This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

also at] University of Petroleum and Energy Studies, Dehradun 248007 The Belle Collaboration


Search for tetraquark states 𝑿𝒄𝒄𝒔¯𝒔¯X_{cc\bar{s}\bar{s}} in 𝑫𝒔+𝑫𝒔+(𝑫𝒔+𝑫𝒔+)D_{s}^{+}D_{s}^{+}~{}(D_{s}^{*+}D_{s}^{*+}) final states at Belle

X. Y. Gao Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    Y. Li Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    C. P. Shen Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    I. Adachi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Aihara Department of Physics, University of Tokyo, Tokyo 113-0033    D. M. Asner Brookhaven National Laboratory, Upton, New York 11973    H. Atmacan University of Cincinnati, Cincinnati, Ohio 45221    T. Aushev National Research University Higher School of Economics, Moscow 101000    R. Ayad Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451    P. Behera Indian Institute of Technology Madras, Chennai 600036    K. Belous Institute for High Energy Physics, Protvino 142281    M. Bessner University of Hawaii, Honolulu, Hawaii 96822    V. Bhardwaj Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    B. Bhuyan Indian Institute of Technology Guwahati, Assam 781039    T. Bilka Faculty of Mathematics and Physics, Charles University, 121 16 Prague    A. Bobrov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    D. Bodrov National Research University Higher School of Economics, Moscow 101000 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    G. Bonvicini Wayne State University, Detroit, Michigan 48202    J. Borah Indian Institute of Technology Guwahati, Assam 781039    A. Bozek H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    M. Bračko Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    T. E. Browder University of Hawaii, Honolulu, Hawaii 96822    A. Budano INFN - Sezione di Roma Tre, I-00146 Roma    M. Campajola INFN - Sezione di Napoli, I-80126 Napoli Università di Napoli Federico II, I-80126 Napoli    D. Červenkov Faculty of Mathematics and Physics, Charles University, 121 16 Prague    M.-C. Chang Department of Physics, Fu Jen Catholic University, Taipei 24205    P. Chang Department of Physics, National Taiwan University, Taipei 10617    A. Chen National Central University, Chung-li 32054    B. G. Cheon Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Chilikin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    H. E. Cho Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Cho Korea Institute of Science and Technology Information, Daejeon 34141    S.-J. Cho Yonsei University, Seoul 03722    S.-K. Choi Chung-Ang University, Seoul 06974    Y. Choi Sungkyunkwan University, Suwon 16419    S. Choudhury Iowa State University, Ames, Iowa 50011    D. Cinabro Wayne State University, Detroit, Michigan 48202    S. Cunliffe Deutsches Elektronen–Synchrotron, 22607 Hamburg    S. Das Malaviya National Institute of Technology Jaipur, Jaipur 302017    G. De Pietro INFN - Sezione di Roma Tre, I-00146 Roma    R. Dhamija Indian Institute of Technology Hyderabad, Telangana 502285    F. Di Capua INFN - Sezione di Napoli, I-80126 Napoli Università di Napoli Federico II, I-80126 Napoli    J. Dingfelder University of Bonn, 53115 Bonn    Z. Doležal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. V. Dong Institute of Theoretical and Applied Research (ITAR), Duy Tan University, Hanoi 100000    D. Dossett School of Physics, University of Melbourne, Victoria 3010    D. Epifanov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Ferber Deutsches Elektronen–Synchrotron, 22607 Hamburg    A. Frey II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    B. G. Fulsom Pacific Northwest National Laboratory, Richland, Washington 99352    R. Garg Panjab University, Chandigarh 160014    V. Gaur Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    N. Gabyshev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Giri Indian Institute of Technology Hyderabad, Telangana 502285    P. Goldenzweig Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    T. Gu University of Pittsburgh, Pittsburgh, Pennsylvania 15260    Y. Guan University of Cincinnati, Cincinnati, Ohio 45221    K. Gudkova Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    C. Hadjivasiliou Pacific Northwest National Laboratory, Richland, Washington 99352    S. Halder Tata Institute of Fundamental Research, Mumbai 400005    O. Hartbrich University of Hawaii, Honolulu, Hawaii 96822    K. Hayasaka Niigata University, Niigata 950-2181    H. Hayashii Nara Women’s University, Nara 630-8506    M. T. Hedges University of Hawaii, Honolulu, Hawaii 96822    W.-S. Hou Department of Physics, National Taiwan University, Taipei 10617    C.-L. Hsu School of Physics, University of Sydney, New South Wales 2006    T. Iijima Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 Graduate School of Science, Nagoya University, Nagoya 464-8602    K. Inami Graduate School of Science, Nagoya University, Nagoya 464-8602    G. Inguglia Institute of High Energy Physics, Vienna 1050    A. Ishikawa High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    R. Itoh High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Iwasaki Osaka City University, Osaka 558-8585    Y. Iwasaki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    W. W. Jacobs Indiana University, Bloomington, Indiana 47408    E.-J. Jang Gyeongsang National University, Jinju 52828    S. Jia Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    Y. Jin Department of Physics, University of Tokyo, Tokyo 113-0033    K. K. Joo Chonnam National University, Gwangju 61186    J. Kahn Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    A. B. Kaliyar Tata Institute of Fundamental Research, Mumbai 400005    K. H. Kang Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    G. Karyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    T. Kawasaki Kitasato University, Sagamihara 252-0373    H. Kichimi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. Kiesling Max-Planck-Institut für Physik, 80805 München    C. H. Kim Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    D. Y. Kim Soongsil University, Seoul 06978    K.-H. Kim Yonsei University, Seoul 03722    Y.-K. Kim Yonsei University, Seoul 03722    P. Kodyš Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. Konno Kitasato University, Sagamihara 252-0373    A. Korobov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    S. Korpar Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    E. Kovalenko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    P. Križan Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    R. Kroeger University of Mississippi, University, Mississippi 38677    P. Krokovny Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Kuhr Ludwig Maximilians University, 80539 Munich    R. Kumar Punjab Agricultural University, Ludhiana 141004    K. Kumara Wayne State University, Detroit, Michigan 48202    A. Kuzmin Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    Y.-J. Kwon Yonsei University, Seoul 03722    Y.