This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Search for an axion-like particle in radiative J/ψJ/\psi decays

M. Ablikim1, M. N. Achasov13,b, P. Adlarson73, R. Aliberti34, A. Amoroso72A,72C, M. R. An38, Q. An69,56, Y. Bai55, O. Bakina35, R. Baldini Ferroli28A, I. Balossino29A, Y. Ban45,g, V. Batozskaya1,43, D. Becker34, K. Begzsuren31, N. Berger34, M. Bertani28A, D. Bettoni29A, F. Bianchi72A,72C, E. Bianco72A,72C, J. Bloms66, A. Bortone72A,72C, I. Boyko35, R. A. Briere5, A. Brueggemann66, H. Cai74, X. Cai1,56, A. Calcaterra28A, G. F. Cao1,61, N. Cao1,61, S. A. Cetin60A, J. F. Chang1,56, T. T. Chang75, W. L. Chang1,61, G. R. Che42, G. Chelkov35,a, C. Chen42, Chao Chen53, G. Chen1, H. S. Chen1,61, M. L. Chen1,56,61, S. J. Chen41, S. M. Chen59, T. Chen1,61, X. R. Chen30,61, X. T. Chen1,61, Y. B. Chen1,56, Y. Q. Chen33, Z. J. Chen25,h, W. S. Cheng72C, S. K. Choi10A, X. Chu42, G. Cibinetto29A, S. C. Coen4, F. Cossio72C, J. J. Cui48, H. L. Dai1,56, J. P. Dai77, A. Dbeyssi19, R.  E. de Boer4, D. Dedovich35, Z. Y. Deng1, A. Denig34, I. Denysenko35, M. Destefanis72A,72C, F. De Mori72A,72C, Y. Ding39, Y. Ding33, J. Dong1,56, L. Y. Dong1,61, M. Y. Dong1,56,61, X. Dong74, S. X. Du79, Z. H. Duan41, P. Egorov35,a, Y. L. Fan74, J. Fang1,56, S. S. Fang1,61, W. X. Fang1, Y. Fang1, R. Farinelli29A, L. Fava72B,72C, F. Feldbauer4, G. Felici28A, C. Q. Feng69,56, J. H. Feng57, K Fischer67, M. Fritsch4, C. Fritzsch66, C. D. Fu1, Y. W. Fu1, H. Gao61, Y. N. Gao45,g, Yang Gao69,56, S. Garbolino72C, I. Garzia29A,29B, P. T. Ge74, Z. W. Ge41, C. Geng57, E. M. Gersabeck65, A Gilman67, K. Goetzen14, L. Gong39, W. X. Gong1,56, W. Gradl34, M. Greco72A,72C, M. H. Gu1,56, Y. T. Gu16, C. Y Guan1,61, Z. L. Guan22, A. Q. Guo30,61, L. B. Guo40, R. P. Guo47, Y. P. Guo12,f, A. Guskov35,a, X. T. H.1,61, W. Y. Han38, X. Q. Hao20, F. A. Harris63, K. K. He53, K. L. He1,61, F. H. Heinsius4, C. H. Heinz34, Y. K. Heng1,56,61, C. Herold58, T. Holtmann4, P. C. Hong12,f, G. Y. Hou1,61, Y. R. Hou61, Z. L. Hou1, H. M. Hu1,61, J. F. Hu54,i, T. Hu1,56,61, Y. Hu1, G. S. Huang69,56, K. X. Huang57, L. Q. Huang30,61, X. T. Huang48, Y. P. Huang1, T. Hussain71, N Hüsken27,34, W. Imoehl27, M. Irshad69,56, J. Jackson27, S. Jaeger4, S. Janchiv31, J. H. Jeong10A, Q. Ji1, Q. P. Ji20, X. B. Ji1,61, X. L. Ji1,56, Y. Y. Ji48, Z. K. Jia69,56, P. C. Jiang45,g, S. S. Jiang38, T. J. Jiang17, X. S. Jiang1,56,61, Y. Jiang61, J. B. Jiao48, Z. Jiao23, S. Jin41, Y. Jin64, M. Q. Jing1,61, T. Johansson73, X. K.1, S. Kabana32, N. Kalantar-Nayestanaki62, X. L. Kang9, X. S. Kang39, R. Kappert62, M. Kavatsyuk62, B. C. Ke79, A. Khoukaz66, R. Kiuchi1, R. Kliemt14, L. Koch36, O. B. Kolcu60A, B. Kopf4, M. Kuessner4, A. Kupsc43,73, W. Kühn36, J. J. Lane65, J. S. Lange36, P.  Larin19, A. Lavania26, L. Lavezzi72A,72C, T. T. Lei69,k, Z. H. Lei69,56, H. Leithoff34, M. Lellmann34, T. Lenz34, C. Li46, C. Li42, C. H. Li38, Cheng Li69,56, D. M. Li79, F. Li1,56, G. Li1, H. Li69,56, H. B. Li1,61, H. J. Li20, H. N. Li54,i, Hui Li42, J. R. Li59, J. S. Li57, J. W. Li48, Ke Li1, L. J Li1,61, L. K. Li1, Lei Li3, M. H. Li42, P. R. Li37,j,k, S. X. Li12, S. Y. Li59, T.  Li48, W. D. Li1,61, W. G. Li1, X. H. Li69,56, X. L. Li48, Xiaoyu Li1,61, Y. G. Li45,g, Z. J. Li57, Z. X. Li16, Z. Y. Li57, C. Liang41, H. Liang33, H. Liang1,61, H. Liang69,56, Y. F. Liang52, Y. T. Liang30,61, G. R. Liao15, L. Z. Liao48, J. Libby26, A.  Limphirat58, D. X. Lin30,61, T. Lin1, B. X. Liu74, B. J. Liu1, C. Liu33, C. X. Liu1, D.  Liu19,69, F. H. Liu51, Fang Liu1, Feng Liu6, G. M. Liu54,i, H. Liu37,j,k, H. B. Liu16, H. M. Liu1,61, Huanhuan Liu1, Huihui Liu21, J. B. Liu69,56, J. L. Liu70, J. Y. Liu1,61, K. Liu1, K. Y. Liu39, Ke Liu22, L. Liu69,56, L. C. Liu42, Lu Liu42, M. H. Liu12,f, P. L. Liu1, Q. Liu61, S. B. Liu69,56, T. Liu12,f, W. K. Liu42, W. M. Liu69,56, X. Liu37,j,k, Y. Liu37,j,k, Y. B. Liu42, Z. A. Liu1,56,61, Z. Q. Liu48, X. C. Lou1,56,61, F. X. Lu57, H. J. Lu23, J. G. Lu1,56, X. L. Lu1, Y. Lu7, Y. P. Lu1,56, Z. H. Lu1,61, C. L. Luo40, M. X. Luo78, T. Luo12,f, X. L. Luo1,56, X. R. Lyu61, Y. F. Lyu42, F. C. Ma39, H. L. Ma1, J. L. Ma1,61, L. L. Ma48, M. M. Ma1,61, Q. M. Ma1, R. Q. Ma1,61, R. T. Ma61, X. Y. Ma1,56, Y. Ma45,g, F. E. Maas19, M. Maggiora72A,72C, S. Maldaner4, S. Malde67, A. Mangoni28B, Y. J. Mao45,g, Z. P. Mao1, S. Marcello72A,72C, Z. X. Meng64, J. G. Messchendorp14,62, G. Mezzadri29A, H. Miao1,61, T. J. Min41, R. E. Mitchell27, X. H. Mo1,56,61, N. Yu. Muchnoi13,b, Y. Nefedov35, F. Nerling19,d, I. B. Nikolaev13,b, Z. Ning1,56, S. Nisar11,l, Y. Niu 48, S. L. Olsen61, Q. Ouyang1,56,61, S. Pacetti28B,28C, X. Pan53, Y. Pan55, A.  