This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Scalar 11-loop Feynman integrals as meromorphic functions in space-time dimension dd, IIII: Special kinematics

Khiem Hong Phan [email protected] 1)University of Science Ho Chi Minh City, 227227 Nguyen Van Cu, District 55, HCM City, Vietnam
2)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, HCM City, Vietnam
Abstract

Based on the method developed in [K. H. Phan and T. Riemann, Phys. Lett. B 791 (2019) 257], detailed analytic results for scalar one-loop two-, three-, four-point integrals in general dd-dimension are presented in this paper. The calculations are considered all external kinematic configurations and internal mass assignments. Analytic formulas are expressed in terms of generalized hypergeometric series such as Gauss F12{}_{2}F_{1}, Appell F1F_{1} and Lauricella FSF_{S} functions.

keywords:
One-loop Feynman integrals, (generalized) hypergeometric functions, analytic methods for Quantum Field Theory, Dimensional regularization.

1 Introduction

Scalar one-loop integrals in general dd are important for several reasons. In general framework for computing two-loop and higher-loop corrections, higher-terms in the ϵ\epsilon-expansion (ϵ=2d/2\epsilon=2-d/2) for one-loop integrals are necessary for building blocks. For example, they are used for building counterterms. Furthermore, in the evaluations for multi-loop Feynman integrals, we may combine several methods in [1, 2] to optimize the master integrals. As a result, the resulting integrals may include of one-loop functions in arbitrary space-time dimensions. Last but not least, scalar one-loop functions at d=4+2n±2ϵd=4+2n\pm 2\epsilon with nn\in\mathbb{N} may be taken into account in the reduction for tensor one-loop Feynman integrals [3].

One-loop functions in space-time dimensions dd have been performed in [4, 5, 6, 7, 8, 9]. However, not all of the calculations have covered at general configurations of external momenta and internal masses. Recently, scalar one-loop three-point functions have been performed by applying multiple unitarity cuts for Feynman diagrams [10]. In Ref. [10], analytic results have been presented in terms of hypergeometric functions in special cases of external invariants and internal masses. In more general cases, the results have only presented ϵ0\epsilon^{0}-terms in space-time d=42ϵd=4-2\epsilon. The algebraic structure of cut Feynman integrals, the diagrammatic coaction and its applications have proposed in [11, 12, 13]. However, the detailed analytic results for one-loop Feynman integrals have not been shown in the mentioned papers. More recently, detailed analytic results for one-loop three-point functions which are expressed in terms of Appell F1F_{1} hypergeometric functions have been reported in [15].

A recurrence relation in dd for Feynman loop integrals has proposed by Tarasov [2, 14, 16]. By solving the differential equation in dd, analytic results for scalar one-loop integrals up to four-points have been expressed in terms of generalized hypergeometric series such as Gauss F12{}_{2}F_{1}, Appell F1F_{1}, Lauricella-Saran FSF_{S} functions. In [16], boundary terms have obtained by applying asymptotic theory of complex Laplace-type integrals. These terms are only valid in sub-domain of external momentum and mass configurations which the theory are applicable. Hence, the general solutions for one-loop integrals in arbitrary kinematics have not been found [16], as pointed out in [17, 18]. General solutions for this problem have been derived in [19] which proposed a different kind of recursion relation for one-loop integrals in comparison with [2, 14, 16]. In the scope of this paper, based on the method in Ref. [19], detailed analytic results for scalar one-loop two-, three- and four-point functions in general dd-dimensions are presented. The calculations are considered all external kinematic configurations and internal mass assignments. Thus, we go beyond the material presented in [19].

The layout of the paper is as follows: In section 22, we discuss briefly the method for evaluating one-loop integrals. We then apply this method for computing scalar one-loop two-, three- and four-point functions in sections 3,4,53,4,5. Conclusions and plans for future work are presented in section 66.

2 Method

In this section, we describe briefly the method for evaluating scalar one-loop NN-point Feynman integrals. Detailed description for this method can be found in Ref. [19]. A general recursion relation between scalar one-loop NN-point and (N(N-1)1)-point Feynman integrals is shown in this section. From the representation, analytic formulas for scalar one-loop NN-point functions can be constructed from basic integrals which are scalar one-point integrals. For illustrating, analytic expressions for scalar one-loop two-, three-, four-point functions are derived in detail in next sections.

The scalar one-loop NN-point Feynman integrals are defined:

JN(d;{pipj},{mi2})\displaystyle J_{N}(d;\{p_{i}p_{j}\},\{m_{i}^{2}\}) =\displaystyle= ddkiπd/21P1P2PN.\displaystyle\int\dfrac{d^{d}k}{i\pi^{d/2}}\dfrac{1}{P_{1}P_{2}\dots P_{N}}. (1)

The inverse Feynman propagators are given:

Pj=\displaystyle P_{j}= (k+qj)2mj2+iρ,for j=1,2,,N.\displaystyle(k+q_{j})^{2}-m_{j}^{2}+i\rho,\;\text{for $j=1,2,\cdots,N$}. (2)

Where pjp_{j} (mjm_{j}) for j=1,2,,Nj=1,2,\cdots,N are external momenta (internal masses) respectively. The momenta qjq_{j} are given: q1=p1,q2=p1+p2,,qj=i=1jpiq_{1}=p_{1},q_{2}=p_{1}+p_{2},\cdots,q_{j}=\sum_{i=1}^{j}p_{i} and qN=j=1Npj=0q_{N}=\sum_{j=1}^{N}p_{j}=0 thanks to momentum conservation. They are inward as described in Fig. 1. The term iρi\rho is Feynman’s prescription and dd is space-time dimension. Several cases of physical interests for dd are d=4+2n±2ϵd=4+2n\pm 2\epsilon with nn\in\mathbb{N}. In the complex-mass scheme [20], the internal masses take the form of mj2=m0j2im0jΓjm_{j}^{2}=m_{0j}^{2}-im_{0j}\Gamma_{j} where Γj0\Gamma_{j}\geqslant 0 are decay widths of unstable particles.

pN1p_{N-1}pNp_{N}p1p_{1}p2p_{2}p3p_{3}p4p_{4}m12m_{1}^{2}m22m_{2}^{2}m32m_{3}^{2}mN2m_{N}^{2}mN12m_{N-1}^{2}

Figure 1: Generic Feynman diagrams at one-loop with NN external momenta.

The Cayley and Gram determinants [16] related to one-loop Feynman NN-point topologies are defined as follows:

YNY12N=|Y11Y12Y1NY12Y22Y2NY1NY2NYNN|,\displaystyle Y_{N}\equiv Y_{12\cdots N}=\left|\begin{array}[]{cccc}Y_{11}&Y_{12}&\ldots&Y_{1N}\\ Y_{12}&Y_{22}&\ldots&Y_{2N}\\ \vdots&\vdots&\ddots&\vdots\\ Y_{1N}&Y_{2N}&\ldots&Y_{NN}\end{array}\right|, GN1G12N=2N|q12q1q2q1qN1q1q2q22q2qN1q1qN1q2qN1qN12|\displaystyle G_{N-1}\equiv G_{12\cdots N}=-2^{N}\;\left|\begin{array}[]{cccc}\!q_{1}^{2}&q_{1}q_{2}&\ldots&q_{1}q_{N-1}\\ \!q_{1}q_{2}&q_{2}^{2}&\ldots&q_{2}q_{N-1}\\ \vdots&\vdots&\ddots&\vdots\\ \!q_{1}q_{N-1}&q_{2}q_{N-1}&\ldots&q_{N-1}^{2}\end{array}\right| (11)

with Yij=(qiqj)2+mi2+mj2Y_{ij}=-(q_{i}-q_{j})^{2}+m_{i}^{2}+m_{j}^{2}.

In this report, analytic solutions for one-loop integrals are expressed in terms of generalized hypergeometric with arguments given by ratios of the above determinants. Hence, it is worth to introduce the following kinematic variables

RNR12N\displaystyle R_{N}\equiv R_{12\cdots N} =\displaystyle= YNGN1forGN10.\displaystyle-\frac{Y_{N}}{G_{N-1}}\quad\text{for}\quad G_{N-1}\neq 0. (13)

The kinematics RNR_{N} play a role of the squared internal masses. In fact, when we shift mj2mj2iρm_{j}^{2}\rightarrow m_{j}^{2}-i\rho, one verifies easily that RNRNiρR_{N}\rightarrow R_{N}-i\rho [16].

The recursion relation for JNJ_{N} [19] is given (master equation):

JN(d;{pipj},{mi2})\displaystyle J_{N}(d;\{p_{i}p_{j}\},\{m_{i}^{2}\}) =\displaystyle= 12πii+idsΓ(s)Γ(dN+12+s)Γ(s+1)2Γ(dN+12)(1RN)s×\displaystyle-\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(\frac{d-N+1}{2}+s)\Gamma(s+1)}{2\Gamma(\frac{d-N+1}{2})}\left(\frac{1}{R_{N}}\right)^{s}\times
×k=1N(kRNRN)𝐤JN(d+2s;{pipj},{mi2}),\displaystyle\hskip 28.45274pt\times\sum\limits_{k=1}^{N}\left(\frac{\partial_{k}R_{N}}{R_{N}}\right)\;{\bf k}^{-}\;J_{N}(d+2s;\{p_{i}p_{j}\},\{m_{i}^{2}\}),

for i,j=1,2,,Ni,j=1,2,\cdots,N and k=/mk2\partial_{k}=\partial/\partial m_{k}^{2}. Here the operator 𝐤{\bf k}^{-} is defined as [19]

𝐤JN(d;{pipj},{mi2})\displaystyle{\bf k}^{-}J_{N}(d;\{p_{i}p_{j}\},\{m_{i}^{2}\}) =\displaystyle= ddkiπd/21P1P2Pk1Pk+1PN1PN.\displaystyle\int\frac{d^{d}k}{i\pi^{d/2}}\frac{1}{P_{1}P_{2}\dots P_{k-1}P_{k+1}\dots P_{N-1}P_{N}}. (15)

The relation (2) indicates that the integral JNJ_{N} can be constructed by taking one-fold Mellin-Barnes (MB) integration over JN1J_{N-1} in d+2sd+2s. This representation has several advantages. First, analytic formulas for JNJ_{N} can be derived from basic functions which are scalar one-loop one-point functions. Second, JNJ_{N} is expressed as functions of kinematic variables such as mj2m_{j}^{2} for j=1,2,,Nj=1,2,\cdots,N and RNR_{N}. As a consequence of this fact, analytic expressions for JNJ_{N} reflect the symmetry as well as threshold behavior of the corresponding Feynman topologies. Two special cases of (2) are also mentioned as follows:

  1. 1.

    YN0Y_{N}\rightarrow 0 and GN10G_{N-1}\neq 0: In this case, RN0R_{N}\rightarrow 0 and we have [16] (deriving this equation for N=4N=4 is shown in the appendix DD)

    JN(d;{pipj},{mi2})=1dN1k=1N(kYNGN1)𝐤JN(d2;{pipj},{mi2}).\displaystyle J_{N}(d;\{p_{i}p_{j}\},\{m_{i}^{2}\})=\frac{1}{d-N-1}\sum\limits_{k=1}^{N}\left(\frac{\partial_{k}Y_{N}}{G_{N-1}}\right){\bf k^{-}}J_{N}(d-2;\{p_{i}p_{j}\},\{m_{i}^{2}\}). (16)
  2. 2.

    GN10G_{N-1}\rightarrow 0 and YN0Y_{N}\neq 0: In this case, RNR_{N}\rightarrow\infty. We close the integration contour in (2) to the right. Taking residue contributions from poles of Γ(s)\Gamma(\cdots-s). In the limit RNR_{N}\rightarrow\infty, we find only the term with s=0s=0 is non-zero. The result then reads

    JN(d;{pipj},{mi2})=12k=1N(kYNYN)𝐤JN(d;{pipj},{mi2}).\displaystyle J_{N}(d;\{p_{i}p_{j}\},\{m_{i}^{2}\})=-\frac{1}{2}\sum\limits_{k=1}^{N}\left(\frac{\partial_{k}Y_{N}}{Y_{N}}\right)\;{\bf k}^{-}J_{N}(d;\{p_{i}p_{j}\},\{m_{i}^{2}\}). (17)

    This equation is equivalent to (6565) in [21] and (33) in [16].

We turn our attention to apply the method for evaluating scalar one-loop Feynman integrals. The detailed evaluations for scalar one-loop two-, three- and four-point functions are presented in next sections. As we pointed out in this section, the prescription iρi\rho always follows with RNR_{N} as RNiρR_{N}-i\rho. In order to simplify the notation, we omit iρi\rho in RNR_{N} in the next calculations. This term puts back into the final results when it is necessary.

3 One-loop two-point functions

The master equation for J2J_{2} is obtained by setting N=2N=2 in (2). MB representation for J2J_{2} then reads

J2J2(d;p2,m12,m22)\displaystyle J_{2}\equiv J_{2}(d;p^{2},m_{1}^{2},m_{2}^{2}) =\displaystyle= 12πii+idsΓ(s)Γ(2d2s)Γ(d12+s)Γ(s+1)2Γ(d12)×\displaystyle\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\Gamma\left(\frac{2-d}{2}-s\right)\Gamma\left(\frac{d-1}{2}+s\right)\Gamma(s+1)}{2\Gamma\left(\frac{d-1}{2}\right)}\times
×(1R2)s{(2R2R2)(m12)d22+s+(12)}.\displaystyle\hskip 28.45274pt\times\left(\dfrac{1}{R_{2}}\right)^{s}\left\{\left(\dfrac{\partial_{2}R_{2}}{R_{2}}\right)(m_{1}^{2})^{\frac{d-2}{2}+s}+(1\leftrightarrow 2)\right\}.

Note that we used the analytic formula for J1J_{1} in [22] with dd shifted to dd+2sd\rightarrow d+2s. We write J1J_{1} in d+2sd+2s explicitly as follows:

J1(d+2s;m2)\displaystyle J_{1}(d+2s;m^{2}) =\displaystyle= Γ(2d2s)(m)d22+s.\displaystyle-\Gamma\left(\frac{2-d}{2}-s\right)(m)^{\frac{d-2}{2}+s}. (19)

In order to evaluate the MB integrals in (3), we close the integration contour to the right. The residue contributions to J2J_{2} at the sequence poles of Γ(s)\Gamma(-s) and Γ(2d2s)\Gamma\left(\frac{2-d}{2}-s\right) are taken into account.

First, we calculate the residue at the poles of Γ(s)\Gamma(-s). In this case, s=ms=m for m=0,1,,m=0,1,\cdots,\mathbb{N}. Subsequently, we can apply the reflect formula for gamma functions (253) in the appendix BB. In detail, it is implied that

Γ(2d2s)Γ(d2+s)=(1)sΓ(4d2)Γ(d22).\displaystyle\Gamma\left(\frac{2-d}{2}-s\right)\Gamma\left(\frac{d}{2}+s\right)=-(-1)^{s}\Gamma\left(\frac{4-d}{2}\right)\Gamma\left(\frac{d-2}{2}\right). (20)

With the help of (20), the MB representation in (3) is casted into the form of

J2Γ(4d2)|s=m\displaystyle\dfrac{J_{2}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=m} =\displaystyle= Γ(d22)2Γ(d12)12πii+idsΓ(s)Γ(d12+s)Γ(s+1)Γ(d2+s)×\displaystyle-\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{2\;\Gamma\left(\frac{d-1}{2}\right)}\;\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma\left(\frac{d-1}{2}+s\right)\;\Gamma(s+1)}{\Gamma\left(\frac{d}{2}+s\right)}\;\times
×{(2R2R2)(m12)d22(m12R2)s+(12)}.\displaystyle\hskip 56.9055pt\times\left\{\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)(m_{1}^{2})^{\frac{d-2}{2}}\left(-\dfrac{m_{1}^{2}}{R_{2}}\right)^{s}+(1\leftrightarrow 2)\right\}.

Using (1.6.1.61.6.1.6) in Ref. [25], these MB integrals are expressed in terms of Gauss hypergeometric series as follows:

J2Γ(4d2)|s=m\displaystyle\dfrac{J_{2}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=m} =\displaystyle= Γ(d22)2Γ(d2){(2R2R2)(m12)d22F12[1,d12;d2;m12R2]+(12)},\displaystyle-\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{2\;\Gamma\left(\frac{d}{2}\right)}\;\left\{\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)(m_{1}^{2})^{\frac{d-2}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-1}{2}\,;\\ \frac{d}{2}\,;\end{array}\frac{m_{1}^{2}}{R_{2}}\right]+(1\leftrightarrow 2)\right\}, (24)

provided that |m12/R2|<1\left|m_{1}^{2}/R_{2}\right|<1, |m22/R2|<1\left|m_{2}^{2}/R_{2}\right|<1 and \mathcal{R}e(d2)>0(d-2)>0. Using (1.3.151.3.15) in [25], we arrive at another representation for (24)

J2Γ(4d2)|s=m\displaystyle\dfrac{J_{2}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=m} =\displaystyle= Γ(d22)2Γ(d2){(2R2R2)(m12)d221m12/R2F12[d22,12;d2;m12R2]+(12)},\displaystyle-\dfrac{\Gamma(\frac{d-2}{2})}{2\Gamma(\frac{d}{2})}\left\{\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)\frac{(m_{1}^{2})^{\frac{d-2}{2}}}{\sqrt{1-m_{1}^{2}/R_{2}}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2},\frac{1}{2}\,;\\ \frac{d}{2}\,;\end{array}\dfrac{m_{1}^{2}}{R_{2}}\right]+(1\leftrightarrow 2)\right\}, (27)

provided that |m12/R2|<1\left|m_{1}^{2}/R_{2}\right|<1, |m22/R2|<1\left|m_{2}^{2}/R_{2}\right|<1 and \mathcal{R}e(d2)>0(d-2)>0.

