This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Searching BcB_{c}^{\ast} via conservation laws

Chia-Wei Liu 111[email protected] and Bing-Dong Wan222[email protected]
School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
University of Chinese Academy of Sciences, 100190 Beijing, China
Abstract

To distinguish Bc+(13S1)B_{c}^{\ast+}(1^{3}S_{1}) and Bc+(11S0)B_{c}^{+}(1^{1}S_{0}) in the experiments, we propose two methods based on the conservation laws. I. From the angular momentum conservation, a nonzero helicity of J/ψJ/\psi of Bc()+J/ψπ+B_{c}^{(\ast)+}\to J/\psi\pi^{+} would be an evidence of Bc+B_{c}^{\ast+}. II. Since Bc+B+ϕB_{c}^{+}\to B^{+}\phi is kinematically forbidden, Bc+B+ϕB_{c}^{\ast+}\to B^{+}\phi provides a clean channel to probe Bc+B_{c}^{\ast+} . Particularly, our results show that Bc+B_{c}^{\ast+} is promising to be observed at LHC via Bc()+J/ψπ+B_{c}^{(\ast)+}\to J/\psi\pi^{+}. On the other hand, we find that (Bc+B+ϕ)=(7.0±3.0)×109{\cal B}(B_{c}^{\ast+}\to B^{+}\phi)=(7.0\pm 3.0)\times 10^{-9}, which is also feasible to be measured at the forthcoming experiments at HL-LHC and FCC-hh.

I introduction

The BcB_{c} meson is unique in the Standard Model (SM) as its members are composed of heavy quarks with two different flavors, beauty (bb) and charm (cc). The BcB_{c} mesons lie intermediate between (cc¯c\bar{c}) and (bb¯b\bar{b}) states both in mass and size, while the different quark flavors leads to much richer dynamics. On the other hand, the ground state of BcB_{c} mesons, unlike the charmonium and bottomonium, cannot annihilate into gluons or photons, providing an idea place to examine the heavy quarks. Study on the BcB_{c} mesons can deepen our understanding of both the strong and the weak interactions, revealing the underlying physics of the heavy quark dynamics. Last but not least , it provides a unique hunting ground for searching new physics beyond the SM.

The ground state of BcB_{c} meson was first observed by the CDF Collaboration at Fermilab Abe:1998fb in 1998, and there have been continuous measurements on both the mass CDF:2007umr ; LHCb:2012ihf ; LHCb:2020ayi and the lifetime CDF:2006kbk ; D0:2008thm via the exclusive decay Bc+J/ψπ+B_{c}^{+}\to J/\psi\pi^{+} and the semileptonic decay Bc+J/ψl+νlB_{c}^{+}\to J/\psi l^{+}\nu_{l}. In 2014, the ATLAS Collaboration reported a structure with the mass of (6842±9)(6842\pm 9) MeV Aad:2014laa , which is consistent with the value predicted for Bc(2S)B_{c}(2S). In 2019, the excited Bc(21S0)B_{c}(2^{1}S_{0}) was confirmed and Bc(23S1)B_{c}^{\ast}(2^{3}S_{1}) states have been observed in the Bc+π+πB_{c}^{+}\pi^{+}\pi^{-} invariant mass spectrum by the CMS and LHCb Collaborations, with their masses determined to be (6872.1±2.2)(6872.1\pm 2.2) and (6841.2±1.5)(6841.2\pm 1.5) MeV Sirunyan:2019osb ; Aaij:2019ldo , respectively. The Bc(21S0)+B_{c}(2^{1}S_{0})^{+} decays to Bc+(11S0)π+πB_{c}^{+}(1^{1}S_{0})\pi^{+}\pi^{-} directly, and the Bc(23S1)+B_{c}^{\ast}(2^{3}S_{1})^{+} state decay to Bc+(13S1)π+πB_{c}^{\ast+}(1^{3}S_{1})\pi^{+}\pi^{-} followed by Bc+(13S1)Bc+(11S0)γB_{c}^{\ast+}(1^{3}S_{1})\to B_{c}^{+}(1^{1}S_{0})\gamma. Since the soft photon in the intermediate decay Bc+(13S1)Bc+(11S0)γB_{c}^{\ast+}(1^{3}S_{1})\to B_{c}^{+}(1^{1}S_{0})\gamma was not reconstructed, the mass of Bc(23S1)B_{c}^{\ast}(2^{3}S_{1}) meson appears lower than that of Bc(21S0)B_{c}(2^{1}S_{0}). This peculiar behaviors of the mass hierarchy makes Bc(13S1)B_{c}^{\ast}(1^{3}S_{1}) uniquely important in studying the BcB_{c} meson family.

