This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

amss]Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China

ucas]School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

ncmis]National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China

Semi-Tensor Product of Hypermatrices with Application to Compound Hypermatrices

Daizhan Cheng\arefamss    Xiao Zhang\arefamss,ncmis    Zhengping Ji \arefamss,ucas [ [ [  [email protected] [email protected][email protected]
Abstract

The semi-tensor product (STP) of matrices is extended to the STP of hypermatrices. Some basic properties of the STP of matrices are extended to the STP of hypermatrices. The hyperdeterminant of hypersquares is introduced. Some algebraic and geometric structures of matrices are extended to hypermatrices. Then the compound hypermatrix is proposed. The STP of hypermatrix is used to compound hypermatrix. Basic properties are proved to be available for compound hypermatrix.

keywords:
Semi-tensor product, dd-hypermatrix, general linear group of hypermatrices, compound hypermatrices
**footnotetext: This work is supported partly by the National Natural Science Foundation of China (NSFC) under Grants 62073315 and 61733018.

1 Introduction

The last two decades have witnessed the rapid development of the semi-tensor product (STP) of matrices [3, 4]. In particular, it has been applied to study Boolean networks and finite valued networks (see survey papers [10, 11, 13, 14]); finite games (see survey paper [7]); finite automata (see survey paper [17]); dimension-varying systems [5, 6], etc. The STP of two matrices is defined as follows:

Definition 1.1

[3] Let A𝔽m×nA\in{\mathbb{F}}^{m\times n} and B𝔽p×qB\in{\mathbb{F}}^{p\times q} and t=lcm(n,p)t=\operatorname{lcm}(n,p). The STP of AA and BB is defined by

AB:=(AIt/n)(BIt/p).\displaystyle A\ltimes B:=\left(A\otimes I_{t/n}\right)\left(B\otimes I_{t/p}\right). (1)

Some basic properties of STP are as follows:

Proposition 1.2
  • (i)

    (Linearity)

    A(αB+βC)=αAB+βAC,(αB+βC)A=αBA+βCA,α,β𝔽.\displaystyle\begin{array}[]{l}A\ltimes(\alpha B+\beta C)=\alpha A\ltimes B+\beta A\ltimes C,\\ (\alpha B+\beta C)\ltimes A=\alpha B\ltimes A+\beta C\ltimes A,\quad\alpha,\beta\in{\mathbb{F}}.\\ \end{array} (4)
  • (ii)

    (Associativity)

    A(BC)=(AB)C.\displaystyle A\ltimes(B\ltimes C)=(A\ltimes B)\ltimes C. (5)
Proposition 1.3
  • (i)
    (AB)T=BTAT.\displaystyle(A\ltimes B)^{\mathrm{T}}=B^{\mathrm{T}}\ltimes A^{\mathrm{T}}. (6)
  • (ii)

    If AA and BB are two invertible matrices, then

    (AB)1=B1A1.\displaystyle(A\ltimes B)^{-1}=B^{-1}\ltimes A^{-1}. (7)

Hypermatrix [12] is a generalized matrix. Roughly speaking, a matrix is a set of data of order 22, while a hypermatrix is a set of data of order d>2d>2. A hypermatrix of order dd is closely related to a tensor of covariant order dd, which is essentially a multilinear (more precisely dd-th order linear) mapping [2]. Meanwhile, it can still be considered as a “matrix” in a certain sense, so that some corresponding properties can be studied, such as determinants (now called the hyperdeterminants) [12], eigenvalues and eigenvectors [15], etc.

The theory of compound matrices has found many applications in systems and control theory[1, 16]. The multiplicative compound matrix is defined as follows.

Definition 1.4

[1] Let A𝔽n×mA\in{\mathbb{F}}^{n\times m}, kmin(n,m)k\leq\min(n,m). The kk-multiplicative compound of AA, denoted by A(k)A^{(k)}, is a (nk)×(mk)\binom{n}{k}\times\binom{m}{k} matrix containing all kk-minors of AA in lexicographical order.

Example 1.5

Let

A=[121420133125],A=\begin{bmatrix}1&2&-1&4\\ -2&0&1&-3\\ 3&1&-2&5\end{bmatrix},

Then

  • (i)

    A(1)=A.A^{(1)}=A.

  • (ii)

    A(2)=[415261517363211131].A^{(2)}=\begin{bmatrix}4&-1&5&2&-6&-1\\ -5&1&-7&-3&6&3\\ -2&1&-1&-1&3&-1\\ \end{bmatrix}.

  • (iii)

    A(3)=[1323].A^{(3)}=\begin{bmatrix}-1&-3&2&-3\\ \end{bmatrix}.

The additive compound matrix is defined as follows.

Definition 1.6

[1] Let A𝔽n×nA\in{\mathbb{F}}^{n\times n}, knk\leq n. The kk-additive compound of AA, denoted by A[k]A^{[k]}, is a (nk)×(nk)\binom{n}{k}\times\binom{n}{k} matrix defined by:

A[k]:=ddϵ(In+ϵA)(k)|ϵ=0.\displaystyle A^{[k]}:=\frac{d}{d\epsilon}\left.\left(I_{n}+\epsilon A\right)^{(k)}\right|_{\epsilon=0}. (8)
Example 1.7

Consider

A=[121201312]A=\begin{bmatrix}1&2&-1\\ -2&0&1\\ 3&1&-2\end{bmatrix}

Then

  • (i)
    (I3+ϵA)(1)=I3+ϵA=[1+ϵ2ϵϵ2ϵ1ϵ3ϵϵ12ϵ]\begin{array}[]{l}\left(I_{3}+\epsilon A\right)^{(1)}=I_{3}+\epsilon A\\ =\begin{bmatrix}1+\epsilon&2\epsilon&-\epsilon\\ -2\epsilon&1&\epsilon\\ 3\epsilon&\epsilon&1-2\epsilon\\ \end{bmatrix}\end{array}
    A[1]=ddϵ(I3+ϵA)|ϵ=0=A.A^{[1]}=\frac{d}{d\epsilon}\left.(I_{3}+\epsilon A)\right|_{\epsilon=0}=A.
  • (ii)
    (I3+ϵA)(2)=[1+ϵ+4ϵ2ϵϵ2ϵ+2ϵ2ϵ5ϵ21ϵ+ϵ22ϵ3ϵ23ϵ2ϵ22ϵ+ϵ212ϵϵ2]\begin{array}[]{l}\left(I_{3}+\epsilon A\right)^{(2)}\\ =\begin{bmatrix}1+\epsilon+4\epsilon^{2}&\epsilon-\epsilon^{2}&\epsilon+2\epsilon^{2}\\ \epsilon-5\epsilon^{2}&1-\epsilon+\epsilon^{2}&2\epsilon-3\epsilon^{2}\\ -3\epsilon-2\epsilon^{2}&-2\epsilon+\epsilon^{2}&1-2\epsilon-\epsilon^{2}\\ \end{bmatrix}\end{array}
    A[2]=ddϵ(I3+ϵA)(2)|ϵ=0=[111112322]\begin{array}[]{l}A^{[2]}=\left.\frac{d}{d\epsilon}\left(I_{3}+\epsilon A\right)^{(2)}\right|_{\epsilon=0}\\ =\begin{bmatrix}1&1&1\\ 1&-1&2\\ -3&-2&-2\\ \end{bmatrix}\end{array}
  • (iii)
    (I3+ϵA)(3)=det(I3+ϵA)=1ϵ+O(ϵ2).\begin{array}[]{l}\left(I_{3}+\epsilon A\right)^{(3)}\\ =\det\left(I_{3}+\epsilon A\right)=1-\epsilon+O(\epsilon^{2}).\end{array}
    A[3]=ddϵ(I3+ϵA)(3)|ϵ=0=1.A^{[3]}=\frac{d}{d\epsilon}\left.\left(I_{3}+\epsilon A\right)^{(3)}\right|_{\epsilon=0}=-1.

