This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Scaling laws for concentration-gradient-driven electrolyte transport through a 2D membrane

Holly C. M. Baldock    David M. Huang [email protected] Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
Abstract

Two-dimensional (2D) nanomaterials exhibit unique properties that are promising for diverse applications, including those relevant to concentration-gradient-driven transport of electrolyte solutions through porous membranes made from these materials, such as water desalination, osmotic power, and iontronics. Here we derive general equations, and determine scaling laws in the thick and thin electric-double-layer limits, that quantify the variation of the concentration-gradient-driven flow rate, solute flux and electric current with the pore radius, surface charge density and Debye screening length for the transport of a dilute electrolyte solution through a circular aperture in an infinitesimally thin planar membrane. We also determine scaling laws for the electric-field-driven flow rate in the thin electric-double-layer limit in the same geometry. We show that these scaling laws accurately capture the scaling relationships from finite-element numerical simulations within the Debye–Hückel regime, and extend the theory to obtain scaling laws in the thin electric-double-layer limit that hold even when the electric potential energy is large compared with the thermal energy. These scaling laws indicate unusual behavior for concentration-gradient-driven flow in a 2D membrane that is not seen in thicker membranes, which has broad implications for liquid transport through membranes whose thickness comparable to, or smaller than, their pore size.

I Introduction

Electrolyte transport through porous membranes is central to many applications,Siwy, Bruening, and Howorka (2023); Marbach and Bocquet (2019) such as water desalination,DuChanois et al. (2021) energy harvesting from salinity gradients (osmotic power or "blue energy"), DuChanois et al. (2021); Zhang, Wen, and Jiang (2021); Siria, Bocquet, and Bocquet (2017); Rankin and Huang (2016) energy storage, Aluru et al. (2023); Pomerantseva et al. (2019) nanopore-based sensing,Siwy, Bruening, and Howorka (2023); Ying et al. (2022) and biomimetic ion-based information processing and storage (iontronics).Robin, Kavokine, and Bocquet (2021); Robin and Bocquet (2023); Kamsma et al. (2024); Gkoupidenis et al. (2024) Membranes made from two-dimensional (2D) nanomaterials, including graphene and molybdenum disulfide (MoS2), exhibit unique properties compared with conventional membranes Sahu and Zwolak (2019) that are of practical interest for applications such as desalination,Zhang et al. (2022); Pakulski et al. (2020); Surwade et al. (2015) osmotic power, Pakulski et al. (2020); Macha et al. (2019); Feng et al. (2016) sensing,Venkatesan and Bashir (2011) and iontronics.Robin et al. (2023) For example, exceptionally high osmotic power densities observed in single-layer MoS2 membranesFeng et al. (2016) and a 2D nanoporous polymer membraneCheng et al. (2023) have been partially attributed to the large concentration gradients that occur across these ultrathin membranes, which are up to several orders of magnitude larger than those for conventional membranes.

Despite the great promise of 2D membranes, significant knowledge gaps exist about the fluid-transport processes that govern applications. Most of the applications mentioned above, such as desalination and osmotic power, are underpinned by transport processes driven or modulated by electrolyte concentration gradients. Furthermore, in nanopore-based sensing, use of a salt gradient along with an applied electric field has been shown to improve measurement sensitivity significantly over an electric field alone.Wanunu et al. (2010) Nevertheless, although equations have been derived previously to quantify the pressure-driven flow of a pure liquid,Sampson (1891); Heiranian, Taqieddin, and Aluru (2020) the electric-field-driven solution flux Mao, Sherwood, and Ghosal (2014) and electric current of an electrolyte,Hall (1975); Lee et al. (2012) and the concentration-gradient-driven solution and solute fluxes of a solution containing a neutral solute through a 2D membrane,Rankin, Bocquet, and Huang (2019) no theory to date has quantified the relationships between the concentration-gradient-driven fluid fluxes of an electrolyte solution through a 2D membrane and relevant membrane and electrolyte properties. The development of such a theory would aid the predictive design of 2D membranes that are optimized for applications.

Of particular interest is understanding the parameters that control the process of diffusioosmosis, the net flow of a solution with respect to a surface due to a concentration gradient. Diffusioosmosis is responsible for the exceptionally high osmotic power densities measured in boron nitride nanotubes,Siria et al. (2013) and has been invoked to explain even higher osmotic power densities measured for 2D MoS2 membranes,Feng et al. (2016) as well as hitherto unexplained discrepancies between the ionic conductance driven by concentration gradients and electric fields for graphene and MoS2 membranes.Macha et al. (2019)

A better understanding of fluid transport through 2D membranes has significance that extends well beyond 2D membranes to thicker membranes, since fluid transport into (and out of) the pores of a thick membrane from (and to) the fluid outside strongly resembles transport through a 2D membrane (Fig. 1) and thus can be described by similar theories. For pressure-induced fluid flow Sisan and Lichter (2011) and electric-field-induced ionic currents Lee et al. (2012) through a pore in a finite-thickness membrane, the flow resistance due to the pore ends has been shown to be well described by the resistance of a 2D membrane. The influence of the pore ends to fluid transport through membranes, known as "entrance effects", becomes dominant as the membrane thickness approaches the pore size,Mao, Sherwood, and Ghosal (2014); Melnikov, Hulings, and Gracheva (2017) which occurs for nanoporous membranes at thicknesses significantly above the atomic scale, or when the flow resistance of the membrane is small, which is the case for carbon nanotube membranes due to their high interfacial slip.Sisan and Lichter (2011); Rankin and Huang (2016) To date, many theoretical models of fluid transport involving concentration gradients in porous media have only considered the flow inside the pores and have neglected entrance effects.Fair and Osterle (1971); Prieve (1982); Lavi and Green (2024); Bonthuis et al. (2011)

In this work, we derive general equations that quantify the variation of the concentration-gradient-driven flow rate, solute flux and electric current as functions of the pore radius, surface charge density and Debye screening length for transport of a dilute electrolyte solution through a circular aperture in an infinitesimally thin planar membrane, as well as the scaling laws of the electric-field-driven flow rate in the thin electric-double-layer limit in the same geometry. From these novel equations, whose accuracy we verify by comparison with finite-element numerical simulations in the Debye–Hückel regime, we determine the underlying scaling laws that govern the concentration-gradient-driven fluxes in the thick and thin electric-double-layer limits. We also determine the parameters that dictate the scaling of the fluxes with surface charge density and electrolyte concentration in simulations both inside and outside the Debye–Hückel regime when the width of the electric double layer in smaller than the pore radius. Using these relationships, we extend the analytical theory to outside the Debye–Hückel regime and determine general scaling laws for the fluxes as a function of surface charge density, pore size and electrolyte concentration in the thin electric-double-layer limit.

II Theory

This derivation takes a similar approach to that of Ref. 29 for the concentration-gradient-driven transport of a solution containing a neutral solute through an ultra-thin membrane; however, a more rigorous consideration of a perturbation expansion is considered here to decouple the contributions due to the applied concentration gradient and induced electric field gradient in the case of an electrolyte solution. For low-Reynolds-number steady-state transport of a dilute electrolyte solution and assuming that the system can be described by continuum hydrodynamics, the governing equations areProbstein (1994)

ϵϵ02ψ+ρ\displaystyle\epsilon\epsilon_{0}\nabla^{2}\psi+\rho =0,\displaystyle=0, (1)
pρψ+η2𝒖\displaystyle-\nabla p-\rho\nabla\psi+\eta\nabla^{2}\bm{u} =0,\displaystyle=0, (2)
𝒋i=[c(i)𝒖Dic(i)Zieμic(i)ψ]\displaystyle\nabla\cdot\bm{j}_{i}=\nabla\cdot\left[c^{(i)}\bm{u}-D_{i}\nabla c^{(i)}-Z_{i}e\mu_{i}c^{(i)}\nabla\psi\right] =0,\displaystyle=0, (3)
𝒖\displaystyle\nabla\cdot\bm{u} =0,\displaystyle=0, (4)

where ψ\psi is the electric potential, ρ=eiZic(i)\rho=e\sum_{i}Z_{i}c^{(i)} is the total ionic charge density, 𝒖\bm{u} is the solution velocity, pp is the pressure, η\eta is the solution shear viscosity, and 𝒋i\bm{j}_{i}, c(i)c^{(i)}, ZiZ_{i}, DiD_{i} and μi\mu_{i} are the flux density, concentration, valence, diffusivity and mobility, respectively, of species ii. Moreover, ee is the elementary charge, ϵ\epsilon is the dielectric constant of the medium (taken to be water here) and ϵ0\epsilon_{0} is the vacuum permittivity. At the membrane surface, we assume that the solution velocity and ion fluxes satisfy the no-slip (𝒖=0\bm{u}=0) and zero flux (𝒏^𝒋i=0\bm{\hat{n}}\cdot\bm{j}_{i}=0) boundary conditions, where 𝒏^\bm{\hat{n}} is the unit vector normal to the surface.

We consider fluid flow through a circular aperture of radius aa in an infinitesimally thin planar wall, as illustrated in Fig. 1, induced by a concentration difference Δc(i)=cH(i)cL(i)\Delta c^{(i)}=c_{\mathrm{H}}^{(i)}-c_{\mathrm{L}}^{(i)} between the two sides of the membrane, where charge neutrality in the bulk solution in each reservoir requires that iZicH/L(i)=0\sum_{i}Z_{i}c^{(i)}_{\mathrm{H/L}}=0. The pressure far from the pore is the same on both sides, i.e., pH=pLp_{\mathrm{H}}=p_{\mathrm{L}}. Analogous to Ref. 29, we assume without loss of generality that the ion concentration in the presence of a concentration gradient for an oblate-spheroidal (ζ\zeta, ν\nu, ϕ\phi) coordinate system has the form

c(i)(ζ,ν)=cs(i)(ζ,ν)exp(Zieψ(ζ,ν)kBT),c^{(i)}(\zeta,\nu)=c_{\mathrm{s}}^{(i)}(\zeta,\nu)\exp{\left(-\frac{Z_{i}e\psi(\zeta,\nu)}{k_{\mathrm{B}}T}\right)}, (5)

where cs(i)(ζ,ν)c_{\mathrm{s}}^{(i)}(\zeta,\nu) is to be determined. We can relate ζ\zeta and ν\nu to a cylindrical coordinate system by r=a(1+ν2)(1ζ2)r=a\sqrt{(1+\nu^{2})(1-\zeta^{2})} in the radial direction and z=aνζz=a\nu\zeta in the axial direction, for which 0ζ10\leq\zeta\leq 1, <ν<-\infty<\nu<\infty, and 0ϕ<2π0\leq\phi<2\pi.Rankin, Bocquet, and Huang (2019); Morse and Feshbach (1953a)

Refer to caption
Figure 1: Schematic of flow of a solution through a circular aperture of radius aa in an infinitesimally thin planar wall with surface charge density σ\sigma. cH(i)c_{\mathrm{H}}^{(i)} is the concentration of species ii, pHp_{\mathrm{H}} is the pressure and ψH\psi_{\mathrm{H}} is electric potential far from the membrane in the higher solute-concentration reservoir, and cL(i)c_{\mathrm{L}}^{(i)} is the concentration of species ii, pLp_{\mathrm{L}} is the pressure and ψL\psi_{\mathrm{L}} is electric potential far from the membrane in the lower solute-concentration reservoir. QQ, JJ and II are the flow rate, total solute flux and electric current, respectively. ζ\zeta and ν\nu are oblate–spheroidal coordinates; contours of constant ζ\zeta and ν\nu are shown as dashed lines and unit vectors are shown at one point in space.

