\sigma_{\varphi^{N-1}}(\mathfrak{w})})=0\>.

i.e. entcset(σφ,𝔲N)=entcset(σφ,𝔴N)=0{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{u}}^{N})={\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}^{N})=0, which leads to (use [8, Proposition 3.2.40 (Logarithmic Law)]):

Nentcset(σφ,𝔲)=Nentcset(σφ,𝔴)=0N{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{u}})=N{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})=0

and

entcset(σφ,𝔲)=entcset(σφ,𝔴)=0.{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{u}})={\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})=0\>.

Use the above cases and σφ,𝔲=σφ\sigma_{\varphi,\mathfrak{u}}=\sigma_{\varphi} to complete the proof. ∎

Corollary 4.17.

By Theorem 4.14 and Lemma 4.16, if supp(𝔴)=Γ{\rm supp}(\mathfrak{w})=\Gamma, then entcset(σφ,𝔴)=entcset(σφ)({0,+}){\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi})(\in\{0,+\infty\}).

Theorem 4.18.

We have:

entcset(σφ,𝔴)\displaystyle{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}) =\displaystyle= entcset(σφΛ,𝔴Λ)=entcset(σφΛ)\displaystyle{\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}})={\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda}})
=\displaystyle= {+,φhasanonquasiperiodicpointinΛ,+,Per(φ)Λsup{per(α):αPer(φ)Λ}=+,0,otherwise.\displaystyle\left\{\begin{array}[]{lc}+\infty,&\varphi{\rm\>has\>a\>non-quasi-periodic\>point\>in\>}\Lambda\>,\\ +\infty,&{\rm Per}(\varphi)\cap\Lambda\neq\varnothing\wedge\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi)\cap\Lambda\}=+\infty\>,\\ 0,&{\rm otherwise}\>.\end{array}\right.
Proof.

By Corollary 4.12, we have entcset(σφ,𝔴)=entcset(σφΛ,𝔴Λ){\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}). We have the following cases (note that for all αΛ\alpha\in\Lambda, 𝔴α0{\mathfrak{w}}_{\alpha}\neq 0):

  • 1.

    if QPer(φΛ)Λ{\rm QPer}(\varphi\restriction_{\Lambda})\neq\Lambda, i.e. φ\varphi has a non–quasi–periodic point in Λ\Lambda, then by Theorem 4.14, entcset(σφΛ,𝔴Λ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}})=+\infty,

  • 2.

    if Per(φΛ){\rm Per}(\varphi\restriction_{\Lambda})\neq\varnothing and sup{per(α):αPer(φΛ)}=+\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi\restriction_{\Lambda})\}=+\infty, then by Theorem 4.14, entcset(σφΛ,𝔴Λ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}})=+\infty (note that Per(φΛ)=Per(φ)Λ{\rm Per}(\varphi\restriction_{\Lambda})={\rm Per}(\varphi)\cap\Lambda),

  • 3.

    if QPer(φΛ)=Λ{\rm QPer}(\varphi\restriction_{\Lambda})=\Lambda and sup{per(α):αPer(φΛ)}<+\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\varphi\restriction_{\Lambda})\}<+\infty, i.e. neither (1) occurs nor (2) occurs, then by Lemma 4.16, entcset(σφΛ,𝔴Λ)=0{\rm ent}_{\rm cset}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}})=0.

5. Interaction between possible set–theoretical entropies of σφ,𝔴\sigma_{\varphi,\mathfrak{w}}

In this section, we try to find out the interaction between possible set–theoretical entropies arised from generalized and weighted generalized shifts. In this section, we try once more the above note via two corollaries and then a table.

Corollary 5.1.

Suppose entset(σφ)=+{\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty and entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0, then σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is not finite fibre.

Proof.

Suppose entset(σφ)=+{\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty and entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0. By Theorem 3.4, there exist p>q1p>q\geq 1, such that, for each αΓ\alpha\in\Gamma, we have

φp(α)=φq(α)𝔴α𝔴φ(α)𝔴φq(α)=0.\varphi^{p}(\alpha)=\varphi^{q}(\alpha)\vee\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{q}(\alpha)}=0\>.

Let s:=pqs:=p-q, then for each αΓ\alpha\in\Gamma with φp(α)=φq(α)\varphi^{p}(\alpha)=\varphi^{q}(\alpha), we have:

φp(α)=φq(α)\displaystyle\varphi^{p}(\alpha)=\varphi^{q}(\alpha) \displaystyle\Rightarrow φs(φq(α))=φq(α)\displaystyle\varphi^{s}(\varphi^{q}(\alpha))=\varphi^{q}(\alpha)
\displaystyle\Rightarrow φs(φqs(α))=φqsq(φs(φq(α)))=φqsq(φq(α))=φqs(α)\displaystyle\varphi^{s}(\varphi^{qs}(\alpha))=\varphi^{qs-q}(\varphi^{s}(\varphi^{q}(\alpha)))=\varphi^{qs-q}(\varphi^{q}(\alpha))=\varphi^{qs}(\alpha)
\displaystyle\Rightarrow φ2qs(α)=φqs(φqs(α))=φqs(α)\displaystyle\varphi^{2qs}(\alpha)=\varphi^{qs}(\varphi^{qs}(\alpha))=\varphi^{qs}(\alpha)

hence for N:=2qsN:=2qs we have:

(5.1) αΓ(φ2N(α)=φN(α)𝔴α𝔴φ(α)𝔴φN1(α)=0).\forall\alpha\in\Gamma\>\>\>(\varphi^{2N}(\alpha)=\varphi^{N}(\alpha)\vee\mathfrak{w}_{\alpha}\mathfrak{w}_{\varphi(\alpha)}\cdots\mathfrak{w}_{\varphi^{N-1}(\alpha)}=0)\>.

Let η:=φN,𝔳:=𝔴σφ(𝔴)σφN1(𝔴)\eta:=\varphi^{N},\mathfrak{v}:=\mathfrak{w}\sigma_{\varphi}({\mathfrak{w}})\cdots\sigma_{\varphi}^{N-1}({\mathfrak{w}}), then:

  • ση,𝔳=σφ,𝔴N\sigma_{\eta,\mathfrak{v}}=\sigma_{\varphi,\mathfrak{w}}^{N} and ση=σφN\sigma_{\eta}=\sigma_{\varphi}^{N},

  • entset(ση,𝔳)=entset(σφ,𝔴N)=Nentset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\eta,\mathfrak{v}})={\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}^{N})=N{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0,

  • entset(ση)=entset(σφN)=Nentset(σφ)=+{\rm ent}_{\rm set}(\sigma_{\eta})={\rm ent}_{\rm set}(\sigma_{\varphi}^{N})=N{\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty.

Let Z=Γsupp(𝔳)Z=\Gamma\setminus\rm{supp}(\mathfrak{v}), then by 5.1 we have:

(5.2) αΓ(𝔳α=0η(α)Fix(η)),\forall\alpha\in\Gamma\>\>(\mathfrak{v}_{\alpha}=0\vee\eta(\alpha)\in{\rm Fix}(\eta))\>,

i.e., Γ=Zη1(Fix(η))\Gamma=Z\cup\eta^{-1}({\rm Fix}(\eta)). Therefore:

Γη(supp(𝔳))\displaystyle\Gamma\setminus\eta(\rm{supp}(\mathfrak{v})) =\displaystyle= (Zη1(Fix(η)))η((Zη1(Fix(η)))Z)\displaystyle(Z\cup\eta^{-1}({\rm Fix}(\eta)))\setminus\eta((Z\cup\eta^{-1}({\rm Fix}(\eta)))\setminus Z)
=\displaystyle= (Zη1(Fix(η)))η(η1(Fix(η))Z)\displaystyle(Z\cup\eta^{-1}({\rm Fix}(\eta)))\setminus\eta(\eta^{-1}({\rm Fix}(\eta))\setminus Z)
\displaystyle\supseteq (Zη1(Fix(η)))η(η1(Fix(η)))\displaystyle(Z\cup\eta^{-1}({\rm Fix}(\eta)))\setminus\eta(\eta^{-1}({\rm Fix}(\eta)))
=\displaystyle= (Zη1(Fix(η)))Fix(η)\displaystyle(Z\cup\eta^{-1}({\rm Fix}(\eta)))\setminus{\rm Fix}(\eta)
\displaystyle\supseteq ZFix(η)\displaystyle Z\setminus{\rm Fix}(\eta)

Since entset(ση)=+{\rm ent}_{\rm set}(\sigma_{\eta})=+\infty, FΓF^{\Gamma} and Γ\Gamma are infinite also for each t2t\geq 2, there exists βΓ\beta\in\Gamma such that |{β,φ(β),,φt(β)}|=t+1|\{\beta,\varphi(\beta),\ldots,\varphi^{t}(\beta)\}|=t+1. So β,φ(β),,φt1(β)Fix(η)\beta,\varphi(\beta),\ldots,\varphi^{t-1}(\beta)\notin{\rm Fix}(\eta), therefore by 5.2, we have 𝔳β,𝔳φ(β),,𝔳φt2(β)=0\mathfrak{v}_{\beta},\mathfrak{v}_{\varphi(\beta)},\ldots,\mathfrak{v}_{\varphi^{t-2}(\beta)}=0, so β,φ(β),,φt2(β)ZFix(η)\beta,\varphi(\beta),\ldots,\varphi^{t-2}(\beta)\in Z\setminus{\rm Fix}(\eta), therefore card(Γη(supp(𝔳)))t1{\rm card}(\Gamma\setminus\eta(\rm{supp}(\mathfrak{v})))\geq t-1, for each t2t\geq 2 and Γη(supp(𝔳))\Gamma\setminus\eta(\rm{supp}(\mathfrak{v})) is infinite, hence σφ,𝔴N=ση,𝔳:FΓFΓ\sigma_{\varphi,\mathfrak{w}}^{N}=\sigma_{\eta,\mathfrak{v}}:F^{\Gamma}\to F^{\Gamma} is not finite fibre which leads to the desired result. ∎

Corollary 5.2.

Suppose σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, entcset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi})=+\infty and entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0, then σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is not finite fibre.

Proof.

By Lemma 3.2, Theorem 3.4 and Corollary 4.13, if entcset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi})=+\infty, then entset(σφ)=+{\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty. Now Use corollary 5.1 to complete the proof. ∎

According to Corollaries 5.1 and 5.2, it is not possible to occur the following properties simultaneously (note that if σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, then σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre too):

  • σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre,

  • entcset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi})=+\infty or entset(σφ)=+{\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty,

  • entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0.