Some basic properties of compound matrices are listed as follows:

Proposition 1.8

[1]

  • (i)

    A(1)=A.A^{(1)}=A.

  • (ii)

    Assume A𝔽n×nA\in{\mathbb{F}}^{n\times n}, then A(n)=det(A)A^{(n)}=\det(A).

  • (iii)

    (A(k))T=(AT)(k)\left(A^{(k)}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{(k)}.

    AA symmetric \Rightarrow A(k)A^{(k)} symmetric.

Theorem 1.9

[1][Cauchy-Binet Formula] Let A𝔽n×mA\in{\mathbb{F}}^{n\times m}, B𝔽m×pB\in{\mathbb{F}}^{m\times p}. Fix a positive integer kmin(n,m,p)k\leq\min(n,m,p). Then

(AB)(k)=A(k)=B(k).\displaystyle(AB)^{(k)}=A^{(k)}=B^{(k)}. (9)
Corollary 1.10

[1]

  • (i)
    (In)(k)=Ir,r=(nk).\displaystyle\left(I_{n}\right)^{(k)}=I_{r},\quad r=\binom{n}{k}. (10)
  • (ii)

    If A𝔽n×nA\in{\mathbb{F}}^{n\times n} is invertible, then A(k)A^{(k)} is also invertible, and

    (A(k))1=(A1)(k).\displaystyle\left(A^{(k)}\right)^{-1}=\left(A^{-1}\right)^{(k)}. (11)
  • (iii)

    A,B𝔽n×nA,B\in{\mathbb{F}}^{n\times n}, then

    det(AB)=(AB)(n)=A(n)B(n)=det(A)det(B).\displaystyle\det(AB)=(AB)^{(n)}=A^{(n)}B^{(n)}=\det(A)\det(B). (12)
  • (iv)

    If ABA\simeq B, then A(k)B(k)A^{(k)}\simeq B^{(k)}.

Proposition 1.11

[1]Consider A𝔽n×nA\in{\mathbb{F}}^{n\times n}, let λi\lambda_{i}, i[1,n]i\in[1,n] be the eigenvalues of AA, and viv_{i}, i[1,n]i\in[1,n] be the corresponding eigenvectors. Then the eigenvalues of A(k)A^{(k)} are

{λα==1kλi|α=(i1,i2,,ik)Q(n,k)}.\displaystyle\left\{\lambda^{\alpha}=\prod_{\ell=1}^{k}\lambda_{i_{\ell}}\;|\;\alpha=(i_{1},i_{2},\cdots,i_{k})\in Q(n,k)\right\}. (13)

Furthermore, if α=(i1,i2,,ik)Q(n,k)\alpha=(i_{1},i_{2},\cdots,i_{k})\in Q(n,k) and

Wα:=[vi1,vi2,,vik](k)0,W_{\alpha}:=\left[v_{i_{1}},v_{i_{2}},\cdots,v_{i_{k}}\right]^{(k)}\neq 0,

then WαW_{\alpha} is the eigenvector of A(k)A^{(k)} corresponding to λα\lambda^{\alpha}.

Proposition 1.12

[1]

  • (i)
    A[k]=ddϵ(exp(Aϵ))[k]|ϵ=0.\displaystyle A^{[k]}=\frac{d}{d\epsilon}\left.\left(\exp(A\epsilon)\right)^{[k]}\right|_{\epsilon=0}. (14)
  • (ii)
    (In+ϵA)(k)=Ir+ϵA[k]+o(ϵ).\displaystyle\left(I_{n}+\epsilon A\right)^{(k)}=I_{r}+\epsilon A^{[k]}+o(\epsilon). (15)
  • (iii)
    ddt(exp(At))(k)=A[k](exp(At))(k).\displaystyle\frac{d}{dt}\left(\exp(At)\right)^{(k)}=A^{[k]}\left(\exp(At)\right)^{(k)}. (16)
  • (iv)

    Let A,T𝔽n×nA,T\in{\mathbb{F}}_{n\times n}, with TT invertible. Then

    (TAT1)[k]=T(k)A[k](T(k))1.\displaystyle\left(TAT^{-1}\right)^{[k]}=T^{(k)}A^{[k]}\left(T^{(k)}\right)^{-1}. (17)
Proposition 1.13

[1]Let A,Bn×nA,B\in{\mathbb{C}}_{n\times n}. Then

(A+B)[k]=A[k]+B[k].\displaystyle\left(A+B\right)^{[k]}=A^{[k]}+B^{[k]}. (18)
Proposition 1.14

[1]For A𝔽n×nA\in{\mathbb{F}}^{n\times n}, let λi\lambda_{i}, i[1,n]i\in[1,n] be the eigenvalues of AA, and viv_{i}, i[1,n]i\in[1,n] be the corresponding eigenvectors. Then the eigenvalues of A[k]A^{[k]} are

{λα==1kλi|α=(i1,i2,,ik)Q(n,k)}.\displaystyle\left\{\lambda^{\alpha}=\mathop{\sum}\limits_{\ell=1}^{k}\lambda_{i_{\ell}}\;|\;\alpha=(i_{1},i_{2},\cdots,i_{k})\in Q(n,k)\right\}. (19)

Furthermore, if α=(i1,i2,,ik)Q(n,k)\alpha=(i_{1},i_{2},\cdots,i_{k})\in Q(n,k) and

Wα:=[vi1,vi2,,vik](k)0,W_{\alpha}:=\left[v_{i_{1}},v_{i_{2}},\cdots,v_{i_{k}}\right]^{(k)}\neq 0,

then WαW_{\alpha} is the eigenvector of A[k]A^{[k]} corresponding to λα\lambda^{\alpha}.