We assume that DiD_{i} and μi\mu_{i} are related by the Einstein relation Probstein (1994) μi=DikBT\mu_{i}=\frac{D_{i}}{k_{\mathrm{B}}T}, where kBk_{\mathrm{B}} is the Boltzmann constant and TT is the temperature. Non-dimensionalizing the velocity, electric potential, concentrations, spatial gradients, ion diffusivities and ion flux densities according to 𝒖=ϵϵ0ηa(kBTe)2𝒖^\bm{u}=\frac{\epsilon\epsilon_{0}}{\eta a}(\frac{k_{\mathrm{B}}T}{e})^{2}\hat{\bm{u}}, c(i)=cc^(i)c^{(i)}=c_{\infty}\hat{c}^{(i)}, ψ=kBTeψ^\psi=\frac{k_{\mathrm{B}}T}{e}\hat{\psi}, =^a\nabla=\frac{\hat{\nabla}}{a}, D^i=D0D^i\hat{D}_{i}=D_{0}\hat{D}_{i} and 𝒋i=D0c(i)𝒋^ia\bm{j}_{i}=\frac{D_{0}c_{\infty}^{(i)}\hat{\bm{j}}_{i}}{a}, respectively, we can write the ion flux density in Eq. (3) as

𝒋^i=Pec(i)𝒖D^i[^c(i)+Zic(i)^ψ^],\hat{\bm{j}}_{i}=\mathrm{Pe}\ c^{(i)}\bm{u}-\hat{D}_{i}\left[\hat{\nabla}c^{(i)}+Z_{i}c^{(i)}\hat{\nabla}\hat{\psi}\right], (6)

where Pe=ϵϵ0ηD0(kBTe)2\mathrm{Pe}=\frac{\epsilon\epsilon_{0}}{\eta D_{0}}(\frac{k_{\mathrm{B}}T}{e})^{2} is the Péclet number, Mao, Sherwood, and Ghosal (2014) D0D_{0} is a characteristic diffusivity, c=1Nic(i)c_{\infty}=\frac{1}{N}\sum_{i}c_{\infty}^{(i)} is the average bulk concentration of the electrolyte solution containing NN species, and c(i)=(cH(i)+cL(i))/2c_{\infty}^{(i)}=(c_{\mathrm{H}}^{(i)}+c_{\mathrm{L}}^{(i)})/2 is the average bulk concentration of species ii. Assuming that advection of the solute is negligible compared with diffusion (Pe1\mathrm{Pe}\ll 1), Eq. (6) reduces to

𝒋^i=D^i[^c^(i)+Zic^(i)^ψ^].\hat{\bm{j}}_{i}=-\hat{D}_{i}\left[\hat{\nabla}\hat{c}^{(i)}+Z_{i}\hat{c}^{(i)}\hat{\nabla}\hat{\psi}\right]. (7)

From Eqs. (5) and (7),

𝒋^i=D^ieZiψ^^c^s(i),\hat{\bm{j}}_{i}=-\hat{D}_{i}e^{-Z_{i}\hat{\psi}}\hat{\nabla}\hat{c}_{\mathrm{s}}^{(i)}, (8)

where cs(i)=cc^s(i)c_{\mathrm{s}}^{(i)}=c_{\infty}\hat{c}_{\mathrm{s}}^{(i)}. Inserting Eq. (8) into Eq. (3) and using the Debye–Hückel approximation, |Ziψ^|1|Z_{i}\hat{\psi}|\ll 1, gives

^𝒋^i=D^i^[(1Ziψ^)^c^s(i)]=0.\hat{\nabla}\cdot\hat{\bm{j}}_{i}=-\hat{D}_{i}\hat{\nabla}\cdot\left[\left(1-Z_{i}\hat{\psi}\right)\hat{\nabla}\hat{c}_{\mathrm{s}}^{(i)}\right]=0. (9)

We assume that each system variable can be represented by a perturbation expansion with respect to the equilibrium value, where β1\beta\ll 1 is a dimensionless quantity that characterizes the perturbation due to the applied concentration difference. Hence, to first order

𝒖\displaystyle\bm{u} =β𝒖1,\displaystyle=\beta\bm{u}_{1}, (10)
cs(i)\displaystyle c_{\mathrm{s}}^{(i)} =cs0(i)+βcs1(i),\displaystyle=c_{\mathrm{s}_{0}}^{(i)}+\beta c_{\mathrm{s}_{1}}^{(i)}, (11)
ψ\displaystyle\psi =ψ0+βψ1,\displaystyle=\psi_{0}+\beta\psi_{1}, (12)
p\displaystyle p =p0+βp1,\displaystyle=p_{0}+\beta p_{1}, (13)

where 𝒖0=𝟎\bm{u}_{0}=\bm{0}, since there is no net flow at equilibrium, and cs0(i)=c(i)c_{\mathrm{s}_{0}}^{(i)}=c_{\infty}^{(i)}. Expanding to O(β)O(\beta) and assuming negligible contributions due to Ziψ^0Z_{i}\hat{\psi}_{0} (i.e., a small equilibrium electric potential), Eq. (9) reduces to

^2c^s1(i)=0,\hat{\nabla}^{2}\hat{c}_{\mathrm{s}_{1}}^{(i)}=0, (14)

where 𝒏^^c^s1(i)=0\bm{\hat{n}}\cdot\hat{\nabla}\hat{c}_{\mathrm{s}_{1}}^{(i)}=0 on the membrane surface. The boundary conditions far from the membrane are c(i)cH(i)=c(i)+Δci2c^{(i)}\rightarrow c_{\mathrm{H}}^{(i)}=c_{\infty}^{(i)}+\frac{\Delta c_{i}}{2} and c(i)cL(i)=c(i)Δci2c^{(i)}\rightarrow c_{\mathrm{L}}^{(i)}=c_{\infty}^{(i)}-\frac{\Delta c_{i}}{2} in the upper and lower half planes, respectively, and ψ0\psi\rightarrow 0; hence, βc^s1(i)±Δc^i2\beta\hat{c}_{\mathrm{s}_{1}}^{(i)}\rightarrow\pm\frac{\Delta\hat{c}_{i}}{2} far from the membrane surface in the upper and lower half planes, respectively. Solving Eq. (14) subject to the boundary conditions on c^s1(i)\hat{c}_{\mathrm{s}_{1}}^{(i)} gives Morse and Feshbach (1953b)

βc^s1(i)(ζ,ν)=Δc^iπtan1ν,\beta\hat{c}_{\mathrm{s}_{1}}^{(i)}(\zeta,\nu)=\frac{\Delta\hat{c}_{i}}{\pi}\tan^{-1}{\nu}, (15)

which is analogous to the result for a neutral solute.Rankin, Bocquet, and Huang (2019)

Summing Eq. (8) over ii for a binary ZZ:ZZ electrolyte, where Z+=Z=ZZ_{+}=-Z_{-}=Z, Δc+=Δc=Δc\Delta c_{+}=\Delta c_{-}=\Delta c, c+=c=cc_{\infty}^{+}=c_{\infty}^{-}=c_{\infty} and cs+=cs=csc^{+}_{\mathrm{s}}=c^{-}_{\mathrm{s}}=c_{\mathrm{s}}, we can write the re-dimensionalized total ion flux density 𝒋=𝒋++𝒋\bm{j}=\bm{j}_{+}+\bm{j}_{-} and electric current density 𝒋e=e(Z+𝒋++Z𝒋)\bm{j}_{\mathrm{e}}=e(Z_{+}\bm{j}_{+}+Z_{-}\bm{j}_{-}), expanded up to O(β)O(\beta) for Ze|ψ|kBTZe|\psi|\ll k_{\mathrm{B}}T, as

𝒋=βcs1\displaystyle\bm{j}=-\beta\nabla c_{\mathrm{s}_{1}} {(D++D)[1+12(Zeψ0kBT)2]\displaystyle\left\{(D_{+}+D_{-})\left[1+\frac{1}{2}\left(\frac{Ze\psi_{0}}{k_{\mathrm{B}}T}\right)^{2}\right]\right.
(D+D)(Zeψ0kBT)}\displaystyle-\left.(D_{+}-D_{-})\left(\frac{Ze\psi_{0}}{k_{\mathrm{B}}T}\right)\right\} (16)

and

𝒋e=βZecs1[(D++D)(Zeψ0kBT)(D+D)],\bm{j}_{\mathrm{e}}=\beta Ze\nabla c_{\mathrm{s}_{1}}\left[(D_{+}+D_{-})\left(\frac{Ze\psi_{0}}{k_{\mathrm{B}}T}\right)-(D_{+}-D_{-})\right], (17)

respectively. The total solute flux JJ and electric current II induced by the concentration difference across the membrane can be obtained from the surface integrals of the total ion flux density and electric current density, respectively, over the pore aperture;Rankin, Bocquet, and Huang (2019) i.e.,

J\displaystyle J =SdS𝒏^𝒋,\displaystyle=\iint_{S}\mathrm{d}S\,\bm{\hat{n}}\cdot\bm{j}, (18)
I\displaystyle I =SdS𝒏^𝒋e,\displaystyle=\iint_{S}\mathrm{d}S\,\bm{\hat{n}}\cdot\bm{j}_{\mathrm{e}}, (19)

where 𝒏^=𝝂^\bm{\hat{n}}=\bm{\hat{\nu}} is the unit vector normal to the pore mouth. Inserting Eq. (II) into Eq. (18) and evaluating the integral at the pore mouth (ν=0)(\nu=0) gives

J=a(D++D)\displaystyle J=-a(D_{+}+D_{-}) {2Δc+ϵϵ0Δlnc(λD)201dζ[(ψ0|ν=0)22kBT\displaystyle\left\{2\Delta c+\frac{\epsilon\epsilon_{0}\Delta\ln c}{(\lambda_{\mathrm{D}}^{\infty})^{2}}\int^{1}_{0}\mathrm{d}\zeta\,\left[\frac{(\psi_{0}|_{\nu=0})^{2}}{2k_{\mathrm{B}}T}\right.\right.
(D+DD++D)ψ0|ν=0Ze]},\displaystyle-\left.\left.\left(\frac{D_{+}-D_{-}}{D_{+}+D_{-}}\right)\frac{\psi_{0}|_{\nu=0}}{Ze}\right]\right\}, (20)

where Δc/c=(cHcL)/cΔlnc\Delta c/c_{\infty}=(c_{\mathrm{H}}-c_{\mathrm{L}})/c_{\infty}\approx\Delta\ln c in the surface contributions to the fluxes at small Δc\Delta c, and

λD=ϵϵ0kBT2(Ze)2c\lambda_{\mathrm{D}}^{\infty}=\sqrt{\frac{\epsilon\epsilon_{0}k_{\mathrm{B}}T}{2(Ze)^{2}c_{\infty}}} (21)

is the equilibrium (i.e., in the absence of a concentration difference Δc\Delta c) Debye screening length of a ZZ:ZZ electrolyte. Probstein (1994) The first term in Eq. (II) is the bulk contribution to the total solute flux, J(0)J^{(0)}. Inserting Eq. (17) into Eq. (19) and integrating over the pore mouth gives

I=\displaystyle I= 2a(D+D)zeΔc\displaystyle-2a(D_{+}-D_{-})ze\Delta c
+a(D++D)ϵϵ0Δlnc(λD)201dζψ0|ν=0,\displaystyle+a(D_{+}+D_{-})\frac{\epsilon\epsilon_{0}\Delta\ln c}{(\lambda_{\mathrm{D}}^{\infty})^{2}}\int^{1}_{0}\mathrm{d}\zeta\,\psi_{0}|_{\nu=0}, (22)

where the first term is the bulk contribution to the electric current, I(0)I^{(0)}. The O(ψ0|ν=0)O(\psi_{0}|_{\nu=0}) term in Eq. (II) and the bulk contribution to Eq. (II) are negligible when the electric field in the pore mouth induced by the difference in ion diffusivities is small. Since the bulk and surface terms in the total solute flux and electric current have different dependencies on the concentration difference, it is not possible to define a single transport coefficient for the total flux; hence, we define the surface contributions δJ=JJ(0)\delta J=J-J^{(0)} and δI=II(0)\delta I=I-I^{(0)}.

