This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Searching for lepton flavor violating decays τPl\tau\rightarrow Pl in minimal R-symmetric supersymmetric standard model

Ke-Sheng Suna111[email protected];[email protected], Tao Guob222[email protected], Wei Lic,d333[email protected], Xiu-Yi Yange444[email protected], Shu-Min Zhaoc,d555[email protected] aDepartment of Physics, Baoding University, Baoding, 071000,China
bSchool of Mathematics and Science, Hebei GEO University, Shijiazhuang, 050031, China
cDepartment of Physics, Hebei University, Baoding, 071002, China
dKey Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding, 071002, China
eSchool of science, University of Science and Technology Liaoning, Anshan, 114051, China
Abstract

We analyze the lepton flavor violating decays τPl\tau\rightarrow Pl (P=π,η,η;l=e,μP=\pi,\eta,\eta^{\prime};\;l=e,\mu) in the scenario of the minimal R-symmetric supersymmetric standard model. The prediction on the branching ratios BR(τPe)(\tau\rightarrow Pe) and BR(τPμ)(\tau\rightarrow P\mu) is affected by the mass insertion parameters δ13\delta^{13} and δ23\delta^{23}, respectively. These parameters are constrained by the experimental bounds on the branching ratios BR(τe(μ)γ\tau\rightarrow e(\mu)\gamma) and BR(τ3e(μ)\tau\rightarrow 3e(\mu)). The result shows ZZ penguin dominates the prediction on BR(τPl\tau\rightarrow Pl) in a large region of the parameter space. The branching ratios for BR(τPl\tau\rightarrow Pl) are predicted to be, at least, five orders of magnitude smaller than present experimental bounds and three orders of magnitude smaller than future experimental sensitivities.

lepton flavor violating, MRSSM
pacs:
12.60.Jv, 13.35.Dx

I Introduction

Searching for lepton flavor violating (LFV) decays is of great importance in probing new physics (NP) beyond the standard model (SM) since the theoretical prediction on these LFV decays is suppressed by small mass of neutrinos in the SM. Much effort has been devoted to searching for LFV decays in experiment and the usually discussed decay channels are l2l1γl_{2}\rightarrow l_{1}\gamma, l23l1l_{2}\rightarrow 3l_{1}, μ\mu-e conversion in nuclei, semileptonic τ\tau decays, and so on. The experimental observation of LFV decays of τ\tau lepton is one goal of a bunch of excellent dedicated experiments. The first generation of B-factories, that stand for τ\tau factories too, like BaBar or Belle, have joined in the pursuit of charged LFV decays coming from τ\tau lepton Cei . All experiments have provided excellent bounds on the hadronic decays of τ\tau, for the first time Hayasaka ; Belle ; Belle1 , such as τμ(P,V,PP)\tau\rightarrow\mu(P,V,PP), where P(V)P(V) stands for a pseudoscalar (vector) meson. The study of LFV decays of τ\tau lepton are also one of main goals of the future SuperKEKB/Belle II project under construction at KEK Belle2 . The present upper bounds on the branching ratios of τPl\tau\rightarrow Pl (P=π,η,η;l=e,μP=\pi,\eta,\eta^{\prime};\;l=e,\mu) are shown in TABLE.1 PDG .

Table 1: Current limits on LFV decays τPl\tau\rightarrow Pl.
Decay Bound Experiment Decay Bound Experiment
τeπ\tau\rightarrow e\pi 8.0×1088.0\times 10^{-8} BELLE BELLEt τμπ\tau\rightarrow\mu\pi 1.1×1071.1\times 10^{-7} BABAR BABARt
τeη\tau\rightarrow e\eta 9.2×1089.2\times 10^{-8} BELLE BELLEt τμη\tau\rightarrow\mu\eta 6.5×1086.5\times 10^{-8} BELLE BELLEt
τeη\tau\rightarrow e\eta^{\prime} 1.6×1071.6\times 10^{-7} BELLE BELLEt τμη\tau\rightarrow\mu\eta^{\prime} 1.3×1071.3\times 10^{-7} BELLE BELLEt

Assuming the integrated luminosity of 50 ab1\textup{ab}^{-1}, the future prospects of BR(τPl)(\tau\rightarrow Pl) in Belle II will be extrapolated at the level of 𝒪(109\mathcal{O}(10^{-9}-1010)10^{-10}) Altmannshofer .

In various extensions of the SM, corrections to BR(τPl)(\tau\rightarrow Pl) are enhanced by different LFV sources. There are a few studies within non-SUSY models, such as two Higgs doublet models Li ; Kanemura , 331 model hua , TC2 models yue , littlest Higgs model with T parity Goto , simplest little Higgs model Lami , leptoquark models Carpentier ; Dorsner and unparticle model LiZH . Some models with heavy Dirac/Majorana neutrinos can have BR(τPl)(\tau\rightarrow Pl) close to the experimental sensitivity Garcia ; Ilakovac ; Ilakovac3 . In Type III seesaw model, there are tree level flavor changing neutral currents in the lepton sector which can enhance the prediction on BR(τPl)(\tau\rightarrow Pl) He1 ; Arhrib . There are also a few studies within SUSY models, such as MSSM Fukuyama ; Sher , unconstrained MSSM brignole , supersymmetric seesaw mechanism model Chen , R-parity violating SUSY Saha , the CMSSM-seesaw and NUHM-seesaw Arganda . Within an effective field theory framework, LFV decays τPl\tau\rightarrow Pl are studied to set constraints on the Wilson coefficients of the LFV operators Black ; cirigliano ; He ; Dorsner ; Cai ; Cai1 ; Gabrielli ; Petrov ; Celis ; Buchmuller ; Grzadkowski .

In this paper, we will study the LFV decays τPl\tau\rightarrow Pl in the minimal R-symmetric supersymmetric standard model (MRSSM) Kribs . The MRSSM has an unbroken global U(1)RU(1)_{R} symmetry and provides a new solution to the supersymmetric flavor problem that exists in the MSSM. In this model, R-symmetry forbids the Majorana gaugino masses, μ\mu term, AA terms and all left-right squark and slepton mass mixings. The RR-charged Higgs SU(2)LSU(2)_{L} doublets R^u\hat{R}_{u} and R^d\hat{R}_{d} are introduced in the MRSSM to yield Dirac mass terms of higgsinos. The additional superfields S^\hat{S}, T^\hat{T} and O^\hat{O} are introduced to yield Dirac mass terms of gauginos. The most unusual characteristic in the MRSSM is that large flavor violation is allowed in the squark and slepton mass matrices. The presence of large flavor violation in the MRSSM means that it is no longer appropriate to discuss stops or selectrons necessarily. The large flavor violation opens the possibility for a wide variety of new signals at the LHC and is worthy of significant study. Studies on phenomenology in the MRSSM can be found in Refs. Die1 ; Die2 ; Die3 ; Die4 ; Die5 ; Die6 ; KSS ; Kumar ; Blechman ; Kribs1 ; Frugiuele ; Jan ; Chakraborty ; Braathen ; Athron ; Alvarado ; sks1 ; sks2 . It is interesting to explore whether BR(τPl)(\tau\rightarrow Pl) can be enhanced to be close to the current experiment limits or future experimental sensitivities while the predictions on other LFV processes do not exceed current experiment constraints. Thus, we choose decay channels τPl\tau\rightarrow Pl as an object of the analysis. Similar to the case in the MSSM, LFV decays mainly originate from the off-diagonal entries in slepton mass matrices ml2m_{l}^{2} and mr2m_{r}^{2}. Taking into account the experimental constraints from decay channels τlγ\tau\rightarrow l\gamma and τ3l\tau\rightarrow 3l on the off-diagonal parameters, we investigate the branching ratios BR(τPl\tau\rightarrow Pl) as a function of the off-diagonal parameters and other model parameters.

The outline of this paper is organized as follows. In Section II, we provide a brief introduction on the MRSSM and present the definitions of the sneutrino mass matrix and slepton mass matrix. Then, we present conventions for the effective operators and the corresponding Wilson coefficients. The existing constraints, benchmark points and the results of our calculation are shown in Section III. In Section IV, the conclusion is drawn. The definitions of mass matrices of scalar and pseudo-scalar Higgs boson, neutralino, χ±\chi^{\pm}-chargino and squarks are listed in Appendix A.

II MRSSM

In this section, we firstly provide a simple overview of the MRSSM in order to fix the notations used in this work. The MRSSM has the same gauge symmetry SU(3)C×SU(2)L×U(1)YSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y} as the SM and the MSSM. The spectrum of fields in the MRSSM contains the standard MSSM matter, the Higgs and gauge superfields augmented by the chiral adjoints 𝒪^,T^,S^\hat{\cal O},\hat{T},\hat{S} and two RR-Higgs iso-doublets. The superfields with R-charge in the MRSSM are given in TABLE.2.