Finally, we give a list of notations used in this paper.

  1. 1.

    𝔽n{\mathbb{F}}^{n}: nn dimensional Euclidean space over 𝔽{\mathbb{F}}, where 𝔽{\mathbb{F}} is a field (Particularly, 𝔽={\mathbb{F}}={\mathbb{R}} or 𝔽={\mathbb{F}}={\mathbb{C}}).

  2. 2.

    𝔽n1×n2××nd{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}: the dd-th order hypermatrices of dimensions n1,n2,,ndn_{1},n_{2},\cdots,n_{d}.

  3. 3.

    lcm(n,p)\operatorname{lcm}(n,p): the least common multiple of nn and pp.

  4. 4.

    δni\delta_{n}^{i}: the ii-th column of the identity matrix InI_{n}.

  5. 5.

    Δn:={δni|i=1,,n}\Delta_{n}:=\left\{\delta_{n}^{i}|i=1,\cdots,n\right\}.

  6. 6.

    𝟏:=(1,1,,1)T{\bf 1}_{\ell}:=(\underbrace{1,1,\cdots,1}_{\ell})^{\mathrm{T}}.

  7. 7.

    cdet\operatorname{cdet}: combinatorial hyperdeterminant.

  8. 8.

    ddet\operatorname{ddet}: modified combinatorial hyperdeterminant.

  9. 9.

    Det\operatorname{Det}: slice-based hyperdeterminant.

  10. 10.

    \ltimes: semi-tensor product of matrices.

  11. 11.

    \circledcirc: semi-tensor product of hypermatrices.

  12. 12.

    GL(n(d),𝔽)\operatorname{GL}(n^{(d)},{\mathbb{F}}): n(d)n^{(d)}-general linear group of hypercubics.

  13. 13.

    GL((d),𝔽)\operatorname{GL}(*^{(d)},{\mathbb{F}}): dd-th order general linear group of hypercubics.

The purpose of this paper is twofold:

  • (i)

    To generalize the STP of matrices to the STP of hypermatrices, that is, to define a product of two hypermatrices of arbitrary orders and arbitrary dimensions, and to show that some of the above properties can be extended to the STP of hypermatrices; (2) The determinant of matrices is also extended to several types of hyperdeterminants of hypermatrices. The monoid (semigroup with identity) and group structures of matrices are extended to the monoid and group structures of hypermatrices. Finally, the general linear group of hypermatrices is also introduced as a Lie group.

  • (ii)

    Two types of compound hypermatrices are proposed: multiplicative and additive. Using the semi-tensor product of hypermatrices, it is shown that most of the properties of compound matrices can be extended to compound hypermatrices.

2 Matrix Expression of Hypermatrices

Definition 2.1
  • (i)

    A set of order dd data

    A:={ai1,i2,,id|is[1,ns],s[1,d]}\displaystyle A:=\{a_{i_{1},i_{2},\cdots,i_{d}}\;|\;i_{s}\in[1,n_{s}],\;s\in[1,d]\}
    𝔽n1××nd\displaystyle\in{\mathbb{F}}^{n_{1}\times\cdots\times n_{d}} (20)

    is called an dd-th order hypermatrix (dd-hypermatrix for short) of dimensions n1×n2××ndn_{1}\times n_{2}\times\cdots\times n_{d}. The set of dd-hypermatrix of dimension n1×n2××ndn_{1}\times n_{2}\times\cdots\times n_{d} is denoted by 𝔽n1×n2××nd{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, where ai1,i2,,id𝔽a_{i_{1},i_{2},\cdots,i_{d}}\in{\mathbb{F}} and 𝔽{\mathbb{F}} can be {\mathbb{R}} or {\mathbb{C}} (or any other field).

  • (ii)

    A𝔽n×n××ndA\in{\mathbb{F}}^{\overbrace{n\times n\times\cdots\times n}^{d}} is called a dd-hypercubic.

  • (iii)

    A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}} with n1=ndn_{1}=n_{d} is called a dd-hypersquare.

The elements of AA can be arranged into a matrix by a particular partition of indices, called the matrix expression of AA.

Definition 2.2

Let

A=[ai1,i2,,id]𝔽n1×n2××nd,\displaystyle A=[a_{i_{1},i_{2},\cdots,i_{d}}]\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, (21)

α={α1,α2,,αs}{1,2,,d}\alpha=\{\alpha_{1},\alpha_{2},\cdots,\alpha_{s}\}\subset\{1,2,\cdots,d\} and β={β1,β2,,βt}{1,2,,d}\beta=\{\beta_{1},\beta_{2},\cdots,\beta_{t}\}\subset\{1,2,\cdots,d\} and

αβ={1,2,,d}\displaystyle\alpha\bigcup\beta=\{1,2,\cdots,d\} (22)

be a partition, where s+t=ds+t=d. Then

MAα𝔽nα×nβ\displaystyle M^{\alpha}_{A}\in{\mathbb{F}}^{n_{\alpha}\times n_{\beta}} (23)

is a matrix of dimension

nα:=i=1snαi;nβ:=j=1tnβj,n_{\alpha}:=\prod_{i=1}^{s}n_{\alpha_{i}};\quad n_{\beta}:=\prod_{j=1}^{t}n_{\beta_{j}},

where its rows are arranged by the index arrangement

Id(α1,α2,,αs;nα1,nα2,,nαs)Q(s,d),\mathrm{Id}(\alpha_{1},\alpha_{2},\cdots,\alpha_{s};n_{\alpha_{1}},n_{\alpha_{2}},\cdots,n_{\alpha_{s}})\in Q(s,d),

and its columns are arranged by the index

Id(β1,β2,,βt;nβ1,nβ2,,nβt)Q(t,d),\mathrm{Id}(\beta_{1},\beta_{2},\cdots,\beta_{t};n_{\beta_{1}},n_{\beta_{2}},\cdots,n_{\beta_{t}})\in Q(t,d),

where Q(m,n)Q(m,n) is the set of mm sub-indices of the set of nn indices. MAαM^{\alpha}_{A} is called the matrix expression of AA with respect to the partition {α,β=αc}\{\alpha,\beta=\alpha^{c}\}.

Remark 2.3
  • (i)

    For simplicity, we always assume α1<α2<<αs\alpha_{1}<\alpha_{2}<\cdots<\alpha_{s}, β1<β2<<βs\beta_{1}<\beta_{2}<\cdots<\beta_{s}.

  • (ii)

    Index arrangement Id\mathrm{Id} means the indexed data are arranged in alphabetic order [4].