For the related problem of electroosmosis through a circular aperture, it has previously been shown using the reciprocal theorem Happel and Brenner (1983); Mao, Sherwood, and Ghosal (2014) that

Q=1ΔpVdV𝒖¯𝑭,Q=-\frac{1}{\Delta p}\iiint_{V}\mathrm{d}V\,\bm{\bar{u}}\cdot\bm{F}, (23)

where 𝒖¯\bm{\bar{u}} is the fluid velocity induced by a pressure difference Δp=pHpL\Delta p=p_{\mathrm{H}}-p_{\mathrm{L}} in the same system geometry for Δc=0\Delta c=0, 𝑭\bm{F} is the electric body force in the Stokes equation (Eq. (2)), and the integral is over the volume occupied by the fluid. The analytical solution for the pressure-driven flow velocity in this geometry is Rankin, Bocquet, and Huang (2019)

𝒖¯=aζ2Δp2πη(1+ν2)(ν2+ζ2)𝝂^.\bm{\bar{u}}=-\frac{a\zeta^{2}\Delta p}{2\pi\eta\sqrt{(1+\nu^{2})(\nu^{2}+\zeta^{2})}}\bm{\hat{\nu}}. (24)

For a binary electrolyte, the electric body force 𝑭\bm{F} is

𝑭=ρψ=e(Z+c++Zc)ψ.\bm{F}=-\rho\nabla\psi=-e(Z_{+}c^{+}+Z_{-}c^{-})\nabla\psi. (25)

Inserting Eq. (5) for c±c^{\pm} into Eq. (25) and assuming Ze|ψ|kBTZe|\psi|\ll k_{\mathrm{B}}T and a ZZ:ZZ electrolyte gives

ρψ=(Ze)2kBTcsψ2,-\rho\nabla\psi=\frac{(Ze)^{2}}{k_{\mathrm{B}}T}c_{\mathrm{s}}\nabla\psi^{2}, (26)

where Zesinh(ZeψkBT)ψ=kBTcosh(ZeψkBT)(Ze)22kBTψ2Ze\sinh(\frac{Ze\psi}{k_{\mathrm{B}}T})\nabla\psi=k_{\mathrm{B}}T\nabla\cosh(\frac{Ze\psi}{k_{\mathrm{B}}T})\approx\frac{(Ze)^{2}}{2k_{\mathrm{B}}T}\nabla\psi^{2}. Since there is zero fluid velocity at equilibrium, expanding Eq. (26) to O(β)O(\beta) gives

ρ1ψ0ρ0ψ1\displaystyle-\rho_{1}\nabla\psi_{0}-\rho_{0}\nabla\psi_{1} =(Ze)2kBT[cs1ψ02+2c(ψ0ψ1)]\displaystyle=\frac{(Ze)^{2}}{k_{\mathrm{B}}T}\left[c_{\mathrm{s}_{1}}\nabla\psi_{0}^{2}+2c_{\infty}\nabla(\psi_{0}\psi_{1})\right]
=(ϵϵ0(λD)2ψ0ψ1)+ϵϵ02(λD)2cs1cψ02.\displaystyle=\nabla\left(\frac{\epsilon\epsilon_{0}}{(\lambda_{\mathrm{D}}^{\infty})^{2}}\psi_{0}\psi_{1}\right)+\frac{\epsilon\epsilon_{0}}{2(\lambda_{\mathrm{D}}^{\infty})^{2}}\frac{c_{\mathrm{s}_{1}}}{c_{\infty}}\nabla\psi_{0}^{2}. (27)

In the absence of an applied electric field, ψ10\psi_{1}\rightarrow 0 far from the membrane surface. Hence, there is no net contribution from (ϵϵ0(λD)2ψ0ψ1)\nabla\left(\frac{\epsilon\epsilon_{0}}{(\lambda_{\mathrm{D}}^{\infty})^{2}}\psi_{0}\psi_{1}\right) to the total volumetric flow rate in Eq. (23). By inserting Eq. (15) for cs1c_{\mathrm{s}_{1}} into Eq. (II), we can write the electric body force as

𝑭=ϵϵ02(λD)2Δlncπtan1νψ02.\bm{F}=\frac{\epsilon\epsilon_{0}}{2(\lambda_{\mathrm{D}}^{\infty})^{2}}\frac{\Delta\ln c}{\pi}\tan^{-1}\nu\nabla\psi_{0}^{2}. (28)

Inserting Eqs. (28) and (24) into Eq. (23) gives

Q\displaystyle Q =a3ϵϵ0Δlnc2πη(λD)201dζζ2dνtan1ν(ψ02)ν\displaystyle=\frac{a^{3}\epsilon\epsilon_{0}\Delta\ln c}{2\pi\eta(\lambda_{\mathrm{D}}^{\infty})^{2}}\int^{1}_{0}\mathrm{d}\zeta\,\zeta^{2}\int^{\mathrm{\infty}}_{-\mathrm{\infty}}\mathrm{d}\nu\,\tan^{-1}\nu\frac{\partial(\psi_{0}^{2})}{\partial\nu}
=a3ϵϵ0Δlncπη(λD)201dζζ20dνψ021+ν2\displaystyle=-\frac{a^{3}\epsilon\epsilon_{0}\Delta\ln c}{\pi\eta(\lambda_{\mathrm{D}}^{\infty})^{2}}\int^{1}_{0}\mathrm{d}\zeta\,\zeta^{2}\int^{\mathrm{\infty}}_{0}\mathrm{d}\nu\,\frac{\psi_{0}^{2}}{1+\nu^{2}} (29)

as the total flow rate, by integrating by parts in the second step.

II.1 Limiting cases and scaling behavior

Letting ψ0=aσϵϵ0ψ~0\psi_{0}=\frac{a\sigma}{\epsilon\epsilon_{0}}\tilde{\psi}_{0}, the flow rate and surface contributions to the solute flux and electric current with respect to the dimensionless variable ψ~0\tilde{\psi}_{0} are

Q=a5σ2Δlncπηϵϵ0(λD)201dζζ20dνψ~021+ν2,Q=-\frac{a^{5}\sigma^{2}\Delta\ln c}{\pi\eta\epsilon\epsilon_{0}(\lambda_{\mathrm{D}}^{\infty})^{2}}\int^{1}_{0}\mathrm{d}\zeta\,\zeta^{2}\int^{\mathrm{\infty}}_{0}\mathrm{d}\nu\,\frac{\tilde{\psi}_{0}^{2}}{1+\nu^{2}}, (30)
δJ=\displaystyle\delta J= (D++D)a2|σ|ΔlncZe(λD)2[alGC01dζ(ψ~0|ν=0)2\displaystyle-\frac{(D_{+}+D_{-})a^{2}|\sigma|\Delta\ln c}{Ze(\lambda_{\mathrm{D}}^{\infty})^{2}}\left[\frac{a}{l_{\mathrm{GC}}}\int^{1}_{0}\mathrm{d}\zeta\ (\tilde{\psi}_{0}|_{\nu=0})^{2}\right.
sgn(σ)(D+DD++D)01dζψ~0|ν=0]\displaystyle-\left.\text{sgn}(\sigma)\left(\frac{D_{+}-D_{-}}{D_{+}+D_{-}}\right)\int^{1}_{0}\mathrm{d}\zeta\,\tilde{\psi}_{0}|_{\nu=0}\right] (31)

and

δI=(D++D)a2σΔlnc(λD)201dζψ~0|ν=0,\delta I=\frac{(D_{+}+D_{-})a^{2}\sigma\Delta\ln c}{(\lambda_{\mathrm{D}}^{\infty})^{2}}\int^{1}_{0}\mathrm{d}\zeta\,\tilde{\psi}_{0}|_{\nu=0}, (32)

where

lGC=2ϵϵ0kBTZe|σ|l_{\mathrm{GC}}=\frac{2\epsilon\epsilon_{0}k_{\mathrm{B}}T}{Ze|\sigma|} (33)

is the Gouy–Chapman length for a ZZ:ZZ electrolyte.Probstein (1994) The analytical solution for the dimensionless equilibrium electric potential for Ze|ψ|kBTZe|\psi|\ll k_{\mathrm{B}}T in this geometryMao, Sherwood, and Ghosal (2014) is

ψ~0=\displaystyle\tilde{\psi}_{0}= 0dsJ1(s)J0(r^s)(a/λD)2+s2ez^(a/λD)2+s2\displaystyle-\int^{\mathrm{\infty}}_{0}\mathrm{d}s\,\frac{J_{1}(s)J_{0}(\hat{r}s)}{\sqrt{(a/\lambda_{\mathrm{D}}^{\infty})^{2}+s^{2}}}e^{-\hat{z}\sqrt{(a/\lambda_{\mathrm{D}}^{\infty})^{2}+s^{2}}}
+e(a/λD)z^(a/λD),\displaystyle+\frac{e^{-(a/\lambda_{\mathrm{D}}^{\infty})\hat{z}}}{(a/\lambda_{\mathrm{D}}^{\infty})}, (34)

where z^=z/a\hat{z}=z/a and r^=r/a\hat{r}=r/a are the dimensionless cylindrical coordinates, and J0J_{0} and J1J_{1} are Bessel functions of the first kind. The surface and volume integrals in Eqs. (30)–(32) have thus been reduced to dimensionless functions that depend on a/λDa/\lambda_{\mathrm{D}}^{\infty} only.

II.1.1 Thick electric double layer

When the Debye screening length is much larger than the pore radius (λDa\lambda_{\mathrm{D}}^{\infty}\gg a), the potential at the membrane surface is approximately constant and equal to the potential at a planar surface everywhere. Inserting the expression ψ~0λD/a\tilde{\psi}_{0}\approx\lambda_{\mathrm{D}}^{\infty}/a obtained from Eq. (II.1) in this limit into Eqs. (30)–(32) gives the scaling laws

Q\displaystyle Q a3σ2Δlnc,\displaystyle\propto a^{3}\sigma^{2}\Delta\ln c, (35)
δJ\displaystyle\delta J aσ2Δlnc,\displaystyle\propto a\sigma^{2}\Delta\ln c, (36)
δI\displaystyle\delta I aσλDΔlnc,\displaystyle\propto\frac{a\sigma}{\lambda_{\mathrm{D}}^{\infty}}\Delta\ln c, (37)

where we have assumed that the O(ψ~0)O(\tilde{\psi}_{0}) term in Eq. (II.1) is negligibly small. We show that this assumption is valid for λD/lGC|D+D|D++D\lambda_{\mathrm{D}}^{\infty}/l_{\mathrm{GC}}\gg\frac{|D_{+}-D_{-}|}{D_{+}+D_{-}} in Sec. LABEL:sec:delJ of the supplementary material. For simulations of potassium chloride (KCl) with average bulk concentrations of 0.30.3, 33 and 3030 mol m-3 (see Sec. III.1), this condition holds for |σ|0.04|\sigma|\gg 0.04, 0.120.12 and 0.360.36 mC m-2, respectively.