-T. Lai Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    T. Lam Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    J. S. Lange Justus-Liebig-Universität Gießen, 35392 Gießen    M. Laurenza INFN - Sezione di Roma Tre, I-00146 Roma Dipartimento di Matematica e Fisica, Università di Roma Tre, I-00146 Roma    S. C. Lee Kyungpook National University, Daegu 41566    C. H. Li Liaoning Normal University, Dalian 116029    J. Li Kyungpook National University, Daegu 41566    L. K. Li University of Cincinnati, Cincinnati, Ohio 45221    Y. B. Li Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    L. Li Gioi Max-Planck-Institut für Physik, 80805 München    J. Libby Indian Institute of Technology Madras, Chennai 600036    K. Lieret Ludwig Maximilians University, 80539 Munich    D. Liventsev Wayne State University, Detroit, Michigan 48202 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    A. Martini Deutsches Elektronen-Synchrotron, 22607 Hamburg    M. Masuda Earthquake Research Institute, University of Tokyo, Tokyo 113-0032 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047    T. Matsuda University of Miyazaki, Miyazaki 889-2192    D. Matvienko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    S. K. Maurya Indian Institute of Technology Guwahati, Assam 781039    F. Meier Duke University, Durham, North Carolina 27708    M. Merola INFN - Sezione di Napoli, I-80126 Napoli Università di Napoli Federico II, I-80126 Napoli    F. Metzner Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    K. Miyabayashi Nara Women’s University, Nara 630-8506    R. Mizuk P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 National Research University Higher School of Economics, Moscow 101000    G. B. Mohanty Tata Institute of Fundamental Research, Mumbai 400005    R. Mussa INFN - Sezione di Torino, I-10125 Torino    M. Nakao High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    Z. Natkaniec H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    A. Natochii University of Hawaii, Honolulu, Hawaii 96822    L. Nayak Indian Institute of Technology Hyderabad, Telangana 502285    M. Niiyama Kyoto Sangyo University, Kyoto 603-8555    N. K. Nisar Brookhaven National Laboratory, Upton, New York 11973    S. Nishida High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Ogawa Niigata University, Niigata 950-2181    S. Ogawa Toho University, Funabashi 274-8510    H. Ono Nippon Dental University, Niigata 951-8580 Niigata University, Niigata 950-2181    P. Oskin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    P. Pakhlov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409    G. Pakhlova National Research University Higher School of Economics, Moscow 101000 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    T. Pang University of Pittsburgh, Pittsburgh, Pennsylvania 15260    S. Pardi INFN - Sezione di Napoli, I-80126 Napoli    H. Park Kyungpook National University, Daegu 41566    S.-H. Park High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    S. Patra Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    S. Paul Department of Physics, Technische Universität München, 85748 Garching Max-Planck-Institut für Physik, 80805 München    T. K. Pedlar Luther College, Decorah, Iowa 52101    R. Pestotnik J. Stefan Institute, 1000 Ljubljana    L. E. Piilonen Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    T. Podobnik Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    V. Popov National Research University Higher School of Economics, Moscow 101000    E. Prencipe Forschungszentrum Jülich, 52425 Jülich    M. T. Prim University of Bonn, 53115 Bonn    M. Röhrken Deutsches Elektronen–Synchrotron, 22607 Hamburg    A. Rostomyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    N. Rout Indian Institute of Technology Madras, Chennai 600036    G. Russo Università di Napoli Federico II, I-80126 Napoli    D. Sahoo Iowa State University, Ames, Iowa 50011    S. Sandilya Indian Institute of Technology Hyderabad, Telangana 502285    A. Sangal University of Cincinnati, Cincinnati, Ohio 45221    L. Santelj Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    T. Sanuki Department of Physics, Tohoku University, Sendai 980-8578    V. Savinov University of Pittsburgh, Pittsburgh, Pennsylvania 15260    G. Schnell Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao IKERBASQUE, Basque Foundation for Science, 48013 Bilbao    Y. Seino Niigata University, Niigata 950-2181    K. Senyo Yamagata University, Yamagata 990-8560    M. E. Sevior School of Physics, University of Melbourne, Victoria 3010    M. Shapkin Institute for High Energy Physics, Protvino 142281    C. Sharma Malaviya National Institute of Technology Jaipur, Jaipur 302017    J.-G. Shiu Department of Physics, National Taiwan University, Taipei 10617    F. Simon Max-Planck-Institut für Physik, 80805 München    J. B. Singh [ Panjab University, Chandigarh 160014    A. Sokolov Institute for High Energy Physics, Protvino 142281    E. Solovieva P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    S. Stanič University of Nova Gorica, 5000 Nova Gorica    M. Starič J. Stefan Institute, 1000 Ljubljana    Z. S. Stottler Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    M. Sumihama Gifu University, Gifu 501-1193    T. Sumiyoshi Tokyo Metropolitan University, Tokyo 192-0397    M. Takizawa Showa Pharmaceutical University, Tokyo 194-8543 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198    U. Tamponi INFN - Sezione di Torino, I-10125 Torino    K. Tanida Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195    F. Tenchini Deutsches Elektronen–Synchrotron, 22607 Hamburg    M. Uchida Tokyo Institute of Technology, Tokyo 152-8550    K. Uno Niigata University, Niigata 950-2181    S. Uno High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    P. Urquijo School of Physics, University of Melbourne, Victoria 3010    Y. Usov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    R. Van Tonder University of Bonn, 53115 Bonn    G. Varner University of Hawaii, Honolulu, Hawaii 96822    A. Vinokurova Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    E. Waheed High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    E. Wang University of Pittsburgh, Pittsburgh, Pennsylvania 15260    M.-Z. Wang Department of Physics, National Taiwan University, Taipei 10617    X. L. Wang Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    M. Watanabe Niigata University, Niigata 950-2181    S. Watanuki Yonsei University, Seoul 03722    E. Won Korea University, Seoul 02841    X. Xu Soochow University, Suzhou 215006    B. D. Yabsley School of Physics, University of Sydney, New South Wales 2006    W. Yan Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    S. B. Yang Korea University, Seoul 02841    H. Ye Deutsches Elektronen–Synchrotron, 22607 Hamburg    J. H. Yin Korea University, Seoul 02841    C. Z. Yuan Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    Y. Zhai Iowa State University, Ames, Iowa 50011    Z. P. Zhang Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    V. Zhilich Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Zhukova P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Abstract