Table 2: The superfields with R-charge in MRSSM.
Field Superfield Boson Fermion
Gauge vector g^,W^,B^\hat{g},\hat{W},\hat{B} 0 g,W,Bg,W,B 0 g~,W~B~\tilde{g},\tilde{W}\tilde{B} +1
Matter l^,e^c\hat{l},\hat{e}^{c} +1 l~,e~R\tilde{l},\tilde{e}^{*}_{R} +1 l,eRl,e^{*}_{R} 0
q^,d^c,u^c\hat{q},{\hat{d}^{c}},{\hat{u}^{c}} +1 q~,d~R,u~R\tilde{q},{\tilde{d}}^{*}_{R},{\tilde{u}}^{*}_{R} +1 q,dR,uRq,d^{*}_{R},u^{*}_{R} 0
HH-Higgs H^d,u{\hat{H}}_{d,u} 0 Hd,uH_{d,u} 0 H~d,u{\tilde{H}}_{d,u} -1
R-Higgs R^d,u{\hat{R}}_{d,u} +2 Rd,uR_{d,u} +2 R~d,u{\tilde{R}}_{d,u} +1
Adjoint chiral 𝒪^,T^,S^\hat{\cal O},\hat{T},\hat{S} 0 O,T,SO,T,S 0 O~,T~,S~\tilde{O},\tilde{T},\tilde{S} -1

The general form of the superpotential of the MRSSM is given by Die1

𝒲MRSSM=μd(R^dH^d)+μu(R^uH^u)+Λd(R^dT^)H^d+Λu(R^uT^)H^u+λdS^(R^dH^d)+λuS^(R^uH^u)Ydd^(q^H^d)Yee^(l^H^d)+Yuu^(q^H^u),\begin{array}[]{l}\mathcal{W}_{MRSSM}=\mu_{d}(\hat{R}_{d}\hat{H}_{d})+\mu_{u}(\hat{R}_{u}\hat{H}_{u})+\Lambda_{d}(\hat{R}_{d}\hat{T})\hat{H}_{d}+\Lambda_{u}(\hat{R}_{u}\hat{T})\hat{H}_{u}+\lambda_{d}\hat{S}(\hat{R}_{d}\hat{H}_{d})\\ \hskip 55.00008pt+\lambda_{u}\hat{S}(\hat{R}_{u}\hat{H}_{u})-Y_{d}\hat{d}(\hat{q}\hat{H}_{d})-Y_{e}\hat{e}(\hat{l}\hat{H}_{d})+Y_{u}\hat{u}(\hat{q}\hat{H}_{u}),\end{array} (1)

where H^u\hat{H}_{u} and H^d\hat{H}_{d} are the MSSM-like Higgs weak iso-doublets, R^u\hat{R}_{u} and R^d\hat{R}_{d} are the RR-charged Higgs SU(2)LSU(2)_{L} doublets. The corresponding Dirac higgsino mass parameters are denoted as μu\mu_{u} and μd\mu_{d}. Although R-symmetry forbids the μ\mu terms of the MSSM, the bilinear combinations of the normal Higgs SU(2)LSU(2)_{L} doublets H^u\hat{H}_{u} and H^d\hat{H}_{d} with the Higgs SU(2)LSU(2)_{L} doublets R^u\hat{R}_{u} and R^d\hat{R}_{d} are allowed in Eq.(1). The parameters λu\lambda_{u}, λd\lambda_{d}, Λu\Lambda_{u} and Λd\Lambda_{d} are Yukawa-like trilinear terms involving the singlet S^\hat{S} and the triplet T^\hat{T}.

For the phenomenological studies we take the soft-breaking scalar mass terms Die3

VSB,S=mHd2(|Hd0|2+|Hd|2)+mHu2(|Hu0|2+|Hu+|2)+(Bμ(HdHu+Hd0Hu0)+h.c.)+mRd2(|Rd0|2+|Rd+|2)+mRu2(|Ru0|2+|Ru|2)+mT2(|T0|2+|T|2+|T+|2)+mS2|S|2+mO2|O2|+d~L,imq,ij2d~L,j+d~R,imd,ij2d~R,j+u~L,imq,ij2u~L,j+u~R,imu,ij2u~R,j+e~L,iml,ij2e~L,j+e~R,imr,ij2e~R,j+ν~L,iml,ij2ν~L,j.\begin{array}[]{l}V_{SB,S}=m^{2}_{H_{d}}(|H^{0}_{d}|^{2}+|H^{-}_{d}|^{2})+m^{2}_{H_{u}}(|H^{0}_{u}|^{2}+|H^{+}_{u}|^{2})+(B_{\mu}(H^{-}_{d}H^{+}_{u}-H^{0}_{d}H^{0}_{u})+h.c.)\\ \hskip 35.00005pt+m^{2}_{R_{d}}(|R^{0}_{d}|^{2}+|R^{+}_{d}|^{2})+m^{2}_{R_{u}}(|R^{0}_{u}|^{2}+|R^{-}_{u}|^{2})+m^{2}_{T}(|T^{0}|^{2}+|T^{-}|^{2}+|T^{+}|^{2})\\ \hskip 35.00005pt+m^{2}_{S}|S|^{2}+m^{2}_{O}|O^{2}|+\tilde{d}^{*}_{L,i}m_{q,{ij}}^{2}\tilde{d}_{L,j}+\tilde{d}^{*}_{R,i}m_{d,{ij}}^{2}\tilde{d}_{R,j}+\tilde{u}^{*}_{L,i}m_{q,{ij}}^{2}\tilde{u}_{L,j}\\ \hskip 35.00005pt+\tilde{u}^{*}_{R,i}m_{u,{ij}}^{2}\tilde{u}_{R,j}+\tilde{e}^{*}_{L,i}m_{l,{ij}}^{2}\tilde{e}_{L,j}+\tilde{e}^{*}_{R,{i}}m_{r,{ij}}^{2}\tilde{e}_{R,{j}}+\tilde{\nu}^{*}_{L,i}m_{l,{ij}}^{2}\tilde{\nu}_{L,j}.\end{array} (2)

All the trilinear scalar couplings involving Higgs bosons to squark and slepton are forbidden in Eq.(2) because the sfermions have an R-charge and these terms are non R-invariant, and this has relaxed the flavor problem of the MSSM Kribs . The Dirac nature is a manifest feature of the MRSSM fermions. The soft-breaking Dirac mass terms of the singlet S^\hat{S}, triplet T^\hat{T} and octet O^\hat{O} take the form as

VSB,DG=MDBB~S~+MDWW~aT~a+MDOg~O~+h.c.,V_{SB,DG}=M^{B}_{D}\tilde{B}\tilde{S}+M^{W}_{D}\tilde{W}^{a}\tilde{T}^{a}+M^{O}_{D}\tilde{g}\tilde{O}+h.c., (3)

where B~\tilde{B}, W~\tilde{W} and g~\tilde{g} are the usually MSSM Weyl fermions. The R-Higgs bosons do not develop vacuum expectation values (VEVs) since they carry R-charge 2. After electroweak symmetry breaking, the singlet and triplet VEVs effectively modify the μu\mu_{u} and μd\mu_{d}, and the modified μi\mu_{i} parameters are given by

μdeff,+=12ΛdvT+12λdvS+μd,μueff,=12ΛuvT+12λuvS+μu.\displaystyle\mu_{d}^{eff,+}=\frac{1}{2}\Lambda_{d}v_{T}+\frac{1}{\sqrt{2}}\lambda_{d}v_{S}+\mu_{d},\;\;\mu_{u}^{eff,-}=-\frac{1}{2}\Lambda_{u}v_{T}+\frac{1}{\sqrt{2}}\lambda_{u}v_{S}+\mu_{u}.

vTv_{T} and vSv_{S} are vacuum expectation values of T^\hat{T} and S^\hat{S}.

There are four complex neutral scalar fields and they can mix. Assuming the vacuum expectation values are real, the real and imaginary components in four complex neutral scalar fields do not mix, and the mass-square matrix breaks into two 4×44\times 4 sub-matrices. In the scalar sector all fields mix and the SM-like Higgs boson is dominantly given by the up-type field. In the pseudo-scalar sector there is no mixing between the MSSM-like states and the singlet-triplet states, and the 4×44\times 4 mass-squared matrix breaks into two 2×22\times 2 submatrices. The number of neutralino degrees of freedom in the MRSSM is doubled compared to the MSSM as the neutralinos are Dirac-type. The number of chargino degrees of freedom in the MRSSM is also doubled compared to the MSSM and these charginos can be grouped to two separated chargino sectors according to their R-charge. The χ±\chi^{\pm}-chargino sector has R-charge 1 electric charge; the ρ\rho-chargino sector has R-charge -1 electric charge. Here, we do not discuss the ρ\rho-chargino sector in detail since it does not contribute to the LFV decays. More information about the ρ\rho-chargino can be found in Ref.Die3 ; Die5 ; sks1 ; KSS . For convenience, we present the tree-level mass matrices for scalar and pseudo-scalar Higgs bosons, neutralinos, charginos and squarks of the MRSSM in Appendix A.

