This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA22institutetext: Institut für Quantengravitation, Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany33institutetext: Center for Quantum Computing, Pengcheng Laboratory, Shenzhen 518066, China

Semiclassical Limit of New Path Integral Formulation from Reduced Phase Space Loop Quantum Gravity

Muxin Han 2,3     Hongguang Liu hanm(At)fau.edu liu.hongguang(At)cpt.univ-mrs.fr
Abstract

Recently, a new path integral formulation of Loop Quantum Gravity (LQG) has been derived in Han:2019vpw from the reduced phase space formulation of the canonical LQG. This paper focuses on the semiclassical analysis of this path integral formulation. We show that dominant contributions of the path integral come from solutions of semiclassical equations of motion (EOMs), which reduces to Hamilton’s equations of holonomies and fluxes h(e),pa(e){h}(e),{p}^{a}(e) in the reduced phase space 𝒫γ\mathcal{P}_{\gamma} of the cubic lattice γ\gamma:

dh(e)dτ={h(e),𝐇},dpa(e)dτ={pa(e),𝐇},\displaystyle\frac{\mathrm{d}{h}(e)}{\mathrm{d}\tau}=\{{h}(e),\,\mathbf{H}\},\quad\frac{\mathrm{d}{p}^{a}(e)}{\mathrm{d}\tau}=\{{p}^{a}(e),\,\mathbf{H}\},

where 𝐇\mathbf{H} is the discrete physical Hamiltonian. The semiclassical dynamics from the path integral becomes an initial value problem of Hamiltonian time evolution in 𝒫γ\mathcal{P}_{\gamma}. Moreover when we take the continuum limit of the lattice γ\gamma, these Hamilton’s equations reproduce correctly classical reduced phase space EOMs of gravity coupled to dust fields in the continuum, as far as initial and final states are semiclassical. Our result proves that the new path integral formulation has the correct semiclassical limit, and indicates that the reduced phase space quantization in LQG is semiclassically consistent. Based on these results, we compare this path integral formulation and the spin foam formulation, and show that this formulation has several advantages including the finiteness, the relation with canonical LQG, and being free of cosine and flatness problems.

1 Introduction

In recent developments of Loop Quantum Gravity (LQG), tremendous progresses have been obtained by the covariant path integral approach (see e.g. rovelli2014covariant for summary). The covariant path integral approach of LQG focuses on transition amplitudes of LQG states (such as spin-networks). These amplitudes sum all possible evolution histories of LQG states, reflecting the idea of Feynman’s path integral. Moreover the path integral approach makes it possible to bypass complications from non-polynomial Hamiltonian constraint operator, and possibly reduce difficulties in computing physical quantities in LQG. Indeed, the path integral trades the non-commutativity of quantum operators for integrals of commutative cc-numbers, thus may reduce complicated operator manipulations to computable integrals. It is the reason why most developments of Quantum Field Theories (QFTs) are made by using path integral formulae.

A popular path integral approach in LQG is the Spin Foam formulation rovelli2014covariant ; Perez2012 . This formulation constructs transition amplitudes of LQG on a 4-dimensional triangulations, and all these spin foam amplitudes are made by gluing elementary building blocks called vertex amplitudes, in analogy with Feynman amplitudes made by gluing vertices and propagators. This structure of spin foam amplitudes allow them to be study both analytically and numerically. Semiclassical behaviors of spin foam amplitudes, given by the large-jj asymptotics, have been extensively studied analytically and found close relation to Regge calculus of discrete gravity (see e.g. CFsemiclassical ; semiclassical ; semiclassicalEu ; HZ ; HZ1 ; HHKR ; Liu:2018gfc ; Han:2017xwo ; Han:2018fmu ; Bahr:2017eyi ; Alesci:2009ys ; propagator3 ; Han:2017isy ; propagator2 ). Numerical studies of spin foam amplitudes have been developed in Dona:2019dkf ; Gozzini:2019kui ; Dona:2018nev ; Bahr:2016hwc . Spin foams have also been related to quantum computations recently Cohen:2020jlj ; 2019CmPhy…2..122L ; Mielczarek:2018jsh . However extensive studies of spin foam amplitudes reveal several severe problems:

  1. 1.

    Cosine problem: In the large-jj limit, the emergent (discrete) spacetime determined by spin foam amplitude with fixed semiclassical boundary state is highly non-unique in general, even when the semiclassical boundary state specifies both metric and extrinsic curvature at the boundary, while the uniqueness only happens for a single vertex amplitude Bianchi:2010mw . Different discrete spacetimes have different 4d orientations at individual 4-simplices HZ ; HZ1 . If we view the spin foam as an initial value problem, then its semiclassical time evolution from a fixed initial condition in phase space can give many different trajectories, thus is very different from classical physics.

  2. 2.

    Flatness problem: There are evidences indicating that in the large-jj limit, spin foam amplitudes dominate at the flat spacetime and miss all other curved spacetimes flatness ; Perini:2012nd ; frankflat ; lowE ; LowE1 . Although some other work suggests that one may modify the large-jj limit and/or definitions of spin foams in order to avoid the flatness problem Han:2018fmu ; claudio1 ; Han:2017xwo , there is still no satisfactory resolution to the problem in full generality111See also a recent numerical study toward understanding the problem Dona:2020tvv .

  3. 3.

    Relation with canonical LQG: The spin foam approach has been developed in parallel to the canonical approach of LQG. It is not clear how to relate spin foam amplitudes to any transition amplitude or physical inner product in the canonical LQG (see e.g. link ; link1 ; Han:2009bb ; Engle:2009ba ; Alesci:2011ia ; Thiemann:2013lka for some earlier attempts). It is not clear about the unitarity of spin foam models.

  4. 4.

    Divergence: Spin foam amplitudes are divergent unless the quantum group is employed (the quantum group relates to cosmological constant QSF ; HHKR ).

  5. 5.

    Computational complexity: Numerical computations are currently developed only for a single vertex amplitude. Even for the vertex amplitude, the computational complexity grows very fast as the spin jj increases Dona:2019dkf . The computational complexity grows exponentially when the number of 4-simplices increases. Quantum computing might help in this perspective, but it is still at a very preliminary stage.

  6. 6.

    Lattice dependence: There are infinitely many spin foam amplitudes with the same boundary state. These amplitudes are defined on different triangulations (with the same boundary). It is not clear how to remove the triangulation dependence and/or how to take the continuum limit at the quantum level. Group Field Theory (GFT) provides an interesting proposal to sum over all triangulations, but it seems still difficult to extract all semiclassical smooth spacetimes from a fixed GFT partition function (while some special cases such as black holes and cosmology can indeed be extract from the general GFT formalism Oriti:2018qty ; Gielen:2017eco ; Oriti:2016ueo ).

As a different approach, a new path integral formulation of LQG has been proposed recently in Han:2019vpw . This path integral is derived from the reduced phase space formulation of canonical LQG. The reduced phase space formulation couples gravity to matter fields such as dusts or scalar fields (clock fields), followed by a deparametrization procedure, in which gravity variables are parametrized by values of clock fields, and constraints are solved classically. Results from the deparametrization are (1) the reduced phase space 𝒫\mathcal{P} on which all phase space functions are Dirac observables free of gauge redundancy (except for the SU(2) gauge freedom when using connection variables), and (2) the dynamics is governed by a physical Hamiltonian 𝐇0{\bf H}_{0} generating physical time evolution (the physical time is the value of a clock field). The reduced phase space 𝒫\mathcal{P} of gravity-matter system can be quantized using the standard LQG technique, and result in the physical Hilbert space \mathcal{H}. The physical Hamiltonian is promoted to a positive self-adjoint Hamiltonian operator 𝐇^\hat{\bf H} on \mathcal{H}. The reduced phase space quantization of LQG has been proposed conceptually in Rovelli:1990ph ; Rovelli:2001bz , and been made concrete in Dittrich:2004cb ; Thiemann:2004wk ; Giesel:2007wi ; Giesel:2007wk ; Giesel:2007wn ; Giesel:2012rb (Section 2 provides a review of the reduced phase space formulation).

The new path integral formula in Han:2019vpw equals to the transition amplitude of the unitary evolution generated by 𝐇^\hat{\bf H}:

A[g],[g]=Ψ[g]t|exp[iT𝐇^]|Ψ[g]t\displaystyle A_{[g],[g^{\prime}]}=\langle\Psi^{t}_{[g]}|\,\exp[-\frac{i}{\hbar}T\hat{\bf H}]\,|\Psi^{t}_{[g^{\prime}]}\rangle (1)

of semiclassical initial and final physical states Ψ[g]t,Ψ[g]t\Psi^{t}_{[g^{\prime}]},\Psi^{t}_{[g]}. Here Ψ[g]t,Ψ[g]t\Psi^{t}_{[g^{\prime}]},\Psi^{t}_{[g]} are SU(2) gauge invariant coherent states Ashtekar:1994nx ; Thiemann:2000bw in γ\mathcal{H}_{\gamma}, the physical Hilbert space on a cubic lattice γ\gamma. [g],[g][g],[g^{\prime}] label gauge equivalence class of initial and final data in the phase space (gg is the complex coordinate of the phase space). The path integral formula is derived from A[g],[g]A_{[g],[g^{\prime}]} by standard method: discretizing TT into arbitrarily large NN time-steps and inserting overcompletness relation of coherent states. As a result, we obtain a discrete path integral on a 4d hypercubic lattice (see Section 2 for review).

A[g],[g]Ψ[g]tΨ[g]t=dhi=1N+1dgiν[g]eS[g,h]/t\displaystyle\frac{A_{[g],[g^{\prime}]}}{\|\Psi_{[g]}^{t}\|\,\|\Psi_{[g^{\prime}]}^{t}\|}=\int\mathrm{d}h\prod_{i=1}^{N+1}\mathrm{d}g_{i}\,\nu[g]\,e^{S[g,h]/t} (2)

where we can extract a “classical action” S[g,h]S[g,h] from the resulting path integral formula (see Section 2.2 for details). dgiν[g]\int\mathrm{d}g_{i}\nu[g] integrates coherent states intermediating the quantum transition at different time steps τi=iNT\tau_{i}=\frac{i}{N}T. t=P2/a2t=\ell_{P}^{2}/a^{2} is a dimensionless semiclassicality parameter, and aa is a length unit determining the scale at which the physics is interested. For instance, aa is a macroscopic unit, e.g. a=1mma=1mm, when we are interested in the semiclassical limit. So Pa\ell_{P}\ll a and t0t\to 0. Eq.2 has SU(2) integrals dh\int\mathrm{d}h since the initial and final data have SU(2) gauge freedom.

This path integral formula is comparable to the spin foam amplitude in the coherent state representation HZ which is frequently used for analyzing the large-jj behavior. On the other hand, if we choose the clock field to be a real massless scalar, Eq.2 closely relates to the spin foam model in Kisielowski:2018oiv 222Namely 2 is the coherent state representation of the amplitude in Kisielowski:2018oiv , if their derivation uses graph-preserving Hamiltonian, and 𝐇^\hat{\bf H} is the Hamiltonian in Assanioussi:2015gka .. It is a matter of changing representation basis to cast the path integral 2 into a shape similar to spin foams.

In this paper, we focus on the semiclassical analysis of the path integral formulation Eq.2, i.e. the behavior as t0t\to 0. By stationary phase approximation, dominant contributions of the path integral come from solutions of semiclassical equations of motion (EOMs) δS=0\delta S=0. These semiclassical EOMs have been derived in Han:2019vpw , and shown to admit time continuous limit Δτ=T/N0\Delta\tau=T/N\to 0, i.e. all solutions can be approximated by continuous (and differentiable) trajectories g(τ)g(\tau) in the reduced phase space. In this paper, we show that in the time continuous limit, semiclassical EOMs derived from Eq.2 become precisely the Hamilton’s equation in the reduced phase space:

dh(e)dτ={h(e),𝐇},dpa(e)dτ={pa(e),𝐇},\displaystyle\frac{\mathrm{d}{h}(e)}{\mathrm{d}\tau}=\{{h}(e),\,{\bf H}\},\quad\frac{\mathrm{d}{p}^{a}(e)}{\mathrm{d}\tau}=\{{p}^{a}(e),\,{\bf H}\}, (3)

where h(e),pa(e){h}(e),{p}^{a}(e) are holonomy and gauge covariant flux associated to the edge ee in γ\gamma. h(e),pa(e){h}(e),{p}^{a}(e) relates to g(e)g(e) by g(e)=eipa(e)τa/2h(e)g(e)=e^{-ip^{a}(e)\tau^{a}/2}h(e), τa=i(Pauli Matrix)a\tau^{a}=-i(\text{Pauli Matrix})^{a}. {,}\{\ ,\ \} is the Poisson bracket of the reduced phase space and reduces to the holonomy-flux algebra on γ\gamma. 𝐇{\bf H} is the semiclassical limit of 𝐇^\hat{\bf H}.

In addition, we show in Section 6 that when we take the continuum limit of the lattice γ\gamma, EOMs 3 reproduce classical reduced phase space EOMs of gravity coupled to matter fields in the continuum, as far as initial and final states Ψ[g]t,Ψ[g]t\Psi_{[g^{\prime}]}^{t},\Psi_{[g]}^{t} are semiclassical in the sense that [g],[g][g^{\prime}],[g] is within the classically allowed regime. The classically allowed regime in the phase space satisfy certain nonholonomic constraints required by the gravity-matter system. Our result proves that the path integral formulation Eq.2 has the correct semiclassical limit, and indicates that the reduced phase space quantization in LQG is semiclassically consistent.

Given semiclassical initial and final states and by Hamilton’s equations 3, the semiclassical dynamics from A[g],[g]A_{[g],[g^{\prime}]} becomes an initial value problem of Hamiltonian time evolution in the reduced phase space. Fixing the initial condition [g][g^{\prime}], solution of EOMs 3, given by the Hamiltonian flow of 𝐇{\bf H}, is unique up to SU(2) gauge transformation.

If semiclassical initial and final data [g],[g][g^{\prime}],[g] are connected by the trajectory g(τ)g(\tau) satisfying Eqs.3, as t0t\to 0, integrals i=1N+1dgi\int\prod_{i=1}^{N+1}\mathrm{d}g_{i} in the path integral 48 dominate at this semiclassical trajectory:

A[g],[g]Ψ[g]tΨ[g]t=dh(2πt)𝒩/2det(H)ν[g(τ),h]eS[g(τ),h]/t[1+O(t)],\displaystyle\frac{A_{[g],[g^{\prime}]}}{\|\Psi^{t}_{[g]}\|\,\|\Psi^{t}_{[g^{\prime}]}\|}=\int\mathrm{d}h\,\frac{(2\pi t)^{\mathcal{N}/2}}{\sqrt{\det(-H)}}\,\nu[g(\tau),h]\,e^{S[g(\tau),h]/t}\,\left[1+O(t)\right], (4)

where 𝒩\mathcal{N} is the total dimension of the integral i=1N+1dgi\int\prod_{i=1}^{N+1}\mathrm{d}g_{i} in Eq.48, and HH is the Hessian matrix at the solution. S[g(τ),h]S[g(\tau),h] is the action evaluated at the solution, where the continuous trajectory g(τ)gig(\tau)\simeq g_{i} approximates the discrete solution as Δτ\Delta\tau small. Here we still have dh\int\mathrm{d}h because the initial condition gg^{\prime} is determined by Ψ[g]t\Psi_{[g^{\prime}]}^{t} up to a gauge transformation gghg^{\prime}\to g^{\prime h}. If the initial and final data [g],[g][g^{\prime}],[g] are not connected by the trajectory g(τ)g(\tau), the amplitude is suppressed exponentially as t0t\to 0.

It is interesting to make a comparison between the new path integral formulation of LQG 2 to the spin foam formulation.

  1. 1.

    Our path integral formulation is free of the cosine problem. The initial state Ψ[g]t\Psi_{[g^{\prime}]}^{t} determines a unique semiclassical trajectory (up to SU(e) gauge transformations) given by the Hamiltonian flow of 𝐇{\bf H}. The asymptotic formula has a single exponential (integrated over SU(2) gauge transformations). A key reason is that here all solutions of semiclassical EOMs admit a time continuous limit. Solutions with discontinuous orientations are forbidden.

  2. 2.

    Our path integral formulation is free of the flatness problem. The semiclassical EOMs 3 from the path integral reproduce the classical EOMs of the gravity-matter system, and admit all curved solutions that are physically interesting. For instance, Han:2019vpw ; cospert have demonstrated the homogeneous and isotropic cosmology and cosmological perturbation theory from solutions.

  3. 3.

    There is a clear link between our path integral formulation and the canonical LQG333Some advantages of relating canonical and path integral formulation can also be seen from Loop Quantum Cosmology (LQC) Ashtekar:2010ve ; Henderson:2010qd .. The path integral 48 is rigorously derived from the canonical LQG. The unitarity is manifest because the path integral equals the transition amplitude of unitary evolution generated by 𝐇^\hat{\bf H}.

  4. 4.

    The path integral formula 48 is finite, because of the transition amplitude A[g],[g]A_{[g],[g^{\prime}]} is manifestly finite. The finiteness is irrelevant to the cosmological constant.

There are open issues: Computing quantum effects within the path integral formulation 48 relies on knowledges of the matrix elements and/or expectation values of 𝐇^\hat{\bf H} with respect to coherent states. The non-polynomial operator 𝐇^\hat{\bf H} may make computations highly involved. Secondly, the path integral is constructed on the lattice γ\gamma, it is not clear at present if we are able to remove this lattice dependence at the quantum level. So this formulation may still share issues of computational complexity and lattice dependence with the spin foam formulation, at least at the current stage. However studies of the new path integral formulation is still at very preliminary stage, and research on overcoming these issues will be carried out in the future. Some discussions are given in Section 8.

Many computations in this work are carried out with Mathematica on High-Performance-Computing (HPC) servers. Some intermediate steps and results contain long formulae that cannot be shown in the paper. These formulae and Mathematica codes can be downloaded from github .

The architecture of this paper is follows: Section 2 reviews the reduced phase space formulation of LQG and the derivation of the new path integral formulation. Section 3 discusses semiclassical EOMs derived from the path integral and its time continuous limit. Section 4 shows that semiclassical EOMs are equivalent to Hamilton’s equations 3. Section 5 shows that the time continuous limit of the action S[g,h]S[g,h] gives a canonical action with the Hamiltonian 𝐇{\bf H}, and demonstrates that the variational principle and time continuous limit are commutative when acting on S[g,h]S[g,h]. Section 6 analyzes semiclassical EOMs in the lattice continuum limit of γ\gamma, and demonstrate consistency with classical gravity-matter system. Section 8 compares the new path integral formulation with the spin foam formulation.

2 Reduced Phase Space Formulation of LQG

2.1 Classical Framework

The reduced phase space formulation couples gravity to matter fields at classical level. These matter fields are often called clock fields. In this paper, we mainly focus on two scenarios including coupling gravity to Brown-Kuchař and Gaussian dust fields Brown:1994py ; Kuchar:1990vy ; Giesel:2007wn ; Giesel:2012rb .

Firstly we denote by SBKDS_{BKD} the action of Brown-Kuchař dust model:

SBKD[ρ,gμν,T,Sj,Wj]\displaystyle S_{BKD}[\rho,g_{\mu\nu},T,S^{j},W_{j}] =\displaystyle= 12d4x|det(g)|ρ[gμνUμUν+1],\displaystyle-\frac{1}{2}\int\mathrm{d}^{4}x\ \sqrt{|\det(g)|}\ \rho\ [g^{\mu\nu}U_{\mu}U_{\nu}+1], (5)
Uμ\displaystyle U_{\mu} =\displaystyle= μT+WjμSj,\displaystyle-\partial_{\mu}T+W_{j}\partial_{\mu}S^{j}, (6)

where scalars T,Sj=1,2,3T,S^{j=1,2,3} form the dust coordinates of time and space to parametrize physical fields. ρ,Wj\rho,\ W_{j} are Lagrangian multipliers. ρ\rho is interpreted as the dust energy density. When we couple SBKDS_{BKD} to gravity (or gravity coupled to some other matter fields) and carry out Hamiltonian analysis Giesel:2012rb , we obtain following constraints:

𝒞tot\displaystyle\mathcal{C}^{tot} =\displaystyle= 𝒞+12[P2/ρdet(q)+det(q)ρ(qαβUαUβ+1)]=0,\displaystyle\mathcal{C}+\frac{1}{2}\left[\frac{P^{2}/\rho}{\sqrt{\operatorname{det}(q)}}+\sqrt{\operatorname{det}(q)}\rho\left(q^{\alpha\beta}U_{\alpha}U_{\beta}+1\right)\right]=0, (7)
𝒞αtot\displaystyle\mathcal{C}^{tot}_{\alpha} =\displaystyle= 𝒞α+PT,αPjS,αj=0,\displaystyle\mathcal{C}_{\alpha}+PT_{,\alpha}-P_{j}S^{j}_{,\alpha}=0, (8)
ρ2\displaystyle\rho^{2} =\displaystyle= P2det(q)(1+qαβUαUβ)1,\displaystyle\frac{P^{2}}{\det(q)}\left(1+q^{\alpha\beta}U_{\alpha}U_{\beta}\right)^{-1}, (9)
Wj\displaystyle W_{j} =\displaystyle= Pj/P,\displaystyle P_{j}/P, (10)

where α,β\alpha,\beta are spatial coordinate indices, P,PjP,P_{j} are momenta conjugate to T,SjT,S^{j}, and 𝒞,𝒞α\mathcal{C},\mathcal{C}_{\alpha} are Hamiltonian and diffeomorphism constraints of gravity (or gravity coupled to some other matter fields). Firstly Eq.9 can be solved by

ρ=εPdet(q)(1+qαβUαUβ)1/2,ε=±1.\displaystyle\rho=\varepsilon\frac{P}{\sqrt{\det(q)}}\left(1+q^{\alpha\beta}U_{\alpha}U_{\beta}\right)^{-1/2},\quad\varepsilon=\pm 1. (11)

ε\varepsilon can be fixed to ε=1\varepsilon=1 by physical requirement that UU is timelike and future pointing Giesel:2007wi , so sgn(P)=sgn(ρ)\mathrm{sgn}(P)=\mathrm{sgn}(\rho). Inserting this solution to Eq.7 and using Eq.10 lead to

𝒞=P1+qαβ𝒞α𝒞β/P2.\displaystyle\mathcal{C}=-P\sqrt{1+q^{\alpha\beta}\mathcal{C}_{\alpha}\mathcal{C}_{\beta}/P^{2}}. (12)

Thus sgn(𝒞)=sgn(P)=sgn(ρ)-\mathrm{sgn}(\mathcal{C})=\mathrm{sgn}(P)=\mathrm{sgn}(\rho). When we consider dust coupling to pure gravity, we must have 𝒞<0\mathcal{C}<0 and the physical dust ρ,P>0\rho,P>0 to fulfill the energy condition as in Brown:1994py . However, we may couple some additional matter fields (e.g. scalars, fermions, gauge fields etc) to make 𝒞>0\mathcal{C}>0, then ρ,P<0\rho,P<0 correspond to the phantom dust as in Giesel:2007wn ; Giesel:2007wi . The case of phantom dust may not violate the usual energy condition due to the presence of additional matter fields. We can solve P,PjP,P_{j} from Eqs.7 and 8

P={hphysical dust,hphantom dust,h=𝒞2qαβ𝒞α𝒞β,\displaystyle P=\begin{cases}h&\ \text{physical dust},\\ -h&\ \text{phantom dust},\end{cases}\quad h=\sqrt{\mathcal{C}^{2}-q^{\alpha\beta}\mathcal{C}_{\alpha}\mathcal{C}_{\beta}}, (13)
Pj=Sjα(𝒞αhT,α)\displaystyle P_{j}=-S^{\alpha}_{j}\left(\mathcal{C}_{\alpha}-hT_{,\alpha}\right) (14)

which are strongly Poisson commutative constraints. SjαS^{\alpha}_{j} is the inverse matrix of αSj\partial_{\alpha}S^{j} (α=1,2,3\alpha=1,2,3). In deriving above constraints, we find at an intermediate step that P2=𝒞2qαβ𝒞α𝒞β>0P^{2}=\mathcal{C}^{2}-q^{\alpha\beta}\mathcal{C}_{\alpha}\mathcal{C}_{\beta}>0 constraints the argument of the square root to be positive. Moreover the physical dust requires 𝒞<0\mathcal{C}<0 while the phantom dust requires 𝒞>0\mathcal{C}>0.

We use Aαa(x),Eaα(x)A^{a}_{\alpha}(x),E^{\alpha}_{a}(x) to be canonical variables of gravity, where Aαa(x)A^{a}_{\alpha}(x) is the Ashtekar-Barbero connection and Eaα(x)=detqeaα(x)E^{\alpha}_{a}(x)=\sqrt{\det q}\,e^{\alpha}_{a}(x) is the densitized triad. a=1,2,3a=1,2,3 is the Lie algebra index of su(2). Gauge invariant Dirac observables are constructed relationally by parametrizing (A,E)(A,E) with values of dust fields T(x)τ,Sj(x)σjT(x)\equiv\tau,S^{j}(x)\equiv\sigma^{j}, i.e. Aja(σ,τ)=Aja(x)|T(x)τ,Sj(x)σjA_{j}^{a}(\sigma,\tau)=A_{j}^{a}(x)|_{T(x)\equiv\tau,\,S^{j}(x)\equiv\sigma^{j}} and Eaj(σ,τ)=Eaj(x)|T(x)τ,Sj(x)σjE^{j}_{a}(\sigma,\tau)=E^{j}_{a}(x)|_{T(x)\equiv\tau,\,S^{j}(x)\equiv\sigma^{j}}, where σ,τ\sigma,\tau are physical space and time coordinates in the dust reference frame. Here j=1,2,3j=1,2,3 is the dust coordinate index (e.g. Aj=AαSjαA_{j}=A_{\alpha}S^{\alpha}_{j}).