II.1.2 Thin electric double layer

Let us assume that the equilibrium electric potential can be approximated as decaying exponentially with the distance dd from the membrane surface over the equilibrium Debye screening length λD\lambda_{\mathrm{D}}^{\infty}. When the Debye screening length is much smaller than the pore radius (λDa\lambda_{\mathrm{D}}^{\infty}\ll a), the potential also decays rapidly in space. Thus, we assume for simplicity that the equilibrium electric potential is approximately equal to the potential at the surface within a distance of λD\lambda_{\mathrm{D}}^{\infty} from the surface and is zero elsewhere.

The full analytical expression for the flow rate considers the strength of the electric potential everywhere, but for thin electric double layers, it is reasonable to ignore contributions to the flow rate from ion interactions with the pore edge (rar\leq a). For r>ar>a, where daνζd\approx a\nu\zeta and ν>ζ\nu>\zeta when dλDad\leq\lambda_{\mathrm{D}}^{\infty}\ll a,Rankin, Bocquet, and Huang (2019) we assume that the dimensionless surface potential is approximately that at a planar surface, i.e. ψ~0(d)λD/a\tilde{\psi}_{0}(d)\approx\lambda_{\mathrm{D}}^{\infty}/a for d<λDd<\lambda_{\mathrm{D}}^{\infty}. Since the rate of exponential decay is doubled when ψ~0\tilde{\psi}_{0} is squared, we assume that (ψ~0(d))20(\tilde{\psi}_{0}(d))^{2}\approx 0 when dλD/2d\geq\lambda_{\mathrm{D}}^{\infty}/2. Thus, the integral in Eq. (30) can be approximated in the λDa\lambda_{\mathrm{D}}^{\infty}\ll a limit as

01dζ\displaystyle\int^{1}_{0}\mathrm{d}\zeta\, ζ20dν(ψ~0)21+ν2\displaystyle\zeta^{2}\int^{\mathrm{\infty}}_{0}\mathrm{d}\nu\,\frac{(\tilde{\psi}_{0})^{2}}{1+\nu^{2}}
(λDa)201dζζ2ζdνH(λD/2aνζ)1+ν2\displaystyle\approx\left(\frac{\lambda_{\mathrm{D}}^{\infty}}{a}\right)^{2}\int^{1}_{0}\mathrm{d}\zeta\,\zeta^{2}\int^{\mathrm{\infty}}_{\zeta}\mathrm{d}\nu\,\frac{H(\lambda_{\mathrm{D}}^{\infty}/2-a\nu\zeta)}{1+\nu^{2}}
18(λDa)4,\displaystyle\approx\frac{1}{8}\left(\frac{\lambda_{\mathrm{D}}^{\infty}}{a}\right)^{4}, (38)

where H(x)H(x) is the Heaviside function and we have used the solution to an analogous integral derived in Ref. 29. Inserting Eq. (38) into Eq. (30), we find in this limit that

Qa(λD)2σ2Δlnc.Q\propto a(\lambda_{\mathrm{D}}^{\infty})^{2}\sigma^{2}\Delta\ln c. (39)

For the total solute flux and electric current, we only need to consider the region inside the pore mouth (r<a(r<a, ν=0)\nu=0), where daζ2/2d\approx a\zeta^{2}/2 is the distance from the pore edge when λDa\lambda_{\mathrm{D}}^{\infty}\ll a and we take the surface potential to be the potential at the pore edge in this limit, i.e. ψ~0(d)λD/(2a)\tilde{\psi}_{0}(d)\approx\lambda_{\mathrm{D}}^{\infty}/(2a) for d<λDd<\lambda_{\mathrm{D}}^{\infty} (see Sec. LABEL:sec:epot of the supplementary material for details of the derivation). The surface integral of ψ~0\tilde{\psi}_{0} over the pore aperture can thus be approximated as

01dζψ~0|ν=0\displaystyle\int^{1}_{0}\mathrm{d}\zeta\,\tilde{\psi}_{0}|_{\nu=0} λD2a01dζH(2λDaζ)\displaystyle\approx\frac{\lambda_{\mathrm{D}}^{\infty}}{2a}\int^{1}_{0}\mathrm{d}\zeta\,H\left(\sqrt{\frac{2\lambda_{\mathrm{D}}^{\infty}}{a}}-\zeta\right)
=12(λDa)32.\displaystyle=\frac{1}{\sqrt{2}}\left(\frac{\lambda_{\mathrm{D}}^{\infty}}{a}\right)^{\frac{3}{2}}. (40)

On the other hand, assuming (ψ~0(d))20(\tilde{\psi}_{0}(d))^{2}\approx 0 when dλD/2d\geq\lambda_{\mathrm{D}}^{\infty}/2 since the rate of decay is doubled when ψ~0\tilde{\psi}_{0} is squared,

01dζ(ψ~0|ν=0)2\displaystyle\int^{1}_{0}\mathrm{d}\zeta\,(\tilde{\psi}_{0}|_{\nu=0})^{2} (λD2a)201dζH(λDaζ)\displaystyle\approx\left(\frac{\lambda_{\mathrm{D}}^{\infty}}{2a}\right)^{2}\int^{1}_{0}\mathrm{d}\zeta\,H\left(\sqrt{\frac{\lambda_{\mathrm{D}}^{\infty}}{a}}-\zeta\right)
=14(λDa)52.\displaystyle=\frac{1}{4}\left(\frac{\lambda_{\mathrm{D}}^{\infty}}{a}\right)^{\frac{5}{2}}. (41)

Inserting Eqs. (40) and (41) into Eqs. (II.1) and (32), respectively, gives the scaling relationships

δJ\displaystyle\delta J (aλD)12σ2Δlnc\displaystyle\propto\left(a\lambda_{\mathrm{D}}^{\infty}\right)^{\frac{1}{2}}\sigma^{2}\Delta\ln c (42)
δI\displaystyle\delta I (aλD)12σΔlnc\displaystyle\propto\left(\frac{a}{\lambda_{\mathrm{D}}^{\infty}}\right)^{\frac{1}{2}}\sigma\Delta\ln c (43)

in this limit, where we verify that Eqs. (38), (40) and (41) are suitable approximations for the full expressions of the fluxes for thin electric double layers in Sec. LABEL:sec:epot of the supplementary material. Note that we have neglected the O(ψ~0)O(\tilde{\psi}_{0}) term in Eq. (II.1) in this limiting case, which is a valid for λD/lGC22|D+D|D++D\lambda_{\mathrm{D}}^{\infty}/l_{\mathrm{GC}}\gg 2\sqrt{2}\frac{|D_{+}-D_{-}|}{D_{+}+D_{-}} (see Sec. LABEL:sec:delJ of the supplementary material for details of derivation). For simulations of KCl where c=0.3c_{\infty}=0.3, 33 and 3030 mol m-3, this condition holds for |σ|0.11|\sigma|\gg 0.11, 0.340.34 and 1.01.0 mC m-2, respectively; thus, we can neglect the contribution to δJ\delta J due to the difference in ion diffusivities when referring to simulations of sufficiently high surface charge. As the bulk contribution to the total solute flux dominates at low surface charge, the contribution to the total solute flux due to the difference in ion diffusivities can be ignored in all simulations of KCl. For an equilibrium salt concentration of 250 mol m-3 (i.e. the average concentration of seawater and fresh water), which generally corresponds to the thin electric-double-layer regime for nanoscale pores, this condition requires that |σ|3|\sigma|\gg 3 mC m-2 for KCl and |σ|35|\sigma|\gg 35 mC m-2 for sodium chloride (NaCl) Gray (1972) to ignore the contribution to δJ\delta J due to the difference in ion diffusivities. As surface charge density magnitudes of 24248888 mC m-2 have been estimated for MoS2 (which could be increased to 300300800800 mC m-2 at higher pH)Feng et al. (2016) and 600 mC m-2 for graphene, Rollings, Kuan, and Golovchenko (2016) this assumption should be reasonably accurate under most conditions of interest for applications such as water desalination and osmotic power.

II.1.3 Heuristic derivation for high surface charge and non-overlapping electric double layers

To go beyond the Debye–Hückel approximation, we make use of analytical equations that have previously been derived for electrolyte solutions in a planar channel for non-overlapping electric double layers and arbitrary strengths of the electric potential to obtain scaling relationships for the fluxes in a 2D membrane outside the Debye–Hückel regime (at fixed λD/a\lambda_{\mathrm{D}}^{\infty}/a). Further details of the derivation of these relationships, which are particularly useful for quantifying the variation of the fluxes with the surface charge density when the surface potential is large, are given in Sec. LABEL:sec:sigma of the supplementary material. We assume that the width of the electric double layer is smaller than the pore radius such that the scaling relationships of the surface contributions to the fluxes can be represented as the product of a function of the potential at a planar surface and some power-law scaling of λD/a\lambda_{\mathrm{D}}^{\infty}/a that describes the interaction range of the potential in a 2D membrane geometry. When λD/a\lambda_{\mathrm{D}}^{\infty}/a is fixed, Eq. (30) gives the scaling relationships

Qϵϵ0aη(σλDϵϵ0)2ΔlncQ\propto\frac{\epsilon\epsilon_{0}a}{\eta}\left(\frac{\sigma\lambda_{\mathrm{D}}^{\infty}}{\epsilon\epsilon_{0}}\right)^{2}\Delta\ln c (44)

where σλD/(ϵϵ0)\sigma\lambda_{\mathrm{D}}^{\infty}/(\epsilon\epsilon_{0}) is the potential at a planar surface in the Debye–Hückel regime. Exchanging (σλD/(ϵϵ0))2(\sigma\lambda_{\mathrm{D}}^{\infty}/(\epsilon\epsilon_{0}))^{2} in Eq. (44) for the factor in the equation for the concentration-gradient-driven fluid velocity outside the electric double layer for a planar channel that reduces to (σλD/(ϵϵ0))2(\sigma\lambda_{\mathrm{D}}^{\infty}/(\epsilon\epsilon_{0}))^{2} in the limit of small potentialsPrieve (1982) gives the scaling for the flow rate at fixed λD/a\lambda_{\mathrm{D}}^{\infty}/a and arbitrary surface potentials as

Q(kBTZe)2ϵϵ0aηln(1+lDu4λD)Δlnc,Q\propto\left(\frac{k_{\mathrm{B}}T}{Ze}\right)^{2}\frac{\epsilon\epsilon_{0}a}{\eta}\ln{\left(1+\frac{l_{\mathrm{Du}}^{\infty}}{4\lambda_{\mathrm{D}}^{\infty}}\right)}\Delta\ln c, (45)

where

lDu=|σ|2cZe[lGCλD+(lGCλD)2+1]l_{\mathrm{Du}}^{\infty}=\frac{|\sigma|}{2c_{\infty}Ze}\left[-\frac{l_{\mathrm{GC}}}{\lambda_{\mathrm{D}}^{\infty}}+\sqrt{\left(\frac{l_{\mathrm{GC}}}{\lambda_{\mathrm{D}}^{\infty}}\right)^{2}+1}\right] (46)

is the Dukhin length (near a charged planar wall) of a ZZ:ZZ electrolyte.Lee et al. (2012) From Eq. (45), we see that QQ is proportional to σ2\sigma^{2} when lGCλDl_{\mathrm{GC}}\gg\lambda_{\mathrm{D}}^{\infty}, which does not always correspond to the Debye–Hückel regime. When lGCλDl_{\mathrm{GC}}\ll\lambda_{\mathrm{D}}^{\infty}, which occurs at high surface charge for a thin electric double layer, Eq. (45) reduces to

ln(1+lDu4λD)ln(1+λDlGC)+ln(12).\ln{\left(1+\frac{l_{\mathrm{Du}}^{\infty}}{4\lambda_{\mathrm{D}}^{\infty}}\right)}\approx\ln{\left(1+\frac{\lambda_{\mathrm{D}}^{\infty}}{l_{\mathrm{GC}}}\right)}+\ln{\left(\frac{1}{2}\right)}. (47)

Thus, Eq. (45) predicts scaling of the flow rate with ln|σ|\ln{|\sigma|} for 2D membranes with large surface charge densities and non-overlapping electric double layers when all other parameters are fixed.

