This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Second largest maximal cliques in small Paley graphs of square order

Huye Chen [email protected] Sergey Goryainov [email protected] Cong Hu [email protected] Three Gorges Mathematical Research Center, China Three Gorges University, 8 University Avenue, Yichang 443002, Hubei Province, P.R. China School of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, 530004, P. R. China School of Mathematical Sciences, Hebei International Joint Research Center for Mathematics and Interdisciplinary Science, Hebei Key Laboratory of Computational Mathematics and Applications, Hebei Workstation for Foreign Academicians,
Hebei Normal University, Shijiazhuang 050024, P.R. China
Abstract

There is a conjecture that the second largest maximal cliques in Paley graphs of square order P(q2)P(q^{2}) have size q+ϵ2\frac{q+\epsilon}{2}, where qϵ(mod4)q\equiv\epsilon\pmod{4}, and split into two orbits under the full group of automorphisms whenever q25q\geq 25 (a symmetric description for these two orbits is known). However, some extra second largest maximal cliques (of this size) exist in P(q2)P(q^{2}) whenever q{9,11,13,17,19,23}q\in\{9,11,13,17,19,23\}. In this paper we analyse the algebraic and geometric structure of the extra cliques.

keywords:
Paley graph, maximal cliques
MSC:
[2020] 05C25 , 11T30
journal: Arxiv

1 Introduction

Let qq be an odd prime power such that q1(mod 4)q\equiv 1(\hbox{\rm mod }4) , and let FFq{\hbox{\sf F\kern-4.29993ptF}}_{q} be the finite filed of order qq with primitive root δ\delta. The Paley graph of order qq, denoted by P(q)P(q), is an undirected graph defined on the elements of the finite field FFq{\hbox{\sf F\kern-4.29993ptF}}_{q} such that two vertices are adjacent if and only if the difference of these two vertices is a nonzero square in the multiplicative group FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast}. The Paley graph P(q)P(q) is known to be a self-complementary arc-transitive strongly regular graph with smallest eigenvalue 1q2\frac{-1-\sqrt{q}}{2}. According to the Delsarte-Hoffman bound [5], the size of a maximum independent set of a Paley graph P(q)P(q) is at most q\sqrt{q}. Since Paley graph P(q)P(q) is self-complementary, the size of a maximum clique in P(q)P(q) is also at most q\sqrt{q}.

Through out this paper, set ϵ{1,3}\epsilon\in\{1,3\}. Then q21(mod 4)q^{2}\equiv 1(\hbox{\rm mod }4) for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4). Now, we only study Paley graph of square order, which is denoted by P(q2)P(q^{2}). For a Paley graph P(q2)P(q^{2}), the Delsarte-Hoffman bound applied to P(q2)P(q^{2}) gives that the size of a maximum independent set (a maximum clique) is qq. It is obvious that the subfield FFq{\hbox{\sf F\kern-4.29993ptF}}_{q} of order qq forms a clique in Paley graph P(q2)P(q^{2}). In 1984, Blokhuis [2] studied maximum cliques (of order qq) in Paley graphs P(q2)P(q^{2}) and proved that these cliques are isomorphic to the subfield FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}. In 1996, Baker et al. [1] provided a construction of maximal cliques of size q+ϵ2\frac{q+\epsilon}{2} for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4). These cliques are maximal but not maximum and the cliques with this structure are not the only ones. They proposed a conjecture that there are no maximal cliques of size ss in P(q2)P(q^{2}), where q+ϵ2<s<q\frac{q+\epsilon}{2}<s<q for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4). In 2009, Kiermaier and Kurz [9] considered integral point sets in affine planes over finite field and provided two maximal integral point sets and proved their maximality. In 2018, Goryainov et al. [6] provided a construction of maximal cliques of size q+ϵ2\frac{q+\epsilon}{2} for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4). By Magma [3], they found that for 25q8325\leq q\leq 83, the graph P(q2)P(q^{2}) contains exactly two non-equivalent (under the action of the automorphism group) maximal cliques of size q+ϵ2\frac{q+\epsilon}{2} for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4), and these cliques are the second largest. In 2022, Goryainov et al. [7] established a linear fractional correspondence between these two types of maximal cliques of size q+ϵ2\frac{q+\epsilon}{2} for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4) in P(q2)P(q^{2}). In 2024, Brouwer et al. [4] generalised the result by Baker et al. [1] to the collinearity graphs of the Desargusian nets (in this paper we show that their construction gives maximal cliques of size q+ϵ2\frac{q+\epsilon}{2} in P(q2)P(q^{2}) for q{9,13,17}q\in\{9,13,17\}, which are constructed from two intersecting lines.

In [6], the number of orbits on the maximal cliques of size q+ϵ2\frac{q+\epsilon}{2} in P(q2)P(q^{2}) was computed for q23q\leq 23, and the results are summarised in the following table.

qq 33 55 77 99 1111 1313 1717 1919 2323
Clique Size 33 33 55 55 77 77 99 1111 1313
Number of Orbits 11 11 11 33 33 44 99 44 44

In this paper we analyse the algebraic and geometric structure of the extra cliques for q{9,11,13,17,19,23}q\in\{9,11,13,17,19,23\} (except for the constructions from [1] and [6]).

2 Preliminaries

In this section, we recall some basic facts about the affine planes and finite fields.

2.1 Affine Plane AG(2,q)AG(2,q)

An affine plane is a point-line incidence structure. Let AG(2,q)AG(2,q) denote the affine plane, whose points are vectors of the 22-dimensional vector V(2,q)V(2,q) over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, and the lines are the additive shifts of 11-dimensional subspaces of V(2,q)V(2,q). It is well known that each line in AG(2,q)AG(2,q) contains qq points and there are q+1q+1 lines through each point. There are q2q^{2} points and q(q+1)q(q+1) lines in AG(2,q)AG(2,q).

2.2 Finite fields

Note that FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}} can be viewed as a quadratic extension over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}. Set FFq=δ{\hbox{\sf F\kern-4.29993ptF}}_{q}^{*}=\langle\delta\rangle and let FFq2=FFq(α){\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}={\hbox{\sf F\kern-4.29993ptF}}_{q}(\alpha) be the extension of FFq{\hbox{\sf F\kern-4.29993ptF}}_{q} by adding a root α\alpha of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}. Then every element in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}} can be uniquely written as x+yαx+y\alpha, for some x,yFFqx,y\in{\hbox{\sf F\kern-4.29993ptF}}_{q}. Moreover, FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}} can naturally be viewed as a 22-dimensional vector spaces with basis 11 and α\alpha over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}. Define Φ\Phi: FFq2V(2,q){\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}\longrightarrow V(2,q) by Φ(x+yα)=(x,y)\Phi(x+y\alpha)=(x,y) for all xx and yy in FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}. It is easy to prove that Φ\Phi is a vector space isomorphism. Now we can identify the points of AG(2,q)AG(2,q) as the elements of FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}} and the line ll in AG(2,q)AG(2,q) can be viewed as {x1+y1α+c(x2+y2α)cFFq}\left\{x_{1}+y_{1}\alpha+c(x_{2}+y_{2}\alpha)\mid c\in{\hbox{\sf F\kern-4.29993ptF}}_{q}\right\}, where x1+y1αFFq2x_{1}+y_{1}\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}} and x2+y2αFFq2x_{2}+y_{2}\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}^{\ast} are fixed. We say a line ll of this form has a slope (x2+y2α)(x_{2}+y_{2}\alpha) and note that the difference between any two points in ll is a scalar multiple of (x2+y2α)(x_{2}+y_{2}\alpha). A line ll is called quadratic line (non-quadratic line) if the slope of this line is a square (non-square) element in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}^{*}. For a quadratic line, the difference between any two distinct elements from this line is a square element in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}. A Paley graph P(q2)P(q^{2}) constructed on the points of FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}, and any two distinct points a,ba,b in P(q2)P(q^{2}) are adjacent if and only if their difference is a square element in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}^{\ast}. This implies that a,ba,b in P(q2)P(q^{2}) are adjacent if and only if they are incident to a common line with square slope and the line through aa and bb is a quadratic line. Let β\beta be a primitive element in the finite field FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}} and δ\delta be a primitive element in the subfield FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}. Note that FFq=δ=βq+1{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast}=\left\langle\delta\right\rangle=\left\langle\beta^{q+1}\right\rangle and any element in FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast} is square in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}. This further implies that the line FFq{\hbox{\sf F\kern-4.29993ptF}}_{q} is a clique of size qq in P(q2)P(q^{2}).

This must be throughout this paper, we set SS to be the set of square elements in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}^{*} and S0:={x+αxFFq}SS_{0}:=\{x+\alpha\mid x\in{\hbox{\sf F\kern-4.29993ptF}}_{q}\}\cap S. Then we have that S=FFq(S0{1})S={\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast}(S_{0}\cup\{1\}).

Lemma 2.1.

([7], Proposition 1.) Through any point of AG(2,q)AG(2,q), there pass qq lines. Moreover, q+12\frac{q+1}{2} of these lines are quadratic and q12\frac{q-1}{2} of these lines are non-quadratic.

Lemma 2.2.

([8], Theorem 9.1.) The automorphism group of Paley graph P(q2)P(q^{2}) acts arc-transitively, and the equality

A:=Aut(P(q2))={γaγv+baS,bFFq2,vGal(FFq2)}A:=Aut(P(q^{2}))=\left\{\gamma\mapsto a\gamma^{v}+b\mid a\in S,b\in{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}},v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{q^{2}})\right\}

holds, where SS is the set of square elements in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}^{\ast}.

The group Aut(P(q2))Aut(P(q^{2})) preserves the sets of quadratic and non-quadratic lines and acts on each of them transitively.

Lemma 2.3.

Let qq be an odd prime power, kk be a divisor of q1q-1 and HH be the subgroup of order kk in 𝔽q\mathbb{F}_{q}^{*}. Then the following statements are hold.
(1) If kk is even, then H=H-H=H.
(2) If kk is odd, then HH=-H\cap H=\emptyset.

Proof   (1) If kk is even, for any hHh\in H, (h)k=1(-h)^{k}=1, then hH-h\in H. It follows that H=H-H=H.
(2) On the contrary, assume that there exists an element hHHh\in-H\cap H. Then hk=1h^{k}=1 and hH-h\in H, this implies (h)k=1(-h)^{k}=1, a contradiction. \Box


Followed by the above notations, the following lemma is obvious.

Lemma 2.4.

([7], Proposition 2.) (1) The element 1-1 is a square in FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast} if and only if q1(mod 4)q\equiv 1(\hbox{\rm mod }4).
(2) The element α\alpha is a square in FFq2{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}^{\ast} if and only if q3(mod 4)q\equiv 3(\hbox{\rm mod }4).

3 Constructions

In this section, we propose the constructions of maximal cliques in Paley graph P(q2)P(q^{2}) of size q+ϵ2\frac{q+\epsilon}{2} for qϵ(mod 4)q\equiv\epsilon(\hbox{\rm mod }4), where 9q239\leq q\leq 23. Moreover, we give some numerical information of these cliques by computing the stabilizer of each clique under the action of the automorphism group Aut(P(q2))Aut(P(q^{2})). In this section, we set Dn{\rm D}_{n} denote the dihedral group of order nn, and set n\mathbb{Z}_{n} denote the cyclic group of order nn. Throughout this section, by Aut(P(q2))CAut(P(q^{2}))_{C} denote the stabilizer of the automorphism group Aut(P(q2))Aut(P(q^{2})) acting on the set of cliques, where CC is a clique of the Paley graph P(q2)P(q^{2}).

3.1 Maximal cliques in Paley graph P(92)P(9^{2})

We can choose a primitive element δFF9\delta\in{\hbox{\sf F\kern-4.29993ptF}}_{9} and αFF92\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}} be a root of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, such that S0={1,α+δ,α+δ2,α+δ5,α+δ6}S_{0}=\{1,\alpha+\delta,\alpha+\delta^{2},\alpha+\delta^{5},\alpha+\delta^{6}\}. Let H={1,δ}H=\{1,\delta\} be a subset in FF9{\hbox{\sf F\kern-4.29993ptF}}_{9}^{\ast}. Set C9:={0}H(α+δ5)HC_{9}:=\{0\}\cup H\cup(\alpha+\delta^{5})H be a subset of finite field FF92{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}. By Magma, we have that C9C_{9} is a maximal clique in P(92)P(9^{2}) with size q+12\frac{q+1}{2} for q=9q=9. The structure of the clique C9C_{9} is presented in Fig 1.

Refer to caption
Figure 1: C9C_{9}
Lemma 3.1.

Set 𝒞9\mathcal{C}_{9} be the orbit of Aut(P(92))Aut(P(9^{2})) acting on the cliques with C9𝒞9C_{9}\in\mathcal{C}_{9}. Then Aut(P(92))C9=ϕ2Aut(P(9^{2}))_{C_{9}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2}, where ϕ(γ)=(α+δ5)γ9\phi^{\prime}(\gamma)=(\alpha+\delta^{5})\gamma^{9} for any γFF92\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}. Moreover, |𝒞9|=6480|\mathcal{C}_{9}|=6480.

Proof   Note that for any ϕAut (P(92))\phi\in\hbox{\rm Aut\,}(P(9^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF92b\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}, vGal(FF92)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}). If ϕAut(P(92))C9\phi\in Aut(P(9^{2}))_{C_{9}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. Set :={H,(α+δ5)H}\mathcal{H}:=\{H,(\alpha+\delta^{5})H\} be the subset of two intersection lines, which are presented in Fig 1. Then ϕ()=\phi(\mathcal{H})=\mathcal{H}. It follows that either ϕ(H)=H\phi(H)=H, ϕ((α+δ5)H)=(α+δ5)H\phi((\alpha+\delta^{5})H)=(\alpha+\delta^{5})H or ϕ(H)=(α+δ5)H\phi(H)=(\alpha+\delta^{5})H, ϕ((α+δ5)H)=H\phi((\alpha+\delta^{5})H)=H.

If ϕ(H)=aHv=H\phi(H)=aH^{v}=H and ϕ((α+δ5)H)=a(α+δ5)vHv=(α+δ5)H\phi((\alpha+\delta^{5})H)=a(\alpha+\delta^{5})^{v}H^{v}=(\alpha+\delta^{5})H, then we have that {a,aδv}={1,δ}\{a,a\delta^{v}\}=\{1,\delta\} and {a(α+δ5)v,aδv(α+δ5)v}={α+δ5,δ(α+δ5)}\{a(\alpha+\delta^{5})^{v},a\delta^{v}(\alpha+\delta^{5})^{v}\}=\{\alpha+\delta^{5},\delta(\alpha+\delta^{5})\}. It follows that ϕ(γ)=γ\phi(\gamma)=\gamma for any γFF92\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}. Now, ϕ\phi is the identity automorphism.

If ϕ(H)=(α+δ5)H\phi^{\prime}(H)=(\alpha+\delta^{5})H and ϕ((α+δ5)H)=H\phi^{\prime}((\alpha+\delta^{5})H)=H, then by the same arguments as in the first case we have that a=α+δ5a=\alpha+\delta^{5} and |v|=2|v|=2. Then we have that ϕ(γ)=(α+δ5)γ9\phi^{\prime}(\gamma)=(\alpha+\delta^{5})\gamma^{9} for any γFF92\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}. It follows that ϕ2=1\phi^{\prime 2}=1.

Now, we have that Aut(P(92))C9={ϕ,ϕ}=ϕ2Aut(P(9^{2}))_{C_{9}}=\{\phi,\phi^{\prime}\}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2}. The action of ϕ\phi^{\prime} on the points in clique C9C_{9} is presented in the following table.

γ\gamma 0 11 δ\delta α+δ5\alpha+\delta^{5} δ(α+δ5)\delta(\alpha+\delta^{5})
ϕ(γ)\phi^{\prime}(\gamma) 0 α+δ5\alpha+\delta^{5} δ(α+δ5)\delta(\alpha+\delta^{5}) 1 δ\delta

Note that |Aut(P(92))|=q212×q2×4=12960\left|Aut(P(9^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 4=12960, so we have that |𝒞9|=|Aut(P(92)):Aut(P(92))C9|=6480|\mathcal{C}_{9}|=|Aut(P(9^{2})):Aut(P(9^{2}))_{C_{9}}|=6480. \Box


Set Cs,γη:={sxη+γ|xC9FF92}C_{s,\gamma}^{\eta}:=\{sx^{\eta}+\gamma|x\in C_{9}\cap{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\} for η{1,3}\eta\in\{1,3\}, where sSs\in S and γFF92\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}} .

Lemma 3.2.

Set 𝒞9\mathcal{C}_{9} be the orbit of Aut(P(92))Aut(P(9^{2})) acting on the cliques with C9𝒞9C_{9}\in\mathcal{C}_{9}. Then 𝒞9={Cs,γsS,γFF92}{Cs,γ3sS,γFF92}\mathcal{C}_{9}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}\cup\{C_{s,\gamma}^{3}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}.

Proof   It is obvious that {Cs,γsS,γFF92}{Cs,γ3sS,γFF92}𝒞9\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}\cup\{C_{s,\gamma}^{3}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}\subset\mathcal{C}_{9}. Now we will prove that Cs,γη=Cs,γηC_{s,\gamma}^{\eta}=C_{s^{\prime},\gamma^{\prime}}^{\eta^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and η=η\eta=\eta^{\prime}, where s,sSs,s^{\prime}\in S, γ,γFF92\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}} and η,η{1,3}\eta,\eta^{\prime}\in\{1,3\} .

Note that the intersection point of two lines in the clique Cs,γηC_{s,\gamma}^{\eta} is γ\gamma. If Cs,γη=Cs,γηC_{s,\gamma}^{\eta}=C_{s^{\prime},\gamma^{\prime}}^{\eta^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and {s,sδη}{{s,sδη},{s(α+δ5)η,sδη(α+δ5)η}}\{s,s\delta^{\eta}\}\in\{\{s^{\prime},s^{\prime}\delta^{\eta^{\prime}}\},\{s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}},s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}}\}\}.

If {s,sδη}={s,sδη}\{s,s\delta^{\eta}\}=\{s^{\prime},s^{\prime}\delta^{\eta^{\prime}}\}, then s=ss=s^{\prime} and η=η\eta=\eta^{\prime}.

If {s,sδη}={s(α+δ5)η,sδη(α+δ5)η}\{s,s\delta^{\eta}\}=\{s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}},s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}}\}, then either s=s(α+δ5)ηs=s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}}, sδη=sδη(α+δ5)ηs\delta^{\eta}=s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}} or s=sδη(α+δ5)ηs=s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}}, sδη=s(α+δ5)ηs\delta^{\eta}=s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}}.

