This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Securing Communications with
Friendly Unmanned Aerial Vehicle Jammers

Minsu Kim, Seongjun Kim, and Jemin Lee
M. Kim, S. Kim, and J. Lee are with the Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea (e-mail: [email protected], [email protected], [email protected]). The corresponding author is J. Lee.
Abstract

In this paper, we analyze the impact of a friendly unmanned aerial vehicle (UAV) jammer on UAV communications in the presence of multiple eavesdroppers. We first present channel components determined by the line-of-sight (LoS) probability between the friendly UAV jammer and the ground device, and introduce different channel fadings for LoS and non-line-of-sight (NLoS) links. We then derive the secrecy transmission probability satisfying both constraints of legitimate and wiretap channels. We also analyze the secrecy transmission probability in the presence of randomly distributed multiple friendly UAV jammers. Finally, we show the existence of the optimal UAV jammer location, and the impact of the density of eavesdroppers, the transmission power of the UAV jammer, and the density of UAV jammers on the optimal location.

Index Terms:
Unmanned aerial vehicle, physical layer security, line-of-sight probability, secrecy transmission probability

I Introduction

As an UAV communication has several advantages such as the LoS environment and their flexible mobility, many researchers have studied the use of UAVs as a communication device [1]. Specifically, by using the relation between the LoS probability and the distance-dependent path loss, the optimal positioning of UAVs has been mainly studied. When the UAV height increases, the link between the UAV and the ground device forms the better link due to increasing LoS signal, while the link distance increases. Hence, several works optimized the UAV height to improve the communication performance [2, 3].

In UAV communications, the secrecy is also an important issue due to the broadcast nature of wireless channels. To overcome this, the physical layer security has recently emerged as an effective approach for communication secrecy [4, 5]. Different from terrestrial communications, in UAV communications, the UAV and the ground devices form LoS links with higher probability, so malicious eavesdroppers as well as legitimate receivers can receive the signal from the transmitting UAV with higher power. Hence, the works in [6, 7] provided the optimal deployment and trajectory of UAVs, which improve the effect of the jamming signal to the eavesdroppers, while reducing the effect of the interfering signal to the receivers. Specifically, the optimal UAV height and the transmit power were presented to minimize the secrecy outage probability in [6]. The intercept probability and the ergodic secrecy rate were presented by considering the effect of the UAV height and the transmit power in [7]. However, the works in [6, 7] did not consider the friendly jammer which can reduce the eavesdropping probability.

Recently, the friendly jammer has been considered in [8, 9, 10, 11] to improve the secrecy performance. For the case of the friendly terrestrial jammer, the optimal secrecy guard zone radius was presented to maximize secrecy throughput in [8]. Different from terrestrial communications, the UAV and the ground devices form LoS links with higher probability in UAV communications. Hence, the friendly UAV jammer can generally give stronger jamming signals to eavesdroppers than a terrestrial jammer by having LoS links to eavesdroppers. Furthermore, the friendly UAV jammer can also be readily located to maximize the jamming efficiency as it has on-demand mobility. Therefore, in recent works such as [9, 10, 11], the friendly UAV jammer has also been considered. Specifically, the secrecy energy efficiency was presented to analyze the effect of the transmission power and the density ratio of transmitters to eavesdroppers in [9]. The optimal UAV height and the secrecy guard zone size were presented to maximize the secrecy transmission capacity in [10]. The optimal deployment and transmission power of the friendly UAV jammer were provided to maximize the intercept probability security region in [11]. However, the works in [9, 10] focused on the effect of the density ratio of friendly UAV jammers to eavesdroppers instead of the specific location of the friendly UAV jammer. The optimal location of a friendly UAV jammer was presented in [11], but the channel fading for the air-to-ground (A2G) channel was not considered. In addition, the work in [11] did not show the effect of the eavesdropper density on the optimal location of the friendly UAV jammer.

In this paper, we present the effect of a friendly UAV jammer on the secrecy transmission probability. We consider channel fadings and components, affected by horizontal and vertical distances between the friendly UAV jammer and the ground devices including eavesdroppers. The main contributions of this paper can be summarized as follows:

  • we consider realistic channel model, determined by the LoS probability between a friendly UAV jammer and a ground device;

  • we derive the secrecy transmission probability considering different channel fadings for LoS and NLoS links;

  • we also analyze the secrecy transmission probability by considering multiple UAV jammers, randomly distributed in the network; and

  • we finally show the optimal location of the friendly UAV jammer that maximizes the secrecy transmission probability according to the eavesdropper density and the transmission power of the friendly UAV jammer.

II System Model

In this section, we describe the UAV network and the channel model, affected by horizontal and vertical distances between the friendly UAV jammer and ground devices.

II-A Network Description

We consider the UAV network with a transmitter (Tx), a legitimate receiver (Rx), a friendly UAV jammer (Jammer), and multiple eavesdroppers (Eves) as shown in Fig. 1. On the ground, the Tx and the Rx are located at 𝒒t=(0,0,0)\boldsymbol{q}_{\text{t}}=(0,0,0) and 𝒒r=(xr,yr,0)\boldsymbol{q}_{\text{r}}=(x_{\text{r}},y_{\text{r}},0), respectively. Eves are randomly distributed by a Poisson point process (PPP) Φe{𝒒ei}\Phi_{\text{e}}\triangleq\{\boldsymbol{q}_{\text{e}_{i}}\} with density λe\lambda_{\text{e}}, where 𝒒ei=(xei,yei,0)\boldsymbol{q}_{\text{e}_{i}}=(x_{\text{e}_{i}},y_{\text{e}_{i}},0) is the location of an arbitrary Eve [12]. Each Eve decodes the received signal from the Tx independently, i.e., we consider non-colluding Eves. The Jammer is placed in an adjustable location 𝒒u=(xu,yu,zu)\boldsymbol{q}_{\text{u}}=(x_{\text{u}},y_{\text{u}},z_{\text{u}}). In this network, we assume the Tx and the Jammer do not know the locations of Eves. We also assume the legitimate channel (between Tx and Rx in the presence of Jammer) and the wiretap channel (between Tx and Eves in the presence of Jammer) are independent.111If the eavesdroppers are more than half-wavelength away from the legitimate users, the legitimate users experience independent channels to eavesdroppers [13].

Refer to caption
Figure 1: System model where multiple eavesdroppers are randomly distributed on the ground and a friendly UAV jammer is in the air. The blue lines represent transmitting signals from the transmitter and the red dotted lines represent interfering signals from the friendly UAV jammer.

Based on 𝒒t\boldsymbol{q}_{\text{t}}, 𝒒r\boldsymbol{q}_{\text{r}}, 𝒒ei\boldsymbol{q}_{\text{e}_{i}}, and 𝒒u\boldsymbol{q}_{\text{u}}, we define the signal-to-interference-plus-noise ratio (SINR) of the legitimate channel (c=r)(c=\text{r}) or the wiretap channel (c=ei)(c=\text{e}_{i}) as

γc\displaystyle\gamma_{c} =htccαtcPthucjc(dc,zu)αucPu+σ2\displaystyle=\frac{h_{\text{t}c}\ell_{c}^{-\alpha_{\text{t}c}}P_{\text{t}}}{h_{\text{u}c}j_{c}(d_{c},z_{\text{u}})^{-\alpha_{\text{u}c}}P_{\text{u}}+\sigma^{2}}
=htcρchucτc(dc,zu)+σ2,c{r,ei}\displaystyle=\frac{h_{\text{t}c}\rho_{c}}{h_{\text{u}c}\tau_{c}(d_{c},z_{\text{u}})+\sigma^{2}},\quad\quad c\in\{\text{r},\text{e}_{i}\} (1)