We next consider the residue at the second sequence poles of Γ(2d2s)\Gamma\left(\frac{2-d}{2}-s\right). In this case, s=2d2+ms=\frac{2-d}{2}+m for mm\in\mathbb{N}. These contributions read

J2|s=2d2+m\displaystyle J_{2}\Big{|}_{s=\frac{2-d}{2}+m} =\displaystyle= m=0(1)mm!Γ(d22m)Γ(4d2+m)Γ(m+12)2Γ(d12)\displaystyle\sum_{m=0}^{\infty}\dfrac{(-1)^{m}}{m!}\dfrac{\Gamma(\frac{d-2}{2}-m)\Gamma(\frac{4-d}{2}+m)\Gamma(m+\frac{1}{2})}{2\Gamma(\frac{d-1}{2})} (30)
×(R2)d22[(2R2R2)(m12R2)m+(1R2R2)(m22R2)m]\displaystyle\hskip 19.91684pt\times(R_{2})^{\frac{d-2}{2}}\;\left[\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)\left(\dfrac{m_{1}^{2}}{R_{2}}\right)^{m}+\left(\frac{\partial_{1}R_{2}}{R_{2}}\right)\left(\dfrac{m_{2}^{2}}{R_{2}}\right)^{m}\right]
=Γ(d22)Γ(4d2)2Γ(d12)(R2)d22m=0Γ(m+12)Γ(m+1)[(2R2R2)(m12R2)m+(1R2R2)(m22R2)m]\displaystyle=\dfrac{\Gamma(\frac{d-2}{2})\Gamma(\frac{4-d}{2})}{2\Gamma(\frac{d-1}{2})}(R_{2})^{\frac{d-2}{2}}\sum_{m=0}^{\infty}\dfrac{\Gamma(m+\frac{1}{2})}{\Gamma(m+1)}\left[\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)\left(\dfrac{m_{1}^{2}}{R_{2}}\right)^{m}+\left(\frac{\partial_{1}R_{2}}{R_{2}}\right)\left(\dfrac{m_{2}^{2}}{R_{2}}\right)^{m}\right]
=π2Γ(4d2)Γ(d22)2Γ(d12)(R2)d42[2R21m12/R2+1R21m22/R2].\displaystyle=\dfrac{\sqrt{\pi}}{2}\;\dfrac{\Gamma(\frac{4-d}{2})\Gamma(\frac{d-2}{2})}{2\Gamma(\frac{d-1}{2})}\left(R_{2}\right)^{\frac{d-4}{2}}\left[\dfrac{\partial_{2}R_{2}}{\sqrt{1-m_{1}^{2}/R_{2}}}+\dfrac{\partial_{1}R_{2}}{\sqrt{1-m_{2}^{2}/R_{2}}}\right].

Noting that from (30) to (30), we have already applied the reflect formulas for gamma functions (see (253) in appendix AA for more detail). Summing all the above contributions in Eqs. (2730), we finally get

J2Γ(4d2)\displaystyle\dfrac{J_{2}}{\Gamma(\frac{4-d}{2})} =\displaystyle= π2Γ(d22)Γ(d12)(R2)d42[2R21m12/R2+1R21m22/R2]\displaystyle\dfrac{\sqrt{\pi}}{2}\dfrac{\Gamma(\frac{d-2}{2})}{\Gamma(\frac{d-1}{2})}\left(R_{2}\right)^{\frac{d-4}{2}}\left[\dfrac{\partial_{2}R_{2}}{\sqrt{1-m_{1}^{2}/R_{2}}}+\dfrac{\partial_{1}R_{2}}{\sqrt{1-m_{2}^{2}/R_{2}}}\right] (34)
Γ(d22)2Γ(d2){(2R2R2)(m12)d221m12/R2F12[d22,12;d2;m12R2]+(12)},\displaystyle-\dfrac{\Gamma(\frac{d-2}{2})}{2\Gamma(\frac{d}{2})}\left\{\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{\sqrt{1-m_{1}^{2}/R_{2}}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2},\frac{1}{2}\,;\\ \frac{d}{2}\,;\end{array}\dfrac{m_{1}^{2}}{R_{2}}\right]+(1\leftrightarrow 2)\right\},

provided that |m12/R2|<1\left|m_{1}^{2}/R_{2}\right|<1, |m22/R2|<1\left|m_{2}^{2}/R_{2}\right|<1 and \mathcal{R}e(d2)>0(d-2)>0. Eq. (34) is unchanged with exchanging m12m22m_{1}^{2}\leftrightarrow m_{2}^{2}. This reflects the symmetry of the scalar one-loop two-point Feynman diagrams. The result in (34) has shown in [18] and gives fully agreement with [16]. It is an important to remark that the solution for J2J_{2} in (34) is also valid when dd+2nd\rightarrow d+2n for nn\in\mathbb{N}. We would like to stress that one can perform the analytic continuation for J2J_{2} in (34) to extend the kinematic regions for one-loop two-point functions. The analytic continuation formulas for Gauss hypergeometric functions are given from (271) to (286) in the appendix BB. As an example, using (277), the result reads

J2Γ(4d2)\displaystyle\dfrac{J_{2}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= (2R2R2)(m12)d22F12[1,d12;32;1m12R2]+(12).\displaystyle\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)(m_{1}^{2})^{\frac{d-2}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-1}{2}\,;\\ \frac{3}{2}\,;\end{array}1-\frac{m_{1}^{2}}{R_{2}}\right]+(1\leftrightarrow 2). (37)

With (268), we arrive at

J2Γ(4d2)\displaystyle\dfrac{J_{2}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= (2R2R2)R2d22F12[4d2,12;32;1m12R2]+(12).\displaystyle\left(\frac{\partial_{2}R_{2}}{R_{2}}\right)R_{2}^{\frac{d-2}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{4-d}{2},\frac{1}{2}\,;\\ \frac{3}{2}\,;\end{array}1-\frac{m_{1}^{2}}{R_{2}}\right]+(1\leftrightarrow 2). (40)

We are going to consider special cases for scalar one-loop two-point Feynman integrals.

3.1 G10G_{1}\neq 0 and R2=0R_{2}=0

If R2=0R_{2}=0, we verify that p2=(m1m2)2p^{2}=(m_{1}-m_{2})^{2}, or (m1+m2)2(m_{1}+m_{2})^{2}. Applying (16) for N=2N=2 the result reads

J2Γ(4d2)\displaystyle\dfrac{J_{2}}{\Gamma(\frac{4-d}{2})} =\displaystyle= 1d3[(m12)d32(m1±m2)3+(12)].\displaystyle\frac{1}{d-3}\left[\frac{(m_{1}^{2})^{\frac{d-3}{2}}}{(m_{1}\pm m_{2})^{3}}+(1\leftrightarrow 2)\right]. (41)

In the limit of m1m2=mm_{1}\rightarrow m_{2}=m and p2=4m2p^{2}=4m^{2}, the result reads

J2\displaystyle J_{2} =\displaystyle= Γ(4d2)2(d3)(m2)d62.\displaystyle\frac{\Gamma(\frac{4-d}{2})}{2(d-3)}(m^{2})^{\frac{d-6}{2}}. (42)

3.2 G1=0G_{1}=0

Following (17) for N=2N=2, we arrive at

J2\displaystyle J_{2} =\displaystyle= Γ(4d2)(m22)d42F12[4d2,1;2;1m12m22]=Γ(2d2)(m22)d22(m12)d22m12m22.\displaystyle\Gamma\left(\frac{4-d}{2}\right)(m_{2}^{2})^{\frac{d-4}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{4-d}{2},1\,;\\ 2\,;\end{array}1-\frac{m_{1}^{2}}{m_{2}^{2}}\right]=\Gamma\left(\frac{2-d}{2}\right)\dfrac{(m_{2}^{2})^{\frac{d-2}{2}}-(m_{1}^{2})^{\frac{d-2}{2}}}{m_{1}^{2}-m_{2}^{2}}. (45)

If m12=m22m_{1}^{2}=m_{2}^{2}, one presents J2J_{2} as

J2\displaystyle J_{2} =\displaystyle= Γ(4d2)(m2)d42.\displaystyle\Gamma\left(\frac{4-d}{2}\right)(m^{2})^{\frac{d-4}{2}}. (46)

3.3 R2=m12R_{2}=m_{1}^{2} or R2=m22R_{2}=m_{2}^{2}

For the case of R2=m12R_{2}=m_{1}^{2} or R2=m22R_{2}=m_{2}^{2}, one relies on (40)(\ref{b7a}). If R2=m12=m22=m2R_{2}=m_{1}^{2}=m_{2}^{2}=m^{2}, the result in (40) simplifies to

J2=Γ(4d2)(m2)d42.\displaystyle J_{2}=\Gamma\left(\frac{4-d}{2}\right)(m^{2})^{\frac{d-4}{2}}. (47)

Under the condition \mathcal{R}e(d4)>0(d-4)>0, when m20m^{2}\rightarrow 0, one then gets J2=0J_{2}=0.

3.4 m12=m22=0m_{1}^{2}=m_{2}^{2}=0

If one of mi2=0m_{i}^{2}=0, for i=1,2i=1,2, we rely on (34). In the case of m12=m22=0m_{1}^{2}=m_{2}^{2}=0, from (34) we get

J2\displaystyle J_{2} =\displaystyle= π2Γ(4d2)Γ(d22)Γ(d12)(p24)d42,\displaystyle\frac{\sqrt{\pi}}{2}\frac{\Gamma\Big{(}\frac{4-d}{2}\Big{)}\Gamma\Big{(}\frac{d-2}{2}\Big{)}}{\Gamma\left(\frac{d-1}{2}\right)}\Big{(}-\frac{p^{2}}{4}\Big{)}^{\frac{d-4}{2}}, (48)

provided that \mathcal{R}e(d2)>0\left(d-2\right)>0. We note that p2p^{2} means p2+iρp^{2}+i\rho. Therefore, if p2>0p^{2}>0 the term (p2/4)d42\left(-p^{2}/4\right)^{\frac{d-4}{2}} is well-defined.

4 One-loop three-point functions

Setting N=3N=3 in (2), master equation for J3J_{3} reads

J3J3(d;{pi2},{mi2})\displaystyle J_{3}\equiv J_{3}(d;\{p_{i}^{2}\},\{m_{i}^{2}\}) =\displaystyle= 12πii+idsΓ(s)Γ(d22+s)Γ(s+1)2Γ(d22)(1R3)s×\displaystyle-\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(\frac{d-2}{2}+s)\Gamma(s+1)}{2\Gamma(\frac{d-2}{2})}\left(\frac{1}{R_{3}}\right)^{s}\times
×k=13(kR3R3)𝐤J3(d+2s;{pi2},{mi2}),\displaystyle\hskip 28.45274pt\times\sum\limits_{k=1}^{3}\left(\frac{\partial_{k}R_{3}}{R_{3}}\right)\;{\bf k}^{-}J_{3}(d+2s;\{p_{i}^{2}\},\{m_{i}^{2}\}),

for i=1,2,3i=1,2,3. The term 𝐤J3(d+2s;{pipj},{mi2}){\bf k}^{-}J_{3}(d+2s;\{p_{i}p_{j}\},\{m_{i}^{2}\}) becomes scalar one-loop two-point functions by shrinking an propagator kk-th in the integrand of J3J_{3}. In the next steps, we take the contour integrals in (4). In order to understand how to take the contour integrals, we chose the term with k=3k=3 in (4) for illustrating. This term is written explicitly as follows:

J3,(123)\displaystyle J_{3,(123)} =\displaystyle= 12πii+i𝑑sΓ(s)Γ(s+1)Γ(d22+s)2Γ(d22)(1R3)s(3R3R3)J2(d+2s;p12,m12,m22)\displaystyle-\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma\left(\frac{d-2}{2}+s\right)}{2\;\Gamma(\frac{d-2}{2})}\left(\frac{1}{R_{3}}\right)^{s}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)J_{2}(d+2s;p_{1}^{2},m_{1}^{2},m_{2}^{2}) (54)
=\displaystyle= 12πii+idsπΓ(s)Γ(s+1)Γ(d22+s)Γ(4d2s)Γ(d22+s)4Γ(d22)Γ(d12+s)×\displaystyle-\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\dfrac{\sqrt{\pi}\Gamma(-s)\Gamma(s+1)\Gamma\left(\frac{d-2}{2}+s\right)\Gamma(\frac{4-d}{2}-s)\Gamma(\frac{d-2}{2}+s)}{4\Gamma(\frac{d-2}{2})\Gamma(\frac{d-1}{2}+s)}\times
×(3R3R3)[2R121m12/R12+1R121m22/R12](R12)d42(R12R3)s\displaystyle\hskip 28.45274pt\times\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\dfrac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right]\;\left(R_{12}\right)^{\frac{d-4}{2}}\left(-\frac{R_{12}}{R_{3}}\right)^{s}
+12πii+idsΓ(s)Γ(s+1)Γ(d22+s)Γ(4d2s)Γ(d22+s)4Γ(d22)Γ(d2+s)(3R3R3)×\displaystyle+\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma\left(\frac{d-2}{2}+s\right)\Gamma(\frac{4-d}{2}-s)\Gamma(\frac{d-2}{2}+s)}{4\;\Gamma(\frac{d-2}{2})\Gamma(\frac{d}{2}+s)}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\times
×{(2R12R12)(m12)d221m12/R12F12[d22+s,12;d2+s;m12R12](m12R3)s+(12)}.\displaystyle\hskip 28.45274pt\times\left\{\left(\frac{\partial_{2}R_{12}}{R_{12}}\right)\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{\sqrt{1-m_{1}^{2}/R_{12}}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2}+s,\frac{1}{2}\,;\\ \frac{d}{2}+s\,;\end{array}\dfrac{m_{1}^{2}}{R_{12}}\right]\left(-\dfrac{m_{1}^{2}}{R_{3}}\right)^{s}+(1\leftrightarrow 2)\right\}.

For taking the MB integrals in (54), one closes the integration contour to the right. The residue contributions at the poles of the Γ(s)\Gamma(\cdots-s) are taken into account.

First, the contributions of residua at the poles s=ms=m with mm\in\mathbb{N}. In this case, one first applies the reflect formula (253) for gamma function:

Γ(4d2s)Γ(d22+s)=(1)sΓ(4d2)Γ(d22).\displaystyle\Gamma\left(\frac{4-d}{2}-s\right)\;\Gamma\left(\frac{d-2}{2}+s\right)=(-1)^{s}\;\Gamma\left(\frac{4-d}{2}\right)\;\Gamma\left(\frac{d-2}{2}\right). (55)

Using this identity, the first MB integration reads

J3,(123)1termΓ(4d2)|s=m\displaystyle\dfrac{J_{3,(123)}^{\mathrm{1-term}}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=m} =\displaystyle= π4(3R3R3)[2R121m12/R12+1R121m22/R12](R12)d42×\displaystyle-\frac{\sqrt{\pi}}{4}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\left[\frac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\frac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right]\left(R_{12}\right)^{\frac{d-4}{2}}\times
×12πii+i𝑑sΓ(s)Γ(s+1)Γ(d22+s)Γ(d12+s)(R12R3)s.\displaystyle\hskip 48.36958pt\times\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}\;ds\;\frac{\Gamma(-s)\;\Gamma(s+1)\Gamma\Big{(}\frac{d-2}{2}+s\Big{)}}{\Gamma(\frac{d-1}{2}+s)}\left(-\frac{R_{12}}{R_{3}}\right)^{s}.

This MB integral is then expressed in terms of hypergeometric F12{}_{2}F_{1} as follows:

J3,(123)1termΓ(4d2)|s=m\displaystyle\dfrac{J_{3,(123)}^{\mathrm{1-term}}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=m} =\displaystyle= π4Γ(d22)Γ(d12)(3R3R3)[2R121m12/R12+(12)](R12)d42F12[d22,1;d12;R12R3],\displaystyle-\frac{\sqrt{\pi}}{4}\frac{\Gamma\left(\frac{d-2}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\left[\frac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+(1\leftrightarrow 2)\right]\left(R_{12}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2},1\,;\\ \frac{d-1}{2}\,;\end{array}\frac{R_{12}}{R_{3}}\right], (59)

provided that |R12/R3|<1\left|R_{12}/R_{3}\right|<1 and \mathcal{R}e(d3)>0\left(d-3\right)>0. The second MB integral reads

J3,(123)2termΓ(4d2)|s=m\displaystyle\dfrac{J_{3,(123)}^{\mathrm{2-term}}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=m} =\displaystyle= 12πii+idsΓ(s)Γ(s+1)Γ(d22+s)Γ(d2+s)(3R34R3)×\displaystyle\frac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}\;ds\;\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma\Big{(}\frac{d-2}{2}+s\Big{)}}{\Gamma(\frac{d}{2}+s)}\left(\frac{\partial_{3}R_{3}}{4R_{3}}\right)\times
×{(2R12R12)(m12)d221m12/R12(m12R3)sF12[d22+s,12;d2+s;m12R12]+(12)}\displaystyle\times\left\{\left(\dfrac{\partial_{2}R_{12}}{R_{12}}\right)\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{\sqrt{1-m_{1}^{2}/R_{12}}}\left(-\frac{m_{1}^{2}}{R_{3}}\right)^{s}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2}+s,\frac{1}{2}\,;\\ \frac{d}{2}+s\,;\end{array}\dfrac{m_{1}^{2}}{R_{12}}\right]+(1\leftrightarrow 2)\right\}
=Γ(d22)4Γ(d2)(3R3R3)[(2R12R12)(m12)d221m12/R12F1(d22;1,12;d2;m12R3,m12R12)+(12)],\displaystyle=\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{4\Gamma\left(\frac{d}{2}\right)}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\left[\left(\dfrac{\partial_{2}R_{12}}{R_{12}}\right)\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{\sqrt{1-m_{1}^{2}/R_{12}}}F_{1}\left(\dfrac{d-2}{2};1,\frac{1}{2};\frac{d}{2};\frac{m_{1}^{2}}{R_{3}},\dfrac{m_{1}^{2}}{R_{12}}\right)+(1\leftrightarrow 2)\right],

provided that |m(1,2)2/R3|\left|m_{(1,2)}^{2}/R_{3}\right|, |m(1,2)2/R12|<1\left|m_{(1,2)}^{2}/R_{12}\right|<1 and \mathcal{R}e(d2)>0\left(d-2\right)>0.

In the next steps, the residue contributions at the second sequence poles s=4d2+ms=\frac{4-d}{2}+m for mm\in\mathbb{N} are taken into account. The next MB integrations are considered as follows:

J3,(123)1term|s=4d+2m2\displaystyle J_{3,(123)}^{\mathrm{1-term}}\Big{|}_{s=\frac{4-d+2m}{2}} =\displaystyle= π2πii+i𝑑sΓ(s)Γ(s+1)Γ2(d22+s)Γ(4d2s)4Γ(d22)Γ(d12+s)\displaystyle-\frac{\sqrt{\pi}}{2\pi i}\int\limits_{-i\infty}^{+i\infty}\;ds\;\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma^{2}\Big{(}\frac{d-2}{2}+s\Big{)}\Gamma\left(\frac{4-d}{2}-s\right)}{4\;\Gamma\left(\frac{d-2}{2}\right)\Gamma(\frac{d-1}{2}+s)}
×(3R3R3)[2R121m12/R12+1R121m22/R12](R12)d42(R12R3)s\displaystyle\times\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\dfrac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right]\left(R_{12}\right)^{\frac{d-4}{2}}\left(-\frac{R_{12}}{R_{3}}\right)^{s}
=\displaystyle= (3R32R3)[2R121m12/R12+1R121m22/R12](R3)d42F12[1,1;32;R12R3],\displaystyle\left(\frac{\partial_{3}R_{3}}{2\;R_{3}}\right)\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\dfrac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right](R_{3})^{\frac{d-4}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\frac{R_{12}}{R_{3}}\right], (69)
J3,(123)2termΓ(4d2)|s=4d2+m\displaystyle\dfrac{J_{3,(123)}^{\mathrm{2-term}}}{\Gamma\left(\frac{4-d}{2}\right)}\Big{|}_{s=\frac{4-d}{2}+m} =\displaystyle= (3R32R3)[(2R122R12)m12(R3)d421m12/R12F1(1;1,12;2;m12R3,m12R12)+(12)],\displaystyle-\left(\frac{\partial_{3}R_{3}}{2R_{3}}\right)\left[\left(\frac{\partial_{2}R_{12}}{2R_{12}}\right)\frac{m_{1}^{2}(R_{3})^{\frac{d-4}{2}}}{\sqrt{1-m_{1}^{2}/R_{12}}}F_{1}\left(1;1,\frac{1}{2};2;\frac{m_{1}^{2}}{R_{3}},\dfrac{m_{1}^{2}}{R_{12}}\right)+(1\leftrightarrow 2)\right],

provided that |m(1,2)2/R3|\left|m_{(1,2)}^{2}/R_{3}\right|, |m(1,2)2/R12|<1\left|m_{(1,2)}^{2}/R_{12}\right|<1 and |R12/R3|<1\left|R_{12}/R_{3}\right|<1.