However, the following example shows that the next conditions are possible to occur simultaneously:

  • σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre,

  • entcset(σφ)=entset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi})={\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty,

  • entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0.

Example 5.3.

Suppose Γ\Gamma is infinite. Choose a one to one sequence {θn}n1\{\theta_{n}\}_{n\geq 1} in Γ\Gamma. Consider φ:ΓΓ\varphi:\Gamma\to\Gamma with φ(θn)=θn+1\varphi(\theta_{n})=\theta_{n+1} for nn\in\mathbb{N} and φ(α)=α\varphi(\alpha)=\alpha for αΓ{θn:n1}\alpha\in\Gamma\setminus\{\theta_{n}:n\geq 1\}. Also:

𝔴α:={0,ifα=θ2n,forsomen,1,otherwise,𝔴=(𝔴α)αΓ.\mathfrak{w}_{\alpha}:=\left\{\begin{array}[]{lc}0,&{\rm if\>}\alpha=\theta_{2n},{\rm\>for\>some\>}n\in\mathbb{N}\>,\\ 1,&{\rm otherwise}\>,\end{array}\right.\>\>\>\>\>\mathfrak{w}=(\mathfrak{w}_{\alpha})_{\alpha\in\Gamma}\>.

Then σφ:FΓFΓ\sigma_{\varphi}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is not finite fibre, entset(σφ,𝔴)=0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})=0 and entcset(σφ)=entset(σφ)=+{\rm ent}_{\rm cset}(\sigma_{\varphi})={\rm ent}_{\rm set}(\sigma_{\varphi})=+\infty.

Note 5.4.

If σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre, as it is clear by the following table, then entset(σφ,𝔴)=entset(σφ){\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}})={\rm ent}_{\rm set}(\sigma_{\varphi}). However, this may fail to be valid for non–finite fibre σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} by Example 5.3.

A table

Now, let’s use the following predictions for finite field FF, infinite set Ψ\Psi, weight vector 𝔳FΨ\mathfrak{v}\in F^{\Psi} and self–map θ:ΨΨ\theta:\Psi\to\Psi:

π1(σθ,𝔳,FΨ)\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entset(σθ)=0{\rm ent}_{\rm set}(\sigma_{\theta})=0,
π2(σθ,𝔳,FΨ)\pi_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entset(σθ)=+{\rm ent}_{\rm set}(\sigma_{\theta})=+\infty,
π3(σθ,𝔳,FΨ)\pi_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entset(σθ,𝔳)=0{\rm ent}_{\rm set}(\sigma_{\theta,\mathfrak{v}})=0,
π4(σθ,𝔳,FΨ)\pi_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entset(σθ,𝔳)=+{\rm ent}_{\rm set}(\sigma_{\theta,\mathfrak{v}})=+\infty,
ρ1(σθ,𝔳,FΨ)\rho_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entcset(σθ)=0{\rm ent}_{\rm cset}(\sigma_{\theta})=0,
ρ2(σθ,𝔳,FΨ)\rho_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entcset(σθ)=+{\rm ent}_{\rm cset}(\sigma_{\theta})=+\infty,
ρ3(σθ,𝔳,FΨ)\rho_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entcset(σθ,𝔳)=0{\rm ent}_{\rm cset}(\sigma_{\theta,\mathfrak{v}})=0,
ρ4(σθ,𝔳,FΨ)\rho_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) is entcset(σθ,𝔳)=+{\rm ent}_{\rm cset}(\sigma_{\theta,\mathfrak{v}})=+\infty.

Then we have the following table:

[Uncaptioned image]

(Table A)

The mark “\surd indicates that in the corresponding case for all finite fibre σθ,𝔳:FΨFΨ\sigma_{\theta,\mathfrak{v}}:F^{\Psi}\to F^{\Psi} we have “P(σθ,𝔳,FΨ)Q(σθ,𝔳,FΨ)P(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow Q(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”.

The mark “×\times indicates that in the corresponding case for all finite fibre σθ,𝔳:FΨFΨ\sigma_{\theta,\mathfrak{v}}:F^{\Psi}\to F^{\Psi} we have “P(σθ,𝔳,FΨ)¬Q(σθ,𝔳,FΨ)P(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\neg Q(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”.

Vertical “𝗑𝗒𝗓({𝗈𝗇𝖾,𝗍𝗐𝗈})\mathsf{xyz}(\in\{\mathsf{one}\>,\>\mathsf{two}\}) means that one may find proof of corresponding “\surd” (hence “×\times”) in Step “𝗑𝗒𝗓\mathsf{xyz}” below.

Example(s) p, q, …, r, means that in the corresponding case in item(s) p, q, …, r of Counterexample 5.5 one may find finite fibre weighted generalized shifts σλ,𝔶,σλ,𝔶:FΨFΨ\sigma_{\lambda,\mathfrak{y}},\sigma_{\lambda^{\prime},\mathfrak{y}^{\prime}}:F^{\Psi}\to F^{\Psi} such that “P(σλ,𝔶,FΨ)Q(σλ,𝔶,FΨ)P(\sigma_{\lambda,\mathfrak{y}},F^{\Psi})\wedge Q(\sigma_{\lambda,\mathfrak{y}},F^{\Psi})” and “P(σλ,𝔶,FΨ)¬Q(σλ,𝔶,FΨ)P(\sigma_{\lambda^{\prime},\mathfrak{y}^{\prime}},F^{\Psi})\wedge\neg Q(\sigma_{\lambda^{\prime},\mathfrak{y}^{\prime}},F^{\Psi})”.

In gray boxes if we substitute the assumption of finite fibreness of σθ,𝔳:FΨFΨ\sigma_{\theta,\mathfrak{v}}:F^{\Psi}\to F^{\Psi} just by finite fibreness of σθ:FΨFΨ\sigma_{\theta}:F^{\Psi}\to F^{\Psi}, then the result in the corresponding case in the above table may fail to be true according to Example 5.3.

Proof of Statements in Table A

Let’s present proof through the following steps and examples:
Step one. It’s clear that for each proposition “α\alpha” we have “αα\alpha\Rightarrow\alpha”. Moreover

π1(σθ,𝔳,FΨ)¬π2(σθ,𝔳,FΨ)\displaystyle\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\equiv\neg\pi_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) ,\displaystyle\>,\> π3(σθ,𝔳,FΨ)¬π4(σθ,𝔳,FΨ),\displaystyle\pi_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\equiv\neg\pi_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\>,
ρ1(σθ,𝔳,FΨ)¬ρ2(σθ,𝔳,FΨ)\displaystyle\rho_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\equiv\neg\rho_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi}) ,\displaystyle\>,\> ρ3(σθ,𝔳,FΨ)¬ρ4(σθ,𝔳,FΨ).\displaystyle\rho_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\equiv\neg\rho_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\>.

Step two. We have the following implications for finite fibre σθ,𝔳:FΨFΨ\sigma_{\theta,\mathfrak{v}}:F^{\Psi}\to F^{\Psi}:

i::

π1(σθ,𝔳,FΨ)π3(σθ,𝔳,FΨ)\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Suppose entset(σθ)=0{\rm ent}_{\rm set}(\sigma_{\theta})=0, then by Theorem 3.4 (or [14, Theorem 2.4]), σθ\sigma_{\theta} and in its consequence θ\theta is quasi–periodic. By Lemma 3.2, σθ,𝔳\sigma_{\theta,\mathfrak{v}} is quasi–periodic too and by Theorem 3.4, entset(σθ,𝔳)=0{\rm ent}_{\rm set}(\sigma_{\theta,\mathfrak{v}})=0.

ii::

π3(σθ,𝔳,FΨ)ρ3(σθ,𝔳,FΨ)\pi_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use Lemma 3.2, Theorem 3.4 and Corollary 4.13.

iii::

π1(σθ,𝔳,FΨ)ρ1(σθ,𝔳,FΨ)\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. If σθ,𝔳\sigma_{\theta,\mathfrak{v}} is of finite fibre, then σθ=σθ,𝔲\sigma_{\theta}=\sigma_{\theta,\mathfrak{u}} is of finite fibre too, hence by item (ii) we have “π3(σθ,𝔲,FΨ)ρ3(σθ,𝔲,FΨ)\pi_{3}(\sigma_{\theta,\mathfrak{u}},F^{\Psi})\Rightarrow\rho_{3}(\sigma_{\theta,\mathfrak{u}},F^{\Psi})”, i.e. “π1(σθ,𝔳,FΨ)ρ1(σθ,𝔳,FΨ)\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”.

iv::

π1(σθ,𝔳,FΨ)ρ3(σθ,𝔳,FΨ)\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use items (i) and (ii).

v::

π4(σθ,𝔳,FΨ)π2(σθ,𝔳,FΨ)\pi_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (i) and Step one.

vi::

ρ4(σθ,𝔳,FΨ)π4(σθ,𝔳,FΨ)\rho_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (ii) and Step one.

vii::

ρ2(σθ,𝔳,FΨ)π2(σθ,𝔳,FΨ)\rho_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (iii) and Step one.

viii::

ρ4(σθ,𝔳,FΨ)π2(σθ,𝔳,FΨ)\rho_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (iv) and Step one.

ix::

ρ1(σθ,𝔳,FΨ)ρ3(σθ,𝔳,FΨ)\rho_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Suppose entcset(σθ)=0{\rm ent}_{\rm cset}(\sigma_{\theta})=0, then by Theorem 4.18 (or [14, Corollary 3.9]), all points of Ψ\Psi are quasi–periodic w.r.t. θ\theta and sup{per(α):αPer(θ)}\sup\{{\rm per}(\alpha):\alpha\in{\rm Per}(\theta)\}\in\mathbb{N}. In particular, all points of L:=Γ{αΨ:n0𝔳θn(α)=0}L:=\Gamma\setminus\{\alpha\in\Psi:\exists n\geq 0\>\mathfrak{v}_{\theta^{n}(\alpha)}=0\} are quasi–periodic w.r.t. θ\theta and sup({per(α):αPer(θ)L}{1})\sup(\{{\rm per}(\alpha):\alpha\in{\rm Per}(\theta)\cap L\}\cup\{1\})\in\mathbb{N}. Again by Theorem 4.18, entcset(σθ,𝔳)=0{\rm ent}_{\rm cset}(\sigma_{\theta,\mathfrak{v}})=0.

x::

ρ4(σθ,𝔳,FΨ)ρ2(σθ,𝔳,FΨ)\rho_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (ix) and Step one.

xi::

π3(σθ,𝔳,FΨ)π1(σθ,𝔳,FΨ)\pi_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use Corollary 5.1.

xii::

π2(σθ,𝔳,FΨ)π4(σθ,𝔳,FΨ)\pi_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (xi) and Step one.

xiii::

ρ2(σθ,𝔳,FΨ)π4(σθ,𝔳,FΨ)\rho_{2}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\pi_{4}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use Corollary 5.2.

xiv::

π3(σθ,𝔳,FΨ)ρ1(σθ,𝔳,FΨ)\pi_{3}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})\Rightarrow\rho_{1}(\sigma_{\theta,\mathfrak{v}},F^{\Psi})”. Use (xiii) and Step one.

