This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Serre curves relative to obstructions modulo 2

Jacob Mayle Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109 [email protected]  and  Rakvi Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104 [email protected]
Abstract.

We consider elliptic curves E/E/\mathbb{Q} for which the image of the adelic Galois representation ρE\rho_{E} is as large as possible given a constraint on the image modulo 2. For such curves, we give a characterization in terms of their \ell-adic images, compute all examples of conductor at most 500,000, precisely describe the image of ρE\rho_{E}, and offer an application to the cyclicity problem. In this way, we generalize some foundational results on Serre curves.

2020 Mathematics Subject Classification:
Primary 11G05; Secondary 11F80.

1. Introduction

Let E/KE/K be an elliptic curve defined over a number field KK. Fix an algebraic closure K¯\overline{K} of KK. Consider the adelic Galois representation of EE, which is a continuous homomorphism of profinite groups,

ρE:Gal(K¯/K)Aut(T(E))\rho_{E}\colon\operatorname{Gal}(\overline{K}/K)\longrightarrow\operatorname{Aut}(T(E))

that encodes the natural action of Gal(K¯/K)\operatorname{Gal}(\overline{K}/K) on the adelic Tate module T(E)limE[n]T(E)\coloneqq\varprojlim E[n] of EE. We can identify Aut(T(E))\operatorname{Aut}(T(E)) with GL2(^)\operatorname{GL}_{2}({\widehat{{\mathbb{Z}}}}) by choosing a ^{\widehat{{\mathbb{Z}}}}-basis for T(E)T(E). We will denote the image of ρE\rho_{E} in GL2(^)\operatorname{GL}_{2}({\widehat{{\mathbb{Z}}}}) by GEG_{E}, which we understand to be only defined up to conjugation in GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}). In a celebrated 1972 article [33], Serre proved that if EE does not have complex multiplication, then GEG_{E} is an open subgroup of GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}), and hence is of finite index. In this sense, GEG_{E} is a “large” subgroup of GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}).

In fact, Greicius [14] constructed a cubic number field KK and an elliptic curve E/KE/K such that ρE\rho_{E} is surjective. On the other hand, if EE is defined over {\mathbb{Q}}, then Serre noted [33, Proposition 22] that by the Weil pairing and Kronecker–Weber theorem,

(1.1) [GL2(^):GE]2.[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}]\geq 2.

Throughout the rest of this paper, we restrict our attention to elliptic curves defined over {\mathbb{Q}}. A Serre curve is an elliptic curve E/E/{\mathbb{Q}} for which GEG_{E} is maximal, in the sense that equality holds in (1.1). Such curves are abundant. Indeed, Jones [16] proved that 100% of elliptic curves over {\mathbb{Q}} are Serre curves in a suitable sense of density. Serre curves have many applications (e.g., [1, 2, 3, 15, 17, 23, 37, 41]) largely because the adelic image GEG_{E} of such a curve is readily known (it depends only on the discriminant ΔE\Delta_{E} of EE).

Despite their abundance, until recently, only a few examples of Serre curves appeared in the literature. In 2015, Daniels [10] exhibited an infinite family, proving (for instance) that if \ell is a prime number such that {2,7}\ell\not\in\{2,7\}, then the elliptic curve given by

y2+xy=x3+y^{2}+xy=x^{3}+\ell

is a Serre curve. In his Ph.D. thesis [25], the first author gave an algorithm that determines whether a given elliptic curve is a Serre curve. The algorithm is implemented in Sage. Running it on Cremona’s database [9] (accessed via the LMFDB [39]) reveals that 1,477,879 of the 3,064,705 (\approx48.223%) curves of conductor at most 500,000 are Serre curves.

There is considerable interest in understanding the adelic image GEG_{E} of an elliptic curve EE. Mazur [26] articulated the overarching problem as follows: Given a subgroup GGL2(^)G\subseteq\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}), classify all elliptic curves E/E/{\mathbb{Q}} such that the inclusion GEGG_{E}\subseteq G holds111In fact, Mazur posed this question for elliptic curves over number fields.. This problem is known as “Mazur’s Program B” and Zywina [43] recently made a breakthrough on a computational variant of it. He gave an algorithm that, given a non-CM elliptic curve E/E/{\mathbb{Q}} computes the adelic image GEG_{E}. Zywina’s recent progress follows an earlier theoretical algorithm of Brau [5]. It also follows a vast body of work that aims to understand the images of \ell-adic and residual representations, which we now briefly discuss.

For a prime number \ell and an integer n2n\geq 2, consider the \ell-adic and mod nn Galois representations of EE,

ρE,:Gal(¯/)GL2()andρE,n:Gal(¯/)GL2(/n).\displaystyle\rho_{E,\ell^{\infty}}\colon\operatorname{Gal}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\longrightarrow\operatorname{GL}_{2}({\mathbb{Z}}_{\ell})\quad\text{and}\quad\rho_{E,n}\colon\operatorname{Gal}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\longrightarrow\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}).

These representations encode the natural action of Gal(¯/)\operatorname{Gal}(\overline{{\mathbb{Q}}}/{{\mathbb{Q}}}) on the \ell-adic Tate module T(E)T_{\ell}(E) and nn-torsion subgroup E[n]E[n] of EE, respectively. Alternatively, they can be viewed as the composition of the adelic Galois representation ρE\rho_{E} with the natural projections GL2(^)GL2()\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) and GL2(^)GL2(/n)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}), respectively. We write GE()G_{E}(\ell^{\infty}) and GE(n)G_{E}(n) for the images of ρE,\rho_{E,\ell^{\infty}} and ρE,n\rho_{E,n}, respectively. A second perspective on Serre’s open image theorem [33] is that if EE does not have complex multiplication, then ρE,\rho_{E,\ell^{\infty}} (and hence ρE,\rho_{E,\ell}) is surjective for all but finitely many prime numbers \ell.

Assume that EE does not have complex multiplication. In 2015, Zywina [44] gave an algorithm that computes a finite set of primes outside of which ρE,\rho_{E,\ell} is surjective. In the same year, Zywina [42] and Sutherland [38] gave algorithms that compute the image of ρE,\rho_{E,\ell} for any prime number \ell. Also that year, Rouse–Zureick-Brown [32] gave an algorithm that computes the image of ρE,2\rho_{E,2^{\infty}}. In 2021, Rouse–Sutherland–Zureick-Brown [30] gave an algorithm that computes the image of ρE,\rho_{E,\ell^{\infty}} for a given prime number \ell. There is also a growing body of research on entanglements [7, 12, 11, 13, 19, 27] that aims to understand images of mod nn representations for nn a product of at least two distinct primes.

In this paper, we study elliptic curves E/E/{\mathbb{Q}} for which the adelic image GEG_{E} is maximal relative to a prescribed obstruction. Roughly speaking, for an integer n2n\geq 2 and a subgroup GGL2(/n)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}), an elliptic curve E/E/{\mathbb{Q}} is a GG-Serre curve if GEG_{E} is “as large as possible” given the constraint that GE(n)GG_{E}(n)\subseteq G. This notion of a relative Serre curve was originally set forth by Jones in [16]. We give a proper definition and discuss the notion further in §2.

More specifically, in this paper we consider GG-Serre curves for proper subgroups GGL2(/2)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/2{\mathbb{Z}}). The group GL2(/2)\operatorname{GL}_{2}({\mathbb{Z}}/2{\mathbb{Z}}) is isomorphic to the symmetric group on 3 letters. Thus it has 3 proper subgroups up to conjugacy. These subgroups are of index 6, 3, and 2, and we denote them by 2Cs{(1001)}{\texttt{2Cs}}\coloneqq\left\{\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\right\}, 2B(1101){\texttt{2B}}\coloneqq\left\langle\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\right\rangle, and 2Cn(0111){\texttt{2Cn}}\coloneqq\left\langle\begin{pmatrix}0&1\\ 1&1\end{pmatrix}\right\rangle, respectively.

Our main theorem classifies GG-Serre curves for subgroups GGL2(/2)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/2{\mathbb{Z}}). It relies crucially on the work of Rouse–Zureick-Brown on 2-adic images. This work was later subsumed by the work of Rouse–Sutherland–Zureick-Brown [30], which considers \ell-adic images more generally. Thus, in what follows, we write A.B.C.D for the subgroup of GL2(2)\operatorname{GL}_{2}({\mathbb{Z}}_{2}) with the given RSZB label. Define the sets

𝒮2Cs\displaystyle\mathcal{S}_{{{\texttt{2Cs}}}} {2.6.0.1,8.12.0.2,4.12.0.2,8.12.0.1,4.12.0.1,8.12.0.3,\displaystyle\coloneqq\{{\texttt{2.6.0.1}},{\texttt{8.12.0.2}},{\texttt{4.12.0.2}},{\texttt{8.12.0.1}},{\texttt{4.12.0.1}},{\texttt{8.12.0.3}},
8.24.0.5,8.24.0.7,8.24.0.2,8.24.0.1,8.12.0.4,8.24.0.6,\displaystyle\qquad\;{\texttt{8.24.0.5}},{\texttt{8.24.0.7}},{\texttt{8.24.0.2}},{\texttt{8.24.0.1}},{\texttt{8.12.0.4}},{\texttt{8.24.0.6}},
8.24.0.8,8.24.0.3,8.24.0.4},\displaystyle\qquad\;{\texttt{8.24.0.8}},{\texttt{8.24.0.3}},{\texttt{8.24.0.4}}\},
𝒮2B\displaystyle\mathcal{S}_{{{\texttt{2B}}}} {2.3.0.1,8.6.0.2,8.6.0.4,8.6.0.1,8.6.0.6,8.6.0.3,8.6.0.5},\displaystyle\coloneqq\{{\texttt{2.3.0.1}},{\texttt{8.6.0.2}},{\texttt{8.6.0.4}},{\texttt{8.6.0.1}},{\texttt{8.6.0.6}},{\texttt{8.6.0.3}},{\texttt{8.6.0.5}}\},
𝒮2Cn\displaystyle\mathcal{S}_{{{\texttt{2Cn}}}} {2.2.0.1,4.4.0.2,8.4.0.1}.\displaystyle\coloneqq\{{\texttt{2.2.0.1}},{\texttt{4.4.0.2}},{\texttt{8.4.0.1}}\}.

With this notation in place, we now state our classification result.

Theorem 1.1.

Let G{2Cs,2B,2Cn}G\in\{{{\texttt{2Cs}}},{{\texttt{2B}}},{{\texttt{2Cn}}}\} and E/E/{\mathbb{Q}} be an elliptic curve. We have that EE is a GG-Serre curve if and only if GE(2)𝒮GG_{E}(2^{\infty})\in\mathcal{S}_{G} and ρE,\rho_{E,\ell^{\infty}} is surjective for each odd prime \ell.

We prove Theorem 1.1 in Section 2.3. Together with the work of Rouse–Sutherland–Zureick-Brown [29, 30], it yields an algorithm for determining whether a given elliptic curve is a GG-Serre curve for a proper subgroup GGL2(/2).G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/2{\mathbb{Z}}). 222Note that to check the surjectivity of ρE,\rho_{E,\ell^{\infty}}, it suffices to check the surjectivity of ρE,k\rho_{E,\ell^{k}} where k=3k=3 if =2\ell=2, k=2k=2 if =3\ell=3, and k=1k=1 if 5\ell\geq 5 (see Lemma 2.11). We implemented this algorithm in Magma [4]. The code can be found in this paper’s GitHub repository [24]:

https://github.com/maylejacobj/RelativeSerreCurves

There are 3,064,705 elliptic curves over {\mathbb{Q}} of conductor at most 500,000 [9]. We find that of these, 83,637 (\approx2.729%) are 2Cs-Serre curves, 827,120 (\approx26.989%) are 2B-Serre curves, and 4,122 (\approx0.134%) are 2Cn-Serre curves. In total, 2,392,758 (\approx78.075%) curves of conductor at most 500,000 are either Serre curves or GG-Serre curves for a proper subgroup GGL2(/2)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/2{\mathbb{Z}}). All of our computations were run on a machine with a 2.9 GHz 6-Core Intel Core i9 processor and 32 GB of memory.

In Section 3, we describe the adelic images of the considered GG-Serre curves. In Section 4, we give an application of the above work to the cyclicity problem and briefly discuss other applications. In Section 5, we provide three detailed examples where we compute generators for the adelic Galois image using results of Section 3. Finally, in the appendix we give a table of minimal conductor GG-Serre curves for each 2-adic image appearing in Theorem 1.1, including each curve’s image conductor and cyclicity correction factor.

Acknowledgments

We thank Tian Wang and Nathan Jones for reading an earlier version of this paper and providing their useful comments. We would also like to thank the anonymous referees for their helpful comments and suggestions.

2. Characterization of relative Serre curves

In this section, we give a characterization of Serre curves relative to obstructions modulo 2. We begin by defining some notation and terminology, and giving some preliminaries.

Throughout this paper, mm and nn denote positive integers and \ell denotes a prime number. We write {\mathbb{Z}}_{\ell} to denote the ring of \ell-adic integers and ^\widehat{{\mathbb{Z}}} for the ring of profinite integers. For a subgroup GGL2(^)G\subseteq\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}), we write G()G(\ell^{\infty}) and G(n)G(n) for the images of GG under the natural projections GL2(^)GL2()\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) and GL2(^)GL2(/n)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}), respectively. In the same way, if GGL2(/n)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}) is a subgroup and mm divides nn, then G(m)G(m) denotes the image of GG under the natural projection GL2(/n)GL2(/m)\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}})\to\operatorname{GL}_{2}({\mathbb{Z}}/m{\mathbb{Z}}). For a subgroup GGL2(/n)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}), we write G^\widehat{G} for the preimage of GG under the natural projection GL2(^)GL2(/n)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}). Similarly if GGL2()G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}), then G^\widehat{G} denotes the preimage of GG under GL2(^)GL2()\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}). For any profinite group GG, we write [G,G][G,G] to denote the closure of the commutator subgroup of GG.

Let E/E/{\mathbb{Q}} be an elliptic curve. Let n2n\geq 2 be an integer and GGL2(/n)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}) be a subgroup. We now define the notion of a GG-Serre curve. Our definition is readily seen to be equivalent to the definition given by Jones [18], though our choice of notation is a bit better suited for our purposes. The definition (here and in [18]) is in terms of commutators, which offers a tractable condition to check in practice.

Definition 2.1.

We say that an elliptic curve E/E/{\mathbb{Q}} is a GG-Serre curve if GE(n)GG_{E}(n)\subseteq G and [GE,GE]=[G^,G^][G_{E},G_{E}]=[\widehat{G},\widehat{G}].

Remark 2.2.

It is possible that EE is a GG-Serre curve yet GE(n)G_{E}(n) is a proper subgroup of GG. For instance, consider the elliptic curve EE with LMFDB label 200.a1 given by the Weierstrass equation

y2=x3+125x1250.y^{2}=x^{3}+125x-1250.

From the data provided in the “Galois representations” section of the curve’s LMFDB page, we see that EE is a Serre curve. The property of an elliptic curve being a Serre curve is equivalent to it being a GL2(/n)\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}})-Serre curve for any nn. In particular, EE is a GL2(/8)\operatorname{GL}_{2}({\mathbb{Z}}/8{\mathbb{Z}})-Serre curve. However, the mod 88 Galois representation of EE is nonsurjective, i.e., GE(8)G_{E}(8) is a proper subgroup of GL2(/8)\operatorname{GL}_{2}({\mathbb{Z}}/8{\mathbb{Z}}). While the phenomenon of GE(n)GG_{E}(n)\subsetneq G is possible in general, we will see in Proposition 2.14 that if EE is a GG-Serre curve for some G{2Cs,2B,2Cn}G\in\{{{\texttt{2Cs}}},{{\texttt{2B}}},{{\texttt{2Cn}}}\}, then GE(2)=GG_{E}(2)=G.

Next, we state a lemma that provides two useful properties of GEG_{E} that follow from the Weil pairing and Kronecker–Weber theorem. In order to state it, we first recall some terminology. Let HGL2(^)H\subseteq\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}) be a subgroup. We say that HH is determinant-surjective if det(H)=^×\det(H)=\widehat{{\mathbb{Z}}}^{\times}. We say that HH is commutator-thick if [H,H]=HSL2(^)[H,H]=H\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}).

Lemma 2.3.

If E/E/{\mathbb{Q}} is an elliptic curve, then GEG_{E} is determinant-surjective and commutator-thick.

Proof.