In the following, we will abbreviate Bc(13S1)B_{c}^{\ast}(1^{3}S_{1}) as BcB_{c}^{\ast} so long as it does not cause confusion. Study on the BcB_{c}^{\ast} can complete the precise measurements of the spectrum of the BcB_{c} family, and the confirmation of its existence is of great importance for the understanding of strong interaction dynamics at low energy. On the mass of BcB_{c}^{\ast}, the theoretical predictions range discrepantly from 63266326 to 63466346 MeV Ding:2021dwh ; Eichten:1994gt ; Godfrey:2004ya ; Mathur:2018epb ; Li:2019tbn ; Asghar:2019qjl ; Eichten:2019gig , and an experimental measurement is still lacking. The dominant decay mode BcBcγB_{c}^{\ast}\to B_{c}\gamma has not yet been observed, partly due to the noisy soft photon background of the hadron collider. To identify BcB_{c}^{\ast} in the experiments, one of the important tasks is to distinguish them from BcB_{c}. In this study, we propose two methods based on the conservation laws:

  • From the angular momentum conservation, the J/ψJ/\psi can only possess a zero helicity from Bc+J/ψπ+B_{c}^{+}\to J/\psi\pi^{+} as Bc+B_{c}^{+} is spin-0. In contrast, the J/ψJ/\psi of Bc+J/ψπ+B_{c}^{\ast+}\to J/\psi\pi^{+} can have either positive, zero, or negative helicities (see Fig. 1).

  • As Bc+B+ϕB_{c}^{+}\to B^{+}\phi is kinematically forbidden, Bc+B+ϕB_{c}^{\ast+}\to B^{+}\phi provides a clean channel.

Refer to caption
Figure 1: The adjoint decay distributions of Bc()+π+J/ψ(l+l)B_{c}^{(\ast)+}\to\pi^{+}J/\psi(\to l^{+}l^{-}), where the blue and the orange represent the possible spin configuration(s) of Bc()+B_{c}^{(\ast)+} and J/ψJ/\psi, with \otimes indicating spin-0 at the pJ/ψ\vec{p}_{J/\psi} direction.

Their responsible quark diagrams at the tree level are given in Fig. 2 , where the hadronizations take place in the blue regions. As the W boson is color blind, the decays are color allowed and color suppressed, respectively.

Refer to caption
Refer to caption
Figure 2: The quark diagrams for Bc()+J/ψπ+B_{c}^{(*)+}\to J/\psi\pi^{+} and Bc+B+ϕB_{c}^{+}\to B^{+}\phi at the tree level.

The rest of the paper is organized as follows. The primary formulas in our calculation are presented in Sec. II. We give the numerical analysis and results in Sec. III. We conclude the study in Sec. IV.

II Helicity Formalism

To extract the helicity information of J/ψJ/\psi as well as calculate the branching fractions, we give the helicity formalism of the decays in this section. The helicity information of J/ψJ/\psi can be obtained from Bc()+J/ψ(ll+)π+B_{c}^{(*)+}\to J/\psi(\to l^{-}l^{+})\pi^{+} with l=e,μl=e,\mu . The advantage of the helicity analysis is that it can easily cooperate with the sequential decays and has a clear view of physical meaning Gutsche:2013oea .

Taking the initial Bc+B_{c}^{\ast+} as unpolarized, the angular distributions of Bc()+J/ψ(ll+)π+B_{c}^{(\ast)+}\to J/\psi(\to l^{-}l^{+})\pi^{+} are given as

Γ()cosθλ=±,0,l=±|Hλ()d1(θ)lλ|21P2+32α()P2,\frac{\partial\Gamma^{(\ast)}}{\partial\cos\theta}\propto\sum_{\lambda=\pm,0\,,l=\pm}\left|H_{\lambda}^{(\ast)}d^{1}(\theta)^{\lambda}\,_{l}\right|^{2}\propto 1-P_{2}+\frac{3}{2}\alpha^{(\ast)}P_{2}\,, (1)

where Hλ()H_{\lambda}^{(\ast)} are the helicity amplitudes with the subscripts denoting the helicity of J/ψJ/\psi, d1(θ)d^{1}(\theta) the Wigner dd-matrix for J=1J=1, θ\theta defined in the helicity frame of J/ψJ/\psi (see Fig. 1), and

P2=12(3cos2θ1),\displaystyle P_{2}=\frac{1}{2}\left(3\cos^{2}\theta-1\right)\,,
α()=|H+()|2+|H()|2|H+()|2+|H()|2+|H0()|2.\displaystyle\alpha^{(\ast)}=\frac{|H_{+}^{(\ast)}|^{2}+|H_{-}^{(\ast)}|^{2}}{|H_{+}^{(\ast)}|^{2}+|H_{-}^{(\ast)}|^{2}+|H_{0}^{(\ast)}|^{2}}\,. (2)

Here, α\alpha has the physical meaning of the nonzero-polarized fraction of J/ψJ/\psi. Notice that H±H_{\pm} are forbidden by the angular momentum conservation, resulting in

α=0.\alpha=0\,. (3)

To further extract the helicity information, we define

𝒜()=1Γ(|cosθ|<x0Γ()cosθdcosθ|cosθ|>x0Γ()cosθdcosθ)=(3x032)α(),{\cal A}^{(\ast)}=\frac{1}{\Gamma}\left(\int_{|\cos\theta|<x_{0}}\frac{\partial\Gamma^{(\ast)}}{\partial\cos\theta}d\cos\theta-\int_{|\cos\theta|>x_{0}}\frac{\partial\Gamma^{(\ast)}}{\partial\cos\theta}d\cos\theta\right)=\left(3x_{0}-\frac{3}{2}\right)\alpha^{(\ast)}\,, (4)

where x0x_{0} is chosen to satisfy

x033x0+1=0,x_{0}^{3}-3x_{0}+1=0\,, (5)

which is found to be x00.3473x_{0}\approx 0.3473 .