Summing all the above contributions, the final result for J3J_{3} is written as a compact form

J3Γ(4d2)\displaystyle\dfrac{J_{3}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= J123(d=4)(R3)d42+J123(d)\displaystyle-J_{123}^{(d=4)}\;(R_{3})^{\frac{d-4}{2}}+J_{123}^{(d)}
+{(1,2,3)(2,3,1)}\displaystyle+\Big{\{}(1,2,3)\leftrightarrow(2,3,1)\Big{\}}
+{(1,2,3)(3,1,2)}.\displaystyle+\Big{\{}(1,2,3)\leftrightarrow(3,1,2)\Big{\}}.

Where J123(d)J_{123}^{(d)} is obtained from (59) and (4). It is given by

J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= πΓ(d22)4Γ(d12)(3R3R3)[2R121m12/R12+(12)](R12)d42F12[d22,1;d12;R12R3]\displaystyle-\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{4\Gamma\left(\frac{d-1}{2}\right)}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\Bigg{[}\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+(1\leftrightarrow 2)\Bigg{]}\left(R_{12}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2},1\,;\\ \frac{d-1}{2}\,;\end{array}\dfrac{R_{12}}{R_{3}}\right]
+Γ(d22)4Γ(d2)(3R3R3)[(2R12R12)(m12)d221m12/R12F1(d22;1,12;d2;m12R3,m12R12)+(12)],\displaystyle+\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{4\Gamma\left(\frac{d}{2}\right)}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\Bigg{[}\left(\dfrac{\partial_{2}R_{12}}{R_{12}}\right)\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{\sqrt{1-m_{1}^{2}/R_{12}}}F_{1}\left(\dfrac{d-2}{2};1,\frac{1}{2};\frac{d}{2};\frac{m_{1}^{2}}{R_{3}},\dfrac{m_{1}^{2}}{R_{12}}\right)+(1\leftrightarrow 2)\Bigg{]},

provided that |mi2/Rij|<1\left|m_{i}^{2}/R_{ij}\right|<1, |Rij/Rijk|<1\left|R_{ij}/R_{ijk}\right|<1 for i,j,k=1,2,3i,j,k=1,2,3 and \mathcal{R}e(d2)>0\left(d-2\right)>0. The latter condition always meets when d>2d>2. The kinematic variables Rijk,RijR_{ijk},R_{ij} and mim_{i} for i,j,k=1,2,3i,j,k=1,2,3, etc., may not satisfy the former conditions. If the absolute value of the arguments of F12\,{}_{2}F_{1} and the Appell functions F1F_{1} in (4) are larger than one, we have to perform analytic continuations for these functions as in [25, 31]. The result for J3J_{3} has been shown in [18, 19]. The term J123(d=4)J_{123}^{(d=4)} is obtained from (LABEL:j3bound1, 4) or taking d4d\rightarrow 4 of (4). This term is given

J123(d=4)\displaystyle J_{123}^{(d=4)} =\displaystyle= (3R32R3)[2R121m12/R12+(12)]F12[1,1;3/2;R12R3]\displaystyle-\left(\frac{\partial_{3}R_{3}}{2R_{3}}\right)\Big{[}\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+(1\leftrightarrow 2)\Big{]}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ 3/2\,;\end{array}\dfrac{R_{12}}{R_{3}}\right]
+(3R32R3)[(2R122R12)m121m12/R12F1(1;1,12;2;m12R3,m12R12)+(12)].\displaystyle+\left(\frac{\partial_{3}R_{3}}{2R_{3}}\right)\left[\left(\dfrac{\partial_{2}R_{12}}{2R_{12}}\right)\dfrac{m_{1}^{2}}{\sqrt{1-m_{1}^{2}/R_{12}}}\;F_{1}\left(1;1,\frac{1}{2};2;\frac{m_{1}^{2}}{R_{3}},\dfrac{m_{1}^{2}}{R_{12}}\right)+(1\leftrightarrow 2)\right].

We emphasis that the solution (4)(\ref{J3normal}) for J3J_{3} with (4)(\ref{J123normal}) is equivalent to (7474) in Ref. [16]. But the terms J123(d=4),J^{(d=4)}_{123},\cdots in our solution cover the condition (7373) in Ref. [16]. Since the boundary term given in (7474) of Ref. [16] was obtained by asymptotic theory of complex Laplace-type integrals. This term is only valid in a kinematic sub-domain in which the asymptotic theory of Laplace-type can be applied. The analytic continuation for the boundary term in [16] has not been discussed. We provide a complete analytic solution for J3J_{3} in comparison with (7474) in Ref. [16]. We refer to our previous work [18] in which the numerical studies for this problem have discussed.

One-fold integral and all transformations for F1F_{1} can be found in appendix BB. Applying the relation (Appell series) for F1F_{1} in appendix CC, we arrive at another representation for (4, 4):

J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= (3R3)(2R12)2(m12R3)(m12)d42F1(1;4d2,1;32;1R12m12,R12m12R3m12)+(12),\displaystyle\dfrac{\left(\partial_{3}R_{3}\right)\left(\partial_{2}R_{12}\right)}{2(m_{1}^{2}-R_{3})}(m_{1}^{2})^{\frac{d-4}{2}}F_{1}\left(1;\frac{4-d}{2},1;\frac{3}{2};1-\frac{R_{12}}{m_{1}^{2}},\dfrac{R_{12}-m_{1}^{2}}{R_{3}-m_{1}^{2}}\right)+(1\leftrightarrow 2), (79)
J123(d=4)\displaystyle J_{123}^{(d=4)} =\displaystyle= (3R3)(2R12)2(m12R3)F12[1,1;32;R12m12R3m12]+(12),\displaystyle\dfrac{\left(\partial_{3}R_{3}\right)\left(\partial_{2}R_{12}\right)}{2(m_{1}^{2}-R_{3})}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{12}-m_{1}^{2}}{R_{3}-m_{1}^{2}}\right]+(1\leftrightarrow 2), (82)

provided that the absolute value of the arguments of F12\,{}_{2}F_{1} and the Appell functions F1F_{1} in this presentation are less than 11.

4.1 Massless internal lines

For the massless case, under the condition \mathcal{R}e(d2)>0(d-2)>0, all terms related to Appell F1F_{1} functions in (4) vanish, the result then reads

J3Γ(4d2)\displaystyle\dfrac{J_{3}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= (R3)d42(3R32R3)|mi20F12[1,1;32;R12R3]\displaystyle-\;(R_{3})^{\frac{d-4}{2}}\;\left(\frac{\partial_{3}R_{3}}{2R_{3}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{12}}{R_{3}}\right]
+πΓ(d22)4Γ(d12)(3R3R3)|mi20(R12)d42F12[d22,1;d12;R12R3]\displaystyle+\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{4\;\Gamma\left(\frac{d-1}{2}\right)}\left(\frac{\partial_{3}R_{3}}{R_{3}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\;(R_{12})^{\frac{d-4}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2},1\,;\\ \frac{d-1}{2}\,;\end{array}\dfrac{R_{12}}{R_{3}}\right]
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\Big{\{}(1,2,3)\rightarrow(2,3,1)\Big{\}}\quad+\quad\Big{\{}(1,2,3)\rightarrow(3,1,2)\Big{\}}.

In order to cross check with the result in [6], we write J3J_{3} as a function of p12,p22,p32p_{1}^{2},p_{2}^{2},p_{3}^{2} explicitly

J3Γ(4d2)\displaystyle\dfrac{J_{3}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= (p22+p32p122p22p32)(p12p22p32λ(p12,p22,p32))d42F12[1,1;32;λ(p12,p22,p32)4p22p32]\displaystyle-\left(\dfrac{p_{2}^{2}+p_{3}^{2}-p_{1}^{2}}{2\;p_{2}^{2}p_{3}^{2}}\right)\;\left(\dfrac{p_{1}^{2}p_{2}^{2}p_{3}^{2}}{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}-\dfrac{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}{4p_{2}^{2}p_{3}^{2}}\right] (95)
+πΓ(d22)4Γ(d12)(p22+p32p12p22p32)(p124)d42F12[1,d22;d12;λ(p12,p22,p32)4p22p32]\displaystyle+\dfrac{\sqrt{\pi}\;\Gamma\left(\frac{d-2}{2}\right)}{4\;\Gamma\left(\frac{d-1}{2}\right)}\left(\dfrac{p_{2}^{2}+p_{3}^{2}-p_{1}^{2}}{p_{2}^{2}p_{3}^{2}}\right)\;\left(-\dfrac{p_{1}^{2}}{4}\right)^{\frac{d-4}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-2}{2}\,;\\ \frac{d-1}{2}\,;\end{array}-\dfrac{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}{4p_{2}^{2}p_{3}^{2}}\right]
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\Big{\{}(1,2,3)\rightarrow(2,3,1)\Big{\}}+\Big{\{}(1,2,3)\rightarrow(3,1,2)\Big{\}}.

Here λ(x,y,z)=x2+y2+z22xy2xz2yz\lambda(x,y,z)=x^{2}+y^{2}+z^{2}-2xy-2xz-2yz is the Källén function. We remark that pi2pi2+iρp_{i}^{2}\rightarrow p_{i}^{2}+i\rho in this formula. With applying (1.3.3.51.3.3.5) in Ref. [25], one can present J3J_{3} as

J3Γ(4d2)\displaystyle\dfrac{J_{3}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= 2(p12p22p32)(p12p22p32λ(p12,p22,p32))d42F12[1,12;32;λ(p12,p22,p32)(p22+p32p12)2]\displaystyle\dfrac{2}{(p_{1}^{2}-p_{2}^{2}-p_{3}^{2})}\left(\dfrac{p_{1}^{2}p_{2}^{2}p_{3}^{2}}{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}\right)^{\frac{d-4}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{1}{2}\,;\\ \frac{3}{2}\,;\end{array}\dfrac{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}{(p_{2}^{2}+p_{3}^{2}-p_{1}^{2})^{2}}\right] (102)
+πΓ(d22)Γ(d12)(p12/4)d42p22+p32p12F12[1,12;d12;λ(p12,p22,p32)(p22+p32p12)2]\displaystyle+\dfrac{\sqrt{\pi}\;\Gamma\left(\frac{d-2}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)}\dfrac{\left(-p_{1}^{2}/4\right)^{\frac{d-4}{2}}}{p_{2}^{2}+p_{3}^{2}-p_{1}^{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{1}{2}\,;\\ \frac{d-1}{2}\,;\end{array}\dfrac{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}{(p_{2}^{2}+p_{3}^{2}-p_{1}^{2})^{2}}\right]
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)},\displaystyle+\Big{\{}(1,2,3)\rightarrow(2,3,1)\Big{\}}+\Big{\{}(1,2,3)\rightarrow(3,1,2)\Big{\}},

provided that |λ(p12,p22,p32)(p22+p32p12)2|<1\left|\dfrac{\lambda(p_{1}^{2},p_{2}^{2},p_{3}^{2})}{(p_{2}^{2}+p_{3}^{2}-p_{1}^{2})^{2}}\right|<1 and \mathcal{R}e(d2)>0(d-2)>0. This equation is equivalent to (1010) in [6]. We note that we can arrive to this result by inserting J2J_{2} at d+2sd+2s in (48) into (4) and taking the corresponding MB integrals.

4.2 Rij=0R_{ij}=0

We consider the terms in J3J_{3} with R12=0R_{12}=0 as an example. In this case, the terms J231(d)J_{231}^{(d)} and J312(d)J_{312}^{(d)} are given in the same form of (4) or (79). While the term J123(d)J_{123}^{(d)} is obtained by performing analytic continuation the result in (79). In detail, one takes the limit of R120R_{12}\rightarrow 0 in (79), we arrive at

J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= (3R3)(2R12)2(m12R3)(m12)d42F1(1;4d2,1;32;1,m12m12R3)+(12).\displaystyle\frac{\left(\partial_{3}R_{3}\right)\left(\partial_{2}R_{12}\right)}{2(m_{1}^{2}-R_{3})}(m_{1}^{2})^{\frac{d-4}{2}}F_{1}\left(1;\frac{4-d}{2},1;\frac{3}{2};1,\dfrac{m_{1}^{2}}{m_{1}^{2}-R_{3}}\right)+(1\leftrightarrow 2). (103)

Using (3636) in Ref. [30], the term J123(d)J_{123}^{(d)} simplifies to

J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= Γ(d32)Γ(d12)(3R34R3){(2R12)(m12)d42F12[1,d22;d12;m12R3]+(12)},\displaystyle-\dfrac{\Gamma\left(\frac{d-3}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)}\;\left(\frac{\partial_{3}R_{3}}{4R_{3}}\right)\left\{\left(\partial_{2}R_{12}\right)(m_{1}^{2})^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-2}{2}\,;\\ \frac{d-1}{2}\,;\end{array}\dfrac{m_{1}^{2}}{R_{3}}\right]+(1\leftrightarrow 2)\right\}, (106)

provided that \mathcal{R}e(d2)>0\left(d-2\right)>0 and |mi2/R3|<1\left|m_{i}^{2}/R_{3}\right|<1 for i=1,2i=1,2. Taking d4d\rightarrow 4, we have

J123(d=4)\displaystyle J_{123}^{(d=4)} =\displaystyle= (3R32R3){(2R12)F12[1,1;32;m12R3]+(12)}.\displaystyle-\left(\frac{\partial_{3}R_{3}}{2R_{3}}\right)\left\{\left(\partial_{2}R_{12}\right)\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{m_{1}^{2}}{R_{3}}\right]+(1\leftrightarrow 2)\right\}. (109)

4.3 Rij=mi(j)2R_{ij}=m_{i(j)}^{2} for i,j=1,2,3i,j=1,2,3

Next we consider R12=m12R_{12}=m_{1}^{2} as an example. In this case, the terms J231(d),J312dJ_{231}^{(d)},J_{312}^{d} are given by (4). Beside that, one verifies

2R12=0.\displaystyle\partial_{2}R_{12}=0. (110)

As a result, we obtain

J123(d=4)\displaystyle J_{123}^{(d=4)} =\displaystyle= (3R3)(1R12)2(m22R3)F12[1,1;32;m12m22R3m22],\displaystyle\dfrac{\left(\partial_{3}R_{3}\right)\left(\partial_{1}R_{12}\right)}{2(m_{2}^{2}-R_{3})}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{m_{1}^{2}-m_{2}^{2}}{R_{3}-m_{2}^{2}}\right], (113)
J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= (3R3)(1R12)2(m22R3)(m22)d42F1(1;4d2,1;32;1m12m22,m12m22R3m22),\displaystyle\dfrac{\left(\partial_{3}R_{3}\right)\left(\partial_{1}R_{12}\right)}{2(m_{2}^{2}-R_{3})}(m_{2}^{2})^{\frac{d-4}{2}}F_{1}\left(1;\frac{4-d}{2},1;\frac{3}{2};1-\frac{m_{1}^{2}}{m_{2}^{2}},\dfrac{m_{1}^{2}-m_{2}^{2}}{R_{3}-m_{2}^{2}}\right), (114)

provided that the amplitude of arguments of hypergeometric functions appearing in this formula are less that 11. For R12=m12=m22R_{12}=m_{1}^{2}=m_{2}^{2}, the function F1F_{1} in (114) is equal 11. The result reads

J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= (3R3)2(m2R3)(m2)d42.\displaystyle\dfrac{\left(\partial_{3}R_{3}\right)}{2(m^{2}-R_{3})}(m^{2})^{\frac{d-4}{2}}. (115)

4.4 R3=mk2R_{3}=m_{k}^{2} for k=1,2,3k=1,2,3

As an example, consider the terms of J3J_{3} in (4) with R3=m12R_{3}=m_{1}^{2}. One verifies that

1R3=1,iR3=0,fori=2,3.\displaystyle\partial_{1}R_{3}=1,\quad\partial_{i}R_{3}=0,\quad\text{for}\quad i=2,3. (116)

As a result, J3J_{3} is casted into the form of

J3Γ(4d2)=J231(d=4)(R3)d42+J231(d),\displaystyle\dfrac{J_{3}}{\Gamma\left(\frac{4-d}{2}\right)}=-J_{231}^{(d=4)}\;\left(R_{3}\right)^{\frac{d-4}{2}}+J_{231}^{(d)}, (117)

with J231(d)J_{231}^{(d)} taking the same form of (4) or (79). We take (79) as example for J231(d)J_{231}^{(d)}. In detail, it takes

J231(d)\displaystyle J_{231}^{(d)} =\displaystyle= (1R3)(3R23)2(m22R3)(m22)d42F1(1;4d2,1;32;1R23m22,R23m22R3m22)+(23).\displaystyle\dfrac{\left(\partial_{1}R_{3}\right)\left(\partial_{3}R_{23}\right)}{2(m_{2}^{2}-R_{3})}(m_{2}^{2})^{\frac{d-4}{2}}F_{1}\left(1;\frac{4-d}{2},1;\frac{3}{2};1-\frac{R_{23}}{m_{2}^{2}},\dfrac{R_{23}-m_{2}^{2}}{R_{3}-m_{2}^{2}}\right)+(2\leftrightarrow 3). (118)

Taking d4d\rightarrow 4, the result reads

J231(d=4)\displaystyle J_{231}^{(d=4)} =\displaystyle= (1R3)(3R23)2(m22R3)F12[1,1;32;R23m22R3m22]+(23).\displaystyle\dfrac{\left(\partial_{1}R_{3}\right)\left(\partial_{3}R_{23}\right)}{2(m_{2}^{2}-R_{3})}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{23}-m_{2}^{2}}{R_{3}-m_{2}^{2}}\right]+(2\leftrightarrow 3). (121)

4.5 G20G_{2}\neq 0 and R3=0R_{3}=0

By setting N=3N=3 in (16), one obtains

J3\displaystyle J_{3} =\displaystyle= 1(d4)k=13(kY3G2)𝐤J3(d2;{pi2},{mi2}).\displaystyle\dfrac{1}{(d-4)}\sum\limits_{k=1}^{3}\left(\frac{\partial_{k}Y_{3}}{G_{2}}\right){\bf k^{-}}J_{3}(d-2;\{p_{i}^{2}\},\{m_{i}^{2}\}). (122)

The resulting of 𝐤J3(d2;{pi2},{mi2}){\bf k^{-}}J_{3}(d-2;\{p_{i}^{2}\},\{m_{i}^{2}\}) is J2J_{2} in (34) or in (40) with dd2d\rightarrow d-2. As an example, we take J2J_{2} in (40) at d2d-2. The result reads

J3Γ(6d2)\displaystyle\dfrac{J_{3}}{\Gamma(\frac{6-d}{2})} =\displaystyle= 1(4d)(3Y3G2){(2R12R12)(R12)d42F12[6d2,12;32;1m12R12]+(12)}\displaystyle\frac{1}{(4-d)}\left(\frac{\partial_{3}Y_{3}}{G_{2}}\right)\left\{\left(\frac{\partial_{2}R_{12}}{R_{12}}\right)(R_{12})^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{6-d}{2},\frac{1}{2}\,;\\ \frac{3}{2}\,;\end{array}1-\frac{m_{1}^{2}}{R_{12}}\right]+(1\leftrightarrow 2)\right\} (126)
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\Big{\{}(1,2,3)\leftrightarrow(2,3,1)\Big{\}}+\Big{\{}(1,2,3)\leftrightarrow(3,1,2)\Big{\}}.