When ions transported by an applied concentration gradient interact electrostatically with a charged surface, kBT/(Zie)Δlnck_{\mathrm{B}}T/(Z_{i}e)\Delta\ln c plays an analogous role to an electric field applied on species ii. As 𝒋=𝒋++𝒋\bm{j}=\bm{j}_{+}+\bm{j}_{-} is the total ion flux density and 𝒋e=e(Z+𝒋++Z𝒋)\bm{j}_{e}=e(Z_{+}\bm{j}_{+}+Z_{-}\bm{j}_{-}) is the electric current density of a ZZ:ZZ electrolyte, we assume that the concentration-gradient-driven total solute flux and electric-field-driven electric current exhibit the same scaling with the potential at a planar surface when the width of the electric double layer is smaller than the pore radius. When the contribution due to the difference in ion diffusivities can be ignored, we can use an analogous equation in Ref. 28 for the electric-field-driven electric current near a planar surface to write, at fixed λD/a\lambda_{\mathrm{D}}^{\infty}/a and arbitrary surface potentials, that

δJkBT(Ze)2κsΔlnc,\delta J\propto\frac{k_{\mathrm{B}}T}{(Ze)^{2}}\kappa^{\infty}_{\mathrm{s}}\Delta\ln c, (48)

where

κs=Ze(D++D)|σ|2kBT[lGCλD+(lGCλD)2+1]\kappa_{\mathrm{s}}^{\infty}=\frac{Ze(D_{+}+D_{-})|\sigma|}{2k_{\mathrm{B}}T}\left[-\frac{l_{\mathrm{GC}}}{\lambda_{\mathrm{D}}^{\infty}}+\sqrt{\left(\frac{l_{\mathrm{GC}}}{\lambda_{\mathrm{D}}^{\infty}}\right)^{2}+1}\right] (49)

is the surface conductivity (near a planar wall) of a ZZ:ZZ electrolyte within the Poisson–Nernst–Planck framework (Eqs. (1) and (3) with 𝒖=0\bm{u}=0 and analogous boundary conditions to those applied here but for a planar wall).Lee et al. (2012) We can also represent Eq. (49) in terms of hyperbolic functions and use the relationship between the total solute flux density and the electric current density for a ZZ:ZZ electrolyte (see supplementary material, Sec. LABEL:sec:sigma) to show that

δIσ(D++D)Δlnc.\delta I\propto\sigma(D_{+}+D_{-})\Delta\ln c. (50)

When the width of the electric double layer is smaller than the pore radius, Eq. (48) predicts that δJ\delta J is proportional to σ2\sigma^{2} when lGCλDl_{\mathrm{GC}}\gg\lambda_{\mathrm{D}}^{\infty}, whereas δJ\delta J is proportional to σ\sigma when lGCλDl_{\mathrm{GC}}\ll\lambda_{\mathrm{D}}^{\infty}. By contrast, Eq. (50) predicts that δI\delta I is proportional to σ\sigma in this regime (independent of λD/lGC\lambda_{\mathrm{D}}^{\infty}/l_{\mathrm{GC}}). We have used the forms of the equations for the ion flux and electric current density (see Eqs. (LABEL:total_ion_flux_density) and (LABEL:total_electric_current_density) in the supplementary material) to infer that the contribution from the difference in ion diffusivities is proportional to (D+D)σΔlnc/(Ze)(D_{+}-D_{-})\sigma\Delta\ln c/(Ze) at fixed λD/a\lambda_{\mathrm{D}}^{\infty}/a and that of δI\delta I is proportional to kBTκsΔlnc/(Ze)k_{\mathrm{B}}T\kappa^{\infty}_{\mathrm{s}}\Delta\ln c/(Ze). These relationships indicate that these contributions can generally be ignored in δJ,\delta J, but could become significant in δI\delta I at sufficiently high surface charge, depending on the diffusion coefficients of the ions.

III Results and discussion

Table 1: Scaling relationships for the total flow rate, QQ, surface contribution to the solute flux, δJ\delta J, and surface contribution to the electric current, δI\delta I, with the pore radius aa, equilibrium Debye screening length λD\lambda_{\mathrm{D}}^{\infty} and pore length LL (where relevant) in the Debye–Hückel regime for various systems, applied gradients and limiting regimes. The entry for the gradient indicates the transport process (Δlnc\Delta\ln c and Δc\Delta c for concentration-gradient-driven flow and Δψ\Delta\psi for electric-field-driven flow) and the linear scaling of the flux with the applied gradient. The membrane–solute interaction range λ\lambda for the neutral solute plays an analogous role to λD\lambda_{\mathrm{D}}^{\infty} in the electrolyte.
Flux System Gradient Limit Scaling
QQ circular aperture, Δlnc\Delta\ln c λDa\lambda_{\mathrm{D}}^{\infty}\gg a a3a^{3}
ZZ:ZZ electrolyte λDa\lambda_{\mathrm{D}}^{\infty}\ll a a(λD)2a(\lambda_{\mathrm{D}}^{\infty})^{2}
circular aperture, Δc\Delta c λa\lambda\gg a a3a^{3}
neutral solute Rankin, Bocquet, and Huang (2019) λa\lambda\ll a aλ2a\lambda^{2}
circular aperture, Δψ\Delta\psi λDa\lambda_{\mathrm{D}}^{\infty}\gg a a3(λD)1a^{3}(\lambda_{\mathrm{D}}^{\infty})^{-1}
ZZ:ZZ electrolyte111Scaling in the λDa\lambda_{\mathrm{D}}^{\infty}\gg a regime derived in Ref. 26. λDa\lambda_{\mathrm{D}}^{\infty}\ll a aλDa\lambda_{\mathrm{D}}^{\infty}
cylinder, Δlnc\Delta\ln c λDa\lambda_{\mathrm{D}}^{\infty}\gg a a4L1a^{4}L^{-1}
ZZ:ZZ electrolyte λDa\lambda_{\mathrm{D}}^{\infty}\ll a a2(λD)2L1a^{2}(\lambda_{\mathrm{D}}^{\infty})^{2}L^{-1}
δJ\delta J circular aperture, Δlnc\Delta\ln c λDa\lambda_{\mathrm{D}}^{\infty}\gg a aa
ZZ:ZZ electrolyte λDa\lambda_{\mathrm{D}}^{\infty}\ll a (aλD)12(a\lambda_{\mathrm{D}}^{\infty})^{\frac{1}{2}}
circular aperture, Δc\Delta c λa\lambda\gg a aa
neutral solute Rankin, Bocquet, and Huang (2019) λa\lambda\ll a (aλ)12(a\lambda)^{\frac{1}{2}}
cylinder, Δlnc\Delta\ln c λDa\lambda_{\mathrm{D}}^{\infty}\gg a a2L1a^{2}L^{-1}
ZZ:ZZ electrolyte λDa\lambda_{\mathrm{D}}^{\infty}\ll a aλDL1a\lambda_{\mathrm{D}}^{\infty}L^{-1}
δI\delta I circular aperture, Δlnc\Delta\ln c λDa\lambda_{\mathrm{D}}^{\infty}\gg a a(λD)1a(\lambda_{\mathrm{D}}^{\infty})^{-1}
ZZ:ZZ electrolyte λDa\lambda_{\mathrm{D}}^{\infty}\ll a (a/λD)12(a/\lambda_{\mathrm{D}}^{\infty})^{\frac{1}{2}}
cylinder, Δlnc\Delta\ln c λDa\lambda_{\mathrm{D}}^{\infty}\gg a a2(λD)1L1a^{2}(\lambda_{\mathrm{D}}^{\infty})^{-1}L^{-1}
ZZ:ZZ electrolyte λDa\lambda_{\mathrm{D}}^{\infty}\ll a aL1aL^{-1}

To validate the derived scaling laws, finite-element method (FEM) simulations of concentration-gradient-driven transport of KCl solutions through 0.20.2 nm thick membranes containing pores of various radii and surface charge densities, with various upper and lower reservoir concentrations, were carried out with COMSOL Multiphysics (version 4.3a).com Details of these simulations are given in Sec. LABEL:sec:FEM of the supplementary material, which we verified were all within the low Péclet-number regime. Simulations of electrolyte transport with zero electric potential were carried out to calculate J(0)J^{(0)} and I(0)I^{(0)} (see Sec LABEL:sec:bulk in the supplementary material), where δJ\delta J and δI\delta I were recovered by calculating JJ(0)J-J^{(0)} and II(0)I-I^{(0)}, respectively. The theory predicts that the flow rate QQ and the surface contributions to the total solute flux, δJ\delta J, and electric current, δI\delta I, are linearly related to the logarithm of the concentration difference Δlnc\Delta\ln c. We have verified this scaling for the range of concentration differences 1/100cΔc18/11c1/100c_{\infty}\leq\Delta c\leq 18/11c_{\infty} studied in the numerical simulations (see Figs. LABEL:fig:Delc1LABEL:fig:Delc3 in the supplementary material). The linear scaling of QQ, δJ\delta J and δI\delta I with Δlnc\Delta\ln c in the linear-response regime has been shown for concentration-gradient-driven electrolyte transport in cylindrical pores in this regime.Rankin and Huang (2016) These scaling relationships are expected for electrolyte transport and differ to the linear scaling of fluxes with Δc\Delta c for the neutral solute case in Ref. 29 as a result of the concentration dependence of the interaction range (Debye screening length) for electrolytes.

III.1 Scaling of fluxes

The case of a circular aperture in an infinitesimally thin wall is relevant beyond the case of a 2D membrane, since the resistance to flow in this geometry is useful for approximating the resistance of the pore ends of a finite-length pore, with the total flow resistance often accurately approximated as the sum of the resistances due to the pore ends and pore interior.Rankin and Huang (2016); Lee et al. (2012) We thus highlight the differences between our results and the scaling behaviors for a long cylinder, which are useful for modeling the interior of a finite-length poreRankin and Huang (2016); Lee et al. (2012) and transport in nanotubes Borg et al. (2018) (see Sec. LABEL:sec:cylinder of the supplementary material for the derivation of the scaling laws in the Debye–Hückel regime for concentration-gradient-driven electrolyte transport in a long cylinder). As our results can also be useful for understanding flow driven by both an applied electric field and applied concentration gradient, which has relevance to osmotic power generation,DuChanois et al. (2021); Zhang, Wen, and Jiang (2021); Rankin and Huang (2016) we also compare our results with electric-field-driven flow in this geometryMao, Sherwood, and Ghosal (2014); Lee et al. (2012) and derive the scaling of electroosmosis with λD/a\lambda_{\mathrm{D}}^{\infty}/a in the thin electric-double-layer limit for the first time in Sec. LABEL:sec:EDF of the supplementary material. Moreover, we compare our results with those of concentration-gradient-driven transport of a neutral solute in the same geometry Rankin, Bocquet, and Huang (2019) to highlight the implications of extending this theory to electrolytes. The scaling laws derived in this work and for comparable cases in the Debye–Hückel regime are shown in Table 1.