Example 5.5.

Suppose 𝔲:=(1)αΨ\mathfrak{u}:=(1)_{\alpha\in\Psi} and consider a one to one double sequence {β(n,m)}n,m1\{\beta_{(n,m)}\}_{n,m\geq 1} in Ψ\Psi. Consider:

  • θ1:ΨΨ\theta_{1}:\Psi\to\Psi with:

    θ1(α):={β(1,n+1),ifα=β(1,n),forsome 2kn2k+11andk1,β(1,2k),ifα=β(1,2k+11),forsomek1,β(k,n),ifα=β(k+1,n),forsomen,k1,α,otherwise,\theta_{1}(\alpha):=\left\{\begin{array}[]{lc}\beta_{(1,n+1)},&{\rm if\>}\alpha=\beta_{(1,n)},{\rm\>for\>some\>}2^{k}\leq n\leq 2^{k+1}-1{\rm\>and\>}k\geq 1\>,\\ \beta_{(1,2^{k})},&{\rm if\>}\alpha=\beta_{(1,2^{k+1}-1)},{\rm\>for\>some\>}k\geq 1\>,\\ \beta_{(k,n)},&{\rm if\>}\alpha=\beta_{(k+1,n)},{\rm\>for\>some\>}n,k\geq 1\>,\\ \alpha,&otherwise\>,\end{array}\right.

    and:

    𝔳α={0,ifα=β(1,n),forsomen1,1,otherwise,,𝔳=(𝔳α)αΨ.\mathfrak{v}_{\alpha}=\left\{\begin{array}[]{lc}0,&{\rm if\>}\alpha=\beta_{(1,n)},{\rm\>for\>some\>}n\geq 1\>,\\ 1,&{\rm otherwise}\>,\end{array}\right.\>\>\>\>\>,\>\>\>\>\>\mathfrak{v}=(\mathfrak{v}_{\alpha})_{\alpha\in\Psi}\>.

    Then θ1(Ψ{αΨ:𝔳α=0})=θ1(Ψ)=Ψ\theta_{1}(\Psi\setminus\{\alpha\in\Psi:\mathfrak{v}_{\alpha}=0\})=\theta_{1}(\Psi)=\Psi and σθ1,𝔳:FΨFΨ\sigma_{\theta_{1},\mathfrak{v}}:F^{\Psi}\to F^{\Psi} is of finite fibre.

  • θ2:ΨΨ\theta_{2}:\Psi\to\Psi with θ2(β(1,m+1))=β(1,m)\theta_{2}(\beta_{(1,m+1)})=\beta_{(1,m)} for m1m\geq 1, θ2(α)=α\theta_{2}(\alpha)=\alpha, otherwise.

  • θ3:ΨΨ\theta_{3}:\Psi\to\Psi with θ3(β(1,2m1))=β(1,2m+1)\theta_{3}(\beta_{(1,2m-1)})=\beta_{(1,2m+1)} and θ3(β(1,2m+2))=β(1,2m)\theta_{3}(\beta_{(1,2m+2)})=\beta_{(1,2m)} for m1m\geq 1, also θ3(β(1,2))=β(1,1)\theta_{3}(\beta_{(1,2)})=\beta_{(1,1)} and θ3(α)=α\theta_{3}(\alpha)=\alpha, otherwise.

Then

  • a.

    entcset(σθ1)=+{\rm ent}_{\rm cset}(\sigma_{\theta_{1}})=+\infty, however entcset(σθ1,𝔲)=+{\rm ent}_{\rm cset}(\sigma_{\theta_{1},\mathfrak{u}})=+\infty and entcset(σθ1,𝔳)=0{\rm ent}_{\rm cset}(\sigma_{\theta_{1},\mathfrak{v}})=0

  • b.

    entcset(σidΨ,𝔲)=entcset(σidΨ)=entset(σidΨ,𝔲)=entset(σidΨ)=0{\rm ent}_{\rm cset}(\sigma_{id_{\Psi},\mathfrak{u}})={\rm ent}_{\rm cset}(\sigma_{id_{\Psi}})={\rm ent}_{\rm set}(\sigma_{id_{\Psi},\mathfrak{u}})={\rm ent}_{\rm set}(\sigma_{id_{\Psi}})=0, also entcset(σθ1,𝔳)=0{\rm ent}_{\rm cset}(\sigma_{\theta_{1},\mathfrak{v}})=0 and entcset(σθ1)=+{\rm ent}_{\rm cset}(\sigma_{\theta_{1}})=+\infty

  • c.

    entset(σθ2)=entset(σθ2,𝔲)=+{\rm ent}_{\rm set}(\sigma_{\theta_{2}})={\rm ent}_{\rm set}(\sigma_{\theta_{2},\mathfrak{u}})=+\infty and entcset(σθ2)=entcset(σθ2,𝔲)=0{\rm ent}_{\rm cset}(\sigma_{\theta_{2}})={\rm ent}_{\rm cset}(\sigma_{\theta_{2},\mathfrak{u}})=0

  • d.

    entset(σθ3)=entcset(σθ3)=entcset(σθ3,𝔲)=+{\rm ent}_{\rm set}(\sigma_{\theta_{3}})={\rm ent}_{\rm cset}(\sigma_{\theta_{3}})={\rm ent}_{\rm cset}(\sigma_{\theta_{3},\mathfrak{u}})=+\infty

6. Set–theoretical entropy of σφ,𝔴ΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F} whenever
ΓF\mathop{\bigoplus}\limits_{\Gamma}F is σφ,𝔴\sigma_{\varphi,\mathfrak{w}}-invariant

In this section we pay attention to the restriction of σφ,𝔴\sigma_{\varphi,\mathfrak{w}} to direct sum ΓF:={xFΓ:supp(x)\mathop{\bigoplus}\limits_{\Gamma}F:=\{x\in F^{\Gamma}:{\rm supp}(x) is finite}\}. We try to find out all conditions under which σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F and in the above case we show entset(σφ,𝔴ΓF){0,+}{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})\in\{0,+\infty\} where entset(σφ,𝔴ΓF)=+{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=+\infty if and only if there exists a φ\varphi-anti–orbit one to one sequence in supp(𝔴){\rm supp}(\mathfrak{w}).
In this section for each βΓ\beta\in\Gamma let δβ,β=1\delta_{\beta,\beta}=1 and δα,β=0\delta_{\alpha,\beta}=0 for αβ\alpha\neq\beta also

𝖾β:=(δα,β)αΓ.{\mathsf{e}}_{\beta}:=(\delta_{\alpha,\beta})_{\alpha\in\Gamma}\>.
Lemma 6.1.

The following statements are equivalent:

  • 1.

    σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F,

  • 2.

    for each βΓ\beta\in\Gamma, σφ,𝔴(𝖾β)ΓF\sigma_{\varphi,\mathfrak{w}}({\mathsf{e}}_{\beta})\in\mathop{\bigoplus}\limits_{\Gamma}F,

  • 3.

    φsupp(𝔴):supp(𝔴)Γ\varphi\restriction_{{\rm supp}(\mathfrak{w})}:{\rm supp}(\mathfrak{w})\to\Gamma is of finite fibre.

Proof.

(1 \Leftrightarrow 2): It is obvious, since σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is a linear map and ΓF\mathop{\bigoplus}\limits_{\Gamma}F is the linear subspace (of FΓF^{\Gamma}) generated by {𝖾α:αΓ}\{{\mathsf{e}}_{\alpha}:\alpha\in\Gamma\}.
(2 \Leftrightarrow 3): For each βΓ\beta\in\Gamma we have

supp(σφ,𝔴(𝖾β))\displaystyle{\rm supp}(\sigma_{\varphi,\mathfrak{w}}({\mathsf{e}}_{\beta})) =\displaystyle= supp((𝔴αδφ(α),β)αΓ)={αΓ:𝔴αδφ(α),β0}\displaystyle{\rm supp}((\mathfrak{w}_{\alpha}\delta_{\varphi(\alpha),\beta})_{\alpha\in\Gamma})=\{\alpha\in\Gamma:\mathfrak{w}_{\alpha}\delta_{\varphi(\alpha),\beta}\neq 0\}
=\displaystyle= {αsupp(𝔴):δφ(α),β0}={αsupp(𝔴):φ(α)=β}\displaystyle\{\alpha\in{\rm supp}(\mathfrak{w}):\delta_{\varphi(\alpha),\beta}\neq 0\}=\{\alpha\in{\rm supp}(\mathfrak{w}):\varphi(\alpha)=\beta\}
=\displaystyle= supp(𝔴)φ1(β)=φsupp(𝔴)1(β)\displaystyle{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)=\varphi\restriction_{{\rm supp}(\mathfrak{w})}^{-1}(\beta)

hence σφ,𝔴(𝖾β)ΓF\sigma_{\varphi,\mathfrak{w}}({\mathsf{e}}_{\beta})\in\mathop{\bigoplus}\limits_{\Gamma}F if and only if φsupp(𝔴)1(β)\varphi\restriction_{{\rm supp}(\mathfrak{w})}^{-1}(\beta) is finite, which leads to the desired result. ∎

Convention 6.2.

Henceforth, suppose σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F (or equivalently, by Lemma 6.1, φsupp(𝔴):supp(𝔴)Γ\varphi\restriction_{{\rm supp}(\mathfrak{w})}:{\rm supp}(\mathfrak{w})\to\Gamma is of finite fibre).

Lemma 6.3.