We can confirm (122) again by using analytic continuation result of J3J_{3} in (79). In fact, when R30R_{3}\rightarrow 0 the equation (79) becomes

J123(d)\displaystyle J^{(d)}_{123} =\displaystyle= 12(3Y3G2)[(2R12)(m12)d42F1(1,4d2,1,32,1R12m12,1R12m12)+(12)]\displaystyle-\frac{1}{2}\left(\frac{\partial_{3}Y_{3}}{G_{2}}\right)\left[(\partial_{2}R_{12})(m_{1}^{2})^{\frac{d-4}{2}}F_{1}\left(1,\frac{4-d}{2},1,\frac{3}{2},1-\frac{R_{12}}{m_{1}^{2}},1-\frac{R_{12}}{m_{1}^{2}}\right)+(1\leftrightarrow 2)\right] (127)
=\displaystyle= 12(3Y3G2){(2R12)(m12)d42F12[6d2,1;32;1R12m12]+(12)}\displaystyle-\frac{1}{2}\left(\frac{\partial_{3}Y_{3}}{G_{2}}\right)\left\{(\partial_{2}R_{12})(m_{1}^{2})^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{6-d}{2},1\,;\\ \frac{3}{2}\,;\end{array}1-\frac{R_{12}}{m_{1}^{2}}\right]+(1\leftrightarrow 2)\right\} (130)
=\displaystyle= 12(3Y3G2){(2R12R12)(R12)d62F12[6d2,1;32;1m12R12]+(12)}.\displaystyle-\frac{1}{2}\left(\frac{\partial_{3}Y_{3}}{G_{2}}\right)\left\{\left(\frac{\partial_{2}R_{12}}{R_{12}}\right)(R_{12})^{\frac{d-6}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{6-d}{2},1\,;\\ \frac{3}{2}\,;\end{array}1-\frac{m_{1}^{2}}{R_{12}}\right]+(1\leftrightarrow 2)\right\}. (133)

Plugging (133) into (4), we arrive at (126).

4.6 R3=RijR_{3}=R_{ij} for i,j=1,2,3i,j=1,2,3

We consider the case of R3=R12R_{3}=R_{12} as an example. In this case, one verifies that

3R3=0.\displaystyle\partial_{3}R_{3}=0. (134)

As a result, J3J_{3} is

J3Γ(4d2)\displaystyle\dfrac{J_{3}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= J231(d=4)(R3)d42+J231(d)\displaystyle-J_{231}^{(d=4)}\;\left(R_{3}\right)^{\frac{d-4}{2}}+J_{231}^{(d)} (135)
+{(2,3,1)(3,1,2)}.\displaystyle+\{(2,3,1)\leftrightarrow(3,1,2)\}.

Here J231(d)J_{231}^{(d)} takes the same form as (4) or (79). We take (79) as example for J231(d)J_{231}^{(d)}. In detail, it takes

J231(d)\displaystyle J_{231}^{(d)} =\displaystyle= (1R3)(3R23)2(m22R3)(m22)d42F1(1;4d2,1;32;1R23m22,R23m22R3m22)+(23),\displaystyle\dfrac{\left(\partial_{1}R_{3}\right)\left(\partial_{3}R_{23}\right)}{2(m_{2}^{2}-R_{3})}(m_{2}^{2})^{\frac{d-4}{2}}F_{1}\left(1;\frac{4-d}{2},1;\frac{3}{2};1-\frac{R_{23}}{m_{2}^{2}},\dfrac{R_{23}-m_{2}^{2}}{R_{3}-m_{2}^{2}}\right)+(2\leftrightarrow 3), (136)
J231(d=4)\displaystyle J_{231}^{(d=4)} =\displaystyle= (1R3)(3R23)2(m22R3)F12[1,1;32;R23m22R3m22]+(23).\displaystyle\dfrac{\left(\partial_{1}R_{3}\right)\left(\partial_{3}R_{23}\right)}{2(m_{2}^{2}-R_{3})}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{23}-m_{2}^{2}}{R_{3}-m_{2}^{2}}\right]+(2\leftrightarrow 3). (139)

4.7 G2=0G_{2}=0

Setting N=3N=3 in (17), the result reads

J3=12k=13(kY3Y3)𝐤J3(d;{pi2},{mi2}).\displaystyle J_{3}=-\frac{1}{2}\sum\limits_{k=1}^{3}\left(\frac{\partial_{k}Y_{3}}{Y_{3}}\right){\bf k^{-}}J_{3}(d;\{p_{i}^{2}\},\{m_{i}^{2}\}). (140)

This equation is equivalent to (4646) in Ref. [21]. The term 𝐤J3(d;{pi2},{mi2}){\bf k^{-}}J_{3}(d;\{p_{i}^{2}\},\{m_{i}^{2}\}) corresponds to J2J_{2} in (40) as an example. We obtain

J3Γ(4d2)\displaystyle\dfrac{J_{3}}{\Gamma(\frac{4-d}{2})} =\displaystyle= (3Y32Y3){(2Y12Y12)(m12)d22F12[d12,1;32;1m12R12]+(12)}\displaystyle-\left(\frac{\partial_{3}Y_{3}}{2Y_{3}}\right)\left\{\left(\frac{\partial_{2}Y_{12}}{Y_{12}}\right)(m_{1}^{2})^{\frac{d-2}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-1}{2},1\,;\\ \frac{3}{2}\,;\end{array}1-\frac{m_{1}^{2}}{R_{12}}\right]+(1\leftrightarrow 2)\right\} (144)
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\Big{\{}(1,2,3)\leftrightarrow(2,3,1)\Big{\}}+\Big{\{}(1,2,3)\leftrightarrow(3,1,2)\Big{\}}.

4.8 G1(ij)=0G_{1(ij)}=0 for i,j=1,2,3i,j=1,2,3

G1(ij)G_{1(ij)} are the Gram determinants of two-point functions which are obtained by shrinking a propagator ki,jk\neq i,j in the three-point ones. Taking G1(12)=0G_{1(12)}=0 as an example, the term J123(d)J_{123}^{(d)} is evaluated as follows. We put J2J_{2} in (45) into (4). Taking the corresponding MB integrations, the results read as form of (4) with

J123(d=4)\displaystyle J_{123}^{(d=4)} =\displaystyle= (3R3R3)m12m12m22F12[1,1;2;m12R3]+(12),\displaystyle-\left(\dfrac{\partial_{3}R_{3}}{R_{3}}\right)\dfrac{m_{1}^{2}}{m_{1}^{2}-m_{2}^{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ 2\,;\end{array}\frac{m_{1}^{2}}{R_{3}}\right]+(1\leftrightarrow 2), (147)
J123(d)\displaystyle J_{123}^{(d)} =\displaystyle= Γ(d22)2Γ(d2)(3R3R3)(m12)d22m12m22F12[d22,1;d2;m12R3]+(12).\displaystyle-\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{2\Gamma\left(\frac{d}{2}\right)}\left(\dfrac{\partial_{3}R_{3}}{R_{3}}\right)\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{m_{1}^{2}-m_{2}^{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-2}{2},1\,;\\ \frac{d}{2}\,;\end{array}\frac{m_{1}^{2}}{R_{3}}\right]+(1\leftrightarrow 2). (150)

It is valid under the conditions that the arguments of the hypergeometric fuctions appearing in this formula are less that 11 and \mathcal{R}e(d2)>0(d-2)>0.

4.9 Cross check with other papers

We consider p22=p32=0;p120,m12=m32=0p_{2}^{2}=p_{3}^{2}=0;p_{1}^{2}\neq 0,m_{1}^{2}=m_{3}^{2}=0 and m220m_{2}^{2}\neq 0 as an example [10, 15]. We confirm that

R3=m22(p12+m22)p12,1R3R3=3R3R3=1p12+m22,2R3R3=2m22+p12m22(m22+p12).\displaystyle R_{3}=\dfrac{m_{2}^{2}(p_{1}^{2}+m_{2}^{2})}{p_{1}^{2}},\dfrac{\partial_{1}R_{3}}{R_{3}}=\dfrac{\partial_{3}R_{3}}{R_{3}}=-\dfrac{1}{p_{1}^{2}+m_{2}^{2}},\dfrac{\partial_{2}R_{3}}{R_{3}}=\dfrac{2m_{2}^{2}+p_{1}^{2}}{m_{2}^{2}(m_{2}^{2}+p_{1}^{2})}. (151)

The J3J_{3} in (4) becomes

J3\displaystyle J_{3} =\displaystyle= 12πii+i𝑑sΓ(s)Γ(s+1)Γ(d22+s)Γ(4d2s)2Γ(d22)(1R3)s\displaystyle-\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}\;ds\;\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma\Big{(}\frac{d-2}{2}+s\Big{)}\Gamma\Big{(}\frac{4-d}{2}-s\Big{)}}{2\;\Gamma(\frac{d-2}{2})}\left(\dfrac{1}{R_{3}}\right)^{s}
×{π22m22+p12m22(m22+p12)Γ(d22+s)Γ(d12+s)(p124)d42+s2p12+m22Γ(d22+s)Γ(d2+s)(m22)d42+s}.\displaystyle\times\Bigg{\{}\dfrac{\sqrt{\pi}}{2}\dfrac{2m_{2}^{2}+p_{1}^{2}}{m_{2}^{2}(m_{2}^{2}+p_{1}^{2})}\dfrac{\Gamma\left(\frac{d-2}{2}+s\right)}{\Gamma\left(\frac{d-1}{2}+s\right)}\;\left(\dfrac{-p_{1}^{2}}{4}\right)^{\frac{d-4}{2}+s}-\frac{2}{p_{1}^{2}+m_{2}^{2}}\dfrac{\Gamma\left(\frac{d-2}{2}+s\right)}{\Gamma\left(\frac{d}{2}+s\right)}\;(m_{2}^{2})^{\frac{d-4}{2}+s}\Bigg{\}}.

We note that the first term in curly bracket of (4.9) is J2J_{2} in the case of (48) with dd shifted to d+2sd+2s. While the second term in curly bracket of (4.9) is corresponding to J2J_{2} in (45) at d+2sd+2s (and with a massless internal line). In the following we perform the contour integration of (4.9) starting with the second contour integral:

J3(1)\displaystyle J_{3}^{(1)} =\displaystyle= (m22)d222πii+i𝑑sΓ(s)Γ(s+1)Γ(d22+s)2Γ(4d2s)2Γ(d22)Γ(d2+s)(m22R3)s.\displaystyle-\dfrac{(m_{2}^{2})^{\frac{d}{2}-2}\;}{2\pi i}\int\limits_{-i\infty}^{+i\infty}\;ds\;\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma\Big{(}\frac{d-2}{2}+s\Big{)}^{2}\Gamma\Big{(}\frac{4-d}{2}-s\Big{)}}{2\;\Gamma(\frac{d-2}{2})\;\Gamma\left(\frac{d}{2}+s\right)}\left(\dfrac{m_{2}^{2}}{R_{3}}\right)^{s}. (153)

By closing the integration contour to the right, the residue contributions at the poles of Γ(s)\Gamma(-s) and Γ(4d2s)\Gamma\left(\frac{4-d}{2}-s\right) are calculated. For the first sequence poles, the result reads

J3(1,a)\displaystyle J_{3}^{(1,a)} =\displaystyle= Γ(2d2)Γ(d21)2Γ(d2)(m22)d22F12[1,d22;d2;p12p12+m22]\displaystyle-\dfrac{\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-1\right)}{2\Gamma\left(\frac{d}{2}\right)}(m_{2}^{2})^{\frac{d}{2}-2}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-2}{2}\,;\\ \frac{d}{2}\,;\end{array}\dfrac{p_{1}^{2}}{p_{1}^{2}+m_{2}^{2}}\right] (156)
=\displaystyle= Γ(2d2)Γ(d21)2Γ(d2)p12+m22m22(m22)d22F12[1,1;d2;p12m22].\displaystyle-\dfrac{\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-1\right)}{2\Gamma\left(\frac{d}{2}\right)}\dfrac{p_{1}^{2}+m_{2}^{2}}{m_{2}^{2}}\;(m_{2}^{2})^{\frac{d}{2}-2}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{d}{2}\,;\end{array}-\dfrac{p_{1}^{2}}{m_{2}^{2}}\right]. (159)

For the second sequence poles, we arrive at

J3(1,b)\displaystyle J_{3}^{(1,b)} =\displaystyle= Γ(d22)Γ(3d2)2Γ(d21)(R3)d22F12[1,1;2;p12p12+m22]\displaystyle-\dfrac{\Gamma\left(\frac{d}{2}-2\right)\Gamma\left(3-\frac{d}{2}\right)}{2\Gamma\left(\frac{d}{2}-1\right)}\;(R_{3})^{\frac{d}{2}-2}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ 2\,;\end{array}\dfrac{p_{1}^{2}}{p_{1}^{2}+m_{2}^{2}}\right] (162)
=\displaystyle= Γ(d22)Γ(3d2)2Γ(d21)(R3)d22p12+m22m22F12[1,1;2;p12m22].\displaystyle-\dfrac{\Gamma\left(\frac{d}{2}-2\right)\Gamma\left(3-\frac{d}{2}\right)}{2\Gamma\left(\frac{d}{2}-1\right)}\;(R_{3})^{\frac{d}{2}-2}\;\dfrac{p_{1}^{2}+m_{2}^{2}}{m_{2}^{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ 2\,;\end{array}-\dfrac{p_{1}^{2}}{m_{2}^{2}}\right]. (165)

Second type of MB integral is considered

J3(2)\displaystyle J_{3}^{(2)} =\displaystyle= 12πii+i𝑑sπ2Γ(s)Γ(s+1)Γ(d22+s)2Γ(4d2s)2Γ(d22)Γ(d12+s)(1R3)s(p124)d22+s.\displaystyle-\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}\;ds\;\dfrac{\sqrt{\pi}}{2}\;\dfrac{\Gamma(-s)\;\Gamma(s+1)\Gamma\Big{(}\frac{d-2}{2}+s\Big{)}^{2}\Gamma\Big{(}\frac{4-d}{2}-s\Big{)}}{2\;\Gamma(\frac{d-2}{2})\;\Gamma\left(\frac{d-1}{2}+s\right)}\left(\dfrac{1}{R_{3}}\right)^{s}\;\left(\dfrac{-p_{1}^{2}}{4}\right)^{\frac{d}{2}-2+s}.

