This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Search for the decay 𝑱/𝝍𝜸+𝐢𝐧𝐯𝐢𝐬𝐢𝐛𝐥𝐞J/\psi\to\gamma+~{}\rm{invisible}

M. Ablikim1, M. N. Achasov10,c, P. Adlarson64, S.  Ahmed15, M. Albrecht4, A. Amoroso63A,63C, Q. An60,48,  Anita21, Y. Bai47, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban38,k, K. Begzsuren26, J. V. Bennett5, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi63A,63C, J Biernat64, J. Bloms57, A. Bortone63A,63C, I. Boyko29, R. A. Briere5, H. Cai65, X. Cai1,48, A. Calcaterra23A, G. F. Cao1,52, N. Cao1,52, S. A. Cetin51B, J. F. Chang1,48, W. L. Chang1,52, G. Chelkov29,b, D. Y. Chen6, G. Chen1, H. S. Chen1,52, M. L. Chen1,48, S. J. Chen36, X. R. Chen25, Y. B. Chen1,48, Z. J Chen20,l, W. S. Cheng63C, G. Cibinetto24A, F. Cossio63C, X. F. Cui37, H. L. Dai1,48, J. P. Dai42,g, X. C. Dai1,52, A. Dbeyssi15, R.  B. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis63A,63C, F. De Mori63A,63C, Y. Ding34, C. Dong37, J. Dong1,48, L. Y. Dong1,52, M. Y. Dong1,48,52, S. X. Du68, J. Fang1,48, S. S. Fang1,52, Y. Fang1, R. Farinelli24A, L. Fava63B,63C, F. Feldbauer4, G. Felici23A, C. Q. Feng60,48, M. Fritsch4, C. D. Fu1, Y. Fu1, X. L. Gao60,48, Y. Gao61, Y. Gao38,k, Y. G. Gao6, I. Garzia24A,24B, E. M. Gersabeck55, A. Gilman56, K. Goetzen11, L. Gong37, W. X. Gong1,48, W. Gradl28, M. Greco63A,63C, L. M. Gu36, M. H. Gu1,48, S. Gu2, Y. T. Gu13, C. Y Guan1,52, A. Q. Guo22, L. B. Guo35, R. P. Guo40, Y. P. Guo9,h, Y. P. Guo28, A. Guskov29, S. Han65, T. T. Han41, T. Z. Han9,h, X. Q. Hao16, F. A. Harris53, K. L. He1,52, F. H. Heinsius4, T. Held4, Y. K. Heng1,48,52, M. Himmelreich11,f, T. Holtmann4, Y. R. Hou52, Z. L. Hou1, H. M. Hu1,52, J. F. Hu42,g, T. Hu1,48,52, Y. Hu1, G. S. Huang60,48, L. Q. Huang61, X. T. Huang41, Y. P. Huang1, Z. Huang38,k, N. Huesken57, T. Hussain62, W. Ikegami Andersson64, W. Imoehl22, M. Irshad60,48, S. Jaeger4, S. Janchiv26,j, Q. Ji1, Q. P. Ji16, X. B. Ji1,52, X. L. Ji1,48, H. B. Jiang41, X. S. Jiang1,48,52, X. Y. Jiang37, J. B. Jiao41, Z. Jiao18, S. Jin36, Y. Jin54, T. Johansson64, N. Kalantar-Nayestanaki31, X. S. Kang34, R. Kappert31, M. Kavatsyuk31, B. C. Ke43,1, I. K. Keshk4, A. Khoukaz57, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu51B,e, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc64, M.  G. Kurth1,52, W. Kühn30, J. J. Lane55, J. S. Lange30, P.  Larin15, L. Lavezzi63C, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li39, C. H. Li33, Cheng Li60,48, D. M. Li68, F. Li1,48, G. Li1, H. B. Li1,52, H. J. Li9,h, J. L. Li41, J. Q. Li4, Ke Li1, L. K. Li1, Lei Li3, P. L. Li60,48, P. R. Li32, S. Y. Li50, W. D. Li1,52, W. G. Li1, X. H. Li60,48, X. L. Li41, Z. B. Li49, Z. Y. Li49, H. Liang1,52, H. Liang60,48, Y. F. Liang45, Y. T. Liang25, L. Z. Liao1,52, J. Libby21, C. X. Lin49, B. Liu42,g, B. J. Liu1, C. X. Liu1, D. Liu60,48, D. Y. Liu42,g, F. H. Liu44, Fang Liu1, Feng Liu6, H. B. Liu13, H. M. Liu1,52, Huanhuan Liu1, Huihui Liu17, J. B. Liu60,48, J. Y. Liu1,52, K. Liu1, K. Y. Liu34, Ke Liu6, L. Liu60,48, Q. Liu52, S. B. Liu60,48, Shuai Liu46, T. Liu1,52, X. Liu32, Y. B. Liu37, Z. A. Liu1,48,52, Z. Q. Liu41, Y.  F. Long38,k, X. C. Lou1,48,52, F. X. Lu16, H. J. Lu18, J. D. Lu1,52, J. G. Lu1,48, X. L. Lu1, Y. Lu1, Y. P. Lu1,48, C. L. Luo35, M. X. Luo67, P. W. Luo49, T. Luo9,h, X. L. Luo1,48, S. Lusso63C, X. R. Lyu52, F. C. Ma34, H. L. Ma1, L. L.  Ma41, M. M. Ma1,52, Q. M. Ma1, R. Q. Ma1,52, R. T. Ma52, X. N. Ma37, X. X. Ma1,52, X. Y. Ma1,48, Y. M. Ma41, F. E. Maas15, M. Maggiora63A,63C, S. Maldaner28, S. Malde58, Q. A. Malik62, A. Mangoni23B, Y. J. Mao38,k, Z. P. Mao1, S. Marcello63A,63C, Z. X. Meng54, J. G. Messchendorp31, G. Mezzadri24A, T. J. Min36, R. E. Mitchell22, X. H. Mo1,48,52, Y. J. Mo6, N. Yu. Muchnoi10,c, H. Muramatsu56, S. Nakhoul11,f, Y. Nefedov29, F. Nerling11,f, I. B. Nikolaev10,c, Z. Ning1,48, S. Nisar8,i, S. L. Olsen52, Q. Ouyang1,48,52, S. Pacetti23B,23C, X. Pan46, Y. Pan55, A. Pathak1, P. Patteri23A, M. Pelizaeus4, H. P. Peng60,48, K. Peters11,f, J. Pettersson64, J. L. Ping35, R. G. Ping1,52, A. Pitka4, R. Poling56, V. Prasad60,48, H. Qi60,48, H. R. Qi50, M. Qi36, T. Y. Qi2, S. Qian1,48, W.-B. Qian52, Z. Qian49, C. F. Qiao52, L. Q. Qin12, X. S. Qin4, Z. H. Qin1,48, J. F. Qiu1, S. Q. Qu37, K. H. Rashid62, K. Ravindran21, C. F. Redmer28, A. Rivetti63C, V. Rodin31, M. Rolo63C, G. Rong1,52, Ch. Rosner15, M. Rump57, A. Sarantsev29,d, Y. Schelhaas28, C. Schnier4, K. Schoenning64, D. C. Shan46, W. Shan19, X. Y. Shan60,48, M. Shao60,48, C. P. Shen2, P. X. Shen37, X. Y. Shen1,52, H. C. Shi60,48, R. S. Shi1,52, X. Shi1,48, X. D Shi60,48, J. J. Song41, Q. Q. Song60,48, W. M. Song27, Y. X. Song38,k, S. Sosio63A,63C, S. Spataro63A,63C, F. F.  