Case 1: If s=s(α+δ5)ηs=s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}} and sδη=sδη(α+δ5)ηs\delta^{\eta}=s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}}, then s(α+δ5)ηδη=sδη(α+δ5)ηs^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}}\delta^{\eta}=s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}} and η=η\eta=\eta^{\prime}. Now {s(α+δ5)η,sδη(α+δ5)η}={s,sδη}\{s(\alpha+\delta^{5})^{\eta},s\delta^{\eta}(\alpha+\delta^{5})^{\eta}\}=\{s^{\prime},s^{\prime}\delta^{\eta^{\prime}}\} with η=η\eta=\eta^{\prime}, then either s(α+δ5)η=ss(\alpha+\delta^{5})^{\eta}=s^{\prime} or s(α+δ5)η=sδηs(\alpha+\delta^{5})^{\eta}=s^{\prime}\delta^{\eta^{\prime}}. If s(α+δ5)η=ss(\alpha+\delta^{5})^{\eta}=s^{\prime}, then s=s(α+δ5)η(α+δ5)ηs=s(\alpha+\delta^{5})^{\eta}(\alpha+\delta^{5})^{\eta}, a contradiction. If s(α+δ5)η=sδηs(\alpha+\delta^{5})^{\eta}=s^{\prime}\delta^{\eta}, then we have that (α+δ5)η2=δη(\alpha+\delta^{5})^{\eta^{2}}=\delta^{\eta} followed from s=s(α+δ5)ηs=s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}}, a contradiction.

Case 2: If s=sδη(α+δ5)ηs=s^{\prime}\delta^{\eta^{\prime}}(\alpha+\delta^{5})^{\eta^{\prime}}, sδη=s(α+δ5)ηs\delta^{\eta}=s^{\prime}(\alpha+\delta^{5})^{\eta^{\prime}}, then we have that δη+η=1\delta^{\eta+\eta^{\prime}}=1, a contradiction.

Followed from the above arguments, we have that 𝒞9={Cs,γsS,γFF92}{Cs,γ3sS,γFF92}\mathcal{C}_{9}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}\cup\{C_{s,\gamma}^{3}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}, because |{Cs,γsS,γFF92}{Cs,γ3sS,γFF92}|=q212×q2×2=6480|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}\cup\{C_{s,\gamma}^{3}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{9^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}\times 2=6480. \Box

3.2 Maximal cliques in Paley graph P(132)P(13^{2})

We can choose a primitive element δFF13\delta\in{\hbox{\sf F\kern-4.29993ptF}}_{13} and αFF132\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{{13}^{2}} be a root of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, such that FF13=δ=6{\hbox{\sf F\kern-4.29993ptF}}_{13}^{*}=\langle\delta\rangle=\langle 6\rangle and S0={1,α+8,α+5,α+7,α+6,α+1,α+12}S_{0}=\{1,\alpha+8,\alpha+5,\alpha+7,\alpha+6,\alpha+1,\alpha+12\}.

3.2.1 C13AC_{13}^{A}-construction

Let H={δ4,δ8,δ12}={9,3,1}H=\left\{\delta^{4},\delta^{8},\delta^{12}\right\}=\left\{9,3,1\right\} be a subgroup of FF13{\hbox{\sf F\kern-4.29993ptF}}_{13}^{*} with order 33. Then FF13=HδHδ2Hδ3H={9,3,1}{10,12,4}{8,7,11}{6,2,5}{\hbox{\sf F\kern-4.29993ptF}}_{13}^{\ast}=H\cup\delta H\cup\delta^{2}H\cup\delta^{3}H=\left\{9,3,1\right\}\cup\left\{10,12,4\right\}\cup\left\{8,7,11\right\}\cup\left\{6,2,5\right\}.

Set C13A:={0}H(α+8)HC_{13}^{A}:=\{0\}\cup H\cup(\alpha+8)H be a subset of finite field FF132{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}. By Magma, we have that C13AC_{13}^{A} is a maximal clique in P(132)P(13^{2}) with size q+12\frac{q+1}{2} for q=13q=13. The structure of the clique C13AC_{13}^{A} is presented in Fig 2.

Refer to caption
Figure 2: C13AC_{13}^{A}
Lemma 3.3.

Set 𝒞13A\mathcal{C}_{13}^{A} be the orbit of Aut(P(132))Aut(P(13^{2})) acting on the cliques with C13A𝒞13AC_{13}^{A}\in\mathcal{C}_{13}^{A}. Then Aut(P(132))C13A=σ,τD6Aut(P(13^{2}))_{C_{13}^{A}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6}, where σ(γ)=3γ\sigma(\gamma)=3\gamma and τ(γ)=(α+8)γ13\tau(\gamma)=(\alpha+8)\gamma^{13} for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}. Moreover, |𝒞13A|=4732|\mathcal{C}_{13}^{A}|=4732.

Proof   Note that for any ϕAut (P(132))\phi\in\hbox{\rm Aut\,}(P(13^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF132b\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}, vGal(FF132)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}). If ϕAut(P(132))C13A\phi\in Aut(P(13^{2}))_{C_{13}^{A}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. Set :={H,(α+8)H}\mathcal{H}:=\{H,(\alpha+8)H\} be the subset of two lines, which are presented in Fig 2. Then ϕ()=\phi(\mathcal{H})=\mathcal{H}. It follows that either ϕ(H)=H\phi(H)=H, ϕ((α+8)H)=(α+8)H\phi((\alpha+8)H)=(\alpha+8)H or ϕ(H)=(α+8)H\phi(H)=(\alpha+8)H, ϕ((α+8)H)=H\phi((\alpha+8)H)=H.

If ϕ(H)=H\phi(H)=H, ϕ((α+8)H)=(α+8)H\phi((\alpha+8)H)=(\alpha+8)H, then we have that aHv=aH=HaH^{v}=aH=H and a((α+8)H)v=a(α+8)vH=(α+8)Ha((\alpha+8)H)^{v}=a(\alpha+8)^{v}H=(\alpha+8)H. It follows that aHa\in H and v=1v=1. So ϕ(γ)=aγ\phi(\gamma)=a\gamma with aHa\in H.

If ϕ(H)=(α+8)H\phi(H)=(\alpha+8)H, ϕ((α+8)H)=H\phi((\alpha+8)H)=H, then we have that aHv=aH=(α+8)HaH^{v}=aH=(\alpha+8)H and a((α+8)H)v=a(α+8)vH=Ha((\alpha+8)H)^{v}=a(\alpha+8)^{v}H=H, then a(α+8)Ha\in(\alpha+8)H and |v|=2|v|=2. So ϕ(γ)=aγ13\phi(\gamma)=a\gamma^{13} with a(α+8)Ha\in(\alpha+8)H.

Let ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma, ϕ2(γ)=3γ\phi_{2}(\gamma)=3\gamma, ϕ3(γ)=9γ\phi_{3}(\gamma)=9\gamma, ϕ1(γ)=(α+8)γ13\phi_{1}^{\prime}(\gamma)=(\alpha+8)\gamma^{13}, ϕ2(γ)=3(α+8)γ13\phi_{2}^{\prime}(\gamma)=3(\alpha+8)\gamma^{13}, ϕ3(γ)=9(α+8)γ13\phi_{3}^{\prime}(\gamma)=9(\alpha+8)\gamma^{13} for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}. Set σ=ϕ2\sigma=\phi_{2} and τ=ϕ1\tau=\phi_{1}^{\prime}. Then σ3=1\sigma^{3}=1, τ2=1\tau^{2}=1, τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1}. Then σ,τ={1,σ,σ2,τ,τσ,τσ2}={ϕ1,ϕ2,ϕ3,ϕ1,ϕ2,ϕ3}\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\tau,\tau\sigma,\tau\sigma^{2}\}=\{\phi_{1},\phi_{2},\phi_{3},\phi_{1}^{\prime},\phi_{2}^{\prime},\phi_{3}^{\prime}\}. The action of σ\sigma and τ\tau on the points in clique C13AC_{13}^{A} is presented by the following table.

γ\gamma 0 11 33 99 α+8\alpha+8 3(α+8)3(\alpha+8) 9(α+8)9(\alpha+8)
σ(γ)\sigma(\gamma) 0 33 99 1 3(α+8)3(\alpha+8) 9(α+8)9(\alpha+8) α+8\alpha+8
τ(γ)\tau(\gamma) 0 α+8\alpha+8 3(α+8)3(\alpha+8) 9(α+8)9(\alpha+8) 11 33 99

Followed by the above arguments, we know that σ(C13A)=C13A\sigma(C_{13}^{A})=C_{13}^{A} and τ(C13A)=C13A\tau(C_{13}^{A})=C_{13}^{A}. Then Aut(P(132))C13A=σ,τD6Aut(P(13^{2}))_{C_{13}^{A}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6}, where σ(γ)=3γ\sigma(\gamma)=3\gamma, τ(γ)=(α+8)γ13\tau(\gamma)=(\alpha+8)\gamma^{13} for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}.

Note that |Aut(P(132))|=q212×q2×2=28392\left|Aut(P(13^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=28392, so we have that |𝒞13A|=|Aut(P(132)):Aut(P(132))C13A|=4732|\mathcal{C}_{13}^{A}|=|Aut(P(13^{2})):Aut(P(13^{2}))_{C_{13}^{A}}|=4732. \Box


Set Cs,γ,i:={sδix+γxC13AFF132}C_{s,\gamma,i}:=\left\{s\delta^{i}x+\gamma\mid x\in C_{13}^{A}\cap{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\right\}, where sS0s\in S_{0}, i{ 0,1,2,3}i\in\{\ 0,1,2,3\ \} and γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}.

Lemma 3.4.

Set 𝒞13A\mathcal{C}_{13}^{A} be the orbit of Aut(P(132))Aut(P(13^{2})) acting on the cliques with C13A𝒞13C_{13}^{A}\in\mathcal{C}_{13}. Then 𝒞13A={Cs,γ,isS0,i{0,1,2,3},γFF132}\mathcal{C}_{13}^{A}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}.

Proof   It is obvious that {Cs,γ,isS0,i{0,1,2,3},γFF132}𝒞13A\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}\subset\mathcal{C}_{13}^{A}. Now we will prove that Cs,γ,i=Cs,γ,i\hbox{\rm C}_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and i=ii=i^{\prime}, where s,sS0s,s^{\prime}\in S_{0}, i,i{0,1,2,3}i,i^{\prime}\in\{0,1,2,3\} and γ,γFF132\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}.

Note that the intersection point of two lines in the clique Cs,γ,iC_{s,\gamma,i} is γ\gamma. If Cs,γ,i=Cs,γ,iC_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and {sδiH,sδi(α+8)H}={sδiH,sδi(α+8)H}\{s\delta^{i}H,s\delta^{i}(\alpha+8)H\}=\{s^{\prime}\delta^{i^{\prime}}H,s^{\prime}\delta^{i^{\prime}}(\alpha+8)H\}.

If sδiH=sδiHs\delta^{i}H=s^{\prime}\delta^{i^{\prime}}H and sδi(α+8)H=sδi(α+8)Hs\delta^{i}(\alpha+8)H=s^{\prime}\delta^{i^{\prime}}(\alpha+8)H, then sδisδiHs\delta^{i}\in s^{\prime}\delta^{i^{\prime}}H. If sδi=sδis\delta^{i}=s^{\prime}\delta^{i^{\prime}}, then s=ss=s^{\prime} and i=ii=i^{\prime}; if sδi=δ4sδis\delta^{i}=\delta^{4}s^{\prime}\delta^{i^{\prime}}, then δi=δ4+i\delta^{i}=\delta^{4+i^{\prime}}, a contradiction; if sδi=δ8sδis\delta^{i}=\delta^{8}s^{\prime}\delta^{i^{\prime}}, then δi=δ8+i\delta^{i}=\delta^{8+i^{\prime}}, a contradiction.

If sδiH=sδi(α+8)Hs\delta^{i}H=s^{\prime}\delta^{i^{\prime}}(\alpha+8)H and sδiH=sδi(α+8)Hs^{\prime}\delta^{i^{\prime}}H=s\delta^{i}(\alpha+8)H, then (α+8)2H(\alpha+8)^{2}\in H, a contradiction.

Followed from the above arguments, we have that 𝒞13A={Cs,γ,isS0,i{0,1,2,3},γFF132}\mathcal{C}_{13}^{A}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}, because |{Cs,γ,isS0,i{0,1,2,3},γFF132}|=q+12×q2×4=4732|\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}|=\frac{q+1}{2}\times q^{2}\times 4=4732. \Box

3.2.2 C13BC_{13}^{B}-construction

Let H={1,3,4}H=\{1,3,4\} be a subset in FF13{\hbox{\sf F\kern-4.29993ptF}}_{13}^{\ast}. Set C13B:={0}H{7(α+1),2(α+1),7(α+7)}C_{13}^{B}:=\{0\}\cup H\cup\{7(\alpha+1),2(\alpha+1),7(\alpha+7)\} be a subset of finite field FF132{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}. By Magma, we have that C13BC_{13}^{B} is a maximal clique in P(132)P(13^{2}) with size q+12\frac{q+1}{2} for q=13q=13. The structure of the clique C13BC_{13}^{B} is presented in Fig 3.

Refer to caption
Figure 3: C13BC_{13}^{B}
Lemma 3.5.

Set 𝒞13B\mathcal{C}_{13}^{B} be the orbit of Aut(P(132))Aut(P(13^{2})) acting on the cliques with C13B𝒞13BC_{13}^{B}\in\mathcal{C}_{13}^{B}. Then Aut(P(132))C13B=ϕ2Aut(P(13^{2}))_{C_{13}^{B}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2}, where ϕ(γ)=12γ13+4\phi^{\prime}(\gamma)=12\gamma^{13}+4 for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}. Moreover, |𝒞13B|=14196|\mathcal{C}_{13}^{B}|=14196.

Proof   Note that for any ϕAut (P(132))\phi\in\hbox{\rm Aut\,}(P(13^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF132b\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}, vGal(FF132)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}). If ϕAut(P(132))C13B\phi\in Aut(P(13^{2}))_{C_{13}^{B}}, then ϕ(2(α+1))=2(α+1)\phi(2(\alpha+1))=2(\alpha+1). Set 𝒫:={0,4}\mathcal{P}:=\{0,4\} be the two special intersecting points in clique C13BC_{13}^{B}, then ϕ(𝒫)=𝒫\phi(\mathcal{P})=\mathcal{P}. It follows that either ϕ(0)=0\phi(0)=0, ϕ(4)=4\phi(4)=4 or ϕ(0)=4\phi(0)=4, ϕ(4)=0\phi(4)=0.

If ϕ(0)=0\phi(0)=0 and ϕ(4)=4\phi(4)=4, then we have that a=1a=1, b=0b=0. Then ϕ(γ)=γv\phi(\gamma)=\gamma^{v}, ϕ(7(α+1))=7(α+1)\phi(7(\alpha+1))=7(\alpha+1) and ϕ(7(α+7))=7(α+7)\phi(7(\alpha+7))=7(\alpha+7). It follows that ϕ(γ)=γ\phi(\gamma)=\gamma for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}.

If ϕ(0)=4\phi^{\prime}(0)=4 and ϕ(4)=0\phi^{\prime}(4)=0. Then a=12a=12, b=4b=4 and ϕ(γ)=12γv+4\phi^{\prime}(\gamma)=12\gamma^{v}+4. Moreover, we have that ϕ(7(α+1))=7(α+7)\phi^{\prime}(7(\alpha+1))=7(\alpha+7) and ϕ(7(α+7))=7(α+1)\phi^{\prime}(7(\alpha+7))=7(\alpha+1). Then we have that ϕ(γ)=12γ13+4\phi^{\prime}(\gamma)=12\gamma^{13}+4 for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}} and ϕ2=1\phi^{\prime 2}=1.

The action of ϕ\phi^{\prime} on the point in clique C13BC_{13}^{B} is presented by the following table.

γ\gamma 0 11 33 44 7(α+1)7(\alpha+1) 2(α+1)2(\alpha+1) 7(α+7)7(\alpha+7)
ϕ(γ)\phi^{\prime}(\gamma) 4 33 11 0 7(α+7)7(\alpha+7) 2(α+1)2(\alpha+1) 7(α+1)7(\alpha+1)

Followed by the above arguments, we get that ϕ(C13B)=C13B\phi^{\prime}(C_{13}^{B})=C_{13}^{B} and Aut(P(132))C13B=ϕ2Aut(P(13^{2}))_{C_{13}^{B}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2}, where ϕ(γ)=12γ13+4\phi^{\prime}(\gamma)=12\gamma^{13}+4 for any γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}. Note that |Aut(P(132))|=q212×q2×2=28392\left|Aut(P(13^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=28392, so we have that |𝒞13B|=|Aut(P(132)):Aut(P(132))C13B|=14196|\mathcal{C}_{13}^{B}|=|Aut(P(13^{2})):Aut(P(13^{2}))_{C_{13}^{B}}|=14196. \Box


Set Cs,γ:={sx+γ|xC13BFF132}C_{s,\gamma}:=\{sx+\gamma|x\in C_{13}^{B}\cap{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\} where sSs\in S and γFF132\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}.

Lemma 3.6.

Set 𝒞13B\mathcal{C}_{13}^{B} be the orbit of Aut(P(132))Aut(P(13^{2})) acting on the cliques with C13B𝒞13BC_{13}^{B}\in\mathcal{C}_{13}^{B}. Then 𝒞13B={Cs,γsS,γFF132}\mathcal{C}_{13}^{B}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}.

Proof   It is obvious that {Cs,γsS,γFF132}𝒞13\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}\subset\mathcal{C}_{13}. Now we will prove that Cs,γ=Cs,γC_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime} and γ=γ\gamma=\gamma^{\prime} where s,sSs,s^{\prime}\in S, γ,γFF132\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}} .

If Cs,γ=Cs,γC_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}}, then 2(α+1)s+γ=2(α+1)s+γ2(\alpha+1)s+\gamma=2(\alpha+1)s^{\prime}+\gamma^{\prime} and the two special intersecting points {γ,4s+γ}={γ,4s+γ}\{\gamma,4s+\gamma\}=\{\gamma^{\prime},4s^{\prime}+\gamma\}. If γ=4s+γ\gamma=4s^{\prime}+\gamma^{\prime} and γ=4s+γ\gamma^{\prime}=4s+\gamma, then (α+1)=1(\alpha+1)=1, a contradiction. Now, we have s=ss=s^{\prime} and γ=γ\gamma=\gamma^{\prime}. And then 𝒞13B={Cs,γsS,γFF132}\mathcal{C}_{13}^{B}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}, because |{Cs,γsS,γFF132}|=q212×q2=14196|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{13^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}=14196. \Box

3.3 Maximal cliques in Paley graph P(172)P(17^{2})

We can choose a primitive element δFF17\delta\in{\hbox{\sf F\kern-4.29993ptF}}_{17} and αFF172\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{{17}^{2}} be a root of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, such that FF17=δ=10{\hbox{\sf F\kern-4.29993ptF}}_{17}^{*}=\langle\delta\rangle=\langle 10\rangle and S0={1,α+7,α+10,α+14,α+3,α+6,α+11,α+8,α+9}S_{0}=\{1,\alpha+7,\alpha+10,\alpha+14,\alpha+3,\alpha+6,\alpha+11,\alpha+8,\alpha+9\}.