where c=xc2+yc2\ell_{c}=\sqrt{x_{c}^{2}+y_{c}^{2}} is the link distance between the Tx and the Rx (c=r)(c=\text{r}) or the Eve (c=ei)(c=\text{e}_{i}), jc(dc,zu)=(xuxc)2+(yuyc)2+zu2j_{c}(d_{c},z_{\text{u}})=\sqrt{(x_{\text{u}}-x_{c})^{2}+(y_{\text{u}}-y_{c})^{2}+z_{\text{u}}^{2}} is the link distance between the Jammer and the Rx (c=r)(c=\text{r}) or the Eve (c=ei)(c=\text{e}_{i}), PtP_{\text{t}} and PuP_{\text{u}} are the transmission power of the Tx and the Jammer, respectively, and σ2\sigma^{2} is the noise power. Here, htch_{\text{t}c} and huch_{\text{u}c} are channel fading gains, and αtc\alpha_{\text{t}c} and αuc\alpha_{\text{u}c} are path loss exponents, where the subscript tc\text{t}c represents the transmission from the Tx to the Rx (c=r)(c=\text{r}) or the Eve (c=ei)(c=\text{e}_{i}), and the subscript uc\text{u}c represents the transmission from the Jammer to the Rx (c=r)(c=\text{r}) or the Eve (c=ei)(c=\text{e}_{i}).222Note that the instantaneous channel state information (CSI), which is generally difficult to obtain especially for eavesdropping links, is not required in this work. Only the location of Tx and Rx as well as the densities of eavesdroppers and Jammers are needed to determine the location of Jammer. In (1), for convenience, we introduce ρc=cαtcPt\rho_{c}=\ell_{c}^{-\alpha_{\text{t}c}}P_{\text{t}} and τc(dc,zu)=jc(dc,zu)αucPu\tau_{c}(d_{c},z_{\text{u}})=j_{c}(d_{c},z_{\text{u}})^{-\alpha_{\text{u}c}}P_{\text{u}}, where dc=(xuxc)2+(yuyc)2d_{c}=\sqrt{(x_{\text{u}}-x_{c})^{2}+(y_{\text{u}}-y_{c})^{2}} is horizontal distance between the Jammer and the Rx (c=r)(c=\text{r}) or the Eve (c=ei)(c=\text{e}_{i}), which can be expressed as

dc=dtu2+c22dtuccosθc\displaystyle d_{c}=\sqrt{d_{\text{tu}}^{2}+\ell_{c}^{2}-2d_{\text{tu}}\ell_{c}\cos{\theta_{c}}} (2)

where dtud_{\text{tu}} is the horizontal distance between the Jammer and the Tx, and θc\theta_{c} is the included angle between c\ell_{c} and dtud_{\text{tu}} as shown in Fig. 1.

II-B Channel Model

Since all the devices except for the Jammer are located on the ground, there can be two types of channels, which are the ground-to-ground (G2G) channel and the A2G channel. The G2G channel between ground devices is commonly modeled as the NLoS environment with the Rayleigh fading due to a lot of obstacles. On the other hand, the A2G channel between the Jammer and the ground device (e.g., the interference link to Rx and the jamming link to Eve) can have the LoS or NLoS environment according to the existence of obstacles. In this subsection, we introduce channel components and provide the model of the A2G channel.

II-B1 Channel component

On UAV communications, channel components such as the LoS probability and the path loss exponent are affected by the horizontal distance dcd_{c} and the vertical distance zuz_{\text{u}} between a Jammer and a Rx (c=r)(c=\text{r}) or a Eve (c=ei)(c=\text{e}_{i}). First, when the heights of ground devices are sufficiently small, the LoS probability, pL(dc,zu)p_{\text{L}}(d_{c},z_{\text{u}}), c{r,ei}c\in\{\text{r},\text{e}_{i}\}, is given by [14]333The LoS probability is also defined in [15], but it is determined by the ratio of the vertical and horizontal link distances, not by the absolute distances. On the other hand, the one in [14] is affected by the absolute positions of the Tx and Rx, and it can be applicable for more general cases.

pL(dc,zu)={12πζzu|Q(zuζ)0.5|}dcνμ\displaystyle p_{\text{L}}(d_{c},z_{\text{u}})=\left\{1-\frac{\sqrt{2\pi}\zeta}{z_{\text{u}}}\Bigg{|}Q\left(\frac{z_{\text{u}}}{\zeta}\right)-0.5\Bigg{|}\right\}^{d_{c}\sqrt{\nu\mu}} (3)

where Q(x)=x12πexp(t22)𝑑tQ(x)=\int_{x}^{\infty}\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{t^{2}}{2}\right)\,dt is the Q-function, and ζ\zeta, ν\nu, and μ\mu are environment parameters, determined by the building density and height. We then define the NLoS probability as pN(dc,zu)=1pL(dc,zu)p_{\text{N}}(d_{c},z_{\text{u}})=1-p_{\text{L}}(d_{c},z_{\text{u}}). Note that the LoS probability can be applicable in various environments (e.g., urban, suburban, and dense urban) by adjusting the environment parameters. In addition, the path loss exponent αuc\alpha_{\text{u}c} is determined by αL\alpha_{\text{L}} when the A2G channel is in the LoS environment. Otherwise, αuc=αN\alpha_{\text{u}c}=\alpha_{\text{N}}.

II-B2 Air-to-Ground (A2G) channel

In the A2G channel, as the received signal power at the ground device is affected by the combination of the LoS and NLoS signals [16], we consider that the channel fading is the Nakagami-mm fading with mean HL¯=1\overline{H_{\text{L}}}=1 for the LoS environment and the Rayleigh fading with mean HN¯=1\overline{H_{\text{N}}}=1 for the NLoS environment. Therefore, the distribution of channel fading gains, huch_{\text{u}c}, c{r,ei}c\in\{\text{r},\text{e}_{i}\}, can be expressed as

fhuc(L)(h)\displaystyle f_{h_{\text{u}c}}^{(\text{L})}(h) =mLmLhmL1Γ(mL)exp(mLh)for LoS\displaystyle=\frac{m_{\text{L}}^{m_{\text{L}}}h^{m_{\text{L}}-1}}{\Gamma\left(m_{\text{L}}\right)}\exp\left(-m_{\text{L}}h\right)\quad\text{for \acs{LoS}}
fhuc(N)(h)\displaystyle f_{h_{\text{u}c}}^{(\text{N})}(h) =exp(h)for NLoS\displaystyle=\exp\left(-h\right)\quad\quad\quad\quad\quad\,\,\,\quad\quad\text{for \acs{NLoS}} (4)

where mLm_{\text{L}} is the Nakagami-mm fading parameter and Γ(z)=0xz1ex𝑑x\Gamma(z)=\int_{0}^{\infty}x^{z-1}e^{-x}dx is the gamma function.

III Secrecy Transmission Probability Analysis

In this section, for given drd_{\text{r}} and zuz_{\text{u}}, we analyze the secrecy transmission probability pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}), which is the probability that a Tx reliably transmits signals to a Rx, while all the Eves fail to eavesdrop, and is defined as [8]

pse(dr,zu)\displaystyle p_{\text{se}}(d_{\text{r}},z_{\text{u}}) =[γr>γt,maxeiΦeγei<γt]\displaystyle=\mathbb{P}\left[\gamma_{\text{r}}>\gamma_{\text{t}},\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\gamma_{\text{e}_{i}}<\gamma_{\text{t}}^{\prime}\right] (5)

where γt\gamma_{\text{t}} and γt\gamma_{\text{t}}^{\prime} are target SINRs of the legitimate channel and the wiretap channel, respectively.