See, for instance, [18, Remark 2.3] or [43, §1.2]. ∎

The next lemma appears in [18, Remark 2.5] and is less well-known. It offers a second perspective on GG-Serre curves in terms of the index of GEG_{E}. We relay its proof below.

Lemma 2.4.

If EE is a GG-Serre curve, then the index [G^:GE][\widehat{G}:G_{E}] is minimal among the indices of determinant-surjective and commutator-thick subgroups of G^\widehat{G}.

Proof.

Let HH be a determinant-surjective and commutator-thick subgroup of G^\widehat{G}. To prove the lemma, we need to show that [G^:GE][G^:H].[\widehat{G}:G_{E}]\leq[\widehat{G}:H]. Since HH is determinant-surjective we have the exact sequence for HH,

1HSL2(^)Hdet^×1.1\xrightarrow{\phantom{\det}}H\cap\operatorname{SL}_{2}({\widehat{{\mathbb{Z}}}})\xrightarrow{\phantom{\det}}H\xrightarrow{\det}\widehat{{\mathbb{Z}}}^{\times}\xrightarrow{\phantom{\det}}1.

As HG^H\subseteq\widehat{G}, we have that [H,H][G^,G^][H,H]\subseteq[\widehat{G},\widehat{G}]. Consequently,

[G^:H]=[G^SL2(^):HSL2(^)]=[G^SL2(^):[H,H]][G^SL2(^):[G^,G^]].[\widehat{G}:H]=[\widehat{G}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):H\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}})]=[\widehat{G}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):[H,H]]\geq[\widehat{G}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):[\widehat{G},\widehat{G}]].

As GEG_{E} is determinant-surjective, commutator-thick, and satisfies [GE,GE]=[G^,G^][G_{E},G_{E}]=[\widehat{G},\widehat{G}],

[G^:GE]\displaystyle[\widehat{G}:G_{E}] =[G^SL2(^):GESL2(^)]\displaystyle=[\widehat{G}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}})]
=[G^SL2(^):[GE,GE]]\displaystyle=[\widehat{G}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):[G_{E},G_{E}]]
=[G^SL2(^):[G^,G^]].\displaystyle=[\widehat{G}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):[\widehat{G},\widehat{G}]].

Hence [G^:GE][G^:H][\widehat{G}:G_{E}]\leq[\widehat{G}:H], as needed. ∎

The perspective on GG-Serre curves conveyed by Lemma 2.4 more closely reflects the standard definition of a Serre curve in terms of the index of GEG_{E}. This point-of-view will be valuable when describing adelic images in Section 3.

2.1. Reduction to a finite modulus

Let HH be a subgroup of an open subgroup GGL2(^)G\subseteq\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}). In view of Definition 2.1, we turn to the problem of checking whether [H,H]=[G,G][H,H]=[G,G] holds. Let mm be the level (sometimes called the conductor) of GG, i.e., the least positive integer such that G=G(m)^G=\widehat{G(m)}. As GG is open, such an mm must exist. The problem of checking whether [H,H]=[G,G][H,H]=[G,G] can be simplified by the following theorem. When we state the result, we make an assumption on mm that by [18, Remark 2.8] allows us to use the value of m0m_{0} as in the statement of the theorem rather than the larger value appearing in [18, Equation 10].

Theorem 2.5.

Let HGH\subseteq G be an open subgroup. There exists a constant m0m_{0}, depending on the group GG, so that [H,H]=[G,G][H,H]=[G,G] if and only if

  1. (1)

    For each prime number m0\ell\nmid m_{0}, one has that SL2(/)H()\operatorname{SL}_{2}({\mathbb{Z}}/\ell{\mathbb{Z}})\subseteq H(\ell) and

  2. (2)

    One has that [H(m0),H(m0)]=[G(m0),G(m0)][H(m_{0}),H(m_{0})]=[G(m_{0}),G(m_{0})].

If the level mm of GG is such that each prime \ell dividing mm satisfies ±1(mod5)\ell\not\equiv\pm 1\pmod{5}, then m0m_{0} may be taken to be the constant

(2.1) m0lcm(2333,m2ord(m)+1)m_{0}\coloneqq\operatorname{lcm}\left(2^{3}\cdot 3^{3},\prod_{\ell\mid m}\ell^{2\operatorname{ord}_{\ell}(m)+1}\right)

where ord(m)\operatorname{ord}_{\ell}(m) denotes the exact power of \ell dividing mm.

Proof.

See [18, Theorem 2.7 and Remark 2.8]. ∎

The above theorem is the starting point for our work. We are interested in the case of m=2m=2, where (2.1) gives a value of m0=216m_{0}=216 for the constant appearing in Theorem 2.5. We can reduce this constant as follows.

Lemma 2.6.

In Theorem 2.5, we can take m0m_{0} to be given by

m0{72G=2Cs^36G{2B^,2Cn^}.m_{0}\coloneqq\begin{cases}72&G=\widehat{{\texttt{2Cs}}}\\ 36&G\in\left\{\widehat{{\texttt{2B}}},\widehat{{\texttt{2Cn}}}\right\}.\\ \end{cases}
Proof.

For G{2Cs^,2B^,2Cn^}G\in\{\widehat{{\texttt{2Cs}}},\widehat{{\texttt{2B}}},\widehat{{\texttt{2Cn}}}\}, let m1m_{1} be the least positive integer dividing 216216 such that for each maximal subgroup K[G(216),G(216)]K\subsetneq[G(216),G(216)], we have K(m1)[G(m1),G(m1)]K(m_{1})\subsetneq[G(m_{1}),G(m_{1})]. Our LevelLower1 script (available in the paper’s GitHub repository [24]) computes m1m_{1} directly by iterating over all maximal subgroups K[G(216),G(216)]K\subsetneq[G(216),G(216)]. Running the script, we find that

m1={72G{2Cs^,2B^}36G=2Cn^.m_{1}=\begin{cases}72&G\in\left\{\widehat{{\texttt{2Cs}}},\widehat{{\texttt{2B}}}\right\}\\ 36&G=\widehat{{\texttt{2Cn}}}.\end{cases}

We can take m0m_{0} to be m1m_{1} in Theorem 2.5. This follows from the fact that m1m_{1} is a multiple of 66 (which ensures that Theorem 2.5(1) is satisfied) and the definition of m1m_{1} (which ensures that Theorem 2.5(2) is satisfied). In the case that G=2B^G=\widehat{{\texttt{2B}}}, we can lower m0m_{0} further. Indeed, let m2m_{2} be the least positive integer dividing 72 such that among all subgroups KK of G=2B^G=\widehat{{\texttt{2B}}},

[K(m2),K(m2)]=[G(m2),G(m2)][K(72),K(72)]=[G(72),G(72)].[K(m_{2}),K(m_{2})]=[G(m_{2}),G(m_{2})]\quad\implies\quad[K(72),K(72)]=[G(72),G(72)].

Our LevelLower2 script [24] iterates over subgroups of G(72)G(72) to compute that m2=36m_{2}=36 when G=2B^G=\widehat{{\texttt{2B}}}. Similarly as above, we can take m0m_{0} to be m2m_{2} in Theorem 2.5. ∎

We break the proof of Lemma 2.6 down into two stages. In practice, this is worthwhile because LevelLower1 is much more time efficient than LevelLower2.

2.2. The group-theoretic characterization

In this subsection, we consider possible group-theoretic entanglements to give a criterion on whether [G,G]=[H,H][G,G]=[H,H] holds in the cases that we are considering. To this end, we begin by recalling the notion of a fiber product. Let G1G_{1}, G2G_{2}, and QQ be groups. Let ψ1:G1Q\psi_{1}\colon G_{1}\to Q and ψ2:G2Q\psi_{2}\colon G_{2}\to Q be surjective group homomorphisms. The fiber product of G1G_{1} and G2G_{2} by ψ(ψ1,ψ2)\psi\coloneqq(\psi_{1},\psi_{2}) is the subgroup

G1×ψG2{(g1,g2)G1×G2:ψ1(g1)=ψ2(g2)}G1×G2.G_{1}\times_{\psi}G_{2}\coloneqq\left\{(g_{1},g_{2})\in G_{1}\times G_{2}:\psi_{1}(g_{1})=\psi_{2}(g_{2})\right\}\subseteq G_{1}\times G_{2}.

The group G1×ψG2G_{1}\times_{\psi}G_{2} has the property that it surjects onto both G1G_{1} and G2G_{2} via the usual projection maps. Goursat’s lemma gives that the only subgroups of G1×G2G_{1}\times G_{2} that surject onto both factors are, in fact, fiber products (see, e.g., [21, p. 75] or [5, §1.2.2]).

We shall use the following lemma concerning commutators of fiber products.

Lemma 2.7.

Let G1G_{1}, G2G_{2}, QQ, and ψ\psi be as above. If QQ is cyclic, then

[G1×ψG2,G1×ψG2]=[G1,G1]×[G2,G2].[G_{1}\times_{\psi}G_{2},G_{1}\times_{\psi}G_{2}]=[G_{1},G_{1}]\times[G_{2},G_{2}].
Proof.

See [22, p. 174] and [7, Lemma 2.3]. ∎

To apply Lemma 2.7 in our context, we will need to understand the possible groups that can appear as G1,G2,G_{1},G_{2}, and QQ. Our next two lemmas help clarify this. We first set some notation. For a positive integer nn and a subgroup GGL2(/n)G\subseteq\operatorname{GL}_{2}({\mathbb{Z}}/n{\mathbb{Z}}), consider the set

(G)\displaystyle\mathcal{M}(G) {HG:det(H)=det(G) and [H,H]=[G,G]}.\displaystyle\coloneqq\{H\subseteq G:\det(H)=\det(G)\text{ and }[H,H]=[G,G]\}.

Now define the following subgroups of GL2(/4)\operatorname{GL}_{2}({\mathbb{Z}}/4{\mathbb{Z}}),

K1\displaystyle K_{1} (3001),(1110),\displaystyle\coloneqq\left\langle\begin{pmatrix}3&0\\ 0&1\end{pmatrix},\begin{pmatrix}1&1\\ 1&0\end{pmatrix}\right\rangle,
K2\displaystyle K_{2} (3001),(3023),(1201),\displaystyle\coloneqq\left\langle\begin{pmatrix}3&0\\ 0&1\end{pmatrix},\begin{pmatrix}3&0\\ 2&3\end{pmatrix},\begin{pmatrix}1&2\\ 0&1\end{pmatrix}\right\rangle,
K3\displaystyle K_{3} (3001),(3023),(1203).\displaystyle\coloneqq\left\langle\begin{pmatrix}3&0\\ 0&1\end{pmatrix},\begin{pmatrix}3&0\\ 2&3\end{pmatrix},\begin{pmatrix}1&2\\ 0&3\end{pmatrix}\right\rangle.

Observe that K1(2)=2CnK_{1}(2)={\texttt{2Cn}} and K2(2)=K3(2)=2CsK_{2}(2)=K_{3}(2)={\texttt{2Cs}}.

The next lemma specifies the sets (G)\mathcal{M}(G) for the groups GG that will be of relevance.

Lemma 2.8.

Up to conjugacy, we have that

  1. (1)

    (GL2(/9))={GL2(/9)}\mathcal{M}(\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}))=\left\{\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})\right\}

  2. (2)

    (2Cn^(4))={2Cn^(4),K1}\mathcal{M}(\widehat{{\texttt{2Cn}}}(4))=\{\widehat{{\texttt{2Cn}}}(4),K_{1}\}

  3. (3)

    (2B^(4))={2B^(4))}\mathcal{M}(\widehat{{\texttt{2B}}}(4))=\{\widehat{{\texttt{2B}}}(4))\}

  4. (4)

    (2Cs^(8))={H2Cs^(8):H(4){2Cs^(4),K2,K3} and det(H)=(/8)×}.\mathcal{M}(\widehat{{\texttt{2Cs}}}(8))=\{H\subseteq\widehat{{\texttt{2Cs}}}(8):H(4)\in\{\widehat{{\texttt{2Cs}}}(4),K_{2},K_{3}\}\text{ and }\det(H)=({\mathbb{Z}}/8{\mathbb{Z}})^{\times}\}.

Proof.

We have that (1) holds since if H(GL2(/9))H\in\mathcal{M}(\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})), then

SL2(/9)=[GL2(/9),GL2(/9)]=[H,H]Handdet(H)=(/9)×.\operatorname{SL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})=[\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}),\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})]=[H,H]\subseteq H\quad\text{and}\quad\det(H)=({\mathbb{Z}}/9{\mathbb{Z}})^{\times}.

Thus by considering the determinant map Hdet(/9)×H\xrightarrow[]{\det}({\mathbb{Z}}/9{\mathbb{Z}})^{\times}, we see that H=GL2(/9)H=\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}). For parts (2), (3), and (4), we compute the set (G)\mathcal{M}(G) using our FullCommDet script [24]. ∎

In the previous lemma, our need to consider (2Cs^(8))\mathcal{M}(\widehat{{\texttt{2Cs}}}(8)) rather than just (2Cs^(4))\mathcal{M}(\widehat{{\texttt{2Cs}}}(4)) can be traced to the fact that [2Cs^(4),2Cs^(4)][\widehat{{\texttt{2Cs}}}(4),\widehat{{\texttt{2Cs}}}(4)] is trivial. The set (2Cs^(8))\mathcal{M}(\widehat{{\texttt{2Cs}}}(8)) is rather large compared to the other sets in Lemma 2.8; it contains 15 subgroups up to conjugacy.

Our next lemma describes the common quotients QQ that can appear for us in Lemma 2.7. For a group GG, write Quo(G)\operatorname{{Quo}}(G) to denote the set of all isomorphism classes of quotients G/NG/N for a normal subgroup NGN\trianglelefteq G. Note that this definition differs somewhat from elsewhere in the literature. We write 0 for the trivial group and /n{\mathbb{Z}}/n{\mathbb{Z}} for the cyclic group of order nn.

Lemma 2.9.

We have that

Quo\displaystyle\operatorname{{Quo}} (GL2(/9))Quo(K)\displaystyle(\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}))\cap\operatorname{{Quo}}(K)
={{0,/2,/3,/6}K(2Cn^(4)){0,/2}K(2B^(4))(2Cs^(8)).\displaystyle=\begin{cases}\{0,{\mathbb{Z}}/2{\mathbb{Z}},{\mathbb{Z}}/3{\mathbb{Z}},{\mathbb{Z}}/6{\mathbb{Z}}\}&K\in\mathcal{M}(\widehat{{\texttt{2Cn}}}(4))\\ \{0,{\mathbb{Z}}/2{\mathbb{Z}}\}&K\in\mathcal{M}(\widehat{{\texttt{2B}}}(4))\cup\mathcal{M}(\widehat{{\texttt{2Cs}}}(8)).\end{cases}
Proof.

We compute the intersections directly using our QuoIntersection script [24]. ∎

We now state and prove our main group-theoretic proposition.

Proposition 2.10.

Let G{2Cs^,2B^,2Cn^}G\in\{\widehat{{\texttt{2Cs}}},\widehat{{\texttt{2B}}},\widehat{{\texttt{2Cn}}}\} and let m0m_{0} be as in Lemma 2.6. For a subgroup HGH\subseteq G with det(H(m0))=(/m0)×\det(H(m_{0}))=({\mathbb{Z}}/m_{0}{\mathbb{Z}})^{\times}, we have that

[H(m0),H(m0)]=[G(m0),G(m0)]{H(9)=GL2(/9) and H(2k)(G(2k))[H(m_{0}),H(m_{0})]=[G(m_{0}),G(m_{0})]\;\iff\;\begin{cases}H(9)=\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})\;\text{ and }\;\\ H(2^{k})\in\mathcal{M}(G(2^{k}))\end{cases}

where k{2,3}k\in\left\{2,3\right\} is such that m0=2k9m_{0}=2^{k}\cdot 9.

Proof.

For the forward direction, note that by reducing modulo 9,

[H(9),H(9)]=[G(9),G(9)]anddet(H(9))=(/9)×.[H(9),H(9)]=[G(9),G(9)]\quad\text{and}\quad\det(H(9))=({\mathbb{Z}}/9{\mathbb{Z}})^{\times}.

Further, we have that G(9)=GL2(/9)G(9)=\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}). Thus H(9)(GL2(/9))H(9)\in\mathcal{M}(\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})), so by Lemma 2.8, H(9)=GL2(/9)H(9)=\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}). Similarly, upon reducing modulo 2k2^{k}, we find that H(2k)(G(2k))H(2^{k})\in\mathcal{M}(G(2^{k})).