3.3.1 C17AC_{17}^{A}-construction

Let H={δ4,δ8,δ12,δ16}={4,16,13,1}H=\left\{\delta^{4},\delta^{8},\delta^{12},\delta^{16}\right\}=\left\{4,16,13,1\right\} be a subgroup in FF17{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast}. Then FFq=HδHδ2Hδ3H={4,16,13,1}{6,7,11,10}{9,2,8,5}{5,3,12,14}{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast}=H\cup\delta H\cup\delta^{2}H\cup\delta^{3}H=\left\{4,16,13,1\right\}\cup\left\{6,7,11,10\right\}\cup\left\{9,2,8,5\right\}\cup\left\{5,3,12,14\right\}.

Set C17A:={0}H(α+7)HC_{17}^{A}:=\{0\}\cup H\cup(\alpha+7)H be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17AC_{17}^{A} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17AC_{17}^{A} is presented in Fig 4.

Refer to caption
Figure 4: C17AC_{17}^{A}
Lemma 3.7.

Set 𝒞17A\mathcal{C}_{17}^{A} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17A𝒞17AC_{17}^{A}\in\mathcal{C}_{17}^{A}. Then Aut(P(172))C17A=σ8Aut(P(17^{2}))_{C_{17}^{A}}=\langle\sigma\rangle\cong\mathbb{Z}_{8}, where σ(γ)=(α+7)γ17\sigma(\gamma)=(\alpha+7)\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. Moreover, |𝒞17A|=10404|\mathcal{C}_{17}^{A}|=10404.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). If ϕAut(P(172))C17A\phi\in Aut(P(17^{2}))_{C_{17}^{A}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. Set :={H,(α+7)H}\mathcal{H}:=\{H,(\alpha+7)H\} be the subset of two lines, which are presented in Fig 4. Then ϕ()=\phi(\mathcal{H})=\mathcal{H}. It follows that either ϕ(H)=H\phi(H)=H, ϕ((α+7)H)=(α+7)H\phi((\alpha+7)H)=(\alpha+7)H or ϕ(H)=(α+7)H\phi(H)=(\alpha+7)H, ϕ((α+7)H)=H\phi((\alpha+7)H)=H.

If ϕ(H)=H\phi(H)=H, ϕ((α+7)H)=(α+7)H\phi((\alpha+7)H)=(\alpha+7)H, we have that aHv=aH=HaH^{v}=aH=H and a((α+7)H)v=a(α+7)vH=(α+7)Ha((\alpha+7)H)^{v}=a(\alpha+7)^{v}H=(\alpha+7)H, then aHa\in H and v=1v=1. So that ϕ(γ)=aγ\phi(\gamma)=a\gamma with aHa\in H.

If ϕ(H)=(α+7)H\phi(H)=(\alpha+7)H, ϕ((α+7)H)=H\phi((\alpha+7)H)=H, we have that aHv=aH=(α+7)HaH^{v}=aH=(\alpha+7)H and a((α+7)H)v=a(α+7)vH=Ha((\alpha+7)H)^{v}=a(\alpha+7)^{v}H=H, then a(α+7)Ha\in(\alpha+7)H and |v|=2|v|=2. So that ϕ(γ)=aγ17\phi(\gamma)=a\gamma^{17} with a(α+7)Ha\in(\alpha+7)H.

Set σ(γ)=(α+7)γ17\sigma(\gamma)=(\alpha+7)\gamma^{17}. Then σ8=1\sigma^{8}=1 and σ={ϕa,ϕaϕa(γ)=aγ,ϕa(γ)=aγ17,aH,a(α+7)H}8\langle\sigma\rangle=\{\phi_{a},\phi_{a}^{\prime}\mid\phi_{a}(\gamma)=a\gamma,\phi_{a^{\prime}}(\gamma)=a^{\prime}\gamma^{17},a\in H,a^{\prime}\in(\alpha+7)H\}\cong\mathbb{Z}_{8}. The action of σ\sigma on the points of clique C17AC_{17}^{A} is presented in the following table.

γ\gamma 0 11 44 1616 1313 α+7\alpha+7 4(α+7)4(\alpha+7) 16(α+7)16(\alpha+7) 13(α+7)13(\alpha+7)
σ(γ)\sigma(\gamma) 0 α+7\alpha+7 4(α+7)4(\alpha+7) 16(α+7)16(\alpha+7) 13(α+7)13(\alpha+7) 44 1616 1313 11

Followed by the above arguments, we know that σ(C17A)=C17A\sigma(C_{17}^{A})=C_{17}^{A}. Then Aut(P(172))C17A=σ8Aut(P(17^{2}))_{C_{17}^{A}}=\langle\sigma\rangle\cong\mathbb{Z}_{8}, where σ(γ)=(α+7)γ17\sigma(\gamma)=(\alpha+7)\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17A|=|Aut(P(172)):Aut(P(172))C17A|=10404|\mathcal{C}_{17}^{A}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{A}}|=10404. \Box


Set Cs,γ,i:={sδix+γxC17AFF172}C_{s,\gamma,i}:=\left\{s\delta^{i}x+\gamma\mid x\in C_{17}^{A}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\right\} where sS0s\in S_{0}, i{0,1,2,3}i\in\{0,1,2,3\}, γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Lemma 3.8.

Set 𝒞17A\mathcal{C}_{17}^{A} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17A𝒞17C_{17}^{A}\in\mathcal{C}_{17}. Then 𝒞17A={Cs,γ,isS0,i{0,1,2,3},γFF172}\mathcal{C}_{17}^{A}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {Cs,γ,isS0,i{0,1,2,3},γFF172}𝒞17A\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\subset\mathcal{C}_{17}^{A}. Now we will prove that Cs,γ,i=Cs,γ,i\hbox{\rm C}_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and i=ii=i^{\prime}, where s,sS0s,s^{\prime}\in S_{0}, i,i{0,1,2,3}i,i^{\prime}\in\{0,1,2,3\} and γ,γFF172\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Note that the intersection point of two lines in the clique Cs,γ,iC_{s,\gamma,i} is γ\gamma. If Cs,γ,i=Cs,γ,iC_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the two special lines {sδiH,sδi(α+7)H}={sδiH,sδi(α+7)H}\{s\delta^{i}H,s\delta^{i}(\alpha+7)H\}=\{s^{\prime}\delta^{i^{\prime}}H,s^{\prime}\delta^{i^{\prime}}(\alpha+7)H\}.

If sδiH=sδiHs\delta^{i}H=s^{\prime}\delta^{i^{\prime}}H and sδi(α+7)H=sδi(α+7)Hs\delta^{i}(\alpha+7)H=s^{\prime}\delta^{i^{\prime}}(\alpha+7)H, then sδisδiHs\delta^{i}\in s^{\prime}\delta^{i^{\prime}}H. If sδi=sδis\delta^{i}=s^{\prime}\delta^{i^{\prime}}, then s=ss=s^{\prime} and i=ii=i^{\prime}; if sδi=δ4sδis\delta^{i}=\delta^{4}s^{\prime}\delta^{i^{\prime}}, then δi=δ4+i\delta^{i}=\delta^{4+i^{\prime}}, a contradiction; if sδi=δ8sδis\delta^{i}=\delta^{8}s^{\prime}\delta^{i^{\prime}}, then δi=δ8+i\delta^{i}=\delta^{8+i^{\prime}}, a contradiction; if sδi=δ12sδis\delta^{i}=\delta^{12}s^{\prime}\delta^{i^{\prime}}, then δi=δ12+i\delta^{i}=\delta^{12+i^{\prime}}, a contradiction.

If sδiH=sδi(α+7)Hs\delta^{i}H=s^{\prime}\delta^{i^{\prime}}(\alpha+7)H and sδiH=sδi(α+7)Hs^{\prime}\delta^{i^{\prime}}H=s\delta^{i}(\alpha+7)H, then (α+7)2H(\alpha+7)^{2}\in H, a contradiction. Now, we have s=ss=s^{\prime} and i=ii=i^{\prime}.

Followed from the above arguments, we have that 𝒞17A={Cs,γ,isS0,i{0,1,2,3},γFF172}\mathcal{C}_{17}^{A}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γ,isS0,i{0,1,2,3},γFF172}|=q+12×q2×4=10404|\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{0,1,2,3\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}|=\frac{q+1}{2}\times q^{2}\times 4=10404. \Box

3.3.2 C17BC_{17}^{B}-construction

Let H={1,4,5}H=\{1,4,5\} be a subset in FF17{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast}. Set C13B:={0}H10(α+6)H{10(α+3)}{6(α+9)}C_{13}^{B}:=\{0\}\cup H\cup 10(\alpha+6)H\cup\{10(\alpha+3)\}\cup\{6(\alpha+9)\} be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17BC_{17}^{B} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17BC_{17}^{B} is presented in Fig 5.

Refer to caption
Figure 5: C17BC_{17}^{B}
Lemma 3.9.

Set 𝒞17B\mathcal{C}_{17}^{B} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17B𝒞17BC_{17}^{B}\in\mathcal{C}_{17}^{B}. Then Aut(P(172))C17B=σ,τD6Aut(P(17^{2}))_{C_{17}^{B}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6}, where σ(γ)=10(α+11)γ+5\sigma(\gamma)=10(\alpha+11)\gamma+5 and τ(γ)=10(α+6)γ17\tau(\gamma)=10(\alpha+6)\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. Moreover, |𝒞17B|=13872|\mathcal{C}_{17}^{B}|=13872.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). Set 𝒫:={0,5,16(α+6)}\mathcal{P}:=\{0,5,16(\alpha+6)\} be the three intersecting points in clique C17BC_{17}^{B}. Then ϕ(𝒫)=𝒫\phi(\mathcal{P})=\mathcal{P}. It follows six cases.

If ϕ1(0)=0\phi_{1}(0)=0, ϕ1(5)=5\phi_{1}(5)=5 and ϕ1(16(α+6))=16(α+6)\phi_{1}(16(\alpha+6))=16(\alpha+6), then we have that a=1a=1, b=0b=0 and v=1v=1. It follows that ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ2(0)=0\phi_{2}(0)=0, ϕ2(5)=16(α+6)\phi_{2}(5)=16(\alpha+6) and ϕ2(16(α+6))=5\phi_{2}(16(\alpha+6))=5, then we have that a=10(α+6)a=10(\alpha+6), b=0b=0 and |v|=2|v|=2. It follows that ϕ2(γ)=10(α+6)γ17\phi_{2}(\gamma)=10(\alpha+6)\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ3(0)=5\phi_{3}(0)=5, ϕ3(5)=0\phi_{3}(5)=0 and ϕ3(16(α+6))=16(α+6)\phi_{3}(16(\alpha+6))=16(\alpha+6), then we have that a=16a=16, b=5b=5 and |v|=2|v|=2. It follows that ϕ3(γ)=16γ17+5\phi_{3}(\gamma)=16\gamma^{17}+5 for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ4(0)=5\phi_{4}(0)=5, ϕ4(5)=16(α+6)\phi_{4}(5)=16(\alpha+6) and ϕ4(16(α+6))=0\phi_{4}(16(\alpha+6))=0, then we have that a=10(α+11)a=10(\alpha+11), b=5b=5 and v=1v=1. It follows that ϕ4(γ)=10(α+11)γ+5\phi_{4}(\gamma)=10(\alpha+11)\gamma+5 for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ5(0)=16(α+6)\phi_{5}(0)=16(\alpha+6), ϕ5(5)=5\phi_{5}(5)=5 and ϕ5(16(α+6))=0\phi_{5}(16(\alpha+6))=0, then we have that a=7(α+11)a=7(\alpha+11), b=16(α+6)b=16(\alpha+6) and |v|=2|v|=2. It follows that ϕ5(γ)=7(α+11)γ17+16(α+6)\phi_{5}(\gamma)=7(\alpha+11)\gamma^{17}+16(\alpha+6) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ6(0)=16(α+6)\phi_{6}(0)=16(\alpha+6), ϕ6(5)=0\phi_{6}(5)=0 and ϕ6(16(α+6))=5\phi_{6}(16(\alpha+6))=5, then we have that a=7(α+6)a=7(\alpha+6), b=16(α+6)b=16(\alpha+6) and v=1v=1. It follows that ϕ6(γ)=7(α+6)γ+16(α+6)\phi_{6}(\gamma)=7(\alpha+6)\gamma+16(\alpha+6) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Set σ=ϕ4\sigma=\phi_{4}, τ=ϕ2\tau=\phi_{2}, then we have that σ3=1\sigma^{3}=1, τ2=1\tau^{2}=1, τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1} and σ,τ={1,σ,σ2,τ,τσ,τσ2}={ϕ1,ϕ4,ϕ6,ϕ2,ϕ5,ϕ3}\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\tau,\tau\sigma,\tau\sigma^{2}\}=\{\phi_{1},\phi_{4},\phi_{6},\phi_{2},\phi_{5},\phi_{3}\}. The action of σ\sigma and τ\tau on the points in the clique C17BC_{17}^{B} is presented in the following table.

γ\gamma 0 11 44 55 10(α+6)10(\alpha+6) 6(α+6)6(\alpha+6) 16(α+6)16(\alpha+6) 10(α+3)10(\alpha+3) 6(α+9)6(\alpha+9)
σ(γ)\sigma(\gamma) 55 10(α+3)10(\alpha+3) 6(α+9)6(\alpha+9) 16(α+6)16(\alpha+6) 44 11 0 6(α+6)6(\alpha+6) 10(α+6)10(\alpha+6)
τ(γ)\tau(\gamma) 0 10(α+6)10(\alpha+6) 6(α+6)6(\alpha+6) 16(α+6)16(\alpha+6) 11 44 55 6(α+9)6(\alpha+9) 10(α+3)10(\alpha+3)

Followed by the above arguments, we know that σ(C17B)=C17B\sigma(C_{17}^{B})=C_{17}^{B} and τ(C17B)=C17B\tau(C_{17}^{B})=C_{17}^{B}, then Aut(P(172))C17B=σ,τD6Aut(P(17^{2}))_{C_{17}^{B}}=\langle\sigma,\tau\rangle\cong D_{6} where σ(γ)=10(α+11)γ+5\sigma(\gamma)=10(\alpha+11)\gamma+5 and τ(γ)=10(α+6)γ17\tau(\gamma)=10(\alpha+6)\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17B|=|Aut(P(172)):Aut(P(172))C17B|=13872|\mathcal{C}_{17}^{B}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{B}}|=13872. \Box


Set Cs,γ:={sx+γxC17BFF172}C_{s,\gamma}:=\left\{sx+\gamma\mid x\in C_{17}^{B}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\right\} where sSs\in S, γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Lemma 3.10.

Set 𝒞17B\mathcal{C}_{17}^{B} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17B𝒞17C_{17}^{B}\in\mathcal{C}_{17}. Then 𝒞17B={Cs,γsS,γFF172}\mathcal{C}_{17}^{B}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {Cs,γsS,γFF172}𝒞17B\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\subset\mathcal{C}_{17}^{B}. If γ=γ\gamma=\gamma^{\prime}, now we will prove that Cs,γ=Cs,γ\hbox{\rm C}_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime}, where s,sSs,s^{\prime}\in S, γ,γFF172\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If Cs,γ=Cs,γC_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}}, then the three special points {γ,5s+γ,16(α+6)s+γ}={γ,5s+γ,16(α+6)s+γ}\{\gamma,5s+\gamma,16(\alpha+6)s+\gamma\}=\{\gamma^{\prime},5s^{\prime}+\gamma^{\prime},16(\alpha+6)s^{\prime}+\gamma^{\prime}\}. If 5s+γ=16(α+6)s+γ5s+\gamma=16(\alpha+6)s^{\prime}+\gamma^{\prime} and 5s+γ=16(α+6)s+γ5s^{\prime}+\gamma^{\prime}=16(\alpha+6)s+\gamma, then (α+6)=12(\alpha+6)=12, a contradiction. Now, we have s=ss=s^{\prime}. From Lemma 3.9, we have that C17B=ϕ4(C17B)=ϕ6(C17B)C_{17}^{B}=\phi_{4}(C_{17}^{B})=\phi_{6}(C_{17}^{B}), where ϕ4,ϕ63\langle\phi_{4},\phi_{6}\rangle\cong\mathbb{Z}_{3} permutate the three intersecting points. And then 𝒞17B={Cs,γsS,γFF172}\mathcal{C}_{17}^{B}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γsS,γFF172}|=q212×q2×13=13872|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}\times\frac{1}{3}=13872. \Box

3.3.3 C17CC_{17}^{C}-construction

Let H={δ4,δ8,δ12,δ16}={4,16,13,1}H=\left\{\delta^{4},\delta^{8},\delta^{12},\delta^{16}\right\}=\left\{4,16,13,1\right\} be a subgroup in FF17{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast} with δ:=10\delta:=10. Then FF17=HδHδ2Hδ3H={4,16,13,1}{6,7,11,10}{9,2,8,5}{5,3,12,14}{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast}=H\cup\delta H\cup\delta^{2}H\cup\delta^{3}H=\left\{4,16,13,1\right\}\cup\left\{6,7,11,10\right\}\cup\left\{9,2,8,5\right\}\cup\left\{5,3,12,14\right\}.

Set C17C:={0}H(α+7){1,4}(α+10){1,4}C_{17}^{C}:=\{0\}\cup H\cup(\alpha+7)\{1,4\}\cup(\alpha+10)\{1,4\} be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17CC_{17}^{C} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17CC_{17}^{C} is presented in Fig 6.

Refer to caption
Figure 6: C17CC_{17}^{C}
Lemma 3.11.