For the first sequence poles of Γ(s)\Gamma(-s), the result is

J3(2,a)\displaystyle J_{3}^{(2,a)} =\displaystyle= πΓ(d21)Γ(2d2)4Γ(d12)(p124)d22F12[1,d22;d12;(p12)24m22(p12+m22)].\displaystyle-\dfrac{\sqrt{\pi}\;\Gamma\left(\frac{d}{2}-1\right)\Gamma\left(2-\frac{d}{2}\right)}{4\;\Gamma\left(\frac{d-1}{2}\right)}\left(\dfrac{-p_{1}^{2}}{4}\right)^{\frac{d}{2}-2}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-2}{2}\,;\\ \frac{d-1}{2}\,;\end{array}\dfrac{-(p_{1}^{2})^{2}}{4m_{2}^{2}(p_{1}^{2}+m_{2}^{2})}\right]. (170)

Applying transforms for Gauss hypergeometric function which are (see (1.8.10)(1.8.10) in [25] for the first relations and page 4949, [26] for the later case)

F12[a,b;c;z]\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ c\,;\end{array}z\right] =\displaystyle= (1z)cbaF12[ca,cb;c;z],\displaystyle(1-z)^{c-b-a}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}c-a,c-b\,;\\ c\,;\end{array}z\right], (175)
F12[a,b;2b;z]\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ 2b\,;\end{array}z\right] =\displaystyle= (1z)a/2F12[a2,ba2;b+12;z24(z1)],\displaystyle(1-z)^{-a/2}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{a}{2},b-\frac{a}{2}\,;\\ b+\frac{1}{2}\,;\end{array}\dfrac{z^{2}}{4(z-1)}\right], (180)

one obtains

J3(2,a)\displaystyle J_{3}^{(2,a)} =\displaystyle= π2Γ(d21)Γ(2d2)Γ(d12)(p124)d22(p12+m22)(p12+2m22)F12[1,d22;d2;p12m22].\displaystyle-\dfrac{\sqrt{\pi}}{2}\;\dfrac{\Gamma\left(\frac{d}{2}-1\right)\Gamma\left(2-\frac{d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)}\;\left(\dfrac{-p_{1}^{2}}{4}\right)^{\frac{d}{2}-2}\dfrac{(p_{1}^{2}+m_{2}^{2})}{(p_{1}^{2}+2m_{2}^{2})}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-2}{2}\,;\\ d-2\,;\end{array}-\dfrac{p_{1}^{2}}{m_{2}^{2}}\right]. (183)

Taking into account the residue at the poles Γ(4d2s)\Gamma\left(\frac{4-d}{2}-s\right), we get

J3(2,b)=Γ(d22)Γ(3d2)2Γ(d21)[4m22(p12+m22)(2m22+p12)2]R3d22F12[1,12;32;(p12)2(2m22+p12)2].\displaystyle J_{3}^{(2,b)}=-\dfrac{\Gamma\left(\frac{d}{2}-2\right)\Gamma\left(3-\frac{d}{2}\right)}{2\Gamma\left(\frac{d}{2}-1\right)}\;\left[\dfrac{4m_{2}^{2}(p_{1}^{2}+m_{2}^{2})}{(2m_{2}^{2}+p_{1}^{2})^{2}}\right]\;R_{3}^{\frac{d}{2}-2}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{1}{2}\,;\\ \frac{3}{2}\,;\end{array}\dfrac{(p_{1}^{2})^{2}}{(2m_{2}^{2}+p_{1}^{2})^{2}}\right]. (186)

Using the relation (see Eq. (3.1.7)(3.1.7) in [27])

F12[a,b;2b;z]\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ 2b\,;\end{array}z\right] =\displaystyle= (1z2)aF12[a2,a2+12;b+12;(z2z)2],\displaystyle\left(1-\frac{z}{2}\right)^{-a}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{a}{2},\frac{a}{2}+\frac{1}{2}\,;\\ b+\frac{1}{2}\,;\end{array}\left(\frac{z}{2-z}\right)^{2}\right], (191)

one gets

J3(2,b)\displaystyle J_{3}^{(2,b)} =\displaystyle= Γ(d22)Γ(3d2)Γ(d21)(p12+m22)2m22+p12R3d22F12[1,1;2;p12m22].\displaystyle-\dfrac{\Gamma\left(\frac{d}{2}-2\right)\Gamma\left(3-\frac{d}{2}\right)}{\Gamma\left(\frac{d}{2}-1\right)}\;\dfrac{(p_{1}^{2}+m_{2}^{2})}{2m_{2}^{2}+p_{1}^{2}}\;R_{3}^{\frac{d}{2}-2}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ 2\,;\end{array}-\dfrac{p_{1}^{2}}{m_{2}^{2}}\right]. (194)

Combining all the terms, J3J_{3} reads

J3\displaystyle J_{3} =\displaystyle= Γ(2d2)Γ(d21)Γ(d2)(m22)d23F12[1,1;d2;p12m22]\displaystyle\dfrac{\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d}{2}-1\right)}{\Gamma\left(\frac{d}{2}\right)}(m_{2}^{2})^{\frac{d}{2}-3}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{d}{2}\,;\end{array}-\dfrac{p_{1}^{2}}{m_{2}^{2}}\right] (200)
π2Γ(d21)Γ(2d2)Γ(d12)m22(p124)d22F12[1,d22;d2;p12m22]\displaystyle-\dfrac{\sqrt{\pi}}{2}\;\dfrac{\Gamma\left(\frac{d}{2}-1\right)\Gamma\left(2-\frac{d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)\;m_{2}^{2}}\;\left(\dfrac{-p_{1}^{2}}{4}\right)^{\frac{d}{2}-2}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-2}{2}\,;\\ d-2\,;\end{array}-\dfrac{p_{1}^{2}}{m_{2}^{2}}\right]

provided that |p12/m22|<1\left|p_{1}^{2}/m_{2}^{2}\right|<1 and \mathcal{R}e(d2)>0(d-2)>0. It agrees with Eq. (B2B2) in [10] and (2222) in [15].

5 One-loop four-point functions

The master equation for J4J_{4} is obtained from (2) with N=4N=4,

J4J4(d;{pi2,s,t},{mi2})\displaystyle J_{4}\equiv J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}) =\displaystyle= 12πii+idsΓ(s)Γ(d32+s)Γ(s+1)2Γ(d32)(1R4)s×\displaystyle-\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(\frac{d-3}{2}+s)\Gamma(s+1)}{2\Gamma(\frac{d-3}{2})}\left(\frac{1}{R_{4}}\right)^{s}\times
×k=14(kR4R4)𝐤J4(d+2s;{pi2,s,t},{mi2}).\displaystyle\hskip 28.45274pt\times\sum\limits_{k=1}^{4}\left(\frac{\partial_{k}R_{4}}{R_{4}}\right)\;{\bf k}^{-}J_{4}(d+2s;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}).

We substitute the analytic solution for J3(d+2s;{pi2},{mi2})J_{3}(d+2s;\{p_{i}^{2}\},\{m_{i}^{2}\}) in (4) into (5) and take the contour integrals in (5). With the help of MB integrations in (318, 321) in appendix CC, a compact expression for J4J_{4} can be derived and expressed as follows:

J4Γ(4d2)\displaystyle\dfrac{J_{4}}{\Gamma\left(\frac{4-d}{2}\right)} =\displaystyle= J1234(d=4)(R4)d42+J1234(d)\displaystyle-J_{1234}^{(d=4)}\left(R_{4}\right)^{\frac{d-4}{2}}+J_{1234}^{(d)}
+{(1,2,3,4)(2,3,4,1)}\displaystyle+\Big{\{}(1,2,3,4)\leftrightarrow(2,3,4,1)\Big{\}}
+{(1,2,3,4)(3,4,1,2)}\displaystyle+\Big{\{}(1,2,3,4)\leftrightarrow(3,4,1,2)\Big{\}}
+{(1,2,3,4)(4,1,2,3)}\displaystyle+\Big{\{}(1,2,3,4)\leftrightarrow(4,1,2,3)\Big{\}}

with

J1234(d)=(4R42R4)J123(d=4)(R123)d42F12[d32,1;d22;R123R4]\displaystyle J_{1234}^{(d)}=-\left(\frac{\partial_{4}R_{4}}{2R_{4}}\right)\;J_{123}^{(d=4)}\;\left(R_{123}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-3}{2},1\,;\\ \frac{d-2}{2}\,;\end{array}\frac{R_{123}}{R_{4}}\right] (205)
+πΓ(d22)Γ(d12)(4R4R4)(3R123R123)[2R121m12/R12+1R121m22/R12]×\displaystyle+\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{\Gamma(\frac{d-1}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}R_{123}}{R_{123}}\right)\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\dfrac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right]\times
×(R12)d421R12/R123F1(d32;1,12;d12;R12R4,R12R123)\displaystyle\hskip 113.81102pt\times\frac{\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \left(R_{12}\right)^{\frac{d-4}{2}}}{\sqrt{1-R_{12}/R_{123}}}F_{1}\left(\frac{d-3}{2};1,\frac{1}{2};\frac{d-1}{2};\frac{R_{12}}{R_{4}},\frac{R_{12}}{R_{123}}\right)
Γ(d22)8Γ(d2)(4R4R4)[3R123(R123m12)2R12(R12m12)(m12)d22×\displaystyle-\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{8\;\Gamma(\frac{d}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\Bigg{[}\frac{\partial_{3}R_{123}}{(R_{123}-m_{1}^{2})}\frac{\partial_{2}R_{12}}{(R_{12}-m_{1}^{2})}(m_{1}^{2})^{\frac{d-2}{2}}\times
×FS(d32,1,1;1,1,12;d2,d2,d2;m12R4,m12m12R123,m12m12R12)+(12)]\displaystyle\hskip 5.69046pt\times F_{S}\left(\frac{d-3}{2},1,1;1,1,\frac{1}{2};\frac{d}{2},\frac{d}{2},\frac{d}{2};\frac{m_{1}^{2}}{R_{4}},\frac{m_{1}^{2}}{m_{1}^{2}-R_{123}},\frac{m_{1}^{2}}{m_{1}^{2}-R_{12}}\right)+(1\leftrightarrow 2)\Bigg{]}
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\Big{\{}(1,2,3)\leftrightarrow(2,3,1)\Big{\}}\quad+\quad\Big{\{}(1,2,3)\leftrightarrow(3,1,2)\Big{\}}.

Where J123(d=4),J_{123}^{(d=4)},\cdots are given by (4). It is important that this representation is valid under the conditions that \mathcal{R}e(d3)>0\left(d-3\right)>0 and the absolute values of arguments of hypergeometric functions are smaller than one. If the absolute value of these arguments are larger than one, we have to perform analytic continuations for the Gauss hypergeometric and Appell F1F_{1} functions, cf. [25, 31]. Further, the Saran function FSF_{S} may be expressed by a Mellin-Barnes representation, or Euler integrals in this case. The result for J4J_{4} has been shown in [19]. There are two important points we would like to emphasize in this paper as follows. (i) Ref. [16] have not shown conditions for the boundary term in (100)(100). (ii) J4J_{4} is constructed from J3J_{3} for arbitrary kinematics. However, the boundary term for J3J_{3} for general kinematics have not been provided in [16], as mentioned in the previous section and in [18]. Subsequently, the first term in (99)(99) of [16] is only valid in special kinematic regions. Therefore, the solution in (9898) of Ref. [16] may not be considered as a complete solution for J4J_{4}. In contrast to [16], we provide a complete solution for J4J_{4} in this article.

5.1 Massless internal lines

We are going to take mi20m_{i}^{2}\rightarrow 0 for i=1,2,3,4i=1,2,3,4. The terms related to FSF_{S} vanish. Therefore, in the massless case the result reads

J1234(d)\displaystyle J_{1234}^{(d)} =\displaystyle= (4R42R4)|mi20(3R1232R123)|mi20F12[1,1;32;R12R123](R123)d42F12[d32,1;d22;R123R4]\displaystyle\left(\frac{\partial_{4}R_{4}}{2R_{4}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\;\left(\frac{\partial_{3}R_{123}}{2R_{123}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{12}}{R_{123}}\right]\;\left(R_{123}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-3}{2},1\,;\\ \frac{d-2}{2}\,;\end{array}\frac{R_{123}}{R_{4}}\right] (211)
+πΓ(d22)2Γ(d12)(4R42R4)|mi20(3R1232R123)|mi20\displaystyle+\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{2\Gamma(\frac{d-1}{2})}\left(\frac{\partial_{4}R_{4}}{2R_{4}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\left(\frac{\partial_{3}R_{123}}{2R_{123}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}
×(R12)d421R12/R123F1(d32;1,12;d12;R12R4,R12R123)\displaystyle\hskip 5.69046pt\times\frac{\left(R_{12}\right)^{\frac{d-4}{2}}}{\sqrt{1-R_{12}/R_{123}}}F_{1}\left(\frac{d-3}{2};1,\frac{1}{2};\frac{d-1}{2};\frac{R_{12}}{R_{4}},\frac{R_{12}}{R_{123}}\right)
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)},\displaystyle+\{(1,2,3)\leftrightarrow(2,3,1)\}\quad+\quad\{(1,2,3)\leftrightarrow(3,1,2)\},

provided that \mathcal{R}e(d3)>0\Big{(}d-3\Big{)}>0 and that the absolute values of arguments of the hypergeometric functions are smaller than one. Taking d4d\rightarrow 4, we have

J1234(d=4)\displaystyle J_{1234}^{(d=4)} =\displaystyle= (4R42R4)|mi20(3R1232R123)|mi20F12[1,1;32;R12R123]F12[12,1;1;R123R4]\displaystyle\left(\frac{\partial_{4}R_{4}}{2\;R_{4}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\;\left(\frac{\partial_{3}R_{123}}{2R_{123}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{12}}{R_{123}}\right]\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{1}{2},1\,;\\ 1\,;\end{array}\frac{R_{123}}{R_{4}}\right] (220)
+(4R42R4)|mi20(3R1232R123)|mi20(R123R123R12)F12[12,1;32;R12(R123R4)R4(R123R12)]\displaystyle+\left(\frac{\partial_{4}R_{4}}{2R_{4}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\;\left(\frac{\partial_{3}R_{123}}{2R_{123}}\right)\Big{|}_{m_{i}^{2}\rightarrow 0}\left(\frac{R_{123}}{R_{123}-R_{12}}\right)\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{1}{2},1\,;\\ \frac{3}{2}\,;\end{array}\dfrac{R_{12}(R_{123}-R_{4})}{R_{4}(R_{123}-R_{12})}\right]
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)},\displaystyle+\{(1,2,3)\leftrightarrow(2,3,1)\}\quad+\quad\{(1,2,3)\leftrightarrow(3,1,2)\},

This is a new result for J4J_{4} in the massless case at general dd. We are going to consider the special cases for J4J_{4} in the following subsections.

5.2 R4=0R_{4}=0

From (16), we set N=4N=4 and get

J4=1d5k=14(kY4G3)𝐤J4(d2;{pi2,s,t},{mi2}).\displaystyle J_{4}=\frac{1}{d-5}\sum\limits_{k=1}^{4}\left(\frac{\partial_{k}Y_{4}}{G_{3}}\right){\bf k^{-}}J_{4}(d-2;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}). (221)

The term 𝐤J4(d2;{pi2,s,t},{mi2}){\bf k^{-}}J_{4}(d-2;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}) is given by J3J_{3} in (4) with dd2d\rightarrow d-2.

5.3 R4=RijkR_{4}=R_{ijk} for i,j,k=1,2,3,4i,j,k=1,2,3,4

As an example, we consider the case R4=R123R_{4}=R_{123}. In this case, we verify that

(4R4)=0.\displaystyle\left(\partial_{4}R_{4}\right)=0. (222)

As a result, the terms J1234(d)J_{1234}^{(d)} vanish, other terms in (5) are of the same form in (205).

5.4 R4=RijR_{4}=R_{ij} for i,j=1,2,3,4i,j=1,2,3,4

For example, the terms of J4J_{4} in (5) meet the condition R4=R12R_{4}=R_{12}. Because that R2R_{2} depends only the internal masses m12,m22m_{1}^{2},m_{2}^{2}, one has

iR4=iR2=0,fori=3,4.\displaystyle\partial_{i}R_{4}=\partial_{i}R_{2}=0,\quad\text{for}\quad i=3,4. (223)

As a matter of this fact, only two terms (2,3,4,1)(2,3,4,1) and (3,4,1,2)(3,4,1,2) in (5) contribute to J4J_{4}.

5.5 R4=mk2R_{4}=m_{k}^{2}  for k=1,2,3,4k=1,2,3,4

For example, one considers the terms of J4J_{4} in (5) having R4=m12R_{4}=m_{1}^{2}. One verifies that

iR4=0fori=2,3,4.\displaystyle\partial_{i}R_{4}=0\quad\text{for}\quad i=2,3,4. (224)

As a result, only the term (2,3,4,1)(2,3,4,1) in (5) contributes to J4J_{4}.

5.6 Rijk=0R_{ijk}=0 for i,j,k=1,2,3,4i,j,k=1,2,3,4

We assume that J4J_{4} in (5) contains R123=0R_{123}=0 as an example. The term (1,2,3,4)(1,2,3,4) in (205) with R123=0R_{123}=0 is evaluated by applying the same previous procedure. The result reads

J1234(d)\displaystyle J_{1234}^{(d)} =\displaystyle= πΓ(d32)Γ(d22)(4R4R4)(3Y123G12)×\displaystyle-\dfrac{\sqrt{\pi}}{\Gamma(\frac{d-3}{2})\Gamma(\frac{d-2}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}Y_{123}}{G_{12}}\right)\;\times
×[2R121m12/R12+1R121m22/R12](R12)d62F12[1,d42;d22;R12R4]\displaystyle\times\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\dfrac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right]\;\left(R_{12}\right)^{\frac{d-6}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-4}{2}\,;\\ \frac{d-2}{2}\,;\end{array}\dfrac{R_{12}}{R_{4}}\right]
+12Γ2(d22)(4R4R4)(3Y123G12)×\displaystyle+\dfrac{1}{2\;\Gamma^{2}(\frac{d-2}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}Y_{123}}{G_{12}}\right)\times
×[(2R12R12)(m12)d421m12/R12F1;1;01;2;1(d42;d32, 1;12;d22;d22;;m12R4,m12R12)+(12)]\displaystyle\times\left[\left(\frac{\partial_{2}R_{12}}{R_{12}}\right)\dfrac{\leavevmode\nobreak\ \leavevmode\nobreak\ (m_{1}^{2})^{\frac{d-4}{2}}}{\sqrt{1-m_{1}^{2}/R_{12}}}F^{1;2;1}_{1;1;0}\left(\begin{matrix}\frac{d-4}{2};\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{d-3}{2},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ 1;\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{1}{2};\\ \frac{d-2}{2};\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{d-2}{2};-;\end{matrix}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{m_{1}^{2}}{R_{4}},\frac{m_{1}^{2}}{R_{12}}\right)+(1\leftrightarrow 2)\right]
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\{(1,2,3)\leftrightarrow(2,3,1)\}\quad+\quad\{(1,2,3)\leftrightarrow(3,1,2)\}.

Where F1;1;01;2;1F^{1;2;1}_{1;1;0} is Kampe´\acute{\text{e}} de Fe´\acute{\text{e}}riet [33] (see appendix BB for more detail). We also refer to [34] which analytic continuations for a class of the Kampe´\acute{\text{e}} de Fe´\acute{\text{e}}riet functions have been studied. This representation is valid if the amplitude of arguments of these hypergeometric functions are less than 11 and \mathcal{R}e(d4)>0(d-4)>0. In the massless case, one has

J1234(d)\displaystyle J_{1234}^{(d)} =\displaystyle= πΓ(d32)Γ(d22)(4R4R4)(3Y123G12)(R12)d62F12[1,d42;d22;R12R4]\displaystyle\dfrac{\sqrt{\pi}}{\Gamma(\frac{d-3}{2})\Gamma(\frac{d-2}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}Y_{123}}{G_{12}}\right)\left(R_{12}\right)^{\frac{d-6}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-4}{2}\,;\\ \frac{d-2}{2}\,;\end{array}\dfrac{R_{12}}{R_{4}}\right] (232)
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\{(1,2,3)\leftrightarrow(2,3,1)\}\quad+\quad\{(1,2,3)\leftrightarrow(3,1,2)\}.

5.7 Rijk=RijR_{ijk}=R_{ij} for i,j,k=1,2,3,4i,j,k=1,2,3,4

We examine the terms of J4J_{4} in (5) having R123=R2R_{123}=R_{2}. We check that

3R123=0.\displaystyle\partial_{3}R_{123}=0. (233)

As a result, the terms (2,3,4,1),(3,4,1,2)(2,3,4,1),(3,4,1,2) and (4,1,2,3)(4,1,2,3) of J4J_{4} get the same formula for J1234(d)J_{1234}^{(d)} provided in (205). The terms (1,2,3)(1,2,3) of J1234(d)J_{1234}^{(d)} in (205) are vanished.