The experiments of Bc+B_{c}^{\ast+} are polluted by the off-shell contributions from Bc+B_{c}^{+} at LHC. Thus, we define the event-average 𝒜¯\overline{{\cal A}} as

𝒜¯=r𝒜+r𝒜=r𝒜,\overline{{\cal A}}=r{\cal A}+r^{*}{\cal A}^{\ast}=r^{*}{\cal A}^{\ast}\,, (6)

as well as the event-average nonzero-polarized fraction as

rΓcosθ+rΓcosθ1P2+32α¯P2,r\frac{\partial\Gamma}{\partial\cos\theta}+r^{*}\frac{\partial\Gamma^{\ast}}{\partial\cos\theta}\propto 1-P_{2}+\frac{3}{2}\overline{\alpha}P_{2}\,, (7)

with

r()=NBc()NBc+NBc,r^{(\ast)}=\frac{N_{B_{c}^{(\ast)}}}{N_{B_{c}}+N_{B_{c}^{\ast}}}\,, (8)

where NBc()N_{B_{c}^{(\ast)}} is the number of the observed events in Bc()+J/ψ(l+l)π+B_{c}^{(\ast)+}\to J/\psi(\to l^{+}l^{-})\pi^{+}. The second equality in Eq. (6) is attributed to Eq. (3) .

To get an estimation on the experiments, we calculate the amplitudes within the factorization framework. The helicity amplitudes of Bc()+J/ψπ+B_{c}^{(\ast)+}\to J/\psi\pi^{+} are given as

(2π)4δ4(pBcpJ/ψpπ)Hλ=\displaystyle(2\pi)^{4}\delta^{4}(p_{B_{c}}-p_{J/\psi}-p_{\pi})H_{\lambda}=
iGF2VcbVudfπpπμa1J/ψ;pz^,Jz=λ|b¯γμ(1γ5)c|Bc()+;Jz=λ,\displaystyle~{}~{}~{}~{}i\frac{G_{F}}{\sqrt{2}}V_{cb}^{\ast}V_{ud}f_{\pi}p_{\pi}^{\mu}a_{1}\langle J/\psi;p\hat{z},J_{z}=\lambda|\overline{b}\gamma_{\mu}(1-\gamma_{5})c|B_{c}^{(\ast)+};J_{z}=\lambda\rangle\,, (9)

where pp is for the 4-momentum of the hadron in the subscript, GFG_{F} and fπf_{\pi} the Fermi and the pion decay constants, a1a_{1} the effective Wilson coefficient for the color-allowed decays, JzJ_{z} the angular momentum at the zz direction, and pz^p\hat{z} indicates pJ/ψ z^\vec{p}_{J/\psi}\mathrel{\mkern-5.0mu\leavevmode\leavevmode\hbox{ \leavevmode\hbox to7.5pt{\vbox to5.77pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{{}{}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{5.77084pt}\pgfsys@lineto{7.5pt}{5.77084pt}\pgfsys@lineto{7.5pt}{0.0pt}\pgfsys@closepath\pgfsys@clipnext\pgfsys@discardpath\pgfsys@invoke{ }{{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} {{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\leavevmode\hbox{\hskip 0.0pt\raise-1.22916pt\hbox{\set@color{${\sslash}$}}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}} {}{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\!}\hat{z}.

On the other hand, the helicity amplitudes of Bc+B+ϕB_{c}^{\ast+}\to B^{+}\phi are given as

(2π)4δ4(pBcpB+pϕ)Hλ=\displaystyle(2\pi)^{4}\delta^{4}(p_{B_{c}}-p_{B^{+}}-p_{\phi})H_{\lambda}=
GF2VcsVsufϕϵλμa2B+;pz^|u¯γμ(1γ5)c|Bc()+;Jz=λ,\displaystyle~{}~{}~{}~{}-\frac{G_{F}}{\sqrt{2}}V_{cs}^{\ast}V_{su}f_{\phi}\epsilon^{\mu\ast}_{\lambda}a_{2}\langle B^{+};p\hat{z}|\overline{u}\gamma_{\mu}(1-\gamma_{5})c|B_{c}^{(\ast)+};J_{z}=-\lambda\rangle\,, (10)

where a2a_{2} is the effective Wilson coefficient for the color-suppressed decays, fϕf_{\phi} the ϕ\phi decay constant, and ϵλμ\epsilon^{\mu\ast}_{\lambda} the polarization 4-vector of ϕ\phi with λ\lambda its helicity.

Finally, the decay width for Bc+B_{c}^{+} is given as

Γ=|pcm|8πMBc|H0|2,\Gamma=\frac{|\vec{p}_{\text{cm}}|}{8\pi M_{B_{c}}}\left|H_{0}\right|^{2}\,, (11)

whereas the decay widths of Bc+B_{c}^{*+} with the daughter vector meson having λ\lambda helicity are given as

Γλ=|pcm|24πMBc|Hλ|2.\Gamma_{\lambda}=\frac{|\vec{p}_{\text{cm}}|}{24\pi M_{B_{c}^{\ast}}}\left|H_{\lambda}^{\ast}\right|^{2}\,. (12)

The total decays widths of BcJ/ψπ+B_{c}^{\ast}\to J/\psi\pi^{+} and BcB+ϕB_{c}^{\ast}\to B^{+}\phi can be easily obtained by adding up the contributions from λ=0,±\lambda=0,\pm .