Set 𝒞17C\mathcal{C}_{17}^{C} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17C𝒞17CC_{17}^{C}\in\mathcal{C}_{17}^{C}. Then Aut(P(172))C17C=ϕ2Aut(P(17^{2}))_{C_{17}^{C}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2}, where ϕ(γ)=16γ17\phi^{\prime}(\gamma)=16\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. Moreover, |𝒞17C|=41616|\mathcal{C}_{17}^{C}|=41616.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). Note that the point 0 in the clique C17CC_{17}^{C} is a intersecting point of three lines, and one of these lines contains five points in this clique. If ϕAut(P(172))C17C\phi\in Aut(P(17^{2}))_{C_{17}^{C}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. And ϕ(H)=H\phi(H)=H, we have that aHv=aH=HaH^{v}=aH=H, then aHa\in H. So that ϕ(γ)=aγv\phi(\gamma)=a\gamma^{v} with aHa\in H, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). Set H={1,4}H^{\prime}=\{1,4\} be a subset in FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast} and :={H(α+7),H(α+10)}\mathcal{L}:=\{H^{\prime}(\alpha+7),H^{\prime}(\alpha+10)\} be the subset of two lines, which are presented in Fig 6. Then ϕ()=\phi(\mathcal{L})=\mathcal{L}. It follows that either ϕ(H(α+7))=H(α+7)\phi(H^{\prime}(\alpha+7))=H^{\prime}(\alpha+7), ϕ(H(α+10))=H(α+10)\phi(H^{\prime}(\alpha+10))=H^{\prime}(\alpha+10) or ϕ(H(α+7))=H(α+10)\phi(H^{\prime}(\alpha+7))=H^{\prime}(\alpha+10), ϕ(H(α+10))=H(α+7)\phi(H^{\prime}(\alpha+10))=H^{\prime}(\alpha+7).

If ϕ(H(α+7))=H(α+7)\phi(H^{\prime}(\alpha+7))=H^{\prime}(\alpha+7) and ϕ(H(α+10))=H(α+10)\phi(H^{\prime}(\alpha+10))=H^{\prime}(\alpha+10), then we have that a(H(α+7))v=aH(α+7)v=H(α+7)a(H^{\prime}(\alpha+7))^{v}=aH^{\prime}(\alpha+7)^{v}=H^{\prime}(\alpha+7) and a(H(α+10))v=aH(α+10)v=H(α+10)a(H^{\prime}(\alpha+10))^{v}=aH^{\prime}(\alpha+10)^{v}=H^{\prime}(\alpha+10), then a=1a=1 and v=1v=1. So ϕ(γ)=γ\phi(\gamma)=\gamma for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ(H(α+7))=H(α+10)\phi^{\prime}(H^{\prime}(\alpha+7))=H^{\prime}(\alpha+10) and ϕ(H(α+10))=H(α+7)\phi^{\prime}(H^{\prime}(\alpha+10))=H^{\prime}(\alpha+7), then we have that a(H(α+7))v=aH(α+7)v=H(α+10)a(H^{\prime}(\alpha+7))^{v}=aH^{\prime}(\alpha+7)^{v}=H^{\prime}(\alpha+10) and a(H(α+10))v=aH(α+10)v=H(α+7)a(H^{\prime}(\alpha+10))^{v}=aH^{\prime}(\alpha+10)^{v}=H^{\prime}(\alpha+7), then a=16a=16 and |v|=2|v|=2. So ϕ(γ)=16γ17\phi^{\prime}(\gamma)=16\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

The action of ϕ\phi^{\prime} acting on the points in the clique C17CC_{17}^{C} is presented by the following table.

γ\gamma 0 11 44 1616 1313 α+7\alpha+7 4(α+7)4(\alpha+7) α+10\alpha+10 4(α+10)4(\alpha+10)
ϕ(γ)\phi^{\prime}(\gamma) 0 1616 1313 11 44 α+10\alpha+10 4(α+10)4(\alpha+10) α+7\alpha+7 4(α+7)4(\alpha+7)

Followed by the above arguments, we know that ϕ(C17C)=C17C\phi^{\prime}(C_{17}^{C})=C_{17}^{C} and ϕ2=1\phi^{\prime 2}=1. Then Aut(P(172))C17C=ϕ2Aut(P(17^{2}))_{C_{17}^{C}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2} where ϕ(γ)=16γ17\phi^{\prime}(\gamma)=16\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17}^{2}.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17C|=|Aut(P(172)):Aut(P(172))C17C|=41616|\mathcal{C}_{17}^{C}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{C}}|=41616. \Box


Set Cs,γ:={sx+γxC17CFF172}C_{s,\gamma}:=\left\{sx+\gamma\mid x\in C_{17}^{C}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\right\} where sSs\in S, γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Lemma 3.12.

Set 𝒞17C\mathcal{C}_{17}^{C} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17C𝒞17C_{17}^{C}\in\mathcal{C}_{17}. Then 𝒞17C={Cs,γsS,γFF172}\mathcal{C}_{17}^{C}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {Cs,γsS,γFF172}𝒞17C\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\subset\mathcal{C}_{17}^{C}. Now we will prove that Cs,γ=Cs,γ\hbox{\rm C}_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime} and γ=γ\gamma=\gamma^{\prime}, where s,sSs,s^{\prime}\in S and γ,γFF172\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Note that the intersecting point of three special lines in the clique Cs,γC_{s,\gamma} is γ\gamma. If Cs,γ=Cs,γC_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the subset of two lines {s(α+7)H+γ,s(α+10)H+γ}={s(α+7)H+γ,s(α+10)H+γ}\{s(\alpha+7)H^{\prime}+\gamma,s(\alpha+10)H^{\prime}+\gamma\}=\{s^{\prime}(\alpha+7)H^{\prime}+\gamma^{\prime},s^{\prime}(\alpha+10)H^{\prime}+\gamma^{\prime}\}. If s(α+7)H+γ=s(α+7)H+γs(\alpha+7)H^{\prime}+\gamma=s^{\prime}(\alpha+7)H^{\prime}+\gamma^{\prime} and s(α+10)H+γ=s(α+10)H+γs(\alpha+10)H^{\prime}+\gamma=s^{\prime}(\alpha+10)H^{\prime}+\gamma^{\prime}, then s=ss=s^{\prime}; if s(α+7)H+γ=s(α+10)H+γs(\alpha+7)H^{\prime}+\gamma=s^{\prime}(\alpha+10)H^{\prime}+\gamma^{\prime} and s(α+10)H+γ=s(α+7)H+γs(\alpha+10)H^{\prime}+\gamma=s^{\prime}(\alpha+7)H^{\prime}+\gamma^{\prime}, then (α+7)2H=(α+10)2H(\alpha+7)^{2}H^{\prime}=(\alpha+10)^{2}H^{\prime}, a contradiction. Now, we have s=ss=s^{\prime}.

And then 𝒞17C={Cs,γsS,γFF172}\mathcal{C}_{17}^{C}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γsS,γFF172}|=q212×q2=41616|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}=41616. \Box

3.3.4 C17DC_{17}^{D}-construction

Let H={δ4,δ8,δ12,δ16}={4,16,13,1}H=\left\{\delta^{4},\delta^{8},\delta^{12},\delta^{16}\right\}=\left\{4,16,13,1\right\} be a subgroup in FF17{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast} with δ:=10\delta:=10. Then FF17=HδHδ2Hδ3H={4,16,13,1}{6,7,11,10}{9,2,8,5}{5,3,12,14}{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast}=H\cup\delta H\cup\delta^{2}H\cup\delta^{3}H=\left\{4,16,13,1\right\}\cup\left\{6,7,11,10\right\}\cup\left\{9,2,8,5\right\}\cup\left\{5,3,12,14\right\}.

Set C17D:={0}H(α+7){1,16}(α+10){4,13}C_{17}^{D}:=\{0\}\cup H\cup(\alpha+7)\{1,16\}\cup(\alpha+10)\{4,13\} be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17DC_{17}^{D} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17DC_{17}^{D} is presented in Fig 7.

Refer to caption
Figure 7: C17DC_{17}^{D}

Remarks: There exists other lines that contain at least three points in C17DC_{17}^{D}. They are: {1,α+7,13(α+10)}\{1,\alpha+7,13(\alpha+10)\},{16,4(α+10),16(α+7)}\{16,4(\alpha+10),16(\alpha+7)\}.

Lemma 3.13.

Set 𝒞17D\mathcal{C}_{17}^{D} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17D𝒞17DC_{17}^{D}\in\mathcal{C}_{17}^{D}. Then Aut(P(172))C17D=σ4Aut(P(17^{2}))_{C_{17}^{D}}=\langle\sigma\rangle\cong\mathbb{Z}_{4}, where σ(γ)=4γ17\sigma(\gamma)=4\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. Moreover, |𝒞17D|=20808|\mathcal{C}_{17}^{D}|=20808.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{{17}^{2}}). Note that the point 0 in the clique C17DC_{17}^{D} is a intersecting point of three lines, and one of these lines contains five points in this clique. If ϕAut(P(172))C17D\phi\in Aut(P(17^{2}))_{C_{17}^{D}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. And ϕ(H)=H\phi(H)=H, we have that aHv=aH=HaH^{v}=aH=H, then aHa\in H. So that ϕ(γ)=aγv\phi(\gamma)=a\gamma^{v} with aHa\in H, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{{17}^{2}}). Let H={1,16}H^{\prime}=\{1,16\} be a subset in FF17{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast} and H=HH^{\prime}=-H^{\prime}. Set :={H(α+7),4H(α+10)}\mathcal{L}:=\{H^{\prime}(\alpha+7),4H^{\prime}(\alpha+10)\} be the subset of two lines, which are presented in Fig 7. Then ϕ()=\phi(\mathcal{L})=\mathcal{L}. It follows that either ϕ(H(α+7))=H(α+7)\phi(H^{\prime}(\alpha+7))=H^{\prime}(\alpha+7), ϕ(4H(α+10))=4H(α+10)\phi(4H^{\prime}(\alpha+10))=4H^{\prime}(\alpha+10) or ϕ(H(α+7))=4H(α+10)\phi(H^{\prime}(\alpha+7))=4H^{\prime}(\alpha+10), ϕ(4H(α+10))=H(α+7)\phi(4H^{\prime}(\alpha+10))=H^{\prime}(\alpha+7).

If ϕ(H(α+7))=H(α+7)\phi(H^{\prime}(\alpha+7))=H^{\prime}(\alpha+7) and ϕ(4H(α+10))=4H(α+10)\phi(4H^{\prime}(\alpha+10))=4H^{\prime}(\alpha+10) , then we have that a(H(α+7))v=aH(α+7)v=H(α+7)a(H^{\prime}(\alpha+7))^{v}=aH^{\prime}(\alpha+7)^{v}=H^{\prime}(\alpha+7) and a(4H(α+10))v=4aH(α+10)v=4H(α+10)a(4H^{\prime}(\alpha+10))^{v}=4aH^{\prime}(\alpha+10)^{v}=4H^{\prime}(\alpha+10), then a{1,1}a\in\{1,-1\} and v=1v=1. Now set ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma and ϕ2(γ)=γ\phi_{2}(\gamma)=-\gamma for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ(H(α+7))=4H(α+10)\phi(H^{\prime}(\alpha+7))=4H^{\prime}(\alpha+10) and ϕ(4H(α+10))=H(α+7)\phi(4H^{\prime}(\alpha+10))=H^{\prime}(\alpha+7), then we have that a(H(α+7))v=aH(α+7)v=4H(α+10)a(H^{\prime}(\alpha+7))^{v}=aH^{\prime}(\alpha+7)^{v}=4H^{\prime}(\alpha+10) and a(4H(α+10))v=4aH(α+10)v=H(α+7)a(4H^{\prime}(\alpha+10))^{v}=4aH^{\prime}(\alpha+10)^{v}=H^{\prime}(\alpha+7), then a{4,4}a\in\{4,-4\} and |v|=2|v|=2. Now set ϕ3(γ)=4γ17\phi_{3}(\gamma)=4\gamma^{17}, ϕ4(γ)=4γ17\phi_{4}(\gamma)=-4\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Set σ=ϕ3\sigma=\phi_{3}, now we have that σ4=1\sigma^{4}=1 and σ={1,σ,σ2,σ3}={ϕ1,ϕ3,ϕ2,ϕ4}4\langle\sigma\rangle=\{1,\sigma,\sigma^{2},\sigma^{3}\}=\{\phi_{1},\phi_{3},\phi_{2},\phi_{4}\}\cong\mathbb{Z}_{4}. The action of σ\sigma on the points in clique C17DC_{17}^{D} is presented in the following table.

γ\gamma 0 11 44 1616 1313 α+7\alpha+7 16(α+7)16(\alpha+7) 4(α+10)4(\alpha+10) 13(α+10)13(\alpha+10)
σ(γ)\sigma(\gamma) 0 44 1616 1313 11 13(α+10)13(\alpha+10) 4(α+10)4(\alpha+10) α+7\alpha+7 16(α+7)16(\alpha+7)

Followed by the above arguments, we know that σ(C17D)=C17D\sigma(C_{17}^{D})=C_{17}^{D} and then Aut(P(172))C17D=σ4Aut(P(17^{2}))_{C_{17}^{D}}=\langle\sigma\rangle\cong\mathbb{Z}_{4} where σ(γ)=4γ17\sigma(\gamma)=4\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{{17}^{2}}.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17D|=|Aut(P(172)):Aut(P(172))C17D|=20808|\mathcal{C}_{17}^{D}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{D}}|=20808. \Box


Set Cs,γ,i:={sδix+γxC17DFF172}C_{s,\gamma,i}:=\{s\delta^{i}x+\gamma\mid x\in C_{17}^{D}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\} where sS0s\in S_{0}, i{18}i\in\{1\dots 8\}, γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Lemma 3.14.

Set 𝒞17D\mathcal{C}_{17}^{D} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17D𝒞17C_{17}^{D}\in\mathcal{C}_{17}. Then 𝒞17D={Cs,γ,isS0,i{18},γFF172}\mathcal{C}_{17}^{D}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 8\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {Cs,γ,isS0,i{18},γFF172}𝒞17D\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 8\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\subset\mathcal{C}_{17}^{D}. Now we will prove that Cs,γ,i=Cs,γ,i\hbox{\rm C}_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and i=ii=i^{\prime}, where s,sS0s,s^{\prime}\in S_{0}, i,i{18}i,i^{\prime}\in\{1\dots 8\} and γ,γFF172\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Note that the intersection point of three lines in the clique Cs,γ,iC_{s,\gamma,i} is γ\gamma. If Cs,γ,i=Cs,γ,iC_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and {sδi,4sδi,13sδi,16sδi}={sδi,4sδi,13sδi,16sδi}\{s\delta^{i},4s\delta^{i},13s\delta^{i},16s\delta^{i}\}=\{s^{\prime}\delta^{i^{\prime}},4s^{\prime}\delta^{i^{\prime}},13s^{\prime}\delta^{i^{\prime}},16s^{\prime}\delta^{i^{\prime}}\}. Now we have that sδi{sδi,4sδi,13sδi,16sδi}s\delta^{i}\in\{s^{\prime}\delta^{i^{\prime}},4s^{\prime}\delta^{i^{\prime}},13s^{\prime}\delta^{i^{\prime}},16s^{\prime}\delta^{i^{\prime}}\}. It follows that s=ss=s^{\prime} and i=ii=i^{\prime}.

And then 𝒞17D={Cs,γ,isS0,i{18},γFF172}\mathcal{C}_{17}^{D}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 8\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γ,isS0,i{18},γFFq2}|=q+12×q2×8=20808|\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 8\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{q}^{2}\}|=\frac{q+1}{2}\times q^{2}\times 8=20808. \Box

3.3.5 C17EC_{17}^{E}-construction

Let H={δ4,δ8,δ12,δ16}={4,16,13,1}H=\left\{\delta^{4},\delta^{8},\delta^{12},\delta^{16}\right\}=\left\{4,16,13,1\right\} be a subgroup in FF17{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast} with δ:=10\delta:=10. Then FF17=HδHδ2Hδ3H={4,16,13,1}{6,7,11,10}{9,2,8,5}{5,3,12,14}{\hbox{\sf F\kern-4.29993ptF}}_{17}^{\ast}=H\cup\delta H\cup\delta^{2}H\cup\delta^{3}H=\left\{4,16,13,1\right\}\cup\left\{6,7,11,10\right\}\cup\left\{9,2,8,5\right\}\cup\left\{5,3,12,14\right\}.

Set C17E:={0}H(α+7){1,4,16}{4(α+10)}C_{17}^{E}:=\{0\}\cup H\cup(\alpha+7)\{1,4,16\}\cup\{4(\alpha+10)\} be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17EC_{17}^{E} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17EC_{17}^{E} is presented in Fig 8.

Refer to caption
Figure 8: C17EC_{17}^{E}
Lemma 3.15.

Set 𝒞17E\mathcal{C}_{17}^{E} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17E𝒞17EC_{17}^{E}\in\mathcal{C}_{17}^{E}. Then Aut(P(172))C17E=1Aut(P(17^{2}))_{C_{17}^{E}}=1 and |𝒞17E|=83232|\mathcal{C}_{17}^{E}|=83232.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). Note that the point 0 in the clique C17EC_{17}^{E} is a intersecting point of two lines, where one line contain five points in this clique and the other line contain four points; the point 4(α+10)4(\alpha+10) in the clique C17EC_{17}^{E} is a intersecting point of two lines, which contain three points separately in this clique. If ϕAut(P(172))C17E\phi\in Aut(P(17^{2}))_{C_{17}^{E}}, then ϕ(0)=0\phi(0)=0, ϕ(4(α+10))=4(α+10)\phi(4(\alpha+10))=4(\alpha+10). So we have that b=0b=0 and a(4(α+10))v=4a(α+10)v=4(α+10)a(4(\alpha+10))^{v}=4a(\alpha+10)^{v}=4(\alpha+10), then a=1a=1 and v=1v=1. Followed by the above arguments, we know that |Aut(P(172))C17E|=1|Aut(P(17^{2}))_{C_{17}^{E}}|=1.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17E|=|Aut(P(172)):Aut(P(172))C17E|=83232|\mathcal{C}_{17}^{E}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{E}}|=83232. \Box

Set Cs,γη:={sxη+γ|xC17EFF172}C_{s,\gamma}^{\eta}:=\{sx^{\eta}+\gamma|x\in C_{17}^{E}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\} for η{1,17}\eta\in\{1,17\}, where sSs\in S and γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}} .

Lemma 3.16.

Set 𝒞17E\mathcal{C}_{17}^{E} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17E𝒞17EC_{17}^{E}\in\mathcal{C}_{17}^{E}. Then 𝒞17E={Cs,γsS,γFF172}{Cs,γ17sS,γFF172}\mathcal{C}_{17}^{E}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\cup\{C_{s,\gamma}^{17}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {{Cs,γsS,γFF172}{Cs,γ17sS,γFF172}}𝒞17E\{\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\cup\{C_{s,\gamma}^{17}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\}\subset\mathcal{C}_{17}^{E}. Now we will prove that Cs,γη=Cs,γηC_{s,\gamma}^{\eta}=C_{s^{\prime},\gamma^{\prime}}^{\eta^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and η=η\eta=\eta^{\prime}, where s,sSs,s^{\prime}\in S, γ,γFF172\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}} and η,η{1,17}\eta,\eta^{\prime}\in\{1,17\}. If Cs,γη=Cs,γηC_{s,\gamma}^{\eta}=C_{s^{\prime},\gamma^{\prime}}^{\eta^{\prime}}, then γ=γ\gamma=\gamma^{\prime}, the subset sHη=sHηsH^{\eta}=s^{\prime}H^{\eta^{\prime}} and 4(α+10)ηs=4(α+10)ηs4(\alpha+10)^{\eta}s=4(\alpha+10)^{\eta^{\prime}}s^{\prime}. Then s{s,4s,16s,13s}s\in\{s^{\prime},4s^{\prime},16s^{\prime},13s^{\prime}\}, and we have s=ss=s^{\prime} and η=η\eta=\eta^{\prime}.