Example 2.4

Given A=[ai1,i2,i3]𝔽2×3×2A=[a_{i_{1},i_{2},i_{3}}]\in{\mathbb{F}}^{2\times 3\times 2}. Then

  • (i)
    MA=[a111,a112,a121,a122,a131,a132,a211,a212,a221,a222,a231,a232].\begin{array}[]{ccl}M_{A}^{\emptyset}&=&[a_{111},a_{112},a_{121},a_{122},a_{131},a_{132},\\ {}\hfil&{}\hfil&a_{211},a_{212},a_{221},a_{222},a_{231},a_{232}].\end{array}
  • (ii)
    MA{1}=[a111a112a121a122a131a132a211a212a221a222a231a232];M_{A}^{\{1\}}=\begin{bmatrix}a_{111}&a_{112}&a_{121}&a_{122}&a_{131}&a_{132}\\ a_{211}&a_{212}&a_{221}&a_{222}&a_{231}&a_{232}\end{bmatrix};
    MA{2}=[a111a112a211a212a121a122a221a222a131a132a231a232];etc.M_{A}^{\{2\}}=\begin{bmatrix}a_{111}&a_{112}&a_{211}&a_{212}\\ a_{121}&a_{122}&a_{221}&a_{222}\\ a_{131}&a_{132}&a_{231}&a_{232}\end{bmatrix};\quad\mbox{etc.}
  • (iii)
    MA{1,2}=[a111a112a121a122a131a132a211a212a221a222a231a232];M_{A}^{\{1,2\}}=\begin{bmatrix}a_{111}&a_{112}\\ a_{121}&a_{122}\\ a_{131}&a_{132}\\ a_{211}&a_{212}\\ a_{221}&a_{222}\\ a_{231}&a_{232}\end{bmatrix};
    MA{1,3}=[a111a121a131a112a122a132a211a221a231a212a222a232];etc.M_{A}^{\{1,3\}}=\begin{bmatrix}a_{111}&a_{121}&a_{131}\\ a_{112}&a_{122}&a_{132}\\ a_{211}&a_{221}&a_{231}\\ a_{212}&a_{222}&a_{232}\end{bmatrix};\quad\mbox{etc.}
  • (iv)
    MA{1,2,3}=(MA)T.M_{A}^{\{1,2,3\}}=\left(M_{A}^{\emptyset}\right)^{\mathrm{T}}.

Denote

VA:=MA;MA:=MA{1}.V_{A}:=M_{A}^{\emptyset};\quad M_{A}:=M_{A}^{\{1\}}.

In the sequel, MAM_{A} plays a particularly important role. Let A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}. Then

MA=[A1,A2,,Aq],\displaystyle M_{A}=[A_{1},A_{2},\cdots,A_{q}], (24)

where Ai𝔽n1×ndA_{i}\in{\mathbb{F}}^{n_{1}\times n_{d}}, i[1,q]i\in[1,q], (q=i=2d1niq=\prod_{i=2}^{d-1}n_{i}) are called slices of AA.

Proposition 2.5

Given A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, αQ(s,d)\alpha\in Q(s,d) and βQ(t,d)\beta\in Q(t,d) (s+t=ds+t=d) be a partition of [1,d][1,d]. Then AA can be considered as a multi-linear mapping πA(α):𝔽n𝔽m\pi_{A}^{(\alpha)}:{\mathbb{F}}^{n}\rightarrow{\mathbb{F}}^{m}, where m=iαnim=\prod_{i\in\alpha}n_{i} and n=iβnin=\prod_{i\in\beta}n_{i}, and

πAα(x):=MAαx𝔽m,x𝔽n.\displaystyle\pi_{A}^{\alpha}(x):=M^{\alpha}_{A}x\in{\mathbb{F}}^{m},\quad x\in{\mathbb{F}}^{n}. (25)
Definition 2.6

[12]

  • (i)

    Given a dd-hypermatrix A=[aj1,j2,,jd]𝔽n1×n2××ndA=\left[a_{j_{1},j_{2},\cdots,j_{d}}\right]\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, and assume σ𝐒d\sigma\in{\bf S}_{d}. The σ\sigma-transpose of AA is

    Aσ:=[ajσ(1)jσ(d)]𝔽nσ(1)××nσ(d).\displaystyle A^{\sigma}:=\left[a_{j_{\sigma(1)}\cdots j_{\sigma(d)}}\right]\in{\mathbb{F}}^{n_{\sigma(1)}\times\cdots\times n_{\sigma(d)}}. (26)
  • (ii)

    A dd-hypercubic A𝔽n××𝔽ndA\in\overbrace{{\mathbb{F}}^{n}\times\cdots\times{\mathbb{F}}^{n}}^{d} is called symmetric if σ𝐒d\forall\sigma\in{\bf S}_{d}, Aσ=AA^{\sigma}=A; AA is called skew-symmetric if σ𝐒d\forall\sigma\in{\bf S}_{d}, Aσ=sgn(σ)AA^{\sigma}=\operatorname{sgn}(\sigma)A.

Proposition 2.7

A 22-hypercubic A𝔽n×nA\in{\mathbb{F}}^{n\times n} is (skew-)symmetric, if and only if, MAM_{A} is (skew-)symmetric.

Remark 2.8

The above arguments stand true even when 𝔽{\mathbb{F}} is the set of perfect hypercomplex numbers (PHNs) [8]. In fact, most of arguments throughout this paper also hold for PHNs.

3 Semi-tensor Product of Hypermatrices

Definition 3.1

Let A𝔽m×s×nA\in{\mathbb{F}}^{m\times s\times n} and B𝔽p×s×qB\in{\mathbb{F}}^{p\times s\times q} be two 33-hypermatrices, t=lcm(n,p)t=\operatorname{lcm}(n,p). Then

MA=[A1,A2,,As],MB=[B1,B2,,Bs],\begin{array}[]{l}M_{A}=\left[A_{1},A_{2},\cdots,A_{s}\right],\\ M_{B}=\left[B_{1},B_{2},\cdots,B_{s}\right],\\ \end{array}

where

Ai𝔽m×n,Bi𝔽p×q,i[1,s].A_{i}\in{\mathbb{F}}^{m\times n},\quad B_{i}\in{\mathbb{F}}^{p\times q},\quad i\in[1,s].