Figures 2 and 3 compare the simulation results for the concentration-gradient-driven flow rate QQ and the surface contributions to the solute flux, δJ\delta J, and electric current, δI\delta I, with the scaling with the pore radius aa and surface charge density σ\sigma, respectively, predicted by the theory in the Debye–Hückel regime for various average bulk concentrations cc_{\infty}. When the equilibrium Debye screening length λD\lambda_{\mathrm{D}}^{\infty} is much larger than the pore radius (λDa\lambda_{\mathrm{D}}^{\infty}\gg a), the theory predicts that QQ is proportional to a3a^{3}, and that δJ\delta J and δI\delta I are proportional to aa. On the other hand, it predicts that QQ is proportional to aa and that δJ\delta J is proportional to a\sqrt{a} when the equilibrium Debye screening length is much smaller than the pore radius (λDa\lambda_{\mathrm{D}}^{\infty}\ll a). These scaling relationships can be seen for the simulation data in Fig. 2 to hold in the Debye–Hückel regime when aa and cc_{\infty} are small (λDa\lambda_{\mathrm{D}}^{\infty}\gg a) and large (λDa\lambda_{\mathrm{D}}^{\infty}\ll a), respectively. As shown in Table 1, the scaling of QQ and δJ\delta J with the pore radius in both the thick and thin electric-double-layer limits are identical to those for concentration-driven transport of a solution containing a neutral solute in a 2D membrane; Rankin, Bocquet, and Huang (2019) these scaling laws for QQ are also analogous to those of the electric-field-driven flow rate in a 2D membrane.Mao, Sherwood, and Ghosal (2014) By contrast, the scaling relationships of the concentration-gradient-driven fluxes with aa in a 2D membrane differ from those in a long cylinder, where Table 1 indicates that all of the fluxes have a weaker dependence on the pore radius in a 2D membrane than in thick membranes in the Debye–Hückel regime, and thus are less strongly limited as the pore size decreases.

Refer to caption
Figure 2: (a) Flow rate QQ, (b) surface contribution to the solute flux, δJ\delta J, and (c) surface contribution to the electric current, δI\delta I, over Δlnc\Delta\ln c vs pore radius aa from FEM simulations (symbols) and theory (solid lines) for surface charge densities σ=1\sigma=-1 and 10-10 mC m-2 and a range of equilibrium electrolyte concentrations cc_{\infty} (mol m-3). FEM simulations are shown for surface potential energies that are <kBT<k_{\mathrm{B}}T (filled symbols) and >kBT>k_{\mathrm{B}}T (empty symbols) far from the pore mouth, respectively, and the scaling is shown for various powers of aa (dotted lines).

Figure 2 shows good quantitative agreement between the theory and simulations for QQ, δJ\delta J and δI\delta I in the Debye–Hückel regime for thick electric double layers. In the thin electric-double-layer limit, the predicted scaling of QQ and δJ\delta J with the pore radius from the theory agrees with the simulations, but the fluxes from the theory are shifted by roughly a constant factor relative to the simulations. The theory also predicts that δI\delta I is proportional to a\sqrt{a} in the thin electric-double-layer limit; however, the simulations show a slightly weaker dependence of δI\delta I on aa than predicted by the theory when aa and cc_{\infty} are both large, which we address further in Sec. III.2. Nevertheless, the bulk contributions to the solute flux and electric current (in KCl), which are accurately predicted by the theory (see Fig. LABEL:fig:bulk in the supplementary material), dominate in the Debye–Hückel regime and thin electric-double-layer limit. Thus, the theory predicts the total solute flux JJ and total electric current II reasonably well under these conditions. We would like to note that since δJ\delta J is the difference between the total solute flux and the bulk contribution to the total solute flux, which were calculated from separate simulations, δJ\delta J is sensitive to numerical error for large electrolyte concentrations and large pore radii (λDa\lambda_{\mathrm{D}}^{\infty}\ll a) in the Debye–Hückel regime when the bulk contribution dominates. The scaling relationships of the fluxes with aa for thick electric double layers do not hold outside the Debye–Hückel regime where the theory is expected to break down, as shown by the empty symbols in Fig. 2. Note that the scaling relationships of the fluxes with the equilibrium Debye screening length, λD\lambda_{\mathrm{D}}^{\infty}, are discussed in Sec III.2.

The analytical theory predicts that QQ and δJ\delta J (when the contribution to δJ\delta J from the difference in ion diffusivities can be neglected) are proportional to σ2\sigma^{2}, while δI\delta I is proportional to σ\sigma, which is evident for all cc_{\infty} shown in Fig. 3 in the Debye–Hückel regime. These scaling relationships are the same as for thick membranes (see Sec. LABEL:sec:cylinder of the supplementary material) and differ from those observed for electric-field-driven flow, for which the electroosmotic flow rate and electric current are proportional to σ\sigma and σ2\sigma^{2}, respectively, in the Debye–Hückel regime.Mao, Sherwood, and Ghosal (2014); Lee et al. (2012) Figures LABEL:Q_largepsi1 and LABEL:fig:J-large_sigma(a) in the supplementary material indicate that the scaling predicted by the heuristic theory for non-overlapping electric double layers and arbitrary strengths of the electric potential is approximately true for QQ when c1c_{\infty}\geq 1 mol m-3 and δJ\delta J for all cc_{\infty} in the simulations (where a=5a=5 nm), which includes concentrations (c<3c_{\infty}<3 mol m-3) for which the theory might be expected to break down, since λD>a\lambda_{\mathrm{D}}^{\infty}>a. Figures 3(c) and LABEL:fig:J-large_sigma(b) in the supplementary material indicate that the linear scaling of δI\delta I with σ\sigma holds for all σ\sigma (i.e. outside the Debye–Hückel regime) in simulations with non-overlapping electric double layers (c3c_{\infty}\geq 3 mol m-3 for a=5a=5 nm), as predicted by the heuristic theory.

Refer to caption
Figure 3: (a) Flow rate QQ, (b) surface contribution to the solute flux, δJ\delta J, and (c) surface contribution to the electric current, δI\delta I, over Δlnc\Delta\ln c vs surface charge density σ\sigma from FEM simulations (symbols) and theory (solid lines) for pore radius a=5a=5 nm and a range of equilibrium electrolyte concentrations cc_{\infty} (mol m-3). FEM simulations are shown for surface potential energies that are <kBT<k_{\mathrm{B}}T (filled symbols) and >kBT>k_{\mathrm{B}}T (empty symbols) far from the pore mouth, respectively, and the scaling is shown for various powers of σ\sigma (dotted lines).

III.2 Universal scaling laws

We have assumed that the fluxes inside and outside the Debye–Hückel regime can be non-dimensionalized to only depend on λD/a\lambda_{\mathrm{D}}^{\infty}/a, and thus subjected the surface contributions to the fluxes to the non-dimensionalization

Q\displaystyle Q =16π(kBTZe)2ϵϵ0a5Δlncη(λD)4ln(1+lDu4λD)Q~,\displaystyle=-\frac{16}{\pi}\left(\frac{k_{\mathrm{B}}T}{Ze}\right)^{2}\frac{\epsilon\epsilon_{0}a^{5}\Delta\ln c}{\eta(\lambda_{\mathrm{D}}^{\infty})^{4}}\ln{\left(1+\frac{l_{\mathrm{Du}}^{\infty}}{4\lambda_{\mathrm{D}}^{\infty}}\right)}\,\tilde{Q}, (51)
δJ\displaystyle\delta J =kBT(Ze)2a3κsΔlnc(λD)3δJ~,\displaystyle=-\frac{k_{\mathrm{B}}T}{(Ze)^{2}}\frac{a^{3}\kappa_{\mathrm{s}}^{\infty}\Delta\ln c}{(\lambda_{\mathrm{D}}^{\infty})^{3}}\,\delta\tilde{J}, (52)
δI\displaystyle\delta I =a2σ(D++D)Δlnc(λD)2δI~.\displaystyle=\frac{a^{2}\sigma(D_{+}+D_{-})\Delta\ln c}{(\lambda_{\mathrm{D}}^{\infty})^{2}}\,\delta\tilde{I}. (53)

From the results in Sec. III.1 and Sec. LABEL:sec:sigma of the supplementary material, it can be shown that Q~\tilde{Q}, δJ~\delta\tilde{J} and δI~\delta\tilde{I} are equal to the dimensionless integrals in Eq. (30), the first term in Eq. (II.1), and Eq. (32), respectively, in the theory in the Debye–Hückel regime when the difference in ion diffusivities can be ignored, i.e.

Q~\displaystyle\tilde{Q} =01dζζ20dν(ψ~0)21+ν2,\displaystyle=\int^{1}_{0}\mathrm{d}\zeta\,\zeta^{2}\int^{\infty}_{0}\mathrm{d}\nu\frac{(\tilde{\psi}_{0})^{2}}{1+\nu^{2}}, (54)
δJ~\displaystyle\delta\tilde{J} =01dζ(ψ~0|ν=0)2,\displaystyle=\int^{1}_{0}\mathrm{d}\zeta\,(\tilde{\psi}_{0}|_{\nu=0})^{2}, (55)
δI~\displaystyle\delta\tilde{I} =01dζψ~0|ν=0,\displaystyle=\int^{1}_{0}\mathrm{d}\zeta\,\tilde{\psi}_{0}|_{\nu=0}, (56)

and the dimensional prefactors in Eqs. (51)–(53) reduce to the prefactors in Eqs. (30)–(32), respectively, in this regime. Figure 4 depicts the variation of Q~\tilde{Q}, δJ~\delta\tilde{J} and δI~\delta\tilde{I} with λD/a\lambda_{\mathrm{D}}^{\infty}/a in the theory and the simulations (at fixed Δlnc\Delta\ln c); we have excluded data in which λD/lGC\lambda_{\mathrm{D}}^{\infty}/l_{\mathrm{GC}} is less than 10|D+D|/(D++D)10|D_{+}-D_{-}|/(D_{+}+D_{-}) from Fig. 4(b) such that we can ignore the fluxes induced by the difference in ion diffusivities. Almost all the simulation data of the dimensionless fluxes both inside and outside of the Debye–Hückel regime collapse on to a single universal curve as a function of λD/a\lambda_{\mathrm{D}}^{\infty}/a, with some deviation when the electric double layers overlap. This universal scaling is captured reasonably well by the theory given by Eqs. (54)–(56) with the dimensionless potential ψ~0\tilde{\psi}_{0} for a 2D membrane in the Debye–Hückel regime.