Lemma 1

The secrecy transmission probability can be presented as

pse(dr,zu)=ps(dr,zu)(1pe(zu))\displaystyle p_{\text{se}}(d_{\text{r}},z_{\text{u}})=p_{\text{s}}(d_{\text{r}},z_{\text{u}})(1-p_{\text{e}}(z_{\text{u}})) (6)

where ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) and pe(zu)p_{\text{e}}(z_{\text{u}}) are given by

ps(dr,zu)=mLmL(γtτr(dr,zu)ρr+mL)mLexp(γtσ2ρr)pL(dr,zu)\displaystyle p_{\text{s}}(d_{\text{r}},z_{\text{u}})=\frac{m_{\text{L}}^{m_{\text{L}}}}{\left(\frac{\gamma_{\text{t}}\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})}{\rho_{\text{r}}}+m_{\text{L}}\right)^{m_{\text{L}}}}\exp\left(-\frac{\gamma_{\text{t}}\sigma^{2}}{\rho_{\text{r}}}\right)p_{\text{L}}(d_{\text{r}},z_{\text{u}})
+ρrρr+γtτr(dr,zu)exp(γtσ2ρr)pN(dr,zu),\displaystyle\quad\quad\quad\quad\,\,\,+\frac{\rho_{\text{r}}}{\rho_{\text{r}}+\gamma_{\text{t}}\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})}\exp\left(-\frac{\gamma_{\text{t}}\sigma^{2}}{\rho_{\text{r}}}\right)p_{\text{N}}(d_{\text{r}},z_{\text{u}}), (7)
pe(zu)=1exp{λe02π0ps,ei(ei,θei,zu)ei𝑑ei𝑑θei}.\displaystyle p_{\text{e}}(z_{\text{u}})=1-\exp\left\{-\lambda_{\text{e}}\int_{0}^{2\pi}\int_{0}^{\infty}p_{\text{s,e}_{i}}(\ell_{\text{e}_{i}},\theta_{\text{e}_{i}},z_{\text{u}})\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}d\theta_{\text{e}_{i}}\right\}. (8)

In (8), ps,ei(ei,θei,zu)=[γei>γt]p_{\text{s,e}_{i}}(\ell_{\text{e}_{i}},\theta_{\text{e}_{i}},z_{\text{u}})=\mathbb{P}\left[\gamma_{\text{e}_{i}}>\gamma_{\text{t}}^{\prime}\right], which is presented from (7) by substituting from drd_{\text{r}}, ρr\rho_{\text{r}}, and γt\gamma_{\text{t}} to deid_{\text{e}_{i}}, ρei\rho_{\text{e}_{i}}, and γt\gamma_{\text{t}}^{\prime}, respectively.444For given zuz_{\text{u}}, even though the eavesdropping probability pe(zu)p_{\text{e}}(z_{\text{u}}) cannot be obtained in a closed-form, we can calculate it efficiently using the numerical integral method.

Proof:

For given 𝒒t\boldsymbol{q}_{\text{t}}, 𝒒u\boldsymbol{q}_{\text{u}}, 𝒒ei\boldsymbol{q}_{\text{e}_{i}}, and 𝒒r\boldsymbol{q}_{\text{r}}, we can obtain the secrecy transmission probability pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) as

pse(dr,zu)\displaystyle p_{\text{se}}(d_{\text{r}},z_{\text{u}}) =[γr>γt,maxeiΦeγei<γt]\displaystyle=\mathbb{P}\left[\gamma_{\text{r}}>\gamma_{\text{t}},\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\gamma_{\text{e}_{i}}<\gamma_{\text{t}}^{\prime}\right]
=(a)ps(dr,zu)(1pe(zu))\displaystyle\overset{\underset{\mathrm{(a)}}{}}{=}p_{\text{s}}(d_{\text{r}},z_{\text{u}})(1-p_{\text{e}}(z_{\text{u}})) (9)

where ps(dr,zu)=[γr>γt]p_{\text{s}}(d_{\text{r}},z_{\text{u}})=\mathbb{P}\left[\gamma_{\text{r}}>\gamma_{\text{t}}\right] is the successful transmission probability, pe(zu)=[maxeiΦeγei>γt]p_{\text{e}}(z_{\text{u}})=\mathbb{P}\left[\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\gamma_{\text{e}_{i}}>\gamma_{\text{t}}^{\prime}\right] is the eavesdropping probability, and (a) is obtained due to the independence between the legitimate channel and the wiretap channel. In (9), ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) can be obtained as [2]

ps(dr,zu)=0γt(τr(dr,zu)g+σ2)ρrfhtr(h)𝑑hfhur(g)𝑑g\displaystyle p_{\text{s}}(d_{\text{r}},z_{\text{u}})=\int_{0}^{\infty}\int_{\frac{\gamma_{\text{t}}\left(\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})g+\sigma^{2}\right)}{\rho_{\text{r}}}}^{\infty}f_{h_{\text{tr}}}(h)dhf_{h_{\text{ur}}}(g)dg
=ps(L)(dr,zu)pL(dr,zu)+ps(N)(dr,zu)pN(dr,zu)\displaystyle=p_{\text{s}}^{(\text{L})}(d_{\text{r}},z_{\text{u}})p_{\text{L}}(d_{\text{r}},z_{\text{u}})+p_{\text{s}}^{(\text{N})}(d_{\text{r}},z_{\text{u}})p_{\text{N}}(d_{\text{r}},z_{\text{u}}) (10)

where ps(eI)(dr,zu)p_{\text{s}}^{(e_{\text{I}})}(d_{\text{r}},z_{\text{u}}) is the successful transmission probability in the environment of the interference link eIe_{\text{I}}, given by

ps(L)(dr,zu)=0γt(τr(dr,zu)g+σ2)ρrfhtr(h)𝑑hfhur(L)(g)𝑑g\displaystyle p_{\text{s}}^{(\text{L})}(d_{\text{r}},z_{\text{u}})=\int_{0}^{\infty}\int_{\frac{\gamma_{\text{t}}\left(\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})g+\sigma^{2}\right)}{\rho_{\text{r}}}}^{\infty}f_{h_{\text{tr}}}(h)\,dhf_{h_{\text{ur}}}^{(\text{L})}(g)\,dg
=(a)0exp{γt(τr(dr,zu)g+σ2)ρrmLg}mLmLgmL1Γ(mL)𝑑g,\displaystyle\overset{\underset{\mathrm{(a)}}{}}{=}\int_{0}^{\infty}\exp\left\{-\frac{\gamma_{\text{t}}\left(\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})g+\sigma^{2}\right)}{\rho_{\text{r}}}-m_{\text{L}}g\right\}\frac{m_{\text{L}}^{m_{\text{L}}}g^{m_{\text{L}}-1}}{\Gamma(m_{\text{L}})}dg, (11)
ps(N)(dr,zu)=0γt(τr(dr,zu)g+σ2)ρrfhtr(h)𝑑hfhur(N)(g)𝑑g\displaystyle p_{\text{s}}^{(\text{N})}(d_{\text{r}},z_{\text{u}})=\int_{0}^{\infty}\int_{\frac{\gamma_{\text{t}}\left(\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})g+\sigma^{2}\right)}{\rho_{\text{r}}}}^{\infty}f_{h_{\text{tr}}}(h)\,dhf_{h_{\text{ur}}}^{(\text{N})}(g)\,dg
=(a)0exp{γt(τr(dr,zu)g+σ2)ρrg}𝑑g.\displaystyle\overset{\underset{\mathrm{(a)}}{}}{=}\int_{0}^{\infty}\exp\left\{-\frac{\gamma_{\text{t}}\left(\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})g+\sigma^{2}\right)}{\rho_{\text{r}}}-g\right\}dg. (12)

Here, (a) is from the cumulative distribution function (CDF) of the exponential distribution. In (11), by [17, eq. (3.326)], the integral term can be expressed as

0xmexp(βxn)𝑑x=Γ(γ)nβγ\displaystyle\int_{0}^{\infty}x^{m}\exp\left(-\beta x^{n}\right)dx=\frac{\Gamma(\gamma)}{n\beta^{\gamma}} (13)

where m=mL1m=m_{\text{L}}-1, n=1n=1, β=γtτr(dr,zu)ρr+mL\beta=\frac{\gamma_{\text{t}}\tau_{\text{r}}(d_{\text{r}},z_{\text{u}})}{\rho_{\text{r}}}+m_{\text{L}}, and γ=m+1n\gamma=\frac{m+1}{n}. By using (13) in (11) and the definite integral in (12), ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) is presented as (7).

In the wiretap channel, pe(zu)p_{\text{e}}(z_{\text{u}}) can be derived as

pe(zu)=[maxeiΦeγei>γt]=1𝔼Φe[eiΦe[γei<γt]].\displaystyle p_{\text{e}}(z_{\text{u}})=\mathbb{P}\left[\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\gamma_{\text{e}_{i}}>\gamma_{\text{t}}^{\prime}\right]=1-\mathbb{E}_{\Phi_{\text{e}}}\left[\prod_{\text{e}_{i}\in\Phi_{\text{e}}}\mathbb{P}\left[\gamma_{\text{e}_{i}}<\gamma_{\text{t}}^{\prime}\right]\right]. (14)

By using the probability generating functional (PGFL) in (14), pe(zu)p_{\text{e}}(z_{\text{u}}) is presented as (8). ∎

From Lemma 1, we can know that ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) and pe(zu)p_{\text{e}}(z_{\text{u}}) decrease with mLm_{\text{L}}. Using this result, the impact of mLm_{\text{L}} on pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) is shown and discussed in the numerical results.