And then 𝒞17E={Cs,γsS,γFF172}{Cs,γ17sS,γFF172}\mathcal{C}_{17}^{E}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\cup\{C_{s,\gamma}^{17}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γsS,γFF172}{Cs,γ17sS,γFF172}|=q212×q2×2=83232|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\cup\{C_{s,\gamma}^{17}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232. \Box

3.3.6 C17FC_{17}^{F}-construction

Let H={1,4,16}H=\{1,4,16\} be a subset in FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast}. Set C17F:={0}H(α+7){1,4}(α+10){1,4}{11(α+11)}C_{17}^{F}:=\{0\}\cup H\cup(\alpha+7)\{1,4\}\cup(\alpha+10)\{1,4\}\cup\{11(\alpha+11)\} be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17FC_{17}^{F} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17FC_{17}^{F} is presented in Fig 9.

Refer to caption
Figure 9: C17FC_{17}^{F}
Lemma 3.17.

Set 𝒞17F\mathcal{C}_{17}^{F} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17F𝒞17FC_{17}^{F}\in\mathcal{C}_{17}^{F}. Then Aut(P(172))C17F=ϕ2Aut(P(17^{2}))_{C_{17}^{F}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2} where ϕ(γ)=10(α+6)γ17+11(α+11)\phi^{\prime}(\gamma)=10(\alpha+6)\gamma^{17}+11(\alpha+11) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. Moreover, |𝒞17F|=41616|\mathcal{C}_{17}^{F}|=41616.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). If ϕAut(P(172))C17F\phi\in Aut(P(17^{2}))_{C_{17}^{F}}, then ϕ(4)=4\phi(4)=4 and 4a+b=44a+b=4. Set 𝒫:={0,11(α+11)}\mathcal{P}:=\{0,11(\alpha+11)\} be the two special points which are the intersecting points of three lines in clique C17FC_{17}^{F}. Then ϕ(𝒫)=𝒫\phi(\mathcal{P})=\mathcal{P}. It follows that either ϕ(0)=0\phi(0)=0, ϕ(11(α+11))=11(α+11)\phi(11(\alpha+11))=11(\alpha+11) or ϕ(0)=11(α+11)\phi(0)=11(\alpha+11), ϕ(11(α+11))=0\phi(11(\alpha+11))=0.

If ϕ(0)=0\phi(0)=0 and ϕ(11(α+11))=11(α+11)\phi(11(\alpha+11))=11(\alpha+11), then we have that a=1a=1, b=0b=0 and v=1v=1. So that ϕ(γ)=γ\phi(\gamma)=\gamma for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ(0)=11(α+11)\phi^{\prime}(0)=11(\alpha+11) and ϕ(11(α+11))=0\phi^{\prime}(11(\alpha+11))=0, then we have that a=10(α+6)a=10(\alpha+6), b=11(α+11)b=11(\alpha+11) and |v|=2|v|=2. So that ϕ(γ)=10(α+6)γ17+11(α+11)\phi^{\prime}(\gamma)=10(\alpha+6)\gamma^{17}+11(\alpha+11) and ϕ2=1\phi^{\prime 2}=1, ϕ={ϕ,ϕ}2\langle\phi^{\prime}\rangle=\{\phi,\phi^{\prime}\}\cong\mathbb{Z}_{2}

The action of ϕ\phi^{\prime} acting on the points in the clique C17FC_{17}^{F} is presented by the following table.

γ\gamma 0 11 44 1616 α+7\alpha+7 4(α+7)4(\alpha+7) α+10\alpha+10 4(α+10)4(\alpha+10) 11(α+11)11(\alpha+11)
ϕ(γ)\phi^{\prime}(\gamma) 11(α+11)11(\alpha+11) 4(α+7)4(\alpha+7) 44 α+10\alpha+10 4(α+10)4(\alpha+10) 11 1616 α+7\alpha+7 0

Followed by the above arguments, we know that ϕ(C17F)=C17F\phi^{\prime}(C_{17}^{F})=C_{17}^{F} then Aut(P(172))C17F=ϕ2Aut(P(17^{2}))_{C_{17}^{F}}=\langle\phi^{\prime}\rangle\cong\mathbb{Z}_{2} where ϕ(γ)=10(α+6)γ17+11(α+11)\phi^{\prime}(\gamma)=10(\alpha+6)\gamma^{17}+11(\alpha+11) with γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{{17}^{2}}.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17F|=|Aut(P(172)):Aut(P(172))C17F|=41616|\mathcal{C}_{17}^{F}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{F}}|=41616. \Box

Set Cs,γ:={sx+γxC17FFF172}C_{s,\gamma}:=\left\{sx+\gamma\mid x\in C_{17}^{F}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\right\} where sSs\in S, γFFq2\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}.

Lemma 3.18.

Set 𝒞17F\mathcal{C}_{17}^{F} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17F𝒞17C_{17}^{F}\in\mathcal{C}_{17}. Then 𝒞17F={Cs,γsS,γFF172}\mathcal{C}_{17}^{F}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {Cs,γsS,γFF172}𝒞17F\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\subset\mathcal{C}_{17}^{F}. Now we will prove that Cs,γ=Cs,γ\hbox{\rm C}_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} where s,sSs,s^{\prime}\in S and γ,γFF172\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If Cs,γ=Cs,γC_{s,\gamma}=C_{s^{\prime},\gamma^{\prime}}, then 4s+γ=4s+γ4s+\gamma=4s^{\prime}+\gamma^{\prime} and the two special points {γ,11(α+11)s+γ}={γ,11(α+11)s+γ}\{\gamma,11(\alpha+11)s+\gamma\}=\{\gamma^{\prime},11(\alpha+11)s^{\prime}+\gamma^{\prime}\}. If γ=γ\gamma=\gamma^{\prime} and 11(α+11)s+γ=11(α+11)s+γ11(\alpha+11)s+\gamma=11(\alpha+11)s^{\prime}+\gamma^{\prime}, then s=ss=s^{\prime} and γ=γ\gamma=\gamma^{\prime}. If γ=11(α+11)s+γ\gamma=11(\alpha+11)s^{\prime}+\gamma^{\prime} and 11(α+11)s+γ=γ11(\alpha+11)s+\gamma=\gamma^{\prime}, then (α+11)=10(\alpha+11)=10, a contradiction. Now, we have s=ss=s^{\prime} and γ=γ\gamma=\gamma^{\prime}.

And then 𝒞17F={Cs,γsS,γFF172}\mathcal{C}_{17}^{F}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γsS,γFF172}|=q212×q2=41616|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}=41616. \Box

3.3.7 C17GC_{17}^{G}-construction

Set C17G:={0}{1,16}(α+7){1,4}(α+10){1,4}{11(α+11)}{11(α+6)}C_{17}^{G}:=\{0\}\cup\{1,16\}\cup(\alpha+7)\{1,4\}\cup(\alpha+10)\{1,4\}\cup\{11(\alpha+11)\}\cup\{11(\alpha+6)\} be a subset of finite field FF172{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. By Magma, we have that C17GC_{17}^{G} is a maximal clique in P(172)P(17^{2}) with size q+12\frac{q+1}{2} for q=17q=17. The structure of the clique C17GC_{17}^{G} is presented in Fig 10.

Refer to caption
Figure 10: C17GC_{17}^{G}

Remarks: There exists other lines that contain at least three points in C17GC_{17}^{G}. They are:{0,α+10,4(α+10)}\{0,\alpha+10,4(\alpha+10)\} and {0,α+7,4(α+7)}\{0,\alpha+7,4(\alpha+7)\}.

Lemma 3.19.

Set 𝒞17G\mathcal{C}_{17}^{G} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17G𝒞17GC_{17}^{G}\in\mathcal{C}_{17}^{G}. Then Aut(P(172))C17G=σ,τD6Aut(P(17^{2}))_{C_{17}^{G}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6} where σ(γ)=7(α+6)γ+11(α+11)\sigma(\gamma)=7(\alpha+6)\gamma+11(\alpha+11) and τ(γ)=7(α+11)γ17+11(α+6)\tau(\gamma)=7(\alpha+11)\gamma^{17}+11(\alpha+6) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}. Moreover, |𝒞17F|=13872|\mathcal{C}_{17}^{F}|=13872.

Proof   Note that for any ϕAut (P(172))\phi\in\hbox{\rm Aut\,}(P(17^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF172b\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}, vGal(FF172)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}). Set 𝒫:={0,11(α+11),11(α+6)}\mathcal{P}:=\{0,11(\alpha+11),11(\alpha+6)\} be the three intersecting points in the clique C17GC_{17}^{G}, where for any p1,p2𝒫p_{1},p_{2}\in\mathcal{P}, there does not exist γ𝒞17G/𝒫\gamma\in\mathcal{C}_{17}^{G}/\mathcal{P}, such that p1,p2,γp_{1},p_{2},\gamma belong to a line. Then ϕ(𝒫)=𝒫\phi(\mathcal{P})=\mathcal{P} for any ϕAut(P(172))G17\phi\in Aut(P(17^{2}))_{G_{17}}. Now we have the following six cases.

If ϕ1(0)=0\phi_{1}(0)=0, ϕ1(11(α+11))=11(α+11)\phi_{1}(11(\alpha+11))=11(\alpha+11) and ϕ1(11(α+6))=11(α+6)\phi_{1}(11(\alpha+6))=11(\alpha+6), then we have that a=1a=1, b=0b=0 and v=1v=1. It follows that ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ2(0)=0\phi_{2}(0)=0, ϕ2(11(α+11))=11(α+6)\phi_{2}(11(\alpha+11))=11(\alpha+6) and ϕ2(11(α+6))=11(α+11)\phi_{2}(11(\alpha+6))=11(\alpha+11), then we have that a=16a=16, b=0b=0 and |v|=2|v|=2. It follows that ϕ2(γ)=16γ17\phi_{2}(\gamma)=16\gamma^{17} for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ3(0)=11(α+11)\phi_{3}(0)=11(\alpha+11), ϕ3(11(α+11))=0\phi_{3}(11(\alpha+11))=0 and ϕ3(11(α+6))=11(α+6)\phi_{3}(11(\alpha+6))=11(\alpha+6), then we have that a=10(α+6)a=10(\alpha+6), b=11(α+11)b=11(\alpha+11) and |v|=2|v|=2. It follows that ϕ3(γ)=10(α+6)γ17+11(α+11)\phi_{3}(\gamma)=10(\alpha+6)\gamma^{17}+11(\alpha+11) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ4(0)=11(α+11)\phi_{4}(0)=11(\alpha+11), ϕ4(11(α+11))=11(α+6)\phi_{4}(11(\alpha+11))=11(\alpha+6) and ϕ4(11(α+6))=0\phi_{4}(11(\alpha+6))=0, then we have that a=7(α+6)a=7(\alpha+6), b=11(α+11)b=11(\alpha+11) and v=1v=1. It follows that ϕ4(γ)=7(α+6)γ+11(α+11)\phi_{4}(\gamma)=7(\alpha+6)\gamma+11(\alpha+11) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ5(0)=11(α+6)\phi_{5}(0)=11(\alpha+6), ϕ5(11(α+11))=11(α+11)\phi_{5}(11(\alpha+11))=11(\alpha+11) and ϕ5(11(α+6))=0\phi_{5}(11(\alpha+6))=0, then we have that a=7(α+11)a=7(\alpha+11), b=11(α+6)b=11(\alpha+6) and |v|=2|v|=2. It follows that ϕ5(γ)=7(α+11)γ17+11(α+6)\phi_{5}(\gamma)=7(\alpha+11)\gamma^{17}+11(\alpha+6) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

If ϕ6(0)=11(α+6)\phi_{6}(0)=11(\alpha+6), ϕ6(11(α+11))=0\phi_{6}(11(\alpha+11))=0 and ϕ6(11(α+6))=11(α+11)\phi_{6}(11(\alpha+6))=11(\alpha+11), then we have that a=10(α+11)a=10(\alpha+11), b=11(α+6)b=11(\alpha+6) and v=1v=1. It follows that ϕ6(γ)=10(α+11)γ+11(α+6)\phi_{6}(\gamma)=10(\alpha+11)\gamma+11(\alpha+6) for any γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Let σ=ϕ4\sigma=\phi_{4}, τ=ϕ5\tau=\phi_{5}, then we have that σ3=1\sigma^{3}=1, τ2=1\tau^{2}=1, τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1} then σ,τ={1,σ,σ2,τ,τσ,τσ2}={ϕ1,ϕ4,ϕ6,ϕ5,ϕ3,ϕ2}D6\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\tau,\tau\sigma,\tau\sigma^{2}\}=\{\phi_{1},\phi_{4},\phi_{6},\phi_{5},\phi_{3},\phi_{2}\}\cong{\rm D}_{6}. The action of σ\sigma and τ\tau acting on the points of clique C17GC_{17}^{G} is presented in the following table.

γ\gamma 0 1 16 α+7\alpha+7 4(α+7)4(\alpha+7) α+10\alpha+10 4(α+10)4(\alpha+10) 11(α+6)11(\alpha+6) 11(α+11)11(\alpha+11)
σ(γ)\sigma(\gamma) 11(α+11)11(\alpha+11) α+10\alpha+10 4(α+7)4(\alpha+7) 1616 α+7\alpha+7 4(α+10)4(\alpha+10) 11 0 11(α+6)11(\alpha+6)
τ(γ)\tau(\gamma) 11(α+6)11(\alpha+6) α+7\alpha+7 4(α+10)4(\alpha+10) 11 α+10\alpha+10 4(α+7)4(\alpha+7) 1616 0 11(α+11)11(\alpha+11)

Followed by the above arguments, we know that σ(C17G)=C17G\sigma(C_{17}^{G})=C_{17}^{G} and τ(C17G)=C17G\tau(C_{17}^{G})=C_{17}^{G}, then Aut(P(172))C17G=σ,τD6Aut(P(17^{2}))_{C_{17}^{G}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6} where σ(γ)=7(α+6)γ+11(α+11)\sigma(\gamma)=7(\alpha+6)\gamma+11(\alpha+11) and τ(γ)=7(α+11)γ17+11(α+6)\tau(\gamma)=7(\alpha+11)\gamma^{17}+11(\alpha+6) with γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Note that |Aut(P(172))|=q212×q2×2=83232\left|Aut(P(17^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=83232, so we have that |𝒞17G|=|Aut(P(172)):Aut(P(172))C17G|=13872|\mathcal{C}_{17}^{G}|=|Aut(P(17^{2})):Aut(P(17^{2}))_{C_{17}^{G}}|=13872. \Box

Set Cs,γ:={sx+γxC17GFF172}C_{s,\gamma}:=\left\{sx+\gamma\mid x\in C_{17}^{G}\cap{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\right\} where sSs\in S, γFF172\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}.

Lemma 3.20.

Set 𝒞17G\mathcal{C}_{17}^{G} be the orbit of Aut(P(172))Aut(P(17^{2})) acting on the cliques with C17G𝒞17C_{17}^{G}\in\mathcal{C}_{17}. Then 𝒞17G={Cs,γsS,γFF172}\mathcal{C}_{17}^{G}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}.

Proof   It is obvious that {Cs,γsS,γFF172}𝒞17G\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}\subset\mathcal{C}_{17}^{G}. If γ=γ=0\gamma=\gamma^{\prime}=0, now we will prove that Cs,0=Cs,0\hbox{\rm C}_{s,0}=C_{s^{\prime},0} if and only if s=ss=s^{\prime}, where s,sSs,s^{\prime}\in S.

If Cs,0=Cs,0C_{s,0}=C_{s^{\prime},0}, then {0,11(α+11)s,11(α+6)s}={0,11(α+11)s,11(α+6)s}\{0,11(\alpha+11)s,11(\alpha+6)s\}=\{0,11(\alpha+11)s^{\prime},11(\alpha+6)s^{\prime}\}. If 11(α+11)s=11(α+6)s11(\alpha+11)s=11(\alpha+6)s^{\prime} and 11(α+6)s=11(α+11)s11(\alpha+6)s=11(\alpha+11)s^{\prime} then (α+6)2=(α+11)2(\alpha+6)^{2}=(\alpha+11)^{2}, a contradiction. Now, we have s=ss=s^{\prime}.

From Lemma 3.19, we have that C17G=ϕ4(C17G)=ϕ6(C17G)=7(α+6)C17G+11(α+11)=10(α+11)C17G+11(α+6)C_{17}^{G}=\phi_{4}(C_{17}^{G})=\phi_{6}(C_{17}^{G})=7(\alpha+6)C_{17}^{G}+11(\alpha+11)=10(\alpha+11)C_{17}^{G}+11(\alpha+6), and 7(α+6),10(α+10)S7(\alpha+6),10(\alpha+10)\in S.

And then 𝒞17G={Cs,γsS,γFF172}\mathcal{C}_{17}^{G}=\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}, because |{Cs,γsS,γFF172}|=q212×q2×13=13872|\{C_{s,\gamma}\mid s\in S,\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{17^{2}}\}|=\frac{q^{2}-1}{2}\times q^{2}\times\frac{1}{3}=13872. \Box

3.4 Maximal cliques in Paley graph P(112)P(11^{2})

We can choose a primitive element δFF11\delta\in{\hbox{\sf F\kern-4.29993ptF}}_{11} and αFF112\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{{11}^{2}} be a root of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, such that FF11=δ=2{\hbox{\sf F\kern-4.29993ptF}}_{11}^{*}=\langle\delta\rangle=\langle 2\rangle and S0={1,α,α+4,α4,α+5,α5}S_{0}=\{1,\alpha,\alpha+4,\alpha-4,\alpha+5,\alpha-5\}. Let H={1,9}H=\{1,9\} be a subset in FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}^{\ast}. Set C11:={0}H(α+5)H10(α+6)HC_{11}:=\{0\}\cup H\cup(\alpha+5)H\cup 10(\alpha+6)H be a subset of finite field FF112{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}. By Magma, we have that C11C_{11} is a maximal clique in P(112)P(11^{2}) with size q+32\frac{q+3}{2} for q=11q=11. The structure of the clique C11C_{11} is presented in Fig 11.

Refer to caption
Figure 11: C11C_{11}
Lemma 3.21.