III Numerical analysis

The meson transition matrix elements require the knowledge of the hadron wave functions. In this work, we employ the ones from the homogeneous bag model, in which the center motions of the hadrons in the original bag model are removed Geng:2020ofy . The bag radius (R)(R) and the quark masses can be extracted from the mass spectra, which are found to be Zhang:2021yul

R=(2.81±0.30)GeV1,Mu,d=0,Mc=1.641GeV,Mb=5.093GeV.R=(2.81\pm 0.30)~{}\text{GeV}^{-1}\,,~{}~{}~{}M_{u,d}=0\,,~{}~{}~{}M_{c}=1.641~{}\text{GeV}\,,~{}~{}~{}M_{b}=5.093~{}\text{GeV}\,. (13)

The details of the calculation can be found in the Appendix. In this study, fπf_{\pi} and fϕf_{\phi} are taken from the experiments and the Lattice QCD Chen:2020qma ; pdg

fπ=131MeV,fϕ=(241±9)MeV,f_{\pi}=131~{}\text{MeV}\,,~{}~{}~{}f_{\phi}=(241\pm 9)~{}\text{MeV}\,, (14)

and the effective Wilson coefficients are taken to be

|a1|=1.0±0.1,|a2|=0.27±0.07.|a_{1}|=1.0\pm 0.1\,,~{}~{}~{}~{}|a_{2}|=0.27\pm 0.07\,. (15)

The results are given in Table I , where we also include Γ(Bc+Bc+γ)\Gamma(B_{c}^{\ast+}\to B_{c}^{+}\gamma), which can be safely approximated as 1/τ1/\tau with τ\tau the lifetime of Bc+B_{c}^{\ast+}. The calculated lifetime is consistent with most of the literature Li:2019tbn ; consistent , but significantly smaller than the one from the nonrelativistic potential model Eichten:1994gt , and twice larger than the one from the relativistic independent quark model twice . Nonetheless, a large part of the uncertainties that arises from the hadron wave functions is canceled in the branching ratios of Bc+B_{c}^{\ast+}, as the lifetime is calculated under the same framework.

Table 1: The decay widths and the branching ratios.
Channel Helicity Γ(eV)\Gamma~{}(\text{eV}) {\cal B}
Bc+J/ψπ+B_{c}^{+}\to J/\psi\pi^{+} H0H_{0} (6.3±1.3)×107(6.3\pm 1.3)\times 10^{-7} (4.8±1.0)×104(4.8\pm 1.0)\times 10^{-4}
Bc+J/ψπ+B_{c}^{\ast+}\to J/\psi\pi^{+} HH_{-} (6.4±2.7)×109(6.4\pm 2.7)\times 10^{-9} (1.2±0.5)×1010(1.2\pm 0.5)\times 10^{-10}
H0H_{0} (2.8±0.6)×107(2.8\pm 0.6)\times 10^{-7} (5.5±1.4)×109(5.5\pm 1.4)\times 10^{-9}
H+H_{+} (9.9±2.3)×107(9.9\pm 2.3)\times 10^{-7} (1.9±0.5)×108(1.9\pm 0.5)\times 10^{-8}
Total (1.2±0.2)×106(1.2\pm 0.2)\times 10^{-6} (2.4±0.5)×108(2.4\pm 0.5)\times 10^{-8}
Bc+Bc+γB_{c}^{\ast+}\to B_{c}^{+}\gamma Total 53±353\pm 3 \approx 1
Bc+B+ϕB_{c}^{\ast+}\to B^{+}\phi Total (3.7±1.7)×107(3.7\pm 1.7)\times 10^{-7} (7.0±3.0)×109(7.0\pm 3.0)\times 10^{-9}

Our (Bc+J/ψπ+){\cal B}(B_{c}^{+}\to J/\psi\pi^{+}) is consistent with the relativistic quark model BcRQ , but two times smaller compared to most of the literature Jpsipip  , which can be partly attributed to that we use a smaller |a1||a_{1}|. As our estimation is a more conservative one, the angular analysis is promising to be carried out in the experiments for there are more data points to reconstruct the distribution than we expect.

The decay of Bc+B+ϕB_{c}^{\ast+}\to B^{+}\phi is color suppressed and suffers large uncertainties from a2a_{2} as well as MBcM_{B_{c}^{\ast}}. In particular, as MBcM_{B_{c}^{\ast}} is close to the mass threshold of B+ϕB^{+}\phi, the decay width can range from 0 to 10610^{-6} eV, depending on MBc+M_{B_{c}^{\ast+}}. The dependency on MBc+M_{B_{c}^{*+}} as well as the uncertainties caused by a2a_{2} are plotted in Fig. 3. Taking MBc+=6331M_{B_{c}^{\ast+}}=6331 MeV, the calculated decay width is given in Table 1, which is consistent with Ref. Search  , within the range of the error.

Refer to caption
Figure 3: Γ(Bc+B+ϕ)\Gamma(B_{c}^{\ast+}\to B^{+}\phi) versus MBc+M_{B_{c}^{\ast+}}, where the yellow region covers the uncertainty of a2a_{2}.