Pathak33, Y. P. Pei69,56, M. Pelizaeus4, H. P. Peng69,56, K. Peters14,d, J. L. Ping40, R. G. Ping1,61, S. Plura34, S. Pogodin35, V. Prasad32, F. Z. Qi1, H. Qi69,56, H. R. Qi59, M. Qi41, T. Y. Qi12,f, S. Qian1,56, W. B. Qian61, C. F. Qiao61, J. J. Qin70, L. Q. Qin15, X. P. Qin12,f, X. S. Qin48, Z. H. Qin1,56, J. F. Qiu1, S. Q. Qu59, C. F. Redmer34, K. J. Ren38, A. Rivetti72C, V. Rodin62, M. Rolo72C, G. Rong1,61, Ch. Rosner19, S. N. Ruan42, A. Sarantsev35,c, Y. Schelhaas34, K. Schoenning73, M. Scodeggio29A,29B, K. Y. Shan12,f, W. Shan24, X. Y. Shan69,56, J. F. Shangguan53, L. G. Shao1,61, M. Shao69,56, C. P. Shen12,f, H. F. Shen1,61, W. H. Shen61, X. Y. Shen1,61, B. A. Shi61, H. C. Shi69,56, J. Y. Shi1, Q. Q. Shi53, R. S. Shi1,61, X. Shi1,56, J. J. Song20, T. Z. Song57, W. M. Song33,1, Y. X. Song45,g, S. Sosio72A,72C, S. Spataro72A,72C, F. Stieler34, Y. J. Su61, G. B. Sun74, G. X. Sun1, H. Sun61, H. K. Sun1, J. F. Sun20, K. Sun59, L. Sun74, S. S. Sun1,61, T. Sun1,61, W. Y. Sun33, Y. Sun9, Y. J. Sun69,56, Y. Z. Sun1, Z. T. Sun48, Y. X. Tan69,56, C. J. Tang52, G. Y. Tang1, J. Tang57, Y. A. Tang74, L. Y Tao70, Q. T. Tao25,h, M. Tat67, J. X. Teng69,56, V. Thoren73, W. H. Tian57, W. H. Tian50, Y. Tian30,61, Z. F. Tian74, I. Uman60B, B. Wang69,56, B. Wang1, B. L. Wang61, C. W. Wang41, D. Y. Wang45,g, F. Wang70, H. J. Wang37,j,k, H. P. Wang1,61, K. Wang1,56, L. L. Wang1, M. Wang48, Meng Wang1,61, S. Wang12,f, T.  Wang12,f, T. J. Wang42, W.  Wang70, W. Wang57, W. H. Wang74, W. P. Wang69,56, X. Wang45,g, X. F. Wang37,j,k, X. J. Wang38, X. L. Wang12,f, Y. Wang59, Y. D. Wang44, Y. F. Wang1,56,61, Y. H. Wang46, Y. N. Wang44, Y. Q. Wang1, Yaqian Wang18,1, Yi Wang59, Z. Wang1,56, Z. L.  Wang70, Z. Y. Wang1,61, Ziyi Wang61, D. Wei68, D. H. Wei15, F. Weidner66, S. P. Wen1, C. W. Wenzel4, U. Wiedner4, G. Wilkinson67, M. Wolke73, L. Wollenberg4, C. Wu38, J. F. Wu1,61, L. H. Wu1, L. J. Wu1,61, X. Wu12,f, X. H. Wu33, Y. Wu69, Y. J Wu30, Z. Wu1,56, L. Xia69,56, X. M. Xian38, T. Xiang45,g, D. Xiao37,j,k, G. Y. Xiao41, H. Xiao12,f, S. Y. Xiao1, Y.  L. Xiao12,f, Z. J. Xiao40, C. Xie41, X. H. Xie45,g, Y. Xie48, Y. G. Xie1,56, Y. H. Xie6, Z. P. Xie69,56, T. Y. Xing1,61, C. F. Xu1,61, C. J. Xu57, G. F. Xu1, H. Y. Xu64, Q. J. Xu17, X. P. Xu53, Y. C. Xu76, Z. P. Xu41, F. Yan12,f, L. Yan12,f, W. B. Yan69,56, W. C. Yan79, X. Q Yan1, H. J. Yang49,e, H. L. Yang33, H. X. Yang1, Tao Yang1, Y. Yang12,f, Y. F. Yang42, Y. X. Yang1,61, Yifan Yang1,61, M. Ye1,56, M. H. Ye8, J. H. Yin1, Z. Y. You57, B. X. Yu1,56,61, C. X. Yu42, G. Yu1,61, T. Yu70, X. D. Yu45,g, C. Z. Yuan1,61, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,61, Z. Y. Yuan57, C. X. Yue38, A. A. Zafar71, F. R. Zeng48, X. Zeng12,f, Y. Zeng25,h, X. Y. Zhai33, Y. H. Zhan57, A. Q. Zhang1,61, B. L. Zhang1,61, B. X. Zhang1, D. H. Zhang42, G. Y. Zhang20, H. Zhang69, H. H. Zhang33, H. H. Zhang57, H. Q. Zhang1,56,61, H. Y. Zhang1,56, J. J. Zhang50, J. L. Zhang75, J. Q. Zhang40, J. W. Zhang1,56,61, J. X. Zhang37,j,k, J. Y. Zhang1, J. Z. Zhang1,61, Jiawei Zhang1,61, L. M. Zhang59, L. Q. Zhang57, Lei Zhang41, P. Zhang1, Q. Y.  Zhang38,79, Shuihan Zhang1,61, Shulei Zhang25,h, X. D. Zhang44, X. M. Zhang1, X. Y. Zhang53, X. Y. Zhang48, Y. Zhang67, Y.  T. Zhang79, Y. H. Zhang1,56, Yan Zhang69,56, Yao Zhang1, Z. H. Zhang1, Z. L. Zhang33, Z. Y. Zhang42, Z. Y. Zhang74, G. Zhao1, J. Zhao38, J. Y. Zhao1,61, J. Z. Zhao1,56, Lei Zhao69,56, Ling Zhao1, M. G. Zhao42, S. J. Zhao79, Y. B. Zhao1,56, Y. X. Zhao30,61, Z. G. Zhao69,56, A. Zhemchugov35,a, B. Zheng70, J. P. Zheng1,56, W. J. Zheng1,61, Y. H. Zheng61, B. Zhong40, X. Zhong57, H.  Zhou48, L. P. Zhou1,61, X. Zhou74, X. K. Zhou61, X. R. Zhou69,56, X. Y. Zhou38, Y. Z. Zhou12,f, J. Zhu42, K. Zhu1, K. J. Zhu1,56,61, L. Zhu33, L. X. Zhu61, S. H. Zhu68, S. Q. Zhu41, T. J. Zhu12,f, W. J. Zhu12,f, Y. C. Zhu69,56, Z. A. Zhu1,61, J. H. Zou1, J. Zu69,56