Set 𝒞11\mathcal{C}_{11} be the orbit of Aut(P(112))Aut(P(11^{2})) acting on the cliques with C11𝒞11C_{11}\in\mathcal{C}_{11}. Then Aut(P(112))C11=σ,τD6Aut(P(11^{2}))_{C_{11}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6}, where σ(γ)=(α+5)γ\sigma(\gamma)=(\alpha+5)\gamma and τ(γ)=(α+5)γ11\tau(\gamma)=(\alpha+5)\gamma^{11} for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}. Moreover, |𝒞11|=2420|\mathcal{C}_{11}|=2420.

Proof   Note that for any ϕAut (P(112))\phi\in\hbox{\rm Aut\,}(P(11^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF112b\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}, vGal(FF112)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}). Set 𝒫:={1,α+5,10(α+6)}\mathcal{P}:=\{1,\alpha+5,10(\alpha+6)\} be the three special points which are the intersecting points of two lines in clique C11C_{11}. Then ϕ(𝒫)=𝒫\phi(\mathcal{P})=\mathcal{P}. Now we have the following six cases.

If ϕ1(1)=1\phi_{1}(1)=1, ϕ1(α+5)=α+5\phi_{1}(\alpha+5)=\alpha+5 and ϕ1(10(α+6))=10(α+6)\phi_{1}(10(\alpha+6))=10(\alpha+6), then we have that a=1a=1, b=0b=0 and v=1v=1. It follows that ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

If ϕ2(1)=1\phi_{2}(1)=1, ϕ2(α+5)=10(α+6)\phi_{2}(\alpha+5)=10(\alpha+6) and ϕ2(10(α+6))=α+5\phi_{2}(10(\alpha+6))=\alpha+5, then we have that a=1a=1, b=0b=0 and |v|=2|v|=2. It follows that ϕ2(γ)=γ11\phi_{2}(\gamma)=\gamma^{11} for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

If ϕ3(1)=α+5\phi_{3}(1)=\alpha+5, ϕ3(α+5)=10(α+6)\phi_{3}(\alpha+5)=10(\alpha+6) and ϕ3(10(α+6))=1\phi_{3}(10(\alpha+6))=1, then we have that a=α+5a=\alpha+5, b=0b=0 and v=1v=1. It follows that ϕ3(γ)=(α+5)γ\phi_{3}(\gamma)=(\alpha+5)\gamma for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

If ϕ4(1)=α+5\phi_{4}(1)=\alpha+5, ϕ4(α+5)=1\phi_{4}(\alpha+5)=1 and ϕ4(10(α+6))=10(α+6)\phi_{4}(10(\alpha+6))=10(\alpha+6), then we have that a=α+5a=\alpha+5, b=0b=0 and |v|=2|v|=2. It follows that ϕ4(γ)=(α+5)γ11\phi_{4}(\gamma)=(\alpha+5)\gamma^{11} for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

If ϕ5(1)=10(α+6)\phi_{5}(1)=10(\alpha+6), ϕ5(α+5)=α+5\phi_{5}(\alpha+5)=\alpha+5 and ϕ5(10(α+6))=1\phi_{5}(10(\alpha+6))=1, then we have that a=10(α+6)a=10(\alpha+6), b=0b=0 and |v|=2|v|=2. It follows that ϕ5(γ)=10(α+6)γ11\phi_{5}(\gamma)=10(\alpha+6)\gamma^{11} for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

If ϕ6(1)=10(α+6)\phi_{6}(1)=10(\alpha+6), ϕ6(α+5)=1\phi_{6}(\alpha+5)=1 and ϕ6(10(α+6))=α+5\phi_{6}(10(\alpha+6))=\alpha+5, then we have that a=10(α+6)a=10(\alpha+6), b=0b=0 and v=1v=1. It follows that ϕ6(γ)=10(α+6)γ\phi_{6}(\gamma)=10(\alpha+6)\gamma for any γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

Set σ=ϕ3\sigma=\phi_{3}, τ=ϕ4\tau=\phi_{4}, then we have that σ3=1\sigma^{3}=1, τ2=1\tau^{2}=1, τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1}, then σ,τ={1,σ,σ2,τ,τσ,τσ2}={ϕ1,ϕ3,ϕ6,ϕ4,ϕ2,ϕ5}D6\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\tau,\tau\sigma,\tau\sigma^{2}\}=\{\phi_{1},\phi_{3},\phi_{6},\phi_{4},\phi_{2},\phi_{5}\}\cong{\rm D}_{6}. The action of σ\sigma and τ\tau on the points of clique C11C_{11} is presented in the following table.

γ\gamma 0 1 9 α+5\alpha+5 9(α+5)9(\alpha+5) 2(α+6)2(\alpha+6) 10(α+6)10(\alpha+6)
σ(γ)\sigma(\gamma) 0 α+5\alpha+5 9(α+5)9(\alpha+5) 10(α+6)10(\alpha+6) 2(α+6)2(\alpha+6) 99 11
τ(γ)\tau(\gamma) 0 α+5\alpha+5 9(α+5)9(\alpha+5) 11 99 2(α+6)2(\alpha+6) 10(α+6)10(\alpha+6)

Followed by the above arguments, we know that σ(C11)=C11\sigma(C_{11})=C_{11} and τ(C11)=C11\tau(C_{11})=C_{11}, then Aut(P(112))C11=σ,τD6Aut(P(11^{2}))_{C_{11}}=\langle\sigma,\tau\rangle\cong D_{6} where σ(γ)=(α+5)γ\sigma(\gamma)=(\alpha+5)\gamma, τ(γ)=(α+5)γ11\tau(\gamma)=(\alpha+5)\gamma^{11} with γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}.

Note that |Aut(P(112))|=q212×q2×2=14520\left|Aut(P(11^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=14520, so we have that |𝒞11|=|Aut(P(112)):Aut(P(112))C11|=2420|\mathcal{C}_{11}|=|Aut(P(11^{2})):Aut(P(11^{2}))_{C_{11}}|=2420. \Box


Set Cs,η,γ:={sηx+γ|xC11FF112}C_{s,\eta,\gamma}:=\{s\eta x+\gamma|x\in C_{11}\cap{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\} for η{1,α}\eta\in\{1,\alpha\}, where sFF11s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast} and γFF112\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}} .

Lemma 3.22.

Set 𝒞11\mathcal{C}_{11} be the orbit of Aut(P(112))Aut(P(11^{2})) acting on the cliques with C11𝒞11C_{11}\in\mathcal{C}_{11}. Then 𝒞11={Cs,1,γsFF11,γFF112}{Cs,α,γsFF11,γFF112}\mathcal{C}_{11}=\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}.

Proof   It is obvious that {Cs,1,γsFF11,γFF112}{Cs,α,γsFF11,γFF112}𝒞11\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}\subset\mathcal{C}_{11}. Now we will prove that Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and η=η\eta=\eta^{\prime}, where s,sFF11s,s^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast}, γ,γFF112\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}} and η,η{1,α}\eta,\eta^{\prime}\in\{1,\alpha\}.

If Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the three special intersecting points {sη+γ,(α+5)sη+γ,10(α+6)sη+γ}={sη+γ,(α+5)sη+γ,10(α+6)sη+γ}\{s\eta+\gamma,(\alpha+5)s\eta+\gamma,10(\alpha+6)s\eta+\gamma\}=\{s^{\prime}\eta^{\prime}+\gamma^{\prime},(\alpha+5)s^{\prime}\eta^{\prime}+\gamma^{\prime},10(\alpha+6)s^{\prime}\eta^{\prime}+\gamma^{\prime}\}. If sη+γ=sη+γs\eta+\gamma=s^{\prime}\eta^{\prime}+\gamma^{\prime}, then s=ss=s^{\prime} and η=η\eta=\eta^{\prime}; if sη+γ=(α+5)sη+γs\eta+\gamma=(\alpha+5)s^{\prime}\eta^{\prime}+\gamma^{\prime}, then we can get a contradiction; if sη+γ=10(α+6)sη+γs\eta+\gamma=10(\alpha+6)s^{\prime}\eta^{\prime}+\gamma^{\prime}, then we can get a contradiction. Now, we have s=ss=s^{\prime} and η=η\eta=\eta^{\prime}.

And then 𝒞11={Cs,1,γsFF11,γFF112}{Cs,α,γsFF11,γFF112}\mathcal{C}_{11}=\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}, because |{Cs,1,γsFF11,γFF112}{Cs,α,γsFF11,γFF112}|=(q1)×q2×2=2420|\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{11}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{11^{2}}\}|=(q-1)\times q^{2}\times 2=2420. \Box

3.5 Maximal cliques in Paley graph P(192)P(19^{2})

We can choose a primitive element δFF19\delta\in{\hbox{\sf F\kern-4.29993ptF}}_{19} and αFF192\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{{19}^{2}} be a root of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, such that FF19=δ=13{\hbox{\sf F\kern-4.29993ptF}}_{19}^{*}=\langle\delta\rangle=\langle 13\rangle and S0={1,α,α+2,α+3,α+4,α+6,α2,α3,α4,α6}S_{0}=\{1,\alpha,\alpha+2,\alpha+3,\alpha+4,\alpha+6,\alpha-2,\alpha-3,\alpha-4,\alpha-6\}.

3.5.1 C19AC_{19}^{A}-construction

Let H={1,1}H=\{1,-1\} be a subset in FF19{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast}. Set C19A:={0}{H,3H}9αH(α+3)H(α3)HC_{19}^{A}:=\{0\}\cup\{H,3H\}\cup 9\alpha H\cup(\alpha+3)H\cup(\alpha-3)H be a subset of finite field FF192{\hbox{\sf F\kern-4.29993ptF}}_{{19}^{2}}. By Magma, we have that C19AC_{19}^{A} is a maximal clique in P(192)P(19^{2}) with size q+32\frac{q+3}{2} for q=19q=19. The structure of the clique C19AC_{19}^{A} is presented in Fig 12.

Refer to caption
Figure 12: C19AC_{19}^{A}

Remarks: There exists other lines that contain at least three points in C19AC_{19}^{A}.

They are:{3,9α,α3}\{3,-9\alpha,\alpha-3\},{3,9α,(α+3)}\{3,9\alpha,-(\alpha+3)\},{3,9α,α+3}\{-3,-9\alpha,\alpha+3\},{3,9α,(α3)}\{-3,9\alpha,-(\alpha-3)\}.

Lemma 3.23.

Set 𝒞19A\mathcal{C}_{19}^{A} be the orbit of Aut(P(192))Aut(P(19^{2})) acting on the cliques with C19A𝒞19AC_{19}^{A}\in\mathcal{C}_{19}^{A}. Then Aut(P(192))C19A=σ×τ2×2Aut(P(19^{2}))_{C_{19}^{A}}=\langle\sigma\rangle\times\langle\tau\rangle\cong\mathbb{Z}_{2}\times\mathbb{Z}_{2}, where σ(γ)=γ\sigma(\gamma)=-\gamma, τ(γ)=γ19\tau(\gamma)=\gamma^{19} for any γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}. Moreover, |𝒞19A|=32490|\mathcal{C}_{19}^{A}|=32490.

Proof   Note that for any ϕAut (P(192))\phi\in\hbox{\rm Aut\,}(P(19^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF192b\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}, vGal(FF192)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}). Set 𝒫:={0,3,3}\mathcal{P}:=\{0,3,-3\} be the three special points which are the intersecting points of four lines in Figure 12, and one of these lines contain five points in the clique. Then ϕ(𝒫)=𝒫\phi(\mathcal{P})=\mathcal{P}. Now we have the following six cases.

If ϕ(0)=0\phi(0)=0, ϕ(3)=3\phi(3)=3 and ϕ(3)=3\phi(-3)=-3, then we have that a=1a=1, b=0b=0 and vGal(FF192)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}). Let ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma and ϕ2(γ)=γ19\phi_{2}(\gamma)=\gamma^{19} for any for any γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}.

If ϕ(0)=0\phi(0)=0, ϕ(3)=3\phi(3)=-3 and ϕ(3)=3\phi(-3)=3, then we have that a=1a=-1, b=0b=0 and vGal(FF192)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}). Let ϕ3(γ)=γ\phi_{3}(\gamma)=-\gamma and ϕ4(γ)=γ19\phi_{4}(\gamma)=-\gamma^{19} for any for any γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}.

If ϕ(0)=3\phi(0)=3, ϕ(3)=0\phi(3)=0 and ϕ(3)=3\phi(-3)=-3, then there are no solutions for a,ba,b and vv. If ϕ(0)=3\phi(0)=3, ϕ(3)=3\phi(3)=-3 and ϕ(3)=0\phi(-3)=0, then there are no solutions for a,ba,b and vv. If ϕ(0)=3\phi(0)=-3, ϕ(3)=0\phi(3)=0 and ϕ(3)=3\phi(-3)=3, then there are no solutions for a,ba,b and vv. If ϕ(0)=3\phi(0)=-3, ϕ(3)=3\phi(3)=3 and ϕ(3)=0\phi(-3)=0, then there are no solutions for a,ba,b and vv.

Set σ=ϕ3\sigma=\phi_{3}, τ=ϕ2\tau=\phi_{2}. Then we have that σ2=1\sigma^{2}=1, τ2=1\tau^{2}=1 and σ×τ={1,σ,τ,στ}={ϕ1,ϕ3,ϕ2,ϕ4}2×2\langle\sigma\rangle\times\langle\tau\rangle=\{1,\sigma,\tau,\sigma\tau\}=\{\phi_{1},\phi_{3},\phi_{2},\phi_{4}\}\cong\mathbb{Z}_{2}\times\mathbb{Z}_{2}. The action of σ\sigma and τ\tau on the points in the clique C19AC_{19}^{A} is presented in the following table.

γ\gamma 0 1 -1 33 3-3 9α9\alpha 9α-9\alpha (α+3)(\alpha+3) (α+3)-(\alpha+3) α3\alpha-3 (α3)-(\alpha-3)
σ(γ)\sigma(\gamma) 0 -1 1 3-3 33 9α-9\alpha 9α9\alpha (α+3)-(\alpha+3) (α+3)(\alpha+3) (α3)-(\alpha-3) (α3)(\alpha-3)
τ(γ)\tau(\gamma) 0 1 -1 33 3-3 9α-9\alpha 9α9\alpha (α3)-(\alpha-3) (α3)(\alpha-3) (α+3)-(\alpha+3) (α+3)(\alpha+3)

Followed by the above arguments, we know that σ(C19A)=C19A\sigma(C_{19}^{A})=C_{19}^{A} and τ(C19A)=C19A\tau(C_{19}^{A})=C_{19}^{A}, then Aut(P(192))C19A=σ×τ2×2Aut(P(19^{2}))_{C_{19}^{A}}=\langle\sigma\rangle\times\langle\tau\rangle\cong\mathbb{Z}_{2}\times\mathbb{Z}_{2} where σ(γ)=γ\sigma(\gamma)=-\gamma, τ(γ)=γ19\tau(\gamma)=\gamma^{19} for any γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}.

Note that |Aut(P(192))|=q212×q2×2=129960\left|Aut(P(19^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=129960, so we have that |𝒞19A|=|Aut(P(192)):Aut(P(192))C19A|=32490|\mathcal{C}_{19}^{A}|=|Aut(P(19^{2})):Aut(P(19^{2}))_{C_{19}^{A}}|=32490. \Box


Set Cs,γ,i:={six+γxC19AFF192}C_{s,\gamma,i}:=\left\{six+\gamma\mid x\in C_{19}^{A}\cap{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\right\} where sS0s\in S_{0}, i{19}i\in\{1\dots 9\}, γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}.

Lemma 3.24.

Set 𝒞19A\mathcal{C}_{19}^{A} be the orbit of Aut(P(192))Aut(P(19^{2})) acting on the cliques with C19A𝒞19C_{19}^{A}\in\mathcal{C}_{19}. Then 𝒞19A={Cs,γ,isS0,i{19},γFF192}\mathcal{C}_{19}^{A}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 9\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}.

Proof   It is obvious that {Cs,γ,isS0,i{19},γFF192}𝒞19A\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 9\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}\subset\mathcal{C}_{19}^{A}. Now we will prove that Cs,γ,i=Cs,γ,i\hbox{\rm C}_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and i=ii=i^{\prime}, where s,sS0s,s^{\prime}\in S_{0}, i,i{19}i,i^{\prime}\in\{1\dots 9\} and γ,γFF192\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}.

If Cs,γ,i=Cs,γ,iC_{s,\gamma,i}=C_{s^{\prime},\gamma^{\prime},i^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the subset of a line siH+γ=siH+γsiH^{\prime}+\gamma=s^{\prime}i^{\prime}H^{\prime}+\gamma^{\prime}. Then si{si,si}si\in\{s^{\prime}i^{\prime},-s^{\prime}i^{\prime}\}, and we have that s=ss=s^{\prime} and i=ii=i^{\prime}.

And then 𝒞19A={Cs,γ,isS0,i{19},γFF192}\mathcal{C}_{19}^{A}=\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 9\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}, because |{Cs,γ,isS0,i{19},γFF192}|=q+12×q2×9=32490|\{C_{s,\gamma,i}\mid s\in S_{0},i\in\{1\dots 9\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}|=\frac{q+1}{2}\times q^{2}\times 9=32490. \Box

3.5.2 C19BC_{19}^{B}-construction

Let H={1,3}H=\left\{1,3\right\} be a subset FF19{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast}, Set C19B:={0}H2H(α6)17H(α+6)9H(α4)10H(α+4)C_{19}^{B}:=\{0\}\cup H\cup 2H(\alpha-6)\cup 17H(\alpha+6)\cup 9H(\alpha-4)\cup 10H(\alpha+4) be a subset of finite field FF192{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}. By Magma, we have that C19BC_{19}^{B} is a maximal clique in P(192)P(19^{2}) with size q+32\frac{q+3}{2} for q=19q=19. The structure of the clique C19BC_{19}^{B} is presented in Fig 13.

Refer to caption
Figure 13: C19BC_{19}^{B}

Remarks: There exists other lines that contain at least three points in C19BC_{19}^{B}. They are:{1,13(α+6),2(α6),8(α4)}\{1,13(\alpha+6),2(\alpha-6),8(\alpha-4)\},{1,6(α6),17(α+6),11(α+4)}\{1,6(\alpha-6),17(\alpha+6),11(\alpha+4)\},{3,11(α+4),9(α4),2(α6)}\{3,11(\alpha+4),9(\alpha-4),2(\alpha-6)\},{3,8(α4),10(α+4),17(α+6)}\{3,8(\alpha-4),10(\alpha+4),17(\alpha+6)\}.

Lemma 3.25.

Set 𝒞19B\mathcal{C}_{19}^{B} be the orbit of Aut(P(192))Aut(P(19^{2})) acting on the cliques with C19B𝒞19BC_{19}^{B}\in\mathcal{C}_{19}^{B}. Then Aut(P(192))C19B=σ,τD10Aut(P(19^{2}))_{C_{19}^{B}}=\langle\sigma,\tau\rangle\cong{\rm D}_{10}, where σ(γ)=10(α+4)γ\sigma(\gamma)=10(\alpha+4)\gamma and τ(γ)=10(α+4)γ19\tau(\gamma)=10(\alpha+4)\gamma^{19} for any γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{{19}^{2}}. Moreover, |𝒞19B|=12996|\mathcal{C}_{19}^{B}|=12996.