Then the SPTH of AA and BB is defined by

AB:=C,\displaystyle A\circledcirc B:=C, (27)

where

MC=[C1,C2,,Cs]𝔽(mt/n)×s×(qt/p),M_{C}=\left[C_{1},C_{2},\cdots,C_{s}\right]\in{\mathbb{F}}^{(mt/n)\times s\times(qt/p)},

and

Ci=AiBi,i[1,s].C_{i}=A_{i}\ltimes B_{i},\quad i\in[1,s].
Example 3.2

Given A𝔽2×2×3A\in{\mathbb{F}}^{2\times 2\times 3} and B𝔽2×2×2B\in{\mathbb{F}}^{2\times 2\times 2} with

MA=[a111a112a113a121a122a123a211a212a213a221a222a223]:=[A1,A2],M_{A}=\begin{bmatrix}a_{111}&a_{112}&a_{113}&a_{121}&a_{122}&a_{123}\\ a_{211}&a_{212}&a_{213}&a_{221}&a_{222}&a_{223}\\ \end{bmatrix}:=[A_{1},A_{2}],
MB=[b111b112b121b122b211b212b221a222]:=[B1,B2].M_{B}=\begin{bmatrix}b_{111}&b_{112}&b_{121}&b_{122}\\ b_{211}&b_{212}&b_{221}&a_{222}\\ \end{bmatrix}:=[B_{1},B_{2}].

Let

C=AB𝔽4×2×6.C=A\circledcirc B\in{\mathbb{F}}^{4\times 2\times 6}.

Then

MC=[A1B1,A2B2].M_{C}=[A_{1}\ltimes B_{1},A_{2}\ltimes B_{2}].

Next, we extend the STPH to general cases:

  • Case 1, d>3d>3:

Assume A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}. Denote s=i=2d1nis=\prod_{i=2}^{d-1}n_{i}, and define π:𝔽n1×n2××nd𝔽n1×s×nd\pi:{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}\rightarrow{\mathbb{F}}^{n_{1}\times s\times n_{d}} by

π:ai1,i2,,idbi1,t,id,\displaystyle\pi:~{}a_{i_{1},i_{2},\cdots,i_{d}}\mapsto b_{i_{1},t,i_{d}}, (28)

where

t=(i21)n3n4nd1+(i31)n4n5nd1++(id21)nd1+id1.\displaystyle\begin{array}[]{ccl}t&=&(i_{2}-1)n_{3}n_{4}\cdots n_{d-1}+(i_{3}-1)n_{4}n_{5}\cdots n_{d-1}+\\ {}\hfil&{}\hfil&\cdots+(i_{d-2}-1)n_{d-1}+i_{d-1}.\\ \end{array} (31)

Then it is easy to see that π\pi is a bijective mapping. Hence we can extend the STPH defined in Definition 3.1 to more general cases.

Definition 3.3

Assume A𝔽m×s2××sd1×nA\in{\mathbb{F}}^{m\times s_{2}\times\cdots\times s_{d-1}\times n} and B𝔽p×s2××sd1×qB\in{\mathbb{F}}^{p\times s_{2}\times\cdots\times s_{d-1}\times q}, then

AB:=π1(π(A)π(B))𝔽(mt/n)×s2××sd1×(qt/p).\displaystyle A\circledcirc B:=\pi^{-1}\left(\pi(A)\circledcirc\pi(B)\right)\in{\mathbb{F}}^{(mt/n)\times s_{2}\times\cdots\times s_{d-1}\times(qt/p)}. (32)
  • Case 2, d=3d=3 and s1s2s_{1}\neq s_{2}:

Definition 3.4

Assume A𝔽m×s1×nA\in{\mathbb{F}}^{m\times s_{1}\times n} and B𝔽p×s2×qB\in{\mathbb{F}}^{p\times s_{2}\times q} and lcm(s1,s2)=s\operatorname{lcm}(s_{1},s_{2})=s, construct

MA~:=𝟏s/s1TMA;MB~:=𝟏s/s2TMB.{\begin{array}[]{l}M_{\tilde{A}}:={\bf 1}^{\mathrm{T}}_{s/s_{1}}\otimes M_{A};\\ M_{\tilde{B}}:={\bf 1}^{\mathrm{T}}_{s/s_{2}}\otimes M_{B}.\\ \end{array}}

Then A~𝔽m×s×n\tilde{A}\in{\mathbb{F}}^{m\times s\times n} and B~𝔽p×s×q\tilde{B}\in{\mathbb{F}}^{p\times s\times q}. Define

AB:=A~B~𝔽(mt/n)×s×(qt/p).\displaystyle A\circledcirc B:=\tilde{A}\circledcirc\tilde{B}\in{\mathbb{F}}^{(mt/n)\times s\times(qt/p)}. (33)

Combining Definitions 3.1, 3.3, and 3.4, one sees easily that the STPH of two arbitrary hypermatrices is properly defined. Hence it is enough to consider the case of Definition 3.1.

Example 3.5

Given A𝔽m×3×nA\in{\mathbb{F}}^{m\times 3\times n} and B𝔽p×2×2×qB\in{\mathbb{F}}^{p\times 2\times 2\times q}. Express

MA=[A1,A2,A3],MB=[B11,B12,B21,B22].\begin{array}[]{l}M_{A}=\left[A_{1},A_{2},A_{3}\right],\\ M_{B}=\left[B_{11},B_{12},B_{21},B_{22}\right].\\ \end{array}

Then C=ABC=A\circledcirc B can be calculated by

MC=[𝟏4TMA][𝟏3TMB]=[A1B11,A2B12,A3B21,A1B22A2B11,A3B12,A1B21,A2B22A3B11,A1B12,A2B21,A3B22].{\begin{array}[]{ccl}M_{C}&=&[{\bf 1}_{4}^{\mathrm{T}}\otimes M_{A}]\circledcirc[{\bf 1}_{3}^{\mathrm{T}}\otimes M_{B}]\\ {}\hfil&=&[A_{1}\ltimes B_{11},A_{2}\ltimes B_{12},A_{3}\ltimes B_{21},A_{1}\ltimes B_{22}\\ {}\hfil&{}\hfil&~{}A_{2}\ltimes B_{11},A_{3}\ltimes B_{12},A_{1}\ltimes B_{21},A_{2}\ltimes B_{22}\\ {}\hfil&{}\hfil&~{}A_{3}\ltimes B_{11},A_{1}\ltimes B_{12},A_{2}\ltimes B_{21},A_{3}\ltimes B_{22}].\end{array}}

Next, we show some basic properties of STPH.

Denote by

𝔽=d=1n1=1nd=1𝔽n1×n2××nd.{\mathbb{F}}^{\infty^{\infty}}=\mathop{\sum}\limits_{d=1}^{\infty}\mathop{\sum}\limits_{n_{1}=1}^{\infty}\cdots\mathop{\sum}\limits_{n_{d}=1}^{\infty}{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}.