Now consider the reverse direction. By Goursat’s lemma, H(m0)H(m_{0}) can be written as a fiber product

H(m0)GL2(/9)×ψH(2k)H(m_{0})\cong\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})\times_{\psi}H(2^{k})

with ψ=(ψ1,ψ2)\psi=(\psi_{1},\psi_{2}) where ψ1:GL2(/9)Q\psi_{1}\colon\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}})\to Q and ψ2:H(2k)Q\psi_{2}\colon H(2^{k})\to Q are surjective homomorphisms onto a group QQ. We have that QQuo(GL2(/9))Quo(H(2k))Q\in\operatorname{{Quo}}(\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}))\cap\operatorname{{Quo}}(H(2^{k})) is cyclic by Lemma 2.9. By Lemma 2.7, we conclude that [H(m0),H(m0)]=[G(m0),G(m0)][H(m_{0}),H(m_{0})]=[G(m_{0}),G(m_{0})]. ∎

2.3. Relative Serre curves

Proposition 2.10 shows (somewhat surprisingly) that only the \ell-adic Galois images of EE need to be considered when checking whether an elliptic curve E/E/{\mathbb{Q}} is a Serre curve relative to an obstruction modulo 2. This is in contrast to the situation with usual Serre curves, where it is observed in [7] that whether EE is a Serre curve also depends on the mod 66 Galois image of EE.

In this subsection, we prove Theorem 1.1, our characterization of Serre curves relative to obstructions modulo 2. We first give two lemmas that are used in the proof. The first is a lifting lemma for subgroups of GL2()\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) with surjective determinant.

Lemma 2.11.

Let \ell be a prime number and let HGL2()H\subseteq\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) be a closed subgroup such that det(H)=×\det(H)={\mathbb{Z}}_{\ell}^{\times}. Then H=GL2()H=\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) if and only if H(k)=GL2(/k)H(\ell^{k})=\operatorname{GL}_{2}({\mathbb{Z}}/\ell^{k}{\mathbb{Z}}) where k=3k=3 if =2\ell=2, k=2k=2 if =3\ell=3, and k=1k=1 if 5\ell\geq 5.

Proof.

This follows from [34, Lemma 3, p. IV-23] and [34, Exercise 1b and 1c, p. IV-27]. See also [14, Corollary 2.13]. ∎

Recall that the sets 𝒮2Cs,𝒮2B,\mathcal{S}_{{{\texttt{2Cs}}}},\mathcal{S}_{{{\texttt{2B}}}}, and 𝒮2Cn\mathcal{S}_{{{\texttt{2Cn}}}} of subgroups of GL2(2)\operatorname{GL}_{2}({\mathbb{Z}}_{2}) were defined in §1. Our next lemma elucidates the connection between these sets and the problem at hand.

Lemma 2.12.

For G{2Cs,2B,2Cn}G\in\{{{\texttt{2Cs}}},{{\texttt{2B}}},{{\texttt{2Cn}}}\}, we have that

𝒮G={HGL2(2):H(2k)(G^(2k)) and E/ with GE(2)=H}\mathcal{S}_{G}=\left\{H\subseteq\operatorname{GL}_{2}({\mathbb{Z}}_{2}):H(2^{k})\in\mathcal{M}(\widehat{G}(2^{k}))\,\text{ and }\,\exists E/{\mathbb{Q}}\,\text{ with }\,G_{E}(2^{\infty})=H\right\}

where kk is as in the statement of Proposition 2.10.

Proof.

Running our ConstructSG script [24] confirms that the claimed equality holds by iterating over all 1208 possible 2-adic images appearing in the database of Rouse–Zureick-Brown [31]. ∎

We now prove our main classification result.

Proof of Theorem 1.1.

Let G{2Cs,2B,2Cn}G\in\left\{{\texttt{2Cs}},{\texttt{2B}},{\texttt{2Cn}}\right\}. By Lemma 2.12, if H𝒮GH\in\mathcal{S}_{G}, then in particular, H(2)GH(2)\subseteq G. Thus we assume that EE is such that GE(2)GG_{E}(2)\subseteq G. Hence EE is a GG-Serre curve if and only if [GE,GE]=[G^,G^][G_{E},G_{E}]=[\widehat{G},\widehat{G}]. By Theorem 2.5 and Lemma 2.6, this commutator condition holds if and only if

  1. (1)

    For each prime number 5\ell\geq 5, one has that SL2(/)GE()\operatorname{SL}_{2}({\mathbb{Z}}/\ell{\mathbb{Z}})\subseteq G_{E}(\ell) and

  2. (2)

    One has that [GE(m0),GE(m0)]=[G(m0),G(m0)][G_{E}(m_{0}),G_{E}(m_{0})]=[G(m_{0}),G(m_{0})].

By Lemma 2.11 and the fact that GEG_{E} is determinant-surjective, we have that (1) is equivalent to GE()=GL2()G_{E}(\ell^{\infty})=\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) for each prime number 5\ell\geq 5. By Proposition 2.10, condition (2) is equivalent to GE(9)=GL2(/9)G_{E}(9)=\operatorname{GL}_{2}({\mathbb{Z}}/9{\mathbb{Z}}) and GE(2k)(GE(2k))G_{E}(2^{k})\in\mathcal{M}(G_{E}(2^{k})) where kk is as in the statement of the proposition. The former of these is equivalent, by Lemma 2.11, to GE(3)=GL2(3)G_{E}(3^{\infty})=\operatorname{GL}_{2}({\mathbb{Z}}_{3}). The latter is equivalent, by Lemma 2.12, to GE(2)𝒮GG_{E}(2^{\infty})\in\mathcal{S}_{G}. ∎

The characterization that we just proved is well-suited for computations. For instance, if EE is in the LMFDB [39], then the data on \ell-adic images provided on the curve’s page allows one to immediately decide, via Theorem 1.1, whether EE is a GG-Serre curve for some G{2Cs,2B,2Cn}G\in\{{\texttt{2Cs}},{\texttt{2B}},{\texttt{2Cn}}\}. More generally, our IsRelSerreCurve script [24] uses Theorem 1.1 with [29, 30] to decide if EE is a GG-Serre curve for such a GG.

2.4. The adelic index

In this subsection, we determine the adelic index [GL2(^):GE][\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}] for Serre curves E/E/{\mathbb{Q}} relative to obstructions modulo 2. We start with a lemma.

Lemma 2.13.

For G{2Cs,2B,2Cn}G\in\{{{\texttt{2Cs}}},{{\texttt{2B}}},{{\texttt{2Cn}}}\}, we have that

[SL2(^):[G^,G^]]={12G{2B,2Cn}48G2Cs.[\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):[\widehat{G},\widehat{G}]]=\begin{cases}12&G\in\left\{{{\texttt{2B}}},{{\texttt{2Cn}}}\right\}\\ 48&G\in{{\texttt{2Cs}}}.\end{cases}
Proof.

Let G{2Cs,2B,2Cn}G\in\{{{\texttt{2Cs}}},{{\texttt{2B}}},{{\texttt{2Cn}}}\} and consider the subgroup K[G^,G^]SL2(^)K\coloneqq[\widehat{G},\widehat{G}]\subseteq\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}). By [43, Lemma 7.4], we have that KK is the preimage of K(4)K(4) under the natural projection SL2(^)SL2(/4)\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{SL}_{2}({\mathbb{Z}}/4{\mathbb{Z}}). It follows that

[SL2(^):K]=[SL2(/4):K(4)].[\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):K]=[\operatorname{SL}_{2}({\mathbb{Z}}/4{\mathbb{Z}}):K(4)].

The right-hand side is straightforward to compute in Magma because K(4)=[G^(4),G^(4)]K(4)=[\widehat{G}(4),\widehat{G}(4)]. We do so using our CommIndx script [24], and obtain the claimed indices. ∎

Using Lemma 2.4 and Lemma 2.13, we now give a second characterization of the considered relative Serre curves in terms of the adelic index.

Proposition 2.14.

For G{2Cs,2B,2Cn}G\in\{{{\texttt{2Cs}}},{{\texttt{2B}}},{{\texttt{2Cn}}}\}, an elliptic curve E/E/{\mathbb{Q}} is a GG-Serre curve if and only if

(2.2) GE(2)=Gand[GL2(^):GE]={12G{2B,2Cn}48G=2Cs.G_{E}(2)=G\quad\text{and}\quad[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}]=\begin{cases}12&G\in\left\{{{\texttt{2B}}},{{\texttt{2Cn}}}\right\}\\ 48&G={{\texttt{2Cs}}}.\end{cases}
Proof.

For any elliptic curve E/E/{\mathbb{Q}}, by Lemma 2.3 and the fact that

GESL2(^)=ker(GEdet^×),G_{E}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}})=\ker(G_{E}\xrightarrow{\det}\widehat{{\mathbb{Z}}}^{\times}),

we observe that

(2.3) [GL2(^):GE]=[SL2(^):GESL2(^)]=[SL2(^):[GE,GE]].[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}]=[\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}\cap\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}})]=[\operatorname{SL}_{2}(\widehat{{\mathbb{Z}}}):[G_{E},G_{E}]].

Suppose first that EE is a GG-Serre curve. Then [GE,GE]=[G^,G^][G_{E},G_{E}]=[\widehat{G},\widehat{G}], so the claim about the index of GEG_{E} follows by (2.3) and Lemma 2.13. The claim that GE(2)=GG_{E}(2)=G follows by Theorem 1.1 and noting that H(2)=GH(2)=G for each H𝒮GH\in\mathcal{S}_{G}. For the reverse direction, note that GE(2)=GG_{E}(2)=G implies that GEG^G_{E}\subseteq\widehat{G}. Hence [GE,GE][G^,G^][G_{E},G_{E}]\subseteq[\widehat{G},\widehat{G}] and, in fact, equality holds by (2.3) and Lemma 2.13. ∎

3. Explicit descriptions of adelic images

In this section, we describe the adelic image GEG_{E} of elliptic curves E/E/{\mathbb{Q}} relative to obstructions modulo 2. We begin with some preliminaries on division fields. The nn-division field of EE is the field (E[n]){\mathbb{Q}}(E[n]) obtained by adjoining to {\mathbb{Q}} all xx- and yy-coordinates of points in the nn-torsion subgroup E[n]E[n] of EE. Recall that (E[n])/{\mathbb{Q}}(E[n])/{\mathbb{Q}} is Galois and

GE(n)Gal((E[n])/).G_{E}(n)\cong\operatorname{Gal}({\mathbb{Q}}(E[n])/{\mathbb{Q}}).

Define ζne2πin.\zeta_{n}\coloneqq e^{\frac{2\pi i}{n}}. Recall that by the Weil pairing on EE,

(3.1) (ζn)(E[n]).{\mathbb{Q}}(\zeta_{n})\subseteq{\mathbb{Q}}(E[n]).

We begin by recalling a result that precisely describes the 2k2^{k}-division field of an elliptic curve E/E/{\mathbb{Q}} for k{1,2,3}k\in\left\{1,2,3\right\}. Fix an equation for EE of the form

(3.2) y2=(xα1)(xα2)(xα3)y^{2}=(x-\alpha_{1})(x-\alpha_{2})(x-\alpha_{3})

for some α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3} in the field ¯\overline{{\mathbb{Q}}} of algebraic numbers. Fix A1,A2,A3¯A_{1},A_{2},A_{3}\in\overline{{\mathbb{Q}}} so that

Ai2=αi+1αi+2A_{i}^{2}=\alpha_{i+1}-\alpha_{i+2}

where ii is considered modulo 33. Now set B1,B2,B3¯B_{1},B_{2},B_{3}\in\overline{{\mathbb{Q}}} so that

(3.3) Bi2=Ai(Ai+1+ζ4Ai+2).B_{i}^{2}=A_{i}(A_{i+1}+\zeta_{4}A_{i+2}).

With notation in place, we now state the result on 2-power division fields.

Theorem 3.1.

We have the following.

  1. (1)

    (E[2])=(α1,α2,α3){\mathbb{Q}}(E[2])={\mathbb{Q}}(\alpha_{1},\alpha_{2},\alpha_{3}),

  2. (2)

    (E[4])=(E[2],ζ4,A1,A2,A3){\mathbb{Q}}(E[4])={\mathbb{Q}}(E[2],\zeta_{4},A_{1},A_{2},A_{3}), and

  3. (3)

    (E[8])=(E[4],ζ8,B1,B2,B3){\mathbb{Q}}(E[8])={\mathbb{Q}}(E[4],\zeta_{8},B_{1},B_{2},B_{3}).

Proof.

Part (1) is well-known. See [40, Theorem 1] for parts (2) and (3). ∎

Corollary 3.2.

If 2(E[4])\sqrt{2}\in{\mathbb{Q}}(E[4]), then [(E[8]):(E[4])]8[{\mathbb{Q}}(E[8]):{\mathbb{Q}}(E[4])]\leq 8.

Proof.

As ζ4(E[4])\zeta_{4}\in{\mathbb{Q}}(E[4]) and 2(E[4])\sqrt{2}\in{\mathbb{Q}}(E[4]), we have that ζ8(E[4])\zeta_{8}\in{\mathbb{Q}}(E[4]). By (3.3) and Theorem 3.1, we have that Bi2(E[4])B_{i}^{2}\in{\mathbb{Q}}(E[4]) for each i{1,2,3}i\in\{1,2,3\}. Thus [(B1,B2,B3):(E[4])]8[{\mathbb{Q}}(B_{1},B_{2},B_{3}):{\mathbb{Q}}(E[4])]\leq 8, so the claim follows by Theorem 3.1. ∎

We will make extensive use of Theorem 3.1 and Corollary 3.2 in this section. Let ΔE\Delta_{E} denote the discriminant of any model of EE. An immediate consequence of the theorem is that ΔE(E[2])\sqrt{\Delta_{E}}\in{\mathbb{Q}}(E[2]) and ΔE4(E[4])\sqrt[4]{\Delta_{E}}\in{\mathbb{Q}}(E[4]) since, up to 12th powers, we compute from (3.2) that

(3.4) ΔE=16(α1α2)2(α1α3)2(α2α3)2.{\Delta}_{E}=16(\alpha_{1}-\alpha_{2})^{2}(\alpha_{1}-\alpha_{3})^{2}(\alpha_{2}-\alpha_{3})^{2}.

In view of (3.1), it is useful to review an aspect of cyclotomic fields. Namely, the Kronecker–Weber theorem gives that if K/K/{\mathbb{Q}} is abelian, then there exists an integer nn such that K(ζn)K\subseteq{\mathbb{Q}}(\zeta_{n}). The conductor of KK, denoted f(K)f(K), is the least positive integer nn with this property. Let ΔK\Delta_{K} denote the discriminant of the ring of integers of KK. If K=(d)K={\mathbb{Q}}(\sqrt{d}) is a quadratic field, then it is well-known that

(3.5) f(K)=ΔK={dd1(mod4)4dotherwise.f(K)=\Delta_{K}=\begin{cases}d&d\equiv 1\pmod{4}\\ 4d&\text{otherwise}.\end{cases}

If K/K/{\mathbb{Q}} is a cyclic cubic extension, then by the conductor-discriminant formula [8, 7.4.13, 7.4.14], we have that

(3.6) f(K)=ΔK.f(K)=\sqrt{\Delta_{K}}.

In Theorem 1.1 we learned that entanglements need not be considered when checking if an elliptic curve is Serre curve relative to an obstruction modulo 2. However in this section, entanglements will play an essential role in our descriptions of GEG_{E}. As such, we recall some preliminaries on entanglement fields. Let K1K_{1} and K2K_{2} be Galois extensions of {\mathbb{Q}}. The compositum K1K2/K_{1}K_{2}/{\mathbb{Q}} is Galois with

(3.7) Gal(K1K2/)Gal(K1/)×ψGal(K2/)\operatorname{Gal}(K_{1}K_{2}/{\mathbb{Q}})\cong\operatorname{Gal}(K_{1}/{\mathbb{Q}})\times_{\psi}\operatorname{Gal}(K_{2}/{\mathbb{Q}})

where ψ(ψ1,ψ2)\psi\coloneqq(\psi_{1},\psi_{2}) with each map ψi:Gal(Ki/)Gal(K1K2/)\psi_{i}\colon\operatorname{Gal}(K_{i}/{\mathbb{Q}})\to\operatorname{Gal}(K_{1}\cap K_{2}/{\mathbb{Q}}) given by restriction (see, e.g., [5, Lemma 1.2.8]). The field K1K2K_{1}\cap K_{2} is called the entanglement field. We refer to the degree [K1K2:][K_{1}\cap K_{2}:{\mathbb{Q}}] as the degree of the entanglement between K1K_{1} and K2K_{2}. By (3.7), we have that

(3.8) [K1K2:]=[K1:][K2:][K1K2:].[K_{1}K_{2}:{\mathbb{Q}}]=\frac{[K_{1}:{\mathbb{Q}}][K_{2}:{\mathbb{Q}}]}{[K_{1}\cap K_{2}:{\mathbb{Q}}]}.