Corollary 1

For given zuz_{\text{u}}, r\ell_{r}, and dtud_{\text{tu}}, the optimal value of θr\theta_{\text{r}} that maximizes pse(dtu,zu,θr)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}}) is π\pi.

Proof:

For convenience, we introduce F(dtu,zu)=02π0ps,ei(ei,θei,zu)ei𝑑ei𝑑θeiF(d_{\text{tu}},z_{\text{u}})=\int_{0}^{2\pi}\int_{0}^{\infty}p_{\text{s,e}_{i}}(\ell_{\text{e}_{i}},\theta_{\text{e}_{i}},z_{\text{u}})\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}d\theta_{\text{e}_{i}} and represent pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) as functions of dtud_{\text{tu}}, zuz_{\text{u}}, and θr\theta_{\text{r}} as

pse(dtu,zu,θr)=ps(dtu,zu,θr)exp{λeF(dtu,zu)}.\displaystyle p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})=p_{\text{s}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})\exp\left\{-\lambda_{\text{e}}F(d_{\text{tu}},z_{\text{u}})\right\}. (15)

In (15), for given zuz_{\text{u}}, r\ell_{r}, and dtud_{\text{tu}}, we obtain the first derivative of pse(dtu,zu,θr)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}}) with respect to θr\theta_{\text{r}} as

pse(dtu,zu,θr)θr=exp{λeF(dtu,zu)}{pL(dtu,zu,θr)θr\displaystyle\frac{\partial p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}=\exp\left\{-\lambda_{\text{e}}F(d_{\text{tu}},z_{\text{u}})\right\}\left\{\frac{\partial p_{\text{L}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}\right.
×(ps(L)(dtu,zu,θr)ps(N)(dtu,zu,θr))+ps(L)(dtu,zu,θr)θr\displaystyle\left.\times\left(p_{\text{s}}^{(\text{L})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})-p_{\text{s}}^{(\text{N})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})\right)+\frac{\partial p_{\text{s}}^{(\text{L})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}\right.
×pL(dtu,zu,θr)+ps(N)(dtu,zu,θr)θrpN(dtu,zu,θr)}.\displaystyle\left.\times p_{\text{L}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})+\frac{\partial p_{\text{s}}^{(\text{N})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}p_{\text{N}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})\right\}. (16)

In (16), for zu>0z_{\text{u}}>0, ps(L)(dtu,zu,θr)ps(N)(dtu,zu,θr)<0p_{\text{s}}^{(\text{L})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})-p_{\text{s}}^{(\text{N})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})<0, pL(dtu,zu,θr)>0p_{\text{L}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})>0, and pN(dtu,zu,θr)>0p_{\text{N}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})>0. In addition, from (3), we obtain pL(dtu,zu,θr)θr=C1sin(θr)\frac{\partial p_{\text{L}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}=-C_{1}\sin(\theta_{\text{r}}), ps(L)(dtu,zu,θr)θr=C2sin(θr)\frac{\partial p_{\text{s}}^{(\text{L})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}=C_{2}\sin(\theta_{\text{r}}), and ps(N)(dtu,zu,θr)θr=C3sin(θr)\frac{\partial p_{\text{s}}^{(\text{N})}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}})}{\partial\theta_{\text{r}}}=C_{3}\sin(\theta_{\text{r}}) for positive C1C_{1}, C2C_{2}, and C3C_{3}. Hence, the stationary values of θr\theta_{\text{r}} are obtained when sin(θr)=0\sin(\theta_{\text{r}})=0. Furthermore, we readily know that ps(dtu,zu,π)p_{\text{s}}(d_{\text{tu}},z_{\text{u}},\pi) is greater than ps(dtu,zu,0)p_{\text{s}}(d_{\text{tu}},z_{\text{u}},0) because pL(dtu,zu,π)p_{\text{L}}(d_{\text{tu}},z_{\text{u}},\pi) is smaller than pL(dtu,zu,0)p_{\text{L}}(d_{\text{tu}},z_{\text{u}},0) and τr(dtu,zu,π)\tau_{\text{r}}(d_{\text{tu}},z_{\text{u}},\pi) is smaller than τr(dtu,zu,0)\tau_{\text{r}}(d_{\text{tu}},z_{\text{u}},0). Therefore, the optimal value of θr\theta_{\text{r}} that maximizes pse(dtu,zu,θr)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}}) is π\pi. ∎

From Corollary 1, we can see that the Jammer needs to be located along the line from the Rx to the Tx. Hence, in Section V, we analyze pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) instead of pse(dtu,zu,θr)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\theta_{\text{r}}).

We now present the asymptotic secrecy transmission probability when the Jammer is located near to the Tx.

Corollary 2

As the Jammer approaches to the Tx, the asymptotic secrecy transmission probability can be given by

pse(dr,zu)ps(dr,zu)exp{2λeπPtΓ(2αN)(γtPu+Pt)αN(γtσ2Pt)2αN}\displaystyle p_{\text{se}}(d_{\text{r}},z_{\text{u}})\approx p_{\text{s}}(d_{\text{r}},z_{\text{u}})\exp\left\{\frac{-2\lambda_{\text{e}}\pi P_{\text{t}}\Gamma\left(\frac{2}{\alpha_{\text{N}}}\right)}{\left(\gamma_{\text{t}}^{\prime}P_{\text{u}}+P_{\text{t}}\right)\alpha_{\text{N}}\left(\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{P_{\text{t}}}\right)^{\frac{2}{\alpha_{\text{N}}}}}\right\} (17)

where ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) is given in (7).

Proof:

In (8), as dtu0d_{\text{tu}}\rightarrow 0 (i.e., when the Jammer approaches to the Tx with the height zuz_{\text{u}}), the eavesdropping probability pe(zu)p_{\text{e}}(z_{\text{u}}) can be given by

pe(zu)\displaystyle p_{\text{e}}(z_{\text{u}}) 1exp[2πλe0{exp(γtσ2ρei)\displaystyle\approx 1-\exp\left[-2\pi\lambda_{\text{e}}\int_{0}^{\infty}\left\{\exp\left(-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{\rho_{\text{e}_{i}}}\right)\right.\right.
×mLmLpL(ei,zu)(γtPu(ei2+zu2)αL2ρei+mL)mL+exp(γtσ2ρei)\displaystyle\left.\left.\quad\times\frac{m_{\text{L}}^{m_{\text{L}}}p_{\text{L}}(\ell_{\text{e}_{i}},z_{\text{u}})}{\left(\frac{\gamma_{\text{t}}^{\prime}P_{\text{u}}\left(\ell_{\text{e}_{i}}^{2}+z_{\text{u}}^{2}\right)^{-\frac{\alpha_{\text{L}}}{2}}}{\rho_{\text{e}_{i}}}+m_{\text{L}}\right)^{m_{\text{L}}}}+\exp\left(-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{\rho_{\text{e}_{i}}}\right)\right.\right.
×ρeipN(ei,zu)ρei+γtPu(ei2+zu2)αN2}eidei].\displaystyle\left.\left.\quad\times\frac{\rho_{\text{e}_{i}}p_{\text{N}}(\ell_{\text{e}_{i}},z_{\text{u}})}{\rho_{\text{e}_{i}}+\gamma_{\text{t}}^{\prime}P_{\text{u}}\left(\ell_{\text{e}_{i}}^{2}+z_{\text{u}}^{2}\right)^{-\frac{\alpha_{\text{N}}}{2}}}\right\}\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}\right]. (18)

In (18), when zuz_{\text{u}} is small, pL(ei,zu)p_{\text{L}}(\ell_{\text{e}_{i}},z_{\text{u}}) approaches to zero and pe(zu)p_{\text{e}}(z_{\text{u}}) can be represented as

pe1exp{2πλe0PtPt+γtPuexp(γtσ2PteiαN)ei𝑑ei}.\displaystyle p_{\text{e}}\approx 1-\exp\left\{-2\pi\lambda_{\text{e}}\int_{0}^{\infty}\frac{P_{\text{t}}}{P_{\text{t}}+\gamma_{\text{t}}^{\prime}P_{\text{u}}}\exp\left(-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{P_{\text{t}}\ell_{\text{e}_{i}}^{-\alpha_{\text{N}}}}\right)\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}\right\}. (19)

Using the following result [17, eq. (3.326)]

0xmexp(βxn)𝑑x=Γ(γ)nβγ\displaystyle\int_{0}^{\infty}x^{m}\exp\left(-\beta x^{n}\right)dx=\frac{\Gamma(\gamma)}{n\beta^{\gamma}} (20)

with m=1m=1, n=αNn=\alpha_{\text{N}}, β=γtσ2Pt\beta=\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{P_{t}}, and γ=m+1n\gamma=\frac{m+1}{n}, pep_{\text{e}} in (19) can be presented in a closed-form. Finally, we can obtain the asymptotic expression of pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) as (17). ∎

From Corollary 2, we can readily see the effect of the network parameters (e.g., main link distance and transmission power of Tx) on the secrecy transmission probability.