In MRSSM, LFV decays mainly originate from the potential misalignment in slepton mass matrices. In the gauge eigenstate basis ν~iL\tilde{\nu}_{iL}, the sneutrino mass matrix and the diagonalization procedure are

mν~2=ml2+18(g12+g22)(vd2vu2)+g2vTMDWg1vSMDB,ZVmν~2(ZV)=mν~2,diag,m^{2}_{\tilde{\nu}}=m_{l}^{2}+\frac{1}{8}(g_{1}^{2}+g_{2}^{2})(v_{d}^{2}-v_{u}^{2})+g_{2}v_{T}M^{W}_{D}-g_{1}v_{S}M^{B}_{D},Z^{V}m^{2}_{\tilde{\nu}}(Z^{V})^{\dagger}=m^{2,\textup{diag}}_{\tilde{\nu}}, (4)

where the last two terms in mass matrix are newly introduced by MRSSM. The slepton mass matrix and the diagonalization procedure are

me~2=((me~2)LL00(me~2)RR),ZEme~2(ZE)=me~2,diag,m^{2}_{\tilde{e}}=\left(\begin{array}[]{cc}(m^{2}_{\tilde{e}})_{LL}&0\\ 0&(m^{2}_{\tilde{e}})_{RR}\end{array}\right),Z^{E}m^{2}_{\tilde{e}}(Z^{E})^{\dagger}=m^{2,\textup{diag}}_{\tilde{e}}, (5)

where

(me~2)LL\displaystyle(m^{2}_{\tilde{e}})_{LL} =ml2+12vd2|Ye|2+18(g12g22)(vd2vu2)g1vSMDBg2vTMDW,\displaystyle=m_{l}^{2}+\frac{1}{2}v_{d}^{2}|Y_{e}|^{2}+\frac{1}{8}(g_{1}^{2}-g_{2}^{2})(v_{d}^{2}-v_{u}^{2})-g_{1}v_{S}M_{D}^{B}-g_{2}v_{T}M_{D}^{W},
(me~2)RR\displaystyle(m^{2}_{\tilde{e}})_{RR} =mr2+12vd2|Ye|2+14g12(vu2vd2)+2g1vSMDB.\displaystyle=m_{r}^{2}+\frac{1}{2}v_{d}^{2}|Y_{e}|^{2}+\frac{1}{4}g_{1}^{2}(v_{u}^{2}-v_{d}^{2})+2g_{1}v_{S}M_{D}^{B}.

The sources of LFV are the off-diagonal entries of the 3×33\times 3 soft supersymmetry breaking matrices ml2m_{l}^{2} and mr2m_{r}^{2} in Eqs.(4, 5). From Eq.(5) we can see that the left-right slepton mass mixing is absent in the MRSSM, whereas the AA terms are present in the MSSM. The relevant Feynman diagrams contributing to τPl\tau\rightarrow Pl are presented in FIG.1.

Refer to caption
Figure 1: Feynman diagrams contributing to τPl\tau\rightarrow Pl in the MRSSM. Corrections from crossed diagrams of box diagram are also considered.

We now focus on the LFV processes τPl\tau\rightarrow Pl. Using the effective Lagrangian method, we present the analytical expression for the decay width of τPl\tau\rightarrow Pl. At the quark level, the interaction Lagrangian for τPl\tau\rightarrow Pl can be written as Flavor

τPl=I=S,VX,Y=L,RBXYI(l¯βΓIPXτ)(d¯ΓIPYd)+CXYI(l¯βΓIPXτ)(u¯ΓIPYu)+h.c.,{\cal L}_{\tau\rightarrow Pl}=\sum_{I=S,V}^{X,Y=L,R}B^{I}_{XY}(\bar{l}_{\beta}\Gamma_{I}P_{X}\tau)(\bar{d}\Gamma_{I}P_{Y}d)+C^{I}_{XY}(\bar{l}_{\beta}\Gamma_{I}P_{X}\tau)(\bar{u}\Gamma_{I}P_{Y}u)+h.c., (6)

where the index β\beta(=1,21,2) denotes the generation of the emitted lepton and l1(l2)=e(μ)l_{1}(l_{2})=e(\mu). Since only the axial-vector current contributes to τPl\tau\rightarrow Pl, the coefficients in Eq.(6) do not include photon penguin contribution but they include ZZ boson and scalar ones. The contribution to the Wilson coefficients CXYIC^{I}_{XY} and BXYIB^{I}_{XY} in Eq.(6) can be classified into self-energies, ZZ penguins, Higgs penguins and box diagrams, as shown in FIG.1. Now consider the implication of virtual Higgs exchange for τPl\tau\rightarrow Pl. Both the contributions from scalar and pseudo-scalar Higgs sector are considered in this work. However, all the Higgs penguin contribution is negligible since the couplings of scalar and pseudo-scalar Higgs to the light quarks are suppressed by their masses.

Then the decay width for τPl\tau\rightarrow Pl is given by

Γ(τPl)=λ1/2(mτ2,ml2,mP2)16πmτ3i,f||2,\Gamma(\tau\rightarrow Pl)=\frac{\lambda^{1/2}(m_{\tau}^{2},m^{2}_{l},m^{2}_{P})}{16\pi m_{\tau}^{3}}\sum_{i,f}|{\cal M}|^{2}, (7)

where the averaged squared amplitude can be written as

i,f||2=I,J=S,V[2mτml(aPIaPJbPIbPJ)+(mτ2+ml2mP2)(aPIaPJ+bPIbPJ).\sum_{i,f}|{\cal M}|^{2}=\sum_{I,J=S,V}[2m_{\tau}m_{l}(a^{I}_{P}a^{J\ast}_{P}-b^{I}_{P}b^{J\ast}_{P})+(m_{\tau}^{2}+m^{2}_{l}-m_{P}^{2})(a^{I}_{P}a^{J\ast}_{P}+b^{I}_{P}b^{J\ast}_{P}). (8)

The coefficients aPS,Va^{S,V}_{P} and bPS,Vb^{S,V}_{P} are linear combinations of the Wilson coefficients in Eq.(6),

aPS\displaystyle a^{S}_{P} =\displaystyle= fπ2X=L,R[DXd(P)md(BLXS+BRXS)+DXu(P)mu(CLXS+CRXS)],\displaystyle\frac{f_{\pi}}{2}\sum_{X=L,R}[\frac{D^{d}_{X}(P)}{m_{d}}(B^{S}_{LX}+B^{S}_{RX})+\frac{D^{u}_{X}(P)}{m_{u}}(C^{S}_{LX}+C^{S}_{RX})],
bPS\displaystyle b^{S}_{P} =\displaystyle= fπ2X=L,R[DXd(P)md(BRXSBLXS)+DXu(P)mu(CRXSCLXS)],\displaystyle\frac{f_{\pi}}{2}\sum_{X=L,R}[\frac{D^{d}_{X}(P)}{m_{d}}(B^{S}_{RX}-B^{S}_{LX})+\frac{D^{u}_{X}(P)}{m_{u}}(C^{S}_{RX}-C^{S}_{LX})],
aPV\displaystyle a^{V}_{P} =\displaystyle= fπ4C(P)(mτml)[BLLV+BLRVBRLV+BRRV+CLLVCLRV+CRLVCRRV],\displaystyle\frac{f_{\pi}}{4}C(P)(m_{\tau}-m_{l})[-B^{V}_{LL}+B^{V}_{LR}-B^{V}_{RL}+B^{V}_{RR}+C^{V}_{LL}-C^{V}_{LR}+C^{V}_{RL}-C^{V}_{RR}],
bPV\displaystyle b^{V}_{P} =\displaystyle= fπ4C(P)(mτ+ml)[BLLV+BLRV+BRLVBRRV+CLLVCLRVCRLV+CRRV],\displaystyle\frac{f_{\pi}}{4}C(P)(m_{\tau}+m_{l})[-B^{V}_{LL}+B^{V}_{LR}+B^{V}_{RL}-B^{V}_{RR}+C^{V}_{LL}-C^{V}_{LR}-C^{V}_{RL}+C^{V}_{RR}],

where fπf_{\pi} is the pion decay constant. The expressions for coefficients C(P)C(P),DLd,u(P)D^{d,u}_{L}(P) are listed in TABLE.3 Arganda .