Refer to caption
Figure 4: Dimensionless (a) flow rate Q~\tilde{Q}, (b) surface contribution to the total solute flux, δJ~\delta\tilde{J}, and (c) surface contribution to the electric curent, δI~\delta\tilde{I}, vs λD/a\lambda_{\mathrm{D}}^{\infty}/a from FEM simulations for surface potential energies that are <kBT<k_{\mathrm{B}}T (filled circles) and kBT\geq k_{\mathrm{B}}T (unfilled triangles) far from the pore mouth and equilibrium bulk concentrations cc_{\infty} of 0.30.3 (blue), 11 (red), 33 (green), 1010 (orange) and 3030 (magenta) mol m3 and from theory (dashed lines). The solid line in (c) is a power-law fit to the simulation data for λD/a0.1\lambda_{\mathrm{D}}^{\infty}/a\leq 0.1 in the Debye–Hückel regime. The scaling is shown for various powers of λD/a\lambda_{\mathrm{D}}^{\infty}/a in the λDa\lambda_{\mathrm{D}}^{\infty}\ll a and λDa\lambda_{\mathrm{D}}^{\infty}\gg a regimes (dotted lines).

As ψ~0λD/a\tilde{\psi}_{0}\approx\lambda_{\mathrm{D}}^{\infty}/a in the Debye–Hückel regime for thick electric double layers, the scaling relationships for the dimensionless fluxes are Q~,δJ~(λD/a)2\tilde{Q},\delta\tilde{J}\propto(\lambda_{\mathrm{D}}^{\infty}/a)^{2} and δI~(λD/a)\delta\tilde{I}\propto(\lambda_{\mathrm{D}}^{\infty}/a) in this limit, which agree with the simulations (Fig. 4). This scaling indicates that the flow rate, QQ, and surface contribution to the solute flux, δJ\delta J, do not depend on the equilibrium Debye screening length, λD\lambda_{\mathrm{D}}^{\infty}, and that the surface contribution to the electric current, δI\delta I, is inversely proportional to λD\lambda_{\mathrm{D}}^{\infty} (i.e. (c)12\propto(c_{\infty})^{\frac{1}{2}}) in the Debye–Hückel regime for thick electric double layers, which agrees with the scaling depicted in Table 1. Figure 4 shows that the power-law scaling of the fluxes with λD/a\lambda_{\mathrm{D}}^{\infty}/a outside the Debye–Hückel regime is weaker than the predicted scaling relationships, where the theory is expected to break down. On the other hand, the theory gives the scaling Q~(λD/a)4\tilde{Q}\propto\left(\lambda_{\mathrm{D}}^{\infty}/a\right)^{4}, δJ~(λD/a)52\delta\tilde{J}\propto\left(\lambda_{\mathrm{D}}^{\infty}/a\right)^{\frac{5}{2}} and δI~(λD/a)32\delta\tilde{I}\propto\left(\lambda_{\mathrm{D}}^{\infty}/a\right)^{\frac{3}{2}} in the Debye–Hückel regime for thin electric double layers. Figure 4 shows that the scaling of Q~\tilde{Q} and δJ~\delta\tilde{J} with λD/a\lambda_{\mathrm{D}}^{\infty}/a in the theory holds for all surface potentials in the simulations, whereas there is a discrepancy between the scaling of δI~\delta\tilde{I} in the theory and the simulations. This predicted scaling indicates that QQ is proportional to (λD)2(\lambda_{\mathrm{D}}^{\infty})^{2} (i.e. 1/c\propto 1/c_{\infty}) and δJ\delta J is proportional to (λD)12(\lambda_{\mathrm{D}}^{\infty})^{\frac{1}{2}} (i.e. (c)14\propto(c_{\infty})^{-\frac{1}{4}}) in the thin electric-double-layer limit, which agrees with the scaling depicted in Table 1 and holds for arbitrary strengths of the electric potential. Figure 4(c) shows that the scaling relationship δI~(λD/a)74\delta\tilde{I}\propto(\lambda_{\mathrm{D}}^{\infty}/a)^{\frac{7}{4}}, which predicts that δI\delta I is proportional to (a/λD)14(a/\lambda_{\mathrm{D}}^{\infty})^{\frac{1}{4}} (i.e. (c)18\propto(c_{\infty})^{\frac{1}{8}}), instead describes the scaling in the simulations for thin electric double layers.

Table 1 indicates that the scaling of QQ with λD\lambda_{\mathrm{D}}^{\infty} (or λ\lambda for a neutral solute) in the limiting regimes of λD\lambda_{\mathrm{D}}^{\infty} is analogous to that for concentration-gradient-driven flow of a neutral solute in a 2D membrane and concentration-gradient-driven flow of an electrolyte solution in thick membranes. By contrast, the electroosmotic flow rate in the same geometry scales inversely with λD\lambda_{\mathrm{D}}^{\infty} for thick electric double layers Mao, Sherwood, and Ghosal (2014) and varies linearly with λD\lambda_{\mathrm{D}}^{\infty} for thin electric double layers (Table 1). The theory also predicts that, when the contribution due to the difference in ion diffusivities can be ignored, δJ\delta J does not depend on λD\lambda_{\mathrm{D}}^{\infty} for thick electric double layers, which is the same for all cases in Table 1. Similarly, the proportionality of δI\delta I with (λD)1(\lambda_{\mathrm{D}}^{\infty})^{-1} is seen in both thick and 2D membranes. Table 1 indicates that the proportionality of δJ\delta J with (λD)12(\lambda_{\mathrm{D}}^{\infty})^{\frac{1}{2}} for thin electric double layers is analogous to that for a neutral solute in the same geometry but not for an electrolyte with a thick membrane, in which δJ\delta J is proportional to λD\lambda_{\mathrm{D}}^{\infty}. Moreover, δI\delta I is independent of λD\lambda_{\mathrm{D}}^{\infty} for concentration-gradient-driven electrolyte transport for thick membranes but appears to exhibit fractional power-law scaling with λD\lambda_{\mathrm{D}}^{\infty} for 2D membranes. The theory for the electric-field-driven electric current in the same geometry in Ref. 28 does not predict such fractional power-law scaling with λD/a\lambda_{\mathrm{D}}^{\infty}/a despite the similarities between these cases. However, a dependence on fractional powers of λD/a\lambda_{\mathrm{D}}^{\infty}/a due to the pore geometry could be contained within the numerical constants in this theory.

III.3 Experimental implications

Substituting the results in Sec. III.2 for a thin electric double layer into the heuristic theory in Sec. II.1.3, the scaling relationships of the surface contributions to the fluxes for thin electric double layers and arbitrary strengths of the electric potential with all parameters are

Q\displaystyle Q (kBTZe)2ϵϵ0aηln(1+lDu4λD)Δlnc,\displaystyle\propto\left(\frac{k_{\mathrm{B}}T}{Ze}\right)^{2}\frac{\epsilon\epsilon_{0}a}{\eta}\ln{\left(1+\frac{l_{\mathrm{Du}}^{\infty}}{4\lambda_{\mathrm{D}}^{\infty}}\right)}\Delta\ln c, (57)
δJ\displaystyle\delta J kBT(Ze)2(aλD)12κsΔlnc,\displaystyle\propto\frac{k_{\mathrm{B}}T}{(Ze)^{2}}\left(\frac{a}{\lambda_{\mathrm{D}}^{\infty}}\right)^{\frac{1}{2}}\kappa^{\infty}_{\mathrm{s}}\Delta\ln c, (58)
δI\displaystyle\delta I (aλD)14σ(D++D)Δlnc,\displaystyle\propto\left(\frac{a}{\lambda_{\mathrm{D}}^{\infty}}\right)^{\frac{1}{4}}\sigma(D_{+}+D_{-})\Delta\ln c, (59)

where Eq. (58) assumes that the contribution due to the difference in ion diffusivites is negligibly small. We fit the simulation data in Fig. 4 to obtain approximate equations that predict the fluxes for arbitrary surface potentials and non-overlapping electric double layers when D+DD_{+}\approx D_{-} in Sec. LABEL:sec:kappa*a2 of the supplementary material. When the width of the electric double layer is much smaller than the pore radius, the theory predicts fractional power-law scaling of the surface contributions to the solute flux and electric current with the equilibrium Debye screening length and pore radius that differs markedly from that seen in thick membranes. For example, the electric-field-driven electric current in a long channel does not depend of electrolyte concentration when the surface contribution dominates. Bocquet and Charlaix (2010) By contrast, the scaling relationships in Eq. (59) indicate a weak but non-zero dependence of the concentration-gradient-driven electric current on (c)18(c_{\infty})^{\frac{1}{8}} when the bulk contribution can be ignored.

Scaling of the (electric-field-driven) ionic conductance with fractional powers of the electrolyte concentration have been observed in the low-salt regime in carbon nanotubesSecchi et al. (2016) ((c)13\propto(c_{\infty})^{\frac{1}{3}}) and boron nitride nanotubesLi et al. (2024) ((c)14\propto(c_{\infty})^{\frac{1}{4}}) in experiments (with KCl) and rationalized in terms of a salinity-dependent surface charge.Secchi et al. (2016); Li et al. (2024) These scaling relationships versus salt concentration in turn imply fractional scaling of the ionic conductance with the Debye length, specifically with (λD)23(\lambda_{\mathrm{D}}^{\infty})^{-\frac{2}{3}} and (λD)12(\lambda_{\mathrm{D}}^{\infty})^{-\frac{1}{2}}, respectively. As the 2D membrane geometry results in power-law scaling of the surface contribution to the solute flux and electric current with the equilibrium Debye screening length and pore radius for concentration-gradient-driven transport, entrance effects could explain, or contribute to, unusual fractional power-law scaling of the ionic conductance with salt concentration observed experimentally. In particular, we have shown that the concentration-gradient-driven solute flux exhibits analogous scaling with the pore radius, equilibrium bulk electrolyte concentration and surface charge density to the electric-field-driven electric current, where the theory predicts that the concentration-gradient-driven solute flux is proportional to (λD)12(\lambda_{\mathrm{D}}^{\infty})^{-\frac{1}{2}} when the bulk contribution can be neglected (i.e. the Gouy–Chapman length is much smaller than the Debye length) and the electric double layer is thin relative to pore size (see Sec. LABEL:sec:kappa*a2 of the supplementary material for details of the derivation of this scaling relationship).

IV Conclusions

We have, for the first time, derived general equations and scaling laws for the concentration-gradient-driven fluid fluxes, and scaling laws of the electric-field-driven flow rate in the thin electric-double-layer limit, of an electrolyte solution through a circular aperture in an infinitesimally thin planar membrane, which we have verified by comparison with finite-element simulations. Although these equations are not fully quantitative, they uncover the fundamental scaling relationships for these fluxes as functions of the pore radius, surface charge density and the Debye screening length, which constitute the main results of this work. We have shown, by comparing with simulations both inside and outside the Debye–Hückel regime, that these scaling relationships accurately quantify the variation of all the fluid fluxes in the Debye–Hückel regime for thick electric double layers relative to the pore radius, and that of the fluid flow rate and solute flux irrespective of the magnitude of the electric potential when the electric double layer is thin relative to the pore radius. The scaling laws determined in this work indicate unusual fractional power-law scaling with the pore radius and the equilibrium Debye screening length for the surface contributions to the total solute flux and electric current, which is not seen in other geometries. These results are important for understanding concentration-gradient-driven transport of an electroyte solution in membranes made from two-dimensional nanomaterials, such as graphene and molybdenum disulfide, as well as entrance effects in thicker membranes, particularly those with low-friction internal surfaces such as carbon nanotubes. Thus, these results have significant implications for applications involving concentration-gradient-driven transport of an electrolyte solution in a porous membrane, including desalination, salinity-gradient power conversion for energy generation and sensing.