Sui41, G. X. Sun1, J. F. Sun16, L. Sun65, S. S. Sun1,52, T. Sun1,52, W. Y. Sun35, X Sun20,l, Y. J. Sun60,48, Y. K. Sun60,48, Y. Z. Sun1, Z. T. Sun1, Y. H. Tan65, Y. X. Tan60,48, C. J. Tang45, G. Y. Tang1, J. Tang49, V. Thoren64, B. Tsednee26, I. Uman51D, B. Wang1, B. L. Wang52, C. W. Wang36, D. Y. Wang38,k, H. P. Wang1,52, K. Wang1,48, L. L. Wang1, M. Wang41, M. Z. Wang38,k, Meng Wang1,52, W. H. Wang65, W. P. Wang60,48, X. Wang38,k, X. F. Wang32, X. L. Wang9,h, Y. Wang49, Y. Wang60,48, Y. D. Wang15, Y. F. Wang1,48,52, Y. Q. Wang1, Z. Wang1,48, Z. Y. Wang1, Ziyi Wang52, Zongyuan Wang1,52, D. H. Wei12, P. Weidenkaff28, F. Weidner57, S. P. Wen1, D. J. White55, U. Wiedner4, G. Wilkinson58, M. Wolke64, L. Wollenberg4, J. F. Wu1,52, L. H. Wu1, L. J. Wu1,52, X. Wu9,h, Z. Wu1,48, L. Xia60,48, H. Xiao9,h, S. Y. Xiao1, Y. J. Xiao1,52, Z. J. Xiao35, X. H. Xie38,k, Y. G. Xie1,48, Y. H. Xie6, T. Y. Xing1,52, X. A. Xiong1,52, G. F. Xu1, J. J. Xu36, Q. J. Xu14, W. Xu1,52, X. P. Xu46, L. Yan9,h, L. Yan63A,63C, W. B. Yan60,48, W. C. Yan68, Xu Yan46, H. J. Yang42,g, H. X. Yang1, L. Yang65, R. X. Yang60,48, S. L. Yang1,52, Y. H. Yang36, Y. X. Yang12, Yifan Yang1,52, Zhi Yang25, M. Ye1,48, M. H. Ye7, J. H. Yin1, Z. Y. You49, B. X. Yu1,48,52, C. X. Yu37, G. Yu1,52, J. S. Yu20,l, T. Yu61, C. Z. Yuan1,52, W. Yuan63A,63C, X. Q. Yuan38,k, Y. Yuan1, Z. Y. Yuan49, C. X. Yue33, A. Yuncu51B,a, A. A. Zafar62, Y. Zeng20,l, B. X. Zhang1, Guangyi Zhang16, H. H. Zhang49, H. Y. Zhang1,48, J. L. Zhang66, J. Q. Zhang4, J. W. Zhang1,48,52, J. Y. Zhang1, J. Z. Zhang1,52, Jianyu Zhang1,52, Jiawei Zhang1,52, L. Zhang1, Lei Zhang36, S. Zhang49, S. F. Zhang36, T. J. Zhang42,g, X. Y. Zhang41, Y. Zhang58, Y. H. Zhang1,48, Y. T. Zhang60,48, Yan Zhang60,48, Yao Zhang1, Yi Zhang9,h, Z. H. Zhang6, Z. Y. Zhang65, G. Zhao1, J. Zhao33, J. Y. Zhao1,52, J. Z. Zhao1,48, Lei Zhao60,48, Ling Zhao1, M. G. Zhao37, Q. Zhao1, S. J. Zhao68, Y. B. Zhao1,48, Y. X. Zhao25, Z. G. Zhao60,48, A. Zhemchugov29,b, B. Zheng61, J. P. Zheng1,48, Y. Zheng38,k, Y. H. Zheng52, B. Zhong35, C. Zhong61, L. P. Zhou1,52, Q. Zhou1,52, X. Zhou65, X. K. Zhou52, X. R. Zhou60,48, A. N. Zhu1,52, J. Zhu37, K. Zhu1, K. J. Zhu1,48,52, S. H. Zhu59, W. J. Zhu37, X. L. Zhu50, Y. C. Zhu60,48, Z. A. Zhu1,52, B. S. Zou1, J. H. Zou1
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
24 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
32 Lanzhou University, Lanzhou 730000, People’s Republic of China
33 Liaoning Normal University, Dalian 116029, People’s Republic of China
34 Liaoning University, Shenyang 110036, People’s Republic of China
35 Nanjing Normal University, Nanjing 210023, People’s Republic of China
36 Nanjing University, Nanjing 210093, People’s Republic of China
37 Nankai University, Tianjin 300071, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 Southeast University, Nanjing 211100, People’s Republic of China
48 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
49 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
50 Tsinghua University, Beijing 100084, People’s Republic of China
51 (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
52 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
53 University of Hawaii, Honolulu, Hawaii 96822, USA
54 University of Jinan, Jinan 250022, People’s Republic of China
55 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
56 University of Minnesota, Minneapolis, Minnesota 55455, USA
57 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
58 University of Oxford, Keble Rd, Oxford, UK OX13RH
59 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
60 University of Science and Technology of China, Hefei 230026, People’s Republic of China
61 University of South China, Hengyang 421001, People’s Republic of China
62 University of the Punjab, Lahore-54590, Pakistan
63 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
64 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
65 Wuhan University, Wuhan 430072, People’s Republic of China
66 Xinyang Normal University, Xinyang 464000, People’s Republic of China
67 Zhejiang University, Hangzhou 310027, People’s Republic of China
68 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at Bogazici University, 34342 Istanbul, Turkey
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Istanbul Arel University, 34295 Istanbul, Turkey
f Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
g Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
h Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
i Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
j Currently at: Institute of Physics and Technology, Peace Ave.54B, Ulaanbaatar 13330, Mongolia
k Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
l School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract

We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi in a data sample of (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2 GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}}. The upper limit corresponding to an invisible particle with zero mass is 7.0×107\times 10^{-7} at the 90% confidence level.

pacs:
13.25.Ft, 11.30.Er

I INTRODUCTION

Understanding the nature of dark matter and finding direct evidence for its existence are among the primary goals of contemporary astronomy and particle physics Bertone:2004pz ; ArkaniHamed:2008qn . Numerous experiments aim for the direct detection of dark matter, but no solid evidence has yet been found PDGweb ; Ambrosi:2017wek ; Cui:2017nnn ; Akerib:2016vxi ; Aprile:2017iyp . A series of Supersymmetric Standard Models Fayet:1977yc , including the Next-to-Minimal Supersymmetric Model (NMSSM) Ellwanger:2009dp ; Maniatis:2009re , predict a light CP-odd pseudoscalar Higgs boson A0A^{0} and a series of neutralinos. The light stable neutralino (χ0\chi^{0}), in particular, which is one possible explanation for the 511 keV γ\gamma ray feature observed by the INTEGRAL satellite Jean:2003ci , is one of the candidates for dark matter particles Shrock:1982kd ; Gunion:2005rw . The χ0\chi^{0} can couple with Standard Model particles via the A0A^{0} boson, and the A0A^{0} can be produced in the radiative decay of a quarkonium vector state, VV Fayet:1981rp ; Wilczek:1977zn ; Fayet:2007ua . The branching ratio of such a radiative decay is:

(VγA0)(Vμ+μ)=GFmq2gq2CQCD2πα(1mA02mV2),\frac{\mathcal{B}(V\to\gamma A^{0})}{\mathcal{B}(V\to\mu^{+}\mu^{-})}=\frac{G_{F}m_{q}^{2}g_{q}^{2}C_{QCD}}{\sqrt{2}\pi\alpha}\bigg{(}1-\frac{m_{A^{0}}^{2}}{m_{V}^{2}}\bigg{)}, (1)

where mA0m_{A^{0}}, mVm_{V} and mqm_{q} are the masses of the A0A^{0}, the quarkonium state, and the corresponding quark, respectively; α\alpha is the fine structure constant; GFG_{F} is the Fermi coupling constant; CQCDC_{QCD} is the combined QCD radiative and relativistic corrections Nason:1986tr , which depends on mA0m_{A^{0}}; and gqg_{q} is the Yukawa coupling of the A0A^{0} field to the quark-pair, and is gc=cosθA/tanβg_{c}=\rm{cos}\theta_{A}/\tan\beta for the charm quark and gb=cosθAtanβg_{b}=\rm{cos}\theta_{A}\tan\beta for the bottom quark, where tanβ\tan\beta is the usual ratio of vacuum expectation values and θA\theta_{A} is the Higgs mixing angle Gunion:2005rw .

The CLEO-c Insler:2010jw , BaBar Aubert:2008as ; delAmoSanchez:2010ac and Belle Seong:2018gut experiments have performed similar searches for J/ψJ/\psi or Υ\Upsilon radiative decays into invisible particles, and no signal was observed. The upper limits at the 90% confidence level (C.L.) for the branching fraction of the decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible}, (J/ψγ+invisible)\mathcal{B}(J/\psi\to\gamma+~{}\rm{invisible}), are in the range (2.56.3)×106(2.5\sim 6.3)\times 10^{-6}, depending on the mass of A0A^{0} Insler:2010jw , where (J/ψγ+invisible)\mathcal{B}(J/\psi\to\gamma+~{}\rm{invisible}) is the product of (J/ψγ+A0)\mathcal{B}(J/\psi\to\gamma+A^{0}) and (A0χ0χ¯0)\mathcal{B}(A^{0}\to\chi^{0}\bar{\chi}^{0}). It is worth noting that the decay process J/ψγνν¯J/\psi\to\gamma\nu\bar{\nu}, which is allowed in the Standard Model, is an irreducible background in this analysis, but the predicted branching fraction is only 0.7×10100.7\times 10^{-10}, which is far below our experimental sensitivity Gao:2014yga . Thus, this background is neglected.

In this paper, we search for the J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} decay using J/ψJ/\psi produced through the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi in a data sample of (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} ψ(3686)\psi(3686) decays collected with the BESIII detector.

II BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer Ablikim:2009aa located at the Beijing Electron Positron Collider (BEPCII) bepcii . The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over 4π4\pi solid angle. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dE/dxdE/dx resolution is 6%6\% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end cap part is 110 ps.

The performance of the BESIII detector is evaluated using a geant4-based geant4 Monte Carlo (MC) program that includes the description of the detector geometry and response. To check for potential backgrounds, an inclusive MC sample of ψ(3686)\psi(3686) decays is used. The sample includes approximately the same number of ψ(3686)\psi(3686) decays as in data. The production of the ψ(3686)\psi(3686) resonance is simulated by the MC event generator kkmc kkmc , taking into account the beam energy spread; the known decay modes are generated using evtgen evtgen with the branching fractions as given by the particle data group (PDG) PDGweb ; the unknown decay modes are modeled with the lundcharm model lundcharm . Signal MC samples, corresponding to ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with the subsequent decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible}, are used to evaluate the detection efficiencies and model the line shapes of variables of interest. The samples are generated under different assumptions for mA0m_{A^{0}}. In these signal MC samples, the decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} is modeled with an angular distribution of 1+cos2θγ1+\cos^{2}\theta_{\gamma} (θγ\theta_{\gamma} is the angle of the radiative photon relative to the positron beam direction in the J/ψJ/\psi rest frame). Throughout the text, the decay ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi is modeled according to the formulas and measurement in Ref. Bai:1999mj . In this analysis, detailed MC studies indicate that the dominant backgrounds are from ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with subsequent decays J/ψγπ0J/\psi\to\gamma\pi^{0}, γη\gamma\eta and γKLKL\gamma K_{L}K_{L}. These backgrounds are each generated exclusively with more than 100 times the statistics in data, where the decays of J/ψγπ0J/\psi\to\gamma\pi^{0} and γη\gamma\eta are generated with the angular distribution of 1+cos2θγ1+\cos^{2}\theta_{\gamma}, and J/ψγKLKLJ/\psi\to\gamma K_{L}K_{L} is modeled with the partial wave analysis (PWA) results of J/ψγKSKSJ/\psi\to\gamma K_{S}K_{S} gammaksks by assuming isospin symmetry. Many potential backgrounds of the form ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with J/ψJ/\psi decaying into purely neutral particles in the final states, or with large branching fractions, are generated exclusively with different generators, i.e.i.e. J/ψγηJ/\psi\to\gamma\eta^{\prime}, γη(1405)\gamma\eta(1405) and γηc\gamma\eta_{c} with the angular distribution of 1+cos2θγ1+\cos^{2}\theta_{\gamma}; J/ψγπ0π0J/\psi\to\gamma\pi^{0}\pi^{0} and γπ+π\gamma\pi^{+}\pi^{-} according to PWA results of J/ψγπ0π0J/\psi\to\gamma\pi^{0}\pi^{0} gampi0pi0 with isospin symmetry assumption; J/ψγK+KJ/\psi\to\gamma K^{+}K^{-} and γKSKS\gamma K_{S}K_{S} (with KSπ0π0K_{S}\to\pi^{0}\pi^{0}) according to PWA results of J/ψγKSKSJ/\psi\to\gamma K_{S}K_{S} gammaksks , as well as J/ψγπ0ηJ/\psi\to\gamma\pi^{0}\eta, γγγ\gamma\gamma\gamma, KSKLK_{S}K_{L}, π0nn¯\pi^{0}n\bar{n} and ηnn¯\eta n\bar{n} with phase space distribution. The above MC samples with much larger statistics than in data are helpful to check potential backgrounds.

III DATA ANALYSIS

III.1 ANALYSIS METHOD

In this analysis, the J/ψJ/\psi sample originates from the decay ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi. The analysis strategy is to first tag J/ψJ/\psi events by selecting two oppositely charged pions, and then to search for the decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} within the tagged J/ψJ/\psi sample. The branching fraction of the decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} is calculated using:

=NsigϵJ/ψNJ/ψϵsig,{\cal B}=\frac{N_{sig}\cdot\epsilon_{J/\psi}}{N_{J/\psi}\cdot\epsilon_{sig}}, (2)

where NsigN_{sig} and NJ/ψN_{J/\psi} are the yields of the signal candidates of J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} and ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi, respectively, and ϵsig\epsilon_{sig} and ϵJ/ψ\epsilon_{J/\psi} are the corresponding detection efficiencies, evaluated with the corresponding MC samples. A semi-blind analysis is performed to avoid possible bias, where only one quarter of the full data sample is used to optimize the event selection criteria and to decide upon the upper limit calculation approach. The final results are obtained with the full data sample by repeating the analysis only after all the analysis methods are frozen. In this paper, only the results based on the full data sample are presented.

III.2 J/ψJ/\psi TAG PROCEDURE

J/ψJ/\psi events are tagged using the two oppositely charged pions produced in the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi. For each charged pion candidate, the point of closest approach to the e+ee^{+}e^{-} interaction point must be within ±\pm10 cm in the beam direction and 1 cm in the plane perpendicular to the beam, and the polar angle θ\theta with respect to the axis of the drift chamber must satisfy the condition |cosθ|<0.93|\textrm{cos}\theta|<0.93. The charged pions are identified by combining the information of the flight time measured from TOF and the dE/dxdE/dx measured in MDC. The corresponding likelihood for the pion hypothesis is required to be larger than that of the kaon hypothesis and 0.001. To suppress pions not from the decay ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi, the momentum of a pion is required to be less than 0.45 GeV/c. Additionally, to further suppress the background from γ\gamma conversion occurring in the inner detector, the angle between the two selected pions (θ1\theta_{1}) is required to satisfy cosθ1<{\cos}\theta_{1}<0.95. To veto γγ\gamma\gamma fusion events, the polar angle (θ2\theta_{2}) of the total momentum vector of the pion pair should fullfill |cosθ2|<|{\cos}\theta_{2}|<0.95.