Proof   Note that for any ϕAut (P(192))\phi\in\hbox{\rm Aut\,}(P(19^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF192b\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}, vGal(FF192)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}). Note that the point 0 in the clique C19BC_{19}^{B} is a intersecting point of five lines, which contain three points in this clique. If ϕAut(P(192))C19B\phi\in Aut(P(19^{2}))_{C_{19}^{B}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. Set :={H,2(α6)H,17(α+6)H,9(α4)H,10(α+4)H}\mathcal{L}:=\{H,2(\alpha-6)H,17(\alpha+6)H,9(\alpha-4)H,10(\alpha+4)H\} be the subset of five lines in clique C19BC_{19}^{B}, which are presented in Fig 13. Then ϕ()=\phi(\mathcal{L})=\mathcal{L}.

If ϕ(H)=H\phi(H)=H, then we have that a=1a=1, b=0b=0. It follows that ϕ(γ)=γv\phi(\gamma)=\gamma^{v}. Set ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma and ϕ2(γ)=γ19\phi_{2}(\gamma)=\gamma^{19} for any γFFq2\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}.

If ϕ(H)=2(α6)H\phi(H)=2(\alpha-6)H, then we have that a=2(α6)a=2(\alpha-6), b=0b=0. It follows that ϕ(γ)=2(α6)γv\phi(\gamma)=2(\alpha-6)\gamma^{v}. Set ϕ3(γ)=2(α6)γ\phi_{3}(\gamma)=2(\alpha-6)\gamma and ϕ4(γ)=2(α6)γ19\phi_{4}(\gamma)=2(\alpha-6)\gamma^{19} for any γFFq2\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{q^{2}}.

Similarly, we have that ϕ5(γ)=17(α+6)γ\phi_{5}(\gamma)=17(\alpha+6)\gamma, ϕ6(γ)=17(α+6)γ19\phi_{6}(\gamma)=17(\alpha+6)\gamma^{19}, ϕ7(γ)=9(α4)γ\phi_{7}(\gamma)=9(\alpha-4)\gamma, ϕ8(γ)=9(α4)γ19\phi_{8}(\gamma)=9(\alpha-4)\gamma^{19} , ϕ9(γ)=10(α+4)γ\phi_{9}(\gamma)=10(\alpha+4)\gamma, ϕ10(γ)=10(α+4)γ19\phi_{10}(\gamma)=10(\alpha+4)\gamma^{19}.

Set σ=ϕ9\sigma=\phi_{9}, τ=ϕ10\tau=\phi_{10}, then we have that σ5=1\sigma^{5}=1, τ2=1\tau^{2}=1, τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1}, then σ,τ={1,σ,σ2,σ3,σ4,τ,τσ,τσ2,τσ3,τσ4}={ϕ1,ϕ9,ϕ3,ϕ5,ϕ7,ϕ10,ϕ2,ϕ8,ϕ6,ϕ4,}D10\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\sigma^{3},\sigma^{4},\tau,\tau\sigma,\tau\sigma^{2},\tau\sigma^{3},\tau\sigma^{4}\}=\{\phi_{1},\phi_{9},\phi_{3},\phi_{5},\phi_{7},\phi_{10},\phi_{2},\phi_{8},\phi_{6},\phi_{4},\}\cong{\rm D}_{10}. The action of σ\sigma and τ\tau acting on the points in clique C19BC_{19}^{B} is presented by the following table.

γ\gamma 0 1 3 6(α6)6(\alpha-6) 2(α6)2(\alpha-6) 13(α+6)13(\alpha+6) 17(α+6)17(\alpha+6) 10(α+4)10(\alpha+4) 11(α+4)11(\alpha+4) 9(α4)9(\alpha-4) 8(α4)8(\alpha-4)
σ(γ)\sigma(\gamma) 0 10(α+4)10(\alpha+4) 11(α+4)11(\alpha+4) 13(α+6)13(\alpha+6) 17(α+6)17(\alpha+6) 8(α4)8(\alpha-4) 9(α4)9(\alpha-4) 2(α6)2(\alpha-6) 6(α6)6(\alpha-6) 11 33
τ(γ)\tau(\gamma) 0 10(α+4)10(\alpha+4) 11(α+4)11(\alpha+4) 8(α4)8(\alpha-4) 9(α4)9(\alpha-4) 13(α+6)13(\alpha+6) 17(α+6)17(\alpha+6) 11 33 2(α6)2(\alpha-6) 6(α6)6(\alpha-6)

Followed by the above arguments, we know that σ(C19B)=C19B\sigma(C_{19}^{B})=C_{19}^{B} and τ(C19B)=C19B\tau(C_{19}^{B})=C_{19}^{B}. Then Aut(P(192))C19B=σ,τD10Aut(P(19^{2}))_{C_{19}^{B}}=\langle\sigma,\tau\rangle\cong{\rm D}_{10}, where σ(γ)=10(α+4)γ\sigma(\gamma)=10(\alpha+4)\gamma and τ(γ)=10(α+4)γ19\tau(\gamma)=10(\alpha+4)\gamma^{19} with γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}.

Note that |Aut(P(192))|=q212×q2×2=129960\left|Aut(P(19^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=129960, so we have that |𝒞19B|=|Aut(P(192)):Aut(P(192))C19B|=12996|\mathcal{C}_{19}^{B}|=|Aut(P(19^{2})):Aut(P(19^{2}))_{C_{19}^{B}}|=12996. \Box


Set Cs,η,γ:={sηx+γ|xC19BFF192}C_{s,\eta,\gamma}:=\{s\eta x+\gamma|x\in C_{19}^{B}\cap{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\} for η{1,α}\eta\in\{1,\alpha\}, where sFF19s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast} and γFF192\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}} .

Lemma 3.26.

Set 𝒞19B\mathcal{C}_{19}^{B} be the orbit of Aut(P(192))Aut(P(19^{2})) acting on the cliques with C19B𝒞19BC_{19}^{B}\in\mathcal{C}_{19}^{B}. Then 𝒞19B={Cs,1,γsFF19,γFF192}{Cs,α,γsFF19,γFF192}\mathcal{C}_{19}^{B}=\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}.

Proof   It is obvious that {Cs,1,γsFF19,γFF192}{Cs,α,γsFF19,γFF192}𝒞19B\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}\subset\mathcal{C}_{19}^{B}. Now we will prove that Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and η=η\eta=\eta^{\prime}, where s,sFF19s,s^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast}, γ,γFF192\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}} and η,η{1,α}\eta,\eta^{\prime}\in\{1,\alpha\}.

Note that the intersecting point of five lines in the clique Cs,η,γC_{s,\eta,\gamma} is γ\gamma. If Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the subset of five lines {sηH,2sη(α6)H,17sη(α+6)H,9sη(α4)H,10sη(α+4)H}={sηH,2sη(α6)H,17sη(α+6)H,9sη(α4)H,10sη(α+4)H}\{s\eta H,2s\eta(\alpha-6)H,17s\eta(\alpha+6)H,9s\eta(\alpha-4)H,10s\eta(\alpha+4)H\}=\{s^{\prime}\eta^{\prime}H,2s^{\prime}\eta^{\prime}(\alpha-6)H,17s^{\prime}\eta^{\prime}(\alpha+6)H,9s^{\prime}\eta^{\prime}(\alpha-4)H,10s^{\prime}\eta^{\prime}(\alpha+4)H\}. Then sη{sη,2sη(α6),17sη(α+6),9sη(α4),10sη(α+4)}s\eta\in\{s^{\prime}\eta^{\prime},2s^{\prime}\eta^{\prime}(\alpha-6),17s^{\prime}\eta^{\prime}(\alpha+6),9s^{\prime}\eta^{\prime}(\alpha-4),10s^{\prime}\eta^{\prime}(\alpha+4)\}, we have that s=ss=s^{\prime} and η=η\eta=\eta^{\prime}.

And then 𝒞19B={Cs,1,γsFF19,γFF192}{Cs,α,γsFF19,γFF192}\mathcal{C}_{19}^{B}=\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}, because |{Cs,1,γsFF19,γFF192}{Cs,α,γsFF19,γFF192}|=(q1)×q2×2=12996|\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{19}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{19^{2}}\}|=(q-1)\times q^{2}\times 2=12996. \Box

3.6 Maximal cliques in Paley graph P(232)P(23^{2})

We can choose a primitive element δFF23\delta\in{\hbox{\sf F\kern-4.29993ptF}}_{23} and αFF232\alpha\in{\hbox{\sf F\kern-4.29993ptF}}_{{23}^{2}} be a root of the irreducible polynomial x2δx^{2}-\delta over FFq{\hbox{\sf F\kern-4.29993ptF}}_{q}, such that FF23=δ=14{\hbox{\sf F\kern-4.29993ptF}}_{23}^{*}=\langle\delta\rangle=\langle 14\rangle and S0={1,α,α+1,α+2,α+6,α+9,α+11,α1,α2,α6,α9,α11}S_{0}=\{1,\alpha,\alpha+1,\alpha+2,\alpha+6,\alpha+9,\alpha+11,\alpha-1,\alpha-2,\alpha-6,\alpha-9,\alpha-11\}.

3.6.1 C23AC_{23}^{A}-construction

Let H={1,3,5,17}\left\{1,3,5,17\right\} be a subset FF23{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast}. Set C23A:={0}H17H(α+2)6H(α2)C_{23}^{A}:=\{0\}\cup H\cup 17H(\alpha+2)\cup 6H(\alpha-2) be a subset of finite field FF232{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}. By Magma, we have that C23AC_{23}^{A} is a maximal clique in P(232)P(23^{2}) with size q+32\frac{q+3}{2} for q=23q=23. The structure of the clique C23AC_{23}^{A} is presented in Fig 14

Refer to caption
Figure 14: C23AC_{23}^{A}

Remarks: There exists other lines that contain at least three points in C23AC_{23}^{A}. They are:{1,18(α2),16(α+2)}\{1,18(\alpha-2),16(\alpha+2)\}, {1,7(α2),5(α+2)}\{1,7(\alpha-2),5(\alpha+2)\}, {3,6(α2),16(α+2)}\{3,6(\alpha-2),16(\alpha+2)\}, {3,7(α2),17(α+2)}\{3,7(\alpha-2),17(\alpha+2)\}, {3,10(α2),13(α+2)}\{3,10(\alpha-2),13(\alpha+2)\}, {5,6(α2),5(α+2)}\{5,6(\alpha-2),5(\alpha+2)\},{5,18(α2),17(α+2)}\{5,18(\alpha-2),17(\alpha+2)\},{17,18(α2),13(α+2)}\{17,18(\alpha-2),13(\alpha+2)\},{17,10(α2),5(α+2)}\{17,10(\alpha-2),5(\alpha+2)\}.

Lemma 3.27.

Set 𝒞23A\mathcal{C}_{23}^{A} be the orbit of Aut(P(232))Aut(P(23^{2})) acting on the cliques with C23A𝒞23AC_{23}^{A}\in\mathcal{C}_{23}^{A}. Then Aut(P(232))C23A=σ,τD6Aut(P(23^{2}))_{C_{23}^{A}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6}, where σ(γ)=6(α+21)γ\sigma(\gamma)=6(\alpha+21)\gamma and τ(γ)=6(α+21)γ23\tau(\gamma)=6(\alpha+21)\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}. Moreover, |𝒞23A|=46552|\mathcal{C}_{23}^{A}|=46552.

Proof   Note that for any ϕAut (P(232))\phi\in\hbox{\rm Aut\,}(P(23^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF232b\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}, vGal(FF232)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}). Note that the point 0 in the clique C23AC_{23}^{A} is a intersecting point of three lines, which contain five points in this clique. If ϕAut(P(232))C23A\phi\in Aut(P(23^{2}))_{C_{23}^{A}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. Set :={H,17(α+2)H,6(α2)H}\mathcal{L}:=\{H,17(\alpha+2)H,6(\alpha-2)H\} be the subset of three lines, which are presented in Fig 14. Then ϕ()=\phi(\mathcal{L})=\mathcal{L}. Now we have the following six cases.

If ϕ1(H)=H\phi_{1}(H)=H, ϕ1(17(α+2)H)=17(α+2)H\phi_{1}(17(\alpha+2)H)=17(\alpha+2)H and ϕ1(6(α2)H)=6(α2)H\phi_{1}(6(\alpha-2)H)=6(\alpha-2)H, then we have that a=1a=1 and v=1v=1. It follows that ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

If ϕ2(H)=H\phi_{2}(H)=H, ϕ2(17(α+2)H)=6(α2)H\phi_{2}(17(\alpha+2)H)=6(\alpha-2)H and ϕ2(6(α2)H)=17(α+2)H\phi_{2}(6(\alpha-2)H)=17(\alpha+2)H, then we have that a=1a=1 and |v|=2|v|=2. It follows that ϕ2(γ)=γ23\phi_{2}(\gamma)=\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

If ϕ3(H)=17(α+2)H\phi_{3}(H)=17(\alpha+2)H, ϕ3(17(α+2)H)=6(α2)H\phi_{3}(17(\alpha+2)H)=6(\alpha-2)H and ϕ3(6(α2)H)=H\phi_{3}(6(\alpha-2)H)=H, then we have that a=17(α+2)a=17(\alpha+2) and v=1v=1. It follows that ϕ3(γ)=17(α+2)γ\phi_{3}(\gamma)=17(\alpha+2)\gamma for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

If ϕ4(H)=17(α+2)H\phi_{4}(H)=17(\alpha+2)H, ϕ4(17(α+2)H)=H\phi_{4}(17(\alpha+2)H)=H and ϕ4(6(α2)H)=6(α2)H\phi_{4}(6(\alpha-2)H)=6(\alpha-2)H, then we have that a=17(α+2)a=17(\alpha+2) and |v|=2|v|=2. It follows that ϕ4(γ)=17(α+2)γ23\phi_{4}(\gamma)=17(\alpha+2)\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

If ϕ5(H)=6(α2)H\phi_{5}(H)=6(\alpha-2)H, ϕ5(17(α+2)H)=H\phi_{5}(17(\alpha+2)H)=H and ϕ5(6(α2)H)=17(α+2)H\phi_{5}(6(\alpha-2)H)=17(\alpha+2)H, then we have that a=6(α2)a=6(\alpha-2) and v=1v=1. It follows that ϕ5(γ)=6(α2)γ\phi_{5}(\gamma)=6(\alpha-2)\gamma for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

If ϕ6(H)=6(α2)H\phi_{6}(H)=6(\alpha-2)H, ϕ6(17(α+2)H)=17(α+2)H\phi_{6}(17(\alpha+2)H)=17(\alpha+2)H and ϕ6(6(α2)H)=H\phi_{6}(6(\alpha-2)H)=H, then we have that a=6(α2)a=6(\alpha-2) and v=23v=23. It follows that ϕ6(γ)=6(α2)γ23\phi_{6}(\gamma)=6(\alpha-2)\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

Set σ=ϕ5\sigma=\phi_{5}, τ=ϕ6\tau=\phi_{6} with γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}, then we have that σ3=1\sigma^{3}=1, τ2=1\tau^{2}=1 τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1}, then σ,τ={1,σ,σ2,τ,τσ,τσ2}={ϕ1,ϕ5,ϕ3,ϕ6,ϕ2,ϕ4}\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\tau,\tau\sigma,\tau\sigma^{2}\}=\{\phi_{1},\phi_{5},\phi_{3},\phi_{6},\phi_{2},\phi_{4}\}. The action of σ\sigma and τ\tau acting on the points in clique C23AC_{23}^{A} is presented in the following table.

γ\gamma 0 1 3 5 1717 17(α+2)17(\alpha+2) 5(α+2)5(\alpha+2) 16(α+2)16(\alpha+2) 13(α+2)13(\alpha+2) 6(α2)6(\alpha-2) 18(α2)18(\alpha-2) 7(α2)7(\alpha-2) 10(α2)10(\alpha-2)
σ(γ)\sigma(\gamma) 0 6(α2)6(\alpha-2) 18(α2)18(\alpha-2) 7(α2)7(\alpha-2) 10(α2)10(\alpha-2) 11 33 55 1717 17(α+2)17(\alpha+2) 5(α+2)5(\alpha+2) 16(α+2)16(\alpha+2) 13(α+2)13(\alpha+2)
τ(γ)\tau(\gamma) 0 6(α2)6(\alpha-2) 18(α2)18(\alpha-2) 7(α2)7(\alpha-2) 10(α2)10(\alpha-2) 17(α+2)17(\alpha+2) 5(α+2)5(\alpha+2) 16(α+2)16(\alpha+2) 13(α+2)13(\alpha+2) 1 3 5 17

Followed by the above arguments, we know that σ(C23A)=C23A\sigma(C_{23}^{A})=C_{23}^{A} and τ(C23A)=C23A\tau(C_{23}^{A})=C_{23}^{A}, then Aut(P(232))C23A=σ,τD6Aut(P(23^{2}))_{C_{23}^{A}}=\langle\sigma,\tau\rangle\cong{\rm D}_{6} where σ(γ)=6(α+21)γ\sigma(\gamma)=6(\alpha+21)\gamma, τ(γ)=6(α+21)γ23\tau(\gamma)=6(\alpha+21)\gamma^{23} with γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

Note that |Aut(P(232))|=q212×q2×2=279312\left|Aut(P(23^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=279312, so we have that |𝒞23A|=|Aut(P(232)):Aut(P(232))C23A|=46552|\mathcal{C}_{23}^{A}|=|Aut(P(23^{2})):Aut(P(23^{2}))_{C_{23}^{A}}|=46552. \Box


Set Cs,η,γ:={sηx+γ|xC23AFF232}C_{s,\eta,\gamma}:=\{s\eta x+\gamma|x\in C_{23}^{A}\cap{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\} for η{1,α,α+1,α1}\eta\in\{1,\alpha,\alpha+1,\alpha-1\}, where sFF23s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast} and γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}} .

Lemma 3.28.

Set 𝒞23A\mathcal{C}_{23}^{A} be the orbit of Aut(P(232))Aut(P(23^{2})) acting on the cliques with C23A𝒞23AC_{23}^{A}\in\mathcal{C}_{23}^{A}. Then 𝒞23A=s,η,γ{Cs,η,γsFF23,γFF232,η{1,α,α+1,α1}}\mathcal{C}_{23}^{A}=\bigcup_{s,\eta,\gamma}\{C_{s,\eta,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}},\eta\in\{1,\alpha,\alpha+1,\alpha-1\}\}.