To include 𝔽{\mathbb{F}}, 𝔽n1×n2{\mathbb{F}}^{n_{1}\times n_{2}}, we consider

a=a(1×1×1);a=a(1\times 1\times 1);

and A𝔽n1×n2A\in{\mathbb{F}}^{n_{1}\times n_{2}} as

A𝔽n1×1×n2.A\in{\mathbb{F}}^{n_{1}\times 1\times n_{2}}.

Then the STP of hypermatrices is also applicable to 𝔽{\mathbb{F}}, 𝔽n1×n2{\mathbb{F}}^{n_{1}\times n_{2}}.

Definition 3.6

Let a𝔽a\in{\mathbb{F}} and B𝔽p×s×qB\in{\mathbb{F}}^{p\times s\times q}. Then

aB:=aB.\displaystyle a\circledcirc B:=aB. (34)

Let A𝔽m×nA\in{\mathbb{F}}^{m\times n} and B𝔽p×s×qB\in{\mathbb{F}}^{p\times s\times q}, and t=lcm(n,p)t=lcm(n,p). Then

AB:=C𝔽mt/n×s×qt/p,\displaystyle A\circledcirc B:=C\in{\mathbb{F}}^{mt/n\times s\times qt/p}, (35)

where

MC=[AB1,AB2,,ABs].M_{C}=\left[A\ltimes B_{1},A\ltimes B_{2},\cdots,A\ltimes B_{s}\right].
Proposition 3.7

Assume A,B,C𝔽A,B,C\in{\mathbb{F}}^{\infty^{\infty}}, then

A(BC)=(AB)C.\displaystyle A\circledcirc(B\circledcirc C)=(A\circledcirc B)\circledcirc C. (36)
Proposition 3.8

Assume A,B𝔽n1×n2×ndA,B\in{\mathbb{F}}^{n_{1}\times n_{2}\cdots\times n_{d}} and C𝔽C\in{\mathbb{F}}^{\infty^{\infty}}, then

(A+B)C=AC+BC,C(A+B)=CA+CB.\displaystyle\begin{array}[]{l}(A+B)\circledcirc C=A\circledcirc C+B\circledcirc C,\\ C\circledcirc(A+B)=C\circledcirc A+C\circledcirc B.\end{array} (39)
Proposition 3.9

Assume AA and BB are two invertible hypersquares, then

(AB)1=B1A1.\displaystyle(A\circledcirc B)^{-1}=B^{-1}\circledcirc A^{-1}. (40)

4 Hyperdeterminants

Definition 4.1

[12] Let A𝔽n××ndA\in{\mathbb{F}}^{\overbrace{n\times\cdots\times n}^{d}} be a dd-hypercubic. The combinatorial hyperdeterminant (CH-determinant) is defined by

cdet(A)=1n!σ1,,σd𝐒nj=1dsgn(σj)i=1naσ1(i),,σd(i).\displaystyle\begin{array}[]{l}\operatorname{cdet}(A)=\frac{1}{n!}\mathop{\sum}\limits_{\sigma_{1},\cdots,\sigma_{d}\in{\bf S}_{n}}\prod\limits_{j=1}^{d}\operatorname{sgn}(\sigma_{j})\prod\limits_{i=1}^{n}a_{\sigma_{1}(i),\cdots,\sigma_{d}(i)}.\end{array} (42)
Remark 4.2

Combinatorial hyperdeterminant has some nice properties. Unfortunately, for an odd order dd, the combinatorial hyperdeterminent of a dd-hypercubic is identically zero [12]. So it is not suitable for our approach where, mostly, d=3d=3. So we provide a modification as follows.

Definition 4.3

Let AA be a dd-hypercubic with dimension ni=nn_{i}=n, i[1,d]i\in[1,d]. The modified combinatorial hyperdeterminant (MCH-determinant) of AA is defined by

ddet(A)=σ1,,σd1𝐒nj=1d1sgn(σj)i=1nai,σ1(i),,σd1(i).\displaystyle\begin{array}[]{l}\operatorname{ddet}(A)=\\ \mathop{\sum}\limits_{\sigma_{1},\cdots,\sigma_{d-1}\in{\bf S}_{n}}\prod\limits_{j=1}^{d-1}\operatorname{sgn}(\sigma_{j})\prod\limits_{i=1}^{n}a_{i,\sigma_{1}(i),\cdots,\sigma_{d-1}(i)}.\end{array} (45)
Proposition 4.4

Assume d=2d=2, then

ddet(A)=det(MA).\displaystyle\operatorname{ddet}(A)=\det(M_{A}). (46)
Proposition 4.5

When dd is even

ddet(A)=cdet(A).\displaystyle\operatorname{ddet}(A)=\operatorname{cdet}(A). (47)

The following definition is more suitable for our purpose:

Definition 4.6
  • (i)

    Let AA be a dd-hypersquare with dimension n1=nd=nn_{1}=n_{d}=n, d3d\geq 3. Denote s=i=2d1nis=\prod\limits_{i=2}^{d-1}n_{i}, and

    MA:=[A1,A2,,As].M_{A}:=[A_{1},A_{2},\cdots,A_{s}].

    Then the slice-based hyperdeterminant (SH-determinant) of AA is defined by

    Det(A):=i=1sdet(Ai).\displaystyle\operatorname{Det}(A):=\prod\limits_{i=1}^{s}\det(A_{i}). (48)
  • (ii)

    dd-hypersquare AA is called non-singular (invertible), if

    Det(A)0.\operatorname{Det}(A)\neq 0.
  • (iii)