A search for double-heavy tetraquark state candidates Xccs¯s¯X_{cc\bar{s}\bar{s}} decaying to Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} is presented for the first time using the data samples of 102 million Υ(1S)\Upsilon(1S) and 158 million Υ(2S)\Upsilon(2S) events, and the data samples at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV corresponding to integrated luminosities of 89.5 fb-1, 711.0 fb-1, and 121.4 fb-1, respectively, accumulated with the Belle detector at the KEKB asymmetric energy electron-positron collider. The invariant-mass spectra of the Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} are studied to search for possible resonances. No significant signals are observed, and the 90% confidence level upper limits on the product branching fractions [(Υ(1S,2S)Xccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+(Ds+Ds+)){\cal B}(\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))] in Υ(1S,2S)\Upsilon(1S,2S) inclusive decays and the product values of Born cross section and branching fraction [σ(e+eXccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+(Ds+Ds+))\sigma(e^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))] in e+ee^{+}e^{-} collisions at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV under different assumptions of Xccs¯s¯X_{cc\bar{s}\bar{s}} masses and widths are obtained.

I Introduction

The hadron spectrum was successfully categorized based on the quark model as early as the 1960s quarkmodel . For a long time, all known hadrons could be classified as mesons or baryons with components of a quark-antiquark pair (qq¯q\bar{q}) or three quarks (qqqqqq), respectively. However, Quantum Chromodynamics (QCD) also allows the existence of more complex structures, such as the tetraquark, pentaquark, or glueball, which possess properties that are forbidden for conventional hadrons. The states that do not fit into the ordinary qq¯q\bar{q} or qqqqqq scheme in the quark model are referred to as exotic states.

The experimental discovery of exotic states began in 2003 with the observation of the X(3872)X(3872) 3872-1 . This new state did not fit any ordinary cc¯c\bar{c} quarkonia in the quark model. After that, the X(3872)X(3872) was observed in multiple decay modes and confirmed by various experiments 3872-2 ; 3872-3 ; 3872-4 . Many different theoretical interpretations of this state have been proposed, such as meson molecule, tetraquark, and conventional bound state 3872-theory-1 ; 3872-theory-2 ; 3872-theory-3 ; 3872-theory-4 ; 3872-theory-5 . During the past two decades, there has been considerable world-wide activity in exotic state research using various processes, such as e+ee^{+}e^{-} annihilation (e.g., at τ\tau-charm facilities and B-factories), hadron collisions (e.g., at the Tevatron and the LHC), or photo- and leptoproduction (e.g., at the SPS, HERA or at Jefferson Lab), and many exotic state candidates were observed xyz-yuan ; xyz-shen .

In searches for exotic states, a clear feature that helps distinguish exotic from ordinary hadrons would be a nonzero electric charge in a state which contains a heavy quark-antiquark pair of the same flavor. Such a state must contain at least one more quark-antiquark pair, and is thus not a conventional quark-antiquark meson. Furthermore, a state with a pair of two identical heavy flavor quarks (for example, cccc), has even more pronounced features as an exotic state. Very recently, the LHCb experiment announced observation of an open-double-charm state Tcc+T_{cc}^{+} in the D0D0π+D^{0}D^{0}\pi^{+} mass spectrum near threshold tcc-lhcb-1 ; tcc-lhcb-2 . It contains two charm quarks and two light quarks, thus it is a clear evidence for an exotic state. On the theoretical side, in addition to tetraquark models based on a heavy quark pair and two light quarks, the double-heavy tetraquark states are studied using QCD sum rules the_qcd , quark models the_qm1 ; the_qm2 , and lattice QCD computations the_lattqcd . Besides, a QCD-inspired chiral quark model gives a prediction on the tetraquark states denoted as Xccs¯s¯X_{cc\bar{s}\bar{s}} with +2+2 electric charge in spin-parity channels JP=0+J^{P}=0^{+} and 2+2^{+}, which are expected to be found in Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} final states the_qqss2 . The predicted masses and widths of those resonances are listed in Table 1. Among the three predicted resonances in Ds+Ds+D_{s}^{*+}D_{s}^{*+} final state, the narrowest one has the highest observable probability.

Table 1: Predicted masses and widths for the Xccs¯s¯X_{cc\bar{s}\bar{s}} resonances in Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} final states the_qqss2 .
Mode IJP~{}~{}IJ^{P}   Mass   Width
  (MeV/c2c^{2})   (MeV)
Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+} 00+ 4902 3.54
Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{*+}D_{s}^{*+} 02+ 4821 5.58
02+ 4846 10.68
02+ 4775 23.26

In this paper, we present a search for double-heavy tetraquark candidates using the Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} final states in Υ(1S,2S)\Upsilon(1S,2S) inclusive decays, and e+eDs+Ds+(Ds+Ds+)+anythinge^{+}e^{-}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})+anything processes at s\sqrt{s} = 10.52, 10.58, and 10.867 GeV. The Ds+D_{s}^{*+} candidates are reconstructed in decays to Ds+γD_{s}^{+}\gamma, while the Ds+D_{s}^{+} candidates are reconstructed in the Ds+ϕ(K+K)π+D_{s}^{+}\to\phi(\to K^{+}K^{-})\pi^{+} and K¯(892)0(Kπ+)K+\bar{K}^{*}(892)^{0}(\to K^{-}\pi^{+})K^{+} decays. Inclusion of charged-conjugate modes is implicitly assumed throughout this analysis.

II The data sample and the belle detector

The data samples used in this analysis include: a 5.74 fb-1 data sample collected at the Υ(1S)\Upsilon(1S) peak (102 million Υ(1S)\Upsilon(1S) events); a 24.7 fb-1 data sample collected at the Υ(2S)\Upsilon(2S) peak (158 million Υ(2S)\Upsilon(2S) events); an 89.5 fb-1 data sample collected at s\sqrt{s} = 10.52 GeV; a 711 fb-1 data sample collected at s\sqrt{s} = 10.58 GeV, and a 121.4 fb-1 data sample collected at s\sqrt{s} = 10.867 GeV, where ss is the center-of-mass energy squared. All the data were collected with the Belle detector, which is described in detail in Ref. detector , operating at the KEKB asymmetric-energy e+ee^{+}e^{-} collider collider . It is a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprising CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5T1.5~{}\hbox{T} magnetic field. An iron flux return comprising resistive plate chambers placed outside the coil was instrumented to detect KL0K^{0}_{L} mesons and to identify muons.

Monte Carlo (MC) signal events are generated with EvtGen evtgen and processed through a full simulation of the Belle detector based on GEANT3 geant . Initial-state radiation (ISR) is taken into account assuming that the cross sections follow a 1/s1/s dependence in e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything reactions. The processes Υ(1S,2S)Ds+Ds+(Ds+Ds+)+anything\Upsilon(1S,2S)\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})+anything and e+eDs+Ds+(Ds+Ds+)+anythinge^{+}e^{-}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV are taken into account, where the Ds+D_{s}^{*+} decays into Ds+γD_{s}^{+}\gamma using a PP-wave model, and the Ds+D_{s}^{+} decays to K+Kπ+K^{+}K^{-}\pi^{+} final states using a Dalitz plot decay model of Ref. cleo-dalitz . The mass of Xccs¯s¯X_{cc\bar{s}\bar{s}} is chosen in the interval from 4882 MeV/c2c^{2} to 4922 MeV/c2c^{2} (4801 MeV/c2c^{2} to 4841 MeV/c2c^{2}) in steps of 5 MeV/c2c^{2}, with a width varying from 0.54 MeV to 6.54 MeV (2.58 MeV to 8.58 MeV) in steps of 1 MeV for Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+} (Ds+Ds+D_{s}^{*+}D_{s}^{*+}). Inclusive MC samples of Υ(1S,2S)\Upsilon(1S,2S) decays, Υ(4S)B+B/B0B¯0\Upsilon(4S)\to B^{+}B^{-}/B^{0}\bar{B}^{0}, Υ(5S)Bs()B¯s()\Upsilon(5S)\to B_{s}^{(*)}\bar{B}_{s}^{(*)}, and e+eqq¯e^{+}e^{-}\to q\bar{q} (q=u,d,s,c)(q=u,d,s,c) at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV corresponding to four times the integrated luminosity of data are used to study possible peaking backgrounds.