5.8 Rijk=mi,(j,k)2R_{ijk}=m_{i,(j,k)}^{2} for i,j,k=1,2,3,4i,j,k=1,2,3,4

Assuming the terms of J4J_{4} in (5) with R123=m12R_{123}=m_{1}^{2}, we check that

1R123=1,andiR123=0,fori=2,3.\displaystyle\partial_{1}R_{123}=1,\quad\text{and}\quad\partial_{i}R_{123}=0,\quad\text{for}\quad i=2,3. (234)

The terms J2341(d),J3412(d)J_{2341}^{(d)},J_{3412}^{(d)} and J4123(d)J_{4123}^{(d)} get the same formula as (205). The term (1,2,3)(1,2,3) and (3,1,2)(3,1,2) of J1234(d)J_{1234}^{(d)} in (205) vanish, only the (2,3,1)(2,3,1)-term contribute to J1234(d)J_{1234}^{(d)}.

5.9 Rij=0R_{ij}=0 for i,j=1,2,3,4i,j=1,2,3,4

We consider that J4J_{4} in (5) with R12=0R_{12}=0. In this case, the terms J2341(d)J_{2341}^{(d)} and J3412(d)J_{3412}^{(d)} are unchanged. The terms J1234(d)J_{1234}^{(d)} and J4123(d)J_{4123}^{(d)} with R12=0R_{12}=0 are evaluated again by applying same previous procedure. Taking J1234(d)J_{1234}^{(d)} as an example. The result reads

J1234(d)\displaystyle J_{1234}^{(d)} =\displaystyle= (4R4R4)J123(d=4)(R123)d42F12[1,d32;d22;R123R4]\displaystyle-\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\;J_{123}^{(d=4)}\;(R_{123})^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-3}{2}\,;\\ \frac{d-2}{2}\,;\end{array}\dfrac{R_{123}}{R_{4}}\right]
+Γ(d32)4Γ(d12)(4R4R4)(3R123R123)×\displaystyle+\dfrac{\Gamma\left(\frac{d-3}{2}\right)}{4\Gamma(\frac{d-1}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}R_{123}}{R_{123}}\right)\times
×[(2Y12G12)(m12)d421m12/R123F1; 1; 01; 2; 1(d32;d32, 1;12;d12,d22;;m12R4,m12R123)+(12)]\displaystyle\times\Bigg{[}\left(\dfrac{\partial_{2}Y_{12}}{G_{12}}\right)\frac{(m_{1}^{2})^{\frac{d-4}{2}}}{\sqrt{1-m_{1}^{2}/R_{123}}}F^{1;\;2;\;1}_{1;\;1;\;0}\left(\begin{matrix}\frac{d-3}{2};\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{d-3}{2},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ 1;\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{1}{2};\\ \frac{d-1}{2},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \frac{d-2}{2};-;\end{matrix}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \dfrac{m_{1}^{2}}{R_{4}},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \dfrac{m_{1}^{2}}{R_{123}}\right)+(1\leftrightarrow 2)\Bigg{]}
+{(4R42R4)J231(d=4)(R231)d42F12[d32,1;d22;R231R4]\displaystyle+\Bigg{\{}-\left(\frac{\partial_{4}R_{4}}{2R_{4}}\right)\;J_{231}^{(d=4)}\;\left(R_{231}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-3}{2},1\,;\\ \frac{d-2}{2}\,;\end{array}\frac{R_{231}}{R_{4}}\right]
+πΓ(d22)Γ(d12)(4R4R4)(1R231R231)[3R231m22/R23+1R231m22/R23]×\displaystyle\hskip 19.91684pt+\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{\Gamma(\frac{d-1}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{1}R_{231}}{R_{231}}\right)\left[\dfrac{\partial_{3}R_{23}}{\sqrt{1-m_{2}^{2}/R_{23}}}+\dfrac{\partial_{1}R_{23}}{\sqrt{1-m_{2}^{2}/R_{23}}}\right]\times
×(R23)d421R23/R231F1(d32;1,12;d12;R23R4,R23R231)\displaystyle\hskip 113.81102pt\times\frac{\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \left(R_{23}\right)^{\frac{d-4}{2}}}{\sqrt{1-R_{23}/R_{231}}}F_{1}\left(\frac{d-3}{2};1,\frac{1}{2};\frac{d-1}{2};\frac{R_{23}}{R_{4}},\frac{R_{23}}{R_{231}}\right)
Γ(d22)8Γ(d2)(4R4R4)[1R231(R231m22)3R23(R23m22)(m22)d22×\displaystyle\hskip 19.91684pt-\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{8\;\Gamma(\frac{d}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\Bigg{[}\frac{\partial_{1}R_{231}}{(R_{231}-m_{2}^{2})}\frac{\partial_{3}R_{23}}{(R_{23}-m_{2}^{2})}(m_{2}^{2})^{\frac{d-2}{2}}\times
×FS(d32,1,1;1,1,12;d2,d2,d2;m22R4,m22m22R231,m22m22R23)+(12)]}\displaystyle\hskip 22.76228pt\times F_{S}\left(\frac{d-3}{2},1,1;1,1,\frac{1}{2};\frac{d}{2},\frac{d}{2},\frac{d}{2};\frac{m_{2}^{2}}{R_{4}},\frac{m_{2}^{2}}{m_{2}^{2}-R_{231}},\frac{m_{2}^{2}}{m_{2}^{2}-R_{23}}\right)+(1\leftrightarrow 2)\Bigg{]}\Bigg{\}}
+{(2,3,1)(3,1,2)}.\displaystyle+\Big{\{}(2,3,1)\leftrightarrow(3,1,2)\Big{\}}.

This representation is valid if the amplitude of arguments of these hypergeometric functions are less than 11 and \mathcal{R}e(d3)>0(d-3)>0.

5.10 Rij=mi2R_{ij}=m_{i}^{2} or mj2m_{j}^{2} for i,j=1,2,3,4i,j=1,2,3,4

Taking R12=m12R_{12}=m_{1}^{2} as an example, one confirms that

2R12=0.\displaystyle\partial_{2}R_{12}=0. (242)

As a result, the terms (1,2,3)(1,2,3) of J1234(d)J_{1234}^{(d)} that are multiplied by R2m22\frac{\partial R_{2}}{\partial m_{2}^{2}} vanish. Other terms of J1234(d)J_{1234}^{(d)} are given by (205). The terms J2341(d),J3412(d)J_{2341}^{(d)},J_{3412}^{(d)} and J4123(d)J_{4123}^{(d)} of J4J_{4} are given by (205).

5.11 G3=0G_{3}=0

In this case, one has

J4=12k=14(kY4Y4)𝐤J4(d;{pi2,s,t},{mi2}).\displaystyle J_{4}=-\frac{1}{2}\sum\limits_{k=1}^{4}\left(\frac{\partial_{k}Y_{4}}{Y_{4}}\right){\bf k}^{-}J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}). (243)

This equation is equivalent with (6565) in Ref. [21]. The term 𝐤J4(d;{pi2,s,t},{mi2}){\bf k}^{-}J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}) is given by J3J_{3} in (4).

5.12 G2(ijk)=0G_{2(ijk)}=0 for i,j,l=1,2,3,4i,j,l=1,2,3,4

In the same notation, G2(ijk)G_{2(ijk)} are the Gram determinants of J3J_{3} that are obtained by shrinking kk-th propagator in J4J_{4}. We take |G2(123)|=0|G_{2(123)}|=0 as an example. By using (140) for J123(d)J_{123}^{(d)}, we then evaluate J1234(d)J_{1234}^{(d)} again, the result is

J1234(d)\displaystyle J_{1234}^{(d)} =\displaystyle= πΓ(d22)8Γ(d12)(4R4R4)(3Y123Y123)×\displaystyle-\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{8\;\Gamma(\frac{d-1}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}Y_{123}}{Y_{123}}\right)\times
×[2R121m12/R12+1R121m22/R12](R12)d42F12[1,d32;d12;R12R4]\displaystyle\times\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}+\dfrac{\partial_{1}R_{12}}{\sqrt{1-m_{2}^{2}/R_{12}}}\right]\left(R_{12}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-3}{2}\,;\\ \frac{d-1}{2}\,;\end{array}\frac{R_{12}}{R_{4}}\right]
+Γ(d22)8Γ(d2)(4R4R4)(3Y123Y123)×\displaystyle+\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{8\;\Gamma(\frac{d}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}Y_{123}}{Y_{123}}\right)\times
×[2R121m12/R12(m12)d42F1(d22;1,12;d2;m12R4,m12R12)+(12)]\displaystyle\times\left[\dfrac{\partial_{2}R_{12}}{\sqrt{1-m_{1}^{2}/R_{12}}}\;(m_{1}^{2})^{\frac{d-4}{2}}F_{1}\left(\frac{d-2}{2};1,\frac{1}{2};\frac{d}{2};\frac{m_{1}^{2}}{R_{4}},\frac{m_{1}^{2}}{R_{12}}\right)+(1\leftrightarrow 2)\right]
+{(1,2,3)(2,3,1)}+{(1,2,3)(3,1,2)}.\displaystyle+\{(1,2,3)\leftrightarrow(2,3,1)\}\quad+\quad\{(1,2,3)\leftrightarrow(3,1,2)\}.

This representation is valid if the amplitude of arguments of these hypergeometric functions are less than 11 and \mathcal{R}e(d3)>0(d-3)>0.

5.13 G1(ij)=0G_{1(ij)}=0 for i,j=1,2,3,4i,j=1,2,3,4

One assumes that the term J1234(d)J_{1234}^{(d)} has G1(12)=0G_{1(12)}=0. Recalculating this term, the result reads in term of Gauss and Appell F3F_{3} functions

J1234(d)\displaystyle J_{1234}^{(d)} =\displaystyle= (4R42R4)J123(d=4)(R123)d42F12[1,d32;d22;R123R4]\displaystyle-\left(\frac{\partial_{4}R_{4}}{2\;R_{4}}\right)\;J_{123}^{(d=4)}\;(R_{123})^{\frac{d-4}{2}}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,\frac{d-3}{2}\,;\\ \frac{d-2}{2}\,;\end{array}\frac{R_{123}}{R_{4}}\right]
+Γ(d22)4Γ(d2)(4R4R4)(3R123R123)×\displaystyle+\frac{\Gamma\left(\frac{d-2}{2}\right)}{4\Gamma\left(\frac{d}{2}\right)}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{3}R_{123}}{R_{123}}\right)\times
×[R123(R123m12)(m12)d22(m12m22)F3(d32,1;1,1;d2;m12R4,m12m12R123)+(12)]\displaystyle\times\Bigg{[}\dfrac{R_{123}}{(R_{123}-m_{1}^{2})}\dfrac{(m_{1}^{2})^{\frac{d-2}{2}}}{(m_{1}^{2}-m_{2}^{2})}\;F_{3}\left(\frac{d-3}{2},1;1,1;\frac{d}{2};\dfrac{m_{1}^{2}}{R_{4}},\dfrac{m_{1}^{2}}{m_{1}^{2}-R_{123}}\right)+(1\leftrightarrow 2)\Bigg{]}
+{(4R42R4)J231(d=4)(R231)d42F12[d32,1;d22;R231R4]\displaystyle+\Bigg{\{}-\left(\frac{\partial_{4}R_{4}}{2R_{4}}\right)\;J_{231}^{(d=4)}\;\left(R_{231}\right)^{\frac{d-4}{2}}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}\frac{d-3}{2},1\,;\\ \frac{d-2}{2}\,;\end{array}\frac{R_{231}}{R_{4}}\right]
+πΓ(d22)Γ(d12)(4R4R4)(1R231R231)[3R231m22/R23+1R231m22/R23]×\displaystyle\hskip 19.91684pt+\dfrac{\sqrt{\pi}\Gamma\left(\frac{d-2}{2}\right)}{\Gamma(\frac{d-1}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\left(\frac{\partial_{1}R_{231}}{R_{231}}\right)\left[\dfrac{\partial_{3}R_{23}}{\sqrt{1-m_{2}^{2}/R_{23}}}+\dfrac{\partial_{1}R_{23}}{\sqrt{1-m_{2}^{2}/R_{23}}}\right]\times
×(R23)d421R23/R231F1(d32;1,12;d12;R23R4,R23R231)\displaystyle\hskip 113.81102pt\times\frac{\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \left(R_{23}\right)^{\frac{d-4}{2}}}{\sqrt{1-R_{23}/R_{231}}}F_{1}\left(\frac{d-3}{2};1,\frac{1}{2};\frac{d-1}{2};\frac{R_{23}}{R_{4}},\frac{R_{23}}{R_{231}}\right)
Γ(d22)8Γ(d2)(4R4R4)[1R231(R231m22)3R23(R23m22)(m22)d22×\displaystyle\hskip 19.91684pt-\dfrac{\Gamma\left(\frac{d-2}{2}\right)}{8\;\Gamma(\frac{d}{2})}\left(\frac{\partial_{4}R_{4}}{R_{4}}\right)\Bigg{[}\frac{\partial_{1}R_{231}}{(R_{231}-m_{2}^{2})}\frac{\partial_{3}R_{23}}{(R_{23}-m_{2}^{2})}(m_{2}^{2})^{\frac{d-2}{2}}\times
×FS(d32,1,1;1,1,12;d2,d2,d2;m22R4,m22m22R231,m22m22R23)+(12)]}\displaystyle\hskip 22.76228pt\times F_{S}\left(\frac{d-3}{2},1,1;1,1,\frac{1}{2};\frac{d}{2},\frac{d}{2},\frac{d}{2};\frac{m_{2}^{2}}{R_{4}},\frac{m_{2}^{2}}{m_{2}^{2}-R_{231}},\frac{m_{2}^{2}}{m_{2}^{2}-R_{23}}\right)+(1\leftrightarrow 2)\Bigg{]}\Bigg{\}}
+{(2,3,1)(3,1,2)}.\displaystyle+\Big{\{}(2,3,1)\leftrightarrow(3,1,2)\Big{\}}.

Where the terms J123(d=4)J_{123}^{(d=4)} and J231(d=4)J_{231}^{(d=4)} are given in (4). This representation is valid if the amplitude of arguments of these hypergeometric functions are less than 11 and \mathcal{R}e(d3)>0(d-3)>0. The Appell F3F_{3} functions are described in detail in appendix BB (see (303) in more detail).

For future prospect of this work, a package which provides a general ϵ\epsilon-expansion and numerical evaluations for one-loop functions at general dd is planned. To achieve this purpose, many related works are worth mentioning in this paragraph. First, automatized analytic continuation of Mellin-Barnes integrals have been presented in [38]. The construction of Mellin-Barnes representations for Feynman integrals has been performed in [39, 40]. Recent development for treating numerically Mellin-Barnes integrals in physical regions has been proposed in [41, 42, 43]. The hypergeometric functions in this work can be expressed as the multi-fold MB integrals and they may be evaluated numerically by following the above works. Furthermore, the ϵ\epsilon-expansion of the hypergeometric functions appearing in our analytic results may be also performed by using the packages Sigma, EvaluateMultiSums and Harmonic Sums [44]. Numerical ϵ\epsilon-expansion of hypergeometric functions may be done by using NumEXP [45]. Besides that, analytic ϵ\epsilon-expansion for the hypergeometric functions has been carried out in [46, 47, 49, 48, 50, 51, 52, 53]. Differential reduction of generalized hypergeometric functions has been also reported in [54, 55, 56, 57].

In the context of dimensional recurrence relations, the tensor reductions for one-loop up to five-point functions have been worked out in [58] and for higher-point functions have been developed in [59]. In practice, one encounters integrals with denominator powers higher than one and their reduction needs to be considered, see e.g. [3] for the scalar case. IBP reduction can be combined with dimensional recurrence relations to reduce them to master integrals of higher space-time dimensions.

6 Conclusions

In this article, we have been presented the analytic results for scalar one-loop two-, three- and four-point functions in detail. The results have been expressed in terms of Gauss F12{}_{2}F_{1}, Appell F1F_{1} and FSF_{S} hypergeometric functions. All cases of external momentum and internal mass assignments have considered in detail in this work. The higher-terms in the ϵ\epsilon-expansion for one-loop integrals can be performed directly from analytic expressions in this work. These terms are necessary building blocks in computing two-loop and higher-loop corrections. Moreover, one-loop functions in arbitrary dd in this work may be taken account in the evaluations for higher-loop Feynman integrals. The one-loop functions with d4d\geqslant 4 can also used in the reduction for tensor one-loop Feynman integrals. For future works, a package for numerical evaluations for one-loop integrals at general dd and general ϵ\epsilon-expansion for these integrals is planned. Additionally, the method can extend to evaluate two- and higher-loop Feynman integrals.

Acknowledgment:  This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number 103.01103.01-2019.3462019.346. The author would like to thank T. Riemann for helpful discussions and comments.

Appendix A: Useful formulas

In this appendix, we show some useful formulas used in this paper. We applied the reflect formula for gamma functions [24]:

Γ(1zn)=(1)nΓ(z)Γ(1z)Γ(z+n),\displaystyle\Gamma(1-z-n)=(-1)^{n}\dfrac{\Gamma(z)\Gamma(1-z)}{\Gamma(z+n)}, (253)

provided that zz\in\mathbb{C} and nn\in\mathbb{N}. We have mentioned the duplication formula for gamma functions  [24]:

Γ(2z)=22z1Γ(z)Γ(z+12)π,\displaystyle\Gamma(2z)=\dfrac{2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2})}{\sqrt{\pi}}, (254)

provided that zz\in\mathbb{C}.

Appendix B: Generalized hypergeometric series

Generalized hypergeometric functions are presented in this appendix.

Gauss hypergeometric series

Gauss hypergeometric series are given [25]:

F12[a,b;c;z]=n=0(a)n(b)n(c)nznn!,\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ c\,;\end{array}z\right]=\sum\limits_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}}\frac{z^{n}}{n!}, (257)

provided that |z|<1|z|<1. The pochhammer symbol (a)n=Γ(a+n)/Γ(a)(a)_{n}=\Gamma(a+n)/\Gamma(a) is used.

The integral representation for Gauss hypergeometric functions [25] reads

F12[a,b;c;z]=Γ(c)Γ(b)Γ(cb)01𝑑uub1(1u)cb1(1zu)a,\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ c\,;\end{array}z\right]=\dfrac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}\int\limits_{0}^{1}du\;u^{b-1}(1-u)^{c-b-1}(1-zu)^{-a}, (260)

provided that |z|<1|z|<1 and Re(c)>(c)>Re(b)>0(b)>0.