With these preliminaries in hand, we now turn to the problem of describing GEG_{E}.

3.1. Serre curves relative to 2Cs

Let EE be a 2Cs-Serre curve. Fix an equation

(3.9) E:y2=(xa)(xb)(xc)E\colon y^{2}=(x-a)(x-b)(x-c)

with a,b,ca,b,c\in{\mathbb{Z}}. By Proposition 2.14, we know that

[GL2(^):GE]=48.[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}]=48.

Recall that by Theorem 1.1, we have GE(2)𝒮2CsG_{E}(2^{\infty})\in\mathcal{S}_{{\texttt{2Cs}}} where

𝒮2Cs\displaystyle\mathcal{S}_{{{\texttt{2Cs}}}} ={2.6.0.1,8.12.0.2,4.12.0.2,8.12.0.1,4.12.0.1,8.12.0.3,\displaystyle=\{{\texttt{2.6.0.1}},{\texttt{8.12.0.2}},{\texttt{4.12.0.2}},{\texttt{8.12.0.1}},{\texttt{4.12.0.1}},{\texttt{8.12.0.3}},
8.24.0.5,8.24.0.7,8.24.0.2,8.24.0.1,8.12.0.4,8.24.0.6,\displaystyle\qquad\;{\texttt{8.24.0.5}},{\texttt{8.24.0.7}},{\texttt{8.24.0.2}},{\texttt{8.24.0.1}},{\texttt{8.12.0.4}},{\texttt{8.24.0.6}},
8.24.0.8,8.24.0.3,8.24.0.4}.\displaystyle\qquad\;{\texttt{8.24.0.8}},{\texttt{8.24.0.3}},{\texttt{8.24.0.4}}\}.

The above groups have index 6,12,6,12, or 2424 in GL2(2)\operatorname{GL}_{2}({\mathbb{Z}}_{2}), as indicated by the second number in the RSZB label. Hence to understand GEG_{E}, it remains to account for an index of 88 in the first case above, 44 in the second, and 2 in the third case. As we shall see, entanglements are the source of the greater adelic index in all cases.

For a squarefree integer NN, define

(3.10) N{NN1(mod4)NN3(mod4)12NN2(mod8)12NN6(mod8).N^{\prime}\coloneqq\begin{cases}N&N\equiv 1\pmod{4}\\ -N&N\equiv 3\pmod{4}\\ \frac{1}{2}N&N\equiv 2\pmod{8}\\ -\frac{1}{2}N&N\equiv 6\pmod{8}.\end{cases}

Note that NN^{\prime}\in{\mathbb{Z}} and that since NN is squarefree, we must have that N0(mod4)N\not\equiv 0\pmod{4}. Further the definition in (3.10) is such that N1(mod4)N^{\prime}\equiv 1\pmod{4} for any squarefree integer NN. Therefore, N(ζ|N|)\sqrt{N^{\prime}}\in{\mathbb{Q}}(\zeta_{|N^{\prime}|}) which will be used later.

Let AabA\coloneqq a-b, BacB\coloneqq a-c, and CbcC\coloneqq b-c. Consider the following set

S{|Asf|,|Bsf|,|Csf|,|ABsf|,|ACsf|,|BCsf|,|ABCsf|}{1,2}S\coloneqq\{\left|A_{\text{sf}}\right|,\left|B_{\text{sf}}\right|,\left|C_{\text{sf}}\right|,\left|AB_{\text{sf}}\right|,\left|AC_{\text{sf}}\right|,\left|BC_{\text{sf}}\right|,\left|ABC_{\text{sf}}\right|\}\setminus\{1,2\}

where nsfn_{\text{sf}} denotes the squarefree part of an integer nn (and, for instance, ABsf(AB)sfAB_{\text{sf}}\coloneqq(AB)_{\text{sf}}) and “\setminus” denotes the set difference. Let N1N_{1} be the least integer in SS. If [GL2(2):GE(2)]12[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})]\leq 12, then let N2N_{2} be the smallest integer in SS such that N1N2N_{1}\nmid N_{2}. If [GL2(2):GE(2)]=6[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})]=6, then let N3N_{3} be the smallest integer in SS such that N1N3N_{1}\nmid N_{3}, N2N3N_{2}\nmid N_{3}, and (N1N2)sfN3(N_{1}N_{2})_{\text{sf}}\nmid N_{3}. The proof of Lemma 3.4 justifies why the NiN_{i} can be chosen in this way. For each ii, set

(3.11) ki={3Ni0(mod2)2Ni1(mod2).k_{i}=\begin{cases}3&N_{i}\equiv 0\pmod{2}\\ 2&N_{i}\equiv 1\pmod{2}.\\ \end{cases}

To illustrate these definitions, we now provide a brief example.

Example 3.3.

Let EE be the elliptic curve with LMFDB label 9405.f2, which is given by the equation

y2=(x+61)(x+118)(x179).y^{2}=(x+61)(x+118)(x-179).

We calculate that S={15,33,55,57,95,209,3135}S=\{15,33,55,57,95,209,3135\}. Then N1=15N_{1}=15, N2=33N_{2}=33, N3=57N_{3}=57, and k1=k2=k3=2k_{1}=k_{2}=k_{3}=2.

We now give a lemma that describes the entanglements associated with GEG_{E}.

Lemma 3.4.

If GE(2)=2.6.0.1G_{E}(2^{\infty})={\texttt{2.6.0.1}}, then for each i{1,2,3}i\in\left\{1,2,3\right\}, there is a quadratic entanglement between (E[2ki]){\mathbb{Q}}(E[2^{k_{i}}]) and (E[|Ni|]){\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]). If

GE(2){8.12.0.2,4.12.0.2,8.12.0.1,4.12.0.1,8.12.0.3,8.12.0.4},G_{E}(2^{\infty})\in\left\{{\texttt{8.12.0.2}},{\texttt{4.12.0.2}},{\texttt{8.12.0.1}},{\texttt{4.12.0.1}},{\texttt{8.12.0.3}},{\texttt{8.12.0.4}}\right\},

then for each i{1,2}i\in\left\{1,2\right\}, there is a quadratic entanglement between (E[2ki]){\mathbb{Q}}(E[2^{k_{i}}]) and (E[|Ni|]){\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]). For all the other cases, there is a quadratic entanglement between (E[2k1]){\mathbb{Q}}(E[2^{k_{1}}]) and (E[|N1|]){\mathbb{Q}}(E[\left|N_{1}^{\prime}\right|]).

Proof.

By Theorem 3.1(2), we have that

(E[4])=(1,Asf,Bsf,Csf).{\mathbb{Q}}(E[4])={\mathbb{Q}}(\sqrt{-1},\sqrt{A_{\operatorname{sf}}},\sqrt{B_{\operatorname{sf}}},\sqrt{C_{\operatorname{sf}}}).

Thus the quadratic subfields of (E[4]){\mathbb{Q}}(E[4]) are the following:

(1),(Asf),(Bsf),(Csf),(ABsf),(ACsf),\displaystyle{\mathbb{Q}}(\sqrt{-1}),{\mathbb{Q}}(\sqrt{{A}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{B}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{C}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{AB}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{AC}_{\text{sf}}}),
(BCsf),(ABCsf),(Asf),(Bsf),(Csf),\displaystyle{\mathbb{Q}}(\sqrt{{BC}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{ABC}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{-A}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{-B}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{-C}_{\text{sf}}}),
(ABsf),(ACsf),(BCsf), and (ABCsf).\displaystyle{\mathbb{Q}}(\sqrt{{-AB}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{-AC}_{\text{sf}}}),{\mathbb{Q}}(\sqrt{{-BC}_{\text{sf}}}),\text{ and }{\mathbb{Q}}(\sqrt{{-ABC}_{\text{sf}}}).

First assume that GE(2)=2.6.0.1G_{E}(2^{\infty})={\texttt{2.6.0.1}}. We verify in Magma that 2.6.0.1(4){\texttt{2.6.0.1}}(4) contains exactly 1515 index 22 subgroups. Hence (E[4]){\mathbb{Q}}(E[4]) has exactly 15=24115=2^{4}-1 quadratic subfields, so all of the above subfields are distinct. Moreover, since 2.6.0.1(8){\texttt{2.6.0.1}}(8) is the full preimage of 2.6.0.1(4){\texttt{2.6.0.1}}(4) under the reduction map GL2(/8)GL2(/4)\operatorname{GL}_{2}({\mathbb{Z}}/8{\mathbb{Z}})\to\operatorname{GL}_{2}({\mathbb{Z}}/4{\mathbb{Z}}) we know that 2(E[4])\sqrt{2}\not\in{\mathbb{Q}}(E[4]) by Corollary 3.2. Thus we may indeed choose N1,N2,N3SN_{1},N_{2},N_{3}\in S as specified above the lemma. By (3.5) and Theorem 3.1, we observe that Ni(E[2ki])(E[|Ni|])\sqrt{{N_{i}^{\prime}}}\in{\mathbb{Q}}(E[2^{k_{i}}])\cap{\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]) provides a quadratic entanglement.

If H{8.12.0.2,8.12.0.1,8.12.0.3,8.12.0.4}H\in\left\{{\texttt{8.12.0.2}},{\texttt{8.12.0.1}},{\texttt{8.12.0.3}},{\texttt{8.12.0.4}}\right\}, then H(4)H(4) still contains exactly 1515 index 22 subgroups. Hence (E[4]){\mathbb{Q}}(E[4]) has exactly 15=24115=2^{4}-1 quadratic subfields. But in this case, 2(E[4])\sqrt{2}\in{\mathbb{Q}}(E[4]) is possible, so we may only choose N1,N2SN_{1},N_{2}\in S as specified above the lemma. In all of the remaining cases, we calculate in a similar way that (E[4]){\mathbb{Q}}(E[4]) has 7=2317=2^{3}-1 quadratic subfields. If H{4.12.0.2,4.12.0.1}H\in\left\{{\texttt{4.12.0.2}},{\texttt{4.12.0.1}}\right\}, then H(8)H(8) is the full preimage of H(4)H(4), so we know that 2(E[4])\sqrt{2}\not\in{\mathbb{Q}}(E[4]) by Corollary 3.2, and hence we may choose N1,N2N_{1},N_{2} as specified. On the other hand, if H{8.24.0.5,8.24.0.7,8.24.0.2,8.24.0.1,8.24.0.6,8.24.0.8,8.24.0.3,H\in\{{\texttt{8.24.0.5}},{\texttt{8.24.0.7}},{\texttt{8.24.0.2}},{\texttt{8.24.0.1}},{\texttt{8.24.0.6}},{\texttt{8.24.0.8}},{\texttt{8.24.0.3}}, 8.24.0.4}{\texttt{8.24.0.4}}\}, then it may be 2(E[4])\sqrt{2}\in{\mathbb{Q}}(E[4]), but as (E[4]){\mathbb{Q}}(E[4]) contains 77 quadratic subfields, we are still able to choose N1N_{1} as specified. ∎

3.1.1. Description of image

We now describe the adelic image GEG_{E} of a 2Cs-Serre curve EE. Let NiN_{i} and kik_{i} be as in Lemma 3.4. For each ii, let GiGE(2ki)G_{i}\subseteq G_{E}(2^{k_{i}}) be such that GE(2ki)/GiGal((Ni)/){±1}G_{E}(2^{k_{i}})/G_{i}\cong\operatorname{Gal}({\mathbb{Q}}(\sqrt{N_{i}^{\prime}})/{\mathbb{Q}})\cong\{\pm 1\}. Let ϵi:GE(2)^GE(2)GE(2)/Gi\epsilon_{i}\colon\widehat{G_{E}(2^{\infty})}\to G_{E}(2^{\infty})\to G_{E}(2^{\infty})/G_{i} be the restriction of the map GL2(^)GL2(2)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\operatorname{GL}_{2}({\mathbb{Z}}_{2}) followed by the natural map and χNi\chi_{N_{i}^{\prime}} be the Dirichlet character given by the unique surjective homomorphism ^×Gal((Ni)/){±1}.\widehat{{\mathbb{Z}}}^{\times}\to\operatorname{Gal}({\mathbb{Q}}(\sqrt{N_{i}^{\prime}})/{\mathbb{Q}})\cong\left\{\pm 1\right\}.

Proposition 3.5.

With notation as above, if EE is a 2Cs-Serre curve, then

GE=i{AGE(2)^|ϵi(A)=χNi(det(A))}.G_{E}=\bigcap_{i}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}.

Here the intersection runs over ii such that NiN_{i} is defined for GE(2)G_{E}(2^{\infty}).

Proof.

Assume that GE(2)=2.6.0.1G_{E}(2^{\infty})={\texttt{2.6.0.1}}. The inclusion

(3.12) GEi=13{AGE(2)^|ϵi(A)=χNi(det(A))}G_{E}\subseteq\bigcap\limits^{3}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}

follows from the containments (Ni)(E[2ki]){\mathbb{Q}}(\sqrt{N_{i}^{\prime}})\subseteq{\mathbb{Q}}(E[2^{k_{i}}]) and (Ni)(E[|Ni|]).{\mathbb{Q}}(\sqrt{N_{i}^{\prime}})\subseteq{\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]). By Proposition 2.14, to establish that (3.12) is actually an equality, it suffices to note that

(3.13) [GL2(^):i=13{AGE(2)^|ϵi(A)=χNi(det(A))}]=48.\left[\operatorname{GL}_{2}({\widehat{{\mathbb{Z}}}}):\bigcap\limits^{3}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}\right]=48.

Observe that GE(2)^=GE(2)×oddGL2().\widehat{G_{E}(2^{\infty})}=G_{E}(2^{\infty})\times\prod_{\ell~{}odd}\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}). As each NiN_{i}^{\prime} is odd for i{1,2,3}i\in\{1,2,3\}, we can think of {AGE(2)^|ϵi(A)=χNi(det(A))}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\} as the fiber product of GE(2)G_{E}(2^{\infty}) and oddGL2()\prod_{\ell~{}odd}\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}) by (ϵi,χNidet)(\epsilon_{i},\chi_{N_{i}^{\prime}}\circ\det) which is index 22 in GE(2)^\widehat{G_{E}(2^{\infty})}. Indeed, as NiN_{i}^{\prime} are distinct, we have that

[GE(2)^:i=13{AGE(2)^|ϵi(A)=χNi(det(A))}]=8.\left[\widehat{G_{E}(2^{\infty})}\colon\bigcap\limits^{3}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}\right]=8.

Moreover,

[GL2(^):GE(2)^]=[GL2(2):GE(2)]=6.\left[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):\widehat{G_{E}(2^{\infty})}\right]=\left[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})\right]=6.

Thus (3.13) holds as claimed. There are two remaining cases to consider, namely, when the index of GE(2)G_{E}(2^{\infty}) in GL2(2)\operatorname{GL}_{2}({\mathbb{Z}}_{2}) is 1212 and 2424. Both of these cases follow similarly to the case of GE(2)=2.6.0.1G_{E}(2^{\infty})={\texttt{2.6.0.1}} just considered, and hence are omitted. ∎

Let mEm_{E} denote the image conductor of EE, i.e., the level of the group GEGL2(^)G_{E}\subseteq\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}). The image conductor of EE is a useful invariant of EE that plays a role in numerous applications, including those mentioned in Section 4. We may use Proposition 3.5 to determine mEm_{E} for a 2Cs-Serre curve EE. In order to do so, we first give a general lemma on the level of a closed subgroup of GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}).

Lemma 3.6.

Let GGL2(^)G\subseteq\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}) be a closed subgroup. Let m1m_{1} and m2m_{2} be coprime positive integers with the property that if d1d_{1} and d2d_{2} are positive integers such that did_{i} divides mim_{i} for i{1,2}i\in\{1,2\} and if (d1,d2)(m1,m2)(d_{1},d_{2})\neq(m_{1},m_{2}), then G(d1d2)^G(m1m2)^\widehat{G(d_{1}d_{2})}\supsetneq\widehat{G(m_{1}m_{2})}. Then m1m2m_{1}m_{2} divides the level of GG as a subgroup of GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}).

Proof.