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
14 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
15 Guangxi Normal University, Guilin 541004, People’s Republic of China
16 Guangxi University, Nanning 530004, People’s Republic of China
17 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
18 Hebei University, Baoding 071002, People’s Republic of China
19 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
20 Henan Normal University, Xinxiang 453007, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
31 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
32 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
33 Jilin University, Changchun 130012, People’s Republic of China
34 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
35 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
36 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
37 Lanzhou University, Lanzhou 730000, People’s Republic of China
38 Liaoning Normal University, Dalian 116029, People’s Republic of China
39 Liaoning University, Shenyang 110036, People’s Republic of China
40 Nanjing Normal University, Nanjing 210023, People’s Republic of China
41 Nanjing University, Nanjing 210093, People’s Republic of China
42 Nankai University, Tianjin 300071, People’s Republic of China
43 National Centre for Nuclear Research, Warsaw 02-093, Poland
44 North China Electric Power University, Beijing 102206, People’s Republic of China
45 Peking University, Beijing 100871, People’s Republic of China
46 Qufu Normal University, Qufu 273165, People’s Republic of China
47 Shandong Normal University, Jinan 250014, People’s Republic of China
48 Shandong University, Jinan 250100, People’s Republic of China
49 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
50 Shanxi Normal University, Linfen 041004, People’s Republic of China
51 Shanxi University, Taiyuan 030006, People’s Republic of China
52 Sichuan University, Chengdu 610064, People’s Republic of China
53 Soochow University, Suzhou 215006, People’s Republic of China
54 South China Normal University, Guangzhou 510006, People’s Republic of China
55 Southeast University, Nanjing 211100, People’s Republic of China
56 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
57 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
58 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
59 Tsinghua University, Beijing 100084, People’s Republic of China
60 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
61 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
62 University of Groningen, NL-9747 AA Groningen, The Netherlands
63 University of Hawaii, Honolulu, Hawaii 96822, USA
64 University of Jinan, Jinan 250022, People’s Republic of China
65 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
66 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
67 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
68 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
69 University of Science and Technology of China, Hefei 230026, People’s Republic of China
70 University of South China, Hengyang 421001, People’s Republic of China
71 University of the Punjab, Lahore-54590, Pakistan
72 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
73 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
74 Wuhan University, Wuhan 430072, People’s Republic of China
75 Xinyang Normal University, Xinyang 464000, People’s Republic of China
76 Yantai University, Yantai 264005, People’s Republic of China
77 Yunnan University, Kunming 650500, People’s Republic of China
78 Zhejiang University, Hangzhou 310027, People’s Republic of China
79 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi , Pakistan
(February 16, 2025)
Abstract

We search for an axion-like particle (ALP) aa through the process ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi, J/ψγaJ/\psi\rightarrow\gamma a, aγγa\rightarrow\gamma\gamma in a data sample of (2.71±0.01)×109(2.71\pm 0.01)\times 10^{9} ψ(3686)\psi(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψγaJ/\psi\rightarrow\gamma a and the ALP-photon coupling constant gaγγg_{a\gamma\gamma} are set at 95% confidence level in the mass range of 0.165ma2.84GeV/c20.165\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2}. The limits on (J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) range from 8.3×1088.3\times 10^{-8} to 1.8×1061.8\times 10^{-6} over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165ma1.468GeV/c20.165\leq m_{a}\leq 1.468\,\mbox{GeV}/c^{2}.

keywords:
BESIII , Axion-like particle , Pseudo-Goldstone boson
journal: Physics Letters B

1 Introduction

Axion-like particles (ALPs) are pseudo-Goldstone bosons arising from some spontaneously broken global symmetry, addressing the strong CP [1, 2, 3, 4] or hierarchy problems [5]. ALPs could appear in theories beyond the Standard Model (SM), such as string theory [6] and extended Higgs models [7]. ALPs could also provide a portal connecting SM particles to the dark sectors [8], and in certain situations, they are proposed as cold dark matter candidates [9, 10, 11]. In the most common scenarios, the ALP aa predominantly couples to photons with a photon coupling constant gaγγg_{a\gamma\gamma}. As a generalization of QCD axions, ALPs have arbitrary masses and couplings which are bounded by experiments. In the sub-MeV/c2\mbox{MeV}/c^{2} mass range, the bounds on gaγγg_{a\gamma\gamma} are provided by laser experiments, solar photon instruments, as well as cosmological and astrophysical observations [12, 13]. In the MeV/c2\mbox{MeV}/c^{2} to GeV/c2\mbox{GeV}/c^{2} mass region, constraints on the photon coupling constant mainly come from beam-dump experiments [14, 15, 16] and high-energy collider experiments. Long-lived ALPs have been searched for in J/ψJ/\psi and Υ\Upsilon radiative decays [17, 18] and through e+eγ+invisiblee^{+}e^{-}\rightarrow\gamma+\text{invisible} processes [19]. The limits for short-lived ALPs decaying to two photons are obtained from e+eγγe^{+}e^{-}\rightarrow\gamma\gamma [20], e+eγγγe^{+}e^{-}\rightarrow\gamma\gamma\gamma [21, 22] via ALP-strahlung production, and the light-by-light scattering process γγγγ\gamma\gamma\rightarrow\gamma\gamma [23, 24], as well as pppp collisions [25, 26, 27]. There is a striking gap in the limits on the ALP-photon coupling in the ALP mass range from 100MeV/c2100\,\mbox{MeV}/c^{2} to roughly 10GeV/c210\,\mbox{GeV}/c^{2}, leaving the large area 103gaγγ105GeV110^{-3}\lesssim g_{a\gamma\gamma}\lesssim 10^{-5}\,\mbox{GeV}^{-1} still uncovered. Electron-positron colliders can play a unique role in further exploring this region [28].

We search for ALPs decaying into two photons at BESIII in J/ψJ/\psi radiative decays via J/ψγaJ/\psi\rightarrow\gamma a, aγγa\rightarrow\gamma\gamma in the mass range of 0.165ma2.84GeV/c20.165\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2}. In this Letter we ignore the ALP coupling to c-quarks [29] and assume the branching fraction of aa decaying to photons is 100%, with a decay width Γa=gaγγ2ma3/64π\Gamma_{a}=g_{a\gamma\gamma}^{2}m_{a}^{3}/64\pi. The experimental signature of the ALP decaying into two photons depends on the correlation between its mass and coupling. Except for the mass region below 0.1GeV/c20.1\,\mbox{GeV}/c^{2}, the ALP has a negligible lifetime and decay width, and the opening angle between the decay photons is large enough to be resolved in the detector. The mass intervals of 0.10<ma<0.165GeV/c20.10<m_{a}<0.165\,\mbox{GeV}/c^{2}, 0.46<ma<0.60GeV/c20.46<m_{a}<0.60\,\mbox{GeV}/c^{2} and 0.90<ma<1.01GeV/c20.90<m_{a}<1.01\,\mbox{GeV}/c^{2} are excluded from the search due to the peaking backgrounds from the decays of π0\pi^{0}, η\eta and η\eta^{\prime} mesons, respectively. In order to avoid pollution from non-resonant ALP production e+eγae^{+}e^{-}\rightarrow\gamma a and to probe resonant ALP production J/ψγaJ/\psi\rightarrow\gamma a in a model-independent way [29], the decay ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi is exploited to isolate the J/ψJ/\psi sample.

2 Detector, data sets and Monte Carlo simulation

The BESIII detector [30] records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring [31], which operates in the center-of-mass energy range from 2.00 to 4.95 GeV, with a peak luminosity of 1×10331\times 10^{33} cm-2s-1 achieved at s\sqrt{s} = 3.77 GeV. BESIII has collected large data samples in this energy region [32]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at 1GeV/c1\leavevmode\nobreak\ {\rm GeV}/c is 0.5%0.5\%, and the dE/dx{\rm d}E/{\rm d}x resolution is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end-cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end-cap region is 110 ps. The end-cap TOF system was upgraded in 2015 using multigap resistive plate chamber technology, providing a time resolution of 60 ps [33].

We perform the search using the ψ(3686)\psi(3686) data samples collected by the BESIII detector during three data-taking periods: 2009, 2012, and 2021. The numbers of ψ(3686)\psi(3686) events are determined by counting inclusive hadronic events whose branching fraction is known rather precisely [34, 35]. There are (107.0±0.8)×106(107.0\pm 0.8)\times 10^{6} ψ(3686)\psi(3686) events collected in 2009, (341.1±2.9)×106(341.1\pm 2.9)\times 10^{6} events collected in 2012 and (2.26±0.01)×109(2.26\pm 0.01)\times 10^{9} events collected in 2021, for a total of (2.71±0.01)×109(2.71\pm 0.01)\times 10^{9} ψ(3686)\psi(3686) events. In this analysis, the J/ψJ/\psi sample originates from the decay ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi. The analysis strategy is to first tag J/ψJ/\psi events by selecting two oppositely charged pions, and then to search for the signal candidate events with three additional photons originating from the tagged J/ψJ/\psi sample. A semi-blind procedure is performed to avoid possible bias, where approximately 10% of the full data set is used to optimize the event selection and validate the fit approach. The final result is then obtained with the full data set only after the analysis strategy is fixed.

Simulated data samples produced with a geant4-based [36] Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine detection efficiencies and to estimate backgrounds. The simulation models the beam-energy spread and initial-state radiation in e+ee^{+}e^{-} annihilations with the generator kkmc [37]. An inclusive MC sample with approximately the same number of ψ(3686)\psi(3686) decays as in data is used to check for potential backgrounds. The inclusive MC sample includes the production of the ψ(3686)\psi(3686) resonance, the initial-state radiation production of the J/ψJ/\psi, and the continuum processes incorporated in kkmc [37]. All particle decays are modeled with evtgen [38] using branching fractions either taken from the Particle Data Group (PDG) [39], when available, or otherwise estimated with lundcharm [40]. Final-state radiation from charged final-state particles is incorporated using the photos package [41]. To simulate the signal, the decay ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi is modeled according to the partial wave analysis results of ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi [42]; a PP-wave model [38] is used for the subsequent decay J/ψγaJ/\psi\rightarrow\gamma a and a phase-space model is used for the aγγa\rightarrow\gamma\gamma decay. The signal events are simulated individually for different mass hypotheses of ALP mam_{a} in the range of 0.165ma2.84GeV/c20.165\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2} with a step size of 5MeV/c25\,\mbox{MeV}/c^{2}, which is smaller than the signal resolution. Study of the inclusive MC sample with a generic event type analysis tool, TopoAna [43], indicates that the dominant backgrounds are from ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi with subsequent decays of J/ψγπ0J/\psi\rightarrow\gamma\pi^{0}, γη\gamma\eta and γη\gamma\eta^{\prime}. These backgrounds are each generated exclusively with the angular distribution of 1+cos2θγ1+\cos^{2}\theta_{\gamma} [38], where θγ\theta_{\gamma} is the angle of the radiative photon relative to the positron beam direction in the J/ψJ/\psi rest frame. Some potential backgrounds of the form ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi with J/ψJ/\psi decaying into purely neutral particles in the final states are generated exclusively with different generators: J/ψγηcJ/\psi\rightarrow\gamma\eta_{c} with the angular distribution of 1+cos2θγ1+\cos^{2}\theta_{\gamma} [38], J/ψγπ0π0J/\psi\rightarrow\gamma\pi^{0}\pi^{0} according to the partial wave analysis results of J/ψγπ0π0J/\psi\rightarrow\gamma\pi^{0}\pi^{0} [44], as well as J/ψγγγJ/\psi\rightarrow\gamma\gamma\gamma with a phase-space distribution. Each background MC sample is weighted to match the integrated luminosity of the data set.

3 Event selection

Signal candidates are required to have two oppositely charged tracks and at least three photon candidates. Charged tracks detected in the MDC are required to be within a polar angle (θ\theta) range of |cosθ|<0.93|\rm{cos\theta}|<0.93, where θ\theta is defined with respect to the zz-axis, which is the symmetry axis of the MDC. For each charged track, the momentum must be less than 0.45GeV/c0.45\,\mbox{GeV}/c and the distance of closest approach to the interaction point (IP) along the zz-axis |Vz||V_{z}| must be less than 10 cm, and in the transverse plane |Vxy||V_{xy}| less than 1 cm. Both charged tracks are assumed to be pion candidates, and the recoil mass in the center-of-mass system M(π+π)recoilM(\pi^{+}\pi^{-})_{\rm recoil} must be in the range of [3.080, 3.114] GeV/c2\,\mbox{GeV}/c^{2}.

Photon candidates are identified using showers in the EMC. The deposited energy of each shower must be more than 25 MeV in the barrel region (|cosθ|<0.80|\!\cos\theta|<0.80) and more than 50 MeV in the end-cap region (0.86<|cosθ|<0.920.86<|\!\cos\theta|<0.92). To exclude showers that originate from charged tracks, the angle subtended by the EMC shower and the position of the closest charged track at the EMC must be greater than 10 degrees as measured from the IP. To suppress electronic noise and showers unrelated to the event, the difference between the EMC time and the event start time is required to be within [0, 700] ns. Events satisfying the above requirements are retained for further analysis.

The π+\pi^{+} and π\pi^{-} tracks are constrained to a common vertex to determine the event interaction point, and a four-constraint (4C) kinematic fit to the initial four-momentum of the ψ(3686)\psi(3686) is applied for all possible π+πγγγ\pi^{+}\pi^{-}\gamma\gamma\gamma combinations. The combination with the smallest fit χ4C2\chi_{\rm 4C}^{2} is retained, with the requirement of χ4C2<40\chi_{\rm 4C}^{2}<40. The distribution of χ4C2\chi_{\rm 4C}^{2} is shown in Fig. 1. To further reject background from J/ψγπ0π0J/\psi\rightarrow\gamma\pi^{0}\pi^{0} decays, we form all π+π5γ\pi^{+}\pi^{-}5\gamma combinations if 5 or more photons are present, and we require the minimum χ4C2(5γ)\chi^{2}_{\rm 4C}(5\gamma) of the corresponding kinematic fits to satisfy χ4C2<χ4C2(5γ)\chi^{2}_{\rm 4C}<\chi^{2}_{\rm 4C}(5\gamma). For the remaining photons, the sum of their energy deposition in the EMC EotherE_{\rm other} is required to be less than 0.1GeV0.1\,\mbox{GeV}. The requirements of χ4C2\chi_{\rm 4C}^{2} and EotherE_{\rm other} are optimized according to the Punzi significance [45] defined as ϵ/(1.5+B)\epsilon/(1.5+\sqrt{B}), where ϵ\epsilon denotes the signal efficiency obtained from signal MC samples and BB is the number of background events obtained from background MC samples.

\begin{overpic}[width=227.62204pt]{kfchi2_4C.pdf} \end{overpic}
FIG. 1: The distribution of χ4C2\chi_{\rm 4C}^{2} for data, signal and MC-simulated backgrounds. The requirement of χ4C2<40\chi_{\rm 4C}^{2}<40 is applied to suppress the background from J/ψγπ0π0J/\psi\rightarrow\gamma\pi^{0}\pi^{0} decays.

4 ALP signal search

The two-photon invariant mass MγγM_{\gamma\gamma} distribution of the events selected by the above criteria is shown in Fig. 2. The MC simulation shows a rather good agreement with the data, corroborating the analysis procedure. There are three entries per event from all possible combinations of the three selected photons. The background is dominated by contributions from J/ψγπ0J/\psi\rightarrow\gamma\pi^{0}, γη\gamma\eta and γη\gamma\eta^{\prime} decays. There is a small contribution from residual J/ψγπ0π0J/\psi\rightarrow\gamma\pi^{0}\pi^{0} background with two soft photons peaking around the π0\pi^{0} mass region, and a contamination from J/ψγf2(1270)J/\psi\rightarrow\gamma f_{2}(1270) decays, followed by f2(1270)π0π0f_{2}(1270)\rightarrow\pi^{0}\pi^{0}. However, since the f2(1270)f_{2}(1270) state has a large width and the contribution is relatively small, this contribution can be treated as non-peaking background and is well described by a polynomial function when extracting the signal yields.

A series of one-dimensional unbinned extended maximum-likelihood fits are performed to the MγγM_{\gamma\gamma} distribution to determine the signal yields with different ALP mass hypotheses in the mass range of 0.165ma2.84GeV/c20.165\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2}. The search step is 3MeV/c23\,\mbox{MeV}/c^{2} for 0.165ma<1.20GeV/c20.165\leq m_{a}<1.20\,\mbox{GeV}/c^{2} and 4MeV/c24\,\mbox{MeV}/c^{2} for other mass regions. A total of 674 mass hypotheses are probed. The likelihood function is a combination of signal, non-peaking background, and peaking components of the π0\pi^{0}, η\eta and η\eta^{\prime} mesons. Different MγγM_{\gamma\gamma} fit intervals are used for various mam_{a} hypotheses in order to handle the non-peaking and peaking backgrounds properly, which are listed in Table 1.

\begin{overpic}[width=227.62204pt]{diphoton_mass.pdf} \end{overpic}
FIG. 2: The diphoton invariant-mass distributions for data and the MC-simulated backgrounds, which are normalized to the integrated luminosity of the data.
TABLE 1: The MγγM_{\gamma\gamma} fit intervals for various mam_{a} points.
mam_{a} points (GeV/c2\mbox{GeV}/c^{2}) MγγM_{\gamma\gamma} fit intervals (GeV/c2\mbox{GeV}/c^{2})
0.165 - 0.35 0.06 - 0.45
0.35 - 0.75 0.25 - 0.85
0.75 - 1.20 0.65 - 1.30
1.20 - 2.84 (ma0.2m_{a}-0.2) - (ma+0.2m_{a}+0.2)

The signal probability density function (PDF) is constructed from a peaking component from the ALP decay, and a combinatorial contribution from the other two combinations of photons. The peaking component is parameterized by the sum of two Crystal Ball (CB) [46] functions with opposite-side tails with the same mean, resolution, and relative weight. These values and the detection efficiency are determined by fitting the signal MC samples. The resolution ranges from 6MeV/c26\,\mbox{MeV}/c^{2} near ma=0.165GeV/c2m_{a}=0.165\,\mbox{GeV}/c^{2} to 11MeV/c211\,\mbox{MeV}/c^{2} near ma=2.2GeV/c2m_{a}=2.2\,\mbox{GeV}/c^{2}, and it decreases back to 7MeV/c27\,\mbox{MeV}/c^{2} near ma=2.84GeV/c2m_{a}=2.84\,\mbox{GeV}/c^{2}. The detection efficiency ranges from 30% to 35%. The combinatorial component of the signal is described by a smoothed kernel density estimation PDF [47] obtained from the signal MC sample with the mass hypothesis mam_{a} closest to the fitted assumption. The ratio between the combinatorial part and the peaking component of the signal is determined for each fit interval. For any search point, the parameters of the CB functions, the ratio of the combinatorial part and the efficiency are interpolated between the mass points by a fit with a polynomial function. The peaking background components at the π0\pi^{0}, η\eta and η\eta^{\prime} masses are described by the sum of two CB functions using parameters determined from data. A fifth-order Chebyshev polynomial function is used to describe the non-peaking background for 0.75ma<1.20GeV/c20.75\leq m_{a}<1.20\,\mbox{GeV}/c^{2} and a third-order Chebyshev polynomial function is used for the remaining mass regions. The choice of the order of polynomial function is optimized through a spurious signal test by performing a signal-plus-background fit to the background-only MγγM_{\gamma\gamma} distribution [48]. The obtained signal yield (spurious signal) is required to be less than 30% of its expected statistical uncertainty. When performing the fit, the shapes of the signal and the peaking background PDFs are fixed, while the non-peaking background PDF shape and the yields of signal, peaking and non-peaking background events are free parameters. The MγγM_{\gamma\gamma} distributions for selected mam_{a} points and the fit results are shown in Fig. 3.

The branching fractions of J/ψγ(π0,η,η)γγγJ/\psi\rightarrow\gamma(\pi^{0},\eta,\eta^{\prime})\rightarrow\gamma\gamma\gamma are measured to validate the signal extraction procedure. The peaks are treated as signals, and the fitting procedure described above is applied to extract the number of peak events. After accounting for the contribution of peaking backgrounds, the results are found to be compatible with the published BESIII measurement [49] within uncertainties.

5 Systematic uncertainties

The systematic uncertainties are divided into two parts, which are additive and multiplicative in nature. The additive systematic uncertainty arises from the uncertainties in the signal parameterization and background modeling. The multiplicative systematic uncertainty includes contributions coming from MDC tracking, photon reconstruction, and selection criteria, which are related to the signal efficiency.

\begin{overpic}[width=227.62204pt]{fit_ALP_0327.pdf} \put(20.0,58.0){\small{(a)}} \end{overpic}
\begin{overpic}[width=227.62204pt]{fit_ALP_2208.pdf} \put(20.0,58.0){\small{(b)}} \end{overpic}
FIG. 3: The MγγM_{\gamma\gamma} distribution for (a) ma=0.327GeV/c2m_{a}=0.327\,\mbox{GeV}/c^{2} and (b) ma=2.208GeV/c2m_{a}=2.208\,\mbox{GeV}/c^{2} with the fit results overlaid. The black dots with error bars are data, and the contribution of the non-peaking background is represented by a blue dashed curve. The green shaded region and the red solid curve represent the signal PDF and the total PDF, respectively. The inset of the figure (a) displays an enlargement of the MγγM_{\gamma\gamma} region between 0.25 and 0.4GeV/c20.4\,\mbox{GeV}/c^{2}. The largest local significance is 2.6σ\sigma at the ma=2.208GeV/c2m_{a}=2.208\,\mbox{GeV}/c^{2} hypothesis.

The uncertainty due to signal and peaking background shapes is considered by performing the same fitting procedure with alternative signal and peaking background shapes. For the alternative signal shape, the parameters of the CB functions (except the mean value) and the ratio of the combinatorial part are obtained from the signal MC sample with the mass hypothesis mam_{a} closest to the search point. The alternative peaking background shape is modeled with the sum of a CB function and a Gaussian function. For each mass value mam_{a}, the fit is performed three times in total with different methods, and the minimum significance value and the maximum upper limit are recorded. The non-peaking background is described by polynomials. By performing the spurious signal test, the maximum of the absolute values of the spurious signal over the search ranges constitutes the related systematic uncertainty, which is the dominant source of systematic uncertainty in the analysis and is incorporated in the overall likelihood assuming a Gaussian distribution: 8.09 events for 0.165ma<0.35GeV/c20.165\leq m_{a}<0.35\,\mbox{GeV}/c^{2}, 1.41 events for 0.35ma<0.75GeV/c20.35\leq m_{a}<0.75\,\mbox{GeV}/c^{2}, 17.95 events for 0.75ma<1.20GeV/c20.75\leq m_{a}<1.20\,\mbox{GeV}/c^{2} and 39.93 events for 1.20ma2.84GeV/c21.20\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2}.

The multiplicative systematic uncertainties are listed in Table 2. The tracking efficiency of charged pions is investigated using control samples of J/ψpp¯π+πJ/\psi\rightarrow p\bar{p}\pi^{+}\pi^{-} decays [50]. The difference in tracking efficiencies between data and MC simulation is found to be 1.0% per track, which is taken as the uncertainty for the tracking efficiency. The photon detection efficiency is studied with a clean sample of J/ψρ0π0J/\psi\rightarrow\rho^{0}\pi^{0} decays [51]. The difference in detection efficiencies between data and the MC simulation is 1.0% per photon. The systematic uncertainty due to the requirement on M(π+π)recoilM(\pi^{+}\pi^{-})_{\rm recoil} is determined to be 0.3% according to the study of ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi, J/ψe+eμ+μJ/\psi\rightarrow e^{+}e^{-}\mu^{+}\mu^{-} decays. The systematic uncertainties associated with the 4C kinematic fit, EotherE_{\rm other} and NtrkN_{\rm trk} (number of charged tracks) requirements are studied with the control sample of ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi, J/ψγηJ/\psi\rightarrow\gamma\eta decays and are determined to be 1.8%, 1.4% and 0.1%, respectively. The uncertainty on the ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi branching fraction is taken from the PDG [39], and the systematic uncertainty due to the number of ψ(3686)\psi(3686) events is determined to be 0.6% by studying inclusive hadronic decays [34, 35]. The multiplicative systematic uncertainty is included in the overall likelihood as a Gaussian nuisance parameter with a width equal to the uncertainty.

TABLE 2: The multiplicative systematic uncertainties. The total systematic uncertainty is obtained by adding all individual uncertainties in quadrature, assuming all sources to be independent.
Source Uncertainty (%)
MDC tracking 2.0
Photon reconstruction 3.0
M(π+π)recoilM(\pi^{+}\pi^{-})_{\rm recoil} requirement 0.3
4C kinematic fit 1.8
EotherE_{\rm other} requirement 1.4
NtrkN_{\rm trk} requirement 0.1
(ψ(3686)π+πJ/ψ)\mathcal{B}(\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi) 0.9
Number of ψ(3686)\psi(3686) 0.6
Total 4.4

6 Result

For each mam_{a} hypothesis, the local significance is determined by 𝒮=sign(Nsig)2ln(max/0)\mathcal{S}=\mathrm{sign}(N_{\mathrm{sig}})\cdot\sqrt{2\ln(\mathcal{L}_{\mathrm{max}}/\mathcal{L}_{0})}, where max\mathcal{L}_{\mathrm{max}} and 0\mathcal{L}_{0} are the likelihood values with and without the signal hypothesis included in the fit, respectively. The fitted signal yields NsigN_{\rm sig} and the corresponding significances are shown in Fig. 4. The largest local significance of 2.6σ2.6\sigma is observed near ma=2.208GeV/c2m_{a}=2.208\,\mbox{GeV}/c^{2}, consistent with the null hypothesis. The fit results for ma=2.208GeV/c2m_{a}=2.208\,\mbox{GeV}/c^{2} are shown in Fig. 3(b).

Since no significant ALP signal is observed, we compute 95% confidence level (CL) upper limits on (J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) as a function of mam_{a} using a one-sided frequentist profile-likelihood method [52]. Then the branching fraction limit is converted to the ALP-photon coupling limit using [29]

gaγγ=(J/ψγa)(J/ψe+e)(1ma2mJ/ψ2)332παemmJ/ψ2,g_{a\gamma\gamma}=\sqrt{\frac{\mathcal{B}(J/\psi\rightarrow\gamma a)}{\mathcal{B}(J/\psi\rightarrow e^{+}e^{-})}(1-\frac{m_{a}^{2}}{m_{J/\psi}^{2}})^{-3}\frac{32\pi\alpha_{\mathrm{em}}}{m_{J/\psi}^{2}}}, (1)

where (J/ψe+e)=(5.971±0.032)%\mathcal{B}(J/\psi\rightarrow e^{+}e^{-})=(5.971\pm 0.032)\% is the world average value from the PDG [39] and αem\alpha_{\mathrm{em}} is the electromagnetic coupling. An additional 0.5% uncertainty arising from the knowledge of (J/ψe+e)\mathcal{B}(J/\psi\rightarrow e^{+}e^{-}) is included when converting (J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) to gaγγg_{a\gamma\gamma}.

\begin{overpic}[width=227.62204pt]{fit_yield_significance.pdf} \end{overpic}
FIG. 4: The distribution of the signal yields NsigN_{\rm sig} (upper plot) and the local significance 𝒮\mathcal{S} (lower plot) obtained from the maximum-likelihood fits as a function of mam_{a}. The vertical gray bands indicate the excluded regions close to the π0\pi^{0}, η\eta, and η\eta^{\prime} masses.

The expected and observed upper limits at 95% CL on (J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) are shown in Fig. 5. The observed limits range from 8.3×1088.3\times 10^{-8} to 1.8×1061.8\times 10^{-6} in the ALP mass region of 0.165ma2.84GeV/c20.165\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2}. The exclusion limits in the ALP-photon coupling gaγγg_{a\gamma\gamma} versus ALP mass mam_{a} plane obtained from this analysis are shown in Fig. 6, together with the constraints of other experiments. Our limits exclude the region in the ALP-photon coupling range gaγγ>3×104GeV1g_{a\gamma\gamma}>3\times 10^{-4}\,\mbox{GeV}^{-1} for an ALP mass mam_{a} around 0.25GeV/c20.25\,\mbox{GeV}/c^{2}, with an improvement by a factor of 2-3 over the previous Belle II measurement [22]. In addition, the constraints on the ALP-photon coupling are the most stringent to date for 0.165ma1.468GeV/c20.165\leq m_{a}\leq 1.468\,\mbox{GeV}/c^{2}.

\begin{overpic}[width=227.62204pt]{expected_observed_BF_UL.pdf} \end{overpic}
FIG. 5: Expected and observed upper limits at 95% CL on (J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a). The black curve is for the data, the black dashed curve represents the expected values and the green (yellow) band represents the ±1σ\pm 1\sigma (±2σ\pm 2\sigma) region.
\begin{overpic}[width=227.62204pt]{ALP_photon_coupling.pdf} \end{overpic}
FIG. 6: Exclusion limits at 95% CL in the ALP-photon coupling gaγγg_{a\gamma\gamma} versus ALP mass mam_{a} plane obtained from this analysis. The constraints from BABAR [19], OPAL [20], Belle II [22], CMS [23], ATLAS [24], PrimEx [14], and beam-dump experiments [15, 16] are also shown. All measurements assume a 100% ALP decay branching fraction into photons.

7 Summary

Based on a data sample of (2.71±0.01)×109(2.71\pm 0.01)\times 10^{9} ψ(3686)\psi(3686) events collected by the BESIII detector, we search for ALPs decaying into two photons produced in J/ψJ/\psi radiative decays using the ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi process. No significant ALP signal is observed and we set 95% CL upper limits on the branching fraction of the decay J/ψγaJ/\psi\rightarrow\gamma a and the ALP-photon coupling gaγγg_{a\gamma\gamma}. The observed limits on (J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) range from 8.3×1088.3\times 10^{-8} to 1.8×1061.8\times 10^{-6} in the ALP mass region of 0.165ma2.84GeV/c20.165\leq m_{a}\leq 2.84\,\mbox{GeV}/c^{2}, and the exclusion limits on the ALP-photon coupling are the most stringent to date for 0.165ma1.468GeV/c20.165\leq m_{a}\leq 1.468\,\mbox{GeV}/c^{2}.

Acknowledgement

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. We thank Jia Liu for the useful suggestions. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; Olle Engkvist Foundation under Contract No. 200-0605; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; STFC (United Kingdom); Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF) under Contract No. 160355; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U.S. Department of Energy under Contract No. DE-FG02-05ER41374

References