BPH-17-004
BPH-17-004
Search for the lepton flavor violating decay in proton-proton collisions at
Abstract
Results are reported from a search for the lepton flavor violating decay in proton-proton collisions at . The data sample corresponds to an integrated luminosity of 33.2\fbinvrecorded by the CMS experiment at the LHC in 2016. The search exploits \PGtleptons produced in both \PWboson and heavy-flavor hadron decays. No significant excess above the expected background is observed. An upper limit on the branching fraction of at 90% confidence level is obtained, with an expected upper limit of .
0.1 Introduction
In the standard model (SM) with massless neutrinos, the three lepton flavor numbers are exactly conserved. The observation of neutrino oscillations not only proves that lepton flavor is not conserved in the neutral sector, but also provides a mechanism, through neutrino loops, for lepton flavor violating (LFV) decays of charged leptons such as , albeit with extraordinarily small branching fractions [1, 2, 3]. However, a number of SM extensions predict a much larger branching fraction, including values as high as – [4, 5, 6], accessible to current and near-future experiments. The BaBar Collaboration set a limit of at 90% confidence level (\CL) [7]. The present best limit of at 90% CL was obtained by the Belle experiment [8]. Searches at the CERN LHC are approaching this sensitivity with 90% \CLupper limits of from LHCb [9] and from ATLAS [10].
The LHCb and ATLAS results targeted \PGtproduction from heavy-flavor hadron decays and \PWboson decays, respectively. While many more \PGtleptons are produced from heavy-flavor hadron decays, the \PGtleptons from \PWdecays tend to have larger transverse momentum (\pt) and are typically isolated from hadronic activity, providing an experimental signature with much less background. In this paper, we present results from the CMS experiment of the first search for the LFV decay from a combination of the two independent channels (production in \PWboson and heavy-flavor hadron decays). Using both channels, for which CMS has comparable sensitivity, provides the best opportunity for a discovery or the lowest upper limit on the branching fraction. The data were collected at the LHC in 2016 from proton-proton () collisions at a center-of-mass energy of 13\TeV, and correspond to an integrated luminosity of 33.2\fbinv. Inclusion of charge-conjugate states is implied throughout this paper.
0.2 The CMS experiment
The central feature of the CMS apparatus is a superconducting solenoid of 6\unitm internal diameter, providing a magnetic field of 3.8\unitT. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Additional forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [11].
Events of interest are selected using a two-tiered trigger system [12]. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100\unitkHz within a fixed time interval of less than 4\mus. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1\unitkHz before data storage.
The particle-flow algorithm [13] aims to reconstruct and identify each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector. In particular, muons are identified by matching tracks in the silicon tracker with tracks in the muon detector and verifying the energy deposited in the calorimeters is consistent with that expected for muons. The muon momentum is obtained from the curvature observed in the silicon tracker and the relative \ptresolution for muons with is 1% in the barrel and 3% in the endcaps [14].
Simulated event samples are used to validate the analysis, measure acceptance and efficiency, and estimate systematic uncertainties. For the analysis of \PGtleptons from \PWboson decays, events were simulated using \MGvATNLO2.5.2 [15, 16] at leading order, assuming a two-Higgs-doublet model that allows for flavor changing neutral currents and LFV processes, interfaced with \PYTHIAfor parton shower and hadronization descriptions. The \PWproduction and decay, as well as the \PGtdecay, are handled by \MGvATNLO. The \ptdistribution of the \PWboson is reweighted to match that obtained from a SM next-to-leading-order sample produced with \MGvATNLOand interfaced to \PYTHIAfor parton showers and hadronization. For the analysis of \PGtleptons from heavy-flavor hadron decays, events were simulated using \PYTHIA8.226 [17] with the CUETP8M1 tune [18] interfaced with \EVTGEN1.6.0 [19] for particle decays, with the \PGtdecay kinematics determined by phase space, rather than a particular model. All events are passed through the CMS detector simulation based on \GEANTfour [20]. The multiple collisions that occur within the same or nearby bunch crossings (pileup) are modeled by including additional minimum bias events generated with \PYTHIAwith a distribution that matches the one observed in data. Simulated events are reconstructed with the same algorithms as used for data, including emulation of the triggers.
0.3 Data selection
The triggers used by this analysis evolved during the data collection period, primarily to cope with increases in the instantaneous luminosity. Most of the data were collected with an L1 trigger requirement of either three muons, two muons with at least one muon having , or two muons with both muons having an absolute pseudorapidity of . The dimuon L1 triggers also required the two muons to have an absolute pseudorapidity difference . The high-level trigger required three reconstructed charged particles (tracks), of which two must be identified as muons with and the other must have . The three tracks are fitted to a common vertex and kept if the normalized of the fit is less than 8; the vertex location is at least 2 times its uncertainty from the beamline; the \ptof the combination () is greater than 8\GeV; the invariant mass (assuming a muon mass for all tracks) is in the range 1.60–2.02\GeV; and the cosine of the angle in the transverse plane between the three-track momentum vector and the vector from the beamline to the vertex is greater than 0.9. During the first half of 2016, errors in the L1 triggers used by this analysis resulted in a significant loss of efficiency for muons with . While this trigger misconfiguration is not modeled by the simulation, it is accounted for by the analysis.
Offline, all combinations of three muons in the event with a combined charge of are considered and a fit to a common vertex is attempted to make a \PGtcandidate. The muons are required to match the ones used in the trigger, and the trigger-level selection criteria are reapplied. If either of the oppositely charged dimuon combinations from the \PGtcandidate has an invariant mass within 20\MeVof the mass of the \Pgoor \Pgfresonances, the candidate is rejected. Events with at least one \PGtcandidate with an invariant mass between 1.6 and 2.0\GeVare kept for analysis by two different algorithms, one optimized for production of \PGtleptons in \PWboson decays and the other optimized for production of \PGtleptons in heavy-flavor hadron decays.