Write mGm_{G} to denote the level of GG as a subgroup of GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}). Seeking a contradiction, suppose that m1m2m_{1}m_{2} does not divide mGm_{G}. For i{1,2}i\in\{1,2\}, let digcd(mG,mi)d_{i}\coloneqq\gcd(m_{G},m_{i}). Then dimid_{i}\mid m_{i} for i{1,2}i\in\{1,2\} and (d1,d2)(m1,m2)(d_{1},d_{2})\neq(m_{1},m_{2}), so by assumption

G(d1d2)^G(m1m2)^.\widehat{G(d_{1}d_{2})}\supsetneq\widehat{G(m_{1}m_{2})}.

Let π:mGGL2()GL2(/mG)\pi:\prod_{\ell\mid m_{G}}\operatorname{GL}_{2}({\mathbb{Z}}_{\ell})\to\operatorname{GL}_{2}({\mathbb{Z}}/m_{G}{\mathbb{Z}}) be the natural map. Recall that

Gπ1(G(mG))×mGGL2()G\cong\pi^{-1}(G(m_{G}))\times\prod_{\ell\nmid m_{G}}\operatorname{GL}_{2}({\mathbb{Z}}_{\ell})

under the isomorphism GL2(^)mGGL2()×mGGL2()\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}})\to\prod_{\ell\mid m_{G}}\operatorname{GL}_{2}({\mathbb{Z}}_{\ell})\times\prod_{\ell\nmid m_{G}}\operatorname{GL}_{2}({\mathbb{Z}}_{\ell}). Further, note that as m1m_{1} and m2m_{2} are coprime, we have that d1d2=gcd(mG,m1m2)d_{1}d_{2}=\gcd(m_{G},m_{1}m_{2}). Hence

G(m1m2)=G(mG)^(m1m2)=G(d1d2)^(m1m2).G(m_{1}m_{2})=\widehat{G(m_{G})}(m_{1}m_{2})=\widehat{G(d_{1}d_{2})}(m_{1}m_{2}).

But this implies that G(m1m2)^=G(d1d2)^\widehat{G(m_{1}m_{2})}=\widehat{G(d_{1}d_{2})}, a contradiction. ∎

We now give the formula for the image conductor mEm_{E} that follows from Proposition 3.5. The formula involves the integers NiN_{i} and the 22-adic level and index of the 22-adic Galois image of EE (which we recall are the first number A and second number B in the RSZB label, respectively).

Corollary 3.7.

Let E/E/{\mathbb{Q}} be a 2Cs-Serre curve with GE(2)=G_{E}(2^{\infty})= A.B.C.D.

  • If B=6\texttt{B}=6 (i.e., GE(2)=2.6.0.1G_{E}(2^{\infty})={\texttt{2.6.0.1}}), then

    mE={lcm(4,|N1|,|N2|,|N3|)2N1N2N3lcm(8,|N1|,|N2|,|N3|)2N1N2N3.m_{E}=\begin{cases}\operatorname{lcm}(4,\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|,\left|N_{3}^{\prime}\right|)&2\nmid N_{1}N_{2}N_{3}\\ \operatorname{lcm}(8,\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|,\left|N_{3}^{\prime}\right|)&2\mid N_{1}N_{2}N_{3}.\\ \end{cases}
  • If B=12{\texttt{B}}=12, then

    mE={lcm(4,|N1|,|N2|)2N1N2 and A=4lcm(8,|N1|,|N2|)2N1N2 or A=8.m_{E}=\begin{cases}\operatorname{lcm}(4,\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|)&2\nmid N_{1}N_{2}\,\text{ and }\,{\texttt{A}}=4\\ \operatorname{lcm}(8,\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|)&2\mid N_{1}N_{2}\,\text{ or }\,{\texttt{A}}=8.\\ \end{cases}
  • If B=24{\texttt{B}}=24, then mE=lcm(8,|N1|)m_{E}=\operatorname{lcm}(8,\left|N_{1}^{\prime}\right|).

Proof.

We will consider the case that GE(2)=2.6.0.1.G_{E}(2^{\infty})={\texttt{2.6.0.1}}. Let k=2k=2 if N1N2N3N_{1}N_{2}N_{3} is odd and k=3k=3 otherwise. Let lcm(2k,|N1|,|N2|,|N3|)\mathcal{L}\coloneqq\operatorname{lcm}(2^{k},\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|,\left|N_{3}^{\prime}\right|). Proposition 3.5 gives that mEm_{E} divides \mathcal{L}. Let N{N1,N2,N3}N\in\{N_{1},N_{2},N_{3}\} and let j=2j=2 if NN is odd and j=3j=3 if NN is even. We will show that 2j|N|2^{j}\cdot\left|N^{\prime}\right| divides mEm_{E}.

By the proof of Lemma 3.4, we have that N(E[2j])(E[|N|])\sqrt{N^{\prime}}\in{\mathbb{Q}}(E[2^{j}])\cap{\mathbb{Q}}(E[\left|N^{\prime}\right|]). It is clear that N(E[2])\sqrt{N^{\prime}}\not\in{\mathbb{Q}}(E[2]) since (E[2])={\mathbb{Q}}(E[2])={\mathbb{Q}}. If j=3j=3, then N(E[4])\sqrt{N^{\prime}}\not\in{\mathbb{Q}}(E[4]) for otherwise 2(E[4])\sqrt{2}\in{\mathbb{Q}}(E[4]) which is impossible by Corollary 3.2 since A=2{\texttt{A}}=2. Now suppose by way of a contradiction that there exists a proper divisor d>1d>1 of |N|\left|N^{\prime}\right| such that N(E[d])\sqrt{N^{\prime}}\in{\mathbb{Q}}(E[d]). By the construction of {N1,N2,N3}\{N_{1},N_{2},N_{3}\}, we know that d(E[2j])\sqrt{d^{\prime}}\notin{\mathbb{Q}}(E[2^{j}]). We have that d(E[d])\sqrt{d^{\prime}}\in{\mathbb{Q}}(E[{d}]), so N/d(E[d])\sqrt{N^{\prime}/d^{\prime}}\in{\mathbb{Q}}(E[d]). Note that N/d1(mod4)N^{\prime}/d^{\prime}\equiv 1\pmod{4}, so also N/d(E[|N/d|])\sqrt{N^{\prime}/d^{\prime}}\in{\mathbb{Q}}(E[\left|N^{\prime}/d^{\prime}\right|]). But then we have the entanglement N/d(E[d])(E[|N/d|])\sqrt{N^{\prime}/d^{\prime}}\in{\mathbb{Q}}(E[d])\cap{\mathbb{Q}}(E[\left|N^{\prime}/d^{\prime}\right|]), which violates Proposition 3.5 as NN^{\prime} is odd and squarefree.

We have seen that N(E[2j])(E[|N|])\sqrt{N^{\prime}}\in{\mathbb{Q}}(E[2^{j}])\cap{\mathbb{Q}}(E[\left|N^{\prime}\right|]) yet N(E[2i])(E[d])\sqrt{N^{\prime}}\not\in{\mathbb{Q}}(E[2^{i}])\cap{\mathbb{Q}}(E[d]) for any iji\leq j and dd a divisor of |N|\left|N^{\prime}\right| with (i,d)(j,|N|)(i,d)\neq(j,\left|N^{\prime}\right|). Thus GEG_{E} satisfies the conditions of Lemma 3.6 with (m1,m2)=(2j,|N|)(m_{1},m_{2})=(2^{j},\left|N^{\prime}\right|). The lemma gives that 2j|N|2^{j}\cdot\left|N^{\prime}\right| divides mEm_{E} as claimed. Thus \mathcal{L} divides mEm_{E}, completing the proof of the considered case. The remaining cases follow similarly. ∎

3.2. Serre curves relative to 2B

Let EE be a 2B-Serre curve. Fix an equation

(3.14) E:y2=(x2+ax+b)(x+c)E\colon y^{2}=(x^{2}+ax+b)(x+c)

with a,b,ca,b,c\in{\mathbb{Z}} and x2+ax+bx^{2}+ax+b irreducible over {\mathbb{Q}}. By Proposition 2.14, we know that

[GL2(^):GE]=12.[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}]=12.

Recall that

𝒮2B={2.3.0.1,8.6.0.2,8.6.0.4,8.6.0.1,8.6.0.6,8.6.0.3,8.6.0.5}.\mathcal{S}_{{\texttt{2B}}}=\{{\texttt{2.3.0.1}},{\texttt{8.6.0.2}},{\texttt{8.6.0.4}},{\texttt{8.6.0.1}},{\texttt{8.6.0.6}},{\texttt{8.6.0.3}},{\texttt{8.6.0.5}}\}.

Consequently,

(3.15) [GL2(2):GE(2)]={3GE(2)=2.3.0.16otherwise.[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})]=\begin{cases}3&G_{E}(2^{\infty})={\texttt{2.3.0.1}}\\ 6&\text{otherwise}.\end{cases}

Hence to understand GEG_{E}, it remains to account for an index of 44 if GE=2.3.0.1G_{E}={\texttt{2.3.0.1}} and 2 otherwise. Considering each of the groups in 𝒮2B\mathcal{S}_{{\texttt{2B}}} under reduction modulo 44, we verify in Magma the following useful observation: If EE is any 2B-Serre curve, then

(3.16) [GL2(/4):GE(4)]=3andGE(4) contains exactly 7 index 2 subgroups.[\operatorname{GL}_{2}({\mathbb{Z}}/4{\mathbb{Z}}):G_{E}(4)]=3\quad\text{and}\quad\text{$G_{E}(4)$ contains exactly $7$ index 2 subgroups}.

The roots of (x2+ax+b)(x+c)(x^{2}+ax+b)(x+c) are

r112(a24ba),r212(a24ba), and r3c.r_{1}\coloneqq\frac{1}{2}\left(\sqrt{a^{2}-4b}-a\right),\quad r_{2}\coloneqq\frac{1}{2}\left(-\sqrt{a^{2}-4b}-a\right),\text{ and }\quad r_{3}\coloneqq-c.

Let Ar1r2,Br2r3,A\coloneqq r_{1}-r_{2},B\coloneqq r_{2}-r_{3}, and Cr1r3C\coloneqq r_{1}-r_{3}. From Theorem 3.1, we now deduce an alternative expression for the 4-division field of EE in terms of the notation just introduced.

Lemma 3.8.

With notation as above, if EE is a 2B-Serre curve, then

(E[4])=(1,a24b,acc2b,A,B).{\mathbb{Q}}(E[4])={\mathbb{Q}}(\sqrt{-1},\sqrt{a^{2}-4b},\sqrt{ac-c^{2}-b},\sqrt{A},\sqrt{B}).
Proof.

By Theorem 3.1(2), we have that

(E[4])=(1,A,B,C).{\mathbb{Q}}(E[4])={\mathbb{Q}}(\sqrt{-1},\sqrt{A},\sqrt{B},\sqrt{C}).

We have that C(1,a24b,acc2b,A,B)\sqrt{C}\in{\mathbb{Q}}(\sqrt{-1},\sqrt{a^{2}-4b},\sqrt{ac-c^{2}-b},\sqrt{A},\sqrt{B}) because

(3.17) BC=1acbc2.\sqrt{B}\sqrt{C}=\sqrt{-1}\sqrt{ac-b-c^{2}}.

It follows that

(E[4])(1,a24b,acc2b,A,B).{\mathbb{Q}}(E[4])\subseteq{\mathbb{Q}}(\sqrt{-1},\sqrt{a^{2}-4b},\sqrt{ac-c^{2}-b},\sqrt{A},\sqrt{B}).

The reverse inclusion follows by (3.17) and the fact that A=a24bA=\sqrt{a^{2}-4b}. ∎

Recall that by (3.16), there are exactly seven distinct quadratic subfields of (E[4]){\mathbb{Q}}(E[4]). Using Lemma 3.8, we now describe them explicitly.

Lemma 3.9.

With notation as above, if EE is a 2B-Serre curve, then (E[4]){\mathbb{Q}}(E[4]) has exactly 7 distinct quadratic subfields :\colon (1){\mathbb{Q}}(\sqrt{-1}), (±ΔE){\mathbb{Q}}(\sqrt{\pm\Delta_{E}}), (±(acc2b)){\mathbb{Q}}(\sqrt{\pm(ac-c^{2}-b)}), and (±(acc2b)ΔE).{\mathbb{Q}}(\sqrt{\pm(ac-c^{2}-b)\Delta_{E}}).

Proof.

By (3.4), we note that (ΔE)=(a24b){\mathbb{Q}}(\sqrt{\Delta_{E}})={\mathbb{Q}}(\sqrt{a^{2}-4b}). Thus it suffices to show that

[(1,a24b,acc2b):]=8.[{\mathbb{Q}}(\sqrt{-1},\sqrt{a^{2}-4b},\sqrt{ac-c^{2}-b}):{\mathbb{Q}}]=8.

We have that A=a24bA=\sqrt{a^{2}-4b} and B=12(a24ba)+cB=\frac{1}{2}\left(-\sqrt{a^{2}-4b}-a\right)+c. Thus

a24b(A)(B),\sqrt{a^{2}-4b}\in{\mathbb{Q}}(\sqrt{A})\cap{\mathbb{Q}}(\sqrt{B}),

so in particular [(A)(B):]2[{\mathbb{Q}}(\sqrt{A})\cap{\mathbb{Q}}(\sqrt{B}):{\mathbb{Q}}]\geq 2. Hence it follows by (3.8) that

[(A,B):]=[(A):][(B):][(A)(B):]442=8[{\mathbb{Q}}(\sqrt{A},\sqrt{B}):{\mathbb{Q}}]=\frac{[{\mathbb{Q}}(\sqrt{A}):{\mathbb{Q}}][{\mathbb{Q}}(\sqrt{B}):{\mathbb{Q}}]}{[{\mathbb{Q}}(\sqrt{A})\cap{\mathbb{Q}}(\sqrt{B}):{\mathbb{Q}}]}\leq\frac{4\cdot 4}{2}=8

Thus, by (3.8),(3.16), and Lemma 3.8 ,

32=[(E[4]):][(1,a24b,acc2b):]8232=[{\mathbb{Q}}(E[4]):{\mathbb{Q}}]\leq\frac{[{\mathbb{Q}}(\sqrt{-1},\sqrt{a^{2}-4b},\sqrt{ac-c^{2}-b}):{\mathbb{Q}}]\cdot 8}{2}

Hence

[(1,a24b,acc2b):]8.[{\mathbb{Q}}(\sqrt{-1},\sqrt{a^{2}-4b},\sqrt{ac-c^{2}-b}):{\mathbb{Q}}]\geq 8.

The reverse inequality is clear. ∎

We now consider entanglements. Define the set

S{|(a24b)sf|,|(acc2b)sf|,|((acc2b)(a24b))sf|}.S\coloneqq\{\left|(a^{2}-4b)_{\text{sf}}\right|,\left|(ac-c^{2}-b)_{\text{sf}}\right|,\left|((ac-c^{2}-b)(a^{2}-4b))_{\text{sf}}\right|\}.

If GE(2)=2.3.0.1G_{E}(2^{\infty})={\texttt{2.3.0.1}}, then let N1N_{1} be the smallest integer in SS and N2N_{2} be the smallest integer in SS such that N1N2.N_{1}\nmid N_{2}. Using Corollary 3.2 we note that 2,2(E[4])\sqrt{2},\sqrt{-2}\not\in{\mathbb{Q}}(E[4]), since #2.3.0.1(8)=16#2.3.0.1(4)\#{\texttt{2.3.0.1}}(8)=16\cdot\#{\texttt{2.3.0.1}}(4), so Ni1N_{i}^{\prime}\neq 1. We get a horizontal entanglement between (E[2ki]){\mathbb{Q}}(E[2^{k_{i}}]) and (E[|Ni|]){\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]) for each i{1,2}.i\in\{1,2\}. If GE(2)2.3.0.1G_{E}(2^{\infty})\neq{\texttt{2.3.0.1}}, then let N1N_{1} be the smallest integer in SS such that N11N_{1}^{\prime}\neq 1. In this case, we get one horizontal entanglement between (E[2k1]){\mathbb{Q}}(E[2^{k_{1}}]) and (E[|N1|]).{\mathbb{Q}}(E[\left|N_{1}^{\prime}\right|]).