To identify ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi candidate events, the recoiling mass of the π+π\pi^{+}\pi^{-} system, Mπ+πrec=(ECMSEπ+π)2pπ+π2M^{rec}_{\pi^{+}\pi^{-}}=\sqrt{(E_{\rm CMS}-E_{\pi^{+}\pi^{-}})^{2}-\vec{p}_{\pi^{+}\pi^{-}}^{2}}, is used, where ECMSE_{\rm CMS} is the center-of-mass energy of the initial e+ee^{+}e^{-} system, and Eπ+πE_{\pi^{+}\pi^{-}} and pπ+π\vec{p}_{\pi^{+}\pi^{-}} are the sum of the energies and momenta of the pions in the rest frame of the initial e+ee^{+}e^{-} system, respectively. The distribution of Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} in the range [3.06, 3.14] GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}} is shown in Fig. 1, where multiple entries per event are allowed. A clear J/ψJ/\psi peak with low level of background events is observed. To extract the signal yield, a binned maximum likelihood fit to the Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} distribution is performed. To better model the J/ψJ/\psi signal shape, a control sample of ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with the subsequent decay J/ψe+eJ/\psi\to e^{+}e^{-}, which has almost no background, is selected. In the fit, the signal shape is modeled using the Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} distribution of the control sample convoluted with a Gaussian function, which represents the resolution difference between J/ψe+eJ/\psi\to e^{+}e^{-} and the J/ψJ/\psi inclusive decay. The background is described by a 2nd{}^{\textrm{nd}} order Chebychev polynomial function. The fit results are shown in Fig. 1, and the resolution difference of the Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} distribution between J/ψe+eJ/\psi\to e^{+}e^{-} and the inclusive decay is found to be small, i.e.i.e., the width of the Gaussian function is close to zero. Candidate events in the J/ψJ/\psi signal region [3.082, 3.112] GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}}, which is roughly three times the Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} resolution, are used for further analysis. The number of tagged J/ψJ/\psi events in the signal region is (8848±1)×104(8848\pm 1)\times 10^{4}, obtained by integrating the fitted signal curve in the J/ψJ/\psi signal region. By performing same procedure on the inclusive MC sample, the efficiency for tagging J/ψJ/\psi is determined as (56.80±\pm0.01)%.

\begin{overpic}[width=173.44534pt]{Mpipi.eps}\end{overpic}
Figure 1: Fit to the Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} distribution. The blue solid line is the sum of signal (red dashed line) and background (pink dashed line). The shaded region, (3.0625,3.0775) and (3.1165,3.1315)GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}}, is determined as sideband region for non-J/ψJ/\psi background study.

III.3 SIGNAL SEARCH PROCEDURE

We search for the decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} in the remaining J/ψJ/\psi candidate events by requiring no additional charged track is present and there is exactly one photon candidate. Photon candidates are reconstructed from EMC and must satisfy the following requirements. The minimum energy is  25 MeV for barrel showers (|cosθ|<|\cos\theta|<0.80) or 50 MeV for end-cap showers (0.86<|cosθ|<<|\cos\theta|<0.92). To eliminate showers associated with charged particles, the photon candidates must be separated by at least 20 degrees from any charged tracks in EMC. To suppress electronic noise or the showers unrelated to the events, the time of the cluster measured from EMC is required to be within 0 and 700 ns after the event start time. To further suppress background with multiple photons in the final state, the total energy of the remaining showers in the EMC, not satisfying the requirements on photon candidates, is required to be less than 0.1 GeV. In order to improve the resolution, to further suppress background, and to make sure the invisible particle is within the detector volume, the directions of the signal photon and the missing particle (calculated as the recoiling momentum against the system of π+π\pi^{+}\pi^{-} pair and signal photon) are required to be within the EMC barrel region.

After the above selection criteria, detailed MC studies indicate that the dominant backgrounds are from ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with J/ψJ/\psi decays into final states including neutral hadrons, e.g.e.g., nn¯n\bar{n}, γKLKL\gamma K_{L}K_{L}, π0nn¯\pi^{0}n\bar{n}. To further suppress these backgrounds, a series of requirements on the shower shape variables, i.e.i.e., the second moment should be larger than 5 cm2 and less than 25 cm2, the lateral moment should be larger than 0.1 and less than 0.4, the ratio of energy in 3×33\times 3 and 5×55\times 5 crystals should be larger than 0.95 due to the narrow shower shape for γ\gamma, as well as the number of crystals (NcrystalsN_{crystals}) and energy (EshowerE_{shower}) of the shower should satisfy 4<Ncrystals10×Eshower<N_{crystals}-10\times E_{shower} (GeV)<<20 due to the strong relation between these two variables for γ\gamma, are implemented, where these selection criteria are optimized with the control samples of γ\gamma, n¯/n\bar{n}/n and KLK_{L} selected from the decay processes J/ψπ+ππ0(π0γγ)J/\psi\to\pi^{+}\pi^{-}\pi^{0}~{}(\pi^{0}\to\gamma\gamma), J/ψpπn¯+c.c.J/\psi\to p\pi^{-}\bar{n}+c.c. and J/ψKπKLJ/\psi\to K\pi K_{L}, J/ψπ+πϕ(ϕKSKL)J/\psi\to\pi^{+}\pi^{-}\phi~{}(\phi\to K_{S}K_{L}), respectively.