From Table 1, for Bc+J/ψπ+B_{c}^{\ast+}\to J/\psi\pi^{+} we obtain

α=0.82±0.01,𝒜=0.38±0.01,\alpha^{\ast}=0.82\pm 0.01\,,~{}~{}~{}{\cal A}^{\ast}=0.38\pm 0.01\,, (16)

in which the theoretical uncertainty is canceled for the correlations between HλH_{\lambda}^{\ast}. The cross section of BcB_{c}^{\ast} meson at the LHC is expected to be σ(Bc)=29nb\sigma\left({B_{c}^{\ast}}\right)=29\ {\rm nb} Chang:1992jb . At an integrated luminosity of 150fb1150\ \text{fb}^{-1} during LHC Run-2, 300fb1300\ \text{fb}^{-1} during LHC Run-3, and 3000fb13000\ \text{fb}^{-1} after High Luminosity upgrade (HL-LHC) Apollinari:2017lan , the numbers of BcB_{c}^{\ast} events are 8.7×1098.7\times 10^{9}, 1.74×10101.74\times 10^{10} and 1.74×10111.74\times 10^{11}, resulting in 270270, 540540, and 54005400 events of Bc+J/ψπ+B_{c}^{\ast+}\to J/\psi\pi^{+}, respectively. Taking the branching ratios (J/ψl+l)12%{\cal B}(J/\psi\to l^{+}l^{-})\approx 12\% pdg , there are expected to be 3333, 6565, and 650650 events of Bc+π+J/ψ(l+l)B_{c}^{\ast+}\to\pi^{+}J/\psi(\to l^{+}l^{-}) being able to be reconstructed at LHC Run-2, LHC Run-3 and HL-LHC, respectively.

By choosing 6400MeV>M(J/ψπ+)>6325MeV6400~{}\text{MeV}>M(J/\psi\pi^{+})>6325~{}\text{MeV} with M(J/ψπ+)M(J/\psi\pi^{+}) the invariant mass of J/ψπ+J/\psi\pi^{+}, most of the off-shell contribution from Bc+B_{c}^{+} would be filtered, in which NBcN_{B_{c}} is expected to be less than 20 at running LHC from the Fig. 1 of Ref. LHCb:2016vni 111In fact, at the bottom right figure, there appears to have a little bump around 63406340 MeV.. Thus, NBcN_{B_{c}} and NBcN_{B_{c}^{*}} can be safely taken as equal in the simulation.

We generate the pseudodata based on the experimental conditions at LHC Run-2, LHC Run-3, and HL-LHC. The off-shell contributions from Bc+B_{c}^{+} are also included with NBc=NBcN_{B_{c}}=N_{B_{c}^{\ast}} as discussed in the previous paragraph. The numbers of the events are plotted against cosθ\cos\theta in Fig. 4 , and the numerical results of α¯\overline{\alpha} and 𝒜¯\overline{{\cal A}} are given in Table 2 . Our analysis show that there would be a 1.5σ1.5\sigma signal of nonzero 𝒜¯\overline{{\cal A}} at LHC Run-2 , and a 5σ5\sigma signal at HL-LHC, which would be a solid evidence of BcB_{c}^{*}.

Refer to caption
Refer to caption
Refer to caption
Figure 4: The numbers of the observed events of Bc()J/ψ(l+l)π+B_{c}^{(\ast)}\to J/\psi(\to l^{+}l^{-})\pi^{+} plotted against cosθ\cos\theta. The red points with statistical uncertainties are the pseudodata generated by the Monte Carlo method for α=0.82\alpha^{\ast}=0.82, and the blue and the red lines are drawn with α=0\alpha^{\ast}=0 and α=0.82\alpha^{\ast}=0.82 in Eq. (7), respectively.
Table 2: The α¯\overline{\alpha} and 𝒜¯\overline{{\cal A}} fitted from the pseudodata in FIG. 4 with statistical uncertainties.
NBc=NBcN_{B_{c}}=N_{B_{c}^{\ast}} α¯\overline{\alpha} 𝒜¯\overline{{\cal A}}
LHC Run-2 33 0.48±0.390.48\pm 0.39 0.15±0.100.15\pm 0.10
LHC Run-3 65 0.43±0.260.43\pm 0.26 0.17±0.070.17\pm 0.07
HL-LHC 650 0.44±0.100.44\pm 0.10 0.19±0.030.19\pm 0.03

On the other hand, at the forthcoming experiments at FCC-hh FCC:2018vvp , the number of BcB_{c}^{\ast} events are expected to be 101210^{12}. Hence, there would be about 20002000 and 10510^{5} Bc+B+ϕB_{c}^{\ast+}\to B^{+}\phi events at HL-LHC and FCC-hh, respectively, which would be sufficient for the experiments to determine the mass.

IV Conclusions

Utilizing the conservation laws, we propose two novel methods for distinguishing BcB_{c}^{*} and BcB_{c} in the experiments. The calculated branching fractions of Bc+J/ψπ+B_{c}^{+}\to J/\psi\pi^{+} and Bc+B+ϕB_{c}^{*+}\to B^{+}\phi are compatible with the literature, indicating that our analysis is reliable. The nonzero polarized fraction of J/ψJ/\psi from Bc()+J/ψπ+B_{c}^{(*)+}\to J/\psi\pi^{+} has been found to be α=0(0.82)\alpha=0~{}(0.82). Furthermore, the branching fractions of Bc+J/ψπ+B_{c}^{*+}\to J/\psi\pi^{+} and Bc+ϕπ+B_{c}^{*+}\to\phi\pi^{+} have been obtained as (2.4±0.5)×108(2.4\pm 0.5)\times 10^{-8} and (7.0±3.0)×109(7.0\pm 3.0)\times 10^{-9}, respectively. To calculate the lifetime of BcB_{c}^{*}, we have found that Γ(Bc+Bc+γ)=(53±3)\Gamma(B_{c}^{*+}\to B_{c}^{+}\gamma)=(53\pm 3) eV with the homogeneous bag model, consistent with most of the literature.