IV Secrecy Transmission Probability Analysis With Multiple UAV Jammers

In this section, we now consider multiple UAV jammers, which are randomly distributed by a PPP Φu\Phi_{\text{u}} with density λu\lambda_{\text{u}} at the height zuz_{\text{u}}. The channel components and fading gains between the typical Jammer and the ground device are the same as the single Jammer case. From the secrecy transmission probability in (6), we obtain the secrecy transmission probability for multiple UAV jammers in the following corollary.

Corollary 3

In the presence of multiple UAV jammers, the secrecy transmission probability p~se(zu)\tilde{p}_{\text{se}}(z_{\text{u}}) is given by

p~se(zu)=exp{2πλu0(1eI{L,N}p^s(eI)(r,zu)peI(r,zu))rdr\displaystyle\tilde{p}_{\text{se}}(z_{\text{u}})=\exp\left\{-2\pi\lambda_{\text{u}}\int_{0}^{\infty}\left(1-\sum_{e_{\text{I}}\in\{\text{L},\text{N}\}}\hat{p}_{\text{s}}^{(e_{\text{I}})}(r,z_{\text{u}})p_{e_{\text{I}}}(r,z_{\text{u}})\right)rdr\right.
γtσ2ρr}exp[2πλe0exp{γtσ2ρei2πλu\displaystyle\left.-\frac{\gamma_{\text{t}}\sigma^{2}}{\rho_{\text{r}}}\right\}\exp\left[-2\pi\lambda_{\text{e}}\int_{0}^{\infty}\exp\left\{-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{\rho_{\text{e}_{i}}}-2\pi\lambda_{\text{u}}\right.\right.
×0(1eJ{L,N}p^s,ei(eJ)(v,zu)peJ(v,zu))vdv}eidei]\displaystyle\left.\left.\times\int_{0}^{\infty}\left(1-\sum_{e_{\text{J}}\in\{\text{L},\text{N}\}}\hat{p}_{\text{s,e}_{i}}^{(e_{\text{J}})}(v,z_{\text{u}})p_{e_{\text{J}}}(v,z_{\text{u}})\right)vdv\right\}\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}\right] (21)

where p^s(eI)(r,zu)\hat{p}_{\text{s}}^{(e_{\text{I}})}(r,z_{\text{u}}) is the successful transmission probability of the interference limited environment (i.e., σ2=0\sigma^{2}=0 in (11) and (12)) and rr is the horizontal distance between the Jammer and the Rx. In (21), p^s,ei(eJ)(v,zu)\hat{p}_{\text{s,e}_{i}}^{(e_{\text{J}})}(v,z_{\text{u}}) is obtained from p^s(eI)(r,zu)\hat{p}_{\text{s}}^{(e_{\text{I}})}(r,z_{\text{u}}) by replacing duird_{\text{u}_{i}\text{r}}, ρr\rho_{\text{r}}, and γt\gamma_{\text{t}} with duieid_{\text{u}_{i}{\text{e}_{i}}}, ρei\rho_{\text{e}_{i}}, and γt\gamma_{\text{t}}^{\prime}, respectively. Here, eJe_{\text{J}} is the environment of the jamming link and vv is the horizontal distance between the Jammer and the Eve.

Proof:

For given zuz_{\text{u}}, the secrecy transmission probability for multiple UAV jammers can be presented as

p~se(zu)=𝔼Φu[[htrρruiΦuhuirτr(duir,zu)+σ2>γt]]\displaystyle\tilde{p}_{\text{se}}(z_{\text{u}})=\mathbb{E}_{\Phi_{\text{u}}}\left[\mathbb{P}\left[\frac{h_{\text{tr}}\rho_{\text{r}}}{\sum_{\text{u}_{i}\in\Phi_{\text{u}}}h_{\text{u}_{i}\text{r}}\tau_{\text{r}}(d_{\text{u}_{i}\text{r}},z_{\text{u}})+\sigma^{2}}>\gamma_{\text{t}}\right]\right]
×𝔼Φu[[maxeiΦehteiρeiuiΦuhuieiτei(duiei,zu)+σ2<γt]]\displaystyle\quad\times\mathbb{E}_{\Phi_{\text{u}}}\left[\mathbb{P}\left[\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\frac{h_{\text{te}_{i}}\rho_{\text{e}_{i}}}{\sum_{\text{u}_{i}\in\Phi_{\text{u}}}h_{\text{u}_{i}\text{e}_{i}}\tau_{\text{e}_{i}}(d_{\text{u}_{i}{\text{e}_{i}}},z_{\text{u}})+\sigma^{2}}<\gamma_{\text{t}}^{\prime}\right]\right]
=(a)𝔼Φu[uiΦu𝔼huir[exp(γthuirτr(duir,zu)ρr)]]\displaystyle\overset{\underset{\mathrm{(a)}}{}}{=}\mathbb{E}_{\Phi_{\text{u}}}\left[\prod_{\text{u}_{i}\in\Phi_{\text{u}}}\mathbb{E}_{h_{\text{u}_{i}\text{r}}}\left[\exp\left(-\frac{\gamma_{\text{t}}h_{\text{u}_{i}\text{r}}\tau_{\text{r}}(d_{\text{u}_{i}\text{r}},z_{\text{u}})}{\rho_{\text{r}}}\right)\right]\right]
×exp(γtσ2ρr)𝔼Φe[eiΦe{1exp(γtσ2ρei)\displaystyle\quad\times\exp\left(-\frac{\gamma_{\text{t}}\sigma^{2}}{\rho_{\text{r}}}\right)\mathbb{E}_{\Phi_{\text{e}}}\left[\prod_{\text{e}_{i}\in\Phi_{\text{e}}}\left\{1-\exp\left(-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{\rho_{\text{e}_{i}}}\right)\right.\right.
×𝔼Φu[uiΦu𝔼huiei[exp(γthuieiτei(duiei,zu)ρei)]]}]\displaystyle\quad\left.\left.\times\mathbb{E}_{\Phi_{\text{u}}}\left[\prod_{\text{u}_{i}\in\Phi_{\text{u}}}\mathbb{E}_{h_{\text{u}_{i}{\text{e}_{i}}}}\left[\exp\left(-\frac{\gamma_{\text{t}}^{\prime}h_{\text{u}_{i}{\text{e}_{i}}}\tau_{\text{e}_{i}}(d_{\text{u}_{i}{\text{e}_{i}}},z_{\text{u}})}{\rho_{\text{e}_{i}}}\right)\right]\right]\right\}\right]
=(b)𝔼Φu[uiΦueI{L,N}p^s(eI)(duir,zu)peI(duir,zu)]exp(γtσ2ρr)\displaystyle\overset{\underset{\mathrm{(b)}}{}}{=}\mathbb{E}_{\Phi_{\text{u}}}\left[\prod_{\text{u}_{i}\in\Phi_{\text{u}}}\sum_{e_{\text{I}}\in\{\text{L},\text{N}\}}\hat{p}_{\text{s}}^{(e_{\text{I}})}(d_{\text{u}_{i}\text{r}},z_{\text{u}})p_{e_{\text{I}}}(d_{\text{u}_{i}\text{r}},z_{\text{u}})\right]\exp\left(-\frac{\gamma_{\text{t}}\sigma^{2}}{\rho_{\text{r}}}\right)
×𝔼Φe[eiΦe{1exp(γtσ2ρei)\displaystyle\quad\times\mathbb{E}_{\Phi_{\text{e}}}\left[\prod_{\text{e}_{i}\in\Phi_{\text{e}}}\left\{1-\exp\left(-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}}{\rho_{\text{e}_{i}}}\right)\right.\right.
×𝔼Φu[uiΦueJ{L,N}p^s,ei(eJ)(duiei,zu)peJ(duiei,zu)]}]\displaystyle\quad\left.\left.\times\mathbb{E}_{\Phi_{\text{u}}}\left[\prod_{\text{u}_{i}\in\Phi_{\text{u}}}\sum_{e_{\text{J}}\in\{\text{L},\text{N}\}}\hat{p}_{\text{s,e}_{i}}^{(e_{\text{J}})}(d_{\text{u}_{i}\text{e}_{i}},z_{\text{u}})p_{e_{\text{J}}}(d_{\text{u}_{i}\text{e}_{i}},z_{\text{u}})\right]\right\}\right] (22)