Basic linear transformation formulas for Gauss F12{}_{2}F_{1} hypergeometric functions which are collected from Ref. [25, 28], are listed as follows:

F12[a,b;c;z]\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ c\,;\end{array}z\right] =\displaystyle= F12[b,a;c;z]\displaystyle\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}b,a\,;\\ c\,;\end{array}z\right] (265)
=\displaystyle= (1z)cabF12[ca,cb;c;z]\displaystyle(1-z)^{c-a-b}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}c-a,c-b\,;\\ c\,;\end{array}z\right] (268)
=\displaystyle= (1z)aF12[a,cb;c;zz1]\displaystyle(1-z)^{-a}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,c-b\,;\\ c\,;\end{array}\frac{z}{z-1}\right] (271)
=\displaystyle= (1z)bF12[b,ca;c;zz1]\displaystyle(1-z)^{-b}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}b,c-a\,;\\ c\,;\end{array}\frac{z}{z-1}\right] (274)
=\displaystyle= Γ(c)Γ(cab)Γ(ca)Γ(cb)F12[a,b;a+bc+1;1z]\displaystyle\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ a+b-c+1\,;\end{array}1-z\right] (277)
+\displaystyle+ (1z)cabΓ(c)Γ(a+bc)Γ(a)Γ(b)F12[ca,cb;cab+1;1z]\displaystyle(1-z)^{c-a-b}\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}c-a,c-b\,;\\ c-a-b+1\,;\end{array}1-z\right] (280)
=\displaystyle= Γ(c)Γ(ba)Γ(b)Γ(ca)(z)aF12[a,1c+a;1b+a;1z]\displaystyle\frac{\Gamma(c)\Gamma(b-a)}{\Gamma(b)\Gamma(c-a)}(-z)^{-a}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,1-c+a\,;\\ 1-b+a\,;\end{array}\frac{1}{z}\right] (283)
+\displaystyle+ Γ(c)Γ(ab)Γ(a)Γ(cb)(z)bF12[b,1c+b;1a+b;1z].\displaystyle\frac{\Gamma(c)\Gamma(a-b)}{\Gamma(a)\Gamma(c-b)}(-z)^{-b}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}b,1-c+b\,;\\ 1-a+b\,;\end{array}\frac{1}{z}\right]. (286)

Appell series

Appell F1F_{1} series are defined [25, 32]:

F1(a;b,b;c;x,y)=m=0n=0(a)m+n(b)m(b)n(c)m+nm!n!xmyn,\displaystyle F_{1}(a;b,b^{\prime};c;x,y)=\sum\limits_{m=0}^{\infty}\sum\limits_{n=0}^{\infty}\dfrac{(a)_{m+n}(b)_{m}(b^{\prime})_{n}}{(c)_{m+n}\;m!n!}x^{m}y^{n}, (287)

provided that |x|<1|x|<1 and |y|<1|y|<1.

The single integral representation for F1F_{1} reads [25]

F1(a;b,b;c;x,y)=Γ(c)Γ(ca)Γ(a)01𝑑uua1(1u)ca1(1xu)b(1yu)b,\displaystyle F_{1}(a;b,b^{\prime};c;x,y)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int\limits_{0}^{1}du\;u^{a-1}(1-u)^{c-a-1}(1-xu)^{-b}(1-yu)^{-b^{\prime}}, (288)

provided that Re(c)(c) >> Re(a)>0(a)>0 and |x|<1|x|<1, |y|<1|y|<1.

We collect all transformations for Appell F1F_{1} functions from Refs. [25, 30]. The first relation for F1F_{1} is mentioned,

F1(a;b,b;c;x,y)=(1x)b(1y)bF1(ca;b,b;c;xx1,yy1).\displaystyle F_{1}\Big{(}a;b,b^{\prime};c;x,y\Big{)}=(1-x)^{-b}(1-y)^{-b^{\prime}}F_{1}\Big{(}c-a;b,b^{\prime};c;\frac{x}{x-1},\frac{y}{y-1}\Big{)}. (289)

If b=0b^{\prime}=0, we arrive at the well-known Pfaff–Kummer transformation for the F12{}_{2}F_{1}. Further, we have

F1(a;b,b;c;x,y)=(1x)aF1(a;bb+c,b;c;xx1,yx1x).\displaystyle F_{1}\Big{(}a;b,b^{\prime};c;x,y\Big{)}=(1-x)^{-a}F_{1}\!\left(a;-b-b^{\prime}+c,b^{\prime};c;\frac{x}{x-1},\frac{y-x}{1-x}\right). (290)

Furthermore, if c=b+bc=b+b^{\prime}, one then obtains

F1(a;b,b;b+b;x,y)\displaystyle F_{1}\Big{(}a;b,b^{\prime};b+b^{\prime};x,y\big{)} =\displaystyle= (1x)aF12[a,b;b+b;yx1x]\displaystyle(1-x)^{-a}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b^{\prime}\,;\\ b+b^{\prime}\,;\end{array}\frac{y-x}{1-x}\right] (293)
=\displaystyle= (1y)aF12[a,b;b+b;xy1y].\displaystyle(1-y)^{-a}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ b+b^{\prime}\,;\end{array}\frac{x-y}{1-y}\right]. (296)

Similarly,

F1(a;b,b;c;x,y)=(1y)aF1(a;b,cbb;c;xy1y,yy1),\displaystyle F_{1}\left(a;b,b^{\prime};c;x,y\right)=(1-y)^{-a}F_{1}\!\left(a;b,c-b-b^{\prime};c;\frac{x-y}{1-y},\frac{y}{y-1}\right), (297)

and

F1(a;b,b;c;x,y)=(1x)cab(1y)bF1(ca;cbb,b;c;x,xy1y),\displaystyle F_{1}\left(a;b,b^{\prime};c;x,y\right)={\mbox{\small$(1-x)^{c-a-b}(1-y)^{-b^{\prime}}$}}F_{1}\!\left(c-a;c-b-b^{\prime},b^{\prime};c;x,\frac{x-y}{1-y}\right), (298)
F1(a;b,b;c;x,y)=(1x)b(1y)cabF1(ca;b,cbb;c;yx1x,y).\displaystyle F_{1}\left(a;b,b^{\prime};c;x,y\right)={\mbox{\small$(1-x)^{-b}(1-y)^{c-a-b^{\prime}}$}}F_{1}\!\left(c-a;b,c-b-b^{\prime};c;\frac{y-x}{1-x},y\right). (299)

A further relation for F1F_{1} is given

F1(a+1,1,1/2,a+2;x,y)\displaystyle F_{1}\Big{(}a+1,1,1/2,a+2;x,y\Big{)} =\displaystyle= πΓ(a+2)Γ(a+3/2)ya1F12[1,a+1;a+3/2;xy]\displaystyle\dfrac{\sqrt{\pi}\Gamma(a+2)}{\Gamma(a+3/2)}\;y^{-a-1}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}1,a+1\,;\\ a+3/2\,;\end{array}\dfrac{x}{y}\right]
2Γ(a+2)Γ(a+1)1yy(1x)F1(1,a,1,3/2;11y,x(1y)y(1x)).\displaystyle-\frac{2\Gamma(a+2)}{\;\Gamma(a+1)}\dfrac{\sqrt{1-y}}{y(1-x)}\;F_{1}\Bigg{(}1,-a,1,3/2;1-\dfrac{1}{y},\dfrac{x(1-y)}{y(1-x)}\Bigg{)}.

Appell F3F_{3} series

Appell F3F_{3} series are written [25, 32]

F3(a,a;b,b;c;x,y)\displaystyle F_{3}\left(a,a^{\prime};b,b^{\prime};c;x,y\right) =\displaystyle= m0n0(a)m(a)n(b)m(b)nm!n!(c)m+nxmyn,\displaystyle\sum_{m\geq 0}\sum_{n\geq 0}\frac{(a)_{m}\,(a^{\prime})_{n}\,(b)_{m}\,(b^{\prime})_{n}}{m!\,n!\ (c)_{m+n}}x^{m}y^{n}, (303)

provided that Re(c)(c) >> Re(a)>0(a)>0 and |x|<1|x|<1, |y|<1|y|<1.

J. Kampé de Fériet series

In addition, J. Kampé de Fériet series [32, 33] with two variables are shown:

Fr:sp:q(a1,,ap:b1,b1;;bq,bq;c1,,cr:d1,d1;;ds,ds;x,y)=\displaystyle F^{p:q}_{r:s}\left(\begin{matrix}a_{1},\dots,a_{p}:b_{1},b_{1}^{\prime};\dots;b_{q},b_{q}^{\prime};\\ c_{1},\dots,c_{r}:d_{1},d_{1}^{\prime};\dots;d_{s},d_{s}^{\prime};\end{matrix}\,x,y\right)= (304)
=m0n0(a1)m+n(ap)m+n(c1)m+n(cr)m+n(b1)m(b1)n(bq)m(bq)n(d1)m(d1)n(ds)m(ds)nxmynm!n!.\displaystyle=\sum_{m\geq 0}\sum_{n\geq 0}\frac{(a_{1})_{m+n}\dots(a_{p})_{m+n}}{(c_{1})_{m+n}\dots(c_{r})_{m+n}}\frac{(b_{1})_{m}(b_{1}^{\prime})_{n}\dots(b_{q})_{m}(b_{q}^{\prime})_{n}}{(d_{1})_{m}(d_{1}^{\prime})_{n}\dots(d_{s})_{m}(d_{s}^{\prime})_{n}}\frac{x^{m}y^{n}}{m!n!}.

Lauricella-Saran function FSF_{S}

Lauricella-Saran function FSF_{S} is defined in terms of a triple hypergeometric series [35]

FS(α1,α2,α2,β1,β2,β3,γ1,γ1,γ1;x,y,z)=r,m,n=0(α1)r(α2)m+n(β1)r(β2)m(β3)n(γ1)r+m+nr!m!n!xrymzn.\displaystyle F_{S}(\alpha_{1},\alpha_{2},\alpha_{2},\beta_{1},\beta_{2},\beta_{3},\gamma_{1},\gamma_{1},\gamma_{1};x,y,z)=\sum_{r,m,n=0}^{\infty}\frac{(\alpha_{1})_{r}(\alpha_{2})_{m+n}(\beta_{1})_{r}(\beta_{2})_{m}(\beta_{3})_{n}}{(\gamma_{1})_{r+m+n}\leavevmode\nobreak\ r!m!n!}x^{r}y^{m}z^{n}.

The integral representation of FSF_{S} is defined [35]:

FS(α1,α2,α2,β1,β2,β3,γ1,γ1,γ1;x,y,z)=\displaystyle F_{S}(\alpha_{1},\alpha_{2},\alpha_{2},\beta_{1},\beta_{2},\beta_{3},\gamma_{1},\gamma_{1},\gamma_{1};x,y,z)= (306)
=Γ(γ1)Γ(α1)Γ(γ1α1)01𝑑ttγ1α11(1t)α11(1x+tx)β1F1(α2,β2,β3;γ1α1;ty,tz),\displaystyle\hskip 56.9055pt=\frac{\Gamma(\gamma_{1})}{\Gamma(\alpha_{1})\Gamma(\gamma_{1}-\alpha_{1})}\int_{0}^{1}dt\;\dfrac{t^{\gamma_{1}-\alpha_{1}-1}(1-t)^{\alpha_{1}-1}}{(1-x+tx)^{\beta_{1}}}F_{1}\left(\alpha_{2},\beta_{2},\beta_{3};\gamma_{1}-\alpha_{1};ty,tz\right),

provided that Re(γ1α1α2)>0(\gamma_{1}-\alpha_{1}-\alpha_{2})>0, Re(α1)>0(\alpha_{1})>0, Re(α2)>0(\alpha_{2})>0, and |x|,|y|,|z|<1|x|,\;|y|,\;|z|<1.

Appendix C: The contour integrations

Type 1

Mellin-Barnes relation [29] is given:

12πii+i𝑑sΓ(s)Γ(λ+s)Γ(λ)(z)s=1(1+z)λ\displaystyle\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(\lambda+s)}{\Gamma(\lambda)}\;\left(z\right)^{s}=\dfrac{1}{(1+z)^{\lambda}} (307)

provided that |Arg(z)|<π|\mathrm{Arg}(z)|<\pi. The integration contour is chosen in such a way that the poles of Γ(s)\Gamma(-s) and Γ(λ+s)\Gamma(\lambda+s) are well-separated.

Type 2

The Barnes-type integral for Gauss hypergeometric [25] reads

12πii+i𝑑sΓ(s)Γ(a+s)Γ(b+s)Γ(c+s)(z)s=Γ(a)Γ(b)Γ(c)F12[a,b;c;z]\displaystyle\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(a+s)\;\Gamma(b+s)}{\Gamma(c+s)}\left(-z\right)^{s}=\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(c)}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a,b\,;\\ c\,;\end{array}z\right] (310)

provided that |Arg(z)|<π|\mathrm{Arg}(-z)|<\pi and |z|<1|z|<1.

Type 3

The next Barnes-type integral applied in this paper is

12πii+i𝑑sΓ(s)Γ(a+s)Γ(b+s)Γ(c+s)(x)sF12[a+s,b;c+s;y]=Γ(a)Γ(b)Γ(c)F1(a;b,b;c;x,y)\displaystyle\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(a+s)\;\Gamma(b+s)}{\Gamma(c+s)}(-x)^{s}\;\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a+s,b^{\prime}\,;\\ c+s\,;\end{array}y\right]=\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(c)}F_{1}(a;b,b^{\prime};c;x,y) (313)

with |Arg(x)|<π|\mathrm{Arg}(-x)|<\pi, |Arg(y)|<π|\mathrm{Arg}(-y)|<\pi and |x|<1|x|<1 and |y|<1|y|<1. Under these conditions, one could close the contour of integration to the right. Subsequently, we have to take into account the residua of the sequence poles of Γ(s)\Gamma(-s). The result is expressed as the summation of Gauss hypergeometric function. The summation is then identical as a series of Appell F1F_{1} functions  [30] as follows:

Γ(a)Γ(b)Γ(c)m=0(a)m(b)m(c)mxmm!F12[a+m,b;c+m;y]=Γ(a)Γ(b)Γ(c)F1(a;b,b;c;x,y).\displaystyle\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(c)}\sum\limits_{m=0}^{\infty}\dfrac{(a)_{m}(b)_{m}}{(c)_{m}}\dfrac{x^{m}}{m!}\,{}_{2}F_{1}\!\!\left[\begin{array}[]{c}a+m,b^{\prime}\,;\\ c+m\,;\end{array}y\right]=\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(c)}F_{1}(a;b,b^{\prime};c;x,y). (317)

Type 4

Furthermore, in this paper we evaluate the following integral:

12πii+i𝑑sΓ(s)Γ(a+s)Γ(b1+s)Γ(c+s)(x)sF1(a+s;b2,b3;c+s;y,z)\displaystyle\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(a+s)\;\Gamma(b_{1}+s)}{\Gamma(c+s)}(-x)^{s}\;F_{1}(a^{\prime}+s;b_{2},b_{3};c+s;y,z) (318)
=Γ(a)Γ(b1)Γ(c)(1y)b2(1z)b3FS(a,ca,ca;b1,b2,b3;c,c,c;x,yy1,zz1).\displaystyle=\dfrac{\Gamma(a)\Gamma(b_{1})}{\Gamma(c)}(1-y)^{-b_{2}}(1-z)^{-b_{3}}\;F_{S}\left(a,c-a^{\prime},c-a^{\prime};b_{1},b_{2},b_{3};c,c,c;x,\frac{y}{y-1},\frac{z}{z-1}\right).

We close the contour of integration to the right. By taking into account the residua of the sequence poles of Γ(s)\Gamma(-s), the result reads

Γ(a)Γ(b1)Γ(c)m=0(a)m(b1)m(c)mxmm!F1(a+m;b2,b3;c+m;y,z).\displaystyle\dfrac{\Gamma(a)\Gamma(b_{1})}{\Gamma(c)}\sum\limits_{m=0}^{\infty}\dfrac{(a)_{m}(b_{1})_{m}}{(c)_{m}}\dfrac{x^{m}}{m!}\;F_{1}(a^{\prime}+m;b_{2},b_{3};c+m;y,z). (319)

One applies the relation (289) for Appell F1F_{1} functions in (319) as follows

F1(a+m;b2,b3;c+m;y,z)=(1y)b2(1z)b3F1(ca;b2,b3;c+m;yy1,zz1).\displaystyle F_{1}(a^{\prime}+m;b_{2},b_{3};c+m;y,z)=(1-y)^{-b_{2}}(1-z)^{-b_{3}}F_{1}\left(c-a^{\prime};b_{2},b_{3};c+m;\frac{y}{y-1},\frac{z}{z-1}\right).

Eq. (319) is then presented as a series of Lauricella functions FSF_{S} [35]

Γ(a)Γ(b1)Γ(c)(1y)b2(1z)b3×\displaystyle\dfrac{\Gamma(a)\Gamma(b_{1})}{\Gamma(c)}(1-y)^{-b_{2}}(1-z)^{-b_{3}}\times (321)
×m,n,l=0(a)m(b1)m(b2)n(b3)l(ca)n+l(c)m+n+lxmm!1n!(yy1)n1l!(zz1))l=\displaystyle\times\sum\limits_{m,n,l=0}^{\infty}\dfrac{(a)_{m}(b_{1})_{m}(b_{2})_{n}(b_{3})_{l}(c-a^{\prime})_{n+l}}{(c)_{m+n+l}}\dfrac{x^{m}}{m!}\;\frac{1}{n!}\left(\frac{y}{y-1}\right)^{n}\frac{1}{l!}\left(\frac{z}{z-1})\right)^{l}=
=Γ(a)Γ(b1)Γ(c)(1y)b2(1z)b3FS(a,ca,ca;b1,b2,b3;c,c,c;x,yy1,zz1).\displaystyle=\dfrac{\Gamma(a)\Gamma(b_{1})}{\Gamma(c)}(1-y)^{-b_{2}}(1-z)^{-b_{3}}\;F_{S}\left(a,c-a^{\prime},c-a^{\prime};b_{1},b_{2},b_{3};c,c,c;x,\frac{y}{y-1},\frac{z}{z-1}\right).

provided that |x|<1|x|<1, |yy1|<1\left|\frac{y}{y-1}\right|<1 and |zz1|<1\left|\frac{z}{z-1}\right|<1.

The last formula is mentioned in this paper relates to a transformation of Mellin-Barnes integrals (see page 156156 of Ref. [28] , item 14.5314.53 in page 290290 of [29]) which is

i+i𝑑sΓ(s)Γ(a+s)Γ(b+s)Γ(c+s)(z)s=\displaystyle\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(a+s)\;\Gamma(b+s)}{\Gamma(c+s)}(-z)^{s}= (322)
=i+i𝑑sΓ(s)Γ(a+bcs)Γ(ca+s)Γ(cb+s)Γ(ca)Γ(cb)(1z)cab+s,\displaystyle=\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(a+b-c-s)\Gamma(c-a+s)\Gamma(c-b+s)}{\Gamma(c-a)\Gamma(c-b)}\;(1-z)^{c-a-b+s},

provided that |Arg(z)|<2π|\mathrm{Arg}(-z)|<2\pi.