The variable EγE_{\gamma}^{*}, which is defined as the energy of the selected photon in the J/ψJ/\psi rest frame, is used to identify the signal. For the signal process J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} with a given mass and zero width for the invisible particle, the EγE_{\gamma}^{*} is expected to be convoluted with the corresponding detector resolution function. The distribution of EγE_{\gamma}^{*} above 1.25 GeV for the selected events is shown in Fig. 2. The dominant backgrounds are from ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with subsequent decays J/ψγKLKLJ/\psi\to\gamma K_{L}K_{L}, γη\gamma\eta and γπ0\gamma\pi^{0}, where the latter two produce the peak in the EγE_{\gamma}^{*} distribution. The above three backgrounds, depicted in Fig. 2, are estimated with the corresponding exclusive MC samples and normalized according to the PDG branching fractions PDGweb . The contribution from the non-J/ψJ/\psi process is found to be small and is estimated by the normalized data sample in the J/ψJ/\psi sideband region (on the Mπ+πrecM^{rec}_{\pi^{+}\pi^{-}} distribution), also shown in Fig. 2.

\begin{overpic}[width=173.44534pt]{ESig.eps}\end{overpic}
Figure 2: The EγE_{\gamma}^{*} distribution. Data is shown with black dots. The total background from ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi, estimated from MC simulation, is shown with the black solid line and includes contributions from the subsequent decays J/ψγπ0J/\psi\to\gamma\pi^{0} (long dashed yellow line), γη\gamma\eta (short dashed green line), and γKLKL\gamma K_{L}K_{L} (dotted pink line). Non-J/ψJ/\psi backgrounds are estimated using J/ψJ/\psi sideband events (hatched histogram). The red and blue solid lines show the signal shape with 0 and 1 GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}} mass assumptions, respectively.

To better model the peaking backgrounds from J/ψγηJ/\psi\to\gamma\eta and J/ψγπ0J/\psi\to\gamma\pi^{0} in the follow up procedure, a binned maximum likelihood fit is performed on the two corresponding exclusive MC samples, individually. In the fit, the peaking component, where the detected photon is from the J/ψJ/\psi radiative decay, is described by a Crystal Ball function CB , while the others, which distribute relatively uniformly and correspond to the case that the detected photon is not from the J/ψJ/\psi radiative decay, is described by a second order Chebychev polynomial function. The Crystal Ball functions obtained are used to represent the peaking background from J/ψγη/π0J/\psi\to\gamma\eta/\pi^{0} in the following analysis. The number of events are normalized according to the PDG PDGweb and the yield of tagged J/ψJ/\psi in data.

Unbinned likelihood fits are performed on the EγE_{\gamma}^{*} range from 1.25 to 1.65 GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}}, corresponding to a mass from 0 up to 1.2 GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}} for the invisible particle. In the fit, the signal shape is taken from the signal MC simulation convoluted with a Gaussian function representing the resolution difference between data and MC, where the parameters of the Gaussian function are obtained by studying a clean control sample of ψ(3686)π+πJ/ψ,J/ψγη(ηγγ)\psi(3686)\to\pi^{+}\pi^{-}J/\psi,J/\psi\to\gamma\eta~{}(\eta\to\gamma\gamma). The background shape is described by the sum of an exponential function and two crystal ball functions with fixed amplitudes and shapes presenting for the background of ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi with subsequent decay J/ψγηJ/\psi\to\gamma\eta and γπ0\gamma\pi^{0}, respectively, where amplitudes and shapes are estimated by the MC simulation, and the same correction on shape as the signal description is implemented.  (For heavier invisible particle assumption, the signal shape is broken.) As no strong peaks are observed in all fits, the upper limits are calculated by using the modified frequentist method known as CLsCL_{s} Read:2002hq ; Read:2000ru combined with the asymptotic approximation Cowan:2010js . In this approach, the test statistic is the profile likelihood ratio, where the likelihood is given with the Possion function:

=i=1NbinsP(Ni|ϵsigsiNJ/ψ/ϵJ/ψ+jNbkgbijexp)\footnotesize\mathcal{L}=\prod_{i=1}^{N_{bins}}P(N_{i}|\mathcal{B}\epsilon_{sig}s_{i}N_{J/\psi}/\epsilon_{J/\psi}+\sum_{j}^{N_{bkg}}b_{ij}^{exp}) (3)

where sis_{i} represents the signal probability in the ii-th bin, \mathcal{B} is the branching fraction (J/ψγ+invisible)\mathcal{B}(J/\psi\to\gamma+~{}\rm{invisible}), bijexpb_{ij}^{exp} is the expected background number in the ii-th bin for the jj-th source. Here background is modeled with the exponential function and the two fixed crystal functions from zero-signal assumption fit result. Additionally, systematic uncertainties are included assuming Gaussian distributions for nuisance parameters. The upper limit is determined by integrating the test statistic in the range of positive assumed branching fractions.

III.4 SYSTEMATIC UNCERTAINTIES

Three categories of systematic uncertainties, which are associated with the number of tagged J/ψJ/\psi events (NJ/ψN_{J/\psi}), the signal efficiency and the estimated numbers of backgrounds, are considered individually.

The systematic uncertainty related to NJ/ψN_{J/\psi} comes from the binned fit procedure and includes the fit range, bin size, and the shapes of the signal and background. The uncertainties from the fit range and bin size are estimated to be 0.6% by varying the fit range by ±\pmMeV{\mathrm{\ Me\kern-1.00006ptV}} and 0.3% by changing the bin size from 0.4 to 0.2 MeV{\mathrm{\ Me\kern-1.00006ptV}}, respectively. The uncertainties from the signal and background shapes are determined as 0.1%, individually, estimated by the alternative fits without convoluting the Gaussian function on the signal shape or using a 3-rd order Chebychev function for background. The total uncertainty related to NJ/ψN_{J/\psi} is 0.7%, obtained by adding the above components in quadrature.

To estimate the uncertainty related to the signal efficiency, two control samples, e+eγe+ee^{+}e^{-}\to\gamma e^{+}e^{-} and J/ψπ+ππ0(π0γγ)J/\psi\to\pi^{+}\pi^{-}\pi^{0}~{}(\pi^{0}\to\gamma\gamma), are selected. The former is used to estimate the uncertainty associated with the event topology requirement, i.e., no extra photons or charged tracks, as well as the remaining energy requirement. And the latter is used to estimate the uncertainty associated with the shower shape requirements. The resulting differences on the efficiency between the data and MC simulation are assigned to be the systematic uncertainty, individually. The numerical results are 0.6% and 0.9% for the “no extra photons or charged tracks” requirement and the shower shape requirements, respectively. The uncertainty due to the energy cut on the remaining showers in the EMC is less than 0.1% and negligible. For the photon reconstruction efficiency, the uncertainty is 1% Ablikim:2010zn . By adding all the above uncertainties in quadrature, the systematic uncertainty from the signal efficiency is 1.5%.