If βΓ\beta\in\Gamma and {σφ,𝔴n(𝖾β)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta})\}_{n\geq 1} is a one to one sequence, then

  • 1.

    supp(𝔴)φ1(β){β}{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)\setminus\{\beta\}\neq\varnothing and σφ,𝔴(𝖾β)=Σκsupp(𝔴)φ1(β)𝔴κ𝖾κ\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})=\mathop{\Sigma}\limits_{\kappa\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)}\mathfrak{w}_{\kappa}\mathsf{e}_{\kappa},

  • 2.

    there exists μsupp(𝔴)φ1(β){β}\mu\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)\setminus\{\beta\} such that {σφ,𝔴n(𝖾μ)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\mu})\}_{n\geq 1} is a one to one sequence,

  • 3.

    there exists an infinite φ\varphi-anti–orbit {αn}n1\{\alpha_{n}\}_{n\geq 1} in supp(𝔴){\rm supp}(\mathfrak{w}).

Proof.

Suppose {σφ,𝔴n(𝖾β)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta})\}_{n\geq 1} is a one to one sequence.
1) If σφ,𝔴(𝖾β)=(0)αΓ\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})=(0)_{\alpha\in\Gamma}, then σφ,𝔴n(𝖾β)=(0)αΓ\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta})=(0)_{\alpha\in\Gamma} for all n1n\geq 1, which is a contradiction. Thus σφ,𝔴(𝖾β)(0)αΓ\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})\neq(0)_{\alpha\in\Gamma} and

(0)αΓσφ,𝔴(𝖾β)=σφ,𝔴((δα,β)αΓ)=(𝔴αδφ(α),β)αΓ=Σκsupp(𝔴)φ1(β)𝔴κ𝖾κ(0)_{\alpha\in\Gamma}\neq\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})=\sigma_{\varphi,\mathfrak{w}}((\delta_{\alpha,\beta})_{\alpha\in\Gamma})=(\mathfrak{w}_{\alpha}\delta_{{\varphi(\alpha)},\beta})_{\alpha\in\Gamma}=\mathop{\Sigma}\limits_{\kappa\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)}\mathfrak{w}_{\kappa}\mathsf{e}_{\kappa}

therefore supp(𝔴)φ1(β){\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)\neq\varnothing.
If supp(𝔴)φ1(β)={β}{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)=\{\beta\}, then σφ,𝔴(𝖾β)=Σκsupp(𝔴)φ1(β)𝔴κ𝖾κ=𝔴β𝖾β\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})=\mathop{\Sigma}\limits_{\kappa\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)}\mathfrak{w}_{\kappa}\mathsf{e}_{\kappa}=\mathfrak{w}_{\beta}\mathsf{e}_{\beta}, which leads to (by induction on n1n\geq 1)

n1σφ,𝔴n(𝖾β)=𝔴βn𝖾β,\forall n\geq 1\>\>\>\>\>\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta})=\mathfrak{w}_{\beta}^{n}\mathsf{e}_{\beta}\>,

thus {σφ,𝔴n(𝖾β):n1}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta}):n\geq 1\} is an infinite subset of finite set {r𝖾β:rF}\{r\mathsf{e}_{\beta}:r\in F\} which is a contradiction, therefore supp(𝔴)φ1(β){β}{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)\neq\{\beta\}.
2) Suppose supp(𝔴)φ1(β)={κ1,,κp}{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)=\{\kappa_{1},\ldots,\kappa_{p}\} has pp elements. Then

{σφ,𝔴n(𝖾β):n1}={𝔴κ1σφ,𝔴n(𝖾κ1)++𝔴κpσφ,𝔴n(𝖾κp):n0}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta}):n\geq 1\}=\{\mathfrak{w}_{\kappa_{1}}\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\kappa_{1}})+\cdots+\mathfrak{w}_{\kappa_{p}}\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\kappa_{p}}):n\geq 0\}

is an infinite subset of {𝔴κ1σφ,𝔴n1(𝖾κ1)++𝔴κpσφ,𝔴np(𝖾κp):n1,,np0}\{\mathfrak{w}_{\kappa_{1}}\sigma_{\varphi,\mathfrak{w}}^{n_{1}}(\mathsf{e}_{\kappa_{1}})+\cdots+\mathfrak{w}_{\kappa_{p}}\sigma_{\varphi,\mathfrak{w}}^{n_{p}}(\mathsf{e}_{\kappa_{p}}):n_{1},\ldots,n_{p}\geq 0\}. So {𝔴κ1σφ,𝔴n1(𝖾κ1)++𝔴κpσφ,𝔴np(𝖾κp):n1,,np0}\{\mathfrak{w}_{\kappa_{1}}\sigma_{\varphi,\mathfrak{w}}^{n_{1}}(\mathsf{e}_{\kappa_{1}})+\cdots+\mathfrak{w}_{\kappa_{p}}\sigma_{\varphi,\mathfrak{w}}^{n_{p}}(\mathsf{e}_{\kappa_{p}}):n_{1},\ldots,n_{p}\geq 0\} is infinite too and there exists θ{κ1,,κp}\theta\in\{\kappa_{1},\ldots,\kappa_{p}\} such that {σφ,𝔴n(𝖾θ):n0}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\theta}):n\geq 0\} is an infinite set.
Suppose for each μsupp(𝔴)φ1(β)\mu\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta) either μ=β\mu=\beta or {σφ,𝔴n(𝖾μ):n0}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\mu}):n\geq 0\} is finite, then by the above discussion θ=β\theta=\beta and (by item (1)) p2p\geq 2. So we may suppose θ=β=κ1\theta=\beta=\kappa_{1}, moreover, D={𝖾β}{σφ,𝔴n(𝖾κi):2ip,n0}D=\{\mathsf{e}_{\beta}\}\cup\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\kappa_{i}}):2\leq i\leq p,n\geq 0\} is a finite subset of ΓF\mathop{\bigoplus}\limits_{\Gamma}F and VV is the linear subspace generated by DD, i.e. V:={r1x1++rmxm:m1,x1,,xmD,r1,,rmF}V:=\{r_{1}x_{1}+\cdots+r_{m}x_{m}:m\geq 1,x_{1},\ldots,x_{m}\in D,r_{1},\ldots,r_{m}\in F\}. VV is a linear space with finite generator DD over finite field FF, thus VV is finite. Using induction on n1n\geq 1 we prove σφ,𝔴n(𝖾β)\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta}) belongs to VV. Note that

σφ,𝔴(𝖾β)=(1)𝔴κ1𝖾κ1++𝔴κp𝖾κp=κ1=β𝔴β𝖾β++𝔴κp𝖾κpV.\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})\mathop{=}\limits^{(1)}\mathfrak{w}_{\kappa_{1}}\mathsf{e}_{\kappa_{1}}+\cdots+\mathfrak{w}_{\kappa_{p}}\mathsf{e}_{\kappa_{p}}\mathop{=}\limits^{\kappa_{1}=\beta}\mathfrak{w}_{\beta}\mathsf{e}_{\beta}+\cdots+\mathfrak{w}_{\kappa_{p}}\mathsf{e}_{\kappa_{p}}\in V\>.

For t1t\geq 1 if σφ,𝔴t(𝖾β)V\sigma_{\varphi,\mathfrak{w}}^{t}(\mathsf{e}_{\beta})\in V, then there exists r0,r1,,rmFr_{0},r_{1},\ldots,r_{m}\in F, λ1,,λm{κ2,,κp}\lambda_{1},\ldots,\lambda_{m}\in\{\kappa_{2},\ldots,\kappa_{p}\} and n1,,nm0n_{1},\ldots,n_{m}\geq 0 such that

σφ,𝔴t(𝖾β)=r0𝖾β+r1σφ,𝔴n1(𝖾λ1)++rmσφ,𝔴nm(𝖾λm),\sigma_{\varphi,\mathfrak{w}}^{t}(\mathsf{e}_{\beta})=r_{0}\mathsf{e}_{\beta}+r_{1}\sigma_{\varphi,\mathfrak{w}}^{n_{1}}(\mathsf{e}_{\lambda_{1}})+\cdots+r_{m}\sigma_{\varphi,\mathfrak{w}}^{n_{m}}(\mathsf{e}_{\lambda_{m}})\>,

then using σφ,𝔴(𝖾β),σφ,𝔴n1+1(𝖾λ1),,σφ,𝔴nm+1(𝖾λm)V\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta}),\sigma_{\varphi,\mathfrak{w}}^{n_{1}+1}(\mathsf{e}_{\lambda_{1}}),\ldots,\sigma_{\varphi,\mathfrak{w}}^{n_{m}+1}(\mathsf{e}_{\lambda_{m}})\in V we have:

σφ,𝔴t+1(𝖾β)\displaystyle\sigma_{\varphi,\mathfrak{w}}^{t+1}(\mathsf{e}_{\beta}) =\displaystyle= σφ,𝔴(r0𝖾β+r1σφ,𝔴n1(𝖾λ1)++rmσφ,𝔴nm(𝖾λm))\displaystyle\sigma_{\varphi,\mathfrak{w}}(r_{0}\mathsf{e}_{\beta}+r_{1}\sigma_{\varphi,\mathfrak{w}}^{n_{1}}(\mathsf{e}_{\lambda_{1}})+\cdots+r_{m}\sigma_{\varphi,\mathfrak{w}}^{n_{m}}(\mathsf{e}_{\lambda_{m}}))
=\displaystyle= r0σφ,𝔴(𝖾β)+r1σφ,𝔴n1+1(𝖾λ1)++rmσφ,𝔴nm+1(𝖾λm)V\displaystyle r_{0}\sigma_{\varphi,\mathfrak{w}}(\mathsf{e}_{\beta})+r_{1}\sigma_{\varphi,\mathfrak{w}}^{n_{1}+1}(\mathsf{e}_{\lambda_{1}})+\cdots+r_{m}\sigma_{\varphi,\mathfrak{w}}^{n_{m}+1}(\mathsf{e}_{\lambda_{m}})\in V