Both Aja(σ,τ)A_{j}^{a}(\sigma,\tau) and Eaj(σ,τ)E^{j}_{a}(\sigma,\tau) are free of diffeomorphism and Hamiltonian constraints. They satisfy the standard Poisson bracket in the dust frame:

{Eai(σ,τ),Ajb(σ,τ)}=12κβδjiδabδ3(σ,σ)\displaystyle\{E^{i}_{a}(\sigma,\tau),A_{j}^{b}(\sigma^{\prime},\tau)\}=\frac{1}{2}\kappa\beta\ \delta^{i}_{j}\delta^{b}_{a}\delta^{3}(\sigma,\sigma^{\prime}) (15)

where β\beta is the Barbero-Immirzi parameter and κ=16πG\kappa=16\pi G. The reduced phase space 𝒫\mathcal{P} of Aja(σ,τ),Eaj(σ,τ)A_{j}^{a}(\sigma,\tau),E^{j}_{a}(\sigma,\tau) is free of Hamiltonian and diffeomorphism constraints. All SU(2) gauge invariant phase space functions are Dirac observables.

The evolution in physical time τ\tau is generated by the classical physical Hamiltonian 𝐇0{\bf H}_{0} given by integrating hh on the constant T=τT=\tau slice 𝒮\mathcal{S}. The constant τ\tau slice 𝒮\mathcal{S} is coordinated by the value of dust scalars Sj=σjS^{j}=\sigma^{j} thus is referred to as the dust space Giesel:2007wn ; Giesel:2012rb . From Eq.13, we find that 𝐇0{\bf H}_{0} is negative for physical dust while is positive for phantom dust. We flip the direction of the time flow ττ\tau\to-\tau thus 𝐇0𝐇0{\bf H}_{0}\to-{\bf H}_{0} for physical dust so we have a positive Hamiltonians in every case:

𝐇0=𝒮d3σ𝒞(σ,τ)214a=13𝒞a(σ,τ)2.\displaystyle{\bf H}_{0}=\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\,\sqrt{\mathcal{C}(\sigma,\tau)^{2}-\frac{1}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma,\tau)^{2}}. (16)

Here 𝒞\mathcal{C} and 𝒞a=2eaα𝒞α\mathcal{C}_{a}=2e_{a}^{\alpha}\mathcal{C}_{\alpha} are parametrized in the dust frame. In terms of Aja(σ,τ)A_{j}^{a}(\sigma,\tau) and Eaj(σ,τ)E^{j}_{a}(\sigma,\tau):

𝒞\displaystyle\mathcal{C} =\displaystyle= 1κ[Fjka(β2+1)εadeKjdKke]εabcEbjEckdet(q)+2Λκdet(q)\displaystyle\frac{1}{\kappa}\left[F^{a}_{jk}-\left({\beta^{2}+1}\right)\varepsilon_{ade}K^{d}_{j}K^{e}_{k}\right]\varepsilon_{abc}\frac{E^{j}_{b}E^{k}_{c}}{\sqrt{\det(q)}}+\frac{2\Lambda}{\kappa}\sqrt{\det(q)} (17)
𝒞a\displaystyle\mathcal{C}_{a} =\displaystyle= 4κβFjkbEajEbkdet(q).\displaystyle\frac{4}{\kappa\beta}F^{b}_{jk}\frac{E^{j}_{a}E^{k}_{b}}{\sqrt{\det(q)}}. (18)

Λ\Lambda is the cosmological constant.

Coupling gravity to Gaussian dust model can be analyzed similarly, so we don’t present the details here (while details can be found in Giesel:2012rb ). As a result the physical Hamiltonian has a simpler expression

𝐇0=𝒮d3σ𝒞(σ,τ).\displaystyle\mathbf{H}_{0}=\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\,\mathcal{C}(\sigma,\tau). (19)

In order to put discussions of both the Brown-Kuchař and Gaussian dusts in a unified manner, we express the physical Hamiltonian as the following:

𝐇0\displaystyle\mathbf{H}_{0} =\displaystyle= 𝒮d3σh(σ,τ),\displaystyle\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\,h(\sigma,\tau), (20)
h(σ,τ)\displaystyle h(\sigma,\tau) =\displaystyle= 𝒞(σ,τ)2α4a=13𝒞a(σ,τ)2,{α=1Brown-Kuchař dust,α=0Gaussian dust.\displaystyle\sqrt{\mathcal{C}(\sigma,\tau)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma,\tau)^{2}},\quad\begin{cases}\alpha=1&\text{Brown-Kucha\v{r} dust},\\ \alpha=0&\text{Gaussian dust}.\end{cases}

The physical Hamiltonian 𝐇0{\bf H}_{0} is manifestly positive in Eq.20. When 𝒞<0\mathcal{C}<0, Eq.20 is different from Eq.19 by an overall minus sign, thus reverses the time flow ττ\tau\to-\tau for the Gaussian dust.

In both scenarios, the physical Hamiltonian 𝐇0\mathbf{H}_{0} generates the τ\tau-time evolution:

dfdτ={f,𝐇0},\displaystyle\frac{\mathrm{d}f}{\mathrm{d}\tau}=\left\{f,\mathbf{H}_{0}\right\}, (21)

for all phase space function ff of Aja(σ,τ)A_{j}^{a}(\sigma,\tau) and Eaj(σ,τ)E^{j}_{a}(\sigma,\tau). In particular, the Hamilton’s equations are

dAja(σ,τ)dτ=κβ2δ𝐇0δEaj(σ,τ),dEaj(σ,τ)dτ=κβ2δ𝐇0δAja(σ,τ).\displaystyle\frac{\mathrm{d}A^{a}_{j}(\sigma,\tau)}{\mathrm{d}\tau}=-\frac{\kappa\beta}{2}\frac{\delta\mathbf{H}_{0}}{\delta E^{j}_{a}(\sigma,\tau)},\quad\frac{\mathrm{d}E^{j}_{a}(\sigma,\tau)}{\mathrm{d}\tau}=\frac{\kappa\beta}{2}\frac{\delta\mathbf{H}_{0}}{\delta A^{a}_{j}(\sigma,\tau)}. (22)

Functional derivatives on the right-hand sides of Eq.22 can be computed by

δ𝐇0=𝒮d3σ(𝒞hδ𝒞α4𝒞ahδ𝒞a),\displaystyle\delta{\bf H}_{0}=\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\left(\frac{\mathcal{C}}{h}\delta\mathcal{C}-\frac{\alpha}{4}\frac{\mathcal{C}_{a}}{h}\delta\mathcal{C}_{a}\right), (23)

where C/h{C}/{h} is negative (positive) for physical (phantom) dust. Compare δ𝐇\delta{\bf H} to the variation of Hamiltonian HGRH_{GR} of pure gravity in absence of dust motivates us to view the following as physical lapse function and shift vector

N=𝒞h,Na=α4𝒞ah.\displaystyle N=\frac{\mathcal{C}}{h},\quad N_{a}=-\frac{\alpha}{4}\frac{\mathcal{C}_{a}}{h}. (24)

Therefore NN is negative (positive) for the physical (phantom) dust. Negative NN for the physical dust relates to the flip ττ\tau\to-\tau for making Hamiltonian positive.

In the gravity-dust models, we resolve the Hamiltonian and diffeomorphism constraints classically, while the SU(2) Gauss constraint 𝒢a(σ,τ)=DjEaj(σ,τ)=0\mathcal{G}_{a}(\sigma,\tau)=D_{j}E^{j}_{a}(\sigma,\tau)=0 still has to be imposed to the phase space. In addition, non-holonomic constraints are imposed to the phase space: 𝒞(σ,τ)2α4a=13𝒞a(σ,τ)20\mathcal{C}(\sigma,\tau)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma,\tau)^{2}\geq 0 and 𝒞<0\mathcal{C}<0 for physical dust (𝒞>0\mathcal{C}>0 for phantom dust).

These constraints are preserved by the time evolution for gravity coupled to the Brown-Kuchař dust. Indeed, firstly the time evolution cannot break Gauss constraint since {𝒢a(σ,τ),𝐇0}=0\left\{\mathcal{G}_{a}(\sigma,\tau),\,{\bf H}_{0}\right\}=0. Secondly both h(σ,τ)h(\sigma,\tau) and 𝒞j(σ,τ)=12eja𝒞a(σ,τ)\mathcal{C}_{j}(\sigma,\tau)=\frac{1}{2}e^{a}_{j}\mathcal{C}_{a}(\sigma,\tau) are conserved densities on the Gauss constraint surface Giesel:2007wn :

dh(σ,τ)dτ={h(σ,τ),𝐇0}=0,d𝒞j(σ,τ)dτ={𝒞j(σ,τ),𝐇0}=0\displaystyle\frac{\mathrm{d}h(\sigma,\tau)}{\mathrm{d}\tau}=\left\{h(\sigma,\tau),\,{\bf H}_{0}\right\}=0,\quad\frac{\mathrm{d}\mathcal{C}_{j}(\sigma,\tau)}{\mathrm{d}\tau}=\left\{\mathcal{C}_{j}(\sigma,\tau),\,{\bf H}_{0}\right\}=0 (25)

Therefore 𝒞(σ,τ)214a=13𝒞a(σ,τ)20\mathcal{C}(\sigma,\tau)^{2}-\frac{1}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma,\tau)^{2}\geq 0 is conserved in the time evolution. About the other non-holonomic constraint 𝒞<0\mathcal{C}<0 (𝒞>0\mathcal{C}>0), suppose 𝒞<0\mathcal{C}<0 (𝒞>0\mathcal{C}>0) was violated in the time evolution, there would exist a certain time τ0\tau_{0} that 𝒞(σ,τ0)=0\mathcal{C}(\sigma,\tau_{0})=0, but then 𝒞(σ,τ)214a=13𝒞a(σ,τ)2\mathcal{C}(\sigma,\tau)^{2}-\frac{1}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma,\tau)^{2} would becomes negative if 𝒞j(σ,τ)0\mathcal{C}_{j}(\sigma,\tau)\neq 0, contradicting the conservation of h(σ,τ)h(\sigma,\tau) and the other nonholonomic constraint. If the conserved 𝒞j(σ,τ)=0\mathcal{C}_{j}(\sigma,\tau)=0, h(σ,τ)2=𝒞(σ,τ)2h(\sigma,\tau)^{2}=\mathcal{C}(\sigma,\tau)^{2} is conserved so cannot evolve from nonzero to zero. For gravity coupled to the Gaussian dust, 𝒞j(σ,τ)\mathcal{C}_{j}(\sigma,\tau) is conserved. h(σ,τ)h(\sigma,\tau) and 𝒞(σ,τ)\mathcal{C}(\sigma,\tau) are conserved only when 𝒞j(σ,τ)=0\mathcal{C}_{j}(\sigma,\tau)=0. 𝒞<0\mathcal{C}<0 (𝒞>0\mathcal{C}>0) may be violated in the time evolution for gravity coupled to the Gaussian dust if 𝒞j(σ,τ)0\mathcal{C}_{j}(\sigma,\tau)\neq 0.

In our following discussion, we focus on pure gravity coupling to dusts, thus we only work with physical dusts in order not to violating the energy condition.

2.2 Quantization, Transition Amplitude, and Coherent State Path Integral

We construct a fixed cubic lattice γ\gamma which partitions the dust space 𝒮\mathcal{S}. In this work, we consider 𝒮\mathcal{S} is compact and has no boundary so that γ\gamma is a finite lattice. We denote by E(γ)E(\gamma) and V(γ)V(\gamma) sets of (oriented) edges and vertices in γ\gamma. By the dust coordinate on 𝒮\mathcal{S}, we assign every edge a constant coordinate length μ\mu. μ0\mu\to 0 relates to the lattice continuum limit. Every vertex vV(γ)v\in V(\gamma) is 6-valent. At vv there are 3 outgoing edges eI(v)e_{I}(v) (I=1,2,3I=1,2,3) and 3 incoming edges eI(vμI^)e_{I}(v-\mu\hat{I}) where I^\hat{I} is the coordinate basis vector along the II-th direction. It is sometimes convenient to orient all 6 edges at vv to be outgoing from vv, and denote 6 edges by ev;I,se_{v;I,s} (s=±s=\pm):

ev;I,+=eI(v),ev;I,=eI(vμI^)1.\displaystyle e_{v;I,+}=e_{I}(v),\quad e_{v;I,-}=e_{I}(v-\mu\hat{I})^{-1}. (26)

We regularize canonical variables Aja(σ,τ),Eaj(σ,τ)A^{a}_{j}(\sigma,\tau),E^{j}_{a}(\sigma,\tau) on the lattice γ\gamma, by defining holonomy h(e)h(e) and gauge covariant flux pa(e)p^{a}(e) at every eE(γ)e\in E(\gamma):

h(e)\displaystyle h(e) :=\displaystyle:= 𝒫expeA,\displaystyle\mathcal{P}\exp\int_{e}A,
pa(e)\displaystyle p^{a}(e) :=\displaystyle:= 12βa2tr[τaSeεijkdσidσjh(ρe(σ))Ebk(σ)τbh(ρe(σ))1],\displaystyle-\frac{1}{2\beta a^{2}}\mathrm{tr}\left[\tau^{a}\int_{S_{e}}\varepsilon_{ijk}\mathrm{d}\sigma^{i}\wedge\mathrm{d}\sigma^{j}\ h\left(\rho_{e}(\sigma)\right)\,E_{b}^{k}(\sigma)\tau^{b}\,h\left(\rho_{e}(\sigma)\right)^{-1}\right], (27)

where A=Aaτa/2A=A^{a}\tau^{a}/2 and τa=i(Pauli matrix)a\tau^{a}=-i(\text{Pauli matrix})^{a}. SeS_{e} is a 2-face intersecting ee in the dual lattice γ\gamma^{*}. ρe\rho_{e} is a path starting at the source of ee and traveling along ee until eSee\cap S_{e}, then running in SeS_{e} until σ\vec{\sigma}. aa is a length unit for making pa(e)p^{a}(e) dimensionless. Note that because pa(e)p^{a}(e) is gauge covariant flux, we have

pa(ev;I,)=12Tr[τah(evI^;I,+)1pb(evI^;I,+)τbh(evI^;I,+)].\displaystyle p^{a}\left(e_{v;I,-}\right)=\frac{1}{2}\operatorname{Tr}\left[\tau^{a}h\left(e_{v-\hat{I};I,+}\right)^{-1}p^{b}\left(e_{v-\hat{I};I,+}\right)\tau^{b}h\left(e_{v-\hat{I};I,+}\right)\right]. (28)

The Poisson algebra of h(e)h(e) and pa(e)p^{a}(e) are called the holonomy-flux algebra:

{h(e),h(e)}\displaystyle\left\{h(e),h\left(e^{\prime}\right)\right\} =\displaystyle= 0,\displaystyle 0, (29)
{pa(e),h(e)}\displaystyle\left\{p^{a}(e),h\left(e^{\prime}\right)\right\} =\displaystyle= κa2δe,eτa2h(e),\displaystyle\frac{\kappa}{a^{2}}\delta_{e,e^{\prime}}\frac{\tau^{a}}{2}h\left(e^{\prime}\right), (30)
{pa(e),pb(e)}\displaystyle\left\{p^{a}(e),p^{b}\left(e^{\prime}\right)\right\} =\displaystyle= κa2δe,eεabcpc(e),\displaystyle-\frac{\kappa}{a^{2}}\delta_{e,e^{\prime}}\varepsilon_{abc}p^{c}\left(e^{\prime}\right), (31)

h(e)h(e) and pa(e)p^{a}(e) parametrize the reduced phase space 𝒫γ\mathcal{P}_{\gamma} for the theory discretized on γ\gamma.

The LQG quantization defines the Hilbert space γ\mathcal{H}_{\gamma} spanned by gauge invariant (complex valued) functions of all h(e)h(e)’s on γ\gamma, and is a proper subspace of γ0=eL2(SU(2))\mathcal{H}_{\gamma}^{0}=\otimes_{e}L^{2}(\mathrm{SU}(2)). γ\mathcal{H}_{\gamma} is the physical Hilbert space free of constraint because it quantizes the reduced phase space. h^(e)\hat{h}(e) becomes multiplication operators on functions in γ0\mathcal{H}_{\gamma}^{0}. p^a(e)=itR^ea/2\hat{p}^{a}(e)=it\,\hat{R}_{e}^{a}/2 where R^ea\hat{R}_{e}^{a} is the right invariant vector field on SU(2): Raf(h)=ddε|ε=0f(eετah)R^{a}f(h)=\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\big{|}_{\varepsilon=0}f(e^{\varepsilon\tau^{a}}h). t=p2/a2t=\ell^{2}_{p}/a^{2} is a dimensionless semiclassicality parameter (p2=κ\ell^{2}_{p}=\hbar\kappa). h^(e),p^a(e)\hat{h}(e),\hat{p}^{a}(e) satisfy the commutation relations:

[h^(e),h^(e)]\displaystyle\left[\hat{h}(e),\hat{h}(e^{\prime})\right] =\displaystyle= 0\displaystyle 0
[p^a(e),h^(e)]\displaystyle\left[\hat{p}^{a}(e),\hat{h}(e^{\prime})\right] =\displaystyle= itδe,eτa2h(e)\displaystyle it\delta_{e,e^{\prime}}\frac{\tau^{a}}{2}{h}(e^{\prime})
[p^a(e),p^b(e)]\displaystyle\left[\hat{p}^{a}(e),\hat{p}^{b}(e^{\prime})\right] =\displaystyle= itδe,eεabcpc(e),\displaystyle-it\delta_{e,e^{\prime}}\varepsilon_{abc}{p}^{c}(e^{\prime}), (32)

as quantization of the holonomy-flux algebra.

The (non-graph-changing) physical Hamiltonian operators 𝐇^\hat{\bf H} are given by Giesel:2007wn :

𝐇^\displaystyle\hat{\mathbf{H}} =\displaystyle= vV(γ)H^v,H^v:=[M^(v)M^(v)]1/4,\displaystyle\sum_{v\in V(\gamma)}\hat{H}_{v},\quad\hat{H}_{v}:=\left[\hat{M}_{-}^{\dagger}(v)\hat{M}_{-}(v)\right]^{1/4}, (33)
M^(v)\displaystyle\hat{M}_{-}(v) =\displaystyle= C^vC^vα4a=13C^a,vC^a,v,α={1,Brown-Kuchař dust,0,Gaussian dust.\displaystyle\hat{C}_{v}^{\ \dagger}\hat{C}_{v}-\frac{\alpha}{4}\sum_{a=1}^{3}\hat{C}_{a,v}^{\ \dagger}\hat{C}_{a,v},\quad\alpha=\begin{cases}1,&\text{Brown-Kucha\v{r} dust,}\\ 0,&\text{Gaussian dust.}\end{cases} (34)

In our notation, 𝐇0=𝒮d3σh{\bf H}_{0}=\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\,h, 𝒞\mathcal{C}, and 𝒞a\mathcal{C}_{a} are the Hamiltonian, scalar constraint, and vector constraint in the continuum. 𝐇=vHv{\bf H}=\sum_{v}H_{v}, CvC_{v}, and Ca,vC_{a,v} are their discretizations on γ\gamma, while 𝐇^=vH^v\hat{\bf H}=\sum_{v}\hat{H}_{v}, C^v\hat{C}_{v}, and C^a,v\hat{C}_{a,v} are quantizations of 𝐇{\bf H}, CvC_{v}, and Ca,vC_{a,v}:

C^0,v\displaystyle\hat{C}_{0,v} =\displaystyle= 2iβκp2s1,s2,s3=±1s1s2s3εI1I2I3Tr(h^(αv;I1s1,I2s2)h^(ev;I3s3)[h^(ev;I3s3)1,V^v])\displaystyle\frac{2}{i\beta\kappa\ell_{p}^{2}}\sum_{s_{1},s_{2},s_{3}=\pm 1}s_{1}s_{2}s_{3}\ \varepsilon^{I_{1}I_{2}I_{3}}\ \mathrm{Tr}\Bigg{(}\hat{h}(\alpha_{v;I_{1}s_{1},I_{2}s_{2}})\hat{h}(e_{v;I_{3}s_{3}})\Big{[}\hat{h}(e_{v;I_{3}s_{3}})^{-1},\hat{V}_{v}\Big{]}\Bigg{)} (35)
C^a,v\displaystyle\hat{C}_{a,v} =\displaystyle= 8iβ2κp2s1,s2,s3=±1s1s2s3εI1I2I3Tr(τah^(αv;I1s1,I2s2)h^(ev;I3s3)[h^(ev;I3s3)1,V^v])\displaystyle\frac{8}{i\beta^{2}\kappa\ell_{p}^{2}}\sum_{s_{1},s_{2},s_{3}=\pm 1}s_{1}s_{2}s_{3}\ \varepsilon^{I_{1}I_{2}I_{3}}\ \mathrm{Tr}\Bigg{(}\tau^{a}\hat{h}(\alpha_{v;I_{1}s_{1},I_{2}s_{2}})\hat{h}(e_{v;I_{3}s_{3}})\Big{[}\hat{h}(e_{v;I_{3}s_{3}})^{-1},\hat{V}_{v}\Big{]}\Bigg{)} (36)
C^v\displaystyle\hat{C}_{v} =\displaystyle= C^0,v+1+β22C^L,v+2ΛκV^v,K^=iβ2[vV(γ)C^0,v,vV(γ)Vv]\displaystyle\hat{C}_{0,v}+\frac{1+\beta^{2}}{2}\hat{C}_{L,v}+\frac{2\Lambda}{\kappa}\hat{V}_{v},\quad\quad\hat{K}=\frac{i}{\hbar\beta^{2}}\left[\sum_{v\in V(\gamma)}\hat{C}_{0,v},\sum_{v\in V(\gamma)}V_{v}\right]
C^L,v\displaystyle\hat{C}_{L,v} =\displaystyle= 16κ(iβp2)3s1,s2,s3=±1s1s2s3εI1I2I3\displaystyle-\frac{16}{\kappa\left(i\beta\ell_{p}^{2}\right)^{3}}\sum_{s_{1},s_{2},s_{3}=\pm 1}s_{1}s_{2}s_{3}\ \varepsilon^{I_{1}I_{2}I_{3}}
Tr(h^(ev;I1s1)[h^(ev;I1s1)1,K^]h^(ev;I2s2)[h^(ev;I2s2)1,K^]h^(ev;I3s3)[h^(ev;I3s3)1,V^v]).\displaystyle\mathrm{Tr}\Bigg{(}\hat{h}(e_{v;I_{1}s_{1}})\Big{[}\hat{h}(e_{v;I_{1}s_{1}})^{-1},\hat{K}\Big{]}\ \hat{h}(e_{v;I_{2}s_{2}})\Big{[}\hat{h}(e_{v;I_{2}s_{2}})^{-1},\hat{K}\Big{]}\ \hat{h}(e_{v;I_{3}s_{3}})\Big{[}\hat{h}(e_{v;I_{3}s_{3}})^{-1},\hat{V}_{v}\Big{]}\ \Bigg{)}.

where Λ\Lambda is the cosmological constant and V^v\hat{V}_{v} is the volume operator at vv:

V^v\displaystyle\hat{V}_{v} =\displaystyle= (Q^v2)1/4,\displaystyle\left(\hat{Q}_{v}^{2}\right)^{1/4}, (38)
Q^v\displaystyle\hat{Q}_{v} =\displaystyle= i(βP24)3εabcRev;1+aRev;1a2Rev;2+bRev;2b2Rev;3+cRev;3c2\displaystyle-i\left(\frac{\beta\ell_{P}^{2}}{4}\right)^{3}\varepsilon_{abc}\frac{R^{a}_{e_{v;1+}}-R^{a}_{e_{v;1-}}}{2}\frac{R^{b}_{e_{v;2+}}-R^{b}_{e_{v;2-}}}{2}\frac{R^{c}_{e_{v;3+}}-R^{c}_{e_{v;3-}}}{2} (39)
=\displaystyle= β3a6εabcp^a(ev;1+)p^a(ev;1)4p^b(ev;2+)p^b(ev;2)4p^c(ev;3+)p^c(ev;3)4\displaystyle\beta^{3}a^{6}\varepsilon_{abc}\frac{\hat{p}^{a}({e_{v;1+}})-\hat{p}^{a}({e_{v;1-}})}{4}\frac{\hat{p}^{b}({e_{v;2+}})-\hat{p}^{b}({e_{v;2-}})}{4}\frac{\hat{p}^{c}({e_{v;3+}})-\hat{p}^{c}({e_{v;3-}})}{4}

The Hamiltonian operator 𝐇^\hat{\mathbf{H}} is positive semi-definite and self-adjoint because M^(v)M^(v)\hat{M}_{-}^{\dagger}(v)\hat{M}_{-}(v) is manifestly positive semi-definite and Hermitian, therefore admits a self-adjoint extension (Friedrich extension).