The uncertainties due to the estimated numbers of two peaking backgrounds come from the J/ψJ/\psi yield, the decay branching fractions, and the selection efficiency (or fake rate) for the process J/ψγη/π0J/\psi\to\gamma\eta/\pi^{0}. The uncertainty of J/ψJ/\psi yield is discussed above, 0.7%. The uncertainties of decay branching fractions are quoted from the PDG PDGweb , 3.0% for J/ψγηJ/\psi\to\gamma\eta and 4.8% for J/ψγπ0J/\psi\to\gamma\pi^{0}. The uncertainties associated with the selection efficiency include those of γ\gamma selection (including photon reconstruction and shower shape requirements) and the event topology requirement (including charged tracks number, photon number and extra showers’ energy requirements). The uncertainty associated with the γ\gamma selection is discussed above. The uncertainty associated with the event topology requirement is investigated by studying a control sample of ψ(3686)π+πJ/ψ,J/ψϕη\psi(3686)\to\pi^{+}\pi^{-}J/\psi,J/\psi\to\phi\eta. For the decay of J/ψγηJ/\psi\to\gamma\eta, the control sample is selected by tagging a π+π\pi^{+}\pi^{-} pair and a K+KK^{+}K^{-} pair as well as the J/ψJ/\psi and ϕ\phi mass window requirements on the π+π\pi^{+}\pi^{-} recoiling system and K+KK^{+}K^{-} system, respectively. The corresponding efficiency is computed for both data and MC samples by fitting to the η\eta signal on the recoiling mass of π+πK+K\pi^{+}\pi^{-}K^{+}K^{-} system before and after implementing the event topology requirements. The resulting difference in the efficiencies is taken as the systematic uncertainty. For the decay J/ψγπ0J/\psi\to\gamma\pi^{0}, no extra charged tracks is required, since the π0\pi^{0} decays into the γγ\gamma\gamma final state dominantly. Then the same procedure is applied. Since the efficiency of the event topology requirement is extremely low, 0.2%/0.3%\sim 0.2\%/0.3\% for the peaking backgrounds of J/ψγη/π0J/\psi\to\gamma\eta/\pi^{0}, the resulting uncertainties, 16% for both J/ψγη/π0J/\psi\to\gamma\eta/\pi^{0}, are dominated by the statistical uncertainty of the data control sample, and are conservatively taken as the systematic uncertainties in this analysis. By adding all uncertainties in quadrature, the systematic uncertainties for the number of peaking backgrounds are 17% for both ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi and J/ψγη/π0J/\psi\to\gamma\eta/\pi^{0}.

The uncertainties due to the continuum background, representing by the exponential function, are also included. Both the shape and magnitude are considered, and the corresponding uncertainties are evaluated by performing a fit on EγE_{\gamma}^{*} distribution with zero-signal assumption.

The all discussed systematic uncertainties are listed in the Tab. 1.

Table 1: Summary of systematic uncertainty
source uncertainty
tagged J/ψJ/\psi number
signal shape 0.1%
background shape 0.1%
fit bin size 0.3%
fit range 0.6%
signal efficiency
gamma reconstruction 1%
only one good shower 0.6%
extra showers’ energy cut less than 0.1%
shower shape cut 0.9%
fit procedure
number of ψ(3686)π+πJ/ψ,J/ψγη\psi(3686)\to\pi^{+}\pi^{-}J/\psi,J/\psi\to\gamma\eta 17%
number of ψ(3686)π+πJ/ψ,J/ψγπ0\psi(3686)\to\pi^{+}\pi^{-}J/\psi,J/\psi\to\gamma\pi^{0} 17%
number of continuum background 4.4%

III.5 UPPER LIMIT RESULT

Taking into account all systematic uncertainties and the signal detection efficiencies obtained from MC simulation with different minvisiblem_{\rm{invisible}} assumptions, the expected upper limits on the branching fraction of J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} at the 90% C.L. are calculated with the CLsCL_{s} approach and are shown in Fig. 3. The expected upper limits as well as their uncertainties are also obtained using toy MC sample, which is generated using the background model from no signal assumption fit with the same luminosity as data set. The result from data is consistent with the zero-signal assumption in the 2σ\sigma region with most mass assumptions. And for the zero mass assumption of the invisible particle the upper limit is 7.0×107\times 10^{-7}. The local signal significances with different mass assumptions are also shown in Fig. 3, where the local signal significance is calculated by 2ln(sig0)\sqrt{2\mathrm{ln}(\frac{\mathcal{L}_{sig}}{\mathcal{L}_{0}})} incorporating the maximum likelihood with floating signal yield sig\mathcal{L}_{sig} and with zero-signal yield 0\mathcal{L}_{0}.

\begin{overpic}[width=173.44534pt]{UL.eps}\end{overpic}
\begin{overpic}[width=173.44534pt]{Significance.eps}\end{overpic}
Figure 3: Upper limits at the 90% C.L. for the branching fractions (the upper plot) and the signal significance (the bottom plot) for the decay J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible}. In the upper plot, the black line is for data, the black dashed line represents the expected values and the green (yellow) band represents the 1σ\sigma(2σ\sigma) region.

IV SUMMARY and Discussion

In summary, we search for the J/ψJ/\psi radiative decay into a weakly interacting neutral particle in the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^{+}\pi^{-}J/\psi by using a ψ(3686)\psi(3686) sample of (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} events collected with the BESIII detector. No significant signal is observed, and the upper limits at the 90% C.L. on the decay branching fraction of J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} are obtained for different minvisiblem_{\rm{invisible}} assumptions up to 1.2 GeV/c2{\mathrm{\ Ge\kern-1.00006ptV}/c^{2}}. The observed upper limit for a zero mass of the invisible particle is improved by a factor 6.2 compared to the previous results Insler:2010jw .