which completes the steps of induction. {σφ,𝔴n(𝖾β):n1}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta}):n\geq 1\} is an infinite subset of finite set VV which is a contradiction.
Therefore there exists μsupp(𝔴)φ1(β){β}\mu\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta)\setminus\{\beta\} such that {σφ,𝔴n(𝖾μ):n0}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\mu}):n\geq 0\} is infinite, hence {σφ,𝔴n(𝖾μ)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\mu})\}_{n\geq 1} is a one to one sequence.
3) We have the following cases:
Case 1. βPer(φ)\beta\notin{\rm Per}(\varphi). Choose {αn}n1\{\alpha_{n}\}_{n\geq 1} inductively in the following way:
\bullet by item (1) choose α1supp(𝔴)φ1(β)\alpha_{1}\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\beta) such that {σφ,𝔴n(𝖾α1)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\alpha_{1}})\}_{n\geq 1} is a one to one sequence,
\bullet for k1k\geq 1 suppose α1,,αksupp(𝔴)\alpha_{1},\ldots,\alpha_{k}\in{\rm supp}(\mathfrak{w}) have been chosen such that φ(αi)=αi1\varphi(\alpha_{i})=\alpha_{i-1} for 1<ik1<i\leq k and {σφ,𝔴n(𝖾αk)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\alpha_{k}})\}_{n\geq 1} is a one to one sequence. By item (1) choose αk+1supp(𝔴)φ1(αk)\alpha_{k+1}\in{\rm supp}(\mathfrak{w})\cap\varphi^{-1}(\alpha_{k}) such that {σφ,𝔴n(𝖾αk+1)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\alpha_{k+1}})\}_{n\geq 1} is a one to one sequence.
Using the above inductive construction, {αn}n1\{\alpha_{n}\}_{n\geq 1} is a φ\varphi-anti–orbit sequence in supp(𝔴){\rm supp}(\mathfrak{w}) with φ(α1)=β\varphi(\alpha_{1})=\beta. We claim that {αn}n1\{\alpha_{n}\}_{n\geq 1} is a one to one sequence too. Consider n>m1n>m\geq 1 such that αn=αm\alpha_{n}=\alpha_{m}, then β=φn(αn)=φn(αm)=φnm(φm(αm))=φnm(β)\beta=\varphi^{n}(\alpha_{n})=\varphi^{n}(\alpha_{m})=\varphi^{n-m}(\varphi^{m}(\alpha_{m}))=\varphi^{n-m}(\beta), which is in contradiction with βPer(φ)\beta\notin{\rm Per}(\varphi). Therefore {αn}n1\{\alpha_{n}\}_{n\geq 1} is a one to one φ\varphi-anti–orbit sequence in supp(𝔴){\rm supp}(\mathfrak{w}).
Case 2. βPer(φ)\beta\in{\rm Per}(\varphi) with per(β)=t1{\rm per}(\beta)=t\geq 1. {σφ,𝔴n(𝖾β)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta})\}_{n\geq 1} is a one to one sequence so {σφ,𝔴nt(𝖾β)}n1={(σφ,𝔴t)n(𝖾β)}n1\{\sigma_{\varphi,\mathfrak{w}}^{nt}(\mathsf{e}_{\beta})\}_{n\geq 1}=\{(\sigma_{\varphi,\mathfrak{w}}^{t})^{n}(\mathsf{e}_{\beta})\}_{n\geq 1} is a one to one sequence too. Let η=φt\eta=\varphi^{t} and 𝔳=(𝔳α)αΓ:=𝔴σφ(𝔴)σφt1(𝔴)\mathfrak{v}=(\mathfrak{v}_{\alpha})_{\alpha\in\Gamma}:=\mathfrak{w}\sigma_{\varphi}(\mathfrak{w})\cdots\sigma_{\varphi^{t-1}}(\mathfrak{w}), by Lemma 3.1 we have σφ,𝔴t=ση,𝔳\sigma_{\varphi,\mathfrak{w}}^{t}=\sigma_{\eta,\mathfrak{v}}. Thus {ση,𝔳n(𝖾β)}n1\{\sigma_{\eta,\mathfrak{v}}^{n}(\mathsf{e}_{\beta})\}_{n\geq 1} is a one to one sequence. By item (2) there exists μsupp(𝔳)η1(β){β}\mu\in{\rm supp}(\mathfrak{v})\cap\eta^{-1}(\beta)\setminus\{\beta\} such that {ση,𝔳n(𝖾μ)}n1\{\sigma_{\eta,\mathfrak{v}}^{n}(\mathsf{e}_{\mu})\}_{n\geq 1} is a one to one sequence. For each n1n\geq 1 we have ηn(μ)=ηn1(η(μ))=ηn1(β)=φt(n1)(β)=βμ\eta^{n}(\mu)=\eta^{n-1}(\eta(\mu))=\eta^{n-1}(\beta)=\varphi^{t(n-1)}(\beta)=\beta\neq\mu hence μPer(η)\mu\notin{\rm Per}(\eta). By Case 1 there exists a one to one η\eta-anti–orbit sequence {μn}n1\{\mu_{n}\}_{n\geq 1} in supp(𝔳){\rm supp}(\mathfrak{v}). Let:

α1:=μ1=φt(μ2),α2:=φt1(μ2),,αt:=φ(μ2),αt+1:=μ2=φt(μ3),αt+2:=φt1(μ3),,α2t:=φ(μ3),\begin{array}[]{llcl}\alpha_{1}:=\mu_{1}=\varphi^{t}(\mu_{2}),&\alpha_{2}:=\varphi^{t-1}(\mu_{2}),&\cdots,&\alpha_{t}:=\varphi(\mu_{2}),\\ \alpha_{t+1}:=\mu_{2}=\varphi^{t}(\mu_{3}),&\alpha_{t+2}:=\varphi^{t-1}(\mu_{3}),&\cdots,&\alpha_{2t}:=\varphi(\mu_{3}),\\ \vdots&&&\end{array}

i.e., αit+j=φtj+1(μi+2)\alpha_{it+j}=\varphi^{t-j+1}(\mu_{i+2}) for each i0i\geq 0 and j{1,,t}j\in\{1,\ldots,t\}. Clearly {αn}n1\{\alpha_{n}\}_{n\geq 1} is a φ\varphi-anti–orbit sequence with infinite sub–sequence {μn}n1\{\mu_{n}\}_{n\geq 1}. Hence {αn}n1\{\alpha_{n}\}_{n\geq 1} is an infinite φ\varphi-anti–orbit sequence, therefore it is a one to one φ\varphi-anti–orbit sequence.
Also for each μsupp(𝔳)\mu\in{\rm supp}(\mathfrak{v}) we have 0𝔳μ=𝔴μ𝔴φ(μ)𝔴φt1(μ)0\neq\mathfrak{v}_{\mu}=\mathfrak{w}_{\mu}\mathfrak{w}_{\varphi(\mu)}\cdots\mathfrak{w}_{\varphi^{t-1}(\mu)}, therefore 𝔴μ0,𝔴φ(μ)0,,𝔴φt1(μ)0\mathfrak{w}_{\mu}\neq 0,\mathfrak{w}_{\varphi(\mu)}\neq 0,\ldots,\mathfrak{w}_{\varphi^{t-1}(\mu)}\neq 0, hence μ,φ(μ),,φt1(μ)supp(φ)\mu,\varphi(\mu),\ldots,\varphi^{t-1}(\mu)\in{\rm supp}(\varphi), so αnsupp(𝔴)\alpha_{n}\in{\rm supp}(\mathfrak{w}) for each n1n\geq 1. Hence {αn}n1\{\alpha_{n}\}_{n\geq 1} is a one to one φ\varphi-anti–orbit sequence in supp(𝔴){\rm supp}(\mathfrak{w}). ∎

Theorem 6.4.

The following statements are equivalent:

  • 1.

    there exists an infinite φ\varphi-anti–orbit {αn}n1\{\alpha_{n}\}_{n\geq 1} in supp(𝔴){\rm supp}(\mathfrak{w}),

  • 2.

    entset(σφ,𝔴ΓF)=+{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=+\infty,

  • 3.

    entset(σφ,𝔴ΓF)>0{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})>0,

  • 4.

    there exists βΓ\beta\in\Gamma such that {σφ,𝔴n(𝖾β)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta})\}_{n\geq 1} is a one to one sequence.


So:

entset(σφ,𝔴ΓF)={+,ifthereexistsaonetooneφantiorbitsequenceinsupp(𝔴),0,otherwise.{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=\left\{\begin{array}[]{lc}+\infty,&if\>there\>exists\>a\>one\>to\>one\>\varphi\!-\!anti-orbit\>sequence\>in\>{\rm supp}(\mathfrak{w}),\\ 0\>,&otherwise\>.\end{array}\right.

Proof.

(1 \Rightarrow 2): Suppose {αn}n1\{\alpha_{n}\}_{n\geq 1} is an infinite φ\varphi-anti–orbit in supp(𝔴){\rm supp}(\mathfrak{w}). For m1m\geq 1 let:

xαm:={1,α=α1,αm+2,0,otherwise,andxm:=𝖾α1+𝖾αm+2=(xαm)αΓ.x^{m}_{\alpha}:=\left\{\begin{array}[]{lc}1,&\alpha=\alpha_{1},\alpha_{m+2}\>,\\ 0,&{\rm otherwise}\>,\end{array}\right.\>\>\>\>\>{\rm and}\>\>\>\>\>x^{m}:=\mathsf{e}_{\alpha_{1}}+\mathsf{e}_{\alpha_{m+2}}=(x^{m}_{\alpha})_{\alpha\in\Gamma}.

For convenience let

σφ,𝔴i(xj)=(yαj,i)αΓ(i,j1).\sigma_{\varphi,\mathfrak{w}}^{i}(x^{j})=(y^{j,i}_{\alpha})_{\alpha\in\Gamma}\>\>\>\>\>(i,j\geq 1)\>.

Therefore for each i,j1i,j\geq 1 we have (yαj,i+1)αΓ=σφ,𝔴((yαj,i)αΓ)=(𝔴αyφ(α)j,i)αΓ)(y^{j,i+1}_{\alpha})_{\alpha\in\Gamma}=\sigma_{\varphi,\mathfrak{w}}((y^{j,i}_{\alpha})_{\alpha\in\Gamma})=(\mathfrak{w}_{\alpha}y^{j,i}_{\varphi(\alpha)})_{\alpha\in\Gamma}), in particular

i,j,k1yαk+1j,i+1=𝔴αk+1yφ(αk+1)j,i=𝔴αk+1yαkj,i.\forall i,j,k\geq 1\>\>\>\>\>y^{j,i+1}_{\alpha_{k+1}}=\mathfrak{w}_{\alpha_{k+1}}y^{j,i}_{\varphi(\alpha_{k+1})}=\mathfrak{w}_{\alpha_{k+1}}y^{j,i}_{\alpha_{k}}\>.