    The dd-hypersquare BB is called the inverse of AA, if

    MB:=[A11,A21,,As1].M_{B}:=[A^{-1}_{1},A^{-1}_{2},\cdots,A^{-1}_{s}].
Example 4.7

Assume A𝔽2×2×2A\in{\mathbb{F}}^{2\times 2\times 2} with

MA=[a111a112a121a122a211a212a221a222]\displaystyle M_{A}=\begin{bmatrix}a_{111}&a_{112}&a_{121}&a_{122}\\ a_{211}&a_{212}&a_{221}&a_{222}\\ \end{bmatrix} (49)
  • (i)
    cdet(A)=12σ1,σ2,σ3=12aσ1(1)σ2(1)σ3(1)×aσ1(2)σ2(2)σ3(2)=12(a111a222a112a221a121a212+a122a211a211a122+a212a121+a221a112a222a111)=0.\begin{array}[]{rl}{}\hfil&\operatorname{cdet}(A)\\ =&\frac{1}{2}\mathop{\sum}\limits_{\sigma_{1},\sigma_{2},\sigma_{3}=1}^{2}a_{\sigma_{1}(1)\sigma_{2}(1)\sigma_{3}(1)}\times a_{\sigma_{1}(2)\sigma_{2}(2)\sigma_{3}(2)}\\ =&\frac{1}{2}(a_{111}a_{222}-a_{112}a_{221}-a_{121}a_{212}+a_{122}a_{211}\\ {}\hfil&-a_{211}a_{122}+a_{212}a_{121}+a_{221}a_{112}-a_{222}a_{111})\\ =&0.\end{array}
  • (ii)
    ddet(A)=σ1=12σ2=12a1σ1(1)σ2(1)a2σ1(2)σ2(2)=a111a222a112a221a121a212+a122a211.\begin{array}[]{ccc}\operatorname{ddet}(A)=\mathop{\sum}\limits_{\sigma_{1}=1}^{2}\mathop{\sum}\limits_{\sigma_{2}=1}^{2}a_{1\sigma_{1}(1)\sigma_{2}(1)}a_{2\sigma_{1}(2)\sigma_{2}(2)}\\ =a_{111}a_{222}-a_{112}a_{221}-a_{121}a_{212}+a_{122}a_{211}.\end{array}
  • (iii)
    Det(A)=det(A1)det(A2)=(a111a212a112a211)(a121a222a122a211).\begin{array}[]{ccc}\operatorname{Det}(A)=\det(A_{1})\det(A_{2})\\ =\left(a_{111}a_{212}-a_{112}a_{211}\right)\left(a_{121}a_{222}-a_{122}a_{211}\right).\end{array}
Definition 4.8
  • (i)

    Let A𝔽m×nA\in{\mathbb{F}}^{m\times n} and mnm\leq n. Denote by A(m)=(a1,a2,,ar)A^{(m)}=(a_{1},a_{2},\cdots,a_{r}), where r=(nm)r=\binom{n}{m}. Then

    Det(A):=i=1rai.\displaystyle\operatorname{Det}(A):=\prod_{i=1}^{r}a_{i}. (50)
  • (ii)

    Let A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}. Denote by MA=[A1,A2,,As]M_{A}=[A_{1},A_{2},\cdots,A_{s}], where s=i=2d1nis=\prod_{i=2}^{d-1}n_{i}. Then

    Det(A):=i=1sDet(Ai).\displaystyle\operatorname{Det}(A):=\prod_{i=1}^{s}\operatorname{Det}(A_{i}). (51)

Next, with the newly introduced notions of STPH and hyperdeterminant, we reveal some basic algebraic structure of hypermatrices.

Proposition 4.9

(𝔽,)\left({\mathbb{F}}^{\infty^{\infty}},\circledcirc\right) is a monoid (semi-group with identity), with identity 1𝔽1\in{\mathbb{F}}.

Denote Jns𝔽n×s×nJ_{n}^{s}\in{\mathbb{F}}^{n\times s\times n} as

MJns=[In,In,,In]s.M_{J_{n}^{s}}=\underbrace{[I_{n},I_{n},\cdots,I_{n}]}_{s}.
Definition 4.10

Let 𝔽n×s×n{\mathbb{F}}^{n\times s\times n} be the set of hypersquare, where s=(s2,s3,,sd1)s=(s_{2},s_{3},\cdots,s_{d-1}), d2d\geq 2. Consider

G={A𝔽n×s×n|Det(A)0}.G=\left\{A\in{\mathbb{F}}^{n\times s\times n}\;|\;\operatorname{Det}(A)\neq 0\right\}.

Denote by

GL(ns,𝔽):=(G,).\displaystyle\operatorname{GL}(n^{s},{\mathbb{F}}):=\left(G,\circledcirc\right). (52)

Then GL(ns,𝔽)\operatorname{GL}(n^{s},{\mathbb{F}}) is a group with identity JnsJ^{s}_{n}, called the general linear group of hypermatrices.

Proposition 4.11

GL(ns,𝔽)\operatorname{GL}(n^{s},{\mathbb{F}}) is a Lie-group with natural manifold structure.

Definition 4.12

Define

GL(,𝔽):=n=1d=1GL(ns,𝔽).\displaystyle\operatorname{GL}(\infty^{\infty},{\mathbb{F}}):=\bigcup_{n=1}^{\infty}\bigcup_{d=1}^{\infty}\operatorname{GL}(n^{s},{\mathbb{F}}). (53)

Then GL(,𝔽)\operatorname{GL}(\infty^{\infty},{\mathbb{F}}) is called the dimension-free general linear group of hypermatrices.

Proposition 4.13

GL(,𝔽)\operatorname{GL}(\infty^{\infty},{\mathbb{F}}) is a dimension-free Lie-group with dimension-free manifold structure [9].

5 Compound Hypermatrices

The extension of compound matrices to compound hypermatrices is straightforward:

Definition 5.1

Let A𝔽n1,n2,,ndA\in{\mathbb{F}}^{n_{1},n_{2},\cdots,n_{d}}, kmin(n1,nd)k\leq\min(n_{1},n_{d}). Denote

MA:=[A1,A2,,As],M_{A}:=[A_{1},A_{2},\cdots,A_{s}],

where s=i=2d1nis=\prod\limits_{i=2}^{d-1}n_{i}.

  • (i)

    The kk-multiplicative compound hypermatrix of AA, denoted by A(k)A^{(k)}, is defined by

    MA(k):=[A1(k),A2(k),,As(k)].\displaystyle M_{A^{(k)}}:=[A_{1}^{(k)},A_{2}^{(k)},\cdots,A_{s}^{(k)}]. (54)
  • (ii)

    The kk-additive compound hypermatrix of AA, denoted by A[k]A^{[k]}, is defined by

    MA[k]:=[A1[k],A2[k],,As[k]].\displaystyle M_{A^{[k]}}:=[A_{1}^{[k]},A_{2}^{[k]},\cdots,A_{s}^{[k]}]. (55)

The following properties are a direct consequence of Definition 5.1 and the corresponding properties of compound matrices.

Proposition 5.2
  • (i)
    A(1)=A.\displaystyle A^{(1)}=A. (56)
  • (ii)

    Assume AA is a hypersquare, that is, A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}} and n1=ndn_{1}=n_{d}, then

    A(n)=[det(A1),det(A2),,det(As)].\displaystyle A^{(n)}=[\det(A_{1}),\det(A_{2}),\cdots,\det(A_{s})]. (57)
Theorem 5.3

(Cauchy-Binet Formula) Let A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, B𝔽m1×m2××mdB\in{\mathbb{F}}^{m_{1}\times m_{2}\times\cdots\times m_{d}}, where nd=m1n_{d}=m_{1} and ni=min_{i}=m_{i}, i[2,d1]i\in[2,d-1]. Fix a positive integer kmin(n1,nd,m1)k\leq\min(n_{1},n_{d},m_{1}), then

(AB)(k)=A(k)B(k).\displaystyle(A\circledcirc B)^{(k)}=A^{(k)}\circledcirc B^{(k)}. (58)
Remark 5.4

When A𝔽m×nA\in{\mathbb{F}}^{m\times n}, B𝔽n×rB\in{\mathbb{F}}^{n\times r}. Fix a positive integer kmin(m,n,r)k\leq\min(m,n,r), then

(AB)(k)=A(k)B(k).\displaystyle(AB)^{(k)}=A^{(k)}B^{(k)}. (59)

This is the classical Cauchy-Binet Formula.