Proof   It is obvious that {Cs,1,γsFF23,γFF232}{Cs,α,γsFF23,γFF232}{Cs,α+1,γsFF23,γFF232}{Cs,α1,γsFF23,γFF232}𝒞23A\{C_{s,1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\}\cup\{C_{s,\alpha,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\}\cup\{C_{s,\alpha+1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\}\cup\{C_{s,\alpha-1,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\}\subset\mathcal{C}_{23}^{A}. Now we will prove that Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and η=η\eta=\eta^{\prime}, where s,sFF23s,s^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast}, γ,γFF232\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{{23}^{2}} and η,η{1,α,α+1,α1}\eta,\eta^{\prime}\in\{1,\alpha,\alpha+1,\alpha-1\}.

Note that the intersection point of three lines in the clique Cs,η,γC_{s,\eta,\gamma} is γ\gamma. If Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the subset of three lines {sηH,17sη(α+2)H,6sη(α2)H}={sηH,17sη(α+2)H,6sη(α2)H}\{s\eta H,17s\eta(\alpha+2)H,6s\eta(\alpha-2)H\}=\{s^{\prime}\eta^{\prime}H,17s^{\prime}\eta^{\prime}(\alpha+2)H,6s^{\prime}\eta^{\prime}(\alpha-2)H\}. Then sη{sη,17sη(α+2),6sη(α2)}s\eta\in\{s^{\prime}\eta^{\prime},17s^{\prime}\eta^{\prime}(\alpha+2),6s^{\prime}\eta^{\prime}(\alpha-2)\}, and we have that s=ss=s^{\prime} and η=η\eta=\eta^{\prime}.

And then 𝒞23A=s,η,γ{Cs,η,γsFF23,γFF232,η{1,α,α+1,α1}}\mathcal{C}_{23}^{A}=\bigcup_{s,\eta,\gamma}\{C_{s,\eta,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}},\eta\in\{1,\alpha,\alpha+1,\alpha-1\}\}, because |s,η,γ{Cs,η,γsFF23,γFF232,η{1,α,α+1,α1}}|=(q1)×q2×4=46552|\bigcup_{s,\eta,\gamma}\{C_{s,\eta,\gamma}\mid s\in{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}},\eta\in\{1,\alpha,\alpha+1,\alpha-1\}\}|=(q-1)\times q^{2}\times 4=46552. \Box

3.6.2 C23BC_{23}^{B}-construction

Let H={1,1}H=\left\{1,-1\right\} be a subset FF23{\hbox{\sf F\kern-4.29993ptF}}_{23}^{\ast}, Set C23B:={0}9HαH(α+9){3H,4H}(α9){3H,4H}C_{23}^{B}:=\{0\}\cup 9H\cup\alpha H\cup(\alpha+9)\{3H,4H\}\cup(\alpha-9)\{3H,4H\} be a subset of finite field FF232{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}. By Magma, we have that C23BC_{23}^{B} is a maximal clique in P(232)P(23^{2}) with size q+32\frac{q+3}{2} for q=23q=23. The structure of the clique C23BC_{23}^{B} is presented in Fig 15.

Refer to caption
Figure 15: C23BC_{23}^{B}

Remarks: There exists other lines that contain at least three points in C23BC_{23}^{B}. They are:{9,3(α+9),4(α9)}\{9,3(\alpha+9),4(\alpha-9)\}, {9,4(α+9),3(α9)}\{9,-4(\alpha+9),-3(\alpha-9)\},{9,3(α+9),4(α9)}\{-9,-3(\alpha+9),-4(\alpha-9)\}, {9,4(α+9),3(α9)}\{-9,4(\alpha+9),3(\alpha-9)\}, {α,3(α+9),4(α9)}\{\alpha,3(\alpha+9),-4(\alpha-9)\}, {α,4(α+9),3(α9)}\{\alpha,-4(\alpha+9),3(\alpha-9)\}, {α,3(α+9),4(α9)}\{-\alpha,-3(\alpha+9),4(\alpha-9)\}, {α,4(α+9),3(α9)}\{-\alpha,4(\alpha+9),-3(\alpha-9)\}

Lemma 3.29.

Set 𝒞23B\mathcal{C}_{23}^{B} be the orbit of Aut(P(232))Aut(P(23^{2})) acting on the cliques with C23B𝒞23BC_{23}^{B}\in\mathcal{C}_{23}^{B}. Then Aut(P(232))C23B=σ,τD8Aut(P(23^{2}))_{C_{23}^{B}}=\langle\sigma,\tau\rangle\cong{\rm D}_{8}, where σ(γ)=18αγ\sigma(\gamma)=18\alpha\gamma and τ(γ)=γ23\tau(\gamma)=\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}. Moreover, |𝒞23B|=34914|\mathcal{C}_{23}^{B}|=34914.

Proof   Note that for any ϕAut (P(232))\phi\in\hbox{\rm Aut\,}(P(23^{2})), ϕ(γ)=aγv+b\phi(\gamma)=a\gamma^{v}+b, where aSa\in S, bFF232b\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}, vGal(FF232)v\in Gal({\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}). Note that the point 0 in the clique C23BC_{23}^{B} is a intersecting point of two lines, which contain five points in this clique. If ϕAut(P(232))C23B\phi\in Aut(P(23^{2}))_{C_{23}^{B}}, then ϕ(0)=0\phi(0)=0 and b=0b=0. Set :={9H,αH}\mathcal{L}:=\{9H,\alpha H\} be the two short lines in clique C23BC_{23}^{B}, which have a common point 0. Then ϕ()=\phi(\mathcal{L})=\mathcal{L}.

If ϕ(9H)=9H\phi(9H)=9H and ϕ(αH)=αH\phi(\alpha H)=\alpha H, then we have that a{1,1}a\in\{1,-1\}, b=0b=0 and v{1,23}v\in\{1,23\}. Set ϕ1(γ)=γ\phi_{1}(\gamma)=\gamma, ϕ2(γ)=γ\phi_{2}(\gamma)=-\gamma, ϕ3(γ)=γ23\phi_{3}(\gamma)=\gamma^{23} and ϕ4(γ)=γ23\phi_{4}(\gamma)=-\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

If ϕ(9H)=αH\phi(9H)=\alpha H and ϕ(αH)=9H\phi(\alpha H)=9H, then we have that a{18α,18α}a\in\{18\alpha,-18\alpha\}, b=0b=0 and v{1,23}v\in\{1,23\}. Set ϕ5(γ)=18αγ\phi_{5}(\gamma)=18\alpha\gamma, ϕ6(γ)=18αγ\phi_{6}(\gamma)=-18\alpha\gamma, ϕ7(γ)=18αγ23\phi_{7}(\gamma)=18\alpha\gamma^{23} and ϕ8(γ)=18αγ23\phi_{8}(\gamma)=-18\alpha\gamma^{23} for any γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

Let σ=ϕ5\sigma=\phi_{5}, τ=ϕ3\tau=\phi_{3}, then we have that σ4=1\sigma^{4}=1, τ2=1\tau^{2}=1, τ1στ=σ1\tau^{-1}\sigma\tau=\sigma^{-1} then σ,τ={1,σ,σ2,σ3,τ,τσ,τσ2,τσ3}={ϕ1,ϕ5,ϕ2,ϕ6,ϕ3,ϕ8,ϕ4,ϕ7}D8\langle\sigma,\tau\rangle=\{1,\sigma,\sigma^{2},\sigma^{3},\tau,\tau\sigma,\tau\sigma^{2},\tau\sigma^{3}\}=\{\phi_{1},\phi_{5},\phi_{2},\phi_{6},\phi_{3},\phi_{8},\phi_{4},\phi_{7}\}\cong D_{8}. The action of σ\sigma and τ\tau on the points in clique C23BC_{23}^{B} is presented in the following table.

γ\gamma 0 9 -9 α\alpha α-\alpha 3(α+9)3(\alpha+9) 3(α+9)-3(\alpha+9) 4(α+9)4(\alpha+9) 4(α+9)-4(\alpha+9) 3(α9)3(\alpha-9) 3(α9)-3(\alpha-9) 4(α9)4(\alpha-9) 4(α9)-4(\alpha-9)
σ(γ)\sigma(\gamma) 0 α\alpha α-\alpha -9 9 3(α9)3(\alpha-9) 3(α9)-3(\alpha-9) 4(α9)4(\alpha-9) 4(α9)-4(\alpha-9) 3(α+9)-3(\alpha+9) 3(α+9)3(\alpha+9) 4(α+9)-4(\alpha+9) 4(α+9)4(\alpha+9)
τ(γ)\tau(\gamma) 0 9 -9 α-\alpha α\alpha 3(α9)-3(\alpha-9) 3(α9)3(\alpha-9) 4(α9)-4(\alpha-9) 4(α9)4(\alpha-9) 3(α+9)-3(\alpha+9) 3(α+9)3(\alpha+9) 4(α+9)-4(\alpha+9) 4(α+9)4(\alpha+9)

Followed by the above arguments, we know that σ(C23B)=C23B\sigma(C_{23}^{B})=C_{23}^{B} and τ(C23B)=C23B\tau(C_{23}^{B})=C_{23}^{B}, then Aut(P(232))C23B=σ,τD8Aut(P(23^{2}))_{C_{23}^{B}}=\langle\sigma,\tau\rangle\cong{\rm D}_{8} where σ(γ)=18αγ\sigma(\gamma)=18\alpha\gamma and τ(γ)=γ23\tau(\gamma)=\gamma^{23} with γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}.

Note that |Aut(P(232))|=q212×q2×2=279312\left|Aut(P(23^{2}))\right|=\frac{q^{2}-1}{2}\times q^{2}\times 2=279312, so we have that |𝒞23B|=|Aut(P(232)):Aut(P(232))C23B|=34914|\mathcal{C}_{23}^{B}|=|Aut(P(23^{2})):Aut(P(23^{2}))_{C_{23}^{B}}|=34914. \Box


Set Cs,η,γ:={sηx+γ|xC23BFF232}C_{s,\eta,\gamma}:=\{s\eta x+\gamma|x\in C_{23}^{B}\cap{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\} for η{1,α+1,α1,α+2,α2,α+9}\eta\in\{1,\alpha+1,\alpha-1,\alpha+2,\alpha-2,\alpha+9\}, where s{111}s\in\{1\dots 11\} and γFF232\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}} .

Lemma 3.30.

Set 𝒞23B\mathcal{C}_{23}^{B} be the orbit of Aut(P(232))Aut(P(23^{2})) acting on the cliques with C23B𝒞23BC_{23}^{B}\in\mathcal{C}_{23}^{B}. Then 𝒞23B=s,η,γ{Cs,γ,ηs{111},γFF232,η{1,α+1,α1,α+2,α2,α+9}}\mathcal{C}_{23}^{B}=\bigcup_{s,\eta,\gamma}\{C_{s,\gamma,\eta}\mid s\in\{1\dots 11\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}},\eta\in\{1,\alpha+1,\alpha-1,\alpha+2,\alpha-2,\alpha+9\}\}.

Proof   It is obvious that s,η,γ{Cs,γ,ηs{111},γFF232,η{1,α+1,α1,α+2,α2,α+9}}𝒞23B\bigcup_{s,\eta,\gamma}\{C_{s,\gamma,\eta}\mid s\in\{1\dots 11\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}},\eta\in\{1,\alpha+1,\alpha-1,\alpha+2,\alpha-2,\alpha+9\}\}\subset\mathcal{C}_{23}^{B}. Now we will prove that Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}} if and only if s=ss=s^{\prime}, γ=γ\gamma=\gamma^{\prime} and η=η\eta=\eta^{\prime}, where s,s{111}s,s^{\prime}\in\{1\dots 11\}, γ,γFF232\gamma,\gamma^{\prime}\in{\hbox{\sf F\kern-4.29993ptF}}_{{23}^{2}} and η,η{1,α+1,α1,α+2,α2,α+9}\eta,\eta^{\prime}\in\{1,\alpha+1,\alpha-1,\alpha+2,\alpha-2,\alpha+9\}.

Note that the intersection point of three lines in the clique Cs,η,γC_{s,\eta,\gamma} is γ\gamma. If Cs,η,γ=Cs,η,γC_{s,\eta,\gamma}=C_{s^{\prime},\eta^{\prime},\gamma^{\prime}}, then γ=γ\gamma=\gamma^{\prime} and the subset of two lines {9sηH,sηαH}={9sηH,sηαH}\{9s\eta H,s\eta\alpha H\}=\{9s^{\prime}\eta^{\prime}H,s^{\prime}\eta^{\prime}\alpha H\}, then 9sη{9sη,9sη,sηα,sηα}9s\eta\in\{9s^{\prime}\eta^{\prime},-9s^{\prime}\eta^{\prime},s^{\prime}\eta^{\prime}\alpha,-s^{\prime}\eta^{\prime}\alpha\}. We have that s=ss=s^{\prime}, η=η\eta=\eta^{\prime}.

And then 𝒞23B=η{Cs,γ,ηs{111},γFF232}\mathcal{C}_{23}^{B}=\bigcup_{\eta}\{C_{s,\gamma,\eta}\mid s\in\{1\dots 11\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\} for η{1,α+1,α1,α+2,α2,α+9}\eta\in\{1,\alpha+1,\alpha-1,\alpha+2,\alpha-2,\alpha+9\}, because |η{Cs,γ,ηs{111},γFF232}|=q12×q2×6=34914|\bigcup_{\eta}\{C_{s,\gamma,\eta}\mid s\in\{1\dots 11\},\gamma\in{\hbox{\sf F\kern-4.29993ptF}}_{23^{2}}\}|=\frac{q-1}{2}\times q^{2}\times 6=34914. \Box

4 Conclusion

In this section we give a table that summarises the descriptions of the extra maximal cliques given in this paper, and formulate a problem.

Set CC be a representative element of the set of cliques with size q+ϵ2\frac{q+\epsilon}{2}, where ϵ{1,3}\epsilon\in\{1,3\}.

qq HH CC
9 {1,δ}\{1,\delta\} {0}H(α+δ5)H\{0\}\cup H\cup(\alpha+\delta^{5})H
13 {1,3,9}\{1,3,9\} {0}H(α+8)H\{0\}\cup H\cup\left(\alpha+8\right)H
13 {1,3,4}\{1,3,4\} {0}H{7(α+1),2(α+1),7(α+7)}\{0\}\cup H\cup\{7(\alpha+1),2(\alpha+1),7(\alpha+7)\}
17 {1,4,16,13}\left\{1,4,16,13\right\} {0}H(α+7)H\left\{0\right\}\cup H\cup\left(\alpha+7\right)H
17 {1,4,5}\{1,4,5\} {0}H10(α+6)H{10(α+3)}{6(α+9)}\{0\}\cup H\cup 10(\alpha+6)H\cup\{10(\alpha+3)\}\cup\{6(\alpha+9)\}
17 {1,4,16,13}\{1,4,16,13\} {0}H(α+7){1,4}(α+10){1,4}\{0\}\cup H\cup(\alpha+7)\{1,4\}\cup(\alpha+10)\{1,4\}
17 {1,4,16,13}\{1,4,16,13\} {0}H(α+7){1,16}(α+10){4,13}\{0\}\cup H\cup(\alpha+7)\{1,16\}\cup(\alpha+10)\{4,13\}
17 {1,4,16,13}\{1,4,16,13\} {0}H(α+7){1,4,16}{4(α+10)}\{0\}\cup H\cup(\alpha+7)\{1,4,16\}\cup\{4(\alpha+10)\}
17 {1,4,16}\{1,4,16\} {0}H(α+7){1,4}(α+10){1,4}{11(α+11)}\{0\}\cup H\cup(\alpha+7)\{1,4\}\cup(\alpha+10)\{1,4\}\cup\{11(\alpha+11)\}
17 \setminus {0}{1,16}(α+7){1,4}(α+10){1,4}{11(α+11)}{11(α+6)}\{0\}\cup\{1,16\}\cup(\alpha+7)\{1,4\}\cup(\alpha+10)\{1,4\}\cup\{11(\alpha+11)\}\cup\{11(\alpha+6)\}
11 {1,9}\{1,9\} {0}H(α+5)H10(α+6)H\{0\}\cup H\cup(\alpha+5)H\cup 10(\alpha+6)H
19 {1,1}\{1,-1\} {0}{H,3H}9αH(α+3)H(α3)H\{0\}\cup\{H,3H\}\cup 9\alpha H\cup(\alpha+3)H\cup(\alpha-3)H
19 {1,3}\{1,3\} {0}H2H(α6)17H(α+6)9H(α4)10H(α+4)\{0\}\cup H\cup 2H(\alpha-6)\cup 17H(\alpha+6)\cup 9H(\alpha-4)\cup 10H(\alpha+4)
23 {1,3,5,17}\{1,3,5,17\} {0}H17H(α+2)6H(α2)\{0\}\cup H\cup 17H(\alpha+2)\cup 6H(\alpha-2)
23 {1,1}\{1,-1\} {0}9HαH(α+9){3H,4H}(α9){3H,4H}\{0\}\cup 9H\cup\alpha H\cup(\alpha+9)\{3H,4H\}\cup(\alpha-9)\{3H,4H\}
Problem 1.

Is there any extension of the maximal cliques described above to infinitely many values of q25q\geq 25 (these cliques would not be necessarily second largest for q25q\geq 25)?

Acknowledgments

Huye Chen is supported by National Natural Science Foundation of China (12301446).

References

  • [1] R.D. Baker, G.L. Ebert, J. Hemmeter, A. Woldar, Maximal cliques in the Paley graph of square order, Journal of Statistical Planning and Inference, 56 (1996), 33-38.
  • [2] A. Blokhuis, On subsets of GF(q2)GF(q^{2}) with square differences, Indagationes Mathematicae (Proceedings), 46 (1984), 369-372.
  • [3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
  • [4] A. E. Brouwer, S. Goryainov, L. Shalaginov and C. H. Yip, Cliques in Paley graphs of square order and in Peisert graphs, in preparation.
  • [5] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep.Suppl. 10 (1973).
  • [6] S.V. Goryainov, V.V. Kabanov, L.V. Shalaginov, A.A. Valyuzhenich, On eigenfunctions and maximal cliques of Paley graphs of square order, Finite Fields and Their Applications, 52 (2018), 361-369.
  • [7] S. Goryainov, A. Masley, L. Shalaginov, On a correspondence between maximal cliques in Paley graphs of square order, Discrete Mathematics, 345 (2022).
  • [8] G.A. Jones, Paley and the Paley Graphs, in: G. Jones, I. Ponomarenko, J. Širáň(Eds.), Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, WAGT 2016, in: Springer Proceedings in Mathematics & Statistics, vol. 305, Springer, Cham, 2020, pp. 155-183.
  • [9] M. Kiermaier, S. Kurz, Maximal integral point sets in affine planes over finite fields, Discrete Mathematics, 309 (2009), 4564-4575.