Hence for m1m\geq 1 we have:

(xαkm)k1=(1,0,,0mtimes,1,0,0,)(yαkm,1)k1=(yα1m,1,𝔴α2,0,,0mtimes,𝔴αm+3,0,0,)(yαkm,n)k1=(yα1m,n,,yαnm,n,𝔴α2𝔴α3𝔴αn+10,0,,0mtimes,𝔴αm+3𝔴αm+n+20,0,0,)\begin{array}[]{lcl}(x^{m}_{\alpha_{k}})_{k\geq 1}&=&(1,\underbrace{0,\cdots,0}_{m\>times},1,0,0,\cdots)\\ &&\\ (y^{m,1}_{\alpha_{k}})_{k\geq 1}&=&(y^{m,1}_{\alpha_{1}},\mathfrak{w}_{\alpha_{2}},\underbrace{0,\cdots,0}_{m\>times},\mathfrak{w}_{\alpha_{m+3}},0,0,\cdots)\\ &\vdots&\\ (y^{m,n}_{\alpha_{k}})_{k\geq 1}&=&(y^{m,n}_{\alpha_{1}},\cdots,y^{m,n}_{\alpha_{n}},\underbrace{\mathfrak{w}_{\alpha_{2}}\mathfrak{w}_{\alpha_{3}}\cdots\mathfrak{w}_{\alpha_{n+1}}}_{\neq 0},\underbrace{0,\cdots,0}_{m\>times},\underbrace{\mathfrak{w}_{\alpha_{m+3}}\cdots\mathfrak{w}_{\alpha_{m+n+2}}}_{\neq 0},0,0,\cdots)\\ \end{array}

We claim that {{σφ,𝔴n(xm)}n1:m1}\{\{\sigma_{\varphi,\mathfrak{w}}^{n}(x^{m})\}_{n\geq 1}:m\geq 1\} is a collection of pairwise disjoint one to one sequences. For this aim, consider (p,q),(s,t)×(p,q),(s,t)\in{\mathbb{N}}\times{\mathbb{N}} with σφ,𝔴q(xp)=σφ,𝔴t(xs)\sigma_{\varphi,\mathfrak{w}}^{q}(x^{p})=\sigma_{\varphi,\mathfrak{w}}^{t}(x^{s}). By (yαp,q)αΓ=σφ,𝔴q(xp)=σφ,𝔴t(xs)=(yαs,t)αΓ(y^{p,q}_{\alpha})_{\alpha\in\Gamma}=\sigma_{\varphi,\mathfrak{w}}^{q}(x^{p})=\sigma_{\varphi,\mathfrak{w}}^{t}(x^{s})=(y^{s,t}_{\alpha})_{\alpha\in\Gamma} we have:

(6.1) p+q+2=max{k1:yαkp,q0}=max{k1:yαks,t0}=s+t+2p+q+2=\max\{k\geq 1:y^{p,q}_{\alpha_{k}}\neq 0\}=\max\{k\geq 1:y^{s,t}_{\alpha_{k}}\neq 0\}=s+t+2

thus

(6.2) q+1=max{k1:yαkp,q0,kp+q+2}=max{k1:yαkp,q0,ks+t+2}=max{k1:yαks,t0,ks+t+2}=t+1.\begin{array}[]{rcl}q+1&=&\max\{k\geq 1:y^{p,q}_{\alpha_{k}}\neq 0,k\neq p+q+2\}\\ &=&\max\{k\geq 1:y^{p,q}_{\alpha_{k}}\neq 0,k\neq s+t+2\}\\ &=&\max\{k\geq 1:y^{s,t}_{\alpha_{k}}\neq 0,k\neq s+t+2\}=t+1\>.\end{array}

Equations 6.1 and 6.2 lead us to (p,q)=(s,t)(p,q)=(s,t). Thus {{σφ,𝔴ΓFn(xm)}n1:m1}\{\{\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}^{n}(x^{m})\}_{n\geq 1}:m\geq 1\} is a collection of pairwise disjoint one to one sequences and +=𝗈(σφ,𝔴ΓF)=entset(σφ,𝔴ΓF)+\infty={\mathsf{o}}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})={\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}).
(2 \Rightarrow 3): It is obvious.
(3 \Rightarrow 4): Suppose 𝗈(σφ,𝔴ΓF)=entset(σφ,𝔴ΓF)>0{\mathsf{o}}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})={\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})>0, thus there exists xΓFx\in\mathop{\bigoplus}\limits_{\Gamma}F such that {σφ,𝔴n(x)}n1(={σφ,𝔴ΓFn(x)}n1)\{\sigma_{\varphi,\mathfrak{w}}^{n}(x)\}_{n\geq 1}(=\{\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}^{n}(x)\}_{n\geq 1}). There exist β1,,βpΓ\beta_{1},\ldots,\beta_{p}\in\Gamma and r1,,rpFr_{1},\ldots,r_{p}\in F such that x=r1𝖾β1++rp𝖾βpx=r_{1}\mathsf{e}_{\beta_{1}}+\cdots+r_{p}\mathsf{e}_{\beta_{p}}. Note that {σφ,𝔴n(x):n1}={r1σφ,𝔴n(𝖾β1)++rpσφ,𝔴n(𝖾βp):n1}\{\sigma_{\varphi,\mathfrak{w}}^{n}(x):n\geq 1\}=\{r_{1}\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta_{1}})+\cdots+r_{p}\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta_{p}}):n\geq 1\} is an infinite subset of

{r1σφ,𝔴n1(𝖾β1)++rpσφ,𝔴np(𝖾βp):n1,,np1}.\{r_{1}\sigma_{\varphi,\mathfrak{w}}^{n_{1}}(\mathsf{e}_{\beta_{1}})+\cdots+r_{p}\sigma_{\varphi,\mathfrak{w}}^{n_{p}}(\mathsf{e}_{\beta_{p}}):n_{1},\ldots,n_{p}\geq 1\}\>.

So there exists j{1,,p}j\in\{1,\ldots,p\} such that {σφ,𝔴n(𝖾βj):n1}\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta_{j}}):n\geq 1\} is an infinite set. Therefore {σφ,𝔴n(𝖾βj)}n1\{\sigma_{\varphi,\mathfrak{w}}^{n}(\mathsf{e}_{\beta_{j}})\}_{n\geq 1} is a one to one sequence.
(4 \Rightarrow 1) Use Lemma 6.3. ∎

In the following example we show one may choose appropriate φ\varphi and 𝔴\mathfrak{w} such that entset(σφ,𝔴ΓF)entset(σφ,𝔴){\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})\neq{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}), hence entset(σφ,𝔴ΓF)<entset(σφ,𝔴){\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})<{\rm ent}_{\rm set}(\sigma_{\varphi,\mathfrak{w}}).

Example 6.5.

Consider η:\eta:\mathbb{N}\to\mathbb{N} as in Example 2.1, and 𝔲=(1)n\mathfrak{u}=(1)_{n\in\mathbb{N}}, then entset(σηF)=entset(ση,𝔳F)=0<+=entset(ση,𝔳)=entset(ση){\rm ent}_{\rm set}(\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}F})={\rm ent}_{\rm set}(\sigma_{\eta,\mathfrak{v}}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}F})=0<+\infty={\rm ent}_{\rm set}(\sigma_{\eta,\mathfrak{v}})={\rm ent}_{\rm set}(\sigma_{\eta}).

7. Contravariant set–theoretical entropy of the finite fibre σφ,𝔴ΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F} whenever ΓF\mathop{\bigoplus}\limits_{\Gamma}F is σφ,𝔴\sigma_{\varphi,\mathfrak{w}}-invariant

As it has been mentioned in Convention 6.2, in this section we assume σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F (or equivalently, by Lemma 6.1, φsupp(𝔴):supp(𝔴)Γ\varphi\restriction_{{\rm supp}(\mathfrak{w})}:{\rm supp}(\mathfrak{w})\to\Gamma is of finite fibre). In this section we show σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F is of finite fibre if and only if σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre and in the above case entcset(σφ,𝔴ΓF)=+{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=+\infty if and only if there exists a φ\varphi-orbit one to one sequence in supp(𝔴){\rm supp}(\mathfrak{w}).

Proposition 7.1.

σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F is of finite fibre if and only if σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre.

Proof.

Using the proof of Lemma 4.8 for each x=(xα)αΓΓFx=(x_{\alpha})_{\alpha\in\Gamma}\in\mathop{\bigoplus}\limits_{\Gamma}F, we have

σφ,𝔴ΓF1(σφ,𝔴(x))={(yα)αΓΓF:αφ(supp(𝔴)),yα=xα}\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}^{-1}(\sigma_{\varphi,\mathfrak{w}}(x))=\{(y_{\alpha})_{\alpha\in\Gamma}\in\mathop{\bigoplus}\limits_{\Gamma}F:\forall\alpha\in\varphi(\rm{supp}(\mathfrak{w})),\>\>\>\>\>y_{\alpha}=x_{\alpha}\}

hence σφ,𝔴ΓF1(σφ,𝔴(x))\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}^{-1}(\sigma_{\varphi,\mathfrak{w}}(x)) and Γφ(supp(𝔴))F\mathop{\bigoplus}\limits_{\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w}))}F are equipotent. Therefore σφ,𝔴ΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F} is of finite fibre if and only if Γφ(supp(𝔴))\Gamma\setminus\varphi(\rm{supp}(\mathfrak{w})) is finite. So by Lemma 4.8, σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F is of finite fibre if and only if σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre. ∎

Lemma 7.2.

Suppose σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F is of finite fibre, then:

  • 1.

    sc(σφ,𝔴ΓF)sc(σφ,𝔴)ΓF{(xα)αΓΓF:βΥ,xβ=0}{\rm sc}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})\subseteq{\rm sc}(\sigma_{\varphi,\mathfrak{w}})\cap\mathop{\bigoplus}\limits_{\Gamma}F\subseteq\left\{(x_{\alpha})_{\alpha\in\Gamma}\in\mathop{\bigoplus}\limits_{\Gamma}F:\forall\beta\in\Upsilon,\>\>x_{\beta}=0\right\},

  • 2.

    σφΛ,𝔴Λ(ΛF)ΛF\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(\mathop{\bigoplus}\limits_{\Lambda}F)\subseteq\mathop{\bigoplus}\limits_{\Lambda}F,

  • 3.

    σφΛ,𝔴ΛΛF:ΛFΛF\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}\restriction_{\mathop{\bigoplus}\limits_{\Lambda}F}:\mathop{\bigoplus}\limits_{\Lambda}F\to\mathop{\bigoplus}\limits_{\Lambda}F is of finite fibre,

  • 4.

    𝖺(σφ,𝔴ΓF)=𝖺(σφΛ,𝔴ΛΛF)\mathsf{a}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=\mathsf{a}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}\restriction_{\mathop{\bigoplus}\limits_{\Lambda}F}).