0.4 Search for in \PW boson decays
0.4.1 Selecting candidates
For the \PWboson analysis, \PGtcandidates must pass the selection criteria described in Section 0.3, as well as an additional veto that suppresses background arising from dimuon decays of hadronic resonances. The veto considers all pairs of oppositely charged muons with one muon from the \PGtcandidate and one muon not associated with the \PGtcandidate. If any of the muon pairs form a good vertex (vertex fit probability above 5%) and have an invariant mass within twice the larger of the detector resolution or natural width of a known resonance with a dimuon decay, the \PGtcandidate is vetoed. The checked resonances are \Pgh, \Pgo, \Pgr, \Pgf, \PJGy, \Pgy, \PgUa, \PgUb, \PgUc, and \PZ.
The reconstructed interaction vertex with the largest value of summed physics-object is taken to be the primary interaction vertex. The physics objects are the jets, clustered using the anti-\ktalgorithm [21, 22] with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the \ptvecof those jets.
To better separate signal from background, a boosted decision tree (BDT) is trained [23] using simulated signal events and background from data events in the mass sideband region (trimuon invariant mass in the range of 1.60–1.74 or 1.82–2.00\GeV). The signal sample used for training the BDT is a combination of several samples, each with a different \PGtlepton mass (covering the mass range 1.6–2\GeV), to avoid training on the true \PGtmass. Data in the mass sidebands contain combinatorial background, as well as decays, primarily of heavy-flavor hadrons, where one or more hadrons are misreconstructed as muons. Simulated data were used to verify that background from charm hadron decays does not produce a peak in the trimuon mass.
The BDT uses 18 variables. The variables include a measure of the muon quality for each muon, the difference in longitudinal impact parameters with respect to the primary vertex for each pair of muons, the \ptand of the \PGtcandidate, the of the trimuon vertex fit, the distance in the transverse plane between the trimuon vertex and the beamline divided by the uncertainty in that distance, and the angle in the transverse plane between the trimuon momentum vector and the vector between the beamline and the trimuon vertex. The remaining variables include additional information about the event. The absolute isolation of the \PGtcandidate [24] is the sum of the transverse momenta of the charged particles (charged isolation) and photons (neutral isolation) reconstructed using the particle-flow algorithm, with , where and are the differences in pseudorapidity and azimuthal angle, respectively, between the directions of the particle and the \PGtcandidate. The charged isolation only includes tracks that pass within 0.2\cmof the primary vertex in the longitudinal direction and are not one of the \PGtcandidate constituents. The neutral isolation is corrected for pileup following the prescription in Ref. [24]. The variable used in the BDT is the relative isolation, defined as the absolute isolation divided by the \ptof the \PGtcandidate.
Assuming that the only missing particle in the event is the neutrino from the decay, the neutrino \ptveccan be determined from the negative vector sum of the transverse momenta of all other particles in the event, a quantity referred to as \ptvecmiss. A multivariate regression that uses additional information from the event [25] is applied to \ptvecmissto reduce effects from pileup, improving the \ptvecmissresolution by 30%. The \PWboson \ptvecis defined as the sum of \ptvecmissand . Furthermore, using the known mass of the \PWboson, the longitudinal momentum of the neutrino can be determined, up to a two-fold ambiguity. The remaining BDT variables use this information and are: both neutrino longitudinal momentum solutions, \PWboson \pt, \ptmiss, the angle in the transverse plane between \ptvecmissand , and the transverse \PWmass .
The BDT is trained and tested on independent samples with no evidence of overtraining or bias. The most important variables are found to be the \PGtcandidate relative isolation, transverse \PWmass, and .
0.4.2 Analysis strategy
The relationship between the branching fraction and the number of signal events can be written as:
(1) |
where is the number of signal events, is the integrated luminosity, is the \PWboson production cross section, is the branching fraction of \PWdecay to , is the acceptance, and is the combined reconstruction, selection, and trigger efficiency for the three muons. The product of and is obtained from the ATLAS measurement of at 13 TeV [26] and the world-average value of the ratio [27]. Other sources of \PGtleptons, such as from \PZboson or \PDmeson decays, are neglected as either the low production cross section or BDT selection efficiency reduces their contribution to no more than a few percent of that from \PWboson production.
Simulated samples are used to estimate the relative production of \PGtleptons from different sources and to determine the acceptance and efficiency of the signal. To account for differences between data and simulation, several multiplicative corrections are applied on an event-by-event basis to the simulated events. Each of the three muons has a weight associated with it, which is the product of three corrections related to the efficiency of reconstructing the track in the tracker, the efficiency of identifying the reconstructed track as a muon, and the efficiency for the trigger system to find the muon given that it was reconstructed and identified by the offline algorithm. An additional correction is applied to account for the L1 trigger misconfiguration described in Section 0.3. The average weight from the combination of these corrections is 0.88. The difference from unity comes primarily from the trigger efficiency. The weighted events are used to determine the signal efficiency, and the uncertainties from the corrections are included as systematic uncertainties.
Since the invariant mass resolution is a strong function of the pseudorapidity, the data sample is divided into two mutually exclusive categories, barrel and endcap, corresponding to trimuon (with an average mass resolution of 16\MeV) and (with an average mass resolution of 27\MeV), respectively. Events with a BDT score larger than a given threshold are selected and used for the final analysis. Simulated signal and sideband data events are used to set the BDT score thresholds for the barrel and endcap regions that give the most stringent expected exclusion limits. Figure 1 shows the trimuon invariant mass distributions for events passing each category, along with a background-only fit (described in Section 0.6) and the contribution expected for a signal with .


0.4.3 Systematic uncertainties
The largest systematic uncertainty is from the corrections that are used in extracting the signal efficiency. This is dominated by the L1 trigger inefficiency correction, which predominantly affects the endcap region, and is correlated between the barrel and endcap categories. The other simulation correction uncertainties are uncorrelated between the two categories. The second largest systematic uncertainty arises from the limited size of the simulated samples and is uncorrelated between the two categories. The remaining uncertainties come from the integrated luminosity [28], the \PWboson production cross section, and the \PWboson branching fractions, all of which are correlated between the barrel and endcap categories. The systematic uncertainties are summarized in Table 0.4.3.
Sources of systematic uncertainties in the \PWboson analysis and their effect on the signal efficiency and normalization for the barrel and endcap categories. Uncertainty (%) Source Barrel Endcap Signal efficiency 7.9 32 Limited size of simulated samples 4.3 6.2 Integrated luminosity 2.5 2.5 cross section 2.9 2.9 0.2 0.2 0.2 0.2 Total 9.8 33
0.5 Search for in heavy-flavor hadron decays
The measurement of the branching fraction for \PGtleptons produced in charm and bottom decays is complicated by uncertainties in the production of heavy-flavor hadrons. These uncertainties are reduced by utilizing the decay to normalize the signal yield.