We have shown that Bc+B+ϕB_{c}^{*+}\to B^{+}\phi would be promising to be measured at HL-LHC as well as FCC-hh. To examine the feasibilities of the measurements, we have conducted simulations based on the experimental conditions. Remarkably, we have shown that the helicity analysis on Bc()+J/ψπ+B_{c}^{(*)+}\to J/\psi\pi^{+} is ready to be performed at LHC. Thus, we urge the experimentalists to probe the angular distributions of Bc()+J/ψ(l+l)π+B_{c}^{(*)+}\to J/\psi(\to l^{+}l^{-})\pi^{+} in the region of M(J/ψπ+)>6325M(J/\psi\pi^{+})>6325 MeV, which can be served as an evidence of Bc()+B_{c}^{(*)+}.

Acknowledgments

The authors would like to acknowledge the helpful discussion with Chao-Qiang Geng, Ying-Rui Hou and Cong-Feng Qiao.

Appendix : The baryon wave functions

Here, we give the meson wave functions of the homogeneous bag model, which are used in the calculation of the transition matrix elements in the main text. In the original version of the bag model, both the asymptotic freedom and the confinement of the QCD are described by the bag radius, RR. The quarks are confined in the bag but moving freely within it, satisfying the free Dirac equation

(iγμμm)ψ=0forr<R.(i\gamma^{\mu}\partial_{\mu}-m)\psi=0\,~{}~{}~{}~{}\text{for}~{}r<R\,. (17)

For low-lying hadrons, we can take the wave functions to be spherical, and we arrive at

ψ(x)q=ϕq(x)eiEqt=N(ωq+j0(pqr)χiωqj1(pqr)r^σχ)eiEqtforr<R,\psi(x)_{q}=\phi_{q}(\vec{x})e^{-iE_{q}t}=N\left(\begin{array}[]{c}\omega_{q+}j_{0}(p_{q}r)\chi\\ i\omega_{q-}j_{1}(p_{q}r)\hat{r}\cdot\vec{\sigma}\chi\\ \end{array}\right)e^{-iE_{q}t}\,~{}~{}~{}~{}\text{for}~{}r<R\,, (18)

where qq is the quark flavor, NN the normalizing constant, χ\chi the two component spinor, pqp_{q} the magnitude of the 3-momentum, and ωq±=1±mq/Eq\omega_{q\pm}=\sqrt{1\pm m_{q}/E_{q}} with EqE_{q} the quark energy. The antiquark wave functions are obtained by taking the charge conjugate.

At the boundary of the bag the current shall vanish, which give us the boundary condition, read as

r^(ψ¯γψ)=0,at|x|=R.\hat{r}\cdot\left(\overline{\psi}~{}\vec{\gamma}~{}\psi\right)=0\,,~{}~{}~{}~{}\text{at}~{}|\vec{x}|=R\,. (19)

In analogy to the familiar infinite square well, pqp_{q} is quantized, satisfying

tan(pqR)=pqR1mqREqR.\tan(p_{q}R)=\frac{p_{q}R}{1-m_{q}R-E_{q}R}\,. (20)

We concern the low-lying hadrons only and therefore take the minimum of pqp_{q}. At the massless and the heavy quark limits we have

limmqR0pqR=2.0428,limmqRpqR=π,\lim_{m_{q}R\to 0}p_{q}R=2.0428\,,~{}~{}~{}~{}\lim_{m_{q}R\to\infty}p_{q}R=\pi\,, (21)

respectively. A meson can be constructed by confining a quark and an antiquark to a same bag. By considering the bag energy, zero point energy, and the interaction between quarks, the bag model can successfully explain most of the low-lying hadron masses as well as the ratios of the magnetic dipole moments Zhang:2021yul .

However, despite the success on the hadron masses, the wave functions of the bag model are problematic when it comes to decays. As the description of a static bag is essentially localized, the hadron wave function cannot be the momentum eigenstates, and thus the transition matrix elements cannot be consistently calculated. This problem has been resolved with the linear superposition of infinite bags by one of the authors (Liu), and with it the experimental branching ratios of ΛbΛc+π+\Lambda_{b}\to\Lambda_{c}^{+}\pi^{+} and Λbpπ+\Lambda_{b}\to p\pi^{+} can be well explained Geng:2020ofy .

In the homogeneous bag model, the meson wave functions at rest are given as

Ψ(xq1,xq2)=𝒩d3xϕq1(xq1x)ϕq2c(xq2x)ei(Eq1tq1+Eq2tq2),\Psi(x_{q_{1}},x_{q_{2}})={\cal N}\int d^{3}\vec{x}\phi_{q_{1}}(\vec{x}_{q_{1}}-\vec{x})\phi^{c}_{q_{2}}(\vec{x}_{q_{2}}-\vec{x})e^{-i(E_{q_{1}}t_{q_{1}}+E_{q_{2}}t_{q_{2}})}\,, (22)

where 𝒩{\cal N} is the normalizing constant, and cc in the superscript denotes the charge conjugate. The wave function in Eq. (22) is manifestly invariant under the space translation and therefore describes a meson at rest. The wave functions with nonzero momenta can be easily obtained by Lorentz boost.