Supplementary material

The supplementary material contains further details on the derivation of scaling relationships for concentration-gradient-driven flow through a circular aperture in a infinitesimally thin membrane; general expressions for the concentration-gradient-driven fluxes for thin electric double layers; derivations of scaling relationships for concentration-gradient-driven flow of an electrolyte solution in a cylindrical pore and electroosmosis through a circular aperture in a infinitesimally thin membrane in the limit that the pore radius is much larger than the Debye screening length; and further details and supplementary results of finite-element numerical simulations.

Acknowledgments

This work was supported by the Australian Research Council under the Discovery Projects funding scheme (Grant No. DP210102155). H.C.M.B. acknowledges the support of an Australian Government Research Training Program Scholarship.

Author declarations

Conflict of interest

The authors declare no conflict of interest.

Author Contributions

Holly C. M. Baldock: Methodology (equal); Investigation (lead); Data curation (supporting); Formal Analysis (lead); Writing – original draft (lead); Writing – review & editing (supporting) David M. Huang: Conceptualization (lead); Methodology (equal); Investigation (supporting); Data curation (lead); Formal Analysis (supporting); Funding acquisition (lead); Project administration (lead); Supervision (lead); Writing – original draft (supporting); Writing – review & editing (lead).

References

References

  • Siwy, Bruening, and Howorka (2023) Z. S. Siwy, M. L. Bruening,  and S. Howorka, “Nanopores: synergy from DNA sequencing to industrial filtration – small holes with big impact,” Chem. Soc. Rev. 52, 1983–1994 (2023).
  • Marbach and Bocquet (2019) S. Marbach and L. Bocquet, “Osmosis, from molecular insights to large-scale applications,” Chem. Soc. Rev. 48, 3102–3144 (2019).
  • DuChanois et al. (2021) R. M. DuChanois, C. J. Porter, C. Violet, R. Verduzco,  and M. Elimelech, “Membrane materials for selective ion separations at the water–energy nexus,” Adv. Mater. 33, 2101312 (2021).
  • Zhang, Wen, and Jiang (2021) Z. Zhang, L. Wen,  and L. Jiang, “Nanofluidics for osmotic energy conversion,” Nat. Rev. Mater. 6, 622–639 (2021).
  • Siria, Bocquet, and Bocquet (2017) A. Siria, M.-L. Bocquet,  and L. Bocquet, “New avenues for the large-scale harvesting of blue energy,” Nat. Rev. Chem. 1, 0091 (2017).
  • Rankin and Huang (2016) D. J. Rankin and D. M. Huang, “The effect of hydrodynamic slip on membrane-based salinity-gradient-driven energy harvesting,” Langmuir 32, 3420–3432 (2016).
  • Aluru et al. (2023) N. R. Aluru, F. Aydin, M. Z. Bazant, D. Blankschtein, A. H. Brozena, J. P. de Souza, M. Elimelech, S. Faucher, J. T. Fourkas, V. B. Koman, M. Kuehne, H. J. Kulik, H.-K. Li, Y. Li, Z. Li, A. Majumdar, J. Martis, R. P. Misra, A. Noy, T. A. Pham, H. Qu, A. Rayabharam, M. A. Reed, C. L. Ritt, E. Schwegler, Z. Siwy, M. S. Strano, Y. Wang, Y.-C. Yao, C. Zhan,  and Z. Zhang, “Fluids and electrolytes under confinement in single-digit nanopores,” Chem. Rev. 123, 2737–2831 (2023).
  • Pomerantseva et al. (2019) E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui,  and Y. Gogotsi, “Energy storage: The future enabled by nanomaterials,” Science 366, eaan8285 (2019).
  • Ying et al. (2022) Y.-L. Ying, Z.-L. Hu, S. Zhang, Y. Qing, A. Fragasso, G. Maglia, A. Meller, H. Bayley, C. Dekker,  and Y.-T. Long, “Nanopore-based technologies beyond DNA sequencing,” Nat. Nanotechnol. 17, 1136–1146 (2022).
  • Robin, Kavokine, and Bocquet (2021) P. Robin, N. Kavokine,  and L. Bocquet, “Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits,” Science 373, 687–691 (2021).
  • Robin and Bocquet (2023) P. Robin and L. Bocquet, “Nanofluidics at the crossroads,” J. Chem. Phys. 158, 160901 (2023).
  • Kamsma et al. (2024) T. M. Kamsma, J. Kim, K. Kim, W. Q. Boon, C. Spitoni, J. Park,  and R. van Roij, “Brain-inspired computing with fluidic iontronic nanochannels,” Proc. Natl. Acad. Sci. 121, e2320242121 (2024).
  • Gkoupidenis et al. (2024) P. Gkoupidenis, Y. Zhang, H. Kleeman, H. Ling, F. Santoro, S. Fabiano, A. Salleo,  and Y. van de Burgt, “Organic mixed conductors for bioinspired electronics,” Nat. Rev. Mater. 9, 134–149 (2024).
  • Sahu and Zwolak (2019) S. Sahu and M. Zwolak, “Colloquium: Ionic phenomena in nanoscale pores through 2D materials,” Rev. Mod. Phys. 91, 021004 (2019).
  • Zhang et al. (2022) S. Zhang, L. Shen, H. Deng, Q. Liu, X. You, J. Yuan, Z. Jiang,  and S. Zhang, “Ultrathin membranes for separations: A new era driven by advanced nanotechnology,” Adv. Mater. 34, 2108457 (2022).
  • Pakulski et al. (2020) D. Pakulski, W. Czepa, S. D. Buffa, A. Ciesielski,  and P. Samorì, “Atom-thick membranes for water purification and blue energy harvesting,” Adv. Funct. Mater. 30, 1902394 (2020).
  • Surwade et al. (2015) S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai,  and S. M. Mahurin, “Water desalination using nanoporous single-layer graphene,” Nat. Nanotechnol. 10, 459–464 (2015).
  • Macha et al. (2019) M. Macha, S. Marion, V. V. R. Nandigana,  and A. Radenovic, “2D materials as an emerging platform for nanopore-based power generation,” Nat. Rev. Mater. 4, 588–605 (2019).
  • Feng et al. (2016) J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis,  and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
  • Venkatesan and Bashir (2011) B. M. Venkatesan and R. Bashir, “Nanopore sensors for nucleic acid analysis,” Nat. Nanotechnol. 6, 615–624 (2011).
  • Robin et al. (2023) P. Robin, T. Emmerich, A. Ismail, A. Niguès, Y. You, G.-H. Nam, A. Keerthi, A. Siria, A. K. Geim, B. Radha,  and L. Bocquet, “Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels,” Science 379, 161–167 (2023).
  • Cheng et al. (2023) B. Cheng, Y. Zhong, Y. Qiu, S. Vaikuntanathan,  and J. Park, “Giant gateable osmotic power generation from a Goldilocks two-dimensional polymer,” J. Am. Chem. Soc. 145, 5261–5269 (2023).
  • Wanunu et al. (2010) M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg,  and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5, 160–165 (2010).
  • Sampson (1891) R. A. Sampson, “On Stokes’s current function,” Philos. Trans. R. Soc. A 182, 449–518 (1891).
  • Heiranian, Taqieddin, and Aluru (2020) M. Heiranian, A. Taqieddin,  and N. R. Aluru, “Revisiting Sampson’s theory for hydrodynamic transport in ultrathin nanopores,” Phys. Rev. Res. 2, 043153 (2020).
  • Mao, Sherwood, and Ghosal (2014) M. Mao, J. D. Sherwood,  and S. Ghosal, “Electro-osmotic flow through a nanopore,” J. Fluid. Mech. 749, 167–183 (2014).
  • Hall (1975) J. E. Hall, “Access resistance of a small circular pore.” J. Gen. Physiol. 66, 531–532 (1975).
  • Lee et al. (2012) C. Lee, L. Joly, A. Siria, A.-L. Biance, R. Fulcrand,  and L. Bocquet, “Large apparent electric size of solid-state nanopores due to spatially extended surface conduction,” Nano Lett. 12, 4037–4044 (2012).
  • Rankin, Bocquet, and Huang (2019) D. J. Rankin, L. Bocquet,  and D. M. Huang, “Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane,” J. Chem. Phys. 151, 044705 (2019).
  • Siria et al. (2013) A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell,  and L. Bocquet, “Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube,” Nature 494, 455–458 (2013).
  • Sisan and Lichter (2011) T. Sisan and S. Lichter, “The end of nanochannels,” Microfluid. Nanofluid. 11, 787–791 (2011).
  • Melnikov, Hulings, and Gracheva (2017) D. V. Melnikov, Z. K. Hulings,  and M. E. Gracheva, “Electro-osmotic flow through nanopores in thin and ultrathin membranes,” Phys. Rev. E 95, 063105 (2017).
  • Fair and Osterle (1971) J. C. Fair and J. F. Osterle, “Reverse electrodialysis in charged capillary membranes,” J. Chem. Phys. 54, 3307–3316 (1971).
  • Prieve (1982) D. C. Prieve, “Migration of a colloidal particle in a gradient of electrolyte concentration,” Adv. Colloid Interface Sci. 16, 321–335 (1982).
  • Lavi and Green (2024) O. Lavi and Y. Green, “A theoretical characterization of osmotic power generation in nanofluidic systems,” Commun. Mater. 5, 124 (2024).
  • Bonthuis et al. (2011) D. J. Bonthuis, K. F. Rinne, K. Falk, C. N. Kaplan, D. Horinek, A. N. Berker, L. Bocquet,  and R. R. Netz, “Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls,” J. Phys. Condens. Matter 23, 184110 (2011).
  • Probstein (1994) R. F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd ed. (Wiley-Interscience, Hoboken, 1994).
  • Morse and Feshbach (1953a) P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1 (McGraw-Hill Book Company, New York, 1953).
  • Morse and Feshbach (1953b) P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 2 (McGraw-Hill Book Company, New York, 1953).
  • Happel and Brenner (1983) J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nihjoff Publishers, The Hague, 1983).
  • Gray (1972) D. E. Gray, American Institute of Physics Handbook (McGraw Hill, New York, 1972).
  • Rollings, Kuan, and Golovchenko (2016) R. C. Rollings, A. T. Kuan,  and J. A. Golovchenko, “Ion selectivity of graphene nanopores,” Nat. Commun. 7, 11408 (2016).
  • (43) See https://www.comsol.com for COMSOL 4.3a.
  • Borg et al. (2018) M. K. Borg, D. A. Lockerby, K. Ritos,  and J. M. Reese, “Multiscale simulation of water flow through laboratory-scale nanotube membranes,” J. Membr. Sci. 567, 115–126 (2018).
  • Bocquet and Charlaix (2010) L. Bocquet and E. Charlaix, “Nanofluidics, from bulk to interfaces,” Chem. Soc. Rev. 39, 1073–1095 (2010).
  • Secchi et al. (2016) E. Secchi, A. Niguès, L. Jubin, A. Siria,  and L. Bocquet, “Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes,” Phys. Rev. Lett. 116, 154501 (2016).
  • Li et al. (2024) Z. Li, A. T. Hall, Y. Wang, Y. Li, D. O. Byrne, L. R. Scammell, R. R. Whitney, F. I. Allen, J. Cumings,  and A. Noy, “Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins,” Sci. Adv. 10, eado8081 (2024).