Simulated samples are used to estimate the relative production of \PGtleptons from different sources and to determine the acceptance and efficiency of the signal and normalization modes. Four samples are used to extract the acceptance and efficiency. The first is a sample of decays. The second and third samples contain the inclusive and decays, respectively. The fourth sample contains events. For all samples, the heavy-flavor decays are simulated with \EVTGEN1.6.0, with the decay occurring via phase space. In the first and fourth samples, the \PsDpmesons can be produced by hadronization or from \PQbhadron decays. The acceptance is the fraction of events in which all tracks of the \PGtor \PsDpdecay have , the muons have , and the pion (if present) has . The efficiency is the product of the reconstruction and selection efficiency and the trigger efficiency .
0.5.1 Selecting candidates
For the heavy-flavor analysis, \PGtcandidates must pass the selection criteria described in Section 0.3 and the lowest-\pttrack must have . The trimuon sample is divided into a signal region (invariant mass of 1.75–1.80\GeV) and a sideband (background) region (invariant mass of 1.60–1.75 or 1.80–2.00\GeV). The normalization channel uses the same selection criteria with a few exceptions. Only two muons are required and they must be oppositely charged with an invariant mass between 1 and 1.04\GeV. The track associated with the pion must have and form a vertex with the two muons with a normalized less than 5. The three-track invariant mass must be in the range 1.68–2.02\GeV, with the signal region defined as 1.93–2.01\GeVand the sideband region as 1.70–1.80\GeV. If there is more than one \PGtor candidate in an event, the one with the smallest vertex fit is selected. Once a candidate is found, its trajectory is extrapolated to the beamline and the primary vertex is selected as the reconstructed collision vertex that is closest to the extrapolated point.
To improve the signal-to-background ratio for the sample, a BDT is trained using simulated signal events (including leptons produced from both charm and bottom decays) and background events from the data sideband region. The training utilizes 10 variables: the smallest muon momentum, three distinct muon quality criteria (each using the “worst” value of the three muon candidates), the of the trimuon vertex fit, the angle between the trimuon momentum vector and the vector connecting the primary and trimuon vertices, the distance between the trimuon vertex and the primary vertex divided by the uncertainty in that distance, the smallest transverse impact parameter of the muons with respect to the primary vertex, and two isolation variables. The first isolation variable is the smallest distance of closest approach to the trimuon vertex of all other tracks in the event with . The second isolation variable sums the \ptof all tracks with , with respect to the muon candidate, and with a distance of closest approach with respect to the muon candidate below 1\mm, and divides this sum by the muon candidate \pt. The largest value of the isolation parameter among the three muons is used by the BDT.
The BDT is trained and tested on independent samples with no evidence of overtraining. The BDT output was also verified to be independent of the trimuon invariant mass. A BDT for the normalization mode is similarly trained using the same 10 variables (modified to account for one less muon). The efficiency as a function of the BDT requirement is measured with both actual and simulated data for the normalization mode. The largest discrepancy, 5%, is taken as a systematic uncertainty associated with modeling the BDT efficiency.
To improve the sensitivity of the analysis, the \PGtcandidates are separated into six categories depending on the BDT score and the trimuon invariant mass resolution (the ratio of the mass uncertainty , calculated from propagating the track parameter uncertainties, to the invariant mass ). There are three mass resolution bins: , , and , with average mass resolutions of 12, 19, and 25\MeV, and labeled A, B, and C, respectively. The first and last bins roughly correspond to barrel and endcap events, respectively. Each mass resolution bin is then divided into three bins based on the BDT score. The highest two BDT bins in each mass resolution bin are used in the search, with the highest signal-to-background bin given the label “1” and the other “2”. Thus, the six categories are labeled A1, A2, B1, B2, C1, and C2. The values of the two BDT bin boundaries in each mass resolution bin are determined independently by simultaneously scanning both values to find the result that gives the best expected upper limit on . The trimuon invariant mass distribution for each category is shown in Fig. 2, along with a background-only fit (described in Section 0.6) and the contribution expected for a signal with .






0.5.2 Signal yield normalization
Results from simulation indicate that the \PGtleptons in the data sample overwhelmingly come from three disjoint sources: prompt \PDmeson decays (the \PDmeson is not from a \PQbhadron decay), \PQbhadron decays (directly from \PQbhadron decays), and nonprompt \PDmeson decays (the \PDis from a \PQbhadron decay), with contributions of 65, 25, and 10%, respectively. More than 95% of the \PGtleptons produced from charm meson decays are from \PsDpmeson decays, with the remainder from \PDpmeson decays. Approximately 75% of the signal is expected to come from the L1 dimuon trigger, and can be directly calibrated using events since they pass the same trigger. The remaining 25% of the expected signal is obtained exclusively from the L1 trimuon trigger. As detailed in Section 0.6, the final results are obtained from a fit that uses both the expected number of background events and the relationship between and the expected number of signal events. While this relationship can be obtained from an equation similar to Eq. (1), the heavy-flavor production cross sections have large uncertainties. To mitigate this, and correct for effects like the L1 trigger misconfiguration during the first half of 2016, we extract the expected signal yields using methods based on control samples in data to calibrate the production of \PGtleptons.
Yield of events from dimuon L1 triggers
The expected number of signal events from \PsDpmeson decays that pass the dimuon L1 triggers, denoted , is related to by:
(2) |
where is the measured yield, , , and are the detector acceptance, selection efficiency, and trigger efficiency for the two channels, respectively, and the branching fractions are and [27]. Figure 3 (left) shows the invariant mass distribution with fits to the \PDpand \PsDppeaks using Crystal Ball functions [29] for the signal and an exponential function for the background, from which can be extracted from the peak on the right. Note that includes contributions from directly produced \PsDpmesons and \PsDpmesons from \PQbhadron decays. To evaluate the degree to which the normalization mode mimics the signal mode, the ratio of the yield to the number of signal sideband events is measured for seven different run periods. Assuming these seven values are measuring the same quantity, we use the scale-factor method [27] to derive a systematic uncertainty of 10%.