To further investigate the physical parameters in NMSSM, and to better compare the physical results from the different quarkonium decays, according to Ref. Fayet:2007ua and Eq. (1), the upper limits of gc×tan2β×(A0invisible)g_{c}\times\tan^{2}\beta\times\sqrt{\mathcal{B}(A^{0}\to invisible)} based on the measured upper limits of the J/ψγ+invisibleJ/\psi\to\gamma+~{}\rm{invisible} decay branching fractions are extracted for tanβ=\tan\beta= 0.7, 0.8 and 0.9, individually, as presented in Fig. 4 (a). The extracted results are directly compared to gb×(A0invisible)g_{b}\times\sqrt{\mathcal{B}(A^{0}\to invisible)}(=gc×tan2β×(A0invisible)=g_{c}\times\tan^{2}\beta\times\sqrt{\mathcal{B}(A^{0}\to invisible)}), which is obtained based on the Belle results Seong:2018gut and also presented in Fig. 4 (a). We obtain better sensitivity in the range tanβ0.6\tan\beta\leq 0.6 compared to the Belle results. Combining the results from Belle Seong:2018gut , we also extract upper limits on cosθA(=gbgc)×(A0invisible)\cos\theta_{A}(=\sqrt{g_{b}g_{c}})\times\sqrt{\mathcal{B}(A^{0}\to invisible)}, as presented in Fig. 4 (b).

\begin{overpic}[width=173.44534pt]{tan.eps}\put(50.0,3.0){(a)}\end{overpic}
\begin{overpic}[width=173.44534pt]{cosT.eps}\put(50.0,3.0){(b)}\end{overpic}
Figure 4: Upper limits at the 90% C.L. for (a) gc×tan2β(gb)×(A0invisible)g_{c}\times\tan^{2}\beta(g_{b})\times\sqrt{\mathcal{B}(\rm{A}^{0}\rightarrow invisible)} and (b) gbgc×(A0invisible)\sqrt{g_{b}g_{c}}\times\sqrt{\mathcal{B}(A^{0}\rightarrow invisible)}.

V acknowledgments

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References

  • (1) G. Bertone, D. Hooper and J. Silk, Phys. Rept.  405, 279 (2005).
  • (2) N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner, Phys. Rev. D 79, 015014 (2009).
  • (3) M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  • (4) G. Ambrosi et al. [DAMPE Collaboration], Nature 552, 63 (2017).
  • (5) X. Cui et al. [PandaX-II Collaboration], Phys. Rev. Lett.  119, 181302 (2017).
  • (6) D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett.  118, 21303 (2017).
  • (7) E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett.  119, 181301 (2017).
  • (8) P. Fayet, Phys. Lett.  69B, 489 (1977).
  • (9) U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept.  496, 1 (2010).
  • (10) M. Maniatis, Int. J. Mod. Phys. A 25, 3505 (2010).
  • (11) P. Jean et al., Astron. Astrophys.  407, L55 (2003).
  • (12) R. E. Shrock and M. Suzuki, Phys. Lett.  110B, 250 (1982).
  • (13) J. F. Gunion, D. Hooper and B. McElrath, Phys. Rev. D 73, 015011 (2006).
  • (14) P. Fayet and M. Mezard, Phys. Lett. B 104, 226 (1981)
  • (15) F. Wilczek, Phys. Rev. Lett.  39, 1304 (1977).
  • (16) P. Fayet, Phys. Rev. D 75, 115017 (2007).
  • (17) P. Nason, Phys. Lett. B 175, 223 (1986).
  • (18) J. Insler et al. [CLEO Collaboration], Phys. Rev. D 81, 091101 (2010).
  • (19) B. Aubert et al. [BaBar Collaboration], in Proceedings, 34th International Conference on High Energy Physics (ICHEP 2008): Philadelphia, Pennsylvania, July 30-August 5, 2008 (2008) arXiv:0808.0017 [hep-ex].
  • (20) P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. Lett.  107, 021804 (2011).
  • (21) I. S. Seong et al. [Belle Collaboration], Phys. Rev. Lett.  122, 011801 (2019).
  • (22) D. N. Gao, Phys. Rev. D 90, 077501 (2014).
  • (23) M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum. Meth.  A 614, 345 (2010).
  • (24) C. H. Yu et al., Proceedings of IPAC2016, Busan, Korea, 2016, doi:10.18429/JACoW-IPAC2016-TUYA01.
  • (25) S. Agostinelli et al. [geant4 Collaboration], Nucl. Instrum. Meth.  A 506, 250 (2003).
  • (26) S. Jadach, B. F. L. Ward and Z. Wa̧s, Phys. Rev.  D 63, 113009 (2001); Comput. Phys. Commun. 130, 260 (2000).
  • (27) D. J. Lange, Nucl. Instrum. Meth.  A 462, 152 (2001);
    R. G. Ping, Chin. Phys. C 32, 599 (2008).
  • (28) J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev.  D 62, 034003 (2000).
  • (29) J. Z. Bai et al. [BES Collaboration], Phys. Rev. D 62, 032002 (2000).
  • (30) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 98, 072003 (2018).
  • (31) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 92, 052003 (2015); Erratum: [Phys. Rev. D 93, 039906 (2016)].
  • (32) M. J. Oreglia, “A study of the reactions ψγγψ\psi^{\prime}\to\gamma\gamma\psi. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236, see Appendix D.
  • (33) A. L. Read, J. Phys. G 28, 2693 (2002).
  • (34) A. L. Read, CERN-OPEN-2000-205.
  • (35) G. Cowan, K. Cranmer, E. Gross and O. Vitells, Eur. Phys. J. C 71, 1554 (2011); Erratum: [Eur. Phys. J. C 73, 2501 (2013)].
  • (36) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 81, 052005 (2010).