Classical discrete CvC_{v}, and Ca,vC_{a,v} are obtained from Eqs.35 - 2.2 by mapping operators to their classical counterparts and [f^1,f^2]i{f1,f2}[\hat{f}_{1},\hat{f}_{2}]\to i\hbar\{f_{1},f_{2}\}. Hence classical discrete physical Hamiltonian 𝐇{\bf H} is given by

𝐇=vV(γ)Hv,Hv=|Cv2α4a=13Ca,v2|.\displaystyle{\bf H}=\sum_{v\in V(\gamma)}H_{v},\quad H_{v}=\sqrt{\left|C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}\right|}. (40)

The absolute value in the square-root results from that 𝐇{\bf H} is the classical limit of 𝐇^\hat{\bf H} defined on the entire γ\mathcal{H}_{\gamma} disregarding nonholonomic constraints in particular 𝒞2α4a=13𝒞a20\mathcal{C}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}^{2}\geq 0 for α=1\alpha=1.

An interesting quantity for quantum dynamics is the transition amplitude

A[g],[g]=Ψ[g]t|exp[iT𝐇^]|Ψ[g]t\displaystyle A_{[g],[g^{\prime}]}=\langle\Psi^{t}_{[g]}|\,\exp\left[-\frac{i}{\hbar}T\hat{\bf H}\right]\,|\Psi^{t}_{[g^{\prime}]}\rangle (41)

For the purpose of semiclassical analysis, we focus on the semiclassical initial and final states Ψ[g]t,Ψ[g]t\Psi^{t}_{[g^{\prime}]},\Psi^{t}_{[g]} which are gauge invariant coherent states defined in Thiemann:2000bw ; Thiemann:2000ca :

Ψ[g]t(h)\displaystyle\Psi^{t}_{[g]}(h) =\displaystyle= SU(2)|V(γ)|dheE(γ)ψhs(e)1g(e)ht(e)t(h(e)),dh=vV(γ)dμH(hv).\displaystyle\int_{\mathrm{SU(2)}^{|V(\gamma)|}}\mathrm{d}h\prod_{e\in E(\gamma)}{\psi}^{t}_{h_{s(e)}^{-1}g(e)h_{t(e)}}\left(h(e)\right),\quad\mathrm{d}h=\prod_{v\in V(\gamma)}\mathrm{d}\mu_{H}(h_{v}). (42)

where dμH(hv)\mathrm{d}\mu_{H}(h_{v}) is the Haar measure on SU(2). The gauge invariant coherent state is labelled by gauge equivalence class [g][g] generated by g(e)gh(e)=hs(e)1g(e)ht(e)g(e)\sim g^{h}(e)=h_{s(e)}^{-1}g(e)h_{t(e)} at all ee. Here g(e)g(e) is an SL(2,)\mathrm{SL}(2,\mathbb{C}) group element. ψg(e)t(h(e))\psi^{t}_{g(e)}\left(h(e)\right) is the complexifier coherent state on the edge ee:

ψg(e)t(h(e))\displaystyle\psi^{t}_{g(e)}\left(h(e)\right) =\displaystyle= je+/2{0}(2je+1)etje(je+1)/2χje(g(e)h(e)1),\displaystyle\sum_{j_{e}\in\mathbb{Z}_{+}/2\cup\{0\}}(2j_{e}+1)\ e^{-tj_{e}(j_{e}+1)/2}\chi_{j_{e}}\left(g(e)h(e)^{-1}\right), (43)

where g(e)g(e) is complex coordinate of 𝒫γ\mathcal{P}_{\gamma} and relates to h(e),pa(e)h(e),p^{a}(e) by444For any polynomial Pol[h^(e),p^a(e)]\mathrm{Pol}[\hat{h}(e),\hat{p}^{a}(e)] of h^(e),p^a(e)\hat{h}(e),\hat{p}^{a}(e), the coherent state expectation value is semiclassical: ψg(e)t|Pol[h^(e),p^a(e)]|ψg(e)t=Pol[h(e),pa(e)]+O(t)\langle\psi_{g(e)}^{t}|\mathrm{Pol}[\hat{h}(e),\hat{p}^{a}(e)]|\psi_{g(e)}^{t}\rangle=\mathrm{Pol}[{h}(e),{p}^{a}(e)]+O(t) where h(e),pa(e){h}(e),{p}^{a}(e) on the right hand side relate to g(e)g(e) by Eq.44 Thiemann:2000bx .

g(e)=eipa(e)τa/2h(e)=eipa(e)τa/2eθa(e)τa/2,pa(e),θa(e)3.\displaystyle g(e)=e^{-ip_{a}(e)\tau_{a}/2}h(e)=e^{-ip^{a}(e)\tau^{a}/2}e^{\theta^{a}(e)\tau^{a}/2},\quad p^{a}(e),\ \theta^{a}(e)\in\mathbb{R}^{3}. (44)

Applying Eq.42 and using a discretization of time T=NΔτT=N\Delta\tau with large NN and infinitesimal Δτ\Delta\tau,

A[g],[g]\displaystyle A_{[g],[g^{\prime}]} =\displaystyle= dhψgt|[eiΔτ𝐇^]N|ψght,\displaystyle\int\mathrm{d}h\left\langle\psi^{t}_{g}\right|\left[e^{-\frac{i}{\hbar}\Delta\tau\hat{\mathbf{H}}}\right]^{N}|{\psi}^{t}_{{g^{\prime}}^{h}}\rangle, (46)
=\displaystyle= dhi=1N+1dgiψgt|ψ~gN+1tψ~gN+1t|eiΔτ𝐇^|ψ~gNtψ~gNt|eiΔτ𝐇^|ψ~gN1t\displaystyle\int\mathrm{d}h\prod_{i=1}^{N+1}\mathrm{d}g_{i}\,\langle\psi^{t}_{g}|\tilde{\psi}^{t}_{g_{N+1}}\rangle\langle\tilde{\psi}^{t}_{g_{N+1}}\big{|}e^{-\frac{i\Delta\tau}{\hbar}\hat{\mathbf{H}}}\big{|}\tilde{\psi}^{t}_{g_{N}}\rangle\langle\tilde{\psi}^{t}_{g_{N}}\big{|}e^{-\frac{i\Delta\tau}{\hbar}\hat{\mathbf{H}}}\big{|}\tilde{\psi}^{t}_{g_{N-1}}\rangle\cdots
ψ~g2t|eiΔτ𝐇^|ψ~g1tψ~g1t|ψght\displaystyle\quad\cdots\ \langle\tilde{\psi}^{t}_{g_{2}}\big{|}e^{-\frac{i\Delta\tau}{\hbar}\hat{\mathbf{H}}}\big{|}\tilde{\psi}^{t}_{g_{1}}\rangle\langle\tilde{\psi}^{t}_{g_{1}}|{\psi}^{t}_{g^{\prime}{}^{h}}\rangle

where we have inserted N+1N+1 overcompleteness relations of normalized coherent state ψ~gt=eψg(e)t/||ψg(e)t||\tilde{\psi}^{t}_{g}=\otimes_{e}{\psi}^{t}_{g(e)}/||{\psi}^{t}_{g(e)}||:

dgi|ψ~gitψ~git|=1γ0,dgi=(ct3)|E(γ)|eE(γ)dμH(hi(e))d3pi(e),i=1,,N1.\displaystyle\int\mathrm{d}g_{i}\ |\tilde{\psi}^{t}_{g_{i}}\rangle\langle\tilde{\psi}^{t}_{g_{i}}|=1_{\mathcal{H}_{\gamma}^{0}},\quad\mathrm{d}g_{i}=\left(\frac{c}{t^{3}}\right)^{|E(\gamma)|}\prod_{e\in E(\gamma)}\mathrm{d}\mu_{H}(h_{i}(e))\,\mathrm{d}^{3}p_{i}(e),\quad i=1,\cdots,N-1. (47)

A path integral formula is derived in Han:2019vpw from the above expression of A[g],[g]A_{[g],[g^{\prime}]}:

A[g],[g]=ψgtψgtdhi=1N+1dgiν[g]eS[g,h]/t\displaystyle A_{[g],[g^{\prime}]}=\left\|\psi_{g}^{t}\right\|\left\|\psi_{g^{\prime}}^{t}\right\|\int\mathrm{d}h\prod_{i=1}^{N+1}\mathrm{d}g_{i}\,\nu[g]\,e^{S[g,h]/t} (48)

where the “effective action” S[g,h]S[g,h] is given by

S[g,h]\displaystyle S[g,h] =\displaystyle= i=0N+1K(gi+1,gi)iκa2i=1NΔτ[ψgi+1t|𝐇^|ψgitψgi+1i|ψgit+iε~i+1,i(Δτ)],\displaystyle\sum_{i=0}^{N+1}K\left(g_{i+1},g_{i}\right)-\frac{i\kappa}{a^{2}}\sum_{i=1}^{N}\Delta\tau\left[\frac{\langle\psi_{g_{i+1}}^{t}|\hat{\mathbf{H}}|\psi_{g_{i}}^{t}\rangle}{\langle\psi_{g_{i+1}}^{i}|\psi_{g_{i}}^{t}\rangle}+i\tilde{\varepsilon}_{i+1,i}\left(\frac{\Delta\tau}{\hbar}\right)\right], (49)
K(gi+1,gi)\displaystyle K\left(g_{i+1},g_{i}\right) =\displaystyle= eE(γ)[zi+1,i(e)212pi+1(e)212pi(e)2]\displaystyle\sum_{e\in E(\gamma)}\left[z_{i+1,i}(e)^{2}-\frac{1}{2}p_{i+1}(e)^{2}-\frac{1}{2}p_{i}(e)^{2}\right] (50)

with g0gh,gN+2gg_{0}\equiv g^{\prime h},\ g_{N+2}\equiv g, and ν[g]\nu[g] is a measure factor. ε~i+1,i(Δτ)0\tilde{\varepsilon}_{i+1,i}\left(\frac{\Delta\tau}{\hbar}\right)\to 0 as Δτ0\Delta\tau\to 0 and is negligible. In the above, zi+1,i(e)z_{i+1,i}(e) and xi+1,i(e)x_{i+1,i}(e) are given by

zi+1,i(e)\displaystyle z_{i+1,i}(e) =\displaystyle= arccosh(xi+1,i(e)),xi+1,i(e)=12tr[gi+1(e)gi(e)].\displaystyle\mathrm{arccosh}\left(x_{i+1,i}(e)\right),\quad x_{i+1,i}(e)=\frac{1}{2}\mathrm{tr}\left[g_{i+1}(e)^{\dagger}g_{i}(e)\right]. (51)

The path integral Eq.48 is constructed with discrete time and space, and is a well-define integration formula for the transition amplitude A[g],[g]A_{[g],[g^{\prime}]} as long as Δτ\Delta\tau is arbitrarily small but finite. The time translation of γ\gamma with finite Δτ\Delta\tau makes a hypercubic lattice in 4 dimensions, on which the path integral is defined. There is no issue of any divergence in this path integral formulation of LQG, since it is derived from a well-defined transition amplitude.

3 Semiclassical Equations of Motion

3.1 Discrete Equations of Motion

The main part of this work is to study the semiclassical limit t0t\to 0 (or Pa\ell_{P}\ll a) of the transition amplitude A[g],[g]A_{[g],[g^{\prime}]}. By Eq.48 and the stationary phase approximation, dominant contributions to A[g],[g]A_{[g],[g^{\prime}]} as t0t\to 0 come from semiclassical trajectories satisfying the semiclassical equations of motion (EOMs).

Semiclassical EOMs has been derived in Han:2019vpw by the variational principle δS[g,h]=0\delta S[g,h]=0 and expressed in the following form:

  • For i=1,,Ni=1,\cdots,N, at every edge eE(γ)e\in E(\gamma),

    1Δτ[zi+1,i(e)tr[τagi+1(e)gi(e)]xi+1,i(e)1xi+1,i(e)+1pi(e)tr[τagi(e)gi(e)]sinh(pi(e))]\displaystyle\frac{1}{\Delta\tau}\left[\frac{z_{i+1,i}(e)\,\mathrm{tr}\left[\tau^{a}g_{i+1}(e)^{\dagger}g_{i}(e)\right]}{\sqrt{x_{i+1,i}(e)-1}\sqrt{x_{i+1,i}(e)+1}}-\frac{p_{i}(e)\,\mathrm{tr}\left[\tau^{a}g_{i}(e)^{\dagger}g_{i}(e)\right]}{\sinh(p_{i}(e))}\right]
    =iκa2εia(e)ψgi+1εt|𝐇^|ψgiεtψgi+1εt|ψgiεt|ε=0\displaystyle=\frac{i\kappa}{a^{2}}\frac{\partial}{\partial\varepsilon_{i}^{a}(e)}\frac{\langle\psi_{g_{i+1}^{\varepsilon}}^{t}|\hat{\mathbf{H}}|\psi_{g_{i}^{\varepsilon}}^{t}\rangle}{\langle\psi_{g_{i+1}^{\varepsilon}}^{t}|\psi_{g_{i}^{\varepsilon}}^{t}\rangle}\Bigg{|}_{\vec{\varepsilon}=0} (52)

    where gε(e)=g(e)eεa(e)τag^{\varepsilon}(e)=g(e)e^{\varepsilon^{a}(e)\tau^{a}} (εa(e)\varepsilon^{a}(e)\in\mathbb{C}) is a holomorphic deformation.

  • For i=2,,N+1i=2,\cdots,N+1, at every edge eE(γ)e\in E(\gamma),

    1Δτ[zi,i1(e)tr[τagi(e)gi1(e)]xi,i1(e)1xi,i1(e)+1pi(e)tr[τagi(e)gi(e)]sinh(pi(e))]\displaystyle\frac{1}{\Delta\tau}\left[\frac{z_{i,i-1}(e)\,\mathrm{tr}\left[\tau^{a}g_{i}(e)^{\dagger}g_{i-1}(e)\right]}{\sqrt{x_{i,i-1}(e)-1}\sqrt{x_{i,i-1}(e)+1}}-\frac{p_{i}(e)\,\mathrm{tr}\left[\tau^{a}g_{i}(e)^{\dagger}g_{i}(e)\right]}{\sinh(p_{i}(e))}\right]
    =iκa2ε¯ia(e)ψgiεt|𝐇^|ψgi1εtψgiεt|ψgi1εt|ε=0.\displaystyle=-\frac{i\kappa}{a^{2}}\frac{\partial}{\partial\bar{\varepsilon}_{i}^{a}(e)}\frac{\langle\psi_{g_{i}^{\varepsilon}}^{t}|\hat{\mathbf{H}}|\psi_{g_{i-1}^{\varepsilon}}^{t}\rangle}{\langle\psi_{g_{i}^{\varepsilon}}^{t}|\psi_{g_{i-1}^{\varepsilon}}^{t}\rangle}\Bigg{|}_{\vec{\varepsilon}=0}. (53)
  • The closure condition at every vertex vV(γ)v\in V(\gamma) for initial data:

    e,s(e)=vp1a(e)+e,t(e)=vΛba(θ1(e))p1b(e)=0.\displaystyle-\sum_{e,s(e)=v}p_{1}^{a}(e)+\sum_{e,t(e)=v}\Lambda^{a}_{\ b}\left(\vec{\theta}_{1}(e)\right)\,p_{1}^{b}(e)=0. (54)

    where Λba(θ)SO(3)\Lambda^{a}_{\ b}(\vec{\theta})\in\mathrm{SO}(3) is given by eθcτc/2τaeθcτc/2=Λba(θ)τbe^{\theta^{c}\tau^{c}/2}\tau^{a}e^{-\theta^{c}\tau^{c}/2}=\Lambda^{a}_{\ b}(\vec{\theta})\tau^{b}.

The initial and final conditions are given by g1=ghg_{1}=g^{\prime h} and gN+1=gg_{N+1}=g. Here the gauge transformation hh is arbitrary. Eqs.52 and 53 come from δS/δg=0\delta S/\delta g=0 and δS/δg¯=0\delta S/\delta\bar{g}=0, while Eq.54 comes from δS/δh=0\delta S/\delta h=0. These semiclassical EOMs govern the semiclassical dynamics of LQG in the reduced phase space formulation.

Semiclassical EOMs 52 - 54 are derived with finite Δτ\Delta\tau. We prefer to derive EOMs from the path integral Eq.48 with discrete time and space, because Eq.48 is a well-define integration formula for the transition amplitude.

The small-step transitions ψ~gi+1t|exp(iΔτ𝐇^)|ψ~git\langle\tilde{\psi}^{t}_{g_{i+1}}|\exp\left(-\frac{i}{\hbar}\Delta\tau\hat{\mathbf{H}}\right)|\tilde{\psi}^{t}_{g_{i}}\rangle in Eq.46 are dominated by overlaps ψ~gi+1t|ψ~git\langle\tilde{\psi}^{t}_{g_{i+1}}|\tilde{\psi}^{t}_{g_{i}}\rangle as Δτ\Delta\tau is arbitrarily small. |ψ~gi+1t|ψ~git||\langle\tilde{\psi}^{t}_{g_{i+1}}|\tilde{\psi}^{t}_{g_{i}}\rangle| decays exponentially fast to zero unless gi+1g_{i+1} is within a small neighborhood at gig_{i} of radius t\sqrt{t} Thiemann:2000ca (a summary can be found in Giesel:2006um ). Therefore for sufficiently large NN, the dominant contribution to A[g],[g]A_{[g],[g^{\prime}]} in Eq.48 comes from integral over the neighborhood where all gi+1g_{i+1} are close to gig_{i} with distance of O(t)O(\sqrt{t}). This neighborhood becomes arbitrarily small as t0t\to 0. Within this neighborhood, both quantities in square brackets in Eqs.52 and 53 have a single isolated zero at gi=gi+1g_{i}=g_{i+1} (Lemma 4.1 in Han:2019vpw ). Therefore Δτ0\Delta\tau\to 0 forces gigi+1g_{i}\to g_{i+1}, given that right-hand sides of Eqs.52 and 53 are always finite Han:2019vpw . So any solution of Eqs.52 and 53 can be approximated arbitrarily well by the continuous function gig(τ)g_{i}\simeq g(\tau), as Δτ\Delta\tau arbitrarily small. In the following we apply this approximation, replace all gig_{i} by continuous function g(τ)g(\tau), and take the time continuous limit Δτ0\Delta\tau\to 0 of Eqs.52 and 53.

3.2 Time Continuous Limit

The time continuous limit leads to gi+1gi=g(τ)g_{i+1}\to g_{i}=g(\tau), so that matrix elements ψgiεt|𝐇^|ψgi1εt\langle\psi_{g_{i}^{\varepsilon}}^{t}|\hat{\mathbf{H}}|\psi_{g_{i-1}^{\varepsilon}}^{t}\rangle on right-hand sides of Eqs.52 - 53 reduces to the expectation values ψgεt|𝐇^|ψgεt\langle\psi_{g^{\varepsilon}}^{t}|\hat{\mathbf{H}}|\psi_{g^{\varepsilon}}^{t}\rangle as Δτ0\Delta\tau\to 0 (see Han:2019vpw for proving that gi+1gig_{i+1}\to g_{i} commutes with holomorphic derivatives). Coherent state expectation values of 𝐇^\hat{\bf H} have correct semiclassical limit555Firstly we can apply the semiclassical perturbation theory of Giesel:2006um to O^H^v4\hat{O}\equiv\hat{{H}}_{v}^{4} (recall Eq.33) and all O^n\hat{O}^{n} (n>1n>1): ψ~gt|O^n|ψ~gt=O[g]n+O(t)\langle\tilde{\psi}_{g}^{t}|\hat{O}^{n}|\tilde{\psi}_{g}^{t}\rangle={O}[g]^{n}+O(t). Then by Theorem 3.6 of Thiemann:2000bx , limt0ψ~gt|f(O^)|ψ~gt=f(O[g])\lim_{t\to 0}\langle\tilde{\psi}_{g}^{t}|f(\hat{O})|\tilde{\psi}_{g}^{t}\rangle=f({O}[g]) for any any Borel measurable function on \mathbb{R} such that ψ~gt|f(O^)f(O^)|ψ~gt<\langle\tilde{\psi}_{g}^{t}|f(\hat{O})^{\dagger}f(\hat{O})|\tilde{\psi}_{g}^{t}\rangle<\infty.

limt0ψ~gt|𝐇^|ψ~gt=𝐇[g]\displaystyle\lim_{t\to 0}\langle\tilde{\psi}_{g}^{t}|\hat{\mathbf{H}}|\tilde{\psi}_{g}^{t}\rangle={\bf H}[g] (55)

where 𝐇[g]{\bf H}[g] is the classical discrete Hamiltonian 40 evaluated at pa(e),h(e)p^{a}(e),h(e) determined by g(e)g(e) in Eq.44. Note that deriving semiclassical behavior of ψ~gt|𝐇^|ψ~gt\langle\tilde{\psi}_{g}^{t}|\hat{\mathbf{H}}|\tilde{\psi}_{g}^{t}\rangle relies on a semiclassical expansion of volume operator V^v\hat{V}_{v} Giesel:2006um

V^v=Q^v2q[1+n=12k+1(1)n+1q(1q)(n1+q)n!(Q^v2Q^v21)n],q=1/4\displaystyle\hat{V}_{v}=\langle\hat{Q}_{v}\rangle^{2q}\left[1+\sum_{n=1}^{2k+1}(-1)^{n+1}\frac{q(1-q)\cdots(n-1+q)}{n!}\left(\frac{\hat{Q}_{v}^{2}}{\langle\hat{Q}_{v}\rangle^{2}}-1\right)^{n}\right],\quad q=1/4 (56)

where Q^v=ψgt|Q^v|ψgt\langle\hat{Q}_{v}\rangle=\langle\psi^{t}_{g}|\hat{Q}_{v}|\psi^{t}_{g}\rangle. This expansion is valid when Q^vp6\langle\hat{Q}_{v}\rangle\gg\ell_{p}^{6}.