III Common Event selection criteria

For reconstructed charged tracks, the impact parameters perpendicular to and along the beam direction with respect to the interaction point (IP) are required to be less than 0.2 cm and 1.5 cm, respectively, and the transverse momentum in the laboratory frame is required to be larger than 0.1 GeV/cc. For the particle identification (PID) of a well-reconstructed charged track, information from different detector subsystems, including specific ionization in the CDC, time measurement in the TOF, and the response of the ACC, is combined to form a likelihood i{\mathcal{L}}_{i} pidcode for particle species ii, where ii = π\pi or KK. Tracks with RK=K/(K+π)<0.4R_{K}=\mathcal{L}_{\textrm{K}}/(\mathcal{L}_{K}+\mathcal{L}_{\pi})<0.4 are identified as pions with an efficiency of 96%, while 5% of kaons are misidentified as pions; tracks with RK>0.6R_{K}>0.6 are identified as kaons with an efficiency of 95%, while 4% of pions are misidentified as kaons.

An ECL cluster is taken as a photon candidate if it does not match the extrapolation of any charged tracks. The energy of the photon candidate from the Ds+D_{s}^{*+} decay is required to be greater than 50 MeV. For Ds+D_{s}^{+} candidates, vertex and mass-constrained fits are performed, and then χvertex2/n.d.f<20\chi^{2}_{\textrm{vertex}}/n.d.f<20 is required (>97%>97\% selection efficiency according to MC simulation). For Ds+D_{s}^{*+} candidates, a mass-constrained fit is performed to improve its momentum resolution. The best Ds+D_{s}^{*+} candidate with χ2\chi^{2} of Ds+D_{s}^{*+} mass-constrained fit for each Ds+D_{s}^{+} candidate is kept to suppress the combinational background.

The signal mass windows for K¯(892)0\bar{K}^{*}(892)^{0}, ϕ\phi, Ds+D_{s}^{+}, and Ds+D_{s}^{*+} candidates have been optimized by maximizing the Punzi parameter S/(3/2+B)S/(3/2+\sqrt{B}) fom , where SS is the number of selected events in the simulated signal process by fitting the Xccs¯s¯X_{cc\bar{s}\bar{s}} invariant-mass spectrum. BB is the number of selected events obtained from the normalized MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} sidebands in inclusive MC samples. The optimized mass window requirements are |MK+Kmϕ|<8|M_{K^{+}K^{-}}-m_{\phi}|<8 MeV/c2c^{2}, |Mϕπ+mDs+|<7|M_{\phi\pi^{+}}-m_{D_{s}^{+}}|<7 MeV/c2c^{2}, |MKπ+mK¯(892)0|<50|M_{K^{-}\pi^{+}}-m_{\bar{K}^{*}(892)^{0}}|<50 MeV/c2c^{2}, |MK¯(892)0K+mDs+|<7|M_{\bar{K}^{*}(892)^{0}K^{+}}-m_{D_{s}^{+}}|<7 MeV/c2c^{2}, and |MγDs+mDs+|<14|M_{\gamma D_{s}^{+}}-m_{D_{s}^{*+}}|<14 MeV/c2c^{2}, where mϕm_{\phi}, mK¯(892)0m_{\bar{K}^{*}(892)^{0}}, mDs+m_{{D}_{s}^{+}}, and mDs+m_{{D}_{s}^{*+}} are the nominal masses of ϕ\phi, K¯(892)0\bar{K}^{*}(892)^{0}, Ds+{D}_{s}^{+}, and Ds+{D}_{s}^{*+} PDG . There are no multiple candidates after processing all selections in both Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} cases. Figure 1 shows the scatter plots of Ds+D_{s}^{+} versus Ds+D_{s}^{+} invariant masses from the selected e+eXccs¯s¯(Ds+Ds+(Ds+Ds+))+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))+anything candidates from data at s\sqrt{s} = 10.58 GeV as an example. Here we define the two-dimensional Ds+Ds+D_{s}^{+}D_{s}^{+} sidebands, and the normalized contribution from Ds+D_{s}^{+} and Ds+D_{s}^{+} sidebands is estimated using 25% of the number of events in the blue dashed line boxes and reduced by 6.25% of the number of events in the red dotted line boxes.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: The top (bottom) plots show the distribution of MDs+M_{D_{s}^{+}} vs MDs+M_{D_{s}^{+}} from the selected e+eXccs¯s¯Ds+Ds+(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}~{}(D_{s}^{*+}D_{s}^{*+})+anything candidates from data at s\sqrt{s} = 10.58 GeV, where the Ds+D_{s}^{+} is reconstructed from ϕπ+\phi\pi^{+} or K¯(892)0K+\bar{K}^{*}(892)^{0}K^{+}. The central solid boxes define the signal regions, and the red dash-dotted and blue dashed boxes show the MDs+M_{D_{s}^{+}} sideband regions described in the text.

IV Invariant-mass spectra

Refer to caption
Refer to caption

(a)(b)
Refer to captionRefer to captionRefer to caption(c)(d)(e)

Figure 2: Distributions of MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} from data for processes (a) Υ(1S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything, (b) Υ(2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything, and e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything at (c) s\sqrt{s} = 10.52 GeV, (d) s\sqrt{s} = 10.58 GeV, (e) s\sqrt{s} = 10.867 GeV. The cyan shaded histograms are from the normalized MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} sideband events.
Refer to caption
Refer to caption

(a)(b)
Refer to captionRefer to captionRefer to caption(c)(d)(e)

Figure 3: Distributions of MDs+Ds+M_{D_{s}^{*+}D_{s}^{*+}} from data for processes (a) Υ(1S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything, (b) Υ(2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything, and e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything at (c) s\sqrt{s} = 10.52 GeV, (d) s\sqrt{s} = 10.58 GeV, (e) s\sqrt{s} = 10.867 GeV. The cyan shaded histograms are from the normalized MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} sideband events.
Refer to caption
Refer to caption

(a)(b)
Refer to captionRefer to captionRefer to caption(c)(d)(e)

Figure 4: Distributions of MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} from data for processes (a) Υ(1S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything, (b) Υ(2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything, and e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything at (c) s\sqrt{s} = 10.52 GeV, (d) s\sqrt{s} = 10.58 GeV, (e) s\sqrt{s} = 10.867 GeV. The cyan shaded histograms are from the normalized MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} sideband events.
Refer to caption
Refer to caption

(a)(b)
Refer to captionRefer to captionRefer to caption(c)(d)(e)

Figure 5: Distributions of MDs+Ds+M_{D_{s}^{*+}D_{s}^{*+}} from data for processes (a) Υ(1S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything, (b) Υ(2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything, and e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything at (c) s\sqrt{s} = 10.52 GeV, (d) s\sqrt{s} = 10.58 GeV, (e) s\sqrt{s} = 10.867 GeV. The cyan shaded histograms are from the normalized MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} sideband events.

The Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} invariant mass distributions of selected events from data samples in the kinematically allowed region are shown in Figs. 2 and  3 together with the backgrounds estimated from the normalized Ds+Ds+D_{s}^{+}D_{s}^{+} sideband events. No peaking backgrounds are found in the normalized sideband events in either Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} invariant mass distributions from data, nor in the Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} mass spectra from inclusive MC samples topoo . Thus in the following we only focus on the mass spectra from the theoretically predicted regions for Xccs¯s¯X_{cc\bar{s}\bar{s}} the_qqss2 which are shown in Figs. 4 and  5.

Since no clear signals are observed in the invariant-mass spectra, the 90% confidence level (C.L.) upper limits on the numbers of signal events are given. The upper limit is calculated by the frequentist approach pole-1 implemented in the POLE (Poissonian limit estimator) program pole-2 , where the mass window is obtained by giving 95% acceptance to the corresponding simulated signal events, the number of signal candidate events is counted directly, and the number of expected background events is estimated from the normalized mass sidebands. The possible non-resonant contributions in the Ds+Ds+D_{s}^{+}D_{s}^{+} and Ds+Ds+D_{s}^{*+}D_{s}^{*+} invariant-mass spectra are not subtracted and taken as potential signals, in order to set more conservative upper limits.

The upper limit calculation is repeated with MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} varying from 4882 MeV/c2c^{2} to 4922 MeV/c2c^{2} in steps of 5 MeV/c2c^{2} and ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} varying from 0.54 MeV to 6.54 MeV in steps of 1.0 MeV for the MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} distribution, and with MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} varying from 4801 MeV/c2c^{2} to 4841 MeV/c2c^{2} in steps of 5 MeV/c2c^{2} and ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} varying from 2.58 MeV to 8.58 MeV in steps of 1.0 MeV for the MDs+Ds+M_{D_{s}^{*+}D_{s}^{*+}} distribution.

V Systematic Uncertainties

There are several sources of systematic uncertainties on the branching fraction and Born cross section measurements, which can be divided into multiplicative and additive systematic uncertainties. The multiplicative systematic uncertainties include detection-efficiency-related (DER) sources (tracking efficiency, PID, and photon reconstruction), the statistical uncertainty of the MC efficiency, branching fractions of intermediate states, the total numbers of Υ(1S)\Upsilon(1S) and Υ(2S)\Upsilon(2S) events, and the integrated luminosities at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV.

The systematic uncertainties related to detection efficiency (σDER\sigma_{\textrm{DER}}) include the tracking efficiency (0.35% per track, estimated using partially reconstructed DD^{\ast} decays in D+π+D0,D0KS0π+πD^{*+}\to\pi^{+}D^{0},D^{0}\to K_{S}^{0}\pi^{+}\pi^{-}), PID efficiency (2.2%2.2\% per kaon and 1.8%1.8\% per pion, estimated using D+D0π+D^{*+}\to D^{0}\pi^{+}, D0Kπ+D^{0}\to K^{-}\pi^{+} samples), and photon reconstruction (2.0% per photon, estimated using a radiative Bhabha sample). The statistical uncertainty in the signal MC simulation efficiency can be calculated as Δε\Delta\varepsilon = ε(1ε)/N\sqrt{\varepsilon(1-\varepsilon)/N}, where ε\varepsilon is the reconstruction efficiency after all event selections, and NN is the total number of generated events. Its relative uncertainty σMC stat.=Δε/ε\sigma_{\textrm{MC stat.}}=\Delta\varepsilon/\varepsilon is at most at the 1.0% level. Changing the ss dependence of the cross sections of e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything from 1/s1/s to 1/s41/s^{4}, the product of efficiency and radiative correction factor ϵ(1+δ)ISR\epsilon(1+\delta)_{\textrm{ISR}} changes by less than 0.3% (σISR\sigma_{\textrm{ISR}}).

The relative uncertainties of branching fractions for Ds+γDs+D_{s}^{*+}\to\gamma D_{s}^{+}, Ds+ϕ(K+K)π+D_{s}^{+}\to\phi(\to K^{+}K^{-})\pi^{+}, and Ds+K¯(892)0(Kπ+)K+D_{s}^{+}\to\bar{K}^{*}(892)^{0}(\to K^{-}\pi^{+})K^{+} are 0.75%, 3.52%, and 3.45% PDG , respectively. The total uncertainties are calculated using σ=Σ(εi×i×σi)2Σ(εi×i)\sigma_{{\cal B}}=\frac{\sqrt{\Sigma{(\varepsilon_{i}\times{\cal B}_{i}\times\sigma_{{\cal B}_{i}})^{2}}}}{\Sigma{(\varepsilon_{i}\times{\cal B}_{i}})}, where εi\varepsilon_{i} is the efficiency, σi\sigma_{{\cal B}_{i}} is the relative uncertainty of intermediate states’ branching fractions, and i{\cal B}_{i} is the product of branching fractions of the intermediate states for each reconstructed mode ii.

The total numbers of Υ(1S)\Upsilon(1S) and Υ(2S)\Upsilon(2S) events are estimated to be (102±2)×106102\pm 2)\times 10^{6} and (157.8±3.6)×106157.8\pm 3.6)\times 10^{6}, which are determined by counting the numbers of inclusive hadrons. The uncertainties are mainly due to imperfect simulations of the charged multiplicity distributions from inclusive hadronic MC events (σNΥ(1S,2S)\sigma_{\textrm{N}_{\Upsilon(1S,2S)}}). Belle measures luminosity with 1.4% precision using wide angle Bhabha events (σ\sigma_{{\cal L}}).

All the multiplicative uncertainties are summarized in Table 2 for the measurements of Υ(1S,2S)Xccs¯s¯+anything\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}+anything and e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV, respectively. The total multiplicative uncertainty is calculated by adding all sources of multiplicative uncertainty in quadrature,

σsyst.=σDER2+σMC stat.2+σISR2+σ2+σNΥ(1S,2S)/2.\sigma_{\textrm{syst.}}=\sqrt{\sigma_{\textrm{DER}}^{2}+\sigma_{\textrm{MC stat.}}^{2}+\sigma_{\textrm{ISR}}^{2}+\sigma_{{\cal B}}^{2}+\sigma_{\textrm{N}_{\Upsilon(1S,2S)/{\cal L}}}^{2}}.