By demanding the normalization condition

p|p=2p0(2π)3δ3(pp),\langle p|p^{\prime}\rangle=2p^{0}(2\pi)^{3}\delta^{3}(\vec{p}-\vec{p}^{\prime})\,, (23)

we find

1𝒩2=2Md3xΔi=1,2d3xqirϕqi(xqir+12xΔ)ϕqi(xqir12xΔ),\frac{1}{{\cal N}^{2}}=2M\int d^{3}\vec{x}_{\Delta}\prod_{i=1,2}d^{3}\vec{x}_{q_{i}}^{\,r}\phi_{q_{i}}^{\dagger}\left(\vec{x}^{\,r}_{q_{i}}+\frac{1}{2}\vec{x}_{\Delta}\right)\phi_{q_{i}}\left(\vec{x}^{\,r}_{q_{i}}-\frac{1}{2}\vec{x}_{\Delta}\right)\,, (24)

with pp and MM the hadron momentum and mass, respectively.

With the wave functions, the meson transition matrix elements can be computed straightforwardly. For simplicity we take Bc()J/ψπB_{c}^{(*)-}\to J/\psi\pi^{-} as an example. The results of Bc()+J/ψπ+B_{c}^{(*)+}\to J/\psi\pi^{+} can be obtained by taking the CP conjugate as CP is conserved in the bcb\to c transition. The transition matrix elements read as

J/ψ|c¯γμb(x)eipπx|Bc()d4x=𝒵d3xΔVμ(xΔ)Dc(xΔ),\displaystyle\int\langle J/\psi|\overline{c}\gamma^{\mu}b(x)e^{ip_{\pi}x}|B_{c}^{(*)-}\rangle d^{4}x={\cal Z}\int d^{3}\vec{x}_{\Delta}V^{\mu}(\vec{x}_{\Delta})D_{c}(\vec{x}_{\Delta})\,, (25)
J/ψ|c¯γμγ5b(x)eipπx|Bc()d4x=𝒵d3xΔAμ(xΔ)Dc(xΔ),\displaystyle\int\langle J/\psi|\overline{c}\gamma^{\mu}\gamma_{5}b(x)e^{ip_{\pi}x}|B_{c}^{(*)-}\rangle d^{4}x={\cal Z}\int d^{3}\vec{x}_{\Delta}A^{\mu}(\vec{x}_{\Delta})D_{c}(\vec{x}_{\Delta})\,,

with

𝒵=(2π)4δ4(pBc()pJ/ψpπ)𝒩Bc()𝒩J/ψ,\displaystyle{\cal Z}=(2\pi)^{4}\delta^{4}\left(p_{B_{c}^{(*)}}-p_{J/\psi}-p_{\pi}\right){\cal N}_{B_{c}^{(*)}}{\cal N}_{J/\psi}\,,
Dc(xΔ)=1v2d3xϕc(x+12xΔ)ϕc(x12xΔ)e2iEcvx,\displaystyle D_{c}(\vec{x}_{\Delta})=\sqrt{1-v^{2}}\int d^{3}\vec{x}\phi_{c}^{\dagger}\left(\vec{x}+\frac{1}{2}\vec{x}_{\Delta}\right)\phi_{c}\left(\vec{x}-\frac{1}{2}\vec{x}_{\Delta}\right)e^{-2iE_{c}\vec{v}\cdot\vec{x}}\,,
Vμ(xΔ)=d3xϕc(x+12xΔ)γ0γμϕb(x12xΔ)ei(MJ/ψ+MBc()EcEb)vx,\displaystyle V^{\mu}(\vec{x}_{\Delta})=\int d^{3}\vec{x}\phi_{c}^{\dagger}\left(\vec{x}+\frac{1}{2}\vec{x}_{\Delta}\right)\gamma^{0}\gamma^{\mu}\phi_{b}\left(\vec{x}-\frac{1}{2}\vec{x}_{\Delta}\right)e^{i(M_{J/\psi}+M_{B_{c}^{(*)}}-E_{c}-E_{b})\vec{v}\cdot\vec{x}}\,,
Aμ(xΔ)=d3xϕc(x+12xΔ)γ0γμγ5ϕb(x12xΔ)ei(MJ/ψ+MBc()EcEb)vx,\displaystyle A^{\mu}(\vec{x}_{\Delta})=\int d^{3}\vec{x}\phi_{c}^{\dagger}\left(\vec{x}+\frac{1}{2}\vec{x}_{\Delta}\right)\gamma^{0}\gamma^{\mu}\gamma_{5}\phi_{b}\left(\vec{x}-\frac{1}{2}\vec{x}_{\Delta}\right)e^{i(M_{J/\psi}+M_{B_{c}^{(*)}}-E_{c}-E_{b})\vec{v}\cdot\vec{x}}, (26)

Here, the calculation is taken at the Briet frame where BcB_{c}^{-} and J/ψJ/\psi have the velocity v-\vec{v} and v\vec{v} , respectively. Although the derivation is quite tedious (see Ref. Geng:2020ofy for an example), their physical meaning can be easily understood:

  • 𝒵{\cal Z} is the overall normalizing constant along with the momentum conservation.