We write gi+1(e)=gi(e)[1+Δϕa(e)τa]g_{i+1}(e)=g_{i}(e)[1+{\Delta\phi^{a}(e)\tau^{a}}] where Δϕa(e)\Delta\phi^{a}(e) parametrizes the infinitesimal change of g(e)g(e) between two time steps. Eqs (52) and (53) reduce to follows (by using Lemma 4.1 in Han:2019vpw ):

ia2κM1ab(g(e))Δϕ¯b(e)Δτ\displaystyle-\frac{ia^{2}}{\kappa}{{M_{1}}^{a}}_{b}(g(e))\frac{\Delta\bar{\phi}^{b}(e)}{\Delta\tau} =\displaystyle= εa(e)𝐇[gε]|ε=0\displaystyle\frac{\partial}{\partial{\varepsilon}^{a}(e)}\mathbf{H}\left[g^{\varepsilon}\right]\Big{|}_{\vec{\varepsilon}=0} (57)
ia2κM2ab(g(e))Δϕb(e)Δτ\displaystyle-\frac{ia^{2}}{\kappa}{{M_{2}}^{a}}_{b}(g(e))\frac{\Delta{\phi}^{b}(e)}{\Delta\tau} =\displaystyle= ε¯a(e)𝐇[gε]|ε=0\displaystyle-\frac{\partial}{\partial{\bar{\varepsilon}}^{a}(e)}{\bf H}\left[g^{\varepsilon}\right]\Big{|}_{\vec{\varepsilon}=0} (58)

where the left-hand sides become time derivatives as Δτ0\Delta\tau\to 0, and

M1(g)ba\displaystyle M_{1}{}^{a}_{\ b}(g) =\displaystyle= 2Λca(θ)Λdb(θ)[pcppdpiεcdepe+pcosh(p)sinh(p)(δcdpcppdp)],\displaystyle 2\Lambda^{a}_{\ c}(\vec{\theta})\Lambda^{b}_{\ d}(\vec{\theta})\left[\frac{p^{c}}{p}\frac{p^{d}}{p}-i\varepsilon^{cde}p^{e}+\frac{p\cosh(p)}{\sinh(p)}\left(\delta^{cd}-\frac{p^{c}}{p}\frac{p^{d}}{p}\right)\right], (59)
M2(g)ba\displaystyle M_{2}{}^{a}_{\ b}(g) =\displaystyle= 2Λca(θ)Λdb(θ)[pcppdp+iεcdepe+pcosh(p)sinh(p)(δcdpcppdp)],\displaystyle 2\Lambda^{a}_{\ c}(\vec{\theta})\Lambda^{b}_{\ d}(\vec{\theta})\left[\frac{p^{c}}{p}\frac{p^{d}}{p}+i\varepsilon^{cde}p^{e}+\frac{p\cosh(p)}{\sinh(p)}\left(\delta^{cd}-\frac{p^{c}}{p}\frac{p^{d}}{p}\right)\right], (60)

where eθcτc/2τaeθcτc/2=Λba(𝜽)τbe^{\theta^{c}\tau^{c}/2}\tau^{a}e^{-\theta^{c}\tau^{c}/2}=\Lambda_{\ b}^{a}(\bm{\theta})\tau^{b}. The matrices M1(g)baM_{1}{}^{a}_{\ b}(g) and M2(g)baM_{2}{}^{a}_{\ b}(g) are nondegenerate since

det(M1,2(g))=sinh2(p)p20.\displaystyle\det\left(M_{1,2}(g)\right)=\frac{\sinh^{2}(p)}{p^{2}}\neq 0. (61)

We can write Δϕa(e)\Delta\phi^{a}(e) as a linear combination of Δpa(e)=pi+1a(e)pia(e)\Delta p^{a}(e)=p_{i+1}^{a}(e)-p_{i}^{a}(e) and Δθa(e)=θi+1a(e)θia(e)\Delta\theta^{a}(e)=\theta_{i+1}^{a}(e)-\theta_{i}^{a}(e)

Δϕa(eI)=12Tr(gi1(e)gi+1(e)τa)=J1ab(e)Δpa(e)+J2ab(e)Δθa(e).\displaystyle{\Delta{\phi}}^{a}(e_{I})=-\frac{1}{2}\text{Tr}(g_{i}^{-1}(e)g_{i+1}(e)\tau^{a})={{J_{1}}^{a}}_{b}(e)\Delta p^{a}(e)+{{J_{2}}^{a}}_{b}(e)\Delta\theta^{a}(e). (62)

at leading orders of Δpa(e)\Delta p^{a}(e) and Δθa(e)\Delta\theta^{a}(e). The holomorphic deformation εa(e)\varepsilon^{a}(e) has the similar expression

εa(e)=12Tr(g1(e)gε(e)τa)=J1ba(e)δpa(e)+J2ba(e)δθa(e)\displaystyle{\varepsilon}^{a}(e)=-\frac{1}{2}\text{Tr}(g^{-1}(e){g}^{\varepsilon}(e)\tau^{a})={J_{1}}^{a}_{\ b}(e)\delta p^{a}(e)+{J_{2}}^{a}_{\ b}(e)\delta\theta^{a}(e) (63)

where δpa(e)\delta p^{a}(e) and δθa(e)\delta\theta^{a}(e) relates to gε(e)g^{\varepsilon}(e) by

gε(e)=ei[pa(e)+δpa(e)]τa/2e[θa(e)+δθa(e)]τa/2.\displaystyle g^{\varepsilon}(e)=e^{-i\left[p^{a}(e)+\delta p^{a}(e)\right]\tau^{a}/2}e^{\left[\theta^{a}(e)+\delta\theta^{a}(e)\right]\tau^{a}/2}. (64)

J1,J2J_{1},J_{2} are 3-by-33\text{-by-}3 complex matrices whose elements depend on pa(e)p^{a}(e) and θa(e)\theta^{a}(e). We define 6×66\times 6 matrices JJ and J~\tilde{J} as:

J=(J1J2J¯1J2¯),J~=(J¯1J2¯J1J2).\displaystyle J=\left(\begin{array}[]{ll}J_{1}&J_{2}\\ \bar{J}_{1}&\bar{J_{2}}\end{array}\right)\;,\qquad\tilde{J}=\left(\begin{array}[]{ll}\bar{J}_{1}&\bar{J_{2}}\\ J_{1}&J_{2}\end{array}\right)\;. (69)

JJ and J~\tilde{J} satisfy

(𝜺(e)𝜺¯(e))\displaystyle\left(\begin{array}[]{l}\bm{\varepsilon}(e)\\ \bm{\bar{\varepsilon}}(e)\end{array}\right) =\displaystyle= J(δ𝒑(e)δ𝜽(e))=(J1J2J¯1J2¯)(δ𝒑(e)δ𝜽(e)),\displaystyle J\left(\begin{array}[]{l}{\delta{\bm{p}}(e)}\\ {\delta\bm{\theta}(e)}\end{array}\right)=\left(\begin{array}[]{ll}J_{1}&J_{2}\\ \bar{J}_{1}&\bar{J_{2}}\end{array}\right)\left(\begin{array}[]{l}{\delta{\bm{p}}(e)}\\ {\delta\bm{\theta}(e)}\end{array}\right), (78)
(Δϕ¯(e)Δϕ(e))\displaystyle\left(\begin{array}[]{l}\Delta\bm{\bar{\phi}}(e)\\ \Delta\bm{\phi}(e)\end{array}\right) =\displaystyle= J~(Δ𝒑(e)Δ𝜽(e))=(J¯1J2¯J1J2)(Δ𝒑(e)Δ𝜽(e))\displaystyle\tilde{J}\left(\begin{array}[]{l}\Delta{\bm{p}}(e)\\ \Delta\bm{\theta}(e)\end{array}\right)=\left(\begin{array}[]{ll}\bar{J}_{1}&\bar{J_{2}}\\ J_{1}&J_{2}\end{array}\right)\left(\begin{array}[]{l}\Delta{\bm{p}}(e)\\ \Delta\bm{\theta}(e)\end{array}\right) (87)

Here the bold letters 𝒑,𝜽\bm{p},\bm{\theta} denotes the 33-vectors pa,θap^{a},\theta^{a}. Using above matrices Eqs.(57) and (58) becomes

T(𝒑,𝜽)(Δ𝒑(e)/ΔτΔ𝜽(e)/Δτ)=iκa2(𝐇/𝒑(e)𝐇/𝜽(e)),\displaystyle{T}\left({\bm{p}},{\bm{\theta}}\right)\left(\begin{array}[]{l}{\Delta{\bm{p}}}(e)/{\Delta\tau}\\ {\Delta\bm{\theta}}(e)/{\Delta\tau}\end{array}\right)=\frac{i\kappa}{a^{2}}\left(\begin{array}[]{l}{\partial{\bf H}}/{\partial{\bm{p}}(e)}\\ {\partial{\bf H}}/{\partial\bm{\theta}(e)}\end{array}\right), (92)

where

T(𝒑,𝜽)=(J1J2J¯1J2¯)T(M100M2)(J¯1J2¯J1J2).\displaystyle{T}\left({\bm{p}},{\bm{\theta}}\right)=\left(\begin{array}[]{ll}J_{1}&J_{2}\\ \bar{J}_{1}&\bar{J_{2}}\end{array}\right)^{T}\left(\begin{array}[]{ll}M_{1}&\ \ 0\\ \ 0&-M_{2}\end{array}\right)\left(\begin{array}[]{ll}\bar{J}_{1}&\bar{J_{2}}\\ J_{1}&J_{2}\end{array}\right). (99)

It is much more convenient to compute the right-hand side of Eq.92 than right-hand sides of Eqs.57 and 58, since 𝐇{\bf H} is expressed in terms of holonomies and fluxes.

By the time continuous limit Δτ0\Delta\tau\to 0, Δ𝒑(e)/Δτd𝒑(e)/dτ{\Delta{\bm{p}}}(e)/{\Delta\tau}\to{\mathrm{d}{\bm{p}}}(e)/{\mathrm{d}\tau} and Δ𝜽(e)/Δτd𝜽(e)/dτ{\Delta{\bm{\theta}}}(e)/{\Delta\tau}\to{\mathrm{d}{\bm{\theta}}}(e)/{\mathrm{d}\tau}, so the semiclassical EOMs reduce to

T(𝒑,𝜽)(d𝒑(e)/dτd𝜽(e)/dτ)=iκa2(𝐇/𝒑(e)𝐇/𝜽(e)).\displaystyle{T}\left({\bm{p}},{\bm{\theta}}\right)\left(\begin{array}[]{l}{\mathrm{d}{\bm{p}}}(e)/{\mathrm{d}\tau}\\ {\mathrm{d}\bm{\theta}}(e)/{\mathrm{d}\tau}\end{array}\right)=\frac{i\kappa}{a^{2}}\left(\begin{array}[]{l}{\partial{\bf H}}/{\partial{\bm{p}}(e)}\\ {\partial{\bf H}}/{\partial\bm{\theta}(e)}\end{array}\right). (104)

The above computation is carried out in Mathematica. The matrix elements of JJ, J~\tilde{J}, and TT are lengthy. Their explicit formulae are given in github .

As seen from Eq.104, the approximation g(τ)g(\tau) of any solution gig_{i} of Eqs.52 and 53 is not only continuous in τ\tau but also differentiable. Indeed, if a solution gig(τ)g_{i}\simeq g(\tau) failed to be differentiable, left-hand sides of Eq.104 or Eqs.52 and 53 would have blew up with small Δτ\Delta\tau and contradicted the finiteness of right-hand sides, i.e. gig_{i} could not be a solution.

4 Semiclassical Dynamics as Hamiltonian Evolution

4.1 Holonomy-Flux Poisson Algebra

Since the semiclassical EOMs are expressed in terms of variables pa(e),θa(e)p^{a}(e),\theta^{a}(e), it is useful to compute the Poisson algebra of pa(e),θa(e)p^{a}(e),\theta^{a}(e) from the holonomy-flux algebra Eqs.29 - 31 by the relation h(e)=eθa(e)τa/2h(e)=e^{\theta^{a}(e)\tau^{a}/2}. The computation can be proceed as the following: We write Eq.30 (at e=ee^{\prime}=e) as

{pa(e),θb(e)}hAB(e)θb(e)\displaystyle\left\{p^{a}(e),\theta^{b}(e)\right\}\frac{\partial h_{AB}(e)}{\partial\theta^{b}(e)} =\displaystyle= κa2[τa2h(e)]AB.\displaystyle\frac{\kappa}{a^{2}}\left[\frac{\tau^{a}}{2}h\left(e\right)\right]_{AB}. (105)

Among 4 matrix elements hAB(e)h_{AB}(e), there are only 3 independent h11(e),h12(e),h21(e)h_{11}(e),h_{12}(e),h_{21}(e). The above equations with AB=11,12,21AB=11,12,21 form a matrix equation of three 3×33\times 3 matrices U,VU,\ V, and WW:

UbaVABb=κa2WABa,whereUba={pa(e),θb(e)},VABb=hAB(e)θb(e),WABa=[τb2h(e)]AB\displaystyle U^{a}_{\ b}V^{b}_{\ AB}=\frac{\kappa}{a^{2}}W^{a}_{\ AB},\quad\text{where}\quad U^{a}_{\ b}=\left\{p^{a}(e),\theta^{b}(e)\right\},\quad V^{b}_{\ AB}=\frac{\partial h_{AB}(e)}{\partial\theta^{b}(e)},\quad W^{a}_{\ AB}=\left[\frac{\tau^{b}}{2}h\left(e\right)\right]_{AB} (106)

where AB=11,12,21AB=11,12,21. Solving U=κa2WV1U=\frac{\kappa}{a^{2}}WV^{-1} gives the following result:

{pa(e),θb(e)}Uba(𝜽)\displaystyle\left\{p^{a}(e),\theta^{b}(e)\right\}\equiv U^{a}_{\ b}({\bm{\theta}}) (107)
=\displaystyle= (2θ12+θ(θ22+θ32)cot(θ2)2θ2θ33+(θ12+θ22)θ3+θ1θ2(θcot(θ2)2)2θ212(θ1θ3(2θcot(θ2))θ2+θ2)θ33+(θ12+θ22)θ3+θ1θ2(2θcot(θ2))2θ22θ22+θ(θ12+θ32)cot(θ2)2θ212(θ2θ3(2θcot(θ2))θ2θ1)θ2θ12+θ2(θ22+θ32)+θ3θ1(θcot(θ2)2)2θ2θ13+(θ22+θ32)θ1+θ2θ3(2θcot(θ2))2θ22θ32+θ(θ12+θ22)cot(θ2)2θ2)\displaystyle\left(\begin{array}[]{ccc}\frac{2\theta_{1}^{2}+\theta\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\cot\left(\frac{\theta}{2}\right)}{2\theta^{2}}&-\frac{\theta_{3}^{3}+\left(\theta_{1}^{2}+\theta_{2}^{2}\right)\theta_{3}+\theta_{1}\theta_{2}\left(\theta\cot\left(\frac{\theta}{2}\right)-2\right)}{2\theta^{2}}&\frac{1}{2}\left(\frac{\theta_{1}\theta_{3}\left(2-\theta\cot\left(\frac{\theta}{2}\right)\right)}{\theta^{2}}+\theta_{2}\right)\\ \frac{\theta_{3}^{3}+\left(\theta_{1}^{2}+\theta_{2}^{2}\right)\theta_{3}+\theta_{1}\theta_{2}\left(2-\theta\cot\left(\frac{\theta}{2}\right)\right)}{2\theta^{2}}&\frac{2\theta_{2}^{2}+\theta\left(\theta_{1}^{2}+\theta_{3}^{2}\right)\cot\left(\frac{\theta}{2}\right)}{2\theta^{2}}&\frac{1}{2}\left(\frac{\theta_{2}\theta_{3}\left(2-\theta\cot\left(\frac{\theta}{2}\right)\right)}{\theta^{2}}-\theta_{1}\right)\\ -\frac{\theta_{2}\theta_{1}^{2}+\theta_{2}\left(\theta_{2}^{2}+\theta_{3}^{2}\right)+\theta_{3}\theta_{1}\left(\theta\cot\left(\frac{\theta}{2}\right)-2\right)}{2\theta^{2}}&\frac{\theta_{1}^{3}+\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\theta_{1}+\theta_{2}\theta_{3}\left(2-\theta\cot\left(\frac{\theta}{2}\right)\right)}{2\theta^{2}}&\frac{2\theta_{3}^{2}+\theta\left(\theta_{1}^{2}+\theta_{2}^{2}\right)\cot\left(\frac{\theta}{2}\right)}{2\theta^{2}}\\ \end{array}\right) (111)

where θaθa(e)\theta_{a}\equiv\theta^{a}(e) and θ=θa(e)θa(e)\theta=\sqrt{\theta^{a}(e)\theta^{a}(e)}. With this result we check that Eq.105 with AB=21AB=21 is satisfied automatically.

The holonomy-flux algebra Eqs.29 - 31 implies the following Poisson algebra between pa(e)p^{a}(e) and θa(e)\theta^{a}(e)

{θa(e),θb(e)}\displaystyle\left\{\theta^{a}(e),\theta^{b}\left(e^{\prime}\right)\right\} =\displaystyle= 0,\displaystyle 0, (112)
{pa(e),θb(e)}\displaystyle\left\{p^{a}(e),\theta^{b}\left(e^{\prime}\right)\right\} =\displaystyle= κa2δe,eUba(𝜽),\displaystyle\frac{\kappa}{a^{2}}\delta_{e,e^{\prime}}U^{a}_{\ b}({\bm{\theta}}), (113)
{pa(e),pb(e)}\displaystyle\left\{p^{a}(e),p^{b}\left(e^{\prime}\right)\right\} =\displaystyle= κa2δe,eεabcpc(e),\displaystyle-\frac{\kappa}{a^{2}}\delta_{e,e^{\prime}}\varepsilon_{abc}p^{c}\left(e^{\prime}\right), (114)

A straight-forward computation demonstrates that Eqs.112 - 114 implies the holonomy-flux algebra Eqs.29 - 31. Thus the holonomy-flux algebra and the Poisson algebra between pa(e)p^{a}(e) and θa(e)\theta^{a}(e) in Eqs.112 - 114 are equivalent.

4.2 Hamilton’s equations

We would like to relate EOMs 104 to Hamilton’s equations with the discrete physical Hamiltonian 𝐇{\bf H} and symplectic structure of holonomy-flux algebra. Firstly

{pa(e),𝐇}={pa(e),pb(e)}𝐇pb(e)+{pa(e),θb(e)}𝐇θb(e)\displaystyle\left\{p^{a}(e),{\bf H}\right\}=\left\{p^{a}(e),p^{b}(e)\right\}\frac{\partial{\bf H}}{\partial p^{b}(e)}+\left\{p^{a}(e),\theta^{b}(e)\right\}\frac{\partial{\bf H}}{\partial\theta^{b}(e)}
{θa(e),𝐇}={θa(e),pb(e)}𝐇pb(e)+{θa(e),θb(e)}𝐇θb(e).\displaystyle\left\{\theta^{a}(e),{\bf H}\right\}=\left\{\theta^{a}(e),p^{b}(e)\right\}\frac{\partial{\bf H}}{\partial p^{b}(e)}+\left\{\theta^{a}(e),\theta^{b}(e)\right\}\frac{\partial{\bf H}}{\partial\theta^{b}(e)}. (115)

We define the matrix

P(𝒑,𝜽)=({pa(e),pb(e)}{pa(e),θb(e)}{θa(e),pb(e)}0).\displaystyle P({\bm{p}},{\bm{\theta}})=\left(\begin{array}[]{cc}\left\{p^{a}(e),p^{b}(e)\right\}&\left\{p^{a}(e),\theta^{b}(e)\right\}\\ \left\{\theta^{a}(e),p^{b}(e)\right\}&0\end{array}\right). (118)

Applying PP to the EOMs 104 gives

ia2κP(𝒑,𝜽)T(𝒑,𝜽)(d𝒑(e)/dτd𝜽(e)/dτ)=({𝒑(e),𝐇}{𝜽(e),𝐇}).\displaystyle-\frac{ia^{2}}{\kappa}P\left({\bm{p}},{\bm{\theta}}\right){T}\left({\bm{p}},{\bm{\theta}}\right)\left(\begin{array}[]{l}{\mathrm{d}{\bm{p}}}(e)/{\mathrm{d}\tau}\\ {\mathrm{d}\bm{\theta}}(e)/{\mathrm{d}\tau}\end{array}\right)=\left(\begin{array}[]{l}\left\{\bm{p}(e),{\bf H}\right\}\\ \left\{\bm{\theta}(e),{\bf H}\right\}\end{array}\right). (123)

By using the explicit formula of T(𝒑,𝜽){T}\left({\bm{p}},{\bm{\theta}}\right) and Poisson brackets in P(𝒑,𝜽)P\left({\bm{p}},{\bm{\theta}}\right), we obtain the following simple result

ia2κP(𝒑,𝜽)T(𝒑,𝜽)=16×6.\displaystyle-\frac{ia^{2}}{\kappa}P\left({\bm{p}},{\bm{\theta}}\right){T}\left({\bm{p}},{\bm{\theta}}\right)=1_{6\times 6}. (124)

This shows that the semiclassical EOMs from the path integral is equivalent to Hamilton’s equations with the discrete physical Hamiltonian 𝐇{\bf H}:

dpa(e)dτ={pa(e),𝐇},dθa(e)dτ={θa(e),𝐇},\displaystyle\frac{\mathrm{d}{p}^{a}(e)}{\mathrm{d}\tau}=\left\{{p}^{a}(e),\ {\bf H}\right\},\quad\frac{\mathrm{d}{\theta}^{a}(e)}{\mathrm{d}\tau}=\left\{{\theta}^{a}(e),\ {\bf H}\right\}, (125)

where the Poisson brackets are given by Eqs.112 - 114, or equivalently, by the holonomy-flux algebra Eqs.29 - 31. In general, the time evolution of any phase space function f(pa(e),θa(e))f({p}^{a}(e),{\theta}^{a}(e)) or f(pa(e),h(e))f({p}^{a}(e),h(e)) is governed by

dfdτ={f,𝐇}.\displaystyle\frac{\mathrm{d}f}{\mathrm{d}\tau}=\left\{f,\ {\bf H}\right\}. (126)

Mathematica is employed for all above computations, including computing {pa(e),θb(e)}\{p^{a}(e),\theta^{b}(e)\}, check the equivalence between Eqs.112 - 114 and holonomy-flux algebra, and verifying Eq.124. The Mathematica files can be found in github .

Moreover the closure condition 54 is equivalent to I=13s=±pa(ev;I,s)=0\sum_{I=1}^{3}\sum_{s=\pm}p^{a}(e_{v;I,s})=0. The Hamiltonian flow generated by Gva:=I=13s=±pa(ev;I,s)G^{a}_{v}:=\sum_{I=1}^{3}\sum_{s=\pm}p^{a}(e_{v;I,s}) in a 𝒫γ\mathcal{P}_{\gamma} is SU(2) gauge transformation. Since 𝐇{\bf H} is SU(2) gauge invariant,

dGvadτ={Gva,𝐇}=0.\displaystyle\frac{\mathrm{d}G^{a}_{v}}{\mathrm{d}\tau}=\left\{G^{a}_{v},\,{\bf H}\right\}=0. (127)

So the closure condition 54 is preserved in the time evolution. Given a solution pa(τ,e),θb(τ,e)p^{a}(\tau,e),\theta^{b}(\tau,e) satisfying Eq.126, its gauge transformation still satisfies Eq.126:

{{f,Gva},𝐇}\displaystyle\left\{\{f,\,G^{a}_{v}\},\,{\bf H}\right\} =\displaystyle= {{Gva,𝐇},f}{{𝐇,f},Gva}={f,dGvadτ}+{dfdτ,Gva}\displaystyle-\left\{\{G^{a}_{v},\,{\bf H}\},\,f\right\}-\left\{\{{\bf H},\,f\},\,G^{a}_{v}\right\}=\left\{f,\,\frac{\mathrm{d}G^{a}_{v}}{\mathrm{d}\tau}\right\}+\left\{\frac{\mathrm{d}f}{\mathrm{d}\tau},\,G^{a}_{v}\right\} (128)
=\displaystyle= ddτ{f,Gva}.\displaystyle\frac{\mathrm{d}}{\mathrm{d}\tau}\{f,\,G^{a}_{v}\}.

Recall that the initial state in Eq.48 is labelled by the gauge equivalence class [g][g^{\prime}], the trajectory in the reduced phase space determined by the Hamiltonian flow 126 is unique up to SU(2) gauge transformations, in the phase space regime where 𝐇{\bf H} is a smooth function in pa,θap^{a},\theta^{a}.

Note that due to the absolute-value and square-root in 𝐇{\bf H}, 𝐇{\bf H} is non-differentiable at Cv2α4a=13Ca,v2=0C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}=0, at which the uniqueness of solution cannot be established. As it is discussed in Section 6, these irregularities are avoided if initial states Ψ[g]t\Psi_{[g^{\prime}]}^{t} are semiclassical in the sense that [g][g^{\prime}] is in the classically allowed regime of the phase space. The classically allowed regime satisfies non-holonomic constraints required by the classical gravity-dust theory.

5 Action Principle

Here we present another routine to derive the classical EOMs (the Hamilton’s equation 126). We are going to firstly take the time continuous limit of the discrete action S[g,h]S[g,h], then derive EOMs, in contrast to the above procedure in which discrete EOMs are derived firstly from the path integral, then take the time continuous limit.

Recall S[g,h]S[g,h] in Eq.49, we write

gi=g(τ),gi+1=g(τ+Δτ),\displaystyle g_{i}=g(\tau),\quad g_{i+1}=g(\tau+\Delta\tau), (129)

and expand summands in S[g,h]S[g,h] in Δτ\Delta\tau:

ψgi+1t|𝐇^|ψgitψgi+1i|ψgit+iε~i+1,i(Δτ)=ψg(τ)t|𝐇^|ψg(τ)t+O(Δτ),\displaystyle\frac{\langle\psi_{g_{i+1}}^{t}|\hat{\mathbf{H}}|\psi_{g_{i}}^{t}\rangle}{\langle\psi_{g_{i+1}}^{i}|\psi_{g_{i}}^{t}\rangle}+i\tilde{\varepsilon}_{i+1,i}\left(\frac{\Delta\tau}{\hbar}\right)=\langle\psi_{g(\tau)}^{t}|\hat{\mathbf{H}}|\psi_{g(\tau)}^{t}\rangle+O(\Delta\tau), (130)
K(gi+1,gi)=ΔτeE(γ)iGab(𝜽(τ,e))pa(τ,e)dθb(τ,e)dτ+O(Δτ2).\displaystyle K\left(g_{i+1},g_{i}\right)=\Delta\tau\sum_{e\in E(\gamma)}iG_{ab}\big{(}\bm{\theta}(\tau,e)\big{)}p^{a}(\tau,e)\frac{\mathrm{d}\theta^{b}(\tau,e)}{\mathrm{d}\tau}+O(\Delta\tau^{2}). (131)

The 3×33\times 3 real matrix Gab(𝜽)G_{ab}\big{(}\bm{\theta}\big{)} is given by

((θθ12+(θ22+θ32)sin(θ))θ3(θ1θ2(θsin(θ))+θθ3(cos(θ)1))θ3(θ1θ3(sin(θ)θ)+θθ2(cos(θ)1))θ3θθ3(cos(θ)1)θ1θ2(θsin(θ))θ3(θθ22+(θ12+θ32)sin(θ))θ3(θ2θ3(θsin(θ))+θθ1(cos(θ)1))θ3(θ1θ3(θsin(θ))+θθ2(cos(θ)1))θ3(θ2θ3(sin(θ)θ)+θθ1(cos(θ)1))θ3(θθ32+(θ12+θ22)sin(θ))θ3)\displaystyle\left(\begin{array}[]{ccc}-\frac{\left(\theta\theta_{1}^{2}+\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\sin(\theta)\right)}{\theta^{3}}&-\frac{\left(\theta_{1}\theta_{2}(\theta-\sin(\theta))+\theta\theta_{3}(\cos(\theta)-1)\right)}{\theta^{3}}&\frac{\left(\theta_{1}\theta_{3}(\sin(\theta)-\theta)+\theta\theta_{2}(\cos(\theta)-1)\right)}{\theta^{3}}\\ \frac{\theta\theta_{3}(\cos(\theta)-1)-\theta_{1}\theta_{2}(\theta-\sin(\theta))}{\theta^{3}}&-\frac{\left(\theta\theta_{2}^{2}+\left(\theta_{1}^{2}+\theta_{3}^{2}\right)\sin(\theta)\right)}{\theta^{3}}&-\frac{\left(\theta_{2}\theta_{3}(\theta-\sin(\theta))+\theta\theta_{1}(\cos(\theta)-1)\right)}{\theta^{3}}\\ -\frac{\left(\theta_{1}\theta_{3}(\theta-\sin(\theta))+\theta\theta_{2}(\cos(\theta)-1)\right)}{\theta^{3}}&\frac{\left(\theta_{2}\theta_{3}(\sin(\theta)-\theta)+\theta\theta_{1}(\cos(\theta)-1)\right)}{\theta^{3}}&-\frac{\left(\theta\theta_{3}^{2}+\left(\theta_{1}^{2}+\theta_{2}^{2}\right)\sin(\theta)\right)}{\theta^{3}}\\ \end{array}\right) (135)

where θaθa(e)\theta_{a}\equiv\theta^{a}(e) and θ=θa(e)θa(e)\theta=\sqrt{\theta^{a}(e)\theta^{a}(e)}.