The additive uncertainty due to the number of expected background is considered by counting normalized background distributions directly, fitting the distributions with a constant, and a 1st-order polynominal.

Table 2: Summary of the multiplicative systematic uncertainties (%) on the branching fraction measurements for Υ(1S,2S)Xccs¯s¯(Ds+Ds+(Ds+Ds+))+anything\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))+anything and on the Born cross section measurements for e+eXccs¯s¯(Ds+Ds+(Ds+Ds+))+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV.
MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} (MDs+Ds+M_{D_{s}^{*+}D_{s}^{*+}}) mode
DER MC stat.
ISR
{\cal B}
[NΥ(1S)/NΥ(2S)/\textrm{N}_{\Upsilon(1S)}/\textrm{N}_{\Upsilon(2S)}/{\cal L}]
Sum
Υ(1S)Xccs¯s¯+anything\Upsilon(1S)\to X_{cc\bar{s}\bar{s}}+anything 6.1 (7.3) 1.0 3.0 2.0 7.2 (8.2)
Υ(2S)Xccs¯s¯+anything\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}+anything 6.1 (7.3) 1.0 3.0 2.3 7.2 (8.3)
e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.52 GeV 6.1 (7.3) 1.0 0.3 3.0 1.4 7.0 (8.2)
e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.58 GeV 6.1 (7.3) 1.0 0.3 3.0 1.4 7.0 (8.2)
e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.867 GeV 6.1 (7.3) 1.0 0.3 3.0 1.4 7.0 (8.2)

VI Statistical interpretation of upper limit setting

Since no signal traces are observed in the Ds+Ds+D_{s}^{+}D_{s}^{+} or Ds+Ds+D_{s}^{*+}D_{s}^{*+} distributions from data at all energy points, the 90% C.L. upper limits on the numbers of signal events (NUPN^{\textrm{UP}}) are determined. To take into account the additive and multiplicative uncertainties, we first study the additive systematic uncertainty and take the most conservative case, then use the total multiplicative systematic uncertainty as an input parameter to the POLE program.

Since there are few events observed from data sample at s\sqrt{s} = 10.52 GeV, the continuum contributions are neglected for the Υ(1S,2S)\Upsilon(1S,2S) decays. The conservative upper limit on the product branching fractions in Υ(1S,2S)\Upsilon(1S,2S) decays UP(Υ(1S,2S)Xccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+(Ds+Ds+)){\cal B}^{\textrm{UP}}(\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})) are obtained by the following formula:

NUPNΥ(1S,2S)×iεii,\frac{N^{\textrm{UP}}}{N_{\Upsilon(1S,2S)}\times\sum_{i}\varepsilon_{i}{\cal B}_{i}},

where NUPN^{\textrm{UP}} is the 90% C.L. upper limit on the number of events from the data signal yields including all systematic uncertainties that are mentioned above from other variables in this expression, NΥ(1S,2S)N_{\Upsilon(1S,2S)} is the total number of Υ(1S,2S)\Upsilon(1S,2S) events, εi\varepsilon_{i} is the corresponding detection efficiency, and i{\cal B}_{i} is the product of all secondary branching fractions for each reconstructed channel.

The conservative upper limit on the product values of Born cross section and branching fraction σUP(e+eXccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+(Ds+Ds+))\sigma^{\textrm{UP}}(e^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})) are calculated by the following formula:

NUP×|1Π|2×iεii×(1+δ)ISR,\frac{N^{\textrm{UP}}\times|1-\Pi|^{2}}{{\cal L}\times\sum_{i}\varepsilon_{i}{\cal B}_{i}\times(1+\delta)_{\textrm{ISR}}},

where NUPN^{\textrm{UP}} is the 90% C.L. upper limit on the number of events in data signal yields including all systematic uncertainties that are mentioned above from other variables in this expression, |1Π|2|1-\Pi|^{2} is the vacuum polarization factor, {\cal L} is the integrated luminosity, εi\varepsilon_{i} is the corresponding detection efficiency, i{\cal B}_{\textrm{i}} is the product of all secondary branching fractions for each reconstructed channel, and (1+δ)ISR(1+\delta)_{\textrm{ISR}} is the radiative correction factor. The values of |1Π|2|1-\Pi|^{2} are 0.931, 0.930, and 0.929 for s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV vacuum , and the uncertainty is calculated to be less than 0.1%, which is negligible. The radiative correction factors (1+δ)ISR(1+\delta)_{\textrm{ISR}} are 0.686, 0.694, and 0.738, as calculated using the formula given in Ref. ISR for s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV, respectively, where we assume that the dependence of cross sections on ss is 1/s1/s.