3.2.1. Description of image

We now describe the adelic image GEG_{E} of a 2B-Serre curve EE. Let NiN_{i} be as above and let kik_{i} be as in (3.11). For each ii, let GiGE(2ki)G_{i}\subseteq G_{E}(2^{k_{i}}) be such that GE(2ki)/GiGal((Ni)/){±1}G_{E}(2^{k_{i}})/G_{i}\cong\operatorname{Gal}({\mathbb{Q}}(\sqrt{N_{i}^{\prime}})/{\mathbb{Q}})\cong\{\pm 1\}. Let ϵi:GE(2)^GE(2)GE(2)/Gi\epsilon_{i}\colon\widehat{G_{E}(2^{\infty})}\to G_{E}(2^{\infty})\to G_{E}(2^{\infty})/G_{i} be the natural map and χNi\chi_{N_{i}^{\prime}} be the Dirichlet character given by the unique surjective homomorphism ^×Gal((Ni)/){±1}.\widehat{{\mathbb{Z}}}^{\times}\to\operatorname{Gal}({\mathbb{Q}}(\sqrt{N_{i}^{\prime}})/{\mathbb{Q}})\cong\left\{\pm 1\right\}.

Proposition 3.10.

With notation as above, if GE(2)=2.3.0.1G_{E}(2^{\infty})={\texttt{2.3.0.1}}, then

GE=i=12{AGE(2)^|ϵi(A)=χNi(det(A))}G_{E}=\bigcap\limits^{2}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}

for i{1,2}.i\in\{1,2\}. If GE(2)2.3.0.1G_{E}(2^{\infty})\neq{\texttt{2.3.0.1}}, then

GE={AGE(2)^|ϵ(A)=χN1(det(A))}.G_{E}=\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon(A)=\chi_{N_{1}^{\prime}}(\det(A))\}.
Proof.

Assume that GE(2)=2.3.0.1G_{E}(2^{\infty})={\texttt{2.3.0.1}}. The inclusion

(3.18) GEi=12{AGE(2)^|ϵi(A)=χNi(det(A))}G_{E}\subseteq\bigcap\limits^{2}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}

follows from the containments (Ni)(E[2ki]){\mathbb{Q}}(\sqrt{N_{i}^{\prime}})\subseteq{\mathbb{Q}}(E[2^{k_{i}}]) and (Ni)(E[|Ni|]).{\mathbb{Q}}(\sqrt{N_{i}^{\prime}})\subseteq{\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]). By Proposition 2.14, to establish that (3.18) is actually an equality, it suffices to note that

(3.19) [GL2(^):i=12{AGE(2)^|ϵi(A)=χNi(det(A))}]=12.\left[\operatorname{GL}_{2}({\widehat{{\mathbb{Z}}}}):\bigcap\limits^{2}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}\right]=12.

From (3.15), we have that

[GL2(^):GE(2)^]=[GL2(2):GE(2)]=3.\left[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):\widehat{G_{E}(2^{\infty})}\right]=\left[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})\right]=3.

Similar to the proof given in Proposition 3.5, we can show that

[GE(2)^:i=12{AGE(2)^|ϵi(A)=χNi(det(A))}]=4.\left[\widehat{G_{E}(2^{\infty})}:\bigcap\limits^{2}_{i=1}\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon_{i}(A)=\chi_{N_{i}^{\prime}}(\det(A))\}\right]=4.

Thus (3.13) holds as claimed. When GE(2)2.3.0.1G_{E}(2^{\infty})\neq{\texttt{2.3.0.1}} the proof is similar. ∎

From the above proposition, we obtain the following formula for mEm_{E} upon noting that the level of 2.3.0.1 is 2, and otherwise if H𝒮2BH\in\mathcal{S}_{{\texttt{2B}}}, then the level of HH is 8.

Corollary 3.11.

Let E/E/{\mathbb{Q}} be a 2B-Serre curve.

  • If GE(2)=2.3.0.1G_{E}(2^{\infty})={\texttt{2.3.0.1}}, then

    mE={lcm(4,|N1|,|N2|)2N1N2lcm(8,|N1|,|N2|)2N1N2.m_{E}=\begin{cases}\operatorname{lcm}(4,\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|)&2\nmid N_{1}N_{2}\\ \operatorname{lcm}(8,\left|N_{1}^{\prime}\right|,\left|N_{2}^{\prime}\right|)&2\mid N_{1}N_{2}.\\ \end{cases}
  • If GE(2)2.3.0.1G_{E}(2^{\infty})\neq{{\texttt{2.3.0.1}}}, then

    mE=lcm(8,|N1|).m_{E}=\operatorname{lcm}(8,\left|N_{1}^{\prime}\right|).
Proof.

The proof is similar to the proof of Corollary 3.7. ∎

3.3. Serre curves relative to 2Cn

Let EE be a 2Cn-Serre curve. By Theorem 1.1, we know that GE(2)𝒮2CnG_{E}(2^{\infty})\in\mathcal{S}_{{\texttt{2Cn}}}. In particular, GE(2)=2CnG_{E}(2)={\texttt{2Cn}}. Thus, the Galois extension (E[2])/{\mathbb{Q}}(E[2])/{\mathbb{Q}} is cyclic of order 33. By (3.6), the conductor of (E[2]){\mathbb{Q}}(E[2]) is given by

(3.20) f((E[2]))=Δ(E[2]).f({\mathbb{Q}}(E[2]))=\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}.

Further, we claim that f((E[2]))f({\mathbb{Q}}(E[2])) is odd. Indeed, a cubic extension of {\mathbb{Q}} is given by (α){\mathbb{Q}}(\alpha) where α\alpha satisfies the irreducible polynomial T33T+1v(T2T)T^{3}-3T+1-v(T^{2}-T) for some vv\in{\mathbb{Q}} (see, e.g., [35, Section 1.1]). The square root of discriminant of (α){\mathbb{Q}}(\alpha) is either v23v+9v^{2}-3v+9 or (v23v+9)/3(v^{2}-3v+9)/3. Since we know that it has to be an integer, vv\in{\mathbb{Z}}, and the claim follows.

By Proposition 2.14, we have that

[GL2(^):GE]=12.[\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}):G_{E}]=12.

Recall that 𝒮2Cn={2.2.0.1,4.4.0.2,8.4.0.1}\mathcal{S}_{{\texttt{2Cn}}}=\{{\texttt{2.2.0.1}},{\texttt{4.4.0.2}},{\texttt{8.4.0.1}}\}. Thus, considering the labels,

[GL2(2):GE(2)]={2GE(2)=2.2.0.14otherwise.[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})]=\begin{cases}2&G_{E}(2^{\infty})={\texttt{2.2.0.1}}\\ 4&\text{otherwise}.\end{cases}

If GE(2)2.2.0.1G_{E}(2^{\infty})\neq{\texttt{2.2.0.1}}, then the adelic index of 1212 is explained by the fact that [GL2(2):GE(2)]=4[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})]=4 and the cubic entanglement arising from the containment (E[2])(ζΔ(E[2])){\mathbb{Q}}(E[2])\subseteq{\mathbb{Q}}(\zeta_{\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}}). Consider the case that GE(2)=2.2.0.1G_{E}(2^{\infty})={\texttt{2.2.0.1}}. Here [GL2(2):GE(2)]=2[\operatorname{GL}_{2}({\mathbb{Z}}_{2}):G_{E}(2^{\infty})]=2, so an additional quadratic entanglement must be described to account for the adelic index of 12. By (3.20), we know that DE(ΔE)sf.D_{E}\coloneqq(\sqrt{\Delta_{E}})_{sf}\in{\mathbb{Z}}. We have that DE\sqrt{D_{E}} lies in (E[4]){\mathbb{Q}}(E[4]) and is not equal to ±2\sqrt{\pm 2} because if 2(E[4])\sqrt{2}\in{\mathbb{Q}}(E[4]), then [(E[8]):(E[4])][{\mathbb{Q}}(E[8]):{\mathbb{Q}}(E[4])] is at most 88 by Corollary 3.2, which is a contradiction since we know that #2.2.0.1(8)=16#2.2.0.1(4)\#{\texttt{2.2.0.1}}(8)=16\cdot\#{\texttt{2.2.0.1}}(4). Using the notation (3.10), there is a quadratic entanglement between (E[2k]){\mathbb{Q}}(E[2^{k}]) and (E[|DE|]){\mathbb{Q}}(E[\left|D_{E}^{\prime}\right|]), where kk is as defined in (3.11).

3.3.1. Description of image

We now describe the adelic image GEG_{E} of a 2Cn-Serre curve EE. Let G1GE(2)G_{1}\subseteq G_{E}(2^{\infty}) be the index 3 subgroup such that GE(2)/G1Gal((E[2])/)G_{E}(2^{\infty})/G_{1}\cong\operatorname{Gal}({\mathbb{Q}}(E[2])/{\mathbb{Q}}). Let ω:GE(2)^GE(2)GE(2)/G1\omega\colon\widehat{G_{E}(2^{\infty})}\to G_{E}(2^{\infty})\to G_{E}(2^{\infty})/G_{1} be the natural map. Let ξ:^×Gal((E[2])/)\xi\colon{\widehat{{\mathbb{Z}}}}^{\times}\to\operatorname{Gal}({\mathbb{Q}}(E[2])/{\mathbb{Q}}) be the restriction of cyclotomic character associated to (ζΔ(E[2])).{\mathbb{Q}}(\zeta_{\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}}). If GE(2)=2.2.0.1G_{E}(2^{\infty})={\texttt{2.2.0.1}}, further let G2GE(2k)G_{2}\subseteq G_{E}(2^{k}) be the index 22 subgroup such that GE(2k)/G2Gal((DE)/){±1}G_{E}(2^{k})/G_{2}\cong\operatorname{Gal}({\mathbb{Q}}(\sqrt{D_{E}^{\prime}})/{\mathbb{Q}})\cong\{\pm 1\}, where kk is 22 if DED_{E} is odd and kk is 33 otherwise. Let ϵ:GE(2)^GE(2k)GE(2k)/G2\epsilon\colon\widehat{G_{E}(2^{\infty})}\to G_{E}(2^{k})\to G_{E}(2^{k})/G_{2} be the natural map. Let χ\chi be the Dirichlet character given by the unique surjective homomorphism ^×Gal((DE)/){±1}.\widehat{{\mathbb{Z}}}^{\times}\to\operatorname{Gal}({\mathbb{Q}}(\sqrt{D_{E}^{\prime}})/{\mathbb{Q}})\cong\{\pm 1\}.

Proposition 3.12.

With notation as above, if GE(2)=2.2.0.1G_{E}(2^{\infty})={\texttt{2.2.0.1}}, then

GE={AGE(2)^|ω(A)=ξ(det(A))}{AGE(2)^|ϵ(A)=χ(det(A))}.G_{E}=\{A\in\widehat{G_{E}(2^{\infty})}|\omega(A)=\xi(\det(A))\}\cap\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon(A)=\chi(\det(A))\}.

If GE(2){4.4.0.2,8.4.0.1}G_{E}(2^{\infty})\in\left\{{\texttt{4.4.0.2}},{\texttt{8.4.0.1}}\right\}, then

GE={AGE(2)^|ω(A)=ξ(det(A))}.G_{E}=\{A\in\widehat{G_{E}(2^{\infty})}|\omega(A)=\xi(\det(A))\}.
Proof.

Assume that GE(2)=2.2.0.1G_{E}(2^{\infty})={\texttt{2.2.0.1}}. The inclusion

(3.21) GE{AGE(2)^|ω(A)=ξ(det(A))}{AGE(2)^|ϵ(A)=χ(det(A))}G_{E}\subseteq\{A\in\widehat{G_{E}(2^{\infty})}|\omega(A)=\xi(\det(A))\}\cap\{A\in\widehat{G_{E}(2^{\infty})}|\epsilon(A)=\chi(\det(A))\}

follows from (E[2])(E[8]){\mathbb{Q}}(E[2])\subseteq{\mathbb{Q}}(E[8]), (E[2])(ζΔ(E[2]))(E[Δ(E[2])]){\mathbb{Q}}(E[2])\subseteq{\mathbb{Q}}(\zeta_{\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}})\subseteq{\mathbb{Q}}(E[\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}]) and (DE)(E[4])(E[|DE|]).{\mathbb{Q}}(\sqrt{D_{E}^{\prime}})\subseteq{\mathbb{Q}}(E[4])\cap{\mathbb{Q}}(E[\left|D_{E}^{\prime}\right|]). Similar to the proof given in Proposition 3.5 and by Proposition 2.14, we have that (3.21) is actually an equality. When GE(2)2.2.0.1G_{E}(2^{\infty})\neq{\texttt{2.2.0.1}}, the proof is similar. ∎

From the above proposition, we obtain the following formula for mEm_{E} upon noting that the level of 2.2.0.1 is 2, 4.4.0.2 is 44, and 8.4.0.1 is 8.

Corollary 3.13.

Let E/E/{\mathbb{Q}} be a 2Cn-Serre curve.

  • If GE(2)=4.4.0.2G_{E}(2^{\infty})={\texttt{4.4.0.2}}, then

    mE=lcm(4,Δ(E[2])).m_{E}=\operatorname{lcm}(4,\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}).
  • If GE(2)=8.4.0.1G_{E}(2^{\infty})={\texttt{8.4.0.1}}, then

    mE=lcm(8,Δ(E[2])).m_{E}=\operatorname{lcm}(8,\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}).
  • If GE(2)=2.2.0.1G_{E}(2^{\infty})={\texttt{2.2.0.1}}, then

    mE={lcm(4,Δ(E[2]),|DE|)2DElcm(8,Δ(E[2]),|DE|)2DE.m_{E}=\begin{cases}\operatorname{lcm}(4,\sqrt{\Delta_{{\mathbb{Q}}(E[2])}},\left|D_{E}^{\prime}\right|)&2\nmid D_{E}\\ \operatorname{lcm}(8,\sqrt{\Delta_{{\mathbb{Q}}(E[2])}},\left|D_{E}^{\prime}\right|)&2\mid D_{E}.\\ \end{cases}
Proof.

The proof is similar to the proof of Corollary 3.7. ∎

4. An application

In the previous section, we described the adelic Galois image of a Serre curve relative to an obstruction modulo 22. There are numerous applications of such an understanding, including to problems concerning the distribution of prime numbers with certain properties relating to the arithmetic of elliptic curves. The following problems are some well-known examples of this sort.

  1. (1)

    Koblitz conjecture [20] (and Zywina’s refinement [41])

  2. (2)

    Lang-Trotter conjecture [22]

  3. (3)

    Titchmarsh divisor problem for elliptic curves [28]

  4. (4)

    Cyclicity conjecture [36]

In this section, we consider the cyclicity conjecture, which asks: For an elliptic curve E/E/{\mathbb{Q}}, what is the density of primes pp of good reduction for EE with the property that the group E(𝔽p)E({\mathbb{F}}_{p}) is cyclic? Serre first studied this problem. He proved the following conditional result.

Theorem 4.1 (Serre [36]).

Assume GRH. If E/E/{\mathbb{Q}} is an elliptic curve of conductor NEN_{E}, then

#{px:pNE and E(𝔽p) is cyclic}CExlogx\#\{p\leq x:p\nmid N_{E}\text{ and }E({\mathbb{F}}_{p})\text{ is cyclic}\}\sim C_{E}\frac{x}{\log x}

as xx\to\infty, where CEn1μ(n)[(E[n]):]C_{E}\coloneqq\sum_{n\geq 1}\frac{\mu(n)}{[{\mathbb{Q}}(E[n]):{\mathbb{Q}}]} in which μ()\mu(\cdot) denotes the Möbius function.

The constant CEC_{E}, defined in Theorem 4.1, depends only on the adelic image GEG_{E}.

Assume that EE has abelian entanglements, by which we mean that for every pair of relatively prime positive integers (m1,m2)(m_{1},m_{2}), the extension (E[m1])(E[m2]){\mathbb{Q}}(E[m_{1}])\cap{\mathbb{Q}}(E[m_{2}]) over {\mathbb{Q}} is abelian. In his thesis, Brau [5, 6] gave a framework for explicitly computing CEC_{E} (provided that EE has abelian entanglements). Let m(mE)sfm\coloneqq(m_{E})_{\text{sf}} be the squarefree part of the image conductor mEm_{E} and consider the quotient group

ΦE(mGE())/GE(m).\Phi_{E}\coloneqq\left(\prod_{\ell\mid m}G_{E}(\ell)\right)/G_{E}(m).

This group quantifies the prime-level entanglements of EE.

With the above notation and terminology, Brau proved the following result.

Theorem 4.2 (Brau [5, 6]).