where (a) is obtained because htrexp(1)h_{\text{tr}}\sim\exp(1) and hteiexp(1)h_{\text{te}_{i}}\sim\exp(1), and (b) is from the CDF of huirh_{\text{u}_{i}{\text{r}}} and huieih_{\text{u}_{i}{\text{e}_{i}}}. By using the PGFL in (22), p~se(zu)\tilde{p}_{\text{se}}(z_{\text{u}}) is presented as (21). ∎

In a similar way to the Corollary 2, we provide the asymptotic analysis of the secrecy transmission probability for multiple UAV jammers. Specifically, in (21), when zuz_{\text{u}} goes zero, pL(r,zu)p_{\text{L}}(r,z_{\text{u}}) and pL(v,zu)p_{\text{L}}(v,z_{\text{u}}) approach to zero and the secrecy transmission probability can be represented as

p~se\displaystyle\tilde{p}_{\text{se}} exp{2πλu0γtPurαNrPtrαN+γtPurαN𝑑rγtσ2PtrαN}\displaystyle\approx\exp\left\{-2\pi\lambda_{\text{u}}\int_{0}^{\infty}\frac{\gamma_{\text{t}}P_{\text{u}}\ell_{\text{r}}^{\alpha_{\text{N}}}r}{P_{\text{t}}r^{\alpha_{\text{N}}}+\gamma_{\text{t}}P_{\text{u}}\ell_{\text{r}}^{\alpha_{\text{N}}}}\,dr-\frac{\gamma_{\text{t}}\sigma^{2}}{P_{\text{t}}\ell_{\text{r}}^{-\alpha_{\text{N}}}}\right\}
×exp[2πλe0exp{γtσ2eiαNPt\displaystyle\quad\times\exp\left[-2\pi\lambda_{\text{e}}\int_{0}^{\infty}\exp\left\{-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}\ell_{\text{e}_{i}}^{\alpha_{\text{N}}}}{P_{\text{t}}}\right.\right.
2πλu0γtPueiαNvPtvαN+γtPueiαNdv}eidei].\displaystyle\left.\left.\quad-2\pi\lambda_{\text{u}}\int_{0}^{\infty}\frac{\gamma_{\text{t}}^{\prime}P_{\text{u}}\ell_{\text{e}_{i}}^{\alpha_{\text{N}}}v}{P_{\text{t}}v^{\alpha_{\text{N}}}+\gamma_{\text{t}}^{\prime}P_{\text{u}}\ell_{\text{e}_{i}}^{\alpha_{\text{N}}}}\,dv\right\}\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}\right]. (23)

where the integral term is represented as [17, eq. (3.241)]

0xμ1(p+qxν)n+1𝑑x=1νpn+1(pq)μνΓ(μν)Γ(1+nμν)Γ(1+n)\displaystyle\int_{0}^{\infty}\frac{x^{\mu-1}}{\left(p+qx^{\nu}\right)^{n+1}}dx=\frac{1}{\nu p^{n+1}}\left(\frac{p}{q}\right)^{\frac{\mu}{\nu}}\frac{\Gamma\left(\frac{\mu}{\nu}\right)\Gamma\left(1+n-\frac{\mu}{\nu}\right)}{\Gamma\left(1+n\right)} (24)

with p=γtPurαNp=\gamma_{\text{t}}P_{\text{u}}\ell_{\text{r}}^{\alpha_{\text{N}}} (or p=γtPueiαNp=\gamma_{\text{t}}^{\prime}P_{\text{u}}\ell_{\text{e}_{i}}^{\alpha_{\text{N}}}), q=Ptq=P_{\text{t}}, ν=αN\nu=\alpha_{\text{N}}, μ=2\mu=2, and n=0n=0. By using (24) in (23) and Γ(x)Γ(1x)=πsin(πx)\Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin(\pi x)}, p~se\tilde{p}_{\text{se}} can be expressed as

p~se\displaystyle\tilde{p}_{\text{se}} exp{2π2λuαNsin(2παN)(γtrαNPuPt)2αNγtσ2PtrαN}\displaystyle\approx\exp\left\{-\frac{2\pi^{2}\lambda_{\text{u}}}{\alpha_{\text{N}}\sin\left(\frac{2\pi}{\alpha_{\text{N}}}\right)}\left(\frac{\gamma_{\text{t}}\ell_{\text{r}}^{\alpha_{\text{N}}}P_{\text{u}}}{P_{\text{t}}}\right)^{\frac{2}{\alpha_{\text{N}}}}-\frac{\gamma_{\text{t}}\sigma^{2}}{P_{\text{t}}\ell_{\text{r}}^{-\alpha_{\text{N}}}}\right\}
×exp[2πλe0exp{γtσ2eiαNPt\displaystyle\quad\times\exp\left[-2\pi\lambda_{\text{e}}\int_{0}^{\infty}\exp\left\{-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}\ell_{\text{e}_{i}}^{\alpha_{\text{N}}}}{P_{\text{t}}}\right.\right.
2π2λuαNsin(2παN)(γtPuPt)2αNei2}eidei].\displaystyle\quad\left.\left.-\frac{2\pi^{2}\lambda_{\text{u}}}{\alpha_{\text{N}}\sin\left(\frac{2\pi}{\alpha_{\text{N}}}\right)}\left(\frac{\gamma_{\text{t}}^{\prime}P_{\text{u}}}{P_{\text{t}}}\right)^{\frac{2}{\alpha_{\text{N}}}}\ell_{\text{e}_{i}}^{2}\right\}\ell_{\text{e}_{i}}d\ell_{\text{e}_{i}}\right]. (25)

In (25), when αN=4\alpha_{\text{N}}=4, by substituting ei2=t\ell_{\text{e}_{i}}^{2}=t, p~se\tilde{p}_{\text{se}} is given by

p~se\displaystyle\tilde{p}_{\text{se}} exp{π2λu2(γtr4PuPt)12γtσ2Ptr4}exp[πλe0\displaystyle\approx\exp\left\{-\frac{\pi^{2}\lambda_{\text{u}}}{2}\left(\frac{\gamma_{\text{t}}\ell_{\text{r}}^{4}P_{\text{u}}}{P_{\text{t}}}\right)^{\frac{1}{2}}-\frac{\gamma_{\text{t}}\sigma^{2}}{P_{\text{t}}\ell_{\text{r}}^{-4}}\right\}\exp\left[-\pi\lambda_{\text{e}}\int_{0}^{\infty}\right.
×exp{γtσ2t2Ptπ2λu2(γtPuPt)12t}dt].\displaystyle\left.\quad\times\exp\left\{-\frac{\gamma_{\text{t}}^{\prime}\sigma^{2}t^{2}}{P_{\text{t}}}-\frac{\pi^{2}\lambda_{\text{u}}}{2}\left(\frac{\gamma_{\text{t}}^{\prime}P_{\text{u}}}{P_{\text{t}}}\right)^{\frac{1}{2}}t\right\}\,dt\right]. (26)

Using the following result [17, eq. (3.322)]