Table 3: Coefficients for each pseudoscalar meson PP
P=πP=\pi P=ηP=\eta P=ηP=\eta^{\prime}
C(P)C(P) 1 16(sinθη+2cosθη)\frac{1}{\sqrt{6}}(\sin\theta_{\eta}+\sqrt{2}\cos\theta_{\eta}) 16(2sinθηcosθη)\frac{1}{\sqrt{6}}(\sqrt{2}\sin\theta_{\eta}-\cos\theta_{\eta})
DLd(P)D^{d}_{L}(P) -mπ24\frac{m^{2}_{\pi}}{4} 143[(3mπ24mK2)cosθη22mK2sinθη]\frac{1}{4\sqrt{3}}[(3m^{2}_{\pi}-4m^{2}_{K})\cos\theta_{\eta}-2\sqrt{2}m^{2}_{K}\sin\theta_{\eta}] 143[(3mπ24mK2)sinθη+22mK2cosθη]\frac{1}{4\sqrt{3}}[(3m^{2}_{\pi}-4m^{2}_{K})\sin\theta_{\eta}+2\sqrt{2}m^{2}_{K}\cos\theta_{\eta}]
DLu(P)D^{u}_{L}(P) mπ24\frac{m^{2}_{\pi}}{4} 143mπ2(cosθη2sinθη)\frac{1}{4\sqrt{3}}m^{2}_{\pi}(\cos\theta_{\eta}-\sqrt{2}\sin\theta_{\eta}) 143mπ2(sinθη+2cosθη)\frac{1}{4\sqrt{3}}m^{2}_{\pi}(\sin\theta_{\eta}+\sqrt{2}\cos\theta_{\eta})

Here, mπm_{\pi} and mKm_{K} denote the masses of the neutral pion and Kaon, and θη\theta_{\eta} denotes the ηη\eta-\eta^{\prime} mixing angle. In addition, DRd,u(P)D^{d,u}_{R}(P) = - (DLd,u(P))(D^{d,u}_{L}(P))^{\ast}.

Finally, the MRSSM has been implemented in the Mathematica package SARAH-4.14.3 SARAH ; SARAH1 ; SARAH2 ; Flavor . The masses of the MRSSM particles, mixing matrices and the Wilson coefficients of the corresponding operators in the effective lagrangian are computed by SPheno-4.0.4 SPheno1 ; SPheno2 modules written by SARAH.

III Numerical Analysis

The calculations of BR(τPl\tau\rightarrow Pl) in the MRSSM are evaluated within the framework of SARAH-4.14.3 SARAH ; SARAH1 ; SARAH2 ; Flavor and SPheno-4.0.4 SPheno1 ; SPheno2 . The experimental values of the Higgs mass and the W boson mass can impose stringent and nontrivial constraints on the model parameters. The one loop and leading two loop corrections to the lightest (SM-like) Higgs boson in the MRSSM have been computed in Die3 and the new fields and couplings can give large contributions to the Higgs mass even for stop masses of order 1 TeV and no stop mixing. Meanwhile, the new fields and couplings can not give too large contribution to the W boson mass and muon decay in the same regions of parameter space. A better agreement with the latest experimental value for the W boson mass has been investigated in Die6 . It combines all numerically relevant contributions that are known in the SM in a consistent way with all the MRSSM one loop corrections. A set of the updated benchmark point BMP1 is given in Die6 and we display them in Eq.(9) where all the mass parameters are in GeV or GeV2.

tanβ=3,Bμ=5002,λd=1.0,λu=0.8,Λd=1.2,Λu=1.1,MDB=550,MDW=600,μd=μu=500,vS=5.9,vT=0.38,(ml2)11=(ml2)22=(ml2)33=(mr2)11=(mr2)22=(mr2)33=10002,(mq~2)11=(mu~2)11=(md~2)11=(mq~2)22=(mu~2)22=(md~2)22=25002,(mq~2)33=(mu~2)33=(md~2)33=10002,mT=3000,mS=2000.\begin{array}[]{l}\tan\beta=3,B_{\mu}=500^{2},\lambda_{d}=1.0,\lambda_{u}=-0.8,\Lambda_{d}=-1.2,\Lambda_{u}=-1.1,\\ M_{D}^{B}=550,M_{D}^{W}=600,\mu_{d}=\mu_{u}=500,v_{S}=5.9,v_{T}=-0.38,\\ (m^{2}_{l})_{11}=(m^{2}_{l})_{22}=(m^{2}_{l})_{33}=(m^{2}_{r})_{11}=(m^{2}_{r})_{22}=(m^{2}_{r})_{33}=1000^{2},\\ (m^{2}_{\tilde{q}})_{11}=(m^{2}_{\tilde{u}})_{11}=(m^{2}_{\tilde{d}})_{11}=(m^{2}_{\tilde{q}})_{22}=(m^{2}_{\tilde{u}})_{22}=(m^{2}_{\tilde{d}})_{22}=2500^{2},\\ (m^{2}_{\tilde{q}})_{33}=(m^{2}_{\tilde{u}})_{33}=(m^{2}_{\tilde{d}})_{33}=1000^{2},m_{T}=3000,m_{S}=2000.\end{array} (9)

In the numerical analysis, the default values of the input parameters are set same with those in Eq.(9). The off-diagonal entries of squark mass matrices mq~2m^{2}_{\tilde{q}}, mu~2m^{2}_{\tilde{u}}, md~2m^{2}_{\tilde{d}} and slepton mass matrices ml2m^{2}_{l}, mr2m^{2}_{r} in Eq.(9) are zero. The large value of |vT||v_{T}| is excluded by measurement of the W boson mass because the VEV vTv_{T} of the SU(2)LSU(2)_{L} triplet field T0T^{0} gives a correction to the W mass through Die1

mW2=14g22(vu2+vd2)+g22vT2.\displaystyle m_{W}^{2}=\frac{1}{4}g_{2}^{2}(v_{u}^{2}+v_{d}^{2})+g_{2}^{2}v_{T}^{2}. (10)

Similarly to the most supersymmetry models, those LFV processes originate from the off-diagonal entries of the soft breaking terms ml2m_{l}^{2} and mr2m_{r}^{2} in the MRSSM, which are parametrized by the mass insertion

(ml2)IJ=δlIJ(ml2)II(ml2)JJ,(mr2)IJ=δrIJ(mr2)II(mr2)JJ,\displaystyle(m^{2}_{l})_{IJ}=\delta^{IJ}_{l}\sqrt{(m^{2}_{l})_{II}(m^{2}_{l})_{JJ}},(m^{2}_{r})_{IJ}=\delta^{IJ}_{r}\sqrt{(m^{2}_{r})_{II}(m^{2}_{r})_{JJ}}, (11)

where I,J=1,2,3I,J=1,2,3. To decrease the number of free parameters involved in our calculation, we assume that the off-diagonal entries of ml2m_{l}^{2} and mr2m_{r}^{2} in Eq.(11) are equal, i.e., δlIJ\delta^{IJ}_{l} = δrIJ\delta^{IJ}_{r} = δIJ\delta^{IJ}. The experimental bounds on LFV decays, such as radiative two body decays l2l1γl_{2}\rightarrow l_{1}\gamma, leptonic three body decays l23l1l_{2}\rightarrow 3l_{1} and μ\mu-e conversion in nuclei, can give strong constraints on the parameters δIJ\delta^{IJ}. In the following, we will use LFV decays l2l1γl_{2}\rightarrow l_{1}\gamma and l23l1l_{2}\rightarrow 3l_{1} to constrain the parameters δIJ\delta^{IJ}. It is noted that δ12\delta^{12} has been set zero in following discussion since it has no effect on the prediction of BR(τPl\tau\rightarrow Pl). Current limits on branching ratios of l2l1γl_{2}\rightarrow l_{1}\gamma and l23l1l_{2}\rightarrow 3l_{1} are listed in TABLE.4 PDG .

Table 4: Current limits of l2l1γl_{2}\rightarrow l_{1}\gamma and l23l1l_{2}\rightarrow 3l_{1}.
Decay Bound Experiment Decay Bound Experiment
μeγ\mu\rightarrow e\gamma 4.2×10134.2\times 10^{-13} SPEC(2016)MEG τeγ\tau\rightarrow e\gamma 3.3×1083.3\times 10^{-8} BABAR(2010)BABAR
τμγ\tau\rightarrow\mu\gamma 4.4×1084.4\times 10^{-8} BABAR(2010)BABAR μ3e\mu\rightarrow 3e 1.0×10121.0\times 10^{-12} SPEC(1988)SINDRUM
τ3e\tau\rightarrow 3e 2.7×1082.7\times 10^{-8} BELL(2010)BELL τ3μ\tau\rightarrow 3\mu 2.1×1082.1\times 10^{-8} BELL(2010)BELL
Refer to captionRefer to caption
Figure 2: Left panel: Dependence on mass insertion δ13\delta^{13} of BR(τPe\tau\rightarrow Pe). Right panel: Dependence on mass insertion δ23\delta^{23} of BR(τPμ\tau\rightarrow P\mu).