Let E/E/{\mathbb{Q}} be an elliptic curve with abelian entanglements. For a character χ\chi of the group |mGE()\prod_{\ell|m}G_{E}(\ell) obtained by composing the natural quotient map |mGE()ΦE\prod_{\ell|m}G_{E}(\ell)\to\Phi_{E} with a character χ~\tilde{\chi} of the group ΦE\Phi_{E}, define the constant Eχ,E_{\chi,\ell} as follows:

Eχ,={1if χ is trivial on GE()1[(E[]):]1otherwise.E_{\chi,\ell}=\begin{cases}1&\text{if $\chi$ is trivial on $G_{E}(\ell)$}\\ \frac{-1}{[{\mathbb{Q}}(E[\ell]):{\mathbb{Q}}]-1}&\text{otherwise.}\\ \end{cases}

Then the cyclicity constant of Theorem 4.1 is given by

CE=E(11[(E[]):])C_{E}=\mathfrak{C}_{E}\prod_{\ell}\left(1-\frac{1}{[{\mathbb{Q}}(E[\ell]):{\mathbb{Q}}]}\right)

where E\mathfrak{C}_{E} denotes the entanglement correction factor

E1+χ~Φ^E{1}|mEχ,\mathfrak{C}_{E}\coloneqq 1+\sum_{\tilde{\chi}\in\widehat{\Phi}_{E}\setminus\{1\}}\prod_{\ell|m}E_{\chi,\ell}

in which Φ^E\widehat{\Phi}_{E} denotes the character group of ΦE\Phi_{E}.

If EE is a Serre curve or if EE is a GG-Serre curve for G{2Cs,2B,2Cn}G\in\{{\texttt{2Cs}},{\texttt{2B}},{\texttt{2Cn}}\}, then EE has abelian entanglements. Applying Theorem 4.2 when EE is a Serre curve, Brau gave a formula for the cyclicity constant CEC_{E} in terms of only the discriminant ΔE\Delta_{E}. In a similar way, we now apply Theorem 4.2 with our results of Section 3 to give an analogous formula for relative Serre curves. The case when EE is a 2Cs-Serre curve is trivial, since GE(2)=2CsG_{E}(2)={\texttt{2Cs}} implies that (/2)(/2)({\mathbb{Z}}/2{\mathbb{Z}})\oplus({\mathbb{Z}}/2{\mathbb{Z}}) is contained in the rational torsion of EE, so CE=0C_{E}=0. Thus we only consider the cases of 2B- and 2Cn-Serre curves.

Proposition 4.3.

Let EE be a 2B-Serre curve given by (3.14). Write ΔE,sf\Delta_{E,\text{sf}} to denote the squarefree part of the discriminant of any model of EE. Then the cyclicity constant is given by

CE=E12 odd(11(21)(2))C_{E}=\mathfrak{C}_{E}\cdot\frac{1}{2}\prod_{\ell\text{ odd}}\left(1-\frac{1}{(\ell^{2}-1)(\ell^{2}-\ell)}\right)

where

E={1|ΔE,sf1(21)(2)ΔE,sf1(mod4)1otherwise.\mathfrak{C}_{E}=\begin{cases}\displaystyle 1-\prod_{\ell|\Delta_{E,\text{sf}}}\frac{-1}{(\ell^{2}-1)(\ell^{2}-\ell)}&\Delta_{E,\text{sf}}\equiv 1\pmod{4}\\ 1&\text{otherwise}.\end{cases}
Proof.

We have that (E[2])=(ΔE,sf){\mathbb{Q}}(E[2])={\mathbb{Q}}(\sqrt{\Delta_{E,\text{sf}}}). Thus (E[2]){\mathbb{Q}}(E[2]) entangles with (E[d]){\mathbb{Q}}(E[d]) for some dd coprime to 22 if and only if ΔE,sf1(mod4)\Delta_{E,\text{sf}}\equiv 1\pmod{4}. By this fact, together with Proposition 3.10, we have that ΦE\Phi_{E} is of order 2 if ΔE,sf1(mod4)\Delta_{E,\text{sf}}\equiv 1\pmod{4} and ΦE\Phi_{E} is trivial otherwise. Consider the former case. Here there are 22 characters of the group ΦE\Phi_{E}. Moreover, the non-identity character χ\chi corresponds to the non-identity character of group ΦE\Phi_{E} and is non-trivial on GE()G_{E}(\ell) for each |m\ell|m because it factors through the quotient group ΦE\Phi_{E}. So, the entanglement correction factor must be given by

(4.1) E=1+(1)|ΔE,sf1(21)(2)\mathfrak{C}_{E}=1+(-1)\prod_{\ell|\Delta_{E,\text{sf}}}\frac{-1}{(\ell^{2}-1)(\ell^{2}-\ell)}

and cyclicity constant is given by

CE=E12 odd(11(21)(2)).C_{E}=\mathfrak{C}_{E}\frac{1}{2}\prod_{\ell\text{ odd}}\left(1-\frac{1}{(\ell^{2}-1)(\ell^{2}-\ell)}\right).

since [(E[]):]=#GE()=2[{\mathbb{Q}}(E[\ell]):{\mathbb{Q}}]=\#G_{E}(\ell)=2 if =2\ell=2 and [(E[]):]=#GL2(/)=(21)(2)[{\mathbb{Q}}(E[\ell]):{\mathbb{Q}}]=\#\operatorname{GL}_{2}({\mathbb{Z}}/\ell{\mathbb{Z}})=(\ell^{2}-1)(\ell^{2}-\ell) otherwise. Note the 1-1 before the product in (4.1) comes from the prime =2\ell=2. In the latter case, that ΔE,sf1(mod4)\Delta_{E,\text{sf}}\not\equiv 1\pmod{4}, we have that E=1\mathfrak{C}_{E}=1 as ΦE\Phi_{E} is trivial. ∎

Proposition 4.4.

Let EE be a 2Cn-Serre curve. Then the cyclicity constant is given by

CE=E23 odd(11(21)(2))C_{E}=\mathfrak{C}_{E}\cdot\frac{2}{3}\prod_{\ell\text{ odd}}\left(1-\frac{1}{(\ell^{2}-1)(\ell^{2}-\ell)}\right)

where

E={1|Δ(E[2])1(21)(2) if Δ(E[2]) is squarefree1otherwise..\mathfrak{C}_{E}=\begin{cases}\displaystyle 1-\prod_{\ell|\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}}\frac{-1}{(\ell^{2}-1)(\ell^{2}-\ell)}&\text{ if }\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}\text{ is squarefree}\\ 1&\text{otherwise}.\end{cases}.
Proof.

We have that (E[2]){\mathbb{Q}}(E[2]) is a cyclic cubic field of conductor Δ(E[2])\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}. By this fact, together with Proposition 3.12, we have that ΦE\Phi_{E} is of order 3 if Δ(E[2])\sqrt{\Delta_{{\mathbb{Q}}(E[2])}} is squarefree, and ΦE\Phi_{E} is trivial otherwise. Consider the former case. Here there are 3 characters of the group ΦE\Phi_{E}. Moreover, the non-identity characters χ\chi correspond to non-identity characters of ΦE\Phi_{E}, and are non-trivial on GE()G_{E}(\ell) for each |m\ell|m because they factor through ΦE\Phi_{E}. Thus, the entanglement correction factor of Theorem 4.2 is given by

E=1+2(1/2)|Δ(E[2])1(21)(2)\mathfrak{C}_{E}=1+2(-1/2)\prod_{\ell|\sqrt{\Delta_{{\mathbb{Q}}(E[2])}}}\frac{-1}{(\ell^{2}-1)(\ell^{2}-\ell)}

and cyclicity constant is given by

CE=E23 odd(11(21)(2))C_{E}=\mathfrak{C}_{E}\cdot\frac{2}{3}\prod_{\ell\text{ odd}}\left(1-\frac{1}{(\ell^{2}-1)(\ell^{2}-\ell)}\right)

since [(E[]):]=#GE()[{\mathbb{Q}}(E[\ell]):{\mathbb{Q}}]=\#G_{E}(\ell) equals 33 if =2\ell=2 and equals #GL2(/)\#\operatorname{GL}_{2}({\mathbb{Z}}/\ell{\mathbb{Z}}) otherwise. ∎

5. Some examples

In this section, we build on Section 3 to explicitly compute the adelic Galois image of three relative Serre curves. In each case, our result agrees (up to conjugacy) with the output of Zywina’s recent general algorithm [43]. The code that accompanies this section is available on this paper’s GitHub repository [24].

Example 5.1.

Consider the elliptic curve EE with LMFDB label 315.a2 given by the Weierstrass equation

y2=x31083x+10582=(x11)(x26)(x+37).y^{2}=x^{3}-1083x+10582=(x-11)(x-26)(x+37).

Using our IsRelSerreCurve script, we find that EE is a 2Cs-Serre curve. With the notation of Section 3.1, we have that

S={±3,±5,±7,±15,±21,±35}.S=\{\pm 3,\pm 5,\pm 7,\pm 15,\pm 21,\pm 35\}.

Thus (N1,k1)=(3,2),(N2,k2)=(5,2)(N_{1},k_{1})=(3,2),(N_{2},k_{2})=(5,2), and (N3,k3)=(7,2)(N_{3},k_{3})=(7,2). Hence N1=3,N2=5N_{1}^{\prime}=-3,N_{2}^{\prime}=5, and N3=7.N_{3}^{\prime}=-7. There is a quadratic entanglement between (E[4]){\mathbb{Q}}(E[4]) and (E[|Ni|]){\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]) for each i{1,2,3}i\in\{1,2,3\}. Using Sutherland’s galrep [38], we compute

GE(4)=(3001),(1203),(1221),(3003).G_{E}(4)=\left\langle\begin{pmatrix}3&0\\ 0&1\end{pmatrix},\begin{pmatrix}1&2\\ 0&3\end{pmatrix},\begin{pmatrix}1&2\\ 2&1\end{pmatrix},\begin{pmatrix}3&0\\ 0&3\end{pmatrix}\right\rangle.

Let GiG_{i} be the index 2 subgroup of GE(4)G_{E}(4) corresponding to Gal((E[4])/(Ni)).\operatorname{Gal}({\mathbb{Q}}(E[4])/{\mathbb{Q}}(\sqrt{N_{i}^{\prime}})). By constructing the field (E[4]){\mathbb{Q}}(E[4]) in Magma and considering its automorphisms that fix the subfield (Ni){\mathbb{Q}}(\sqrt{N_{i}^{\prime}}), we determine that

G1\displaystyle G_{1} =(1201),(1003),(1223),(1203),(1221),(1021),(1023),\displaystyle=\left\langle\begin{pmatrix}1&2\\ 0&1\end{pmatrix},\begin{pmatrix}1&0\\ 0&3\end{pmatrix},\begin{pmatrix}1&2\\ 2&3\end{pmatrix},\begin{pmatrix}1&2\\ 0&3\end{pmatrix},\begin{pmatrix}1&2\\ 2&1\end{pmatrix},\begin{pmatrix}1&0\\ 2&1\end{pmatrix},\begin{pmatrix}1&0\\ 2&3\end{pmatrix}\right\rangle,
G2\displaystyle G_{2} =(1223),(1203),(3023),(3003),(3201),(1021),(3221),\displaystyle=\left\langle\begin{pmatrix}1&2\\ 2&3\end{pmatrix},\begin{pmatrix}1&2\\ 0&3\end{pmatrix},\begin{pmatrix}3&0\\ 2&3\end{pmatrix},\begin{pmatrix}3&0\\ 0&3\end{pmatrix},\begin{pmatrix}3&2\\ 0&1\end{pmatrix},\begin{pmatrix}1&0\\ 2&1\end{pmatrix},\begin{pmatrix}3&2\\ 2&1\end{pmatrix}\right\rangle,
G3\displaystyle G_{3} =(1201),(1003),(1203),(3021),(3023),(3223),(3221).\displaystyle=\left\langle\begin{pmatrix}1&2\\ 0&1\end{pmatrix},\begin{pmatrix}1&0\\ 0&3\end{pmatrix},\begin{pmatrix}1&2\\ 0&3\end{pmatrix},\begin{pmatrix}3&0\\ 2&1\end{pmatrix},\begin{pmatrix}3&0\\ 2&3\end{pmatrix},\begin{pmatrix}3&2\\ 2&3\end{pmatrix},\begin{pmatrix}3&2\\ 2&1\end{pmatrix}\right\rangle.

Let ϵi:GE(4)GE(4)/Gi\epsilon_{i}:G_{E}(4)\to G_{E}(4)/G_{i} be the natural map and χi:GL2(/|Ni|){±1}\chi_{i}:\operatorname{GL}_{2}({\mathbb{Z}}/\left|N_{i}^{\prime}\right|{\mathbb{Z}})\to\{\pm 1\} be the unique quadratic character (which is given by the determinant map composed with the Kronecker symbol). The image conductor of EE is 420=lcm(4,3,5,7)420=\operatorname{lcm}(4,3,5,7). In view of Proposition 3.5, we have that

GE(420)={gGL2(/420):π4(g)GE(4) and ϵi(g)=χi(g) for each i}.G_{E}(420)=\{g\in\operatorname{GL}_{2}({\mathbb{Z}}/420{\mathbb{Z}}):\pi_{4}(g)\in G_{E}(4)\text{ and }\epsilon_{i}(g)=\chi_{i}(g)\text{ for each $i$}\}.

Using Magma, we compute this fiber product to be the group

GE(420)=(259362162365),(401108364275),(551425245),(2718440201).G_{E}(420)=\left\langle\begin{pmatrix}259&362\\ 162&365\end{pmatrix},\begin{pmatrix}401&108\\ 364&275\end{pmatrix},\begin{pmatrix}55&142\\ 52&45\end{pmatrix},\begin{pmatrix}27&184\\ 40&201\end{pmatrix}\right\rangle.

Now the adelic image GEG_{E} is the full preimage of GE(420)G_{E}(420) in GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}).

Example 5.2.

Consider the elliptic curve EE with LMFDB label 69.a1 given by

y2=x320115x1094418=(x278x14031)(x+78).y^{2}=x^{3}-20115x-1094418=(x^{2}-78x-14031)(x+78).

This curve is a 2B-Serre curve. With the notation of Section 3.2, we have that

S={±3,±23,±69}.S=\{\pm 3,\pm 23,\pm 69\}.

Thus (N1,k1)=(3,2)(N_{1},k_{1})=(3,2) and (N2,k2)=(23,2)(N_{2},k_{2})=(23,2), so N1=3N_{1}^{\prime}=-3 and N2=23N_{2}^{\prime}=-23. Hence there is a quadratic entanglement between (E[4]){\mathbb{Q}}(E[4]) and (E[|Ni|]){\mathbb{Q}}(E[\left|N_{i}^{\prime}\right|]) for each i{1,2}i\in\{1,2\}. Using galrep, we compute that

GE(4)=(3233),(1211),(1031),(1233).G_{E}(4)=\left\langle\begin{pmatrix}3&2\\ 3&3\end{pmatrix},\begin{pmatrix}1&2\\ 1&1\end{pmatrix},\begin{pmatrix}1&0\\ 3&1\end{pmatrix},\begin{pmatrix}1&2\\ 3&3\end{pmatrix}\right\rangle.

Let GiG_{i} be the index 2 subgroup of GE(4)G_{E}(4) corresponding to Gal((E[4])/(Ni)).\operatorname{Gal}({\mathbb{Q}}(E[4])/{\mathbb{Q}}(\sqrt{N_{i}^{\prime}})). As in Example 5.1, we determine that

G1=(1003),(3003),(1011)andG2=(3003),(1201),(3031).G_{1}=\left\langle\begin{pmatrix}1&0\\ 0&3\end{pmatrix},\begin{pmatrix}3&0\\ 0&3\end{pmatrix},\begin{pmatrix}1&0\\ 1&1\end{pmatrix}\right\rangle\quad\text{and}\quad G_{2}=\left\langle\begin{pmatrix}3&0\\ 0&3\end{pmatrix},\begin{pmatrix}1&2\\ 0&1\end{pmatrix},\begin{pmatrix}3&0\\ 3&1\end{pmatrix}\right\rangle.

Let ϵi:GE(4)GE(4)/Gi\epsilon_{i}:G_{E}(4)\to G_{E}(4)/G_{i} be the natural map and χi:GL2(/|Ni|){±1}\chi_{i}:\operatorname{GL}_{2}({\mathbb{Z}}/\left|N_{i}^{\prime}\right|{\mathbb{Z}})\to\{\pm 1\} be the unique quadratic character. In view of Proposition 3.10, we have that

GE(276)={gGL2(/276):π4(g)GE(4) and ϵi(g)=χi(g) for each i}.G_{E}(276)=\{g\in\operatorname{GL}_{2}({\mathbb{Z}}/276{\mathbb{Z}}):\pi_{4}(g)\in G_{E}(4)\text{ and }\epsilon_{i}(g)=\chi_{i}(g)\text{ for each $i$}\}.