0exp(x24βγx)𝑑x=πβexp(βγ2){1Φ(γβ)}\displaystyle\int_{0}^{\infty}\exp\left(-\frac{x^{2}}{4\beta}-\gamma x\right)dx=\sqrt{\pi\beta}\exp\left(\beta\gamma^{2}\right)\left\{1-\Phi\left(\gamma\sqrt{\beta}\right)\right\} (27)

with β=Pt4γtσ2\beta=\frac{P_{\text{t}}}{4\gamma_{\text{t}}^{\prime}\sigma^{2}} and γ=π2λu2(γtPuPt)12\gamma=\frac{\pi^{2}\lambda_{\text{u}}}{2}\left(\frac{\gamma_{\text{t}}^{\prime}P_{\text{u}}}{P_{\text{t}}}\right)^{\frac{1}{2}}, p~se\tilde{p}_{\text{se}} in (26) can be presented in closed-form as

p~se\displaystyle\tilde{p}_{\text{se}} exp[π2λu(γtr4PuPt)122γtσ2Ptr4πλeπPt4γtσ2\displaystyle\approx\exp\left[-\frac{\pi^{2}\lambda_{\text{u}}\left(\frac{\gamma_{\text{t}}\ell_{\text{r}}^{4}P_{\text{u}}}{P_{\text{t}}}\right)^{\frac{1}{2}}}{2}-\frac{\gamma_{\text{t}}\sigma^{2}}{P_{\text{t}}\ell_{\text{r}}^{-4}}-\pi\lambda_{\text{e}}\sqrt{\frac{\pi P_{\text{t}}}{4\gamma_{\text{t}}^{\prime}\sigma^{2}}}\right.
×exp(π4λu2Pu16σ2){1Φ(π2λu4Puσ2)}]\displaystyle\left.\quad\times\exp\left(\frac{\pi^{4}\lambda_{\text{u}}^{2}P_{\text{u}}}{16\sigma^{2}}\right)\left\{1-\Phi\left(\frac{\pi^{2}\lambda_{\text{u}}}{4}\sqrt{\frac{P_{\text{u}}}{\sigma^{2}}}\right)\right\}\right] (28)

where Φ(x)=2π0πexp(t2)𝑑t\Phi\left(x\right)=\frac{2}{\sqrt{\pi}}\int_{0}^{\pi}\exp\left(-t^{2}\right)dt is the error function. From this result, we can see the effect of λu\lambda_{\text{u}} on the secrecy transmission probability.

V Numerical Results

In this section, we evaluate the secrecy transmission probability depending on the location and the transmission power of the Jammer. Unless otherwise specified, the values of simulation parameters are αN=3.5\alpha_{\text{N}}=3.5, αL=2.5\alpha_{\text{L}}=2.5, mL=2m_{\text{L}}=2, ν=5×104\nu=5\times 10^{-4}, μ=0.3\mu=0.3, ζ=15\zeta=15, R=10000mR=10000m, γt=3\gamma_{\text{t}}=3, γt=2.5\gamma_{\text{t}}^{\prime}=2.5, Pt=108WP_{\text{t}}=10^{-8}W, Pu=3×1010WP_{\text{u}}=3\times 10^{-10}W, and σ2=3×1019W\sigma^{2}=3\times 10^{-19}W.

\psfrag{AAAAAAAAAAAAAAAAA1111}[Bl][Bl][0.59]{$z_{\text{u}}=0m$ (Ground Jammer)}\psfrag{B1}[Bl][Bl][0.59]{$z_{\text{u}}=100m$}\psfrag{C1}[Bl][Bl][0.59]{$z_{\text{u}}=200m$}\psfrag{D1}[Bl][Bl][0.59]{Simulation}\psfrag{E1}[Bl][Bl][0.59]{$\lambda_{\text{e}}=5\times 10^{-7}[\text{nodes/}m^{2}]$}\psfrag{F1}[Bl][Bl][0.59]{$\lambda_{\text{e}}=7\times 10^{-7}[\text{nodes/}m^{2}]$}\psfrag{G1}[Bl][Bl][0.59]{Asymptotic analysis}\psfrag{H1}[Bl][Bl][0.59]{$m_{\text{L}}=2$}\psfrag{J1}[Bl][Bl][0.59]{$m_{\text{L}}=9$}\psfrag{X1}[Bl][Bl][0.75]{Horizontal distance between Tx and Jammer, $d_{\text{tu}}\>[m]$}\psfrag{Y1}[Bl][Bl][0.75]{Secrecy Transmission Probability, $p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi)$}\includegraphics[width=195.12767pt]{Figure1.eps}
Figure 2: Secrecy transmission probabilities pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) as a function of dtud_{\text{tu}} with r=340m\ell_{\text{r}}=340m for different values of λe\lambda_{\text{e}} and zuz_{\text{u}}. The optimal values of dtud_{\text{tu}} are marked by circles.

Figure 2 presents the secrecy transmission probability pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) as a function of the horizontal distance between the Jammer and the Tx dtud_{\text{tu}} with r=340m\ell_{\text{r}}=340m for different values of the Eve density λe\lambda_{\text{e}} and the Jammer height zuz_{\text{u}}. From Fig. 2, we can see that pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) first increases with dtud_{\text{tu}} up to a certain value of dtud_{\text{tu}}, and then decreases. This is because for small dtud_{\text{tu}}, the decrease in the LoS probability of the interference link to the receiver is greater than that of the jamming link to the Eve with maxeiΦeγei\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\gamma_{\text{e}_{i}}, who mainly affects the eavesdropping probability. On the other hand, for large dtud_{\text{tu}}, as dtud_{\text{tu}} increases, the Eve with maxeiΦeγei\max\limits_{\text{e}_{i}\in\Phi_{\text{e}}}\gamma_{\text{e}_{i}} can be located closer to the Tx than the Rx, so pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) decreases with dtud_{\text{tu}}. We can also see that as λe\lambda_{\text{e}} increases, the optimal value of dtud_{\text{tu}} decreases to make the jamming link stronger as there exist more Eves. From this, we can find out that as the density of Eves increases, the Jammer needs to be located nearer to the Tx. In Fig. 2, we can additionally see the impact of mLm_{\text{L}} on pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) according to dtud_{\text{tu}}. Specifically, for small dtud_{\text{tu}}, pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) decreases with mLm_{\text{L}} since ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) decreases with mLm_{\text{L}} more than pe(zu)p_{\text{e}}(z_{\text{u}}). On the other hand, for large dtud_{\text{tu}}, pse(dr,zu)p_{\text{se}}(d_{\text{r}},z_{\text{u}}) increases with mLm_{\text{L}} since ps(dr,zu)p_{\text{s}}(d_{\text{r}},z_{\text{u}}) becomes similar for different mLm_{\text{L}}, but pe(zu)p_{\text{e}}(z_{\text{u}}) still decreases with mLm_{\text{L}}. Hence, the optimal value of dtud_{\text{tu}} increases with mLm_{\text{L}}, which means the Jammer needs to be located further from the Tx as mLm_{\text{L}} increases. Furthermore, we can know that the asymptotic analysis almost matches the analytic analysis as the Jammer approaches to the Tx (i.e., as dtu0d_{\text{tu}}\rightarrow 0 for zu=0z_{\text{u}}=0).

\psfrag{AAAAAAAAAAAAAAAAAAA11}[Bl][Bl][0.59]{$\lambda_{\text{e}}=1.2\times 10^{-8}[\text{nodes/}m^{2}]$}\psfrag{B}[Bl][Bl][0.59]{$\lambda_{\text{e}}=7\times 10^{-8}[\text{nodes/}m^{2}]$}\psfrag{C}[Bl][Bl][0.59]{$\lambda_{\text{e}}=3.5\times 10^{-7}[\text{nodes/}m^{2}]$}\psfrag{D}[Bl][Bl][0.59]{$\lambda_{\text{e}}=7.5\times 10^{-7}[\text{nodes/}m^{2}]$}\psfrag{E}[Bl][Bl][0.59]{$\lambda_{\text{e}}=9.3\times 10^{-7}[\text{nodes/}m^{2}]$}\psfrag{X}[Bl][Bl][0.75]{Height of Jammer, $z_{\text{u}}\>[m]$}\psfrag{Y}[Bl][Bl][0.75]{Horizontal distance between Tx and Jammer, $d_{\text{tu}}\>[m]$}\includegraphics[width=195.12767pt]{Figure2.eps}
Figure 3: Secrecy transmission probability pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) as functions of zuz_{\text{u}} and dtud_{\text{tu}} with λe=7.5×107[nodes/m2]\lambda_{\text{e}}=7.5\times 10^{-7}[\text{nodes/}m^{2}] and r=420m\ell_{\text{r}}=420m. The optimal Jammer locations for each λe\lambda_{\text{e}} that maximize pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) are marked by symbols.