Proof.

1) Use Lemma 4.2.
2) σφ,𝔴(ΓF)ΓF\sigma_{\varphi,\mathfrak{w}}(\mathop{\bigoplus}\limits_{\Gamma}F)\subseteq\mathop{\bigoplus}\limits_{\Gamma}F, i.e., φsupp(𝔴):supp(𝔴)Γ\varphi\restriction_{{\rm supp}(\mathfrak{w})}:{\rm supp}(\mathfrak{w})\to\Gamma is of finite fibre. Since Λsupp(𝔴)\Lambda\subseteq{\rm supp}(\mathfrak{w}), φΛ:ΛΓ\varphi\restriction_{\Lambda}:\Lambda\to\Gamma is of finite fibre too. Thus φΛ:Λφ(Λ)\varphi\restriction_{\Lambda}:\Lambda\to\varphi(\Lambda) is of finite fibre. Therefore φΛ:ΛΛ\varphi\restriction_{\Lambda}:\Lambda\to\Lambda is of finite fibre (use φ(Λ)Λ\varphi(\Lambda)\subseteq\Lambda). By supp(𝔴Λ)=Λ{\rm supp}(\mathfrak{w}^{\Lambda})=\Lambda and Lemma 6.1, σφΛ,𝔴Λ(ΛF)ΛF\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(\mathop{\bigoplus}\limits_{\Lambda}F)\subseteq\mathop{\bigoplus}\limits_{\Lambda}F.
3) By Proposition 7.1, σφ,𝔴:FΓFΓ\sigma_{\varphi,\mathfrak{w}}:F^{\Gamma}\to F^{\Gamma} is of finite fibre. By Corollary 4.9, σφΛ,𝔴Λ:FΛFΛ\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}:F^{\Lambda}\to F^{\Lambda} is of finite fibre. By Proposition 7.1, σφΛ,𝔴ΛΛF:ΛFΛF\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}\restriction_{\mathop{\bigoplus}\limits_{\Lambda}F}:\mathop{\bigoplus}\limits_{\Lambda}F\to\mathop{\bigoplus}\limits_{\Lambda}F is of finite fibre.
4) Use (1) and a similar proof described in Corollary 4.4. ∎

Lemma 7.3.

Suppose σφ,𝔴ΓF:ΓFΓF\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\Gamma}F is of finite fibre, then the following statements are equivalent:

1. entcset(σφ,𝔴ΓF)=+{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=+\infty,

2. entcset(σφ,𝔴ΓF)>0{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})>0,

3. there exists a one to one φ\varphi-orbit sequence in supp(𝔴){\rm supp}(\mathfrak{w}).

So:

entcset(σφ,𝔴ΓF)={+,ifthereexistsaonetooneφorbitsequenceinsupp(𝔴),0,otherwise.{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=\left\{\begin{array}[]{lc}+\infty\>,&if\>there\>exists\>a\>one\>to\>one\>\varphi-orbit\>sequence\>in\>{\rm supp}(\mathfrak{w})\>,\\ 0\>,&otherwise\>.\end{array}\right.


Proof.

(1 \Rightarrow 2): It is obvious.
(2 \Rightarrow 3): Suppose 𝖺(σφ,𝔴ΓF)=entcset(σφ,𝔴ΓF)>0\mathsf{a}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})={\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})>0. By Lemma 7.2(4), 𝖺(σφΛ,𝔴ΛΛF)>0\mathsf{a}(\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}\restriction_{\mathop{\bigoplus}\limits_{\Lambda}F})>0, hence there exists a one to one σφΛ,𝔴Λ\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}-anti–orbit sequence {zn}n1\{z_{n}\}_{n\geq 1} in ΛF\mathop{\bigoplus}\limits_{\Lambda}F. We may suppose zn(0)αΛz_{n}\neq(0)_{\alpha\in\Lambda} thus supp(zn){\rm supp}(z_{n})\neq\varnothing (for all n1n\geq 1). For n1n\geq 1 let zn=(zαn)αΛ=Σβsupp(zn)zβn𝖾βΛz_{n}=(z^{n}_{\alpha})_{\alpha\in\Lambda}=\mathop{\Sigma}\limits_{\beta\in{\rm supp}(z_{n})}z^{n}_{\beta}\mathsf{e}_{\beta}^{\Lambda}, then (using a similar method described in the proof of Lemma 6.3 (1))

zn=σφΛ,𝔴Λ(zn+1)=σφΛ,𝔴Λ(Σβsupp(zn+1)zβn+1𝖾βΛ)=Σβsupp(zn+1)zβn+1σφΛ,𝔴Λ(𝖾βΛ)=Σβsupp(zn+1)(ΣαφΛ1(β)supp(𝔴Λ)zβn+1𝔴α𝖾α)=Σβsupp(zn+1)(ΣαφΛ1(β)zβn+1𝔴α𝖾α),\begin{array}[]{rcl}z_{n}&=&\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(z_{n+1})=\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(\mathop{\Sigma}\limits_{\beta\in{\rm supp}(z_{n+1})}z^{n+1}_{\beta}\mathsf{e}_{\beta}^{\Lambda})\\ &&\\ &=&\mathop{\Sigma}\limits_{\beta\in{\rm supp}(z_{n+1})}z^{n+1}_{\beta}\sigma_{\varphi\restriction_{\Lambda},\mathfrak{w}^{\Lambda}}(\mathsf{e}_{\beta}^{\Lambda})\\ &&\\ &=&\mathop{\Sigma}\limits_{\beta\in{\rm supp}(z_{n+1})}\bigg{(}\mathop{\Sigma}\limits_{\alpha\in\varphi\restriction_{\Lambda}^{-1}(\beta)\cap{\rm supp}(\mathfrak{w}^{\Lambda})}z^{n+1}_{\beta}\mathfrak{w}_{\alpha}\mathsf{e}_{\alpha}\bigg{)}\\ &&\\ &=&\mathop{\Sigma}\limits_{\beta\in{\rm supp}(z_{n+1})}\bigg{(}\mathop{\Sigma}\limits_{\alpha\in\varphi\restriction_{\Lambda}^{-1}(\beta)}z^{n+1}_{\beta}\mathfrak{w}_{\alpha}\mathsf{e}_{\alpha}\bigg{)}\>,\\ &&\end{array}

for all βsupp(zn+1)\beta\in{\rm supp}(z_{n+1}), zβn+10z^{n+1}_{\beta}\neq 0, thus

supp(zn)=φΛ1(supp(zn+1)).{\rm supp}(z_{n})=\varphi\restriction_{\Lambda}^{-1}({\rm supp}(z_{n+1}))\>.

Inductively we show:

(7.1) n1supp(zn){φk(α):αsupp(z1)(Λφ(Λ)),k0}.\forall n\geq 1\>\>{\rm supp}(z_{n})\subseteq\{\varphi^{k}(\alpha):\alpha\in{\rm supp}(z_{1})\cup(\Lambda\setminus\varphi(\Lambda)),k\geq 0\}\>.

For this aim let H:={φk(α):αsupp(z1)(Λφ(Λ)),k0}H:=\{\varphi^{k}(\alpha):\alpha\in{\rm supp}(z_{1})\cup(\Lambda\setminus\varphi(\Lambda)),k\geq 0\} and use the following steps:

  • Obviously supp(z1)H{\rm supp}(z_{1})\subseteq H.

  • Consider m1m\geq 1 such that supp(zm){φk(α):αsupp(z1)(Λφ(Λ)),k0}{\rm supp}(z_{m})\subseteq\{\varphi^{k}(\alpha):\alpha\in{\rm supp}(z_{1})\cup(\Lambda\setminus\varphi(\Lambda)),k\geq 0\}. If βsupp(zm+1)\beta\in{\rm supp}(z_{m+1}), then one of the following conditions occur:

    • Case 1: βφ(Λ)\beta\notin\varphi(\Lambda). In this case βΛφ(Λ)H\beta\in\Lambda\setminus\varphi(\Lambda)\subseteq H.

    • Case 2: βφ(Λ)\beta\in\varphi(\Lambda). In this case choose θΛ\theta\in\Lambda such that φ(θ)=β\varphi(\theta)=\beta thus θφΛ1(supp(zm+1))=supp(zm)H\theta\in\varphi\restriction_{\Lambda}^{-1}({\rm supp}(z_{m+1}))={\rm supp}(z_{m})\subseteq H. Therefore β=φ(θ)φ(H)\beta=\varphi(\theta)\subseteq\varphi(H).

    Using the above cases βHφ(H)H\beta\in H\cup\varphi(H)\subseteq H. Hence supp(zm+1)H{\rm supp}(z_{m+1})\subseteq H.

Therefore 7.1 is valid. By 7.2(3) the set Λφ(Λ)\Lambda\setminus\varphi(\Lambda) is finite. So supp(z1)(Λφ(Λ))={θ1,,θp}{\rm supp}(z_{1})\cup(\Lambda\setminus\varphi(\Lambda))=\{\theta_{1},\ldots,\theta_{p}\} is finite. Suppose

Vi:={r1𝖾φn1(θi)Λ++rk𝖾φnk(θi)Λ:k1,r1,,rkF,n1,,nk0}V_{i}:=\{r_{1}\mathsf{e}_{\varphi^{n_{1}}(\theta_{i})}^{\Lambda}+\cdots+r_{k}\mathsf{e}_{\varphi^{n_{k}}(\theta_{i})}^{\Lambda}:k\geq 1,r_{1},\ldots,r_{k}\in F,n_{1},\ldots,n_{k}\geq 0\}

is the linear subspace generated by {𝖾φn(θi):n0}\{\mathsf{e}_{\varphi^{n}(\theta_{i})}:n\geq 0\} (1ip1\leq i\leq p). Hence

{zn\displaystyle\{z_{n} :\displaystyle: n1}={Σβsupp(zn)zβn𝖾βΛ:n1}\displaystyle n\geq 1\}=\left\{\mathop{\Sigma}\limits_{\beta\in{\rm supp}(z_{n})}z^{n}_{\beta}\mathsf{e}_{\beta}^{\Lambda}:n\geq 1\right\}
\displaystyle\subseteq {r1𝖾β1Λ++rm𝖾βmΛ:m1,β1,,βm{supp(zn):n1},r1,,rmF}\displaystyle\{r_{1}\mathsf{e}_{\beta_{1}}^{\Lambda}+\cdots+r_{m}\mathsf{e}_{\beta_{m}}^{\Lambda}:m\geq 1,\beta_{1},\ldots,\beta_{m}\in\bigcup\{{\rm supp}(z_{n}):n\geq 1\},r_{1},\ldots,r_{m}\in F\}
7.1\displaystyle\mathop{\subseteq}\limits^{\ref{kheybar100}} {r1𝖾β1Λ++rm𝖾βmΛ:m1,β1,,βmH,r1,,rmF}\displaystyle\{r_{1}\mathsf{e}_{\beta_{1}}^{\Lambda}+\cdots+r_{m}\mathsf{e}_{\beta_{m}}^{\Lambda}:m\geq 1,\beta_{1},\ldots,\beta_{m}\in H,r_{1},\ldots,r_{m}\in F\}
=\displaystyle= V1++Vp.\displaystyle V_{1}+\cdots+V_{p}\>.