The calculated 90% C.L. upper limits on the product branching fractions of Υ(1S,2S)Xccs¯s¯+anything\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}+anything and the product values of Born cross section and branching fraction of e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV for the mode Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+} (Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{*+}D_{s}^{*+}) are displayed in Fig. 6 (7). Numerical values for the mode Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+} can be found in Tables 3 and 4, while those for the mode Xccs¯s¯Ds+Ds+X_{cc\bar{s}\bar{s}}\to D_{s}^{*+}D_{s}^{*+} are shown in Tables 5 and 6.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: The 90% C.L. upper limits on the product branching fractions of Υ(1S,2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything and the Born cross sections of e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV with MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} varying from 4882 MeV/c2c^{2} to 4922 MeV/c2c^{2} in steps of 5 MeV/c2c^{2} and ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} varying from 0.54 MeV to 6.54 MeV in steps of 1.0 MeV.
Table 3: Summary of 90% C.L. upper limits with the systematic uncertainties included on the product branching fractions of Υ(1S)/Υ(2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S)/\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything.
(Υ(1S)/Υ(2S)Xccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+){\cal B}(\Upsilon(1S)/\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}) (×104\times 10^{-4})
MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} (MeV/c2c^{2}) ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} (MeV)
0.540.54 1.541.54 2.542.54 3.543.54 4.544.54 5.545.54 6.546.54
48824882 1.7/1.2 1.7/1.2 1.8/1.2 1.8/1.3 1.8/1.2 1.9/2.5 1.9/2.5
48874887 1.7/1.2 1.7/1.2 1.8/1.2 1.8/1.2 1.8/1.2 1.9/1.3 1.8/1.3
48924892 1.7/1.2 1.7/1.2 1.8/1.2 1.8/1.2 1.8/1.2 1.9/1.3 1.8/1.3
48974897 1.7/1.2 1.7/1.2 1.8/1.2 1.8/1.2 1.8/1.2 1.9/1.3 1.8/2.5
49024902 1.7/1.2 1.8/1.1 1.8/2.2 1.8/2.3 1.8/2.2 1.9/2.4 1.9/2.4
49074907 1.7/2.2 1.7/2.2 1.8/2.3 1.8/2.3 1.8/2.3 1.9/1.9 1.8/1.9
49124912 1.7/2.2 1.7/2.2 1.8/1.8 1.8/1.8 1.8/1.8 1.9/1.9 3.4/1.9
49174917 1.7/1.9 1.7/1.8 3.3/1.9 3.4/1.8 3.4/1.8 3.5/1.8 3.4/1.8
49224922 3.3/0.9 3.3/0.9 3.4/0.9 3.5/1.8 3.5/1.8 3.6/1.9 3.5/1.7
Table 4: Summary of 90% C.L. upper limits with the systematic uncertainties included on the cross sections of e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{+}D_{s}^{+})+anything at s\sqrt{s} = 10.52 GeV / 10.58 GeV / 10.867 GeV.
σ(e+eXccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+)\sigma(e^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}) (×102fb\times 10^{2}fb)
MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} (MeV/c2c^{2}) ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} (MeV)
0.540.54 1.541.54 2.542.54 3.543.54 4.544.54 5.545.54 6.546.54
48824882 4.8/2.5/6.0 5.0/2.6/6.6 5.1/3.2/6.7 4.1/3.2/10.3 4.1/4.1/10.9 3.9/4.8/10.4 5.7/5.1/10.6
48874887 1.9/3.4/4.0 2.0/3.5/5.4 4.2/3.6/5.5 4.1/3.8/5.6 6.2/4.3/5.9 8.0/4.6/6.8 8.0/4.5/7.6
48924892 6.4/3.1/4.0 6.5/3.4/4.2 6.7/3.4/5.1 7.0/3.9/5.0 6.1/4.0/5.1 6.2/4.3/6.1 6.1/5.1/5.9
48974897 5.9/1.9/2.7 6.1/2.6/3.8 6.0/3.3/3.9 6.2/3.7/5.0 6.1/3.7/6.3 6.2/4.2/6.0 7.2/4.8/7.3
49024902 6.0/1.9/4.0 6.1/1.8/3.8 6.1/2.3/5.1 6.3/2.9/5.0 6.1/2.9/5.1 6.2/3.7/6.1 6.2/3.8/6.2
49074907 2.6/1.8/5.1 4.9/1.8/5.3 5.1/1.8/5.1 5.2/1.9/5.0 7.1/2.3/5.1 6.2/2.8/4.7 6.1/2.9/7.5
49124912 2.6/1.6/4.0 2.6/1.6/4.1 2.7/1.6/6.6 2.8/1.6/6.7 2.9/1.9/7.8 5.4/2.5/7.3 5.4/3.0/9.6
49174917 2.6/1.2/5.2 2.6/1.6/6.6 2.7/1.6/9.0 2.8/2.2/9.1 5.4/2.2/9.0 5.4/3.2/8.6 5.4/3.2/8.9
49224922 4.9/1.1/6.2 5.0/1.2/6.5 5.2/1.8/6.6 5.4/2.3/7.9 5.4/2.7/8.3 5.5/2.9/9.0 5.5/3.1/9.2
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: The 90% C.L. upper limits on the product branching fractions of Υ(1S,2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything and the Born cross sections of e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV with MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} varying from 4801 MeV/c2c^{2} to 4841 MeV/c2c^{2} in steps of 5 MeV/c2c^{2} and ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} varying from 2.58 MeV to 8.58 MeV in steps of 1.0 MeV.
Table 5: Summary of 90% C.L. upper limits with the systematic uncertainties included on the product branching fractions of Υ(1S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(1S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything / Υ(2S)Xccs¯s¯(Ds+Ds+)+anything\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything

. (Υ(1S)/Υ(2S)Xccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+){\cal B}(\Upsilon(1S)/\Upsilon(2S)\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{*+}D_{s}^{*+}) (×104\times 10^{-4}) MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} (MeV/c2c^{2}) ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} (MeV) 2.582.58 3.583.58 4.584.58 5.585.58 6.586.58 7.587.58 8.588.58 48014801 7.5/6.0 7.9/7.1 7.9/5.7 7.6/6.1 7.4/6.1 7.6/4.4 7.7/4.8 48064806 7.6/6.1 8.1/7.3 8.1/5.8 7.8/6.2 7.5/6.2 7.8/6.1 7.9/4.9 48114811 7.8/6.2 8.3/7.4 8.2/5.9 7.9/6.3 7.7/6.3 7.9/6.2 8.0/6.8 48164816 7.6/6.3 8.1/7.5 8.1/6.0 7.8/6.4 7.6/6.4 7.8/6.3 7.9/6.9 48214821 7.5/6.3 8.0/7.6 7.9/6.0 7.7/6.5 7.4/6.5 7.7/6.4 7.8/7.0 48264826 7.4/6.3 7.8/7.5 7.8/6.0 7.6/6.4 7.3/6.4 7.6/4.7 7.6/5.1 48314831 7.3/6.2 7.7/7.4 7.7/5.9 7.5/4.7 7.2/4.7 7.5/6.2 7.5/6.8 48364836 7.5/6.2 7.9/7.5 7.9/5.9 7.6/6.4 7.4/6.4 7.6/4.6 7.7/5.1 48414841 7.6/6.3 8.1/7.6 8.1/4.4 7.8/4.8 7.6/4.8 7.8/4.7 7.9/5.1