Figure 3 presents the secrecy transmission probability pse(dtu,zu,π)p_{\text{se}}(d_{\text{tu}},z_{\text{u}},\pi) as functions of the Jammer height zuz_{\text{u}} and the horizontal distance between the Tx and the Jammer dtud_{\text{tu}} with r=420m\ell_{\text{r}}=420m. The symbols mean the optimal Jammer locations, zuz_{\text{u}}^{*} and dtud_{\text{tu}}^{*}, for each Eve density λe\lambda_{\text{e}}. From Fig. 3, we can see that dtud_{\text{tu}}^{*} first decrease with λe\lambda_{\text{e}} up to a certain value of λe\lambda_{\text{e}}, and then increase. This is because, for small λe\lambda_{\text{e}} (e.g., λe7×108nodes/m2\lambda_{\text{e}}\leq 7\times 10^{-8}\text{nodes/}m^{2}), since there exist less eavesdroppers, the Jammer needs to be located at the low height to reduce the LoS probability of interference link to the Rx. However, for relatively high λe\lambda_{\text{e}} (e.g., λe=3.5×107nodes/m2\lambda_{\text{e}}=3.5\times 10^{-7}\text{nodes/}m^{2}), the Jammer needs to be located closer to the Tx, especially by reducing the horizontal distance dtud_{\text{tu}} for giving stronger jamming signal to Eves, although it also gives larger interference to the Rx. Additionally, when λe\lambda_{\text{e}} is much higher (e.g., λe7.5×107nodes/m2\lambda_{\text{e}}\geq 7.5\times 10^{-7}\text{nodes/}m^{2}), since there exist many Eves, the Jammer needs to give much stronger jamming signal to Eves. Hence, the Jammer is located at the high height to increase the LoS probability of the jamming link.

\psfrag{AAAAAAAAAAAAAAAAAA11}[Bl][Bl][0.59]{$\lambda_{\text{u}}=7\times 10^{-6}[\text{nodes/}m^{2}]$}\psfrag{B1}[Bl][Bl][0.59]{$\lambda_{\text{u}}=9\times 10^{-6}[\text{nodes/}m^{2}]$}\psfrag{C1}[Bl][Bl][0.59]{$P_{\text{u}}=2\times 10^{-11}W$}\psfrag{D1}[Bl][Bl][0.59]{$P_{\text{u}}=3\times 10^{-11}W$}\psfrag{X1}[Bl][Bl][0.75]{Height of UAV jammers, $z_{\text{u}}\>[m]$}\psfrag{Y1}[Bl][Bl][0.75]{$\tilde{p}_{\text{se}}(z_{\text{u}})$}\includegraphics[width=195.12767pt]{Figure3.eps}
Figure 4: Secrecy transmission probability p~se(zu)\tilde{p}_{\text{se}}(z_{\text{u}}) as a function of zuz_{\text{u}} for different values of λu\lambda_{\text{u}} and PuP_{\text{u}}. The optimal values of zuz_{\text{u}} are marked by circles.

Figure 4 presents the secrecy transmission probability p~se(zu)\tilde{p}_{\text{se}}(z_{\text{u}}) as a function of the height of UAV jammers zuz_{\text{u}} for different values of the UAV jammer density λu\lambda_{\text{u}} and the transmission power of the UAV jammer. Here, we use r=50m\ell_{\text{r}}=50m and λe=105nodes/m2\lambda_{\text{e}}=10^{-5}\text{nodes/}m^{2}. From Fig. 4, we can see that p~se(zu)\tilde{p}_{\text{se}}(z_{\text{u}}) first increases with zuz_{\text{u}} up to a certain value of zuz_{\text{u}}, and then decreases. This is because for small zuz_{\text{u}}, the increase in the LoS probability of the jamming link is greater than that of the interference link. On the other hand, for large zuz_{\text{u}}, the LoS probability of the interference link keeps increasing, while the distance-dependent path loss of the eavesdropping link decreases. Therefore, p~se(zu)\tilde{p}_{\text{se}}(z_{\text{u}}) decreases with zuz_{\text{u}} when large zuz_{\text{u}}. We can also see that as λu\lambda_{\text{u}} increases, the optimal value of zuz_{\text{u}} decreases to give weaker LoS probability (i.e., weaker signal) on the interference link to the Rx. Furthermore, the optimal value of zuz_{\text{u}} increases as PuP_{\text{u}} increases. From these results, we can know that when the effect of UAV jammers is strong enough by using the larger transmit power, the UAV jammers need to be located at the low height to reduce the LoS probability of the interfering signal at the Rx or located at the high height to decrease the distance-dependent path loss of the interference link.

VI Conclusion

This paper derives and analyzes the secrecy transmission probability of UAV communications considering the realistic channel models affected by the communication link. Using the derived expression, we show the effect of a UAV friendly jammer on network parameters. Specifically, as the UAV height increases, the distance-dependent path loss decreases, but the LoS probability for jamming signal increases. From this relation, we show that there can exists an optimal UAV height, which decreases as the density of UAV jammers increases for the multiple Jammer case. We also provide that as the Eve density increases or the Jammer height becomes lower, the optimal horizontal distance between the Jammer and the transmitter decreases to make the jamming link stronger. The outcomes of this work can provide insights on the optimal deployment of the friendly UAV jammer that prevents eavesdropping while reducing the interference to the receiver.

References

  • [1] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: opportunities and challenges,” IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, May 2016.
  • [2] M. Kim and J. Lee, “Impact of an interfering node on unmanned aerial vehicle communications,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12 150–12 163, Dec. 2019.
  • [3] D. Kim, J. Lee, and T. Q. S. Quek, “Multi-layer unmanned aerial vehicle networks: Modeling and performance analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 325–339, Jan. 2020.
  • [4] A. D. Wyner, “The wire-tap channel,” Bell syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.
  • [5] G. Chen, J. P. Coon, and M. D. Renzo, “Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 5, pp. 1195–1206, May 2017.
  • [6] C. Liu, J. Lee, and T. Q. S. Quek, “Safeguarding UAV communications against full-duplex active eavesdropper,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 2919–2931, Jun. 2019.
  • [7] T. Bao, H. Yang, and M. O. Hasna, “Secrecy performance analysis of UAV-assisted relaying communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1122–1126, Jan. 2020.
  • [8] X. Xu, B. He, W. Yang, X. Zhou, and Y. Cai, “Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 2, pp. 373–387, Feb. 2016.
  • [9] X. Qi, B. Li, Z. Chu, K. Huang, H. Chen, and Z. Fei, “Secrecy energy efficiency performance in communication networks with mobile sinks,” Physical Communication, Jul. 2018.
  • [10] J. Yao and J. Xu, “Secrecy transmission in large-scale UAV-enabled wireless networks,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7656–7671, Nov. 2019.
  • [11] Y. Zhou, P. L. Yeoh, H. Chen, Y. Li, R. Schober, L. Zhuo, and B. Vucetic, “Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11 280–11 284, Nov. 2018.
  • [12] M. Haenggi and R. K. Ganti, “Interference in large wireless networks,” Foundations and Trends in Networking, vol. 3, no. 2, pp. 127–248, 2009.
  • [13] D. Tse and P. Viswanath, Fundamentals of wireless communication.   Cambridge, U.K.: Cambridge university press, 2005.
  • [14] Z. Yang, L. Zhou, G. Zhao, and S. Zhou, “Blockage modeling for inter-layer UAVs communications in urban environments,” in Proc. IEEE Int. Conf. Telecommun. (ICT), St. Malo, France, Jun. 2018, pp. 307–311.
  • [15] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569–572, Dec. 2014.
  • [16] S. Shimamoto et al., “Channel characterization and performance evaluation of mobile communication employing stratospheric platforms,” IEICE Trans. Commun., vol. 89, no. 3, pp. 937–944, Mar. 2006.
  • [17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed.   San Diego, CA: Academic Press, 2007.