We find that Gab(𝜽)G_{ab}({\bm{\theta}}) closely relates to Uba(𝜽)={pa(e),θb(e)}U^{a}_{\ b}({\bm{\theta}})=\left\{p^{a}(e),\theta^{b}(e)\right\} by

G(𝜽)TU(𝜽)=U(𝜽)G(𝜽)T=κa2 13×3.\displaystyle G({\bm{\theta}})^{T}U({\bm{\theta}})=U({\bm{\theta}})G({\bm{\theta}})^{T}=-\frac{\kappa}{a^{2}}\,1_{3\times 3}. (136)

We define new variables

Xb(τ,e)=Gab(𝜽(τ,e))pa(τ,e)\displaystyle X^{b}(\tau,e)=G_{ab}\big{(}\bm{\theta}(\tau,e)\big{)}p^{a}(\tau,e) (137)

and interestingly, we obtain the following result:

Theorem 5.1.

The following (equal-time) Poisson algebra between XaX^{a} and θa\theta^{a} is equivalent to the holonomy-flux algebra

{Xa(e),θb(e)}=κa2δabδe,e,{Xa(e),Xb(e)}={θa(e),θb(e)}=0.\displaystyle\left\{X^{a}(e),\theta^{b}(e^{\prime})\right\}=-\frac{\kappa}{a^{2}}\delta^{ab}\delta_{e,e^{\prime}},\quad\left\{X^{a}(e),X^{b}(e^{\prime})\right\}=\left\{\theta^{a}(e),\theta^{b}(e^{\prime})\right\}=0. (138)

Xa(e),θa(e)X^{a}(e),\theta^{a}(e) form local Darboux coordinate on the reduced phase space of LQG.

Proof: The first relation is equivalent to Eq.112

{Xa(e),θb(e)}=Gca(𝜽(e)){pc(e),θb(e)}=Gca(𝜽(e))Ubc(𝜽(e))δe,e=κa2δabδe,e.\displaystyle\left\{X^{a}(e),\theta^{b}(e^{\prime})\right\}=G_{ca}\big{(}\bm{\theta}(e)\big{)}\left\{p^{c}(e),\theta^{b}(e^{\prime})\right\}=G_{ca}\big{(}\bm{\theta}(e)\big{)}U^{c}_{\ b}({\bm{\theta}}(e))\delta_{e,e^{\prime}}=-\frac{\kappa}{a^{2}}\delta^{ab}\delta_{e,e^{\prime}}. (139)

Secondly,

{Xa(e),Xb(e)}={Gca(𝜽(e))pc(e),Gdb(𝜽(e))pd(e)}\displaystyle\left\{X^{a}(e),X^{b}(e^{\prime})\right\}=\left\{G_{ca}\big{(}\bm{\theta}(e)\big{)}p^{c}(e),G_{db}\big{(}\bm{\theta}(e^{\prime})\big{)}p^{d}(e^{\prime})\right\} (140)
=\displaystyle= Gca(𝜽(e))Gdb(𝜽(e)){pc(e),pd(e)}Gdb(𝜽(e))pc(e)Gca(𝜽(e))θf(e){pd(e),θf(e)}\displaystyle G_{ca}\big{(}\bm{\theta}(e)\big{)}G_{db}\big{(}\bm{\theta}(e^{\prime})\big{)}\left\{p^{c}(e),p^{d}(e^{\prime})\right\}-G_{db}\big{(}\bm{\theta}(e^{\prime})\big{)}p^{c}(e)\frac{\partial G_{ca}\big{(}\bm{\theta}(e)\big{)}}{\partial\theta^{f}(e)}\left\{p^{d}(e^{\prime}),\theta^{f}(e)\right\}
+Gca(𝜽(e))pd(e)Gdb(𝜽(e))θf(e){pc(e),θf(e)}\displaystyle+\ G_{ca}\big{(}\bm{\theta}(e)\big{)}p^{d}(e^{\prime})\frac{\partial G_{db}\big{(}\bm{\theta}(e^{\prime})\big{)}}{\partial\theta^{f}(e^{\prime})}\left\{p^{c}(e),\theta^{f}(e^{\prime})\right\}
=\displaystyle= Gca(𝜽(e))Gdb(𝜽(e)){pc(e),pd(e)}+κa2δe,epc(e)[Gca(𝜽(e))θb(e)Gcb(𝜽(e))θa(e)]\displaystyle G_{ca}\big{(}\bm{\theta}(e)\big{)}G_{db}\big{(}\bm{\theta}(e^{\prime})\big{)}\left\{p^{c}(e),p^{d}(e^{\prime})\right\}+\frac{\kappa}{a^{2}}\delta_{e,e^{\prime}}p^{c}(e)\left[\frac{\partial G_{ca}\big{(}\bm{\theta}(e)\big{)}}{\partial\theta^{b}(e)}-\frac{\partial G_{cb}\big{(}\bm{\theta}(e)\big{)}}{\partial\theta^{a}(e)}\right]

is vanishing because

{pc(e),pd(e)}=κa2Gac1(𝜽(e))Gbd1(𝜽(e))[Gea(𝜽(e))θb(e)Geb(𝜽(e))θa(e)]pe(e),\displaystyle\left\{p^{c}(e),p^{d}(e)\right\}=-\frac{\kappa}{a^{2}}G^{-1}_{ac}\big{(}\bm{\theta}(e)\big{)}G^{-1}_{bd}\big{(}\bm{\theta}(e^{\prime})\big{)}\left[\frac{\partial G_{ea}\big{(}\bm{\theta}(e)\big{)}}{\partial\theta^{b}(e)}-\frac{\partial G_{eb}\big{(}\bm{\theta}(e)\big{)}}{\partial\theta^{a}(e)}\right]p^{e}(e), (141)

which can be checked straight-forwardly. The Mathemaica file for the above computation is provided in github .

\Box

Although the Poisson algebra Eq.138 is simple, SU(2) gauge transformations of Xa(e),θa(e)X^{a}(e),\theta^{a}(e) are complicated. In contrast, the holonomy-flux algebra uses variables pa(e),h(e)p^{a}(e),h(e) that have simple SU(2) gauge transformations, but sacrifices the simplicity of Poisson brackets.

As a result we obtain the following time continuous limit 𝒮[g,h]=limΔτ0S[g,h]\mathcal{S}[g,h]=\lim_{\Delta\tau\to 0}S[g,h]

𝒮[g,h]\displaystyle\mathcal{S}[g,h] =\displaystyle= i0Tdτ[eE(γ)Xa(τ,e)dθa(τ,e)dτκa2ψg(τ)t|𝐇^|ψg(τ)t]\displaystyle i\int_{0}^{T}\mathrm{d}\tau\left[\sum_{e\in E(\gamma)}X^{a}(\tau,e)\frac{\mathrm{d}\theta^{a}(\tau,e)}{\mathrm{d}\tau}-\frac{\kappa}{a^{2}}\langle\psi_{g(\tau)}^{t}|\hat{\mathbf{H}}|\psi_{g(\tau)}^{t}\rangle\right] (142)
=\displaystyle= i0Tdτ[eE(γ)Xa(τ,e)dθa(τ,e)dτκa2(𝐇[𝒑(τ),𝜽(τ)]+O())]\displaystyle i\int_{0}^{T}\mathrm{d}\tau\left[\sum_{e\in E(\gamma)}X^{a}(\tau,e)\frac{\mathrm{d}\theta^{a}(\tau,e)}{\mathrm{d}\tau}-\frac{\kappa}{a^{2}}\Big{(}{\mathbf{H}}\left[{\bm{p}}(\tau),{\bm{\theta}}(\tau)\right]+O(\hbar)\Big{)}\right]

where ψg(τ)t|𝐇^|ψg(τ)t=𝐇[𝒑(τ),𝜽(τ)]+O()\langle\psi_{g(\tau)}^{t}|\hat{\mathbf{H}}|\psi_{g(\tau)}^{t}\rangle={\mathbf{H}}\left[{\bm{p}}(\tau),{\bm{\theta}}(\tau)\right]+O(\hbar).

The Poisson algebra Eq.138, or equivalently the holonomy-flux algebra, can be obtained from the above 𝒮[g,h]\mathcal{S}[g,h] by the Legendre transformation. 𝒮[g,h]\mathcal{S}[g,h] provides an action principle for the LQG (reduced) phase space and the quantization.

By the time continuous limit, the path integral formula 48 becomes a standard phase space path integral

[DXDθ]μ[X,θ]eit0Tdτ[eE(γ)Xa(τ,e)dθa(τ,e)dτiκa2(𝐇+O())]\displaystyle\int\left[DXD\theta\right]\,\mu[X,\theta]\,e^{\frac{i}{t}\int_{0}^{T}\mathrm{d}\tau\left[\sum_{e\in E(\gamma)}X^{a}(\tau,e)\frac{\mathrm{d}\theta^{a}(\tau,e)}{\mathrm{d}\tau}-\frac{i\kappa}{a^{2}}\Big{(}{\mathbf{H}}+O(\hbar)\Big{)}\right]} (143)

up to O()O(\hbar) in the action and a measure factor μ[X,θ]\mu[X,\theta] (containing ν[g]\nu[g] and the Jacobian for transforming dgdXdθ\mathrm{d}g\to\mathrm{d}X\mathrm{d}\theta). The path integral formula becomes an infinite dimension integral, thus may be mathematically ill-defined. This path integral relates to a starting point in link ; Han:2009bb .

The variational principle δ𝒮=0\delta\mathcal{S}=0 gives the Hamilton’s equation (up to O()O(\hbar))

dθa(e)dτ=κa2𝐇Xa(e),dXa(e)dτ=κa2𝐇θa(e)\displaystyle\frac{\mathrm{d}\theta^{a}(e)}{\mathrm{d}\tau}=\frac{\kappa}{a^{2}}\frac{\partial\mathbf{H}}{\partial X^{a}(e)},\quad\frac{\mathrm{d}X^{a}(e)}{\mathrm{d}\tau}=-\frac{\kappa}{a^{2}}\frac{\partial\mathbf{H}}{\partial\theta^{a}(e)} (144)

For any phase space function f(𝑿,𝜽)f({\bm{X}},{\bm{\theta}}), its time evolution is given by

dfdτ={f,𝐇},\displaystyle\frac{\mathrm{d}f}{\mathrm{d}\tau}=\left\{f,\ {\bf H}\right\}, (145)

which is identical to Eq.126. It shows that the time continuous limit and variational principle are commutative when acting on S[g,h]S[g,h].

6 Lattice Continuum Limit

In this section, we demonstrate the relation between the semiclassical EOMs 104 (or equivalently 126) from path integral and classical reduced phase space EOMs 22 of gravity-dust system in the continuum. We are going to take the continuum limit of the cubic lattice γ\gamma, i.e. send the total number |V(γ)||V(\gamma)| of vertices to infinity, and show that 104 recovers 22 in this limit. Defining μ|V(γ)|3\mu\sim|V(\gamma)|^{-3} to be the coordinate length of every lattice edge, the lattice continuum limit is given by μ0\mu\to 0. More precisely, recall that semiclassical EOMs are derived with t=P2/a20t=\ell_{P}^{2}/a^{2}\to 0 and Q^vμ6P6\langle\hat{Q}_{v}\rangle\sim\mu^{6}\gg\ell_{P}^{6} (see Eq.56), the lattice continuum limit takes us to the regime

Pμa,\displaystyle\ell_{P}\ll\mu\ll a, (146)

where aa is a macroscopic unit, e.g. a=1mma=1mm. When keeping aa fixed, the lattice continuum limit sends μ0\mu\to 0 after the semiclassical limit P0\ell_{P}\to 0 (from which EOMs are derived) so Pμ\ell_{P}\ll\mu is kept.

We rescale θa(e),pa(e)\theta^{a}(e),p^{a}(e):

θa(eI(v))=μ𝔄Ia(v),pa(eI(v))=2μ2βa2𝔈aI(v),\displaystyle\theta^{a}\left(e_{I}(v)\right)=\mu\mathfrak{A}^{a}_{I}(v),\quad p^{a}\left(e_{I}(v)\right)=\frac{2\mu^{2}}{\beta a^{2}}\mathfrak{E}_{a}^{I}(v), (147)

where 𝔄Ia(v),𝔈aI(v)\mathfrak{A}^{a}_{I}(v),\mathfrak{E}_{a}^{I}(v) behave as follows in the lattice continuum limit:

𝔄Ia(v)=AIa(v)+O(μ),𝔈aI(v)=EaI(v)+O(μ).\displaystyle\mathfrak{A}^{a}_{I}(v)=A^{a}_{I}(v)+O(\mu),\quad\mathfrak{E}_{a}^{I}(v)=E_{a}^{I}(v)+O(\mu). (148)

Here AIa(v)=Aja(v)e˙I(v)jA^{a}_{I}(v)=A^{a}_{j}(v)\dot{e}_{I}(v)^{j} and EaI(v)=Eaj(v)e˙I(v)jE_{a}^{I}(v)=E_{a}^{j}(v)\dot{e}_{I}(v)^{j} are smooth fields (𝑨,𝑬)({\bm{A}},{\bm{E}}) evaluated at the vertex vv. e˙I(v)\dot{e}_{I}(v) is the tangent vector of eI(v)e_{I}(v) at vv. AIa(v),EaI(v)A^{a}_{I}(v),E_{a}^{I}(v) are coordinate components of (𝑨,𝑬)({\bm{A}},{\bm{E}}) when we take e˙I(v)/σI\dot{e}_{I}(v)\equiv\partial/\partial\sigma^{I} (I=1,2,3I=1,2,3) as coordinate basis. σI\sigma^{I} is such that the coordinate length of eI(v)e_{I}(v) is μ\mu.

Inserting the μ\mu-expansion of θa(e),pa(e)\theta^{a}(e),p^{a}(e) in T(𝒑,𝜽)T({\bm{p}},{\bm{\theta}}) of Eq.104 gives:

T(𝒑,𝜽)=(000i000000i000000ii000000i000000i000)+O(μ).\displaystyle T({\bm{p}},{\bm{\theta}})=\left(\begin{array}[]{cccccc}0&0&0&-i&0&0\\ 0&0&0&0&-i&0\\ 0&0&0&0&0&-i\\ i&0&0&0&0&0\\ 0&i&0&0&0&0\\ 0&0&i&0&0&0\\ \end{array}\right)+O(\mu). (155)

So the left hand side of Eq.104 becomes

T(𝒑,𝜽)(d𝒑(eI(v))dτd𝜽(eI(v))dτ)=i(μd𝑨I(v)dτ+O(μ2)2μ2βa2d𝑬I(v)dτ+O(μ3)).\displaystyle{T}\left({\bm{p}},{\bm{\theta}}\right)\left(\begin{array}[]{l}\frac{\mathrm{d}{\bm{p}}(e_{I}(v))}{\mathrm{d}\tau}\\ \frac{\mathrm{d}\bm{\theta}(e_{I}(v))}{\mathrm{d}\tau}\end{array}\right)=i\left(\begin{array}[]{l}-\mu\frac{\mathrm{d}{\bm{A}}_{I}(v)}{\mathrm{d}\tau}+O(\mu^{2})\\ \frac{2\mu^{2}}{\beta a^{2}}\frac{\mathrm{d}\bm{E}^{I}(v)}{\mathrm{d}\tau}+O(\mu^{3})\end{array}\right). (160)

On the right hand side of Eq.104,

𝐇[𝒑,𝜽]pa(eI(v))=βa22μ2𝐇[𝔈,𝔄]𝔈aI(v),𝐇[𝒑,𝜽]θa(eI(v))=1μ𝐇[𝔈,𝔄]𝔄Ia(v).\displaystyle\frac{\partial{\bf H}[\bm{p},\bm{\theta}]}{\partial p^{a}(e_{I}(v))}=\frac{\beta a^{2}}{2\mu^{2}}\frac{\partial{\bf H}[\mathfrak{E},\mathfrak{A}]}{\partial\mathfrak{E}^{I}_{a}(v)},\quad\frac{\partial{\bf H}[\bm{p},\bm{\theta}]}{\partial\theta^{a}(e_{I}(v))}=\frac{1}{\mu}\frac{\partial{\bf H}[\mathfrak{E},\mathfrak{A}]}{\partial\mathfrak{A}^{a}_{I}(v)}. (161)

𝐇[𝔈,𝔄]{\bf H}[\mathfrak{E},\mathfrak{A}] is obtained from 𝐇[𝒑,𝜽]{\bf H}[\bm{p},\bm{\theta}] by changing variables 147. Derivatives of 𝐇{\bf H} reduces to derivatives of CvC_{v} and Ca,vC_{a,v}:

𝐇𝔈aI(v)\displaystyle\frac{\partial{\bf H}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})} =\displaystyle= vV(γ)sv[CvHvCv𝔈aI(v)α4b=13Cb,vHvCb,v𝔈aI(v)],\displaystyle\sum_{v\in V(\gamma)}s_{v}\left[\frac{C_{v}}{H_{v}}\,\frac{\partial C_{v}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}-\frac{\alpha}{4}\sum_{b=1}^{3}\frac{C_{b,v}}{H_{v}}\frac{\partial C_{b,v}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\right], (162)
𝐇𝔄Ia(v)\displaystyle\frac{\partial{\bf H}}{\partial\mathfrak{A}^{a}_{I}(v^{\prime})} =\displaystyle= vV(γ)sv[CvHvCv𝔄Ia(v)α4b=13Cb,vHvCb,v𝔄Ia(v)],\displaystyle\sum_{v\in V(\gamma)}s_{v}\left[\frac{C_{v}}{H_{v}}\,\frac{\partial C_{v}}{\partial\mathfrak{A}^{a}_{I}(v^{\prime})}-\frac{\alpha}{4}\sum_{b=1}^{3}\frac{C_{b,v}}{H_{v}}\frac{\partial C_{b,v}}{\partial\mathfrak{A}^{a}_{I}(v^{\prime})}\right], (163)

where Hv=|Cv2α4a=13Ca,v2|H_{v}=\sqrt{|C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}|} and sv=sgn(Cv2α4a=13Ca,v2)s_{v}=\mathrm{sgn}(C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}). We have assumed that variations of 𝔈aI(v)\mathfrak{E}^{I}_{a}(v^{\prime}) and 𝔄Ia(v)\mathfrak{A}^{a}_{I}(v^{\prime}) (for computing above derivatives) do not make any svs_{v} jump, so derivatives of svs_{v} are zero. Without this assumption, Hamilton’s equations 125 is ill-defined because 𝐇{\bf H} is not differentiable as svs_{v} jumps. Semiclassial EOMs are singular at Cv2α4a=13Ca,v2=0C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}=0.

Computing explicitly Poisson brackets h(e){h(e)1,Vv}h(e)\{h(e)^{-1},V_{v}\} and h(e){h(e)1,K}h(e)\{h(e)^{-1},K\} makes CvC_{v} and Ca,vC_{a,v} as polynomials generated by following quantities

h(eI(v))\displaystyle h(e_{I}(v)) =\displaystyle= eμ𝔄Ia(v),pa(eI(v))=2μ2βa2𝔈aI(v),\displaystyle e^{\mu\mathfrak{A}_{I}^{a}(v)},\quad p^{a}(e_{I}(v))=\frac{2\mu^{2}}{\beta a^{2}}\mathfrak{E}_{a}^{I}(v), (164)
Qv12\displaystyle{Q}_{v}^{-\frac{1}{2}} =\displaystyle= μ3𝔮(v)12,𝔮(v)=16εIJKεabc𝔈aI(v)𝔈bJ(v)𝔈cK(v),\displaystyle\mu^{-3}\mathfrak{q}(v)^{-\frac{1}{2}},\quad\mathfrak{q}(v)=\frac{1}{6}\varepsilon_{IJK}\varepsilon^{abc}\mathfrak{E}_{a}^{I}(v)\mathfrak{E}_{b}^{J}(v)\mathfrak{E}_{c}^{K}(v), (165)

where QvQ_{v} is the classical limit of Q^v\hat{Q}_{v} in Eq.39.

In the following we often use the short-hand notation

𝔣α(v)\displaystyle\mathfrak{f}_{\alpha}(v) =\displaystyle= (𝔈aI(v),𝔄Ia(v),𝔮(v)12)=fα(v)+O(μ),\displaystyle\left(\mathfrak{E}_{a}^{I}(v),\,\mathfrak{A}_{I}^{a}(v),\,\mathfrak{q}(v)^{-\frac{1}{2}}\right)=f_{\alpha}(v)+O(\mu),
fα(v)\displaystyle f_{\alpha}(v) =\displaystyle= (EaI(v),AIa(v),q(v)12),q(v)=16εIJKεabcEaI(v)EbJ(v)EcK(v).\displaystyle\left(E_{a}^{I}(v),\,A_{I}^{a}(v),\,q(v)^{-\frac{1}{2}}\right),\quad q(v)=\frac{1}{6}\varepsilon_{IJK}\varepsilon^{abc}E_{a}^{I}(v)E_{b}^{J}(v)E_{c}^{K}(v). (166)

We apply Eqs.164 and 165 to CvC_{v} and Ca,vC_{a,v} and expand in μ\mu (but do not recover smooth fields fαf_{\alpha} from 𝔣α\mathfrak{f}_{\alpha}). CvandCa,vC_{v}\ \text{and}\ C_{a,v} can be cast into the following pattern (see Appendix A for an explanation):

CvorCa,v\displaystyle C_{v}\ \text{or}\ C_{a,v} =\displaystyle= μα,β,J,K,NJ±,MK±FNJ±,MK±α,β(v)ΔJ,NJ±𝔣α(v~1)ΔK,MK±𝔣β(v~2)\displaystyle\mu\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}}F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v})\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(\tilde{v}_{1})\,\Delta_{K,M^{\pm}_{K}}\mathfrak{f}_{\beta}(\tilde{v}_{2}) (167)
+μ2α,J,NJ±FNJ±α(v)ΔJ,NJ±𝔣α(v~)+μ3F(v)+O(μ4),\displaystyle+\ \mu^{2}\sum_{\alpha,J,N^{\pm}_{J}}F^{\alpha}_{N^{\pm}_{J}}(\vec{v})\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(\tilde{v})+\mu^{3}F(\vec{v})+O(\mu^{4}),

where

ΔJ,NJ±𝔣α(v~)=𝔣α(v~+NJ+μJ^)𝔣α(v~NJμJ^).\displaystyle\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(\tilde{v})=\mathfrak{f}_{\alpha}(\tilde{v}+N^{+}_{J}\mu\hat{J})-\mathfrak{f}_{\alpha}(\tilde{v}-N^{-}_{J}\mu\hat{J}). (168)

v=(v1,v2,)\vec{v}=(v_{1},v_{2},\cdots) and v~,v~1,v~2\tilde{v},\tilde{v}_{1},\tilde{v}_{2} are some vertices whose distance from vv are of O(μ)O(\mu). 3NJ±3-3\leq N^{\pm}_{J}\leq 3 (NJ+NJN_{J}^{+}\neq-N_{J}^{-}) are integers and J^\hat{J} is the lattice vector along the JJ-th direction. Nonzero NJ±N^{\pm}_{J} reflect correlations among variables at neighboring vertices in CvC_{v} and Ca,vC_{a,v}. Correlations are not only among nearest neighbors. FNJ+,NJα(v)F^{\alpha}_{N^{+}_{J},N^{-}_{J}}(\vec{v}) and F(v)F(\vec{v}) (with v=(v1,v2,)\vec{v}=(v_{1},v_{2},\cdots) a finite sequence of vertices viv_{i}) are polynomials of 𝔣α(vi)\mathfrak{f}_{\alpha}({v}_{i}) where vi=v+JNi(J)μJ^i{v}_{i}=v+\sum_{J}N_{i}(J)\mu\hat{J}_{i} (Ji{1,2,3}J_{i}\in\{1,2,3\} and integer Ni[3,3]N_{i}\in[-3,3]) are vertices at or near vv. Parameters α,β\alpha,\ \beta, N±,M±N^{\pm},\ M^{\pm}, JJ, v\vec{v}, and v~,v~1,v~2\tilde{v},\tilde{v}_{1},\tilde{v}_{2} are determined by patterns of variables and Poisson brackets in CvC_{v},Ca,vC_{a,v}, thus are independent of vv.