Corollary 5.5
  • (i)
    (Jnd)(k)=(Jrd)(k),r=(nk).\displaystyle\left(J_{n}^{d}\right)^{(k)}=\left(J_{r}^{d}\right)^{(k)},\quad r=\binom{n}{k}. (60)

    Particularly,

    (In)(k)=Ir,r=(nk).\displaystyle\left(I_{n}\right)^{(k)}=I_{r},\quad r=\binom{n}{k}. (61)
  • (ii)

    If A𝔽n1×n2××ndA\in{\mathbb{F}}_{n_{1}\times n_{2}\times\cdots\times n_{d}}, n1=nd=nn_{1}=n_{d}=n, is invertible, then A(k)A^{(k)} is also invertible, and

    (A(k))1=(A1)(k).\displaystyle\left(A^{(k)}\right)^{-1}=\left(A^{-1}\right)^{(k)}. (62)
Definition 5.6

Let A,B𝔽n1×n2××ndA,B\in{\mathbb{F}}_{n_{1}\times n_{2}\times\cdots\times n_{d}}, n1=nd=nn_{1}=n_{d}=n. AA and BB are said to be similar, denoted by ABA\simeq B, if there exists a nonsingular T𝔽n1×n2××ndT\in{\mathbb{F}}_{n_{1}\times n_{2}\times\cdots\times n_{d}} such that

T1AT=B.\displaystyle T^{-1}\circledcirc A\circledcirc T=B. (63)
Proposition 5.7

Let A,B𝔽n1×n2××ndA,B\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, n1=nd=nn_{1}=n_{d}=n. If ABA\simeq B, then

  • (i)
    A(k)B(k),kn;\displaystyle A^{(k)}\sim B^{(k)},\quad k\leq n; (64)
  • (ii)
    A[k]B[k],kn;\displaystyle A^{[k]}\sim B^{[k]},\quad k\leq n; (65)
Definition 5.8

Assume A𝔽n1×n2××ndA\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d}}, n1=nd=nn_{1}=n_{d}=n, and X𝔽n1×n2××nd1×1X\in{\mathbb{F}}^{n_{1}\times n_{2}\times\cdots\times n_{d-1}\times 1}. Moreover,

MX=[X1,X2,,Xs],s=i=2d1ni,M_{X}=[X_{1},X_{2},\cdots,X_{s}],\quad s=\prod_{i=2}^{d-1}n_{i},

and Xi0X_{i}\neq 0, i[1,s]i\in[1,s]. If there exists λ=(λ1,,λs)𝔽s\lambda=(\lambda_{1},\cdots,\lambda_{s})\in{\mathbb{F}}^{s} such that

AX=λX,\displaystyle A\circledcirc X=\lambda\circledcirc X, (66)

then λ\lambda is called the eigenvalue of AA with eigenvector XX.

Using Definition 5.8, Propositions 1.11 and 1.14 can be extended to compound hypermatrices easily.

6 Conclusion

In this paper the STP of matrices was extended to the STP of two arbitrary hypermatrices. We showed that almost fundamental properties of the STP of matrices can be extended to that of hypermatrices. Three determinants of hypermatrices, namely the CH-determinant, the MCH-determinant and the SH-determinant, are introduced and studied. The monoid and the group of hypermatrices are also introduced. Then the general linear group of hypermatrices, as a Lie group, is introduced and studied. Finally, the compound hypermatrix is presented and some interesting properties are revealed.

References

  • [1] E. Bar-Shalom, O. Dalin, M. Margaliot, Compound matrices in systems and control theory: a tutorial, arXiv:2204.00676v1, 2022.
  • [2] W.M. Boothby, Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd Ed., Elsevier, London, 1986.
  • [3] D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks - A Semi-tensor Product Approach, Springer, London, 2011.
  • [4] D. Cheng, H. Qi, Y. Zhao, An Introduction to Semi-tensor Product of Matrices and Its Applications, World Scientific, Singapo, 2012.
  • [5] D. Cheng, On equivalence of matrices, Asian Journal of Math., Vol. 23, No. 2, 257-348, 2019.
  • [6] D. Cheng, From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems, Elsevier, London, 2019.
  • [7] D. Cheng, Y. Wu, G. Zhao, S. Fu, A comprehensive survey on STP approach to finite games, J. Sys. Sci. Compl., Vol. 34, No. 5, 1666-1680, 2021.
  • [8] D. Cheng, Z. Ji, J. Feng, S. Fu, J. Zhao, Perfect hypercomplex algebras: Semi-tensor product approach, Math. Model. Contr., Vol. 1, No. 4, 177-187, 2021.
  • [9] D. Cheng, From dimension-free manifold to dimension-varying control system, http:arxiv.org/abs/2206.04461, 2023.
  • [10] E. Fornasini, M.E. Valcher, Recent developments in Boolean networks control, J. Contr. Dec., Vol. 3, No. 1, 1-18, 2016.
  • [11] H. Li, G. Zhao, M. Meng, J. Feng, A survey on applications of semi-tensor product method in engineering, Science China, Vol. 61, 010202:1-010202:17, 2018.
  • [12] L. Lim, Tensors and Hypermatrices, in L. Hogben (Ed.) Handbook of Linear Algebra (2nd ed.), Chapter 15, Chapman and Hall/CRC.https://doi.org/10.1201/b16113, 2013.
  • [13] J. Lu, H. Li, Y. Liu, F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Contr. Theory Appl., Vol. 11, No. 13, 2040-2047, 2017.
  • [14] A. Muhammad, A. Rushdi, F.A. M. Ghaleb, A tutorial exposition of semi-tensor products of matrices with a stress on their representation of Boolean function, JKAU Comp. Sci., Vol. 5, 3-30, 2016.
  • [15] L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., Vol. 325, 1363-1377, 2007.
  • [16] C. Wu, R. Pines, M. Margaliot, J.J. Slotine, Generalization of the multiplicative and additive compounds of square matrices and contraction theory in the hausdorff dimension, IEEE Trans. Aut. Contr., Vol. 67, No. 9, 4629-4644, 2022.
  • [17] Y. Yan, D. Cheng, J. Feng, H. Li, J. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inf. Sci., https://doi.org/10.1007/s11432-22-3538-4, 2022.