Table 6: Summary of 90% C.L. upper limits with the systematic uncertainties included on the cross sections of e+eXccs¯s¯(Ds+Ds+)+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}(\to D_{s}^{*+}D_{s}^{*+})+anything at s\sqrt{s} = 10.52 GeV / 10.58 GeV / 10.867 GeV.
σ(e+eXccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+)\sigma(e^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{*+}D_{s}^{*+}) (×102fb\times 10^{2}fb)
MXccs¯s¯M_{X_{cc\bar{s}\bar{s}}} (MeV/c2c^{2}) ΓXccs¯s¯\Gamma_{X_{cc\bar{s}\bar{s}}} (MeV)
2.582.58 3.583.58 4.584.58 5.585.58 6.586.58 7.587.58 8.588.58
48014801 14.5/8.5/16.2 14.1/8.5/20.7 13.4/10.8/20.4 14.1/10.7/23.7 10.3/10.9/23.8 11.5/11.7/23.2 11.1/12.7/24.1
48064806 14.5/6.1/21.2 14.2/6.2/18.3 13.5/8.3/17.3 14.1/7.7/18.2 14.0/10.4/18.3 15.5/12.6/17.8 11.1/13.6/23.7
48114811 14.5/3.8/21.0 14.2/6.3/20.2 13.5/7.8/19.9 14.1/7.8/20.9 26.2/10.4/23.2 23.7/12.7/22.6 23.0/13.9/23.4
48164816 14.1/4.7/16.3 13.8/6.8/20.8 24.6/6.6/26.3 25.8/9.1/27.6 25.6/9.5/27.8 28.3/12.4/23.3 27.5/13.0/24.2
48214821 25.8/6.7/16.9 25.2/7.5/16.2 24.1/7.5/21.2 25.1/9.0/22.3 24.9/9.2/19.3 27.6/9.5/30.2 26.8/11.0/31.4
48264826 26.4/8.6/16.4 25.8/9.3/15.8 24.6/9.1/15.6 25.7/9.1/18.6 25.5/10.2/18.7 28.3/11.2/23.4 27.5/11.4/24.3
48314831 27.1/7.0/21.1 26.5/8.6/20.3 25.2/11.0/20.1 26.4/11.2/21.0 34.7/11.5/23.4 38.5/12.0/22.8 37.4/12.5/23.6
48364836 13.8/6.6/16.2 13.5/7.5/15.6 32.0/9.7/23.3 33.4/9.4/23.7 33.1/9.6/23.8 36.6/12.2/23.2 35.6/13.8/24.1
48414841 24.7/6.9/21.9 24.2/6.7/18.1 23.1/7.2/17.9 24.1/8.9/18.8 23.9/9.9/24.3 34.9/12.0/29.6 34.0/13.4/30.8

VII conclusion

Using the data samples of 102 million Υ(1S)\Upsilon(1S) events, 158 million Υ(2S)\Upsilon(2S) events, and data samples at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV corresponding to integrated luminosities 89.5 fb-1, 711.0 fb-1, and 121.4 fb-1, respectively, we search for the double-heavy tetraquark states Xccs¯s¯X_{cc\bar{s}\bar{s}} in the processes of Υ(1S,2S)Ds+Ds+(Ds+Ds+)+anything\Upsilon(1S,2S)\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})+anything and e+eDs+Ds+(Ds+Ds+)+anythinge^{+}e^{-}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+})+anything at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV. No peaking structures are observed in the MDs+Ds+M_{D_{s}^{+}D_{s}^{+}} and MDs+Ds+M_{D_{s}^{*+}D_{s}^{*+}} distributions from data. The 90% C.L. upper limits on the product branching fractions in Υ(1S,2S)\Upsilon(1S,2S) inclusive decays [(Υ(1S,2S)Xccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+(Ds+Ds+)){\cal B}(\Upsilon(1S,2S)\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))] and the product values of Born cross section and branching fraction for e+eXccs¯s¯+anythinge^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything [σ(e+eXccs¯s¯+anything)×(Xccs¯s¯Ds+Ds+(Ds+Ds+))\sigma(e^{+}e^{-}\to X_{cc\bar{s}\bar{s}}+anything)\times{\cal B}(X_{cc\bar{s}\bar{s}}\to D_{s}^{+}D_{s}^{+}(D_{s}^{*+}D_{s}^{*+}))] at s\sqrt{s} = 10.52 GeV, 10.58 GeV, and 10.867 GeV as functions of various assumed Xccs¯s¯X_{cc\bar{s}\bar{s}} masses and widths are determined.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11675166, No. 11705209; No. 11975076; No. 12135005; No. 12175041; No. 12161141008; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the Shanghai Science and Technology Committee (STCSM) under Grant No. 19ZR1403000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B01010135, 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2019K1A3A7A09033840, 2019R1I1A3A01058933, 2021R1A6A1A03043957, 2021R1F1A1060423, 2021R1F1A1064008; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

References

  • (1) M. Gell-Mann, Phys. Lett. 8, 214 (1964).
  • (2) S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
  • (3) D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 93, 072001 (2004).
  • (4) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 93, 162002 (2004).
  • (5) B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 71, 071103 (2005).
  • (6) E. S. Swanson, Phys. Lett. B 588, 189 (2004).
  • (7) C. Y. Wong, Phys. Rev. C 69, 055202 (2004).
  • (8) N. Li and S. L. Zhu, Phys. Rev. D 86, 074022 (2012).
  • (9) L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys. Rev. D 71, 014028 (2005).
  • (10) K. K. Seth, Phys. Lett. B 612, 1 (2005).
  • (11) C. Z. Yuan, Int. J. of Mod. Phys. A 33, 1830018 (2018).
  • (12) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, Phys. Rep. 873, 1 (2020).
  • (13) R. Aaij et al. (LHCb Collaboration), arXiv:2109.01038.
  • (14) R. Aaij et al. (LHCb Collaboration), arXiv:2109.01056.
  • (15) S. S. Agaev, K. Azizi, and H. Sundu, Phys. Rev. D 99, 114016 (2019).
  • (16) C. E. Fontoura, G. Krein, A. Valcarce, and J. Vijande, Phys. Rev. D 99, 094037 (2019).
  • (17) G. Yang, J. L. Ping, and J. Segovia, Phys. Rev. D 101, 014001 (2020).
  • (18) L. Leskovec, S. Meinel, M. Pflaumer, and M. Wagner, Phys. Rev. D 100, 014503 (2019).
  • (19) G. Yang, J. L. Ping, and J. Segovia, Phys. Rev. D 102, 054023 (2020).
  • (20) A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also, see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
  • (21) S. Kurokawa and E. Kikutani, Nucl. Instr. and Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and references therein.
  • (22) D. J. Lange, Nucl. Instr. and Methods Phys. Res., Sect. A 462, 152 (2001).
  • (23) R. Brun et al., GEANT 3: User’s guide Geant 3.10, Geant 3.11, CERN Report No. DD/EE/84-1, 1984.
  • (24) R. E. Mitchell et al. (CLEO Collaboration), Phys. Rev. D 79, 072008 (2009).
  • (25) E. Nakano, Nucl. Instr. and Methods Phys. Res., Sect. A 494, 402 (2002).
  • (26) G. Punzi, Proceedings, Conference, PHYSTAT 2003, p. MODT002. Stanford, USA, September (2003).
  • (27) P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (28) X. Y. Zhou, S. X. Du, G. Li, and C. P. Shen, Comput. Phys. Communication. 258, 107540 (2021).
  • (29) G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
  • (30) J. Conrad, O. Botner, A. Hallgren, and C. Pérez de los Heros, Phys. Rev. D 67, 012002 (2003).
  • (31) S. Actis et al., Eur. Phys. J. C 66, 585 (2010).
  • (32) E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41, 733 (1985) [Sov. J. Nucl. Phys. 41, 466 (1985)].