The expected number of signal events from decays of the form coming from the dimuon L1 triggers, denoted , is related to by:
(3) |
where is the measured yield, is the fraction of observed mesons from \PQbhadron decays, and , , and are the detector acceptance, selection efficiency, and trigger efficiency for the two channels, respectively. The newly introduced branching fractions are (including the measured 2.7% from decays [27] and an estimated 0.7% from other decays based on \PYTHIA) and (averaging the measured \PBzand \PBmbranching fractions [27]).
The fraction can be calculated as . Since the \PsDpmesons produced from \PQbhadron decays will tend to decay farther from the collision vertex than directly produced \PsDpmesons, we use the proper decay length distribution to measure . The proper decay length is where is the distance between the primary vertex and the vertex, is the invariant mass, and is the momentum. Figure 3 (right) shows the proper decay length distribution for \PsDpmesons in which the background has been subtracted using the invariant mass sidebands. The proper decay length distribution shapes for \PsDpmesons directly produced (open histogram) and from \PBdecays (shaded histogram) are obtained from simulation. The data distribution is fit to a linear sum of these two simulation shapes, yielding a measured value of . The value from simulation of is used in the analysis and the difference between the two values is included as a systematic uncertainty.
The small contributions from and decays are added by scaling the and predictions by 0.04 and 0.12, respectively, as determined from simulation. A systematic uncertainty equal to the total contribution in each case is assessed. The much smaller contribution from direct \PQbbaryon decays is not included.
Uncertainties in the ratios of event selection acceptances and are estimated by changing the parton distribution function sets in the corresponding simulated events. Although the acceptances change by up to 7%, the ratios remain constant within , consistent with the statistical uncertainty associated with the size of the simulated samples. In the ratio , the muon reconstruction efficiency does not cancel exactly since the numerator refers to events with three muons and the denominator to events with only two. We derive data-to-simulation corrections for the muon reconstruction efficiency in bins of muon \ptand using the tag-and-probe method [30] applied to data events. These additional corrections are then applied to signal events. The systematic uncertainty in the correction is estimated to be 1.5%.
Yield of events exclusively from trimuon L1 triggers
As described in Section 0.3, the data are collected using both dimuon and trimuon triggers. The data collected using trimuon triggers cannot be directly normalized to , as this decay only contains two muons. The simulation predicts that the fraction of signal events triggered exclusively through the L1 trimuon trigger is 33% of the events passing the L1 dimuon triggers. When measured from events in the sideband region, this ratio is found to be 35% using data collected after the initial trigger problems were fixed, a 6% difference. The data-to-simulation correction for the dimuon trigger, measured in events, is 0.90 for the same data-taking period. We scale up the dimuon-triggered predicted yields for this data-taking period by the simulation value of 33% and assign a systematic uncertainty of 12% to account for the observed 6 and 10% differences. For the initial data-taking periods, the expected yield is scaled by the ratio of the trimuon trigger rates in the early and late periods, with the same 12% uncertainty.
0.5.3 Systematic uncertainties
The systematic uncertainties associated with the expected signal event yield, as described previously, are summarized in Table 0.5.3. In addition, systematic uncertainties related to the signal and background shapes are evaluated. The signal invariant mass shape uncertainties are estimated by comparing data and simulation results for the fitted value of the mean and resolution in decays. The mean value is found to be 0.07% higher in simulation and therefore the mass in the signal simulation is shifted by with a systematic uncertainty of 0.07%. The resolution is found to be 2% smaller in simulation and thus the signal simulation resolution is increased by 2%, with a systematic uncertainty of 2.5%, consistent with the statistical precision of the measurement. The uncertainty in the background shape is obtained by varying the functional form from the default exponential to a third-order polynomial and a power-law function. This is found to contribute an uncertainty of less than 1%.
The sources of systematic uncertainties in the heavy-flavor analysis affecting signal modeling and their impact on the expected signal event yield. The columns labeled Uncertainty and Yield give the relative uncertainty associated with the source, and the resulting effect on the yield, respectively. Source of uncertainty Uncertainty (%) Yield (%) \PsDpnormalization 10 10 4 3 8 8 16 5 11 3 ratio 11 3 Number of events from L1 trimuon trigger 12 3 Acceptance ratio 1 1 Muon reconstruction efficiency 1 1 BDT requirement efficiency 5 5 Total 16
0.6 Results
The branching fraction is extracted from a simultaneous unbinned maximum likelihood fit to the trimuon invariant mass distribution (1.6–2\GeV) in the two categories of the \PWboson analysis and the six categories of the heavy-flavor analysis.
For the \PWboson analysis, the signal model is a Gaussian function with fixed mean and width, as determined from fitting the simulated events in the appropriate category. For the heavy-flavor selection, the signal model is a Gaussian plus Crystal Ball function [29] with fixed mean and width, as determined from fitting the simulated events in the appropriate category and modified as described in Section 0.5.3. In all cases, the background model is an exponential function with parameters and normalization determined by the fit.
As can be seen in the trimuon invariant mass plots of Figs. 1 and 2, no evidence for a signal is found. Upper limits on are determined from a fully frequentist method [31] based on modified profile likelihood test statistics and the \CLscriterion [32, 33]. Systematic uncertainties are incorporated in the analysis via nuisance parameters. Uncertainties are assumed to be uncorrelated between the two channels. A log-normal probability density function is assumed for the nuisance parameters affecting the corrected signal yields. Events from data and simulation that pass the selection criteria of both analyses are removed from the heavy-flavor analysis in the combined fit.
The observed (expected) upper limit at 90% \CLon using all events is . Fitting the \PWboson and heavy-flavor events separately returns observed (expected) 90% \CLupper limits of and , respectively.
0.7 Summary
The results of a search for the lepton flavor violating decay , using proton-proton collisions with a center-of-mass energy of 13\TeVat the LHC, are presented. The search uses data collected by CMS in 2016, corresponding to an integrated luminosity of 33.2\fbinv, and, for the first time, combines the result of two analyses: one targeting \PGtleptons produced in \PWboson decays and the other using \PGtleptons from heavy-flavor hadron decays. No signal is observed, and the branching fraction is determined to be less than at 90% confidence level, with an expected upper limit of . While the limit obtained in this measurement is still a factor of four away from the current most restrictive one from the Belle experiment [8], we have achieved similar sensitivity to that by BaBar [7] and LHCb [9].