Taking δ23=0\delta^{23}=0 and the parameters in Eq.(9), we plot the predictions of BR(τPe)(\tau\rightarrow Pe) versus Log[δ13\delta^{13}] in the left panel of FIG.2. Taking δ13=0\delta^{13}=0 and the parameters in Eq.(9), we plot the predictions of BR(τPμ)(\tau\rightarrow P\mu) versus Log[δ23\delta^{23}] in the right panel of FIG.2. A linear relationship in logarithmic scale is displayed between BR(τPe(μ))(\tau\rightarrow Pe(\mu)) and the flavor violating parameter δ13\delta^{13}(δ23\delta^{23}). The actual dependence on δ13\delta^{13} or δ23\delta^{23} is quadratic. The mentioned linear dependence is due to the fact that both x axis and y axis in FIG.2 are logarithmically scaled. In FIG.2 the following hierarchy is shown, BR(τπe)>(\tau\rightarrow\pi e)>BR(τηe)>(\tau\rightarrow\eta^{\prime}e)>BR(τηe)(\tau\rightarrow\eta e) and BR(τπμ)>(\tau\rightarrow\pi\mu)>BR(τημ)>(\tau\rightarrow\eta^{\prime}\mu)>BR(τημ)(\tau\rightarrow\eta\mu). The predictions on BR(τηe(μ))(\tau\rightarrow\eta e(\mu)) and BR(τηe(μ))(\tau\rightarrow\eta^{\prime}e(\mu)) are very close to each other. At δ13(δ23)\delta^{13}(\delta^{23}) = 100.250.5610^{-0.25}\sim 0.56, the prediction on BR(τe(μ)γ)(\tau\rightarrow e(\mu)\gamma) is around 10810^{-8} and this is very close to the current experimental bound. The prediction on BR(τ3e(μ))(\tau\rightarrow 3e(\mu)) is around 101010^{-10} and this is two orders of magnitude below the current experimental bound. The decay channels τe(μ)γ\tau\rightarrow e(\mu)\gamma can set more strong constraint than channels τ3e(μ)\tau\rightarrow 3e(\mu) on the flavor violating parameters. The predictions on BR(τPl)(\tau\rightarrow Pl) are far below the current experimental bounds. The prediction on BR(τπe(μ))(\tau\rightarrow\pi e(\mu)) is around 101310^{-13} and this is five orders of magnitude below the current experimental bound and three orders of magnitude below the future experimental sensitivity.

Refer to captionRefer to caption
Figure 3: Contributions to BR(τPe\tau\rightarrow Pe) and BR(τPμ\tau\rightarrow P\mu) from ZZ penguins, box diagrams and total diagrams. BR(τηe(μ)\tau\rightarrow\eta^{\prime}e(\mu)) are not shown in plots cause they are very close to BR(τηe(μ)\tau\rightarrow\eta e(\mu)).

Taking δ13=0.5\delta^{13}=0.5, δ23=0\delta^{23}=0 and the parameters in Eq.(9), we plot the predictions of BR(τPe)(\tau\rightarrow Pe) from various parts as a function of tanβ\tan\beta in the left panel of FIG.3. Taking δ13=0\delta^{13}=0, δ23=0.5\delta^{23}=0.5 and the parameters in Eq.(9), we plot the theoretical predictions of BR(τPμ)(\tau\rightarrow P\mu) from various parts as a function of tanβ\tan\beta in the right panel of FIG.3. The lines corresponding to ZZ penguin and box diagram indicate the values of BR(τPl)(\tau\rightarrow Pl) are given by only the listed contribution with all others set to zero. The total prediction for BR(τPl)(\tau\rightarrow Pl) is also indicated. We observe that ZZ penguin dominates the prediction on BR(τPl)(\tau\rightarrow Pl) in a large region of the parameter space. For larger values of tanβ\tan\beta, the prediction from ZZ penguin changes slowly, since it is directly proportional to 11+tan2β\frac{1}{1+\tan^{2}\beta} Fok . The contribution from box diagram is not sensitive to tanβ\tan\beta and at least two orders of magnitude below ZZ penguin. This is because of the small couplings of neutralino/chargino to quark and squark in box diagram.

As mentioned above, the contribution from Higgs penguin is negligible due to the small couplings of the scalar and pseudo-scalar Higgs to the light quarks. However, if the Higgs couplings to the strange components of the η\eta and η\eta^{\prime} mesons are large enough, which result in large A0A^{0}-η\eta and A0A^{0}-η\eta^{\prime} mixing, Higgs-mediated contribution could dominate the predictions on τμη(η)\tau\rightarrow\mu\eta(\eta^{\prime}) Arganda . Furthermore, it was pointed out in Ref.Celis1 that a one loop Higgs generated gluon operator does not suffer of the light-quark mass suppression and could give a sizeable contribution. The Wilson coefficients CXYSC^{S}_{XY} and BXYSB^{S}_{XY} corresponding to the Higgs penguin in Eq.(6) can also contribute to the LFV process μ\mu-e conversion. In simple formulas, the branching ratios BR(τPl\tau\rightarrow Pl) and conversion rate CR(μ\mu-e, nucleus) are given by

BR(τPl)\displaystyle BR(\tau\rightarrow Pl) \displaystyle\sim mτ5fP264π|CXYS|2104|CXYS|2,\displaystyle\frac{m^{5}_{\tau}f^{2}_{P}}{64\pi}|C^{S}_{XY}|^{2}\sim 10^{-4}|C^{S}_{XY}|^{2},
CR(μe,nucleus)\displaystyle CR(\mu-e,\textup{nucleus}) \displaystyle\sim 3Zmμ5α3Zeff4Fp28π2Γcapt|CXYS|21010|CXYS|2(nucleus = Ti).\displaystyle\frac{3Zm^{5}_{\mu}\alpha^{3}Z^{4}_{eff}F^{2}_{p}}{8\pi^{2}\Gamma_{capt}}|C^{S}_{XY}|^{2}\sim 10^{10}|C^{S}_{XY}|^{2}(\textup{nucleus = Ti}).

Thus, the predicted CR(μ\mu-e, nucleus) from Higgs penguin is much larger than BR(τPl\tau\rightarrow Pl) though both are negligible compared to the total contribution.

Refer to captionRefer to caption
Figure 4: Left panel: Dependence on mLmL of BR(τPe\tau\rightarrow Pe). Right panel: Dependence on mLmL of BR(τPμ\tau\rightarrow P\mu). The mass parameter mLmL is in TeV.

Taking δ13=0.5\delta^{13}=0.5, δ23=0\delta^{23}=0 and the parameters in Eq.(9), we plot the predictions of BR(τPe)(\tau\rightarrow Pe) as a function of the diagonal entries mLmL in the left panel of FIG.4. Taking δ13=0\delta^{13}=0, δ23=0.5\delta^{23}=0.5 and parameters in Eq.(9), we plot the predictions of BR(τPμ)(\tau\rightarrow P\mu) as a function of the diagonal entries mLmL in the right panel of FIG.4. Here, mLmL=(ml2)11=(ml2)22=(ml2)33=(mr2)11=(mr2)22=(mr2)33=\sqrt{(m^{2}_{l})_{11}}=\sqrt{(m^{2}_{l})_{22}}=\sqrt{(m^{2}_{l})_{33}}=\sqrt{(m^{2}_{r})_{11}}=\sqrt{(m^{2}_{r})_{22}}=\sqrt{(m^{2}_{r})_{33}}. The prediction on BR(τlγ)(\tau\rightarrow l\gamma) is at the level of 𝒪(109)\mathcal{O}(10^{-9}) and this is very close to the future experimental sensitivities Aushev . The prediction on BR(τ3l)(\tau\rightarrow 3l) is at the level of 𝒪(1011)\mathcal{O}(10^{-11}) and this is two orders of magnitude below the future experimental sensitivities Aushev . The predictions on BR(τlγ)(\tau\rightarrow l\gamma), BR(τ3l)(\tau\rightarrow 3l) and BR(τPl)(\tau\rightarrow Pl) in the MRSSM decreas as the slepton mass parameter mLmL varies from 1 TeV to 5 TeV.

Refer to captionRefer to caption
Figure 5: Left panel: Dependence on mQmQ of BR(τPe\tau\rightarrow Pe). Right panel: Dependence on mQmQ of BR(τPμ\tau\rightarrow P\mu). Mass parameter mQmQ is in TeV.

Taking δ13=0.5\delta^{13}=0.5, δ23=0\delta^{23}=0 and the parameters in Eq.(9), we plot the predictions of BR (τPe)(\tau\rightarrow Pe) as a function of the squark mass parameter mQmQ in the left panel of FIG.5. Taking δ13=0\delta^{13}=0, δ23=0.5\delta^{23}=0.5 and the parameters in Eq.(9), we plot the predictions of BR (τPμ)(\tau\rightarrow P\mu) as a function of the squark mass parameter mQmQ in the right panel of FIG.5. Here, mQmQ=(mq~2)11=(mu~2)11=(md~2)11=(mq~2)22=(mu~2)22=(md~2)22=(mq~2)33=(mu~2)33=(md~2)33\sqrt{(m^{2}_{\tilde{q}})_{11}}=\sqrt{(m^{2}_{\tilde{u}})_{11}}=\sqrt{(m^{2}_{\tilde{d}})_{11}}=\sqrt{(m^{2}_{\tilde{q}})_{22}}=\sqrt{(m^{2}_{\tilde{u}})_{22}}=\sqrt{(m^{2}_{\tilde{d}})_{22}}=\sqrt{(m^{2}_{\tilde{q}})_{33}}=\sqrt{(m^{2}_{\tilde{u}})_{33}}=\sqrt{(m^{2}_{\tilde{d}})_{33}}. We clearly see that both the predictions on BR(τPe\tau\rightarrow Pe) and BR(τPμ\tau\rightarrow P\mu), which increase slowly as mQmQ varies from 1 TeV to 5 TeV, are not sensitive to mQmQ. The off-diagonal entries δq~,u~,d~IJ\delta^{IJ}_{\tilde{q},\tilde{u},\tilde{d}} of the squark mass matrices mq~2m^{2}_{\tilde{q}}, mu~2m^{2}_{\tilde{u}} and md~2m^{2}_{\tilde{d}} could give additional contributions to BR(τPl\tau\rightarrow Pl). Taking into account the experimental constraints on δq~,u~,d~IJ\delta^{IJ}_{\tilde{q},\tilde{u},\tilde{d}} from low energy B meson physics observables, such as, BR(B¯Xsγ\bar{B}\rightarrow X_{s}\gamma), BR(Bs,d0μ+μB^{0}_{s,d}\rightarrow\mu^{+}\mu^{-}), the prediction of BR(τPl\tau\rightarrow Pl) takes values along a narrow band. Thus, the prediction of BR(τPl)(\tau\rightarrow Pl) is also not sensitive to the off-diagonal entries of the squark mass matrices.

We are also interested to the effect from other parameters on the prediction of BR(τPl\tau\rightarrow Pl) in the MRSSM. The predicted BR(τPl\tau\rightarrow Pl) decreases slowly along with the increase of the wino-triplino mass parameter MDWM_{D}^{W}. However, the valid region of MDWM_{D}^{W} is constrained by the boundary conditions at the unification scale, and unphysical masses of neutral Higgs and charged Higgs are obtained when MDWM_{D}^{W} above 1 TeV. By scanning over these parameters, which are shown in Eq.(12),

1.5<λd,λu,Λd,Λu<1.5,300 GeV<μd,μu,mA<1000 GeV,\begin{array}[]{l}-1.5<\lambda_{d},\lambda_{u},\Lambda_{d},\Lambda_{u}<1.5,\\ 300\text{ GeV}<\mu_{d},\mu_{u},m_{A}<1000\text{ GeV},\end{array} (12)

the prediction is shown in relation to one input parameter (e.g. λd\lambda_{d} or others). The parameters λd,λu,Λu\lambda_{d},\lambda_{u},\Lambda_{u} are constrained in a narrow region by the boundary conditions which is close to the benchmark points and Λd\Lambda_{d} can vary in the whole region. The results show that varying those parameters in Eq.(12) have very small effect on the prediction of BR(τPl\tau\rightarrow Pl) which takes values along a narrow band.

IV Conclusions

In this work, taking into account the constraints from LFV decays τe(μ)γ\tau\rightarrow e(\mu)\gamma and τ3e(μ)\tau\rightarrow 3e(\mu) on the flavor violating parameters, we analyze the LFV decays τPl\tau\rightarrow Pl in the framework of the minimal R-symmetric supersymmetric standard model.

We observe that ZZ penguin dominates the prediction on BR(τPe(μ))(\tau\rightarrow Pe(\mu)), and other contributions are less dominant or negligible. As we all konw the LFV processes l2l1γl_{2}\rightarrow l_{1}\gamma can only obtain the dipole contribution from the gamma penguin. The LFV processes l23l1l_{2}\rightarrow 3l_{1} and μ\mu-e conversion can obtain contributions from the gamma penguin (including dipole and non-dipole), ZZ penguin, Higgs penguin and box diagram. While, for the LFV processes τPl\tau\rightarrow Pl, contributions from ZZ penguin, Higgs penguin and box diagram are included except for the gamma penguin. It is interesting to consider if it is possible to find a parameter region that LFV processes τe(μ)γ\tau\rightarrow e(\mu)\gamma and τ\tau-e(μ)e(\mu) conversion are not excluded and which could still give large contribution to τPl\tau\rightarrow Pl. The answer is negative at least in this work. The prediction of BR(τPl)(\tau\rightarrow Pl) is two or three orders of magnitude below BR(τ3l)(\tau\rightarrow 3l).

In the MRSSM, the prediction on BR(τPe)(\tau\rightarrow Pe) and BR(τPμ)(\tau\rightarrow P\mu) is affected by the mass insertions δ13\delta^{13} and δ23\delta^{23}, respectively. The prediction on BR(τPe)(\tau\rightarrow Pe) would be zero if δ13\delta^{13}=0 is assumed, and so are the prediction on BR(τPμ)(\tau\rightarrow P\mu) if δ23\delta^{23}=0 is assumed. Taking into account the experimental bounds on BR(τe(μ)γ\tau\rightarrow e(\mu)\gamma) and BR(τ3e(μ)\tau\rightarrow 3e(\mu)), the values of δ13\delta^{13} and δ23\delta^{23} are constrained around 0.5. The predictions on BR(τPe)(\tau\rightarrow Pe) and BR(τPμ)(\tau\rightarrow P\mu) are found to be at the level of 𝒪(1013\mathcal{O}(10^{-13}-1014)10^{-14}), which are five orders of magnitude below the present experimental upper limits. The processes τπl\tau\rightarrow\pi l may be the most competitive LFV semileptonic tau decay channels. The future prospects of BR(τPl)(\tau\rightarrow Pl) in Belle II are extrapolated at the level of 𝒪(109\mathcal{O}(10^{-9}-1010)10^{-10}) Altmannshofer and they are three orders of magnitude above the predictions in the MRSSM. Thus, LFV decays τPl\tau\rightarrow Pl may be out reach of the near future experiments.

Appendix A Mass matrices at tree level in the MRSSM

In the weak basis (ϕd,ϕu,ϕS,ϕT)(\phi_{d},\phi_{u},\phi_{S},\phi_{T}), the scalar Higgs boson mass matrix and the diagonalization procedure are

h\displaystyle{\cal M}_{h} =\displaystyle= (1121T2122),Zhh(Zh)=hdiag,\displaystyle\left(\begin{array}[]{cc}{\cal M}_{11}&{\cal M}_{21}^{T}\\ {\cal M}_{21}&{\cal M}_{22}\\ \end{array}\right),Z^{h}{\cal M}_{h}(Z^{h})^{\dagger}={\cal M}_{h}^{\textup{diag}}, (15)

where the submatrices (cβ=cosβc_{\beta}=cos\beta, sβ=sinβs_{\beta}=sin\beta) are

11\displaystyle{\cal M}_{11} =\displaystyle= (mZ2cβ2+mA2sβ2(mZ2+mA2)sβcβ(mZ2+mA2)sβcβmZ2sβ2+mA2cβ2),\displaystyle\left(\begin{array}[]{cc}m_{Z}^{2}c^{2}_{\beta}+m_{A}^{2}s^{2}_{\beta}&-(m_{Z}^{2}+m_{A}^{2})s_{\beta}c_{\beta}\\ -(m_{Z}^{2}+m_{A}^{2})s_{\beta}c_{\beta}&m_{Z}^{2}s^{2}_{\beta}+m_{A}^{2}c^{2}_{\beta}\\ \end{array}\right), (18)
21\displaystyle{\cal M}_{21} =\displaystyle= (vd(2λdμdeff,+g1MBD)vu(2λuμueff,+g1MBD)vd(Λdμdeff,++g2MWD)vu(Λuμueff,1+g2MWD)),\displaystyle\left(\begin{array}[]{cc}v_{d}(\sqrt{2}\lambda_{d}\mu_{d}^{eff,+}-g_{1}M_{B}^{D})&v_{u}(\sqrt{2}\lambda_{u}\mu_{u}^{eff,-}+g_{1}M_{B}^{D})\\ v_{d}(\Lambda_{d}\mu_{d}^{eff,+}+g_{2}M_{W}^{D})&-v_{u}(\Lambda_{u}\mu_{u}^{eff,1}+g_{2}M_{W}^{D})\\ \end{array}\right), (21)
22\displaystyle{\cal M}_{22} =\displaystyle= (4(MBD)2+mS2+λd2vd2+λu2vu22λdΛdvd2λuΛuvu222λdΛdvd2λuΛuvu2224(MWD)2+mT2+Λd2vd2+Λu2vu24).\displaystyle\left(\begin{array}[]{cc}4(M_{B}^{D})^{2}+m_{S}^{2}+\frac{\lambda_{d}^{2}v_{d}^{2}+\lambda_{u}^{2}v_{u}^{2}}{2}&\frac{\lambda_{d}\Lambda_{d}v_{d}^{2}-\lambda_{u}\Lambda_{u}v_{u}^{2}}{2\sqrt{2}}\\ \frac{\lambda_{d}\Lambda_{d}v_{d}^{2}-\lambda_{u}\Lambda_{u}v_{u}^{2}}{2\sqrt{2}}&4(M_{W}^{D})^{2}+m_{T}^{2}+\frac{\Lambda_{d}^{2}v_{d}^{2}+\Lambda_{u}^{2}v_{u}^{2}}{4}\\ \end{array}\right). (24)

In the weak basis (σd,σu,σS,σT)(\sigma_{d},\sigma_{u},\sigma_{S},\sigma_{T}), the pseudo-scalar Higgs boson mass matrix and the diagonalization procedure are

A0\displaystyle{\cal M}_{A^{0}} =\displaystyle= (BμvuvdBμ00BμBμvdvu0000mS2+λd2vd2+λu2vu22λdΛdvd2λuΛuvu22200λdΛdvd2λuΛuvu222mT2+Λd2vd2+Λu2vu24),ZAA0(ZA)=A0diag.\displaystyle\left(\begin{array}[]{cccc}B_{\mu}\frac{v_{u}}{v_{d}}&B_{\mu}&0&0\\ B_{\mu}&B_{\mu}\frac{v_{d}}{v_{u}}&0&0\\ 0&0&m_{S}^{2}+\frac{\lambda_{d}^{2}v_{d}^{2}+\lambda_{u}^{2}v_{u}^{2}}{2}&\frac{\lambda_{d}\Lambda_{d}v_{d}^{2}-\lambda_{u}\Lambda_{u}v_{u}^{2}}{2\sqrt{2}}\\ 0&0&\frac{\lambda_{d}\Lambda_{d}v_{d}^{2}-\lambda_{u}\Lambda_{u}v_{u}^{2}}{2\sqrt{2}}&m_{T}^{2}+\frac{\Lambda_{d}^{2}v_{d}^{2}+\Lambda_{u}^{2}v_{u}^{2}}{4}\\ \end{array}\right),Z^{A}{\cal M}_{A^{0}}(Z^{A})^{\dagger}={\cal M}_{A^{0}}^{\textup{diag}}. (29)

In the weak basis of four neutral electroweak two-component fermions ξi\xi_{i}=(B~\tilde{B},W~0\tilde{W}^{0},R~d0\tilde{R}^{0}_{d},R~u0\tilde{R}^{0}_{u}) with R-charge 1 and four neutral electroweak two-component fermions ςi\varsigma_{i}=(S~\tilde{S},T~0\tilde{T}^{0},H~d0\tilde{H}^{0}_{d},H~u0\tilde{H}^{0}_{u}) with R-charge -1, the neutralino mass matrix and the diagonalization procedure are

mχ0\displaystyle m_{\chi^{0}} =\displaystyle= (MDB012g1vd12g1vu0MDW12g2vd12g2vu12λdvd12Λdvdμdeff,+012λuvu12Λuvu0μueff,),(N1)mχ0(N2)=mχ0diag.\displaystyle\left(\begin{array}[]{cccc}M^{B}_{D}&0&-\frac{1}{2}g_{1}v_{d}&\frac{1}{2}g_{1}v_{u}\\ 0&M^{W}_{D}&\frac{1}{2}g_{2}v_{d}&-\frac{1}{2}g_{2}v_{u}\\ -\frac{1}{\sqrt{2}}\lambda_{d}v_{d}&-\frac{1}{2}\Lambda_{d}v_{d}&-\mu_{d}^{eff,+}&0\\ \frac{1}{\sqrt{2}}\lambda_{u}v_{u}&-\frac{1}{2}\Lambda_{u}v_{u}&0&\mu_{u}^{eff,-}\end{array}\right),(N^{1})^{\ast}m_{\chi^{0}}(N^{2})^{\dagger}=m_{\chi^{0}}^{\textup{diag}}. (34)

The mass eigenstates κi\kappa_{i} and φi\varphi_{i}, and physical four-component Dirac neutralinos are

ξi=j=14(Nji1)κj,ςi=j=14(Nij2)φj,χi0=(κiφi).\xi_{i}=\sum^{4}_{j=1}(N^{1}_{ji})^{\ast}\kappa_{j},\varsigma_{i}=\sum^{4}_{j=1}(N^{2}_{ij})^{\ast}\varphi_{j},\chi^{0}_{i}=\left(\begin{array}[]{c}\kappa_{i}\\ \varphi_{i}^{\ast}\\ \end{array}\right).

In the basis ξi+\xi^{+}_{i}=(W~+\tilde{W}^{+}, R~d+\tilde{R}^{+}_{d}) and ςi\varsigma^{-}_{i}=(T~\tilde{T}^{-}, H~d\tilde{H}^{-}_{d}), the χ±\chi^{\pm}-charginos mass matrix and the diagonalization procedure are

mχ±=(g2vT+MDW12Λdvd12g2vd12ΛdvT+12λdvS+μd),(U1)mχ±(V1)=mχ±diag.m_{\chi^{\pm}}=\left(\begin{array}[]{cc}g_{2}v_{T}+M^{W}_{D}&\frac{1}{\sqrt{2}}\Lambda_{d}v_{d}\\ \frac{1}{\sqrt{2}}g_{2}v_{d}&-\frac{1}{2}\Lambda_{d}v_{T}+\frac{1}{\sqrt{2}}\lambda_{d}v_{S}+\mu_{d}\end{array}\right),(U^{1})^{\ast}m_{\chi^{\pm}}(V^{1})^{\dagger}=m_{\chi^{\pm}}^{\textup{diag}}. (35)

The mass eigenstates λi±\lambda^{\pm}_{i} and physical four-component Dirac charginos are

ξi+=j=12(Vij1)λj+,ςi=j=12(Uji1)λj,χi±=(λi+λi).\xi^{+}_{i}=\sum^{2}_{j=1}(V^{1}_{ij})^{\ast}\lambda^{+}_{j},\varsigma^{-}_{i}=\sum^{2}_{j=1}(U^{1}_{ji})^{\ast}\lambda^{-}_{j},\chi^{\pm}_{i}=\left(\begin{array}[]{c}\lambda^{+}_{i}\\ \lambda_{i}^{-\ast}\\ \end{array}\right).

The mass matrix for up squarks and down squarks, and the relevant diagonalization procedure are

mu~2=((mu~2)LL00(mu~2)RR),ZUmu~2(ZU)=mu~2,diag,md~2=((md~2)LL00(md~2)RR),ZDmd~2(ZD)=md~2,diag,\begin{array}[]{l}m^{2}_{\tilde{u}}=\left(\begin{array}[]{cc}(m^{2}_{\tilde{u}})_{LL}&0\\ 0&(m^{2}_{\tilde{u}})_{RR}\end{array}\right),Z^{U}m^{2}_{\tilde{u}}(Z^{U})^{\dagger}=m^{2,\textup{diag}}_{\tilde{u}},\\ m^{2}_{\tilde{d}}=\left(\begin{array}[]{cc}(m^{2}_{\tilde{d}})_{LL}&0\\ 0&(m^{2}_{\tilde{d}})_{RR}\end{array}\right),Z^{D}m^{2}_{\tilde{d}}(Z^{D})^{\dagger}=m^{2,\textup{diag}}_{\tilde{d}},\end{array} (36)

where

(mu~2)LL\displaystyle(m^{2}_{\tilde{u}})_{LL} =mq~2+12vu2|Yu|2+124(g123g22)(vu2vd2)+13g1vSMDB+g2vTMDW,\displaystyle=m_{\tilde{q}}^{2}+\frac{1}{2}v_{u}^{2}|Y_{u}|^{2}+\frac{1}{24}(g_{1}^{2}-3g_{2}^{2})(v_{u}^{2}-v_{d}^{2})+\frac{1}{3}g_{1}v_{S}M_{D}^{B}+g_{2}v_{T}M_{D}^{W},
(mu~2)RR\displaystyle(m^{2}_{\tilde{u}})_{RR} =mu~2+12vu2|Yu|2+16g12(vd2vu2)43g1vSMDB,\displaystyle=m_{\tilde{u}}^{2}+\frac{1}{2}v_{u}^{2}|Y_{u}|^{2}+\frac{1}{6}g_{1}^{2}(v_{d}^{2}-v_{u}^{2})-\frac{4}{3}g_{1}v_{S}M_{D}^{B},
(md~2)LL\displaystyle(m^{2}_{\tilde{d}})_{LL} =mq~2+12vd2|Yd|2+124(g12+3g22)(vu2vd2)+13g1vSMDBg2vTMDW,\displaystyle=m_{\tilde{q}}^{2}+\frac{1}{2}v_{d}^{2}|Y_{d}|^{2}+\frac{1}{24}(g_{1}^{2}+3g_{2}^{2})(v_{u}^{2}-v_{d}^{2})+\frac{1}{3}g_{1}v_{S}M_{D}^{B}-g_{2}v_{T}M_{D}^{W},
(md~2)RR\displaystyle(m^{2}_{\tilde{d}})_{RR} =md~2+12vd2|Yd|2+112g12(vu2vd2)+23g1vSMDB.\displaystyle=m_{\tilde{d}}^{2}+\frac{1}{2}v_{d}^{2}|Y_{d}|^{2}+\frac{1}{12}g_{1}^{2}(v_{u}^{2}-v_{d}^{2})+\frac{2}{3}g_{1}v_{S}M_{D}^{B}.
Acknowledgements.
This work has been supported partly by the National Natural Science Foundation of China (NNSFC) under Grants No.11905002 and No.11805140, the Scientific Research Foundation of the Higher Education Institutions of Hebei Province under Grant No. BJ2019210, the Foundation of Baoding University under Grant No. 2018Z01, the Foundation of Department of Education of Liaoning province under Grant No. 2020LNQN14, and the Natural Science Foundation of Hebei province under Grant No. A2020201002.