Using Magma, we compute that

GE(276)=(431286553),(1314063269),(167262345),(129176155145),(175188182189).G_{E}(276)=\left\langle\begin{pmatrix}43&128\\ 65&53\end{pmatrix},\begin{pmatrix}13&140\\ 63&269\end{pmatrix},\begin{pmatrix}167&26\\ 23&45\end{pmatrix},\begin{pmatrix}129&176\\ 155&145\end{pmatrix},\begin{pmatrix}175&188\\ 182&189\end{pmatrix}\right\rangle.

Now the adelic image GEG_{E} is the full preimage of GE(276)G_{E}(276) in GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}).

Example 5.3.

Consider the elliptic curve EE with LMFDB label 392.a1 given by

y2=x37x+7.y^{2}=x^{3}-7x+7.

We have that 27=ΔE4(E[4])2\sqrt{7}=\sqrt[4]{\Delta_{E}}\in{\mathbb{Q}}(E[4]). As 1(E[4])\sqrt{-1}\in{\mathbb{Q}}(E[4]), this implies that 7(E[4])(E[7])\sqrt{-7}\in{\mathbb{Q}}(E[4])\cap{\mathbb{Q}}(E[7]). Thus there is a quadratic entanglement between (E[4]){\mathbb{Q}}(E[4]) and (E[7]){\mathbb{Q}}(E[7]). Further f((E[2]))=7f({\mathbb{Q}}(E[2]))=7, so there is a cubic entanglement between (E[2]){\mathbb{Q}}(E[2]) and (E[7]){\mathbb{Q}}(E[7]) (and hence also between (E[4]){\mathbb{Q}}(E[4]) and (E[7]){\mathbb{Q}}(E[7])). Using galrep, we compute that

GE(4)=(2333),(1310),(2131).G_{E}(4)=\left\langle\begin{pmatrix}2&3\\ 3&3\end{pmatrix},\begin{pmatrix}1&3\\ 1&0\end{pmatrix},\begin{pmatrix}2&1\\ 3&1\end{pmatrix}\right\rangle.

Let G1G_{1} be the index 2 subgroup of GE(4)G_{E}(4) corresponding to Gal((E[4])/(7)).\operatorname{Gal}({\mathbb{Q}}(E[4])/{\mathbb{Q}}(\sqrt{-7})). Let G2G_{2} be the unique index 3 subgroup of GE(4)G_{E}(4). Using Magma, we find that

G1=(1003),(0111)andG2=(1003),(1021),(3203),(1221).G_{1}=\left\langle\begin{pmatrix}1&0\\ 0&3\end{pmatrix},\begin{pmatrix}0&1\\ 1&1\end{pmatrix}\right\rangle\quad\text{and}\quad G_{2}=\left\langle\begin{pmatrix}1&0\\ 0&3\end{pmatrix},\begin{pmatrix}1&0\\ 2&1\end{pmatrix},\begin{pmatrix}3&2\\ 0&3\end{pmatrix},\begin{pmatrix}1&2\\ 2&1\end{pmatrix}\right\rangle.

Let ϵ:GE(4)GE(4)/G1\epsilon:G_{E}(4)\to G_{E}(4)/G_{1} and ω:GE(4)GE(4)/G2\omega:G_{E}(4)\to G_{E}(4)/G_{2} be the natural maps. There are two nontrivial cubic characters of GE(4)G_{E}(4) (both of which have kernel G2G_{2}). They are the maps gω(g)g\mapsto\omega(g) and gω(g)2g\mapsto\omega(g)^{2}. Thus by Proposition 3.12, there are two possible candidates for GE(28)G_{E}(28), namely,

H1=(2623111),(821717)andH2=(2623119),(19272112),(852721).H_{1}=\left\langle\begin{pmatrix}26&23\\ 1&11\end{pmatrix},\begin{pmatrix}8&21\\ 7&17\end{pmatrix}\right\rangle\quad\text{and}\quad H_{2}=\left\langle\begin{pmatrix}26&23\\ 1&19\end{pmatrix},\begin{pmatrix}19&27\\ 21&12\end{pmatrix},\begin{pmatrix}8&5\\ 27&21\end{pmatrix}\right\rangle.

To determine the correct candidate, we consider the action of Frobenius. Let Frob3Gal(¯/)\operatorname{Frob}_{3}\in\operatorname{Gal}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) be a Frobenius automorphism associated with p=3p=3. Using Magma, we compute that the characteristic polynomial of ρE,28(Frob3)\rho_{E,28}(\operatorname{Frob}_{3}) is x2+3x+3x^{2}+3x+3. This polynomial does not appear as the characteristic polynomial of any matrix in H1H_{1}. As such, it must be that GE(28)=H2G_{E}(28)=H_{2}. We conclude that the adelic image GEG_{E} is the full preimage of GE(28)=H2G_{E}(28)=H_{2} in GL2(^)\operatorname{GL}_{2}(\widehat{{\mathbb{Z}}}).

References

  • [1] Shabnam Akhtari, Chantal David, Heekyoung Hahn, and Lola Thompson, Distribution of squarefree values of sequences associated with elliptic curves, Women in numbers 2: research directions in number theory, Contemp. Math., vol. 606, Amer. Math. Soc., Providence, RI, 2013, pp. 171–188. MR 3204298
  • [2] Nuno Arala, On the density of a set of primes associated to an elliptic curve, J. Number Theory 243 (2023), 241–255. MR 4499392
  • [3] Renee Bell, Clifford Blakestad, Alina Carmen Cojocaru, Alexander Cowan, Nathan Jones, Vlad Matei, Geoffrey Smith, and Isabel Vogt, Constants in Titchmarsh divisor problems for elliptic curves, Res. Number Theory 6 (2020), no. 1, Paper No. 1, 24. MR 4041152
  • [4] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR 1484478
  • [5] Julio Brau, Galois representations of elliptic curves and abelian entanglements, Ph.D. thesis, Universiteit Leiden, 2015.
  • [6] by same author, Character sums for elliptic curve densities, 2017, arXiv:1703.04154.
  • [7] Julio Brau and Nathan Jones, Elliptic curves with 22-torsion contained in the 33-torsion field, Proc. Amer. Math. Soc. 144 (2016), no. 3, 925–936. MR 3447646
  • [8] Harvey Cohn, Introduction to the construction of class fields, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1985 original. MR 1313719
  • [9] John Cremona, Elliptic curve data, 2014, Available at http://johncremona.github.io/ecdata/.
  • [10] Harris B. Daniels, An infinite family of Serre curves, J. Number Theory 155 (2015), 226–247. MR 3349445
  • [11] Harris B. Daniels, Alvaro Lozano-Robledo, and Jackson S. Morrow, Towards a classification of entanglements of Galois representations attached to elliptic curves, Rev. Mat. Iberoam. 39 (2023), no. 3, 803–844. MR 4605883
  • [12] Harris B. Daniels and Álvaro Lozano-Robledo, Coincidences of division fields, 2019, arXiv:1912.05618.
  • [13] Harris B. Daniels and Jackson S. Morrow, A group theoretic perspective on entanglements of division fields, Trans. Amer. Math. Soc. Ser. B 9 (2022), 827–858. MR 4496973
  • [14] Aaron Greicius, Elliptic curves with surjective adelic Galois representations, Experiment. Math. 19 (2010), no. 4, 495–507. MR 2778661
  • [15] Nathan Jones, Averages of elliptic curve constants, Math. Ann. 345 (2009), no. 3, 685–710. MR 2534114
  • [16] by same author, Almost all elliptic curves are Serre curves, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1547–1570. MR 2563740
  • [17] by same author, Elliptic aliquot cycles of fixed length, Pacific J. Math. 263 (2013), no. 2, 353–371. MR 3068548
  • [18] by same author, GL2{\rm GL}_{2}-representations with maximal image, Math. Res. Lett. 22 (2015), no. 3, 803–839. MR 3350106
  • [19] Nathan Jones and Ken McMurdy, Elliptic curves with non-abelian entanglements, New York J. Math. 28 (2022), 182–229. MR 4374148
  • [20] Neal Koblitz, Primality of the number of points on an elliptic curve over a finite field, Pacific J. Math. 131 (1988), no. 1, 157–165. MR 917870
  • [21] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556
  • [22] Serge Lang and Hale Trotter, Frobenius distributions in GL2{\rm GL}_{2}-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976, Distribution of Frobenius automorphisms in GL2{{\rm{G}}L}_{2}-extensions of the rational numbers. MR 0568299
  • [23] Davide Lombardo and Sebastiano Tronto, Some uniform bounds for elliptic curves over \mathbb{Q}, Pacific J. Math. 320 (2022), no. 1, 133–175. MR 4496096
  • [24] Jacob Mayle and Rakvi, Github repository related to Serre curves relative to obstructions modulo 2, https://github.com/maylejacobj/RelativeSerreCurves, 2022.
  • [25] Jacob J. Mayle, Galois Representations of Abelian Varieties, ProQuest LLC, Ann Arbor, MI, 2022, Thesis (Ph.D.)–University of Illinois at Chicago. MR 4533238
  • [26] Barry Mazur, Rational points on modular curves, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), 1977, pp. 107–148. Lecture Notes in Math., Vol. 601. MR 0450283
  • [27] Jackson S. Morrow, Composite images of Galois for elliptic curves over 𝐐\mathbf{Q} and entanglement fields, Math. Comp. 88 (2019), no. 319, 2389–2421. MR 3957898
  • [28] Paul Pollack, A Titchmarsh divisor problem for elliptic curves, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 1, 167–189. MR 3432335
  • [29] Jeremy Rouse, Andrew V. Sutherland, and David Zureick-Brown, ell-adic-galois-images, https://github.com/AndrewVSutherland/ell-adic-galois-images, 2022.
  • [30] by same author, \ell-adic images of Galois for elliptic curves over \mathbb{Q} (and an appendix with John Voight), Forum Math. Sigma 10 (2022), Paper No. e62, 63, With an appendix with John Voight. MR 4468989
  • [31] Jeremy Rouse and David Zureick-Brown, Images of the 2-adic Galois representation attached to elliptic curves, https://users.wfu.edu/rouseja/2adic/.
  • [32] by same author, Elliptic curves over \mathbb{{\mathbb{Q}}} and 2-adic images of Galois, Res. Number Theory 1 (2015), Paper No. 12, 34. MR 3500996
  • [33] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331. MR 387283
  • [34] by same author, Abelian ll-adic representations and elliptic curves, second ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989, With the collaboration of Willem Kuyk and John Labute. MR 1043865
  • [35] by same author, Topics in Galois theory, second ed., Research Notes in Mathematics, vol. 1, A K Peters, Ltd., Wellesley, MA, 2008, With notes by Henri Darmon. MR 2363329
  • [36] by same author, Résumé des cours de 1977–1978; Oeuvres/Collected papers. III. 1972–1984, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013, Reprint of the 2003 edition [of the 1986 original MR0926691]. MR 3223094
  • [37] Hanson Smith, Non-monogenic division fields of elliptic curves, J. Number Theory 228 (2021), 174–187. MR 4271815
  • [38] Andrew V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016), Paper No. e4, 79. MR 3482279
  • [39] The LMFDB Collaboration, The L-functions and modular forms database, 2021, Available at https://www.lmfdb.org/.
  • [40] Jeffrey Yelton, A note on 8-division fields of elliptic curves, Eur. J. Math. 3 (2017), no. 3, 603–613. MR 3687433
  • [41] David Zywina, A refinement of Koblitz’s conjecture, Int. J. Number Theory 7 (2011), no. 3, 739–769. MR 2805578
  • [42] by same author, On the possible images of the mod \ell representations associated to elliptic curves over \mathbb{{\mathbb{Q}}}, 2015, arXiv:1508.07660.
  • [43] by same author, Explicit open images for elliptic curves over \mathbb{Q}, 2022, arXiv:2206.14959.
  • [44] by same author, On the surjectivity of mod{\rm mod}\,\ell representations associated to elliptic curves, Bull. Lond. Math. Soc. 54 (2022), no. 6, 2404–2417. MR 4549128

Appendix A Table of relative Serre curves

The table below gives, for each G{2Cs,2B,2Cn}G\in\{{\texttt{2Cs}},{\texttt{2B}},{\texttt{2Cn}}\} and H𝒮GH\in\mathcal{S}_{G}, an elliptic curve E/E/{\mathbb{Q}} with minimal conductor among GG-Serre curves for which GE(2)=HG_{E}(2^{\infty})=H. For each curve, the LMFDB label and minimal Weierstrass equation is listed, along with the image conductor mEm_{E} and entanglement correction factor E\mathfrak{C}_{E}. If GE(2)=2CsG_{E}(2)=\texttt{2Cs}, then CE=0C_{E}=0. Thus E\mathfrak{C}_{E} is not given for 2Cs-Serre curves.

GG GE(2)G_{E}(2^{\infty}) LMFDB Weierstrass equation mEm_{E} E\mathfrak{C}_{E}
2Cs 2.6.0.1 315.a2 y2+xy+y=x3x268x+182y^{2}+xy+y=x^{3}-x^{2}-68x+182 420 -
2Cs 8.12.0.2 1800.c3 y2=x33675x+35750y^{2}=x^{3}-3675x+35750 120 -
2Cs 4.12.0.2 1089.j2 y2+xy=x3x212546x+173047y^{2}+xy=x^{3}-x^{2}-12546x+173047 132 -
2Cs 8.12.0.1 120.a3 y2=x3+x216x16y^{2}=x^{3}+x^{2}-16x-16 120 -
2Cs 4.12.0.1 33.a2 y2+xy=x3+x211xy^{2}+xy=x^{3}+x^{2}-11x 132 -
2Cs 8.12.0.3 350.b3 y2+xy=x3x2442x2784y^{2}+xy=x^{3}-x^{2}-442x-2784 280 -
2Cs 8.24.0.5 392.d3 y2=x3931x10290y^{2}=x^{3}-931x-10290 56 -
2Cs 8.24.0.7 3136.p3 y2=x33724x+82320y^{2}=x^{3}-3724x+82320 56 -
2Cs 8.24.0.2 112.b3 y2=x319x30y^{2}=x^{3}-19x-30 56 -
2Cs 8.24.0.1 56.a3 y2=x319x+30y^{2}=x^{3}-19x+30 56 -
2Cs 8.12.0.4 198.a2 y2+xy=x3x2198x+1120y^{2}+xy=x^{3}-x^{2}-198x+1120 264 -
2Cs 8.24.0.6 288.b3 y2=x321x20y^{2}=x^{3}-21x-20 24 -
2Cs 8.24.0.8 576.g2 y2=x384x160y^{2}=x^{3}-84x-160 24 -
2Cs 8.24.0.3 96.b3 y2=x3+x22xy^{2}=x^{3}+x^{2}-2x 24 -
2Cs 8.24.0.4 66.b2 y2+xy+y=x3+x222x49y^{2}+xy+y=x^{3}+x^{2}-22x-49 264 -
2B 2.3.0.1 69.a1 y2+xy+y=x316x25y^{2}+xy+y=x^{3}-16x-25 276 1
2B 8.6.0.2 1152.d1 y2=x3216x864y^{2}=x^{3}-216x-864 24 1
2B 8.6.0.4 102.a1 y2+xy=x3+x22xy^{2}+xy=x^{3}+x^{2}-2x 136 7833778336\tfrac{78337}{78336}
2B 8.6.0.1 46.a2 y2+xy=x3x210x12y^{2}+xy=x^{3}-x^{2}-10x-12 184 267169267168\tfrac{267169}{267168}
2B 8.6.0.6 46.a1 y2+xy=x3x2170x812y^{2}+xy=x^{3}-x^{2}-170x-812 184 1
2B 8.6.0.3 490.f1 y2+xy=x31191x+15721y^{2}+xy=x^{3}-1191x+15721 56 1
2B 8.6.0.5 102.a2 y2+xy=x3+x2+8x+10y^{2}+xy=x^{3}+x^{2}+8x+10 136 1
2Cn 2.2.0.1 392.a1 y2=x37x+7y^{2}=x^{3}-7x+7 28 20172016\frac{2017}{2016}
2Cn 4.4.0.2 392.c1 y2=x3x216x+29y^{2}=x^{3}-x^{2}-16x+29 28 20172016\frac{2017}{2016}
2Cn 8.4.0.1 3136.b1 y2=x31372x19208y^{2}=x^{3}-1372x-19208 56 20172016\frac{2017}{2016}