Acknowledgements.
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).References
- [1] X.-Y. Pham, “Lepton flavor changing in neutrinoless decays”, Eur. Phys. J. C 8 (1999) 513, 10.1007/s100529901088, arXiv:hep-ph/9810484.
- [2] G. Hernández-Tomé, G. López Castro, and P. Roig, “Flavor violating leptonic decays of and leptons in the Standard Model with massive neutrinos”, Eur. Phys. J. C 79 (2019) 84, 10.1140/epjc/s10052-019-6563-4, arXiv:1807.06050.
- [3] P. Blackstone, M. Fael, and E. Passemar, “ at a rate of one out of tau decays?”, Eur. Phys. J. C 80 (2020) 506, 10.1140/epjc/s10052-020-8059-7, arXiv:1912.09862.
- [4] W. J. Marciano, T. Mori, and J. M. Roney, “Charged lepton flavor violation experiments”, Ann. Rev. Nucl. Part. Sci. 58 (2008) 315, 10.1146/annurev.nucl.58.110707.171126.
- [5] M. Raidal et al., “Flavour physics of leptons and dipole moments”, Eur. Phys. J. C 57 (2008) 13, 10.1140/epjc/s10052-008-0715-2, arXiv:0801.1826.
- [6] E. Arganda and M. J. Herrero, “Testing supersymmetry with lepton flavor violating and decays”, Phys. Rev. D 73 (2006) 055003, 10.1103/PhysRevD.73.055003, arXiv:hep-ph/0510405.
- [7] BaBar Collaboration, “Improved limits on the lepton-flavor violating decays ”, Phys. Rev. Lett. 99 (2007) 251803, 10.1103/PhysRevLett.99.251803, arXiv:0708.3650.
- [8] Belle Collaboration, “Search for lepton flavor violating decays into three leptons with 719 million produced pairs”, Phys. Lett. B 687 (2010) 139, 10.1016/j.physletb.2010.03.037, arXiv:1001.3221.
- [9] LHCb Collaboration, “Search for the lepton flavour violating decay ”, JHEP 02 (2015) 121, 10.1007/JHEP02(2015)121, arXiv:1409.8548.
- [10] ATLAS Collaboration, “Probing lepton flavour violation via neutrinoless decays with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 232, 10.1140/epjc/s10052-016-4041-9, arXiv:1601.03567.
- [11] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- [12] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- [13] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- [14] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- [15] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations”, JHEP 06 (2002) 029, 10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244.
- [16] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- [17] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- [18] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- [19] D. J. Lange, “The EvtGen particle decay simulation package”, Nucl. Instrum. Meth. A 462 (2001) 152, 10.1016/S0168-9002(01)00089-4.
- [20] GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- [21] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [22] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- [23] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, p. 785. ACM, New York, NY, USA, 2016. 10.1145/2939672.2939785.
- [24] CMS Collaboration, “Performance of reconstruction and identification of leptons decaying to hadrons and in collisions at TeV”, JINST 13 (2018) P10005, 10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.
- [25] CMS Collaboration, “Multivariate determination of the missing energy in the transverse plane at ”, CMS Detector Performance Note CMS-DP-2015-042, 2015.
- [26] ATLAS Collaboration, “Measurement of and -boson production cross sections in collisions at TeV with the ATLAS detector”, Phys. Lett. B 759 (2016) 601, 10.1016/j.physletb.2016.06.023, arXiv:1603.09222.
- [27] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, Phys. Rev. D 98 (2018) 030001, 10.1103/PhysRevD.98.030001.
- [28] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.
- [29] M. J. Oreglia, “A study of the reactions ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
- [30] CMS Collaboration, “Measurement of the inclusive and production cross sections in collisions at TeV”, JHEP 10 (2011) 132, 10.1007/JHEP10(2011)132, arXiv:1107.4789.
- [31] The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.
- [32] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, 10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
- [33] A. L. Read, “Presentation of search results: The CL technique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
.8 The CMS Collaboration
Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan
\cmsinstskipInstitut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth\cmsAuthorMark1, M. Jeitler\cmsAuthorMark1, N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck\cmsAuthorMark1, R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz\cmsAuthorMark1, M. Zarucki
\cmsinstskipInstitute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez
\cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish\cmsAuthorMark2, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello\cmsAuthorMark3, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel
\cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders
\cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek
\cmsinstskipGhent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov\cmsAuthorMark4, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit
\cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco, V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, P. Vischia, S. Wuyckens, J. Zobec
\cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes
\cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. BRANDAO MALBOUISSON, W. Carvalho, J. Chinellato\cmsAuthorMark5, E. Coelho, E.M. Da Costa, G.G. Da Silveira\cmsAuthorMark6, D. De Jesus Damiao, S. Fonseca De Souza, J. Martins\cmsAuthorMark7, D. Matos Figueiredo, M. Medina Jaime\cmsAuthorMark8, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\cmsAuthorMark5, F. Torres Da Silva De Araujo, A. Vilela Pereira
\cmsinstskipUniversidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesa, L. Calligarisa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, D.S. Lemosa, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa
\cmsinstskipInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
\cmsinstskipUniversity of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
\cmsinstskipBeihang University, Beijing, China
W. Fang\cmsAuthorMark3, Q. Guo, H. Wang, L. Yuan
\cmsinstskipDepartment of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang
\cmsinstskipInstitute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen\cmsAuthorMark9, H.S. Chen\cmsAuthorMark9, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang\cmsAuthorMark9, J. Zhao
\cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, A. Levin, J. Li, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao
\cmsinstskipSun Yat-Sen University, Guangzhou, China
Z. You
\cmsinstskipInstitute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao\cmsAuthorMark3
\cmsinstskipZhejiang University, Hangzhou, China
M. Xiao
\cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado
\cmsinstskipUniversidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez
\cmsinstskipUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac
\cmsinstskipUniversity of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac
\cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, B. Mesic, M. Roguljic, A. Starodumov\cmsAuthorMark10, T. Susa
\cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri
\cmsinstskipCharles University, Prague, Czech Republic
M. Finger\cmsAuthorMark11, M. Finger Jr.\cmsAuthorMark11, A. Kveton, J. Tomsa
\cmsinstskipEscuela Politecnica Nacional, Quito, Ecuador
E. Ayala
\cmsinstskipUniversidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
\cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim\cmsAuthorMark12,\cmsAuthorMark13, S. Abu Zeid\cmsAuthorMark14, S. Khalil\cmsAuthorMark13
\cmsinstskipCenter for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud
\cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken
\cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen
\cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi
\cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva
\cmsinstskipIRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro\cmsAuthorMark15, M. Titov, G.B. Yu
\cmsinstskipLaboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche
\cmsinstskipUniversité de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram\cmsAuthorMark16, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine\cmsAuthorMark16, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove
\cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret
\cmsinstskipGeorgian Technical University, Tbilisi, Georgia
G. Adamov
\cmsinstskipTbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark11
\cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde
\cmsinstskipRWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski
\cmsinstskipRWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügge, W. Haj Ahmad\cmsAuthorMark17, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl\cmsAuthorMark18, T. Ziemons
\cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras\cmsAuthorMark19, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, V. Danilov, A. De Wit, M.M. Defranchis, L. Didukh, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, L.I. Estevez Banos, E. Gallo\cmsAuthorMark20, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, A. Jafari\cmsAuthorMark21, N.Z. Jomhari, H. Jung, A. Kasem\cmsAuthorMark19, M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann\cmsAuthorMark22, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otarid, D. Pérez Adán, S.K. Pflitsch, D. Pitzl, A. Raspereza, A. Saggio, A. Saibel, M. Savitskyi, V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, R.E. Sosa Ricardo, H. Tholen, N. Tonon, O. Turkot, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, S. Wuchterl, O. Zenaiev, R. Zlebcik
\cmsinstskipUniversity of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodriguez, O. Rieger, P. Schleper, S. Schumann, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi
\cmsinstskipKarlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Baselga, S. Baur, J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, K. Flöh, M. Giffels, A. Gottmann, F. Hartmann\cmsAuthorMark18, C. Heidecker, U. Husemann, M.A. Iqbal, I. Katkov\cmsAuthorMark23, P. Keicher, R. Koppenhöfer, S. Kudella, S. Maier, M. Metzler, S. Mitra, M.U. Mozer, D. Müller, Th. Müller, M. Musich, G. Quast, K. Rabbertz, J. Rauser, D. Savoiu, D. Schäfer, M. Schnepf, M. Schröder, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, C. Wöhrmann, R. Wolf, S. Wozniewski
\cmsinstskipInstitute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia
\cmsinstskipNational and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis
\cmsinstskipNational Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou
\cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas
\cmsinstskipMTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók\cmsAuthorMark24, R. Chudasama, M. Csanad, M.M.A. Gadallah\cmsAuthorMark25, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres
\cmsinstskipWigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\cmsAuthorMark26, F. Sikler, V. Veszpremi, G. Vesztergombi
\cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\cmsAuthorMark24, J. Molnar, Z. Szillasi, D. Teyssier
\cmsinstskipInstitute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari
\cmsinstskipEszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, S. Lökös\cmsAuthorMark27, F. Nemes, T. Novak
\cmsinstskipIndian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari
\cmsinstskipNational Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati\cmsAuthorMark28, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak\cmsAuthorMark29, D.K. Sahoo\cmsAuthorMark28, N. Sur, S.K. Swain
\cmsinstskipPanjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dhingra\cmsAuthorMark30, R. Gupta, A. Kaur, A. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi
\cmsinstskipUniversity of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah
\cmsinstskipSaha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti\cmsAuthorMark31, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber\cmsAuthorMark32, M. Maity\cmsAuthorMark33, S. Nandan, P. Palit, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh\cmsAuthorMark31, S. Thakur\cmsAuthorMark31
\cmsinstskipIndian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar
\cmsinstskipBhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar\cmsAuthorMark34, P.K. Netrakanti, L.M. Pant, P. Shukla
\cmsinstskipTata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, U. Sarkar
\cmsinstskipTata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy, N. Sahoo
\cmsinstskipIndian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma
\cmsinstskipDepartment of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi\cmsAuthorMark35
\cmsinstskipInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani\cmsAuthorMark36, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri
\cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
\cmsinstskipINFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, R. Alya,b,\cmsAuthorMark37, C. Arutaa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c, M. De Palmaa,b, A. Di Florioa,b, A. Di Pilatoa,b, W. Elmetenaweea,b, L. Fiorea, A. Gelmia,b, M. Gula, G. Iasellia,c, M. Incea,b, S. Lezkia,b, G. Maggia,c, M. Maggia, I. Margjekaa,b, J.A. Merlina, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, A. Ranieria, G. Selvaggia,b, L. Silvestrisa, F.M. Simonea,b, R. Vendittia, P. Verwilligena
\cmsinstskipINFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, C. Cioccaa, M. Cuffiania,b, G.M. Dallavallea, T. Diotalevia,b, F. Fabbria, A. Fanfania,b, E. Fontanesia,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, F. Iemmia,b, S. Lo Meoa,\cmsAuthorMark38, S. Marcellinia, G. Masettia, F.L. Navarriaa,b, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia
\cmsinstskipINFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergoa,b,\cmsAuthorMark39, S. Costaa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b,\cmsAuthorMark39, C. Tuvea,b
\cmsinstskipINFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, A. Cassesea, R. Ceccarellia,b, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, F. Fioria, E. Focardia,b, G. Latinoa,b, P. Lenzia,b, M. Lizzoa,b, M. Meschinia, S. Paolettia, R. Seiditaa,b, G. Sguazzonia, L. Viliania
\cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo
\cmsinstskipINFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzoa,b, F. Ferroa, R. Mulargiaa,b, E. Robuttia, S. Tosia,b
\cmsinstskipINFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, A. Beschia,b, F. Brivioa,b, F. Cetorellia,b, V. Cirioloa,b,\cmsAuthorMark18, F. De Guioa,b, M.E. Dinardoa,b, P. Dinia, S. Gennaia, A. Ghezzia,b, P. Govonia,b, L. Guzzia,b, M. Malbertia, S. Malvezzia, D. Menascea, F. Montia,b, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Valsecchia,b,\cmsAuthorMark18, D. Zuoloa,b
\cmsinstskipINFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, F. Fabozzia,c, F. Fiengaa, A.O.M. Iorioa,b, L. Layera,b, L. Listaa,b, S. Meolaa,d,\cmsAuthorMark18, P. Paoluccia,\cmsAuthorMark18, B. Rossia, C. Sciaccaa,b, E. Voevodinaa,b
\cmsinstskipINFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia, N. Bacchettaa, A. Bolettia,b, A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b, S.Y. Hoha,b, M. Margonia,b, A.T. Meneguzzoa,b, M. Presillab, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, G. Strong, A. Tikoa, M. Tosia,b, H. YARARa,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b
\cmsinstskipINFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b
\cmsinstskipINFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, V. Mariania,b, M. Menichellia, F. Moscatellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa, T. Tedeschia,b
\cmsinstskipINFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, M.R. Di Domenicoa,b, S. Donatoa, L. Gianninia,c, A. Giassia, M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, G. Ramirez-Sancheza,c, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, A. Scribanoa, N. Shafieia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, N. Turinia, A. Venturia, P.G. Verdinia
\cmsinstskipINFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b, R. Tramontanoa,b
\cmsinstskipINFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, F. Leggera, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, M. Ruspaa,c, R. Salvaticoa,b, F. Sivieroa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa, D. Trocinoa,b
\cmsinstskipINFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b
\cmsinstskipKyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, Y.C. Yang
\cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon
\cmsinstskipHanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park
\cmsinstskipKorea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo
\cmsinstskipKyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu
\cmsinstskipSejong University, Seoul, Korea
H.S. Kim, Y. Kim
\cmsinstskipSeoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, B.C. Radburn-Smith, H. Seo, U.K. Yang, I. Yoon
\cmsinstskipUniversity of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson
\cmsinstskipYonsei University, Department of Physics, Seoul, Korea
H.D. Yoo
\cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, J. Lee, Y. Lee, I. Yu
\cmsinstskipRiga Technical University, Riga, Latvia
V. Veckalns\cmsAuthorMark40
\cmsinstskipVilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis
\cmsinstskipNational Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli
\cmsinstskipUniversidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo
\cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\cmsAuthorMark41, R. Lopez-Fernandez, A. Sanchez-Hernandez
\cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia
\cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada
\cmsinstskipUniversidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda
\cmsinstskipUniversity of Montenegro, Podgorica, Montenegro
J. Mijuskovic\cmsAuthorMark4, N. Raicevic
\cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck
\cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler
\cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas
\cmsinstskipAGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski
\cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski
\cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\cmsAuthorMark42, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak
\cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela
\cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev\cmsAuthorMark43,\cmsAuthorMark44, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, A. Zarubin, I. Zhizhin
\cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim\cmsAuthorMark45, E. Kuznetsova\cmsAuthorMark46, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev
\cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin
\cmsinstskipInstitute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko\cmsAuthorMark47, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin
\cmsinstskipMoscow Institute of Physics and Technology, Moscow, Russia
T. Aushev
\cmsinstskipNational Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, D. Philippov, E. Popova, V. Rusinov, E. Zhemchugov
\cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov
\cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin\cmsAuthorMark48, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, V. Savrin
\cmsinstskipNovosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov\cmsAuthorMark49, T. Dimova\cmsAuthorMark49, L. Kardapoltsev\cmsAuthorMark49, I. Ovtin\cmsAuthorMark49, Y. Skovpen\cmsAuthorMark49
\cmsinstskipInstitute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov
\cmsinstskipNational Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh
\cmsinstskipTomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev
\cmsinstskipUniversity of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark50, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic
\cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, C. Willmott
\cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza
\cmsinstskipUniversidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, S. Sanchez Cruz
\cmsinstskipInstituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Russo\cmsAuthorMark51, L. Scodellaro, I. Vila, J.M. Vizan Garcia
\cmsinstskipUniversity of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy\cmsAuthorMark52, D.U.J. Sonnadara, DDC Wickramarathna
\cmsinstskipUniversity of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage
\cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, G. Cerminara, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita\cmsAuthorMark53, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Guilbaud, D. Gulhan, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Orfanelli, L. Orsini, F. Pantaleo\cmsAuthorMark18, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas\cmsAuthorMark54, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner
\cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
L. Caminada\cmsAuthorMark55, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe
\cmsinstskipETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V. Stampf, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu
\cmsinstskipUniversität Zürich, Zurich, Switzerland
C. Amsler\cmsAuthorMark56, C. Botta, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, J.K. Heikkilä, M. Huwiler, A. Jofrehei, B. Kilminster, S. Leontsinis, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, G. Rauco, A. Reimers, P. Robmann, K. Schweiger, Y. Takahashi, S. Wertz
\cmsinstskipNational Central University, Chung-Li, Taiwan
C. Adloff\cmsAuthorMark57, C.M. Kuo, W. Lin, A. Roy, T. Sarkar\cmsAuthorMark33, S.S. Yu
\cmsinstskipNational Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan
\cmsinstskipChulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas
\cmsinstskipÇukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin\cmsAuthorMark58, Z.S. Demiroglu, F. Dolek, C. Dozen\cmsAuthorMark59, I. Dumanoglu\cmsAuthorMark60, E. Eskut, G. Gokbulut, Y. Guler, E. Gurpinar Guler\cmsAuthorMark61, I. Hos\cmsAuthorMark62, C. Isik, E.E. Kangal\cmsAuthorMark63, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir\cmsAuthorMark64, A. Polatoz, A.E. Simsek, B. Tali\cmsAuthorMark65, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez
\cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
B. Isildak\cmsAuthorMark66, G. Karapinar\cmsAuthorMark67, K. Ocalan\cmsAuthorMark68, M. Yalvac\cmsAuthorMark69
\cmsinstskipBogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya\cmsAuthorMark70, O. Kaya\cmsAuthorMark71, Ö. Özçelik, S. Tekten\cmsAuthorMark72, E.A. Yetkin\cmsAuthorMark73
\cmsinstskipIstanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak\cmsAuthorMark60, Y. Komurcu, S. Sen\cmsAuthorMark74
\cmsinstskipIstanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci\cmsAuthorMark65, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci\cmsAuthorMark65
\cmsinstskipInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov
\cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk
\cmsinstskipUniversity of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, D. Burns\cmsAuthorMark75, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton
\cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark76, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams
\cmsinstskipImperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal\cmsAuthorMark77, D. Colling, P. Dauncey, G. Davies, M. Della Negra, P. Everaerts, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash\cmsAuthorMark78, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee\cmsAuthorMark18, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz
\cmsinstskipBrunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid
\cmsinstskipBaylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith
\cmsinstskipCatholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez
\cmsinstskipThe University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West
\cmsinstskipBoston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou
\cmsinstskipBrown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez\cmsAuthorMark19, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan\cmsAuthorMark79, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir\cmsAuthorMark80, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang
\cmsinstskipUniversity of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang
\cmsinstskipUniversity of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev
\cmsinstskipUniversity of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang
\cmsinstskipUniversity of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil
\cmsinstskipUniversity of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang
\cmsinstskipCalifornia Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
\cmsinstskipCarnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg
\cmsinstskipUniversity of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner
\cmsinstskipCornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek
\cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, M.J. Kortelainen, S. Lammel, J. Lewis, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena\cmsAuthorMark48, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, M. Wang, H.A. Weber, A. Woodard
\cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo
\cmsinstskipFlorida International University, Miami, USA
Y.R. Joshi
\cmsinstskipFlorida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang
\cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy\cmsAuthorMark14, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva
\cmsinstskipUniversity of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, H. Wang, X. Wang, Z. Wu
\cmsinstskipThe University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki\cmsAuthorMark61, K. Dilsiz\cmsAuthorMark81, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili\cmsAuthorMark82, A. Moeller, J. Nachtman, H. Ogul\cmsAuthorMark83, Y. Onel, F. Ozok\cmsAuthorMark84, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi\cmsAuthorMark85
\cmsinstskipJohns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi
\cmsinstskipThe University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson
\cmsinstskipKansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi
\cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright
\cmsinstskipUniversity of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong
\cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch
\cmsinstskipUniversity of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud
\cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros
\cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, I. Kravchenko, J.E. Siado, G.R. Snow, B. Stieger, W. Tabb
\cmsinstskipState University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker, J. Pekkanen, S. Rappoccio, B. Roozbahani
\cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood
\cmsinstskipNorthwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco
\cmsinstskipUniversity of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko\cmsAuthorMark43, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala
\cmsinstskipThe Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, B.L. Winer, B.R. Yates
\cmsinstskipPrinceton University, Princeton, USA
G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully
\cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg
\cmsinstskipPurdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie
\cmsinstskipPurdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar, M. Stojanovic
\cmsinstskipRice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang
\cmsinstskipUniversity of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus
\cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban\cmsAuthorMark22, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas
\cmsinstskipUniversity of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier
\cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark86, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\cmsAuthorMark87, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov
\cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck
\cmsinstskipVanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij
\cmsinstskipUniversity of Virginia, Charlottesville, USA
L. Ang, M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia
\cmsinstskipWayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa
\cmsinstskipUniversity of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, L. Dodd, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens
\cmsinstskip†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at Helwan University, Cairo, Egypt
13: Now at Zewail City of Science and Technology, Zewail, Egypt
14: Also at Ain Shams University, Cairo, Egypt
15: Also at Purdue University, West Lafayette, USA
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
22: Also at Brandenburg University of Technology, Cottbus, Germany
23: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
24: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
25: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
26: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
27: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
28: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
29: Also at Institute of Physics, Bhubaneswar, India
30: Also at G.H.G. Khalsa College, Punjab, India
31: Also at Shoolini University, Solan, India
32: Also at University of Hyderabad, Hyderabad, India
33: Also at University of Visva-Bharati, Santiniketan, India
34: Also at Indian Institute of Technology (IIT), Mumbai, India
35: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
36: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
37: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
38: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
39: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
40: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
41: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
42: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
43: Also at Institute for Nuclear Research, Moscow, Russia
44: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
45: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
46: Also at University of Florida, Gainesville, USA
47: Also at Imperial College, London, United Kingdom
48: Also at California Institute of Technology, Pasadena, USA
49: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
50: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
51: Also at Università degli Studi di Siena, Siena, Italy
52: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
53: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
54: Also at National and Kapodistrian University of Athens, Athens, Greece
55: Also at Universität Zürich, Zurich, Switzerland
56: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
57: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
58: Also at Şırnak University, Sirnak, Turkey
59: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
60: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
61: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
62: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
63: Also at Mersin University, Mersin, Turkey
64: Also at Piri Reis University, Istanbul, Turkey
65: Also at Adiyaman University, Adiyaman, Turkey
66: Also at Ozyegin University, Istanbul, Turkey
67: Also at Izmir Institute of Technology, Izmir, Turkey
68: Also at Necmettin Erbakan University, Konya, Turkey
69: Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey
70: Also at Marmara University, Istanbul, Turkey
71: Also at Milli Savunma University, Istanbul, Turkey
72: Also at Kafkas University, Kars, Turkey
73: Also at Istanbul Bilgi University, Istanbul, Turkey
74: Also at Hacettepe University, Ankara, Turkey
75: Also at Vrije Universiteit Brussel, Brussel, Belgium
76: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
77: Also at IPPP Durham University, Durham, United Kingdom
78: Also at Monash University, Faculty of Science, Clayton, Australia
79: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
80: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
81: Also at Bingol University, Bingol, Turkey
82: Also at Georgian Technical University, Tbilisi, Georgia
83: Also at Sinop University, Sinop, Turkey
84: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
85: Also at Nanjing Normal University Department of Physics, Nanjing, China
86: Also at Texas A&M University at Qatar, Doha, Qatar
87: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea