This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Screening of nucleon electric dipole moments in atomic systems

Kota Yanase [email protected] Center for Nuclear Study, The University of Tokyo, Hongo Tokyo 113-0033, Japan
Abstract

The electric dipole moments (EDMs) of diamagnetic atoms are expected to be sensitive to charge-parity violation particularly in nuclei through the nuclear Schiff moment. I explicitly demonstrate that the well-known form of the Schiff moment operator originating from the nucleon EDM is obtained by considering the screening of the nucleon EDMs in a neutral atom. Consequently, an additional contribution to the Schiff moment arises from the screening of the nuclear EDM induced by the interaction of the nucleon EDMs with the protons. This correction to the Schiff moment of 199Hg is evaluated in the independent particle model.

I Schiff moment

The observation of a permanent electric dipole moment (EDM) of an atom implies the existence of parity (PP) and time-reversal (TT) violating interactions between constituent particles. The atomic EDM is defined by

𝒅atom=i=1Ze𝒓i,\displaystyle\bm{d}_{\text{atom}}=-\sum_{i=1}^{Z}e\bm{r}_{i}^{\prime}, (1)

where ee is the elementary charge and 𝒓i\bm{r}_{i}^{\prime} indicates the coordinates of the atomic electrons. The interaction of the atomic EDM with an external electric field causes an energy shift to be measured [1, 2].

Although the nuclear EDM and the intrinsic EDMs of electrons and nucleons are independently coupled to the external electric field 𝑬ext\bm{E}_{\text{ext}} as

Vext=[𝒅atom+𝒅nucl+i=1Z𝒅i(e)+a=1A𝒅a]𝑬ext,\displaystyle V_{\text{ext}}=-\left[\bm{d}_{\text{atom}}+\bm{d}_{\text{nucl}}+\sum_{i=1}^{Z}\bm{d}^{(e)}_{i}+\sum_{a=1}^{A}\bm{d}_{a}\right]\!\cdot\!\bm{E}_{\text{ext}}, (2)

they are obscured by the internal interactions with the electrons. Here 𝒅i(e)\bm{d}^{(e)}_{i} and 𝒅a\bm{d}_{a} are the intrinsic EDMs of electrons and nucleons, respectively, and the nuclear EDM is defined by

𝒅nucl=a=1Ze𝒓a,\displaystyle\bm{d}_{\text{nucl}}=\sum_{a=1}^{Z}e\bm{r}_{a}, (3)

where 𝒓a\bm{r}_{a} indicates the proton coordinates. In particular, the energy shift due to the EDM of a point-like nucleus is canceled by the contribution from the atomic EDM induced by the internal interaction of the nuclear EDM with the electrons. However, PP, TT-odd nucleon-nucleon (NNNN) interactions allow a finite-size nucleus to have the nuclear Schiff moment as well as the nuclear EDM. Since the atomic EDM induced by the interaction of the Schiff moment with the electrons survives the screening, the atomic EDMs particularly of diamagnetic atoms are sensitive to PP, TT-odd NNNN interactions [3, 4, 5, 6]. The screening mechanism of the nuclear EDM induced by the PP, TT-odd meson-exchange NNNN (πNN\pi NN) interaction is reviewed in this section.

The Hamiltonian of an atomic system that conserves PP and TT symmetries is written as

Hatom=Hnucl+He,\displaystyle H_{\text{atom}}=H_{\text{nucl}}+H_{e}, (4)
He=Te+V(ee)+Vevenl(eN),\displaystyle H_{e}=T_{e}+V^{(ee)}+V_{\text{even}-l}^{(eN)}, (5)

where HnuclH_{\text{nucl}} denotes PP, TT-even NNNN interactions. The electron kinetic term TeT_{e} and the electron-electron interactions V(ee)V^{(ee)} are not relevant to the nuclear PP, TT violation of interest. The electrostatic interaction between the electrons and the protons is

V(eN)=e2i=1Za=1Z1|𝒓i𝒓a|.\displaystyle V^{(eN)}=-e^{2}\sum_{i=1}^{Z}\sum_{a=1}^{Z}\frac{1}{\left|\bm{r}_{i}^{\prime}-\bm{r}_{a}\right|}. (6)

If ri>rar_{i}^{\prime}>r_{a}, then each term can be expanded as

1|𝒓i𝒓a|\displaystyle\frac{1}{\left|\bm{r}_{i}^{\prime}-\bm{r}_{a}\right|} =l=0(1)ll!(𝒓ai)l1ri.\displaystyle=\sum_{l=0}^{\infty}\frac{(-1)^{l}}{l!}\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}^{l}\frac{1}{r_{i}^{\prime}}. (7)

The atomic Hamiltonian HatomH_{\text{atom}} does not contain the odd-ll electron-nucleon (eNeN) interactions denoted by Voddl(eN)V^{(eN)}_{\text{odd}-l}, which vanish unless PP and TT symmetries are both violated in the nucleus.

The nuclear ground state in the existence of the PP, TT-odd πNN\pi NN interaction V~πNN\widetilde{V}_{\pi NN} is given by

|ψ~g.s.(N)=|ψg.s.(N)\displaystyle\big{|}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{\rangle}=\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}
+n1Eg.s.(N)En(N)|ψn(N)ψn(N)|V~πNN|ψg.s.(N),\displaystyle\quad+\sum_{n}\frac{1}{E^{(N)}_{\text{g.s.}}-E^{(N)}_{n}}\big{|}\psi^{(N)}_{n}\big{\rangle}\big{\langle}\psi^{(N)}_{n}\big{|}\widetilde{V}_{\pi NN}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}, (8)

where Eg.s.(N)E^{(N)}_{\text{g.s.}} and En(N)E^{(N)}_{n} denote the energies of the ground state |ψg.s.(N)\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle} and excited states |ψn(N)\big{|}\psi^{(N)}_{n}\big{\rangle} of the nuclear Hamiltonian HnuclH_{\text{nucl}}, respectively. As well as the atomic EDM is generated by PP, TT-violations in the electron system, the PP, TT-odd πNN\pi NN interaction can induce the nuclear EDM. The external interaction of the nuclear EDM represented in Fig. 1 causes the energy shift

ΔE2(g¯πNN,qN)=ψ~g.s.(N)|𝒅nucl𝑬ext|ψ~g.s.(N),\displaystyle\Delta E_{2}(\overline{g}_{\pi NN},q_{N})=\big{\langle}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{nucl}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{\rangle}, (9)

where the coupling constants g¯πNN\overline{g}_{\pi NN} and qNq_{N} specify the perturbative interactions.

Refer to caption
Refer to caption
Figure 1: (a) The second-order and (b) the third-order contributions of the PP, TT-odd πNN\pi NN interaction V~πNN\widetilde{V}_{\pi NN} to the energy shift of an atom immersed in an external electric field. The black circles represent the PP, TT-odd vertices. The electric charges of proton and electron are denoted by qNq_{N} and qeq_{e}, respectively. The PP, TT-odd πNN\pi NN coupling constant is denoted by g¯πNN\overline{g}_{\pi NN}.

The PP, TT-odd πNN\pi NN interaction also induces the odd-ll eNeN interactions Voddl(eN)V^{(eN)}_{\text{odd}-l}, which violate PP and TT symmetries in the electron system. Consequently, the atomic EDM contributes to the energy shift in third order perturbation as

ΔE3(g¯πNN,qN,qe)=m1Eg.s.(e)Em(e)\displaystyle\Delta E_{3}(\overline{g}_{\pi NN},q_{N},q_{e})=\sum_{m}\frac{1}{E_{\text{g.s.}}^{(e)}-E_{m}^{(e)}}
×ψ~g.s.(A)|𝒅atom𝑬ext|ψ~m(A)ψ~m(A)|Voddl(eN)|ψ~g.s.(A)\displaystyle\quad\times\big{\langle}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\widetilde{\psi}^{(A)}_{m}\big{\rangle}\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}V^{(eN)}_{\text{odd}-l}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
+c.c.\displaystyle\quad+c.c. (10)

This process is represented in Fig. 1. The eigenstates of the atomic system in the existence of the PP, TT-odd πNN\pi NN interaction are expressed except for the Clebsch-Gordan coefficients as

|ψ~g.s.(A)=|ψ~g.s.(N)|ψg.s.(e),\displaystyle\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}=\big{|}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{\rangle}\otimes\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}, (11)
|ψ~m(A)=|ψ~g.s.(N)|ψm(e),\displaystyle\big{|}\widetilde{\psi}^{(A)}_{m}\big{\rangle}=\big{|}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{\rangle}\otimes\big{|}\psi^{(e)}_{m}\big{\rangle}, (12)

where |ψg.s.(e)\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle} and |ψm(e)\big{|}\psi^{(e)}_{m}\big{\rangle} denote the ground state and excited states of the electron system described by HeH_{e} with the energies Eg.s.(e)E^{(e)}_{\text{g.s.}} and Em(e)E^{(e)}_{m}, respectively.

Here I summarize the notations used in this paper. The superscripts (A)(A), (N)(N), and (e)(e) represent the atomic, nuclear, and electron systems, respectively. PP, TT-odd interactions and PP, TT-violated wave functions are denoted by V~\widetilde{V} and |ψ~\big{|}\widetilde{\psi}\big{\rangle}, respectively.

The screening of the nuclear EDM is demonstrated by using a Hermitian operator [7]

Unucl=i1Ze𝒅nucli=1Zi,\displaystyle U_{\text{nucl}}=i\frac{1}{Ze}\left\langle\bm{d}_{\text{nucl}}\right\rangle\!\cdot\!\sum_{i=1}^{Z}\bm{\nabla}_{i}^{\prime}, (13)

where

𝒅nucl=ψ~g.s.(N)|𝒅nucl|ψ~g.s.(N).\displaystyle\left\langle\bm{d}_{\text{nucl}}\right\rangle=\big{\langle}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{|}\bm{d}_{\text{nucl}}\big{|}\widetilde{\psi}^{(N)}_{\text{g.s.}}\big{\rangle}. (14)

The nuclear EDM interactions in Eqs. (9) and (10) are transformed as

ψ~g.s.(A)|𝒅nucl𝑬ext|ψ~g.s.(A)\displaystyle\big{\langle}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{nucl}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
=iψ~g.s.(A)|[Unucl,𝒅atom𝑬ext]|ψ~g.s.(A),\displaystyle\quad=i\big{\langle}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{|}\big{[}U_{\text{nucl}},-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{]}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}, (15)

and

ψ~m(A)|Vl=1(eN)|ψ~g.s.(A)\displaystyle\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}V^{(eN)}_{l=1}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
=iψ~m(A)|[Unucl,Vl=0(eN)]|ψ~g.s.(A)\displaystyle\quad=i\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}\big{[}U_{\text{nucl}},V^{(eN)}_{l=0}\big{]}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
=iψ~m(A)|[Unucl,He]|ψ~g.s.(A)\displaystyle\quad=i\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}\big{[}U_{\text{nucl}},H_{e}\big{]}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
iψ~m(A)|[Unucl,Vl=2(eN)+Vl=4(eN)+]|ψ~g.s.(A).\displaystyle\qquad-i\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}\big{[}U_{\text{nucl}},V^{(eN)}_{l=2}+V^{(eN)}_{l=4}+\cdots\big{]}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}. (16)

The eNeN interactions of a point-like nucleus consist of the l=0,1l=0,1 components, which are explicitly given by

Vl=0(eN)\displaystyle V^{(eN)}_{l=0} =Ze2i=1Z1ri,\displaystyle=-Ze^{2}\sum_{i=1}^{Z}\frac{1}{r_{i}^{\prime}}, (17)
Vl=1(eN)\displaystyle V^{(eN)}_{l=1} =e𝒅nucli=1Zi1ri.\displaystyle=e\bm{d}_{\text{nucl}}\!\cdot\!\sum_{i=1}^{Z}\bm{\nabla}_{i}^{\prime}\frac{1}{r_{i}^{\prime}}. (18)

The last equality in Eq. (16) follows from the fact that the operator UnuclU_{\text{nucl}} commutes with the electron kinetic term TeT_{e} and the interactions between electrons V(ee)V^{(ee)}.

Although the same transformations are realized even if one adopts

Unucl=i1Ze𝒅nucli=1Zi\displaystyle U_{\text{nucl}}^{\prime}=i\frac{1}{Ze}\bm{d}_{\text{nucl}}\!\cdot\!\sum_{i=1}^{Z}\bm{\nabla}_{i}^{\prime} (19)

instead of UnuclU_{\text{nucl}}, the resulting nuclear moment is a more complicated two-body operator than the Schiff moment (24).

Using the transformations (15) and (16), the third-order effect (10) is transformed as

ΔE3(g¯πNN,qN,qe)=ΔE2(g¯πNN,qN)\displaystyle\Delta E_{3}(\overline{g}_{\pi NN},q_{N},q_{e})=-\Delta E_{2}(\overline{g}_{\pi NN},q_{N})
+m1Eg.s.(e)Em(e)\displaystyle\quad+\sum_{m}\frac{1}{E^{(e)}_{\text{g.s.}}-E^{(e)}_{m}}
×[ψg.s.(e)|𝒅atom𝑬ext|ψm(e)ψm(e)|VNSM-1|ψg.s.(e)\displaystyle\qquad\times\Big{[}\big{\langle}\psi^{(e)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\psi^{(e)}_{m}\big{\rangle}\big{\langle}\psi^{(e)}_{m}\big{|}V_{\text{NSM-1}}\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}
+c.c.],\displaystyle\qquad\qquad+c.c.\Big{]}, (20)

where the first term implies the screening of the nuclear EDM. The remaining terms caused by the finite-size effect can be nonzero in the “point-like nucleus limit”, where

i21ri|R0=4πδ(𝒓i).\displaystyle\bm{\nabla}_{i}^{\prime 2}\frac{1}{r_{i}^{\prime}}\Big{|}_{R\rightarrow 0}=-4\pi\delta(\bm{r}_{i}^{\prime}). (21)

Here RR is the nuclear radius.

Considering l3l\leq 3, one obtains

ψm(e)|VNSM-1|ψg.s.(e)\displaystyle\big{\langle}\psi^{(e)}_{m}\big{|}V_{\text{NSM-1}}\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}
=ψ~m(A)|Vl=3(eN)|ψ~g.s.(A)\displaystyle\quad=\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}V^{(eN)}_{l=3}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
iψ~m(A)|[Unucl,Vl=2(eN)]|ψ~g.s.(A)\displaystyle\qquad-i\big{\langle}\widetilde{\psi}^{(A)}_{m}\big{|}\big{[}U_{\text{nucl}},V^{(eN)}_{l=2}\big{]}\big{|}\widetilde{\psi}^{(A)}_{\text{g.s.}}\big{\rangle}
=ψm(e)|4πei=1Z𝑺1iδ(𝒓i)|ψg.s.(e),\displaystyle\quad=\big{\langle}\psi^{(e)}_{m}\big{|}-4\pi e\sum_{i=1}^{Z}\big{\langle}\bm{S}_{1}\big{\rangle}\!\cdot\!\bm{\nabla}_{i}^{\prime}\delta(\bm{r}_{i}^{\prime})\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}, (22)

where the nuclear part is separated from the electron part as explained in Appendix A. The expectation value of the nuclear Schiff moment is given by

𝑺1=\displaystyle\big{\langle}\bm{S}_{1}\big{\rangle}= n1Eg.s.(N)En(N)\displaystyle\sum_{n}\frac{1}{E^{(N)}_{\text{g.s.}}-E^{(N)}_{n}}
×ψg.s.(N)|𝑺1|ψn(N)ψn(N)|V~πNN|ψg.s.(N)\displaystyle\qquad\times\big{\langle}\psi^{(N)}_{\text{g.s.}}\big{|}\bm{S}_{1}\big{|}\psi^{(N)}_{n}\big{\rangle}\big{\langle}\psi^{(N)}_{n}\big{|}\widetilde{V}_{\pi NN}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}
+c.c.\displaystyle+c.c. (23)

The explicit form of the Schiff moment operator is

S1,k=e10a=1Z[ra2ra,k53ra,kr2ch43ra,jQjkch],\displaystyle S_{1,k}=\frac{e}{10}\sum_{a=1}^{Z}\bigg{[}r_{a}^{2}r_{a,k}-\frac{5}{3}r_{a,k}\left\langle r^{2}\right\rangle_{\text{ch}}-\frac{4}{3}r_{a,j}\left\langle Q_{jk}\right\rangle_{\text{ch}}\bigg{]}, (24)

where the charge mean values are defined by

r2ch=1Za=1Zψg.s.(N)|ra2|ψg.s.(N)\displaystyle\left\langle r^{2}\right\rangle_{\text{ch}}=\frac{1}{Z}\sum_{a=1}^{Z}\big{\langle}\psi^{(N)}_{\text{g.s.}}\big{|}r_{a}^{2}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle} (25)
Qjkch=1Za=1Zψg.s.(N)|Qa,jk|ψg.s.(N),\displaystyle\left\langle Q_{jk}\right\rangle_{\text{ch}}=\frac{1}{Z}\sum_{a=1}^{Z}\big{\langle}\psi^{(N)}_{\text{g.s.}}\big{|}Q_{a,jk}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}, (26)

and

Qa(2)=32[𝒓a𝒓a](2)\displaystyle Q^{(2)}_{a}=\sqrt{\frac{3}{2}}\big{[}\bm{r}_{a}\otimes\bm{r}_{a}\big{]}^{(2)} (27)

is the quadrupole moment of proton. Since the PP, TT-odd πNN\pi NN interaction is scalar, only the zz-component SzS_{z} can have nonzero values. The third term of the Schiff moment operator (24) must vanish in spin 12\frac{1}{2} nuclei including 199Hg.

In conclusion of this section, the leading order contribution from the PP, TT-odd πNN\pi NN interaction is given by

ΔE2(g¯πNN,qN)+ΔE3(g¯πNN,qN,qe)\displaystyle\Delta E_{2}(\overline{g}_{\pi NN},q_{N})+\Delta E_{3}(\overline{g}_{\pi NN},q_{N},q_{e})
=m1Eg.s.(e)Em(e)\displaystyle\quad=\sum_{m}\frac{1}{E^{(e)}_{\text{g.s.}}-E^{(e)}_{m}}
×ψg.s.(e)|𝒅atom𝑬ext|ψm(e)ψm(e)|VNSM-1|ψg.s.(e)\displaystyle\qquad\times\big{\langle}\psi^{(e)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\psi^{(e)}_{m}\big{\rangle}\big{\langle}\psi^{(e)}_{m}\big{|}V_{\text{NSM-1}}\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}
+c.c.\displaystyle\qquad+c.c. (28)

This result implies that the interaction of the Schiff moment with the electrons denoted by VNSM-1V_{\text{NSM-1}} induces the atomic EDM that survives the screening. The third-order process is illustrated in Fig. 2.

Refer to caption
Figure 2: Schematic illustration of how the PP, TT-odd πNN\pi NN interaction V~πNN\widetilde{V}_{\pi NN} induces the atomic EDM 𝒅atom\bm{d}_{\text{atom}}. The PP, TT-odd πNN\pi NN interaction induces the nuclear Schiff moment as well as the nuclear EDM. The interaction of the nuclear Schiff moment with the electrons VNSM-1V_{\text{NSM-1}} violates PP and TT symmetries both in the nucleus and in the electron system. Finally, the PP, TT violation in the electron system generates the atomic EDM.

The Schiff moments S1S_{1} of actinide nuclei would be enhanced thanks to octupole correlations and the parity doubling of the ground states [8]. It is expected from recent nuclear many-body calculations [9, 10, 11, 12] that the Schiff moment of 225Ra is greater than that of 199Hg by orders of magnitude, although the uncertainty is still large.

II Nucleon EDM

There are several attempts to identify the leading order contribution from the intrinsic EDMs of nucleons to the atomic EDM. In particular, the Schiff moment of 199Hg that originates from the nucleon EDM was computed in the random phase approximation [13]. Using their result, an upper bound on the neutron EDM was evaluated from the experimental limit on the atomic EDM as dn<1.6×1026ecmd_{n}<1.6\times 10^{-26}e\text{cm} [14, *Graner2017-erratum]. This constraint is competitive with a recent direct measurement dn<1.8×1026ecmd_{n}<1.8\times 10^{-26}e\text{cm} [16]. On the other hand, it was claimed that the nucleon EDMs in a neutral atom are completely screened [17, 18]. In this section, I demonstrate that the screening of the nucleon EDMs is incomplete in the point-like nucleus limit.

Figure 3 represents the direct coupling of the nucleon EDMs to the external electric field. This first-order contribution is given by

ΔE1(dN)=a=1Aψg.s.(N)|𝒅a𝑬ext|ψg.s.(N),\displaystyle\Delta E_{1}\big{(}d_{N}\big{)}=\sum_{a=1}^{A}\big{\langle}\psi^{(N)}_{\text{g.s.}}\big{|}-\bm{d}_{a}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}, (29)

where 𝒅a\bm{d}_{a} denotes the nucleon EDMs.

The internal interaction of the nucleon EDMs with the electrons

V~(eN¯)\displaystyle\widetilde{V}^{(e\overline{N})} =ei=1Za=1A𝒅ai1|𝒓i𝒓a|\displaystyle=e\sum_{i=1}^{Z}\sum_{a=1}^{A}\bm{d}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\frac{1}{\left|\bm{r}_{i}^{\prime}-\bm{r}_{a}\right|} (30)

violate PP and TT symmetries in the electron system. Thus, the induced atomic EDM contributes to the energy shift in second order perturbation as

ΔE2(dN,qe)=m1Eg.s.(e)Em(e)\displaystyle\Delta E_{2}\big{(}d_{N},q_{e}\big{)}=\sum_{m}\frac{1}{E^{(e)}_{\text{g.s.}}-E^{(e)}_{m}}
×ψg.s.(A)|𝒅atom𝑬ext|ψm(A)ψm(A)|V~evenl(eN¯)|ψg.s.(A)\displaystyle\quad\times\big{\langle}\psi^{(A)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\psi^{(A)}_{m}\big{\rangle}\big{\langle}\psi^{(A)}_{m}\big{|}\widetilde{V}^{(e\overline{N})}_{\text{even}-l}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}
+c.c.\displaystyle\quad+c.c. (31)

This process is represented in Fig. 3. The internal interaction (30), which is expanded for ri>rar_{i}^{\prime}>r_{a} as

𝒅ai1|𝒓i𝒓a|\displaystyle\bm{d}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\frac{1}{\left|\bm{r}_{i}^{\prime}-\bm{r}_{a}\right|} =l=0(1)ll!(𝒓ai)l𝒅ai1ri,\displaystyle=\sum_{l=0}^{\infty}\frac{(-1)^{l}}{l!}\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}^{l}\bm{d}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\frac{1}{r_{i}^{\prime}}, (32)

is restricted to the even-ll components because PP and TT symmetries are not violated in the nuclear system.

The ground state and excited states of the atomic Hamiltonian HatomH_{\text{atom}} without PP, TT-odd interactions are expressed as

|ψg.s.(A)=|ψg.s.(N)|ψg.s.(e),\displaystyle\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}=\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}\otimes\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}, (33)
|ψm(A)=|ψg.s.(N)|ψm(e),\displaystyle\big{|}\psi^{(A)}_{m}\big{\rangle}=\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}\otimes\big{|}\psi^{(e)}_{m}\big{\rangle}, (34)

respectively.

Refer to caption
Refer to caption
Figure 3: The external interaction of (a) the nucleon EDMs and (b) the atomic EDM induced by the interaction of the nucleon EDMs with the electrons. The vertices with dNd_{N} indicate the interactions of the nucleon EDM.

I introduce a Hermitian operator

UN=i1Zei=1Za=1A𝒅ai,\displaystyle U_{N}=i\frac{1}{Ze}\sum_{i=1}^{Z}\sum_{a=1}^{A}\left\langle\bm{d}_{a}\right\rangle\!\cdot\!\bm{\nabla}_{i}^{\prime}, (35)

where in contrast to 𝒅nucl\langle\bm{d}_{\text{nucl}}\rangle in Eq. (13),

𝒅a=ψg.s.(N)|𝒅a|ψg.s.(N)\displaystyle\left\langle\bm{d}_{a}\right\rangle=\big{\langle}\psi^{(N)}_{\text{g.s.}}\big{|}\bm{d}_{a}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle} (36)

is the expectation value in the ground state of HnuclH_{\text{nucl}} conserving PP and TT symmetries. The external interaction of the nucleon EDMs (29) is transformed as

a=1Aψg.s.(A)|𝒅a𝑬ext|ψg.s.(A)\displaystyle\sum_{a=1}^{A}\big{\langle}\psi^{(A)}_{\text{g.s.}}\big{|}-\bm{d}_{a}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}
=iψg.s.(A)|[UN,𝒅atom𝑬ext]|ψg.s.(A).\displaystyle\quad=i\big{\langle}\psi^{(A)}_{\text{g.s.}}\big{|}\big{[}U_{N},-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{]}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}. (37)

The l=0l=0 component of the internal interaction (30), which is explicitly given by

V~l=0(eN¯)=ei=1Za=1A𝒅ai1ri,\displaystyle\widetilde{V}^{(e\overline{N})}_{l=0}=e\sum_{i=1}^{Z}\sum_{a=1}^{A}\bm{d}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\frac{1}{r_{i}^{\prime}}, (38)

is transformed as

ψm(A)|V~l=0(eN¯)|ψg.s.(A)\displaystyle\big{\langle}\psi^{(A)}_{m}\big{|}\widetilde{V}^{(e\overline{N})}_{l=0}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}
=iψm(A)|[UN,Vl=0(eN)]|ψg.s.(A)\displaystyle\quad=i\big{\langle}\psi^{(A)}_{m}\big{|}\big{[}U_{N},V^{(eN)}_{l=0}\big{]}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}
=iψm(A)|[UN,He]|ψg.s.(A)\displaystyle\quad=i\big{\langle}\psi^{(A)}_{m}\big{|}\big{[}U_{N},H_{e}\big{]}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}
iψm(A)|[UN,Vl=2(eN)+Vl=4(eN)+]|ψg.s.(A),\displaystyle\qquad-i\big{\langle}\psi^{(A)}_{m}\big{|}\big{[}U_{N},V^{(eN)}_{l=2}+V^{(eN)}_{l=4}+\cdots\big{]}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}, (39)

where [UN,Te]=0[U_{N},T_{e}]=0 and [UN,V(ee)]=0[U_{N},V^{(ee)}]=0 are used. Substituting (39) into (31), one can find

ΔE1(dN)+ΔE2(dN,qe)\displaystyle\Delta E_{1}\big{(}d_{N}\big{)}+\Delta E_{2}\big{(}d_{N},q_{e}\big{)}
=m1Eg.s.(e)Em(e)\displaystyle\quad=\sum_{m}\frac{1}{E^{(e)}_{\text{g.s.}}-E^{(e)}_{m}}
×ψg.s.(e)|𝒅atom𝑬ext|ψm(e)ψm(e)|V~NSM-2|ψg.s.(e)\displaystyle\qquad\times\big{\langle}\psi^{(e)}_{\text{g.s.}}\big{|}-\bm{d}_{\text{atom}}\!\cdot\!\bm{E}_{\text{ext}}\big{|}\psi^{(e)}_{m}\big{\rangle}\big{\langle}\psi^{(e)}_{m}\big{|}\widetilde{V}_{\text{NSM-2}}\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}
+c.c.\displaystyle\qquad+c.c. (40)

The right-hand side vanishes for a point-like nucleus, where the eNeN interactions in Eqs. (6) and (30) are restricted to l1l\leq 1. The complete screening of a point-like nucleus is valid even if the nucleons are relativistic [19].

Refer to caption
Figure 4: The leading order contribution of the nucleon EDMs to the atomic EDM 𝒅atom\bm{d}_{\text{atom}}. The PP, TT-odd eNeN interaction due to the finite-size effect V~NSM-2\widetilde{V}_{\text{NSM-2}} appears in the point-like nucleus limit.

The remaining second-order process in Eq. (40) is illustrated in Fig. 4. In the point-like nucleus limit, the finite-size effect is given up to l=2l=2 by

ψm(e)|V~NSM-2|ψg.s.(e)\displaystyle\big{\langle}\psi^{(e)}_{m}\big{|}\widetilde{V}_{\text{NSM-2}}\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}
=ψm(A)|V~l=2(eN¯)|ψg.s.(A)iψm(A)|[UN,Vl=2(eN)]|ψg.s.(A)\displaystyle\quad=\big{\langle}\psi^{(A)}_{m}\big{|}\widetilde{V}^{(e\overline{N})}_{l=2}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}-i\big{\langle}\psi^{(A)}_{m}\big{|}\Big{[}U_{N},V^{(eN)}_{l=2}\Big{]}\big{|}\psi^{(A)}_{\text{g.s.}}\big{\rangle}
=ψm(e)|4πei=1Z𝑺2iδ(𝒓i)|ψg.s.(e),\displaystyle\quad=\big{\langle}\psi^{(e)}_{m}\big{|}-4\pi e\sum_{i=1}^{Z}\big{\langle}\bm{S}_{2}\big{\rangle}\!\cdot\!\bm{\nabla}_{i}^{\prime}\delta(\bm{r}_{i}^{\prime})\big{|}\psi^{(e)}_{\text{g.s.}}\big{\rangle}, (41)

as derived in Appendix B. The nuclear moment 𝑺2\bm{S}_{2} is also called the Schiff moment, and given by

S2,k\displaystyle S_{2,k} =16a=1Ada,k(ra2r2ch)\displaystyle=\frac{1}{6}\sum_{a=1}^{A}d_{a,k}\big{(}r_{a}^{2}-\big{\langle}r^{2}\big{\rangle}_{\text{ch}}\big{)}
+215a=1Ada,j(Qa,jkQjkch).\displaystyle\quad+\frac{2}{15}\sum_{a=1}^{A}d_{a,j}\big{(}Q_{a,jk}-\big{\langle}Q_{jk}\big{\rangle}_{\text{ch}}\big{)}. (42)

Using the independent particle model (IPM) [12], one obtains

S2(Hg199)=2.8dn(fm2),\displaystyle S_{2}\left({}^{199}\text{Hg}\right)=2.8d_{n}\,(\text{fm}^{2}), (43)

which is consistent with the previous evaluation [8] S22.2dn(fm2)S_{2}\simeq 2.2d_{n}\,(\text{fm}^{2}). This quantity was calculated as S2=(1.895±0.035)dn(fm2)S_{2}=(1.895\pm 0.035)d_{n}\,(\text{fm}^{2}) in the random phase approximation [13].

III Next-to-leading order contribution of nucleon EDM

As discussed in Sec. II, the atomic EDM is sensitive to the Schiff moment S2S_{2}, which stems from the screening effect of the nucleon EDMs themselves. In addition to the nucleon EDMs, the nuclear EDM is independently coupled to the external electric field as shown in Eq. (2). The nuclear EDM is induced not only by the πNN\pi NN interaction but also by the interaction between the nucleon EDMs and the protons

V~(NN¯)\displaystyle\widetilde{V}^{(N\overline{N})} =edpabZ𝝈a(𝒓b𝒓a)|𝒓b𝒓a|3\displaystyle=ed_{p}\sum_{a\neq b}^{Z}\frac{\bm{\sigma}_{a}\!\cdot\!(\bm{r}_{b}-\bm{r}_{a})}{\left|\bm{r}_{b}-\bm{r}_{a}\right|^{3}}
+ednb=1Za=1N𝝈a(𝒓b𝒓a)|𝒓b𝒓a|3.\displaystyle\quad+ed_{n}\sum_{b=1}^{Z}\sum_{a=1}^{N}\frac{\bm{\sigma}_{a}\!\cdot\!(\bm{r}_{b}-\bm{r}_{a})}{\left|\bm{r}_{b}-\bm{r}_{a}\right|^{3}}. (44)
Refer to caption
Refer to caption
Figure 5: (a) The second-order and (b) the third-order contributions of the interactions between the nucleon EDMs and the protons.

A similar argument as in Sec. I shows that this contribution represented in Fig. 5 is screened by the third-order processes represented in Fig. 5. The finite-size effect leads to the next-to-leading order contribution of the nucleon EDM to the Schiff moment

𝑺3=n1Eg.s.(N)En(N)\displaystyle\big{\langle}\bm{S}_{3}\big{\rangle}=\sum_{n}\frac{1}{E^{(N)}_{\text{g.s.}}-E^{(N)}_{n}}
×ψg.s.(N)|𝑺3|ψn(N)ψn(N)|V~(NN¯)|ψg.s.(N)\displaystyle\qquad\qquad\times\big{\langle}\psi^{(N)}_{\text{g.s.}}\big{|}\bm{S}_{3}\big{|}\psi^{(N)}_{n}\big{\rangle}\big{\langle}\psi^{(N)}_{n}\big{|}\widetilde{V}^{(N\overline{N})}\big{|}\psi^{(N)}_{\text{g.s.}}\big{\rangle}
+c.c.,\displaystyle\qquad\quad+c.c., (45)

where the operator 𝑺3\bm{S}_{3} is the same as 𝑺1\bm{S}_{1}. This correction is evaluated as

S3(Hg199)=0.15dn(fm2)\displaystyle S_{3}\left({}^{199}\text{Hg}\right)=-0.15d_{n}\,(\text{fm}^{2}) (46)

in the IPM.

IV Conclusion

I have examined the screening of the intrinsic EDMs of nucleons and the nuclear EDM in a neutral atom. In the point-like nucleus limit, the Schiff moment of a finite-size nucleus induces the atomic EDM that circumvents the screening. The total Schiff moment is given by

S=S1+S2+S3,\displaystyle S=S_{1}+S_{2}+S_{3}, (47)

where S2S_{2} and S3S_{3} are due to the nucleon EDM. The nucleon EDM contributions provide constraints on the short-range component, whereas the PP, TT-odd πNN\pi NN interaction contributes to the nucleon EDM in the leading order chiral perturbation theory [20, *Crewther1980-erratum, 22, 2].

The leading order contribution S2S_{2} stems from the screening of the nucleon EDMs themselves. The nuclear EDM is induced by the interaction of the nucleon EDMs with the protons as well as the PP, TT-odd πNN\pi NN interaction. The screening of the nuclear EDM gives rise to the next-to-leading order contribution to the Schiff moment S3S_{3}. This correction to the Schiff moment of 199Hg is of the order of 5%5\% in the IPM. Here, nuclear octupole correlations would enhance S3S_{3} as well as S1S_{1}, which is induced by the πNN\pi NN interaction, by orders of magnitude. Consequently, the dependence of the Schiff moment on the nucleon EDM can be dominated by S3S_{3} rather than S2S_{2} in octupole deformed nuclei.

Appendix A Schiff moment due to the PP, TT-odd πNN\pi NN interaction

The Schiff moment operator 𝑺1\bm{S}_{1} is defined by the matrix elements of the remaining eNeN interaction

Vl=3(eN)i[Unucl,Vl=2(eN)]\displaystyle V^{(eN)}_{l=3}-i\big{[}U_{\text{nucl}},V^{(eN)}_{l=2}\big{]}
=16e2i=1Za=1Z(𝒓ai)31ri\displaystyle\quad=\frac{1}{6}e^{2}\sum_{i=1}^{Z}\sum_{a=1}^{Z}\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}^{3}\frac{1}{r_{i}^{\prime}}
e2Zi=1Za=1Z(𝒓ai)2𝒅nucli1ri.\displaystyle\qquad-\frac{e}{2Z}\sum_{i=1}^{Z}\sum_{a=1}^{Z}\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}^{2}\left\langle\bm{d}_{\text{nucl}}\right\rangle\!\cdot\!\bm{\nabla}_{i}^{\prime}\frac{1}{r_{i}^{\prime}}. (48)

The nuclear part can be separated as

(𝒓ai)3=35ra2(𝒓ai)i2+25Qa(3)i(3),\displaystyle\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}^{3}=\frac{3}{5}r_{a}^{2}\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}\bm{\nabla}_{i}^{\prime 2}+\frac{2}{5}Q_{a}^{(3)}\!\cdot\!\nabla_{i}^{\prime(3)}, (49)

and

(𝒓ai)2𝒅nucli\displaystyle\big{(}\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\big{)}^{2}\left\langle\bm{d}_{\text{nucl}}\right\rangle\!\cdot\!\bm{\nabla}_{i}^{\prime}
=13ra2𝒅nuclii2\displaystyle\quad=\frac{1}{3}r_{a}^{2}\left\langle\bm{d}_{\text{nucl}}\right\rangle\!\cdot\!\bm{\nabla}_{i}^{\prime}\bm{\nabla}_{i}^{\prime 2}
2325[𝒅nuclQa(2)](1)ii2\displaystyle\qquad-\frac{2}{3}\sqrt{\frac{2}{5}}\Big{[}\left\langle\bm{d}_{\text{nucl}}\right\rangle\otimes Q_{a}^{(2)}\Big{]}^{(1)}\!\cdot\!\bm{\nabla}_{i}^{\prime}\bm{\nabla}_{i}^{\prime 2}
215[𝒅nuclQa(2)](3)i(3),\displaystyle\qquad-\frac{2}{\sqrt{15}}\Big{[}\left\langle\bm{d}_{\text{nucl}}\right\rangle\otimes Q_{a}^{(2)}\Big{]}^{(3)}\!\cdot\!\nabla_{i}^{\prime(3)}, (50)

where

Qa(3)=52[[𝒓a𝒓a](2)𝒓a](3)\displaystyle Q_{a}^{(3)}=\sqrt{\frac{5}{2}}\Big{[}\big{[}\bm{r}_{a}\otimes\bm{r}_{a}\big{]}^{(2)}\otimes\bm{r}_{a}\Big{]}^{(3)} (51)

is the nuclear octupole moment and

i(3)=52[[ii](2)i](3)\displaystyle\nabla_{i}^{\prime(3)}=\sqrt{\frac{5}{2}}\Big{[}\big{[}\bm{\nabla}_{i}^{\prime}\otimes\bm{\nabla}_{i}^{\prime}\big{]}^{(2)}\otimes\bm{\nabla}_{i}^{\prime}\Big{]}^{(3)} (52)

is a rank 3 operator of electron. Since the last terms in Eqs. (49) and (50) can be omitted [8], Eq. (48) is rewritten as

Vl=3(eN)i[Unucl,Vl=2(eN)]\displaystyle V^{(eN)}_{l=3}-i\big{[}U_{\text{nucl}},V^{(eN)}_{l=2}\big{]}
=110ei=1Za=1Z[era2𝒓a53Zra2𝒅nucl\displaystyle\quad=\frac{1}{10}e\sum_{i=1}^{Z}\sum_{a=1}^{Z}\bigg{[}er_{a}^{2}\bm{r}_{a}-\frac{5}{3Z}r_{a}^{2}\left\langle\bm{d}_{\text{nucl}}\right\rangle
+23Z10[𝒅nuclQa(2)](1)]ii21ri.\displaystyle\qquad+\frac{2}{3Z}\sqrt{10}\Big{[}\left\langle\bm{d}_{\text{nucl}}\right\rangle\otimes Q_{a}^{(2)}\Big{]}^{(1)}\bigg{]}\!\cdot\!\bm{\nabla}_{i}^{\prime}\bm{\nabla}_{i}^{\prime 2}\frac{1}{r_{i}^{\prime}}. (53)

In the point-like nucleus limit, R0R\rightarrow 0, one then obtain the Schiff moment interaction VNSM-1V_{\text{NSM-1}} in Eq. (22).

Appendix B Leading order contribution of nucleon EDM

The PP, TT-odd interactions between the nucleon EDMs and the electrons in Eq. (40) are written as

V~l=2(eN¯)i[UN,Vl=2(eN)]\displaystyle\widetilde{V}_{l=2}^{(e\overline{N})}-i\left[U_{N},V_{l=2}^{(eN)}\right]
=12ei=1Za=1A(𝒓ai)2𝒅ai1ri\displaystyle\quad=\frac{1}{2}e\sum_{i=1}^{Z}\sum_{a=1}^{A}(\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime})^{2}\bm{d}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime}\frac{1}{r_{i}^{\prime}}
e2i=1Za=1Z(𝒓ai)2𝒅Nch1ri,\displaystyle\qquad-\frac{e}{2}\sum_{i=1}^{Z}\sum_{a=1}^{Z}(\bm{r}_{a}\!\cdot\!\bm{\nabla}_{i}^{\prime})^{2}\left\langle\bm{d}_{N}\right\rangle_{\text{ch}}\!\cdot\!\bm{\nabla}^{\prime}\frac{1}{r_{i}^{\prime}}, (54)

where

𝒅Nch=1Za=1A𝒅a.\displaystyle\left\langle\bm{d}_{N}\right\rangle_{\text{ch}}=\frac{1}{Z}\sum_{a=1}^{A}\big{\langle}\bm{d}_{a}\big{\rangle}. (55)

The nuclear part can be separated by using Eq. (50). In the point-like nucleus limit, one obtains the Schiff moment interaction V~NSM-2\widetilde{V}_{\text{NSM-2}} in Eq. (41).

Acknowledgements.
This research was supported by MEXT as “Program for Promoting Researches on the Supercomputer Fugaku” (Simulation for basic science: from fundamental laws of particles to creation of nuclei) and JICFuS. I used the shell-model code KSHELL [23] to obtain the nuclear wave function of 199Hg in the IPM. I acknowledge Noritaka Shimizu for helpful discussions.

References

  • Khriplovich and Lamoreaux [1997] I. B. Khriplovich and S. Lamoreaux, CPCP Violation without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules (Springer-Verlag, Berlin, 1997).
  • Chupp et al. [2019] T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91, 015001 (2019).
  • Schiff [1963] L. I. Schiff, Measurability of nuclear electric dipole moments, Phys. Rev. 132, 2194 (1963).
  • Sushkov et al. [1984] O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Possibility of investigating PP- and TT-odd nuclear forces in atomic and molecular experiments, Zh. Eksp. Teor. Fiz. 87, 1521 (1984).
  • Spevak et al. [1997] V. Spevak, N. Auerbach, and V. V. Flambaum, Enhanced TT-odd, PP-odd electromagnetic moments in reflection asymmetric nuclei, Phys. Rev. C 56, 1357 (1997).
  • Liu et al. [2007] C.-P. Liu, M. J. Ramsey-Musolf, W. C. Haxton, R. G. E. Timmermans, and A. E. L. Dieperink, Atomic electric dipole moments: The Schiff theorem and its corrections, Phys. Rev. C 76, 035503 (2007).
  • Sen’kov et al. [2008] R. A. Sen’kov, N. Auerbach, V. V. Flambaum, and V. G. Zelevinsky, Reexamination of the Schiff theorem, Phys. Rev. A 77, 014101 (2008).
  • Ginges and Flambaum [2004] J. S. M. Ginges and V. V. Flambaum, Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Phys. Rep. 397, 63 (2004).
  • Engel et al. [2003] J. Engel, M. Bender, J. Dobaczewski, J. H. de Jesus, and P. Olbratowski, Time-reversal violating Schiff moment of 225Ra, Phys. Rev. C 68, 025501 (2003).
  • Dobaczewski and Engel [2005] J. Dobaczewski and J. Engel, Nuclear Time-Reversal Violation and the Schiff Moment of Ra225{}^{225}\mathrm{Ra}Phys. Rev. Lett. 94, 232502 (2005).
  • Dobaczewski et al. [2018] J. Dobaczewski, J. Engel, M. Kortelainen, and P. Becker, Correlating Schiff Moments in the Light Actinides with Octupole Moments, Phys. Rev. Lett. 121, 232501 (2018).
  • Yanase and Shimizu [2020] K. Yanase and N. Shimizu, Large-scale shell-model calculations of nuclear Schiff moments of Xe129{}^{129}\mathrm{Xe} and Hg199{}^{199}\mathrm{Hg}Phys. Rev. C 102, 065502 (2020).
  • Dmitriev and Sen’kov [2003] V. F. Dmitriev and R. A. Sen’kov, Schiff Moment of the Mercury Nucleus and the Proton Dipole Moment, Phys. Rev. Lett. 91, 212303 (2003).
  • Graner et al. [2016] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Reduced Limit on the Permanent Electric Dipole Moment of Hg199{}^{199}\mathrm{Hg}Phys. Rev. Lett. 116, 161601 (2016).
  • Graner et al. [2017] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Phys. Rev. Lett. 119, 119901(E) (2017).
  • Abel et al. [2020] C. Abel, S. Afach, N. J. Ayres, C. A. Baker, G. Ban, G. Bison, K. Bodek, V. Bondar, M. Burghoff, E. Chanel, Z. Chowdhuri, P.-J. Chiu, B. Clement, C. B. Crawford, M. Daum, S. Emmenegger, L. Ferraris-Bouchez, M. Fertl, P. Flaux, B. Franke, A. Fratangelo, P. Geltenbort, K. Green, W. C. Griffith, M. van der Grinten, Z. D. Grujić, P. G. Harris, L. Hayen, W. Heil, R. Henneck, V. Hélaine, N. Hild, Z. Hodge, M. Horras, P. Iaydjiev, S. N. Ivanov, M. Kasprzak, Y. Kermaidic, K. Kirch, A. Knecht, P. Knowles, H.-C. Koch, P. A. Koss, S. Komposch, A. Kozela, A. Kraft, J. Krempel, M. Kuźniak, B. Lauss, T. Lefort, Y. Lemière, A. Leredde, P. Mohanmurthy, A. Mtchedlishvili, M. Musgrave, O. Naviliat-Cuncic, D. Pais, F. M. Piegsa, E. Pierre, G. Pignol, C. Plonka-Spehr, P. N. Prashanth, G. Quéméner, M. Rawlik, D. Rebreyend, I. Rienäcker, D. Ries, S. Roccia, G. Rogel, D. Rozpedzik, A. Schnabel, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, R. Tavakoli Dinani, J. A. Thorne, R. Virot, J. Voigt, A. Weis, E. Wursten, G. Wyszynski, J. Zejma, J. Zenner, and G. Zsigmond, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124, 081803 (2020).
  • Oshima et al. [2007] S. Oshima, T. Fujita, and T. Asaga, Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms, Phys. Rev. C 75, 035501 (2007).
  • Fujita and Oshima [2012] T. Fujita and S. Oshima, Electric dipole moments of neutron-odd nuclei, J. Phys. G: Nucl. Part. Phys. 39, 095106 (2012).
  • Liu and Engel [2007] C.-P. Liu and J. Engel, Schiff screening of relativistic nucleon electric-dipole moments by electrons, Phys. Rev. C 76, 028501 (2007).
  • Crewther et al. [1979] R. J. Crewther, P. D. Vecchia, G. Veneziano, and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88, 123 (1979).
  • Crewther et al. [1980] R. J. Crewther, P. D. Vecchia, G. Veneziano, and E. Witten, Phys. Lett. B 91, 487 (1980).
  • Yamanaka et al. [2017] N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi, and B. P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation, Eur. Phys. J. 53, 54 (2017).
  • Shimizu et al. [2019] N. Shimizu, T. Mizusaki, Y. Utsuno, and Y. Tsunoda, Thick-restart block Lanczos method for large-scale shell-model calculations, Comput. Phys. Commun. 244, 372 (2019).