If fα(v)f_{\alpha}(v) evaluate as smooth fields at lattice vertex vv, the continuum limit of 167 is of O(μ3)O(\mu^{3}):

CvorCa,v\displaystyle C_{v}\ \text{or}\ C_{a,v} =\displaystyle= μ3α,β,J,K[NJ±,MK±(NJ++NJ)(MK++MK)NJ±,MK±α,β(v)]Jfα(v)Kfβ(v)\displaystyle\mu^{3}\sum_{\alpha,\beta,J,K}\left[\sum_{N^{\pm}_{J},M^{\pm}_{K}}(N^{+}_{J}+N^{-}_{J})(M^{+}_{K}+M^{-}_{K})\mathcal{F}^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}({v})\right]\partial_{J}f_{\alpha}(v)\partial_{K}f_{\beta}(v) (169)
+μ3α,J[NJ±(NJ++NJ)NJ±α(v)]Jfα(v)+μ3(v)+O(μ4).\displaystyle+\ \mu^{3}\sum_{\alpha,J}\left[\sum_{N^{\pm}_{J}}(N^{+}_{J}+N^{-}_{J})\mathcal{F}^{\alpha}_{N^{\pm}_{J}}({v})\right]\partial_{J}f_{\alpha}(v)+\mu^{3}\mathcal{F}({v})+O(\mu^{4}).

NJ±,MK±α,β(v),NJ+,NJα(v)\mathcal{F}^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}({v}),\ \mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}({v}), and (v)\mathcal{F}({v}) are continuum limit of FNJ±,MK±α,β(v),FNJ+,NJα(v)F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v}),\ F^{\alpha}_{N^{+}_{J},N^{-}_{J}}(\vec{v}) and F(v)F(\vec{v}):

FNJ±,MK±α,β(v)\displaystyle F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v}) =\displaystyle= NJ±,MK±α,β(v)+O(μ),\displaystyle\mathcal{F}^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}({v})+O(\mu),
FNJ+,NJα(v)\displaystyle F^{\alpha}_{N^{+}_{J},N^{-}_{J}}(\vec{v}) =\displaystyle= NJ+,NJα(v)+O(μ),\displaystyle\mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}({v})+O(\mu),
F(v)\displaystyle F(\vec{v}) =\displaystyle= (v)+O(μ).\displaystyle\mathcal{F}({v})+O(\mu). (170)

They are given by FNJ±,MK±α,β(v),FNJ+,NJα(v)F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v}),\ F^{\alpha}_{N^{+}_{J},N^{-}_{J}}(\vec{v}) and F(v)F(\vec{v}) with all vivv_{i}\to v and applying Eq.148. NJ±,MK±α,β(v),NJ+,NJα(v)\mathcal{F}^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}({v}),\ \mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}({v}) and (v)\mathcal{F}({v}) are polynomials of EaI(v),AIa(v),q(v)12E_{a}^{I}(v),\,A_{I}^{a}(v),\,q(v)^{-\frac{1}{2}}. Let’s take an example for illustration,

𝔮(v1)12𝔈12(v2)𝔈21(v3)=q(v)12E12(v)E21(v)+O(μ).\displaystyle\mathfrak{q}(v_{1})^{-\frac{1}{2}}\mathfrak{E}_{1}^{2}(v_{2})\mathfrak{E}_{2}^{1}(v_{3})=q(v)^{-\frac{1}{2}}E_{1}^{2}(v)E_{2}^{1}(v)+O(\mu). (171)

The leading term on the right hand side corresponds to a term in NJ±,MK±α,β(v),NJ+,NJα(v)\mathcal{F}^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}({v}),\ \mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}({v}) or (v)\mathcal{F}({v}).

We check that Cv,Ca,vC_{v},\ C_{a,v}, 𝐇{\bf H}, and GvaG^{a}_{v} have correct continuum limits (i.e. 169 recovers continuum expressions of scalar and vector constraints 𝒞(v),𝒞a(v)\mathcal{C}(v),\mathcal{C}_{a}(v) up to a prefactor μ3\mu^{3}):

Cv\displaystyle C_{v} =\displaystyle= μ3𝒞(v)+O(μ4),\displaystyle\mu^{3}\mathcal{C}(v)+O(\mu^{4}), (172)
Ca,v\displaystyle C_{a,v} =\displaystyle= μ3𝒞a(v)+O(μ4),\displaystyle\mu^{3}\mathcal{C}_{a}(v)+O(\mu^{4}), (173)
Hv\displaystyle H_{v} =\displaystyle= μ3h(v)+O(μ4)=μ3|𝒞(v)2α4a=13𝒞a(v)2|+O(μ4)\displaystyle\mu^{3}h(v)+O(\mu^{4})=\mu^{3}\sqrt{\left|\mathcal{C}(v)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(v)^{2}\right|}+O(\mu^{4}) (174)
𝐇\displaystyle{\bf H} =\displaystyle= vμ3|𝒞(v)2α4a=13𝒞a(v)2|+O(μ4)𝒮d3σ|𝒞(σ)2α4a=13𝒞a(σ)2|,\displaystyle\sum_{v}\mu^{3}\sqrt{\left|\mathcal{C}(v)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(v)^{2}\right|}+O(\mu^{4})\simeq\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\left|\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}\right|}, (175)
Gva\displaystyle G^{a}_{v} =\displaystyle= 2μ3βa2DjEaj(v)+O(μ3).\displaystyle\frac{2\mu^{3}}{\beta a^{2}}D_{j}E^{j}_{a}(v)+O(\mu^{3}). (176)

Mathematica codes for deriving Eqs.172 and 173 are given in github . The last relation indicates that the closure condition 54 reduces to the Gauss constraint in the lattice continuum limit.

Continuum limit of svs_{v} is given by

sv=sgn(Cv2α4a=13Ca,v2)=sgn(𝒞(v)2α4a=13𝒞a(v)2+O(μ)).\displaystyle s_{v}=\mathrm{sgn}\left(C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}\right)=\mathrm{sgn}\left(\mathcal{C}(v)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(v)^{2}+O(\mu)\right). (177)

𝒞,𝒞a\mathcal{C},\mathcal{C}_{a} are smooth fields in the continuum.

Given vV(γ)v^{\prime}\in V(\gamma), we assume vv^{\prime} is inside a neighborhood U𝒮U\subset\mathcal{S}, such that sv=sUs_{v}=s_{U} is a constant for all vUv\in U and the coordinate distance r(v,U)r(v^{\prime},\partial U) between vv^{\prime} and any point in U\partial U satisfy r(v,U)μr(v^{\prime},\partial U)\gg\mu. This is an assumption for phase space points at which derivatives in Eqs.162 and 163 are computed. This assumption is necessary for the lattice continuum limit of Eqs.162 and 163, because otherwise as μ0\mu\to 0, vv^{\prime} approaches the boundary where Cv2α4a=13Ca,v2=0C_{v}^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}C_{a,v}^{2}=0, then svs_{v^{\prime}} jumps by variations for computing derivatives of 𝐇{\bf H} thus invalidates Eqs.162 and 163.

We compute the following term in Eq.162:

vV(γ)svCvHvCv𝔈aI(v)\displaystyle\sum_{v\in V(\gamma)}s_{v}\frac{C_{v}}{H_{v}}\frac{\partial C_{v}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})} (178)
=\displaystyle= μsUvUCvHvα,β,J,K,NJ±,MK±iFNJ±,MK±α,β(v)𝔈aI(vi)δv,viΔJ,NJ±𝔣α(v~1)ΔK,MK±𝔣β(v~2)\displaystyle\mu s_{U}\sum_{v\in U}\frac{C_{v}}{H_{v}}\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}}\sum_{i}\frac{\partial F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v})}{\partial\mathfrak{E}^{I}_{a}(v_{i})}\delta_{v^{\prime},v_{i}}\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(\tilde{v}_{1})\,\Delta_{K,M^{\pm}_{K}}\mathfrak{f}_{\beta}(\tilde{v}_{2})
+μsUvUCvHvα,β,J,K,NJ±,MK±FNJ±,MK±α,β(v)[𝔣α(v)𝔈aI(v)δv,v~1+NJ+μJ^𝔣α(v)𝔈aI(v)δv,v~1NJμJ^]ΔK,MK±𝔣β(v~2)\displaystyle+\ \mu s_{U}\sum_{v\in U}\frac{C_{v}}{H_{v}}\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}}F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v})\left[\frac{\partial\mathfrak{f}_{\alpha}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\delta_{v^{\prime},\tilde{v}_{1}+N^{+}_{J}\mu\hat{J}}-\frac{\partial\mathfrak{f}_{\alpha}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\delta_{v^{\prime},\tilde{v}_{1}-N^{-}_{J}\mu\hat{J}}\right]\Delta_{K,M^{\pm}_{K}}\mathfrak{f}_{\beta}(\tilde{v}_{2})
+μsUvUCvHvα,β,J,K,NJ±,MK±FNJ±,MK±α,β(v)ΔJ,NJ±𝔣α(v~1)[𝔣β(v)𝔈aI(v)δv,v~2+MK+μK^𝔣β(v)𝔈aI(v)δv,v~2MKμK^]\displaystyle+\ \mu s_{U}\sum_{v\in U}\frac{C_{v}}{H_{v}}\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}}F^{\alpha,\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v})\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(\tilde{v}_{1})\left[\frac{\partial\mathfrak{f}_{\beta}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\delta_{v^{\prime},\tilde{v}_{2}+M^{+}_{K}\mu\hat{K}}-\frac{\partial\mathfrak{f}_{\beta}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\delta_{v^{\prime},\tilde{v}_{2}-M^{-}_{K}\mu\hat{K}}\right]
+μ2sUvUCvHvα,J,NJ±iFNJ±α(v)𝔈aI(vi)δv,viΔJ,NJ±𝔣α(v~)\displaystyle+\ \mu^{2}s_{U}\sum_{v\in U}\frac{C_{v}}{H_{v}}\sum_{\alpha,J,N^{\pm}_{J}}\sum_{i}\frac{\partial F^{\alpha}_{N^{\pm}_{J}}(\vec{v})}{\partial\mathfrak{E}^{I}_{a}(v_{i})}\delta_{v^{\prime},v_{i}}\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(\tilde{v})
+μ2sUvUCvHvα,J,NJ±FNJ±α(v)[𝔣α(v)𝔈aI(v)δv,v~+NJ+μJ^𝔣α(v)𝔈aI(v)δv,v~NJμJ^]\displaystyle+\ \mu^{2}s_{U}\sum_{v\in U}\frac{C_{v}}{H_{v}}\sum_{\alpha,J,N^{\pm}_{J}}F^{\alpha}_{N^{\pm}_{J}}(\vec{v})\left[\frac{\partial\mathfrak{f}_{\alpha}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\delta_{v^{\prime},\tilde{v}+N^{+}_{J}\mu\hat{J}}-\frac{\partial\mathfrak{f}_{\alpha}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\delta_{v^{\prime},\tilde{v}-N^{-}_{J}\mu\hat{J}}\right]
+μ3sUvUCvHviF(v)𝔈aI(vi)δv,vi\displaystyle+\ \mu^{3}s_{U}\sum_{v\in U}\frac{C_{v}}{H_{v}}\sum_{i}\frac{\partial F(\vec{v})}{\partial\mathfrak{E}^{I}_{a}(v_{i})}\delta_{v^{\prime},v_{i}}
+O(μ4).\displaystyle+\ O(\mu^{4}).

Two sums v\sum_{v} and α,β,J,K,NJ±,MK±\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}} (or α,J,NJ±\sum_{\alpha,J,N^{\pm}_{J}}, i\sum_{i}) can be interchanged since α,J,NJ+,NJ,Ni\alpha,J,N^{+}_{J},N^{-}_{J},N_{i} are independent of vv. Kronecker deltas in Eq.178 are nonzero only if vv inside UU by the assumption r(v,U)μr(v^{\prime},\partial U)\gg\mu, since distances from vi,v~,v~1,2v_{i},\tilde{v},\tilde{v}_{1,2} to vv is of O(μ)O(\mu). vU\sum_{v\in U} in the result can be freely extend to v\sum_{v} over all vV(γ)v\in V(\gamma), because vv outside UU has no contribution.

In the first term in the result of Eq.178, δvi,v\delta_{v_{i},v^{\prime}} restricts v=vδiv=v^{\prime}-\delta_{i}, where δi=viv=JNi(J)μJ^i\delta_{i}=v_{i}-v=\sum_{J}N_{i}(J)\mu\hat{J}_{i}. We denote by δ~1,2=v~1,2vO(μ)\tilde{\delta}_{1,2}=\tilde{v}_{1,2}-v\sim O(\mu). δi,δ~1,2\delta_{i},\tilde{\delta}_{1,2} independent of vv. Carrying out v\sum_{v}, the first term in Eq.178 becomes:

μsUα,β,J,K,NJ±,MK±iCvδiHvδiFNJ±,MK±αβ(vδi)𝔈aI(v)ΔJ,NJ±𝔣α(vδi+δ~1)ΔK,MK±𝔣β(vδi+δ~2)\displaystyle\mu s_{U}\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}}\sum_{i}\frac{C_{v^{\prime}-\delta_{i}}}{H_{v^{\prime}-\delta_{i}}}\frac{\partial F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(\overrightarrow{v^{\prime}-\delta_{i}}\right)}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}\Delta_{J,N^{\pm}_{J}}\mathfrak{f}_{\alpha}(v^{\prime}-\delta_{i}+\tilde{\delta}_{1})\,\Delta_{K,M^{\pm}_{K}}\mathfrak{f}_{\beta}(v^{\prime}-\delta_{i}+\tilde{\delta}_{2}) (179)
=\displaystyle= μ3sUα,β,J,K,NJ±,MJ±𝒞(v)h(v)NJ±,MK±αβ(v)EaI(v)(NJ++NJ)(MK++MK)Jfα(v)Kfβ(v)\displaystyle\mu^{3}s_{U}\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{J}}\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\frac{\partial\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(v^{\prime}\right)}{\partial E^{I}_{a}(v^{\prime})}(N_{J}^{+}+N_{J}^{-})(M_{K}^{+}+M_{K}^{-})\partial_{J}f_{\alpha}(v^{\prime})\partial_{K}f_{\beta}(v^{\prime})
+O(μ4),\displaystyle+\ O(\mu^{4}),

where FNJ±,MK±αβ(vδi)F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(\overrightarrow{v^{\prime}-\delta_{i}}\right) is from the expansion of CvδiC_{v^{\prime}-\delta_{i}}. Note that all vertices in vδi\overrightarrow{v^{\prime}-\delta_{i}} are inside UU. FNJ±,MK±αβ(v)F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\vec{v}) is a polynomial of 𝔣α(vi)\mathfrak{f}_{\alpha}({v}_{i}). Derivatives FNJ±,MK±αβ/𝔈aI\partial F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}/\partial\mathfrak{E}^{I}_{a} have continuum limit NJ±,MK±αβ/EaI{\partial\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}}/{\partial E^{I}_{a}}. Thanks to summing over all vUv\in U, i\sum_{i} in Eq.179 sums over vertices vδiv^{\prime}-\delta_{i} at which FNJ±,MK±αβ(vδi)/𝔈aI(v){\partial F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}(\overrightarrow{v^{\prime}-\delta_{i}})}/{\partial\mathfrak{E}^{I}_{a}(v^{\prime})} are nonzero, and reduces to the Leibniz rule of NJ±,MK±αβ(v)/EaI(v){\partial\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(v^{\prime}\right)}/{\partial E^{I}_{a}(v^{\prime})}.

In the second term in the result of Eq.178, δv,v~1±NJ±μJ^\delta_{v^{\prime},\tilde{v}_{1}\pm N^{\pm}_{J}\mu\hat{J}} restricts v=vδ~1NJ±μJ^vJ±v=v^{\prime}-\tilde{\delta}_{1}\mp N^{\pm}_{J}\mu\hat{J}\equiv v_{J}^{\pm}. Carrying out v\sum_{v} in the second term in Eq.178 gives

μsUα,β,J,K,NJ±,MK±[CvJ+HvJ+FNJ±,MK±αβ(vJ+)ΔK,MK±𝔣β(vJ++δ~2)\displaystyle\mu s_{U}\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{K}}\Bigg{[}\frac{C_{v_{J}^{+}}}{H_{v_{J}^{+}}}F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(\overrightarrow{v_{J}^{+}}\right)\Delta_{K,M^{\pm}_{K}}\mathfrak{f}_{\beta}\left(v_{J}^{+}+\tilde{\delta}_{2}\right) (180)
CvJHvJFNJ±,MK±αβ(vJ)ΔK,MK±𝔣β(vJ+δ~2)]𝔣α(v)𝔈aI(v)\displaystyle\ -\frac{C_{v_{J}^{-}}}{H_{v^{-}_{J}}}F^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(\overrightarrow{v_{J}^{-}}\right)\Delta_{K,M^{\pm}_{K}}\mathfrak{f}_{\beta}\left(v_{J}^{-}+\tilde{\delta}_{2}\right)\Bigg{]}\frac{\partial\mathfrak{f}_{\alpha}(v^{\prime})}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}
=\displaystyle= μ3sUα,β,J,K,NJ+,NJ(NJ++NJ)(MK++MK)J[𝒞hNJ±,MK±αβKfβ](v)fα(v)EaI(v)\displaystyle-\mu^{3}s_{U}\sum_{\alpha,\beta,J,K,N^{+}_{J},N^{-}_{J}}(N_{J}^{+}+N_{J}^{-})(M_{K}^{+}+M_{K}^{-})\partial_{J}\left[\frac{\mathcal{C}}{h}\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\partial_{K}f_{\beta}\right](v^{\prime})\frac{\partial f_{\alpha}(v^{\prime})}{\partial E^{I}_{a}(v^{\prime})}
+O(μ4).\displaystyle+O(\mu^{4}).

The third and fifth terms in Eq.178 are treated similar to the second term, while the fourth and sixth terms are treated similar to the first term. As results,

3rd term =\displaystyle= μ3sUα,β,J,K,NJ+,NJ(NJ++NJ)(MK++MK)K[𝒞hNJ±,MK±αβJfα](v)fβ(v)EaI(v)\displaystyle-\mu^{3}s_{U}\sum_{\alpha,\beta,J,K,N^{+}_{J},N^{-}_{J}}(N_{J}^{+}+N_{J}^{-})(M_{K}^{+}+M_{K}^{-})\partial_{K}\left[\frac{\mathcal{C}}{h}\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\partial_{J}f_{\alpha}\right](v^{\prime})\frac{\partial f_{\beta}(v^{\prime})}{\partial E^{I}_{a}(v^{\prime})}
+O(μ4)\displaystyle+O(\mu^{4})
4th term =\displaystyle= μ3sUα,J,NJ+,NJ𝒞(v)h(v)NJ+,NJα(v)EaI(v)(NJ++NJ)Jfα(v)+O(μ4)\displaystyle\mu^{3}s_{U}\sum_{\alpha,J,N^{+}_{J},N^{-}_{J}}\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\frac{\partial\mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}\left(v^{\prime}\right)}{\partial E^{I}_{a}(v^{\prime})}(N_{J}^{+}+N_{J}^{-})\partial_{J}f_{\alpha}(v^{\prime})+O(\mu^{4})
5th term =\displaystyle= μ3sUα,J,NJ+,NJ(NJ++NJ)J[𝒞(v)h(v)NJ+,NJα(v)]fα(v)EaI(v)+O(μ4)\displaystyle-\mu^{3}s_{U}\sum_{\alpha,J,N^{+}_{J},N^{-}_{J}}(N_{J}^{+}+N_{J}^{-})\partial_{J}\left[\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}\left(v^{\prime}\right)\right]\frac{\partial f_{\alpha}(v^{\prime})}{\partial E^{I}_{a}(v^{\prime})}+O(\mu^{4})
6th term =\displaystyle= μ3𝒞(v)h(v)(v)EaI(v)+O(μ4).\displaystyle\mu^{3}\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\frac{\partial\mathcal{F}\left(v^{\prime}\right)}{\partial E^{I}_{a}(v^{\prime})}+O(\mu^{4}). (181)

On the other hand, we apply the functional derivative to 𝒞\mathcal{C} using Eq.169:

Ud3σ𝒞(σ)h(σ)δ𝒞(σ)δEaI(v)\displaystyle\int_{U}\mathrm{d}^{3}\sigma\frac{\mathcal{C}(\sigma)}{h(\sigma)}\frac{\delta\mathcal{C}(\sigma)}{\delta E^{I}_{a}(v^{\prime})} (182)
=\displaystyle= α,β,J,K,NJ±,MJ±𝒞(v)h(v)NJ±,MK±αβ(v)EaI(v)(NJ++NJ)(MK++MK)Jfα(v)Kfβ(v)\displaystyle\sum_{\alpha,\beta,J,K,N^{\pm}_{J},M^{\pm}_{J}}\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\frac{\partial\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\left(v^{\prime}\right)}{\partial E^{I}_{a}(v^{\prime})}(N_{J}^{+}+N_{J}^{-})(M_{K}^{+}+M_{K}^{-})\partial_{J}f_{\alpha}(v^{\prime})\partial_{K}f_{\beta}(v^{\prime})
α,β,J,K,NJ+,NJ(NJ++NJ)(MK++MK)J[𝒞hNJ±,MK±αβKfβ](v)fα(v)EaI(v)\displaystyle\ -\sum_{\alpha,\beta,J,K,N^{+}_{J},N^{-}_{J}}(N_{J}^{+}+N_{J}^{-})(M_{K}^{+}+M_{K}^{-})\partial_{J}\left[\frac{\mathcal{C}}{h}\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\partial_{K}f_{\beta}\right](v^{\prime})\frac{\partial f_{\alpha}(v^{\prime})}{\partial E^{I}_{a}(v^{\prime})}
α,β,J,K,NJ+,NJ(NJ++NJ)(MK++MK)K[𝒞hNJ±,MK±αβJfα](v)fβ(v)EaI(v)\displaystyle\ -\sum_{\alpha,\beta,J,K,N^{+}_{J},N^{-}_{J}}(N_{J}^{+}+N_{J}^{-})(M_{K}^{+}+M_{K}^{-})\partial_{K}\left[\frac{\mathcal{C}}{h}\mathcal{F}^{\alpha\beta}_{N^{\pm}_{J},M^{\pm}_{K}}\partial_{J}f_{\alpha}\right](v^{\prime})\frac{\partial f_{\beta}(v^{\prime})}{\partial E^{I}_{a}(v^{\prime})}
+α,J,NJ+,NJ𝒞(v)h(v)NJ+,NJα(v)EaI(v)(N++N)Jfα(v)\displaystyle+\ \sum_{\alpha,J,N^{+}_{J},N^{-}_{J}}\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\frac{\partial\mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}\left(v^{\prime}\right)}{\partial E^{I}_{a}(v^{\prime})}(N_{+}+N_{-})\partial_{J}f_{\alpha}(v^{\prime})
α,J,NJ+,NJ(N++N)J[𝒞(v)h(v)NJ+,NJα(v)]fα(v)EaI(v)+𝒞(v)h(v)(v)EaI(v).\displaystyle\ -\sum_{\alpha,J,N^{+}_{J},N^{-}_{J}}(N_{+}+N_{-})\partial_{J}\left[\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\mathcal{F}^{\alpha}_{N^{+}_{J},N^{-}_{J}}\left(v^{\prime}\right)\right]\frac{\partial f_{\alpha}(v^{\prime})}{\partial E^{I}_{a}(v^{\prime})}+\frac{\mathcal{C}(v^{\prime})}{h(v^{\prime})}\frac{\partial\mathcal{F}\left(v^{\prime}\right)}{\partial E^{I}_{a}(v^{\prime})}.

Comparing Eq.182 with 179 - 181, we obtain the following result

vV(γ)svCvHvCv𝔈aI(v)=μ3Ud3σsU𝒞(σ)h(σ)δ𝒞(σ)δEaI(v)+O(μ4).\displaystyle\sum_{v\in V(\gamma)}s_{v}\frac{C_{v}}{H_{v}}\frac{\partial C_{v}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})}=\mu^{3}\int_{U}\mathrm{d}^{3}\sigma\,s_{U}\frac{\mathcal{C}(\sigma)}{h(\sigma)}\frac{\delta\mathcal{C}(\sigma)}{\delta E^{I}_{a}(v^{\prime})}+O(\mu^{4}). (183)

The derivation of Eq.183 only uses general patterns of CvC_{v}, Cj,vC_{j,v} in Eq.167 and their continuum limit, so can be easily generalized to vCb,vHvCb,v𝔈aI(v)\sum_{v}\frac{C_{b,v}}{H_{v}}\frac{\partial C_{b,v}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})} and derivatives with respect to 𝔄Ia(v)\mathfrak{A}^{a}_{I}(v^{\prime}). Therefore

𝐇𝔈aI(v)\displaystyle\frac{\partial{\bf H}}{\partial\mathfrak{E}^{I}_{a}(v^{\prime})} =\displaystyle= μ3Ud3σsU[𝒞(σ)h(σ)δ𝒞(σ)δEaI(v)α4b=13𝒞b(σ)h(σ)δ𝒞b(σ)δEaI(v)]+O(μ4)\displaystyle\mu^{3}\int_{U}\mathrm{d}^{3}\sigma\,s_{U}\left[\frac{\mathcal{C}(\sigma)}{h(\sigma)}\frac{\delta\mathcal{C}(\sigma)}{\delta E^{I}_{a}(v^{\prime})}-\frac{\alpha}{4}\sum_{b=1}^{3}\frac{\mathcal{C}_{b}(\sigma)}{h(\sigma)}\frac{\delta\mathcal{C}_{b}(\sigma)}{\delta E^{I}_{a}(v^{\prime})}\right]+O(\mu^{4}) (184)
=\displaystyle= μ3δδEaI(v)𝒮d3σ|𝒞(σ)2α4b=13𝒞b(σ)2|+O(μ4),\displaystyle\mu^{3}\frac{\delta}{\delta E^{I}_{a}(v^{\prime})}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\left|\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{b=1}^{3}\mathcal{C}_{b}(\sigma)^{2}\right|}+O(\mu^{4}),
𝐇𝔄Ia(v)\displaystyle\frac{\partial{\bf H}}{\partial\mathfrak{A}_{I}^{a}(v^{\prime})} =\displaystyle= μ3Ud3σsU[𝒞(σ)h(σ)δ𝒞(σ)δAIa(v)α4b=13𝒞b(σ)h(σ)δ𝒞b(σ)δAIa(v)]+O(μ4),\displaystyle\mu^{3}\int_{U}\mathrm{d}^{3}\sigma\,s_{U}\left[\frac{\mathcal{C}(\sigma)}{h(\sigma)}\frac{\delta\mathcal{C}(\sigma)}{\delta A_{I}^{a}(v^{\prime})}-\frac{\alpha}{4}\sum_{b=1}^{3}\frac{\mathcal{C}_{b}(\sigma)}{h(\sigma)}\frac{\delta\mathcal{C}_{b}(\sigma)}{\delta A_{I}^{a}(v^{\prime})}\right]+O(\mu^{4}), (185)
=\displaystyle= μ3δδAIa(v)𝒮d3σ|𝒞(σ)2α4b=13𝒞b(σ)2|+O(μ4).\displaystyle\mu^{3}\frac{\delta}{\delta A_{I}^{a}(v^{\prime})}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\left|\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{b=1}^{3}\mathcal{C}_{b}(\sigma)^{2}\right|}+O(\mu^{4}). (186)

U\int_{U} can be replaced by 𝒮\int_{\mathcal{S}} because the functional derivative is local. This result shows that the lattice continuum limit of partial derivatives in discrete variables gives the functional derivatives in smooth fields.