References

  • (1) F. Cei and D. Nicolo, Adv. High Energy Phys. 2014, 282915(2014).
  • (2) K. Hayasaka and J. Phys. Conf. Ser. 171, 012079(2009).
  • (3) Belle, BABAR Collaboration, G. Vasseur, PoS Beauty2014, 041(2015).
  • (4) Belle Collaboration, Y. Miyazaki et al., Phys. Lett. B 719, 346(2013).
  • (5) Belle-II Collaboration, B. A. Shwartz, Nucl. Part. Phys. Proc. 260, 233(2015).
  • (6) M. Tanabashi et al., (Particle Data Group), Phys. Rev. D 98, 030001(2018).
  • (7) Y. Miyazaki et al., Belle collaboration, Phys. Lett. B 648, 341(2007).
  • (8) B. Aubert et al., BABAR collaboration, Phys. Rev. Lett. 98, 061803(2007).
  • (9) W. Altmannshofer et al. (Belle II Collaboration), arXiv:1808.10567.
  • (10) W. J. Li, Y. D. Yang and X. D. Zhang, Phys. Rev. D 73, 073005(2006).
  • (11) S. Kanemura, T. Ota and K. Tsumura, Phys. Rev. D 73, 016006(2006).
  • (12) T. Hua and C.-X. Yue, Commun. Theor. Phys. 62 (2014) 3, 388-392.
  • (13) C.-X. Yue, L.-H. Wang and W. Ma, Phys. Rev. D 74, 115018(2006).
  • (14) T. Goto, Y. Okada and Y. Yamamoto, Phys. Rev. D 83, 053011(2011).
  • (15) A. Lami, J. Portoles and P. Roig, Phys. Rev. D 93, 076008(2016).
  • (16) M. Carpentier and S. Davidson, Eur. Phys. J. C 70, 1071(2010).
  • (17) I, Dorsner, J. Drobnak, S. Fajfer, J. F. Kamenik and N. Kosnik, J. High Energy Phys. 1111, 002(2011).
  • (18) Z.-H. Li, Y. Li and H.-X. Xu, Phys. Lett. B 677, 150(2009).
  • (19) A. Ilakovac, Bernd A. Kniehl and A. Pilaftsis, Phys. Rev. D 52, 3993(1995).
  • (20) M. C. Gonzalez-Garcia and J. W. F. Valle, Mod. Phys. Lett. A 7, 477(1992).
  • (21) A. Ilakovac, Phys. Rev. D 62, 036010(2000).
  • (22) X.-G. He and S. Oh, J. High Energy Phys. 0909, 027(2009).
  • (23) A. Arhrib, R. Benbrik and C.-H. Chen, Phys. Rev. D 81, 113003(2010).
  • (24) M. Sher, Phys. Rev. D 66, 057301(2002).
  • (25) T. Fukuyama, A. Ilakovac and T. Kikuchi, Eur. Phys. J. C 56, 125(2008).
  • (26) A. Brignole and A. Rossi, Nucl. Phys. B 701, 3(2004).
  • (27) C.-H. Chen and C.-Q. Geng, Phys. Rev. D 74, 035010(2006).
  • (28) J. P. Saha and A. Kundu, Phys. Rev. D 66, 054021(2002).
  • (29) E. Arganda, M.J. Herrero and J. Portoles, J. High Energy Phys. 0806, 079(2008).
  • (30) D. Black, T. Han, H. J. He and M. Sher, Phys. Rev. D 66, 053002(2002).
  • (31) V. Cirigliano and B. Grinstein, Nucl. Phys. B 752, 18(2006).
  • (32) X.-G. He, J. Tandean and G. Valencia, Phys. Lett. B 797, 134842(2019).
  • (33) Y. Cai and M. A. Schmidt, J. High Energy Phys. 1602, 176(2016).
  • (34) Y. Cai, M. A. Schmidt and G. Valencia, J. High Energy Phys. 1805, 143(2018).
  • (35) E. Gabrielli, Phys.Rev. D 62, 055009(2000).
  • (36) A. A. Petrov, D. V. Zhuridov, Phys. Rev. D 89, 033005(2014).
  • (37) A. Celis, V. Cirigliano and E. Passemar, Phys. Rev. D 89, 095014(2014).
  • (38) W. Buchmuller and D. Wyler, Nucl. Phys. B 268, 621(1986).
  • (39) B. Grzadkowski, M. Iskrzynski and M. Misiak, J. High Energy Phys. 1010, 085(2010).
  • (40) G. D. Kribs, E. Poppitz and N. Weiner, Phys. Rev. D 78, 055010(2008).
  • (41) P. Diessner and W. Kotlarski, PoS CORFU 2014, 079(2015).
  • (42) P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Adv. High Energy Phys. 2015, 760729(2015).
  • (43) P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, J. High Energy Phys. 1412, 124(2014).
  • (44) P. Diessner, W. Kotlarski, S. Liebschner and D. Stöckinger, J. High Energy Phys. 1710, 142(2017).
  • (45) P. Diessner, J. Kalinowski, W. Kotlarski and D. Stöckinger, J. High Energy Phys. 1603, 007(2016).
  • (46) P. Diessner and G. Weiglein, J. High Energy Phys. 1907, 011(2019).
  • (47) W. Kotlarski, D. Stöckinger and H. Stöckinger-Kim, J. High Energy Phys. 1908, 082(2019).
  • (48) A. Kumar, D. Tucker-Smith and N. Weiner, J. High Energy Phys. 1009, 111(2010).
  • (49) A. E. Blechman, Mod. Phys. Lett. A 24, 633(2009).
  • (50) G. D. Kribs, A. Martin and T. S. Roy, J. High Energy Phys. 0906, 042(2009).
  • (51) C. Frugiuele and T. Gregoire, Phys. Rev. D 85, 015016(2012).
  • (52) J. Kalinowski, Acta Phys. Polon. B 47, 203(2016).
  • (53) S. Chakraborty, A. Chakraborty and S. Raychaudhuri, Phys. Rev. D 94, 035014(2016).
  • (54) J. Braathen, M. D. Goodsell and P. Slavich, J. High Energy Phys. 1609, 045(2016).
  • (55) P. Athron, J.-hyeon Park, T. Steudtner, D. Stöckinger and A. Voigt, J. High Energy Phys. 1701, 079(2017).
  • (56) C. Alvarado, A. Delgado and A. Martin, Phys. Rev. D 97, 115044(2018).
  • (57) K.-S. Sun, J.-B. Chen, X.-Y. Yang and S.-K. Cui, Chin. Phys. C 43, 043101 (2019).
  • (58) K.-S. Sun, S.-K. Cui, W Li and H.-B. Zhang, Phys. Rev. D 102, 035029 (2020).
  • (59) F. Staub, arXiv:0806.0538.
  • (60) F. Staub, Comput. Phys. Commun. 184, 1792(2013).
  • (61) F. Staub, Comput. Phys. Commun. 185, 1773(2014).
  • (62) W. Porod and F. Staub, A. Vicente, Eur. Phys. J. C 74, 2992(2014).
  • (63) W. Porod, Comput. Phys. Commun. 153, 275(2003).
  • (64) W. Porod and F. Staub, Comput. Phys. Commun. 183, 2458(2012).
  • (65) A. M. Baldini, et al., (MEG Collaboration), Eur. Phys. J. C 76, 434(2016).
  • (66) B. Aubert, et.al., (BABAR Collaboration), Phys. Rev. Lett. 104, 021802(2010).
  • (67) U. Bellgardt et al., (SINDRUM Collaboration), Nucl. Phys. B 299, 1(1988).
  • (68) K. Hayasaka et al., Phys. Lett. B 687, 139(2010).
  • (69) R. Fok and G. D. Kribs, Phys. Rev. D 82, 035010(2010).
  • (70) A. Celis, V. Cirigliano and E. Passemar, Phys. Rev. D 89, 013008(2014).
  • (71) T. Aushev, et al., arXiv:1002.5012.