  • DcD_{c} is the overlapping coefficient attributed by the spectator quark between the initial and the final states. Note that their centers of the bags are separated at a distance of xΔ\vec{x}_{\Delta}.

  • Vμ(Aμ)V^{\mu}~{}(A^{\mu}) is the matrix element of the (axial) vector current at the quark level, where the centers of the bags are separated at a distance of xΔ\vec{x}_{\Delta}.

Here, the exponential in the integrals would oscillate violently at large velocity, causing a suppression that is a punishment for not being at the same speed. The matrix elements of Bc+B+ϕB_{c}^{*+}\to B^{+}\phi can be calculated in the same manner.

References

  • (1) F. Abe et al. [CDF Collaboration], Phys. Rev. D 58, 112004 (1998).
  • (2) T. Aaltonen et al. [CDF], Phys. Rev. Lett. 100, 182002 (2008).
  • (3) R. Aaij et al. [LHCb], Phys. Rev. Lett. 109, 232001 (2012).
  • (4) R. Aaij et al. [LHCb], JHEP 07, 123 (2020).
  • (5) A. Abulencia et al. [CDF], Phys. Rev. Lett. 97, 012002 (2006).
  • (6) V. M. Abazov et al. [D0], Phys. Rev. Lett. 102, 092001 (2009).
  • (7) G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett.  113, 212004 (2014).
  • (8) A. M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 122, 132001 (2019).
  • (9) R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, 232001 (2019)
  • (10) E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994).
  • (11) E. J. Eichten and C. Quigg, Phys. Rev. D 99, 054025 (2019).
  • (12) S. Godfrey, Phys. Rev. D 70, 054017 (2004).
  • (13) R. Ding, B. D. Wan, Z. Q. Chen, G. L. Wang and C. F. Qiao, Phys. Lett. B 816, 136277 (2021).
  • (14) N. Mathur, M. Padmanath and S. Mondal, Phys. Rev. Lett. 121, 20, 202002 (2018).
  • (15) Q. Li, M. S. Liu, L. S. Lu, Q. F. Lü, L. C. Gui and X. H. Zhong, Phys. Rev. D 99, 096020 (2019).
  • (16) I. Asghar, F. Akram, B. Masud and M. A. Sultan, Phys. Rev. D 100, 096002 (2019).
  • (17) P. Bialas, J. G. Körner, M. Kramer and K. Zalewski, Z. Phys. C 57, 115-134 (1993); T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and P. Santorelli, Phys. Rev. D 87, 074031 (2013); T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and P. Santorelli, Phys. Rev. D 88, 114018 (2013).
  • (18) C. Q. Geng, C. W. Liu and T. H. Tsai, Phys. Rev. D 102, 034033 (2020); C. Q. Geng and C. W. Liu, JHEP 11, 104 (2021); C. W. Liu and C. Q. Geng, JHEP 01, 128 (2022).
  • (19) T. A. DeGrand, R. L. Jaffe, K. Johnson and J. E. Kiskis, Phys. Rev. D 12, 2060 (1975); W. X. Zhang, H. Xu and D. Jia, Phys. Rev. D 104, 114011 (2021).
  • (20) P. A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
  • (21) Y. Chen et al. [χ\chiQCD], Chin. Phys. C 45, 023109 (2021).
  • (22) S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Rev. D 51, 3613 (1995); L. P. Fulcher, Phys. Rev. D 60, 074006 (1999); D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 67, 014027 (2003); Z. G. Wang, Eur. Phys. J. C 73, 2559 (2013).
  • (23) S. Patnaik, P. C. Dash, S. Kar, S. Patra and N. Barik, Phys. Rev. D 96, 116010 (2017).
  • (24) D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 68, 094020 (2003).
  • (25) C. H. Chang and Y. Q. Chen, Phys. Rev. D 49, 3399 (1994); V. V. Kiselev, A. K. Likhoded and A. I. Onishchenko, Nucl. Phys. B 569, 473 (2000); A. Abd El-Hady, J. H. Munoz and J. P. Vary, Phys. Rev. D 62, 014019 (2000); P. Colangelo and F. De Fazio, Phys. Rev. D 61, 034012 (2000); M. A. Ivanov, J. G. Ko¨\ddot{\text{o}}rner and P. Santorelli, Phys. Rev. D 73, 054024 (2006); A. Issadykov and M. A. Ivanov, Phys. Lett. B 783, 178 (2018); W. Cheng, Y. Zhang, L. Zeng, H. B. Fu and X. G. Wu, Chin. Phys. C 46, 053103 (2022).
  • (26) J. Sun, Y. Yang, N. Wang, Q. Chang and G. Lu, Phys. Rev. D 95, 074032 (2017).
  • (27) C. H. Chang and Y. Q. Chen, Phys. Rev. D 48, 4086(1993).
  • (28) G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi and L. Tavian, Report No. CERN-2017-007-M.
  • (29) A. Abada et al. [FCC], Eur. Phys. J. ST 228, 755-1107 (2019).
  • (30) R. Aaij et al. [LHCb], JHEP 09, 153 (2016).