Recall Eqs.160 and 161, we obtain the lattice continuum limit of discrete semiclassical EOMs 104:

dAIa(v)dτ\displaystyle-\frac{\mathrm{d}A^{a}_{I}(v)}{\mathrm{d}\tau} =\displaystyle= κβ2δδEaI(v)𝒮d3σ|𝒞(σ)2α4a=13𝒞a(σ)2|+O(μ),\displaystyle\frac{\kappa\beta}{2}\frac{\delta}{\delta E^{I}_{a}(v)}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\left|\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}\right|}+O(\mu), (187)
dEaI(v)dτ\displaystyle\frac{\mathrm{d}E^{I}_{a}(v)}{\mathrm{d}\tau} =\displaystyle= κβ2δδAIa(v)𝒮d3σ|𝒞(σ)2α4a=13𝒞a(σ)2|+O(μ).\displaystyle\frac{\kappa\beta}{2}\frac{\delta}{\delta A_{I}^{a}(v)}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\left|\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}\right|}+O(\mu). (188)

The result recovers the classical EOMs 22 of the gravity-dust system in the continuum when 𝒞(σ)2α4a=13𝒞a(σ)2>0\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}>0.

The above derivation replies on the assumption that vUv^{\prime}\in U, r(v,U)μr(v^{\prime},\partial U)\gg\mu, and sv=sUs_{v}=s_{U} is constant on UU. But if we violate this assumption, i.e. let vUv^{\prime}\in U, r(v,U)μr(v^{\prime},\partial U)\sim\mu, and svs_{v} changes sign outside UU, then in the lattice continuum limit μ0\mu\to 0, vv^{\prime} belongs to the boundary where svs_{v} jumps and 𝒞(σ)2α4a=13𝒞a(σ)2=0\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}=0. Semiclassical EOMs at this vv^{\prime} cannot relate to Eqs.187 and 188 by the lattice continuum limit, because the functional derivative is ill-defined at vv^{\prime}.

In our quantization, nonholonomic constraints 𝒞(σ)2α4a=13𝒞a(σ)2>0\mathcal{C}(\sigma)^{2}-\frac{\alpha}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}>0 and 𝒞<0\mathcal{C}<0 are not imposed to the Hilbert space γ\mathcal{H}_{\gamma}. Therefore 𝐇{\bf H} are defined on the entire phase space 𝒫γ\mathcal{P}_{\gamma}, thus the continuum limit Eqs.187 and 188 extend the continuum theory to the regime where nonholonomic constraints are not valid. The relation between Eqs.187 - 188 and the classical EOMs 22 is sensitive to the choice of initial condition. Here the initial condition is given by [g][g^{\prime}] at which the initial coherent state Ψ[g]t\Psi^{t}_{[g^{\prime}]} is peaked. Ψ[g]t\Psi^{t}_{[g^{\prime}]} is semiclassical if [g][g^{\prime}] is in the classical allowed regime of the phase space, while the classical allowed regime satisfies the non-holonomic constraints required by the classical gravity-dust system. Eqs.187 and 188 indeed coincide with classical EOMs 22 of the continuum theory, if the initial data gg^{\prime} satisfies (discretized) nonholonomic constraints:

  • For gravity coupled to Brown-Kuchař dust, if the initial data gg^{\prime} at τ=0\tau=0 satisfies Cv214a=13Ca,v2>0C_{v}^{2}-\frac{1}{4}\sum_{a=1}^{3}C_{a,v}^{2}>0 and Cv<0{C_{v}}<0 at all vV(γ)v\in V(\gamma), these two non-holonomic constraints are going to be still satisfied by the solution to EOMs 187 and 188 within a finite time period τ[0,T0]\tau\in[0,T_{0}], simply because the solution is a continuous function in τ\tau. Therefore |||\ | in 187 and 188 can be removed at least with in this time period.

    On the other hand, although Cv214a=13Ca,v2C_{v}^{2}-\frac{1}{4}\sum_{a=1}^{3}C_{a,v}^{2} is not exactly conserved in 104 (or 126) due to the anomaly from discretization Giesel:2007wn , it is approximately conserved up to O(μ)O(\mu) because its continuum limit 𝒞214a=13𝒞a2\mathcal{C}^{2}-\frac{1}{4}\sum_{a=1}^{3}\mathcal{C}_{a}^{2} is conserved by the continuum limit Eqs.187 and 188. Cv{C_{v}} cannot flip sign by the similar reason. Therefore Cv214a=13Ca,v2>0C_{v}^{2}-\frac{1}{4}\sum_{a=1}^{3}C_{a,v}^{2}>0 and Cv<0{C_{v}}<0 can continuously be satisfied by the solution at and even after T0T_{0}. By adding another time period [T0,2T0][T_{0},2T_{0}], repeating the argument iteratively, we can extend the time period to entire [0,T][0,T] in which Cv214a=13Ca,v2>0C_{v}^{2}-\frac{1}{4}\sum_{a=1}^{3}C_{a,v}^{2}>0 and Cv<0{C_{v}}<0 are satisfied, when μ\mu is sufficiently small666TT\to\infty is more subtle because accumulating errors of O(μ)O(\mu) over infinite amount of time might cause a finite change of Cv214a=13Ca,v2C_{v}^{2}-\frac{1}{4}\sum_{a=1}^{3}C_{a,v}^{2} and flip the sign..Then semiclassical EOMs from A[g],[g]A_{[g],[g^{\prime}]} reproduce classical EOMs 22 for gravity coupled to Brown-Kuchař dust in the continuum limit:

    dAIa(v)dτ\displaystyle-\frac{\mathrm{d}A^{a}_{I}(v)}{\mathrm{d}\tau} =\displaystyle= κβ2δδEaI(v)𝒮d3σ𝒞(σ)214a=13𝒞a(σ)2+O(μ),\displaystyle\frac{\kappa\beta}{2}\frac{\delta}{\delta E^{I}_{a}(v)}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\mathcal{C}(\sigma)^{2}-\frac{1}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}}+O(\mu), (189)
    dEaI(v)dτ\displaystyle\frac{\mathrm{d}E^{I}_{a}(v)}{\mathrm{d}\tau} =\displaystyle= κβ2δδAIa(v)𝒮d3σ𝒞(σ)214a=13𝒞a(σ)2+O(μ).\displaystyle\frac{\kappa\beta}{2}\frac{\delta}{\delta A_{I}^{a}(v^{\prime})}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\sqrt{\mathcal{C}(\sigma)^{2}-\frac{1}{4}\sum_{a=1}^{3}\mathcal{C}_{a}(\sigma)^{2}}+O(\mu). (190)
  • A similar reasoning applies to gravity coupled to Gaussian dust, when the initial data gg^{\prime} of A[g],[g]A_{[g],[g^{\prime}]} satisfy Cv<0C_{v}<0 and Ca,v=0C_{a,v}=0, both CvC_{v} and Ca,vC_{a,v} are approximately conserved if μ\mu is sufficiently small, since they are conserved in the continuum limit, thus Cv<0C_{v}<0 is preserved by the time evolution for sufficiently small μ\mu. Then semiclassical EOMs of reduced phase space LQG with Gaussian dust reproduce classical EOMs 22 in the continuum limit up to a flip of time direction:

    dAIa(v)dτ\displaystyle\frac{\mathrm{d}A^{a}_{I}(v)}{\mathrm{d}\tau} =\displaystyle= κβ2δδEaI(v)𝒮d3σ𝒞(σ)+O(μ),\displaystyle\frac{\kappa\beta}{2}\frac{\delta}{\delta E^{I}_{a}(v)}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\ \mathcal{C}(\sigma)+O(\mu), (191)
    dEaI(v)dτ\displaystyle-\frac{\mathrm{d}E^{I}_{a}(v)}{\mathrm{d}\tau} =\displaystyle= κβ2δδAIa(v)𝒮d3σ𝒞(σ)+O(μ).\displaystyle\frac{\kappa\beta}{2}\frac{\delta}{\delta A_{I}^{a}(v^{\prime})}\int_{\mathcal{S}}\mathrm{d}^{3}\sigma\ \mathcal{C}(\sigma)+O(\mu). (192)

    Recall that time direction has been flipped to flow backward in Section 2 in order to obtain a positive Hamiltonian.

  • If the initial data does not satisfy nonholonomic constraints, Ψ[g]t\Psi^{t}_{[g^{\prime}]} is not anymore semiclassical. The continuum limit of semiclassical EOMs derived from A[g],[g]A_{[g],[g^{\prime}]} cannot be related to classical EOMs 22 of the gravity-dust system. Existence of non-classical solutions has been anticipated in Giesel:2007wn , and viewed as analogs of negative energy states in relativistic QFT, because when Eq.13 is viewed as constraint, it can be written as P2+(𝒞qαβ𝒞α𝒞β)=0{P}^{2}+({\mathcal{C}}-{q}^{\alpha\beta}{\mathcal{C}}_{\alpha}{\mathcal{C}}_{\beta})=0 whose quantization would be an analog of Klein-Gordan operator. But that non-classical solutions appear or disappear is determined by initial conditions, similar to the situation of negative energy states in QFT.

Some examples of solutions of semiclassical EOMs and their continuum limit are studied in cosmological perturbation theory in cospert .

7 Asymptotics of Transition Amplitude

Assuming initial and final states Ψ[g]t,Ψ[g]t\Psi_{[g^{\prime}]}^{t},\Psi_{[g]}^{t} are both semiclassical in the sense that both [g],[g][g^{\prime}],[g] are within the classical allowed regime, if [g],[g][g],[g^{\prime}] are connected by the trajectory g(τ)g(\tau) satisfying Eqs.125, as t0t\to 0, integrals i=1N+1dgi\int\prod_{i=1}^{N+1}\mathrm{d}g_{i} in the path integral 48 dominate at this semiclassical trajectory:

A[g],[g]Ψ[g]tΨ[g]t=dh(2πt)𝒩/2det(H)ν[g(τ),h]eS[g(τ),h]/t[1+O(t)],\displaystyle\frac{A_{[g],[g^{\prime}]}}{\|\Psi^{t}_{[g]}\|\,\|\Psi^{t}_{[g^{\prime}]}\|}=\int\mathrm{d}h\,\frac{(2\pi t)^{\mathcal{N}/2}}{\sqrt{\det(-H)}}\,\nu[g(\tau),h]\,e^{S[g(\tau),h]/t}\,\left[1+O(t)\right], (193)

where 𝒩\mathcal{N} is the total dimension of the integral i=1N+1dgi\int\prod_{i=1}^{N+1}\mathrm{d}g_{i} in Eq.48, and HH is the Hessian matrix at the solution. g(τ)g(\tau) is unique up to SU(2) gauge transformations. S[g(τ),h]S[g(\tau),h] is the action evaluated at the solution, where the continuous trajectory g(τ)gig(\tau)\simeq g_{i} approximates the discrete solution as Δτ\Delta\tau small. Here we still have dh=vdμH(hv)\int\mathrm{d}h=\int\prod_{v}\mathrm{d}\mu_{H}(h_{v}) which integrates gauge transformations gghg^{\prime}\to g^{\prime h} of the initial data.

If the initial and final data [g],[g][g^{\prime}],[g] are not connected by any trajectory g(τ)g(\tau) satisfying Eqs.125, the amplitude is suppressed as t0t\to 0:

A[g],[g]Ψ[g]tΨ[g]t=O(tM),M>0.\displaystyle\frac{A_{[g],[g^{\prime}]}}{\|\Psi^{t}_{[g]}\|\,\|\Psi^{t}_{[g^{\prime}]}\|}=O(t^{M}),\quad\forall\ M>0. (194)

8 Comparison with Spin Foam Formulation and Outlook

The above analysis demonstrates the semiclassical consistency of the new path integral formulation from reduced phase space LQG. If we compare our results to the spin foam formulation, we find following advantages of our path integral formulation:

  1. 1.

    Our path integral formulation is free of the cosine problem. The initial condition [g][g^{\prime}] given by the semiclassical initial state Ψ[g]t\Psi_{[g^{\prime}]}^{t} determines a unique solution of semiclassical EOMs up to SU(2) gauge freedom. Therefore the asymptotic formula 193 has only a single exponential in the integrand.

    A key reason why we obtain unique solution and avoid the cosine problem is that all solutions of discrete EOMs 52 and 53 admit the time continuous limit. If spin foam formulation admitted the time continuous limit or anything similar, the continuous time EOMs (critical equations) would have forbidden the 4d orientation to jump, and suppressed contributions from orientation-changing evolutions to spin foam amplitude.

  2. 2.

    Our path integral formulation is free of the flatness problem. The semiclassical analysis of the path integral has been shown to reproduce the classical EOMs 22, which are Einstein equation formulated in the reduced phase space. Semiclassical EOMs 126 admit all curved solutions that are physically interesting. For instance, Han:2019vpw has demonstrated the homogeneous and isotropic cosmology as a solution, while cospert obtains cosmological perturbation theory from solutions. Note that the flat spacetime is not a solution of semiclassical EOMs because of the presence of physical dust field with positive energy density.

  3. 3.

    There is a clear link between our path integral formulation and the canonical LQG. The path integral 48 is rigorously derived from the canonical formulation in the reduced phase space. The unitarity is manifest because the path integral is the transition amplitude of unitary evolution generated by the Hamiltonian 𝐇^\hat{\bf H}.

  4. 4.

    The path integral formla 48 is clearly finite (irrelevant to the cosmological constant), because of the transition amplitude A[g],[g]=Ψ[g]t|exp[iT𝐇^]|Ψ[g]tA_{[g],[g^{\prime}]}=\langle\Psi^{t}_{[g]}|\,\exp[-\frac{i}{\hbar}T\hat{\bf H}]\,|\Psi^{t}_{[g^{\prime}]}\rangle is finite. All ingredients Ψ[g]t,Ψ[g]t,exp[iT𝐇^]\Psi^{t}_{[g]},\ \Psi^{t}_{[g^{\prime}]},\ \exp[-\frac{i}{\hbar}T\hat{\bf H}], and |\langle\ \cdot\ |\ \cdot\ \rangle are well defined.

Our formulation may still have issues of computational complexity and lattice dependence similar to the spin foam formulation, at least at the present stage. However studies of the new path integral formulation are still at very preliminary stage, and research on overcoming these issues will be carried out in the future.

  1. 1.

    At the level of discrete path integral 48, the action S[g,h]S[g,h] depends on the non-polynomial operator 𝐇^\hat{\bf H} and its matrix element, which is hard to compute. However because Δτ\Delta\tau is arbitrarily small, we may consider a formal time continuous limit at the level of path integral, as in the standard QFT. The resulting path integral formula integrates over continuous paths, then the matrix element of 𝐇^\hat{\bf H} in S[g,h]S[g,h] reduces to the coherent state expectation value ψgt|𝐇^|ψgt\langle\psi_{g}^{t}|\hat{\bf H}|\psi_{g}^{t}\rangle, which is computable as a perturbative expansion in tt by using the method in Giesel:2006um . Therefore perturbative techniques in QFT (more precisely, the lattice perturbation theory) should be applied to our path integral formulation to compute quantities such as correlation functions and quantum effective action as power expansions in tt.

  2. 2.

    Our path integral formulation depends on the cubic lattice γ\gamma even after taking the time continuous limit. Currently the lattice continuum limit at the quantum level is not clear for our formulation (in Section 6, the lattice continuum limit μ0\mu\to 0 is taken after the semiclassical limit μ0\mu\to 0). We expect to see effects of lattice continuum limit order by order in tt in perturbative computations.

Acknowledgements

This work receives support from the National Science Foundation through grant PHY-1912278. Mathematica computations in this work are carried out on the HPC server at Fudan University and the KoKo HPC server at Florida Atlantic University. The authors acknowledge Ling-Yan Hung for sharing the computational resource at Fudan University.

Appendix A Proof of Eq.167

There are 2 useful properties of CvC_{v} and Ca,vC_{a,v}

  • Cv,Ca,vC_{v},\ C_{a,v} are polynomials of h(e),pa(e)h(e),\ p^{a}(e) and Qv1/2Q_{v}^{1/2}. By applying Eqs.164, 164 and expand in μ\mu, Cv,Ca,vC_{v},\ C_{a,v} become series of μ\mu and 𝔣α(v)\mathfrak{f}_{\alpha}(v).

  • In the continuum limit Cv=μ3𝒞(v)+O(μ4)C_{v}=\mu^{3}\mathcal{C}(v)+O(\mu^{4}), Ca,v=μ3𝒞a(v)+O(μ4)C_{a,v}=\mu^{3}\mathcal{C}_{a}(v)+O(\mu^{4}) where the leading order is of O(μ3)O(\mu^{3}) and both 𝒞\mathcal{C} and 𝒞a\mathcal{C}_{a} are polynomials of fαf_{\alpha} and their 1st order derivatives777FIJaF_{IJ}^{a} has only 1st order derivatives of AIaA_{I}^{a}. βKIa=AIaΓIa\beta K^{a}_{I}=A^{a}_{I}-\Gamma^{a}_{I} where ΓIa=12ϵabcEcJ[EI,JbEJ,Ib+EbKEIdEK,Jd]+14ϵabcEcJ[2EIb(det(E)),Jdet(E)EJb(det(E)),Idet(E)]\Gamma^{a}_{I}=\frac{1}{2}\epsilon^{abc}E_{c}^{J}\left[E_{I,J}^{b}-E_{J,I}^{b}+E_{b}^{K}E_{I}^{d}E_{K,J}^{d}\right]+\frac{1}{4}\epsilon^{abc}E_{c}^{J}\left[2E_{I}^{b}\frac{(\operatorname{det}(E))_{,J}}{\operatorname{det}(E)}-E_{J}^{b}\frac{(\operatorname{det}(E))_{,I}}{\operatorname{det}(E)}\right]. Here det(E(v))=q(v)\det(E(v))=q(v), and the inverse EIaE^{a}_{I} is a polynomial of EaIE^{I}_{a} and det(E)1\det(E)^{-1}. . Each term in 𝒞\mathcal{C} and 𝒞a\mathcal{C}_{a} contain no more than 2 derivatives.

We extract arbitrarily two terms at O(μn)O(\mu^{n}) in the expansion of CvC_{v} and Ca,vC_{a,v}. Generically they may be written as

𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣m(vm)\displaystyle\mathfrak{f}_{1}\left(v_{1}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}\right)\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)
and 𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣q(vq).\displaystyle\mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\mathrm{\mathfrak{f^{\prime}}}_{n+1}\left(v^{\prime}_{n+1}\right)\cdots\mathrm{\mathfrak{f^{\prime}}}_{q}\left(v^{\prime}_{q}\right). (195)

They may share 𝔣1,,𝔣n\mathfrak{f}_{1},\cdots,\mathfrak{f}_{n} although locations of 𝔣1,,𝔣n\mathfrak{f}_{1},\cdots,\mathfrak{f}_{n}, viv_{i} and viv_{i}^{\prime}, may be different between these 2 terms. Distances from vv to vi,viv_{i},v_{i}^{\prime} are of O(μ)O(\mu). 𝔣i\mathfrak{f}_{i} and 𝔣i\mathfrak{f}_{i}^{\prime} are factors not shared by these 2 terms. If the relative sign between these 2 terms is negative, we can perform the following reduction

𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣m(vm)𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣q(vq)\displaystyle\mathfrak{f}_{1}\left(v_{1}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}\right)\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)-\mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\mathrm{\mathfrak{f^{\prime}}}_{n+1}\left(v^{\prime}_{n+1}\right)\cdots\mathrm{\mathfrak{f^{\prime}}}_{q}\left(v^{\prime}_{q}\right) (196)
=\displaystyle= 𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣m(vm)𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣m(vm)\displaystyle\mathfrak{f}_{1}\left(v_{1}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}\right)\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)-\mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)
+𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣m(vm)𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣q(vq)\displaystyle+\ \mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)-\mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\mathrm{\mathfrak{f^{\prime}}}_{n+1}\left(v^{\prime}_{n+1}\right)\cdots\mathrm{\mathfrak{f^{\prime}}}_{q}\left(v^{\prime}_{q}\right)
=\displaystyle= [𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣1(v1)𝔣2(v2)𝔣n(vn)]𝔣n+1(vn+1)𝔣m(vm)\displaystyle\left[\mathfrak{f}_{1}\left(v_{1}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}\right)-\mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\right]\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)
+𝔣1(v1)𝔣2(v2)𝔣n(vn)[𝔣n+1(vn+1)𝔣m(vm)𝔣n+1(vn+1)𝔣q(vq)],\displaystyle+\ \mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\left[\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)-\mathrm{\mathfrak{f^{\prime}}}_{n+1}\left(v^{\prime}_{n+1}\right)\cdots\mathrm{\mathfrak{f^{\prime}}}_{q}\left(v^{\prime}_{q}\right)\right],

The quantity in the 1st square bracket of the above result is the difference of two monomials 𝔣1(v1)𝔣2(v2)𝔣n(vn)\mathfrak{f}_{1}(v_{1})\mathfrak{f}_{2}(v_{2})\dots\mathfrak{f}_{n}(v_{n}) and 𝔣1(v1)𝔣2(v2)𝔣n(vn)\mathfrak{f}_{1}(v^{\prime}_{1})\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n}) sharing the same set of 𝔣1,,n\mathfrak{f}_{1,\cdots,n}, and can be further reduced

𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣1(v1)𝔣2(v2)𝔣n(vn)\displaystyle\mathfrak{f}_{1}(v_{1})\mathfrak{f}_{2}(v_{2})\dots\mathfrak{f}_{n}(v_{n})-\mathfrak{f}_{1}(v^{\prime}_{1})\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n}) (197)
=\displaystyle= 𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣1(v1)𝔣2(v2)𝔣n(vn)+𝔣1(v)1𝔣2(v2)𝔣n(vn)𝔣1(v)1𝔣2(v2)𝔣n(vn)\displaystyle\mathfrak{f}_{1}(v_{1})\mathfrak{f}_{2}(v_{2})\dots\mathfrak{f}_{n}(v_{n})-\mathfrak{f}_{1}(v^{\prime}_{1})\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n})+\mathfrak{f}_{1}(v{}_{1})\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n})-\mathfrak{f}_{1}(v{}_{1})\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n})
=\displaystyle= 𝔣1(v1)[𝔣2(v2)𝔣n(vn)𝔣2(v2)𝔣n(vn)]+[𝔣1(v1)𝔣1(v1)]𝔣2(v2)𝔣n(vn)\displaystyle\mathfrak{f}_{1}(v_{1})\left[\mathfrak{f}_{2}(v_{2})\dots\mathfrak{f}_{n}(v_{n})-\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n})\right]+\left[\mathfrak{f}_{1}(v_{1})-\mathfrak{f}_{1}(v^{\prime}_{1})\right]\mathfrak{f}_{2}(v^{\prime}_{2})\dots\mathfrak{f}_{n}(v^{\prime}_{n})
=\displaystyle= \displaystyle\cdots
=\displaystyle= i=1n𝔣1(v1)𝔣i1(vi1)[𝔣i(vi)𝔣i(vi)]𝔣i+1(vi+1)𝔣n(vn).\displaystyle\sum_{i=1}^{n}\mathfrak{f}_{1}(v_{1})\cdots\mathfrak{f}_{i-1}(v_{i-1})\left[\mathfrak{f}_{i}(v_{i})-\mathfrak{f}_{i}(v^{\prime}_{i})\right]\mathfrak{f}_{i+1}(v^{\prime}_{i+1})\dots\mathfrak{f}_{n}(v^{\prime}_{n}).