{zn:n1}\{z_{n}:n\geq 1\} is an infinite subset of V1++VpV_{1}+\cdots+V_{p}. Therefore there exists j{1,,p}j\in\{1,\ldots,p\} such that VjV_{j} is infinite, thus {𝖾φn(θj):n0}\{\mathsf{e}_{\varphi^{n}(\theta_{j})}:n\geq 0\} is infinite, i.e. {φn(θj):n0}\{\varphi^{n}(\theta_{j}):n\geq 0\} is infinite and {φn(θj)}n1\{\varphi^{n}(\theta_{j})\}_{n\geq 1} is a one to one φΛ\varphi\restriction_{\Lambda}-orbit sequence. In particular {φn(θj)}n1\{\varphi^{n}(\theta_{j})\}_{n\geq 1} is a one to one φ\varphi-orbit sequence and for all n1n\geq 1, φn(θj)Λsupp(𝔴)\varphi^{n}(\theta_{j})\in\Lambda\subseteq{\rm supp}(\mathfrak{w}). The sequence {φn(θj)}n1\{\varphi^{n}(\theta_{j})\}_{n\geq 1} satisfies (3).
(3 \Rightarrow 1): Suppose {βn}n1\{\beta_{n}\}_{n\geq 1} is a one to one sequence in supp(𝔴){\rm supp}(\mathfrak{w}). For rFr\in F consider rr^{*} as 4.3 in the proof of Theorem 4.14. Also, consider η:nn+1\eta:\mathop{\mathbb{N}\to\mathbb{N}\>\>}\limits_{n\mapsto n+1} and surjection k:ΓF{0,1}k:\mathop{\bigoplus}\limits_{\Gamma}F\to\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\} with k((xα)αΓ)=(xβn)nk((x_{\alpha})_{\alpha\in\Gamma})=(x_{\beta_{n}}^{*})_{n\in\mathbb{N}} ((xα)αΓΓF(x_{\alpha})_{\alpha\in\Gamma}\in\mathop{\bigoplus}\limits_{\Gamma}F).
For each (xα)αΓΓF(x_{\alpha})_{\alpha\in\Gamma}\in\mathop{\bigoplus}\limits_{\Gamma}F, we have:

k(σφ,𝔴((xα)αΓ))\displaystyle k(\sigma_{\varphi,\mathfrak{w}}((x_{\alpha})_{\alpha\in\Gamma})) =\displaystyle= k((𝔴αxφ(α))αΓ)=((𝔴βnxφ(βn)))n\displaystyle k((\mathfrak{w}_{\alpha}x_{\varphi(\alpha)})_{\alpha\in\Gamma})=((\mathfrak{w}_{\beta_{n}}x_{\varphi(\beta_{n})})^{*})_{n\in\mathbb{N}}
=\displaystyle= (𝔴βnxβn+1)n=(βksupp(𝔴))(xβn+1)n\displaystyle(\mathfrak{w}_{\beta_{n}}^{*}x_{\beta_{n+1}}^{*})_{n\in\mathbb{N}}\mathop{=}\limits^{(\beta_{k}\in{\rm supp}(\mathfrak{w}))}(x_{\beta_{n+1}}^{*})_{n\in\mathbb{N}}
=\displaystyle= ση((xβn)n)=ση(k((xα)αΓ))\displaystyle\sigma_{\eta}((x_{\beta_{n}}^{*})_{n\in\mathbb{N}})=\sigma_{\eta}(k((x_{\alpha})_{\alpha\in\Gamma}))

Hence k(σφ,𝔴ΓF)=(ση{0,1})kk\circ(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})=(\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}})\circ k and the following diagram commutes:

ΓF\textstyle{\mathop{\bigoplus}\limits_{\Gamma}F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σφ,𝔴ΓF\scriptstyle{\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F}}k\scriptstyle{k}ΓF\textstyle{\mathop{\bigoplus}\limits_{\Gamma}F\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k}{0,1}\textstyle{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ση{0,1}\scriptstyle{\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}}}{0,1}\textstyle{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}}

By  [8, Lemma 3.2.22 (b)] we have:

(7.2) entcset(ση{0,1})entcset(σφ,𝔴ΓF).{\rm ent}_{\rm cset}(\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}})\leq{\rm ent}_{\rm cset}(\sigma_{\varphi,\mathfrak{w}}\restriction_{\mathop{\bigoplus}\limits_{\Gamma}F})\>.

Let

anm=(0,,0ntimes,1,,1mtimes,0,0,0,)(n,m1).a_{n}^{m}=(\underbrace{0,\cdots,0}_{n\>times},\underbrace{1,\cdots,1}_{m\>times},0,0,0,\cdots)\>\>\>\>\>(n,m\geq 1)\>.

Then {an1}n1,{an2}n1,{an3}n1,\{a_{n}^{1}\}_{n\geq 1},\{a_{n}^{2}\}_{n\geq 1},\{a_{n}^{3}\}_{n\geq 1},\ldots are pairwise disjoint one to one ση{0,1}\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}}-anti–orbit sequences, thus entcset(ση{0,1})=𝖺(ση{0,1})=+{\rm ent}_{\rm cset}(\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}})=\mathsf{a}(\sigma_{\eta}\restriction_{\mathop{\bigoplus}\limits_{\mathbb{N}}\{0,1\}})=+\infty which completes the proof by 7.2. ∎

Acknowledgement

The authors wish to express their thanks to the anonymous referee for his/her useful guides. Also with thanks to the research division of Farhangian University for the grant which supported this research.

References

  • [1] R. Adler, A. Konheim, M. McAndrew, Topological entropy, Trans. AMS 114 (1965) 309–319.
  • [2] R. L. Adler, B. Marcus, Topological entropy and equivalence of dynamical systems Mem. Amer. Math. Soc. 20 , no. 219, 1979.
  • [3] M. Akhavin, F. Ayatollah Zadeh Shirazi, D. Dikranjan, A. Giordano Bruno, A.,Hosseini, Algebraic entropy of shift endomorphisms on abelian groups, Quaestiones Mathematicae, 32/4 (2009), 529–550.
  • [4] F. Ayatollah Zadeh Shirazi, D. Dikranjan, Set theoretical entropy: A tool to compute topological entropy, Proceedings ICTA 2011, Islamabad, Pakistan, July 4-10, 2011 (Cambridge Scientific Publishers), 2012, 11–32.
  • [5] F. Ayatollah Zadeh Shirazi, F. Ebrahimifar, R. Rezavand, Weighted generalized shift operators on p\ell^{p} spaces, Rendiconti del Circolo Matematico di Palermo Series 2, 71/1 (2022), 1–12.
  • [6] F. Ayatollah Zadeh Shirazi, N. Karami Kabir, F. Heidari Ardi, A Note on shift theory, Mathematica Pannonica, Proceedings of ITES-2007, 19/2 (2008), 187–195.
  • [7] F. Ayatollah Zadeh Shirazi, S. Karimzadeh Dolatabad, S. Shamloo, Interaction between cellularity of alexandroff spaces and entropy of generalized shift maps, Commentationes Mathematicae Universitatis Carolinae, 27/3 (2016), 397–410.
  • [8] D. Dikranjan, A, Giordano Bruno, Topological entropy and algebraic entropy for group endomorphisms, Proceedings ICTA 2011, Islamabad, Pakistan, July 4-10, 2011 (Cambridge Scientific Publishers), 2012, 133–214.
  • [9] D. Dikranjan, A. Giordano Bruno, L. Salce, Adjoint algebraic entropy, J. Algebra, 324, no. 3 (2010), 442–463.
  • [10] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy for abelian groups, Trans. Amer. Math. Soc. 361 (2009) 3401–3434.
  • [11] D. Dikranjan, A. Giordano Bruno, S. Virili, Strings of group endomorphisms, J. Algebra Appl, 9/6 (2010), 933–958.
  • [12] A. Giordano Bruno, Algebraic entropy of shift endomorphisms on products, Comm. Algebra 38 (11) (2010) 4155–4174.
  • [13] A. N. Kolmogorov, New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces, Doklady Akad. Nauk. SSSR 119 (1958) 861–864.
  • [14] Z. Nili Ahmadabadi, F. Ayatollah Zadeh Shirazi, Set–theoretical entropies of generalized shifts, Boletin de Matematicas, 24/2 (2017), 169–183
  • [15] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Mathematics, 4 (1970), 337–352.
  • [16] D. Ornstein, Two bernoulli shifts with infinite entropy are isomorphic, Advances in Mathematics, 5 (1970-1971), 339–348.
  • [17] B. Seward, Bernoulli shifts with bases of equal entropy are isomorphic, Journal of Modern Dynamics, 18 (2022), 345–362.
  • [18] P. Shields, The Theory of Bernoulli Shifts Chicago Lectures in Mathematics, The University of Chicago Press, Chicago 1973.
  • [19] Y. G. Sinai, On the concept of entropy of a dynamical system, Doklady Akad. Nauk. SSSR 124 (1959) 786–781.
  • [20] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79. Springer–Verlag, 1982.
  • [21] M. D. Weiss, Algebraic and other entropies of group endomorphisms, Math. Systems Theory 8 (3) (1974/75) 243– 248.
¯\underline{\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>}

Fatemah Ayatollah Zadeh Shirazi, Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran ([email protected])
Arezoo Hosseini, Department of Mathematics Education, Farhangian University, P. O. Box 14665–889, Tehran, Iran ([email protected])
Lida Mousavi, Department of Mathematics, Yadegar-e-Imam Khomeini (RAH), Shahre Rey Branch, Islamic Azad University, Tehran, Iran ([email protected])
Reza Rezavand, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran ([email protected])