Inserting this result back into Eq.196 gives

𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣m(vm)𝔣1(v1)𝔣2(v2)𝔣n(vn)𝔣n+1(vn+1)𝔣q(vq)\displaystyle\mathfrak{f}_{1}\left(v_{1}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}\right)\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)-\mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\mathrm{\mathfrak{f^{\prime}}}_{n+1}\left(v^{\prime}_{n+1}\right)\cdots\mathrm{\mathfrak{f^{\prime}}}_{q}\left(v^{\prime}_{q}\right) (198)
=\displaystyle= i=1n𝔣1(v1)𝔣i1(vi1)[𝔣i(vi)𝔣i(vi)]𝔣i+1(vi+1)𝔣n(vn)\displaystyle\sum_{i=1}^{n}\mathfrak{f}_{1}(v_{1})\cdots\mathfrak{f}_{i-1}(v_{i-1})\left[\mathfrak{f}_{i}(v_{i})-\mathfrak{f}_{i}(v^{\prime}_{i})\right]\mathfrak{f}_{i+1}(v^{\prime}_{i+1})\dots\mathfrak{f}_{n}(v^{\prime}_{n})
+𝔣1(v1)𝔣2(v2)𝔣n(vn)[𝔣n+1(vn+1)𝔣m(vm)𝔣n+1(vn+1)𝔣q(vq)],\displaystyle+\ \mathrm{\mathrm{\mathfrak{f}}}_{1}\left(v_{1}^{\prime}\right)\mathrm{\mathrm{\mathfrak{f}}}_{2}\left(v_{2}^{\prime}\right)\ldots\mathrm{\mathfrak{f}}_{n}\left(v_{n}^{\prime}\right)\left[\mathrm{\mathfrak{f}}_{n+1}\left(v_{n+1}\right)\cdots\mathrm{\mathfrak{f}}_{m}\left(v_{m}\right)-\mathrm{\mathfrak{f^{\prime}}}_{n+1}\left(v^{\prime}_{n+1}\right)\cdots\mathrm{\mathfrak{f^{\prime}}}_{q}\left(v^{\prime}_{q}\right)\right],

while there is no reduction for the 2nd square bracket. Here the point of this reduction is to manifest the difference 𝔣i(vi)𝔣i(vi)\mathfrak{f}_{i}(v_{i})-\mathfrak{f}_{i}(v^{\prime}_{i}) in the formula.

We insert the above result back into CvC_{v} and Cv,aC_{v,a} so that they become polynomials of 𝔣α\mathfrak{f}_{\alpha} and Δ𝔣α(v,v)𝔣α(v)𝔣α(v)\Delta\mathfrak{f}_{\alpha}(v,v^{\prime})\equiv\mathfrak{f}_{\alpha}(v)-\mathfrak{f}_{\alpha}(v^{\prime}). We make further similar reduction as above, by including Δ𝔣α\Delta\mathfrak{f}_{\alpha} as one of generators of the polynomial. As a result from iteration, we obtain at O(μn)O(\mu^{n})

μn[Poln(𝔣α)+p>0Polnp(𝔣α,Δ𝔣α)+k0,l>0Polnk,l(𝔣α,Δ𝔣α,Δ2𝔣α)]\displaystyle\mu^{n}\left[\mathrm{Pol}_{n}(\mathfrak{f}_{\alpha})+\sum_{p>0}\mathrm{Pol}^{p}_{n}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha})+\sum_{k\geq 0,l>0}\mathrm{Pol}^{k,l}_{n}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha},\Delta^{2}\mathfrak{f}_{\alpha})\right] (199)
=\displaystyle= μn[Poln(𝔣α)+p>0μpPolnp(𝔣α,Δ𝔣α/μ)+k0,l>0μk+2lPolnk,l(𝔣α,Δ𝔣α/μ,Δ2𝔣α/μ2)]\displaystyle\mu^{n}\left[\mathrm{Pol}_{n}(\mathfrak{f}_{\alpha})+\sum_{p>0}\mu^{p}\mathrm{Pol}_{n}^{p}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}/\mu\right)+\sum_{k\geq 0,l>0}\mu^{k+2l}\mathrm{Pol}_{n}^{k,l}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}/\mu,\Delta^{2}\mathfrak{f}_{\alpha}/\mu^{2}\right)\right]

Δ2𝔣α=Δ𝔣α(v,v)Δ𝔣α(v~,v~)\Delta^{2}\mathfrak{f}_{\alpha}=\Delta\mathfrak{f}_{\alpha}(v,v^{\prime})-\Delta\mathfrak{f}_{\alpha}(\tilde{v},\tilde{v}^{\prime}). Δ𝔣α/μ,Δ2𝔣α/μ2\Delta\mathfrak{f}_{\alpha}/\mu,\Delta^{2}\mathfrak{f}_{\alpha}/\mu^{2} are lattice derivatives. Poln(𝔣α)\mathrm{Pol}_{n}(\mathfrak{f}_{\alpha}) is a polynomial of 𝔣α\mathfrak{f}_{\alpha}. Polnp(𝔣α,Δ𝔣α)\mathrm{Pol}_{n}^{p}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}) is a polynomial homogeneous in Δ𝔣α\Delta\mathfrak{f}_{\alpha} of degree pp. Polnk,l(𝔣α,Δ𝔣α,Δ2𝔣α)\mathrm{Pol}_{n}^{k,l}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha},\Delta^{2}\mathfrak{f}_{\alpha}) is a polynomial homogeneous in Δ𝔣α\Delta\mathfrak{f}_{\alpha} and Δ2𝔣α\Delta^{2}\mathfrak{f}_{\alpha} of degree kk and ll respectively.

When Poln(𝔣α)\mathrm{Pol}_{n}(\mathfrak{f}_{\alpha}), Polnp(𝔣α,Δ𝔣α)\mathrm{Pol}_{n}^{p}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}), and Polnk,l(𝔣α,Δ𝔣α,Δ2𝔣α)\mathrm{Pol}_{n}^{k,l}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha},\Delta^{2}\mathfrak{f}_{\alpha}) are nonzero, their continuum limits do not vanish, because otherwise they can be further reduced to higher order in Δ𝔣α\Delta\mathfrak{f}_{\alpha}.

We are interested in expansions of CvC_{v} and Cv,aC_{v,a} truncated up to O(μ3)O(\mu^{3}) to be relevant to their continuum limit. So we consider

n3,n+p3,n+k+2l3.\displaystyle n\leq 3,\quad n+p\leq 3,\quad n+k+2l\leq 3. (200)

Continuum limits of CvC_{v} and Cv,aC_{v,a} contain no term of 3 derivatives, so

k=0,p2.\displaystyle k=0,\quad p\leq 2. (201)

Moreover Cv,Cv,aμ3C_{v},C_{v,a}\sim\mu^{3} in the continuum limit. So at n=0n=0, Pol0(𝔣α),Pol0p(𝔣α,Δ𝔣α)\mathrm{Pol}_{0}(\mathfrak{f}_{\alpha}),\ \mathrm{Pol}_{0}^{p}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}), and Pol0k,l(𝔣α,Δ𝔣α,Δ2𝔣α)\mathrm{Pol}_{0}^{k,l}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha},\Delta^{2}\mathfrak{f}_{\alpha}) have to vanish, since otherwise they can produce nonzero continuum limit at O(μ0),O(μ1),O(μ2)O(\mu^{0}),\ O(\mu^{1}),\ O(\mu^{2})

Pol0(fα)+p=12μpPol0p(fα,fα)+μ2Pol00,1(fα,fα,2𝔣α/μ2)\displaystyle\mathrm{Pol}_{0}(f_{\alpha})+\sum_{p=1}^{2}\mu^{p}\mathrm{Pol}_{0}^{p}\left(f_{\alpha},\partial f_{\alpha}\right)+\mu^{2}\mathrm{Pol}_{0}^{0,1}\left(f_{\alpha},\partial f_{\alpha},\partial^{2}\mathfrak{f}_{\alpha}/\mu^{2}\right) (202)

By similar arguments, Pol1(𝔣α)\mathrm{Pol}_{1}(\mathfrak{f}_{\alpha}) and Pol11(𝔣α,Δ𝔣α)\mathrm{Pol}_{1}^{1}(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}) has to vanish at n=1n=1, and Pol2(𝔣α)\mathrm{Pol}_{2}(\mathfrak{f}_{\alpha}) has to vanish at n=2n=2. As a result, CvC_{v} and Cv,aC_{v,a} can be written as

μ[Pol12(𝔣α,Δ𝔣α)+Pol10,1(𝔣α,Δ𝔣α,Δ2𝔣α)]+μ2Pol21(𝔣α,Δ𝔣α)+μ3Pol3(𝔣α)+O(μ4)\displaystyle\mu\left[\mathrm{Pol}_{1}^{2}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}\right)+\mathrm{Pol}_{1}^{0,1}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha},\Delta^{2}\mathfrak{f}_{\alpha}\right)\right]+\mu^{2}\mathrm{Pol}_{2}^{1}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}\right)+\mu^{3}\mathrm{Pol}_{3}(\mathfrak{f}_{\alpha})+O(\mu^{4}) (203)
\displaystyle\to μ3[Pol12(fα,fα)+Pol10,1(fα,fα,2fα)+Pol21(fα,fα)+Pol3(fα)]+O(μ4)\displaystyle\mu^{3}\left[\mathrm{Pol}_{1}^{2}\left(f_{\alpha},\partial f_{\alpha}\right)+\mathrm{Pol}_{1}^{0,1}\left(f_{\alpha},\partial f_{\alpha},\partial^{2}f_{\alpha}\right)+\mathrm{Pol}_{2}^{1}\left(f_{\alpha},\partial f_{\alpha}\right)+\mathrm{Pol}_{3}(f_{\alpha})\right]+O(\mu^{4})

Recall that continuum limits of CvC_{v} and Cv,aC_{v,a}, 𝒞\mathcal{C} and 𝒞a\mathcal{C}_{a}, contain no second order derivative. So Pol10,1(𝔣α,Δ𝔣α,Δ2𝔣α)\mathrm{Pol}_{1}^{0,1}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha},\Delta^{2}\mathfrak{f}_{\alpha}\right) has to vanish. Finally we obtain

CvorCv,a=μPol12(𝔣α,Δ𝔣α)+μ2Pol21(𝔣α,Δ𝔣α)+μ3Pol3(𝔣α)+O(μ4).\displaystyle C_{v}\ \text{or}\ C_{v,a}=\mu\mathrm{Pol}_{1}^{2}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}\right)+\mu^{2}\mathrm{Pol}_{2}^{1}\left(\mathfrak{f}_{\alpha},\Delta\mathfrak{f}_{\alpha}\right)+\mu^{3}\mathrm{Pol}_{3}(\mathfrak{f}_{\alpha})+O(\mu^{4}). (204)

Given any v1,v2v_{1},v_{2} of O(μ)O(\mu)-distance from vv,

v1=v+M1μ1^+N1μ2^+P1μ3^,v2=v+M2μ1^+N2μ2^+P2μ3^.\displaystyle v_{1}=v+M_{1}\mu\hat{1}+N_{1}\mu\hat{2}+P_{1}\mu\hat{3},\quad v_{2}=v+M_{2}\mu\hat{1}+N_{2}\mu\hat{2}+P_{2}\mu\hat{3}. (205)

we define

v3=v+M1μ1^+N1μ2^+P2μ3^,v4=v+M1μ1^+N2μ2^+P2μ3^.\displaystyle v_{3}=v+M_{1}\mu\hat{1}+N_{1}\mu\hat{2}+P_{2}\mu\hat{3},\quad v_{4}=v+M_{1}\mu\hat{1}+N_{2}\mu\hat{2}+P_{2}\mu\hat{3}. (206)

so that

v1v2\displaystyle v_{1}-v_{2} =\displaystyle= (v1v3)+(v3v4)+(v4v2),\displaystyle(v_{1}-v_{3})+(v_{3}-v_{4})+(v_{4}-v_{2}), (207)
Δ𝔣α(v1,v2)\displaystyle\Delta\mathfrak{f}_{\alpha}(v_{1},v_{2}) =\displaystyle= Δ3𝔣α(v1,v3)+Δ2𝔣α(v3,v4)+Δ1𝔣α(v4,v2),\displaystyle\Delta_{3}\mathfrak{f}_{\alpha}(v_{1},v_{3})+\Delta_{2}\mathfrak{f}_{\alpha}(v_{3},v_{4})+\Delta_{1}\mathfrak{f}_{\alpha}(v_{4},v_{2}), (208)

where Δ3𝔣α(v1,v3),Δ2𝔣α(v3,v4),Δ1𝔣α(v4,v2)\Delta_{3}\mathfrak{f}_{\alpha}(v_{1},v_{3}),\Delta_{2}\mathfrak{f}_{\alpha}(v_{3},v_{4}),\Delta_{1}\mathfrak{f}_{\alpha}(v_{4},v_{2}) are differences along 3,2,13,2,1 directions respectively. Inserting Eq.208 and expand, Eq.204 can be rewritten as

CvorCv,a=μPol(𝔣α,ΔJ𝔣α)12+μ2Pol(𝔣α,ΔJ𝔣α)21+μ3Pol3(𝔣α)+O(μ4)\displaystyle C_{v}\ \text{or}\ C_{v,a}=\mu\mathrm{Pol}^{\prime}{}_{1}^{2}\left(\mathfrak{f}_{\alpha},\Delta_{J}\mathfrak{f}_{\alpha}\right)+\mu^{2}\mathrm{Pol}^{\prime}{}_{2}^{1}\left(\mathfrak{f}_{\alpha},\Delta_{J}\mathfrak{f}_{\alpha}\right)+\mu^{3}\mathrm{Pol}_{3}(\mathfrak{f}_{\alpha})+O(\mu^{4}) (209)

where every difference is along 1, 2, or 3 direction.

References

  • (1) M. Han and H. Liu, Effective Dynamics from Coherent State Path Integral of Full Loop Quantum Gravity, Phys. Rev. D101 (2020), no. 4 046003, [arXiv:1910.03763].
  • (2) C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2014.
  • (3) A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev.Rel. 16 (2013) 3, [arXiv:1205.2019].
  • (4) F. Conrady and L. Freidel, On the semiclassical limit of 4d spin foam models, Phys.Rev. D78 (2008) 104023, [arXiv:0809.2280].
  • (5) J. W. Barrett, R. Dowdall, W. J. Fairbairn, F. Hellmann, and R. Pereira, Lorentzian spin foam amplitudes: Graphical calculus and asymptotics, Class.Quant.Grav. 27 (2010) 165009, [arXiv:0907.2440].
  • (6) J. W. Barrett, R. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann, Asymptotic analysis of the EPRL four-simplex amplitude, J.Math.Phys. 50 (2009) 112504, [arXiv:0902.1170].
  • (7) M. Han and M. Zhang, Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory, Class.Quant.Grav. 30 (2013) 165012, [arXiv:1109.0499].
  • (8) M. Han and M. Zhang, Asymptotics of spinfoam amplitude on simplicial manifold: Euclidean theory, Class.Quant.Grav. 29 (2012) 165004, [arXiv:1109.0500].
  • (9) H. M. Haggard, M. Han, W. Kaminski, and A. Riello, SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry, Nucl. Phys. B900 (2015) 1–79, [arXiv:1412.7546].
  • (10) H. Liu and M. Han, Asymptotic analysis of spin foam amplitude with timelike triangles, Phys. Rev. D99 (2019), no. 8 084040, [arXiv:1810.09042].
  • (11) M. Han, Einstein Equation from Covariant Loop Quantum Gravity in Semiclassical Continuum Limit, Phys. Rev. D96 (2017), no. 2 024047, [arXiv:1705.09030].
  • (12) M. Han, Z. Huang, and A. Zipfel, Emergent four-dimensional linearized gravity from a spin foam model, Phys. Rev. D100 (2019), no. 2 024060, [arXiv:1812.02110].
  • (13) B. Bahr, S. Kloser, and G. Rabuffo, Towards a Cosmological subsector of Spin Foam Quantum Gravity, Phys. Rev. D96 (2017), no. 8 086009, [arXiv:1704.03691].
  • (14) E. Alesci, Graviton propagator as a tool to test spinfoam models, in 3rd Stueckelberg Workshop on Relativistic Field Theories Pescara, Italy, July 8-18, 2008, 2009. arXiv:0903.4329.
  • (15) E. Bianchi and Y. Ding, Lorentzian spinfoam propagator, Phys.Rev. D86 (2012) 104040, [arXiv:1109.6538].
  • (16) M. Han, Z. Huang, and A. Zipfel, Spin foam propagator: A new perspective to include the cosmological constant, Phys. Rev. D97 (2018), no. 8 084055, [arXiv:1711.11162].
  • (17) E. Bianchi, E. Magliaro, and C. Perini, LQG propagator from the new spin foams, Nucl.Phys. B822 (2009) 245–269, [arXiv:0905.4082].
  • (18) P. Donà, M. Fanizza, G. Sarno, and S. Speziale, Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude, Phys. Rev. D100 (2019), no. 10 106003, [arXiv:1903.12624].
  • (19) P. Donà, F. Gozzini, and G. Sarno, Searching for classical geometries in spin foam amplitudes: a numerical method, arXiv:1909.07832.
  • (20) P. Dona and G. Sarno, Numerical methods for EPRL spin foam transition amplitudes and Lorentzian recoupling theory, Gen. Rel. Grav. 50 (2018) 127, [arXiv:1807.03066].
  • (21) B. Bahr and S. Steinhaus, Numerical evidence for a phase transition in 4d spin foam quantum gravity, Phys. Rev. Lett. 117 (2016), no. 14 141302, [arXiv:1605.07649].
  • (22) L. Cohen, A. J. Brady, Z. Huang, H. Liu, D. Qu, J. P. Dowling, and M. Han, Simulation of Loop Quantum Gravity – A Scalable Linear-Optical Approach, arXiv:2003.03414.
  • (23) K. Li, Y. Li, M. Han, S. Lu, J. Zhou, D. Ruan, G. Long, Y. Wan, D. Lu, B. Zeng, and R. Laflamme, Quantum spacetime on a quantum simulator, Communications Physics 2 (Oct., 2019) 122, [arXiv:1712.08711].
  • (24) J. Mielczarek, Spin Foam Vertex Amplitudes on Quantum Computer - Preliminary Results, Universe 5 (2019), no. 8 179, [arXiv:1810.07100].
  • (25) E. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the holomorphic representation, Phys. Rev. D82 (2010) 124031, [arXiv:1004.4550].
  • (26) V. Bonzom, Spin foam models for quantum gravity from lattice path integrals, Phys. Rev. D80 (2009) 064028, [arXiv:0905.1501].
  • (27) C. Perini, Holonomy-flux spinfoam amplitude, arXiv:1211.4807.
  • (28) F. Hellmann and W. Kaminski, Holonomy spin foam models: Asymptotic geometry of the partition function, JHEP 10 (2013) 165, [arXiv:1307.1679].
  • (29) M. Han, Covariant loop quantum gravity, low energy perturbation theory, and Einstein gravity with high curvature UV corrections, Phys.Rev. D89 (2014) 124001, [arXiv:1308.4063].
  • (30) M. Han, On spinfoam models in large spin regime, Class.Quant.Grav. 31 (2014) 015004, [arXiv:1304.5627].
  • (31) E. Magliaro and C. Perini, Emergence of gravity from spinfoams, Europhys.Lett. 95 (2011) 30007, [arXiv:1108.2258].
  • (32) P. Dona, F. Gozzini, and G. Sarno, Numerical analysis of spin foam dynamics and the flatness problem, arXiv:2004.12911.
  • (33) M. Han and T. Thiemann, On the Relation between Operator Constraint –, Master Constraint –, Reduced Phase Space –, and Path Integral Quantisation, Class.Quant.Grav. 27 (2010) 225019, [arXiv:0911.3428].
  • (34) M. Han and T. Thiemann, On the Relation between Rigging Inner Product and Master Constraint Direct Integral Decomposition, J.Math.Phys. 51 (2010) 092501, [arXiv:0911.3431].
  • (35) M. Han, Canonical Path-Integral Measures for Holst and Plebanski Gravity. II. Gauge Invariance and Physical Inner Product, Class. Quant. Grav. 27 (2010) 245015, [arXiv:0911.3436].
  • (36) J. Engle, M. Han, and T. Thiemann, Canonical path integral measures for Holst and Plebanski gravity. I. Reduced Phase Space Derivation, Class. Quant. Grav. 27 (2010) 245014, [arXiv:0911.3433].
  • (37) E. Alesci, T. Thiemann, and A. Zipfel, Linking covariant and canonical LQG: New solutions to the Euclidean Scalar Constraint, Phys. Rev. D86 (2012) 024017, [arXiv:1109.1290].
  • (38) T. Thiemann and A. Zipfel, Linking covariant and canonical LQG II: Spin foam projector, Class. Quant. Grav. 31 (2014) 125008, [arXiv:1307.5885].
  • (39) M. Han, 4-dimensional spin-foam model with quantum Lorentz group, J.Math.Phys. 52 (2011) 072501, [arXiv:1012.4216].
  • (40) D. Oriti, D. Pranzetti, and L. Sindoni, Black Holes as Quantum Gravity Condensates, Phys. Rev. D97 (2018), no. 6 066017, [arXiv:1801.01479].
  • (41) S. Gielen and D. Oriti, Cosmological perturbations from full quantum gravity, Phys. Rev. D98 (2018), no. 10 106019, [arXiv:1709.01095].
  • (42) D. Oriti, L. Sindoni, and E. Wilson-Ewing, Bouncing cosmologies from quantum gravity condensates, Class. Quant. Grav. 34 (2017), no. 4 04LT01, [arXiv:1602.08271].
  • (43) C. Rovelli, What Is Observable in Classical and Quantum Gravity?, Class. Quant. Grav. 8 (1991) 297–316.
  • (44) C. Rovelli, Partial observables, Phys. Rev. D65 (2002) 124013, [gr-qc/0110035].
  • (45) B. Dittrich, Partial and complete observables for Hamiltonian constrained systems, Gen. Rel. Grav. 39 (2007) 1891–1927, [gr-qc/0411013].
  • (46) T. Thiemann, Reduced phase space quantization and Dirac observables, Class. Quant. Grav. 23 (2006) 1163–1180, [gr-qc/0411031].
  • (47) K. Giesel, S. Hofmann, T. Thiemann, and O. Winkler, Manifestly Gauge-Invariant General Relativistic Perturbation Theory. I. Foundations, Class. Quant. Grav. 27 (2010) 055005, [arXiv:0711.0115].
  • (48) K. Giesel, S. Hofmann, T. Thiemann, and O. Winkler, Manifestly Gauge-invariant general relativistic perturbation theory. II. FRW background and first order, Class. Quant. Grav. 27 (2010) 055006, [arXiv:0711.0117].
  • (49) K. Giesel and T. Thiemann, Algebraic quantum gravity (AQG). IV. Reduced phase space quantisation of loop quantum gravity, Class. Quant. Grav. 27 (2010) 175009, [arXiv:0711.0119].
  • (50) K. Giesel and T. Thiemann, Scalar Material Reference Systems and Loop Quantum Gravity, Class. Quant. Grav. 32 (2015) 135015, [arXiv:1206.3807].
  • (51) A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T. Thiemann, Coherent state transforms for spaces of connections, J. Funct. Anal. 135 (1996) 519–551, [gr-qc/9412014].
  • (52) T. Thiemann, Gauge field theory coherent states (GCS): 1. General properties, Class. Quant. Grav. 18 (2001) 2025–2064, [hep-th/0005233].
  • (53) M. Kisielowski and J. Lewandowski, Spin-foam model for gravity coupled to massless scalar field, Class. Quant. Grav. 36 (2019), no. 7 075006, [arXiv:1807.06098].
  • (54) M. Assanioussi, J. Lewandowski, and I. Makinen, New scalar constraint operator for loop quantum gravity, Phys. Rev. D92 (2015), no. 4 044042, [arXiv:1506.00299].
  • (55) M. Han and H. Liu, Cosmological Perturbation Theory from Coherent State Path Integral of Full Loop Quantum Gravity, .
  • (56) A. Ashtekar, M. Campiglia, and A. Henderson, Casting Loop Quantum Cosmology in the Spin Foam Paradigm, Class. Quant. Grav. 27 (2010) 135020, [arXiv:1001.5147].
  • (57) A. Henderson, C. Rovelli, F. Vidotto, and E. Wilson-Ewing, Local spinfoam expansion in loop quantum cosmology, Class. Quant. Grav. 28 (2011) 025003, [arXiv:1010.0502].
  • (58) M. Han and H. Liu. https://github.com/LQG-Florida-Atlantic-University/Classical-EOM, 2020.
  • (59) J. D. Brown and K. V. Kuchar, Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D51 (1995) 5600–5629, [gr-qc/9409001].
  • (60) K. V. Kuchar and C. G. Torre, Gaussian reference fluid and interpretation of quantum geometrodynamics, Phys. Rev. D43 (1991) 419–441.
  • (61) T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS). 2. Peakedness properties, Class. Quant. Grav. 18 (2001) 2561–2636, [hep-th/0005237].
  • (62) T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS): 3. Ehrenfest theorems, Class. Quant. Grav. 18 (2001) 4629–4682, [hep-th/0005234].
  • (63) K. Giesel and T. Thiemann, Algebraic quantum gravity (AQG). III. Semiclassical perturbation theory, Class. Quant. Grav. 24 (2007) 2565–2588, [gr-qc/0607101].