Appendix DD: Master equation for JNJ_{N}

General relation for JNJ_{N} have been proved in [18]. In this appendix, we consider N=4N=4 as an example. Performing Feynman parameterization for J4J_{4}, one arrives at

J4Γ(4d2)\displaystyle\dfrac{J_{4}}{\Gamma\Big{(}4-\frac{d}{2}\Big{)}} =\displaystyle= 𝑑S3[ax12+bx22+cx32+2dx1x2+2ex1x3+2fx2x3+gx1+hx2+kx3+jiρ]d24.\displaystyle\int dS_{3}\Big{[}ax_{1}^{2}+bx_{2}^{2}+cx_{3}^{2}+2\;d\;x_{1}x_{2}+2\;e\;x_{1}x_{3}+2\;f\;x_{2}x_{3}+gx_{1}+hx_{2}+kx_{3}+j-i\rho\Big{]}^{\frac{d}{2}-4}.

Above coefficients a,b,c,,ja,b,c,\cdots,j are shown

a=p12,a=p_{1}^{2}, b=p22,b=p_{2}^{2}, c=(p2+p3)2,c=(p_{2}+p_{3})^{2},
d=p1p2,d=-p_{1}p_{2}, e=p1p2p1p3,e=-p_{1}p_{2}-p_{1}p_{3}, f=p22+p2p3,f=p_{2}^{2}+p_{2}p_{3},
g=m12m22p12,g=m_{1}^{2}-m_{2}^{2}-p_{1}^{2}, h=m22+m32p22,h=-m_{2}^{2}+m_{3}^{2}-p_{2}^{2}, k=m22+m42(p2+p3)2,k=-m_{2}^{2}+m_{4}^{2}-(p_{2}+p_{3})^{2},
j=m22j=m_{2}^{2}.

We used the following notation

𝑑S3\displaystyle\int\;dS_{3} =\displaystyle= 01𝑑x101x1𝑑x201x1x2𝑑x3=01𝑑x201x2𝑑x301x2x3𝑑x1=01𝑑x301x3𝑑x101x1x3𝑑x2.\displaystyle\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{2}\int\limits_{0}^{1-x_{1}-x_{2}}dx_{3}=\int\limits_{0}^{1}dx_{2}\int\limits_{0}^{1-x_{2}}dx_{3}\int\limits_{0}^{1-x_{2}-x_{3}}dx_{1}=\int\limits_{0}^{1}dx_{3}\int\limits_{0}^{1-x_{3}}dx_{1}\int\limits_{0}^{1-x_{1}-x_{3}}dx_{2}.

The integrand of J4J_{4} is

4(x1,x2,x3)\displaystyle\mathcal{M}_{4}(x_{1},x_{2},x_{3}) =\displaystyle= ax12+bx22+cx32+2dx1x2+2ex1x3+2fx2x3+gx1+hx2+kx3+j.\displaystyle ax_{1}^{2}+bx_{2}^{2}+cx_{3}^{2}+2\;d\;x_{1}x_{2}+2\;e\;x_{1}x_{3}+2\;f\;x_{2}x_{3}+gx_{1}+hx_{2}+kx_{3}+j. (331)
=\displaystyle= (x1,x2,x3)𝒢3(x1x2x3)+24T(x1x2x3)+𝒦4\displaystyle(x_{1},x_{2},x_{3})\;\mathcal{G}_{3}\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\\ \end{array}\right)+2\mathcal{H}^{T}_{4}\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\\ \end{array}\right)+\mathcal{K}_{4}
=\displaystyle= (x1y1,x2y2,x3y3)𝒢3(x1y1x2y2x3y3)+R4\displaystyle(x_{1}-y_{1},x_{2}-y_{2},x_{3}-y_{3})\;\mathcal{G}_{3}\left(\begin{array}[]{c}x_{1}-y_{1}\\ x_{2}-y_{2}\\ x_{3}-y_{3}\\ \end{array}\right)+R_{4} (335)
=\displaystyle= Λ4(x1,x2,x3)+R4.\displaystyle\Lambda_{4}(x_{1},x_{2},x_{3})+R_{4}. (336)

These matrices are given

𝒢3=(adedbfefc),4=12(ghk),𝒦4=j.\displaystyle\mathcal{G}_{3}=\left(\begin{array}[]{ccc}a&d&e\\ d&b&f\\ e&f&c\end{array}\right),\quad\mathcal{H}_{4}=\frac{1}{2}\left(\begin{array}[]{c}g\\ h\\ k\\ \end{array}\right),\quad\mathcal{K}_{4}=j. (343)

The Λ4(x1,x2,x3)\Lambda_{4}(x_{1},x_{2},x_{3}) reads

Λ4(x1,x2,x3)\displaystyle\Lambda_{4}(x_{1},x_{2},x_{3}) =\displaystyle= a(x1y1)2+b(x2y2)2+c(x3y3)2+2d(x1y1)(x2y2)\displaystyle a(x_{1}-y_{1})^{2}+b(x_{2}-y_{2})^{2}+c(x_{3}-y_{3})^{2}+2d(x_{1}-y_{1})(x_{2}-y_{2}) (344)
+2e(x1y1)(x3y3)+2f(x2y2)(x3y3).\displaystyle+2e(x_{1}-y_{1})(x_{3}-y_{3})+2f(x_{2}-y_{2})(x_{3}-y_{3}).

The vector y\overrightarrow{y} is defined as: y=(y1,y2,y3)=𝒢31HT\overrightarrow{y}=(y_{1},y_{2},y_{3})=-\mathcal{G}_{3}^{-1}H^{T}. We write explicitly y1,y2,y3y_{1},y_{2},y_{3} and y4y_{4} as follows:

y1\displaystyle y_{1} =\displaystyle= bch+bek+cdgdfkefg+f2hG3=R4m12,\displaystyle\dfrac{-bch+bek+cdg-dfk-efg+f^{2}h}{G_{3}}=\dfrac{\partial R_{4}}{\partial m_{1}^{2}},
y2\displaystyle y_{2} =\displaystyle= a(fkcg)+cdhe(dk+fh)+e2gG3=R4m32,\displaystyle\dfrac{a(fk-cg)+cdh-e(dk+fh)+e^{2}g}{G_{3}}=\dfrac{\partial R_{4}}{\partial m_{3}^{2}}, (345)
y3\displaystyle y_{3} =\displaystyle= afg+behd(eg+fh)abk+d2kG3=R4m42,\displaystyle\dfrac{afg+beh-d(eg+fh)-abk+d^{2}k}{G_{3}}=\dfrac{\partial R_{4}}{\partial m_{4}^{2}},
y4\displaystyle y_{4} =\displaystyle= 1y1y2y3=R4m22.\displaystyle 1-y_{1}-y_{2}-y_{3}=\dfrac{\partial R_{4}}{\partial m_{2}^{2}}.

First, we consider G30G_{3}\neq 0 and R40R_{4}\neq 0. In this case, Mellin-Barnes relation is applied to decompose J4J_{4}’s integrand as follows:

1[Λ4(x1,x2,x3)+R4iρ]4d2=\displaystyle\dfrac{1}{\Big{[}\Lambda_{4}(x_{1},x_{2},x_{3})+R_{4}-i\rho\Big{]}^{4-\frac{d}{2}}}=
=12πii+i𝑑sΓ(s)Γ(4d2+s)Γ(4d2)(1R4iρ)4d2[Λ4(x1,x2,x3)R4iρ]s,\displaystyle\hskip 28.45274pt=\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(4-\frac{d}{2}+s)}{\Gamma(4-\frac{d}{2})}\left(\dfrac{1}{R_{4}-i\rho}\right)^{4-\frac{d}{2}}\;\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}-i\rho}\right]^{s}, (346)

provided that |Arg(Λ4(x1,x2,x3)R4iρ)|<π\left|\mathrm{Arg}\left(\frac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}-i\rho}\right)\right|<\pi. With the help of the Mellin-Barnes relation, this brings the Feynman parameters integration to the simpler form:

4=𝑑S3[Λ4(x1,x2,x3)R4iρ]s.\displaystyle\mathcal{F}_{4}=\int dS_{3}\;\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}-i\rho}\right]^{s}. (347)

In order to carry out this integral, we consider the following differential operator (see theorem of Bernshtein [36], or [37])

O^4=12(x1y1)x1+12(x2y2)x2+12(x3y3)x3.\displaystyle\hat{O}_{4}=\frac{1}{2}(x_{1}-y_{1})\frac{\partial}{\partial x_{1}}+\frac{1}{2}(x_{2}-y_{2})\frac{\partial}{\partial x_{2}}+\frac{1}{2}(x_{3}-y_{3})\frac{\partial}{\partial x_{3}}. (348)

It is easy to check that

O^4[Λ4(x1,x2,x3)R4]s=s[Λ4(x1,x2,x3)R4]s.\displaystyle\hat{O}_{4}\;\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}=s\;\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}. (349)

As a matter of this fact, we can rewrite Feynman parameter integral as

4\displaystyle\mathcal{F}_{4} =\displaystyle= 1s𝑑S3O^4[Λ4(x1,x2,x3)R4]s=\displaystyle\dfrac{1}{s}\int dS_{3}\;\hat{O}_{4}\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}= (351)
=\displaystyle= 1s{01dx101x1dx201x1x2dx3(xy3)x3[Λ4(x1,x2,x3)R4]s\displaystyle\dfrac{1}{s}\Bigg{\{}\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{2}\int\limits_{0}^{1-x_{1}-x_{2}}dx_{3}\;(x-y_{3})\frac{\partial}{\partial x_{3}}\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}
+01𝑑x101x1𝑑x301x1x3𝑑x2(xy2)x2[Λ4(x1,x2,x3)R4]s\displaystyle\hskip 14.22636pt+\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{3}\int\limits_{0}^{1-x_{1}-x_{3}}dx_{2}\;(x-y_{2})\frac{\partial}{\partial x_{2}}\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}
+01dx201x3dx301x2x3dx1(xy1)x1[Λ4(x1,x2,x3)R4]s}\displaystyle\hskip 14.22636pt+\int\limits_{0}^{1}dx_{2}\int\limits_{0}^{1-x_{3}}dx_{3}\int\limits_{0}^{1-x_{2}-x_{3}}dx_{1}\;(x-y_{1})\frac{\partial}{\partial x_{1}}\;\;\;\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Bigg{\}}
=\displaystyle= 12s{01dx101x1dx201x1x2dx3x3{(x3y3)[Λ4(x1,x2,x3)R4]s}\displaystyle\dfrac{1}{2s}\Bigg{\{}\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{2}\int\limits_{0}^{1-x_{1}-x_{2}}dx_{3}\;\frac{\partial}{\partial x_{3}}\Big{\{}(x_{3}-y_{3})\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Big{\}}
+01𝑑x101x1𝑑x301x1x3𝑑x2x2{(x2y2)[Λ4(x1,x2,x3)R4]s}\displaystyle\hskip 14.22636pt+\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{3}\int\limits_{0}^{1-x_{1}-x_{3}}dx_{2}\;\frac{\partial}{\partial x_{2}}\Big{\{}(x_{2}-y_{2})\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Big{\}}
+01dx201x3dx301x2x3dx1x1{(x1y1)[Λ4(x1,x2,x3)R4]s}}\displaystyle\hskip 14.22636pt+\int\limits_{0}^{1}dx_{2}\int\limits_{0}^{1-x_{3}}dx_{3}\int\limits_{0}^{1-x_{2}-x_{3}}dx_{1}\;\frac{\partial}{\partial x_{1}}\Big{\{}(x_{1}-y_{1})\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Big{\}}\;\;\;\Bigg{\}}
32s𝑑S3[Λ4(x1,x2,x3)R4]s.\displaystyle-\dfrac{3}{2s}\int dS_{3}\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}.

The last term in this equation is proportional to 4\mathcal{F}_{4}. It is then combined with 4\mathcal{F}_{4} on the left side of Eq.  (351). As a result, Eq. (351) is then casted into the form:

4\displaystyle\mathcal{F}_{4} =\displaystyle= Γ(s+32)2Γ(s+52){01dx101x1dx201x1x2dx3x3{(x3y3)[Λ4(x1,x2,x3)R4]s}+\displaystyle\dfrac{\Gamma(s+\frac{3}{2})}{2\;\Gamma(s+\frac{5}{2})}\Bigg{\{}\;\;\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{2}\int\limits_{0}^{1-x_{1}-x_{2}}dx_{3}\;\frac{\partial}{\partial x_{3}}\Big{\{}(x_{3}-y_{3})\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Big{\}}+
+01𝑑x101x1𝑑x301x1x3𝑑x2x2{(x2y2)[Λ4(x1,x2,x3)R4]s}\displaystyle\hskip 71.13188pt+\int\limits_{0}^{1}dx_{1}\int\limits_{0}^{1-x_{1}}dx_{3}\int\limits_{0}^{1-x_{1}-x_{3}}dx_{2}\;\frac{\partial}{\partial x_{2}}\Big{\{}(x_{2}-y_{2})\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Big{\}}
+01dx201x3dx301x2x3dx1x1{(x1y1)[Λ4(x1,x2,x3)R4]s}}.\displaystyle\hskip 71.13188pt+\int\limits_{0}^{1}dx_{2}\int\limits_{0}^{1-x_{3}}dx_{3}\int\limits_{0}^{1-x_{2}-x_{3}}dx_{1}\;\frac{\partial}{\partial x_{1}}\Big{\{}(x_{1}-y_{1})\left[\dfrac{\Lambda_{4}(x_{1},x_{2},x_{3})}{R_{4}}\right]^{s}\Big{\}}\;\;\Bigg{\}}.

Taking over a Feynman parameter integration in Eq. (Appendix DD: Master equation for JNJ_{N}), the result reads

4\displaystyle\mathcal{F}_{4} =\displaystyle= Γ(s+32)2Γ(s+52)i=14yi𝑑S2[Aix12+Bix22+2Cix1x2+Dix1+Eix2+FiR41]s\displaystyle\dfrac{\Gamma(s+\frac{3}{2})}{2\;\Gamma(s+\frac{5}{2})}\sum\limits_{i=1}^{4}\;y_{i}\int dS_{2}\left[\dfrac{A_{i}x_{1}^{2}+B_{i}x_{2}^{2}+2C_{i}x_{1}x_{2}+D_{i}x_{1}+E_{i}x_{2}+F_{i}}{R_{4}}-1\right]^{s} (353)
=\displaystyle= Γ(s+32)2Γ(s+52)i=14yi𝑑S2[3(Ai,Bi,Ci,Di,Ei,Fi)R41]s.\displaystyle\dfrac{\Gamma(s+\frac{3}{2})}{2\;\Gamma(s+\frac{5}{2})}\sum\limits_{i=1}^{4}\;y_{i}\int dS_{2}\left[\dfrac{\mathcal{M}_{3}(A_{i},B_{i},C_{i},D_{i},E_{i},F_{i})}{R_{4}}-1\right]^{s}.

The coefficients Ai,Bi,Ci,Di,Ei,FiA_{i},B_{i},C_{i},D_{i},E_{i},F_{i} are given in Table (1).

ii 11 22 33 44
AiA_{i} bb aa aa a+c2ea+c-2e
BiB_{i} cc cc bb a+b2da+b-2d
CiC_{i} ff ee dd ade+fa-d-e+f
DiD_{i} hh gg gg 2a+2eg+k-2a+2e-g+k
EiE_{i} kk kk hh 2a+2dg+h-2a+2d-g+h
FiF_{i} jj jj jj a+g+ja+g+j
Table 1: The coefficients Ai,Bi,Ci,Di,Ei,FiA_{i},B_{i},C_{i},D_{i},E_{i},F_{i}.

We then write the coefficients in terms of external momenta and internal masses which are given in Table (2).

ii 11 22 33 44
AiA_{i} p22p_{2}^{2} p12p_{1}^{2} p12p_{1}^{2} p42p_{4}^{2}
BiB_{i} tt tt p22p_{2}^{2} ss
CiC_{i} p2(p2+p3)p_{2}(p_{2}+p_{3}) p1(p2+p3)-p_{1}(p_{2}+p_{3}) p1p2-p_{1}p_{2} p4(p1+p2)-p_{4}(p_{1}+p_{2})
DiD_{i} (p22+m22m32)-(p_{2}^{2}+m_{2}^{2}-m_{3}^{2}) (p12+m22m12)-(p_{1}^{2}+m_{2}^{2}-m_{1}^{2}) (p12m12+m22)-(p_{1}^{2}-m_{1}^{2}+m_{2}^{2}) (p42+m12m42)-(p_{4}^{2}+m_{1}^{2}-m_{4}^{2})
EiE_{i} (t+m22m42)-(t+m_{2}^{2}-m_{4}^{2}) (t+m22m42)-(t+m_{2}^{2}-m_{4}^{2}) (p22m32+m22)-(p_{2}^{2}-m_{3}^{2}+m_{2}^{2}) (s+m12m32)-(s+m_{1}^{2}-m_{3}^{2})
FiF_{i} m22m_{2}^{2} m22m_{2}^{2} m22m_{2}^{2} m12m_{1}^{2}
Table 2: The coefficients Ai,Bi,Ci,Di,Ei,FiA_{i},B_{i},C_{i},D_{i},E_{i},F_{i} in terms of external momenta and internal masses.

Now we can write the Mellin-Barnes integral for J4J_{4} as

J4(d;{pi2,s,t},{mi2})\displaystyle J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}) =\displaystyle= 12πii+i𝑑sΓ(s)Γ(4d2+s)Γ(s+32)2Γ(s+52)(1R4)d24\displaystyle\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(4-\frac{d}{2}+s)\Gamma(s+\frac{3}{2})}{2\Gamma(s+\frac{5}{2})}\;\left(\dfrac{1}{R_{4}}\right)^{\frac{d}{2}-4}
×i=14(R4mi2)dS2[3(Ai,Bi,Ci,Di,Ei,Fi)R41]s.\displaystyle\hskip 28.45274pt\times\sum\limits_{i=1}^{4}\left(\frac{\partial R_{4}}{\partial m_{i}^{2}}\right)\int dS_{2}\Big{[}\frac{\mathcal{M}_{3}(A_{i},B_{i},C_{i},D_{i},E_{i},F_{i})}{R_{4}}-1\Big{]}^{s}.

By applying the relation (322), one gets

J4(d;{pi2,s,t},{mi2})\displaystyle J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}) =\displaystyle= 12πii+idsΓ(s)Γ(d32+s)Γ(s+1)2Γ(d32)(1R4)4d2×\displaystyle\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(\frac{d-3}{2}+s)\Gamma(s+1)}{2\Gamma(\frac{d-3}{2})}\left(\dfrac{1}{R_{4}}\right)^{4-\frac{d}{2}}\times
×i=14(R4mi2)Γ(3d2s)dS2[3(Ai,Bi,Ci,Di,Ei,Fi)R4]d23+s.\displaystyle\times\sum\limits_{i=1}^{4}\left(\frac{\partial R_{4}}{\partial m_{i}^{2}}\right)\Gamma(3-\frac{d}{2}-s)\int dS_{2}\Big{[}\frac{\mathcal{M}_{3}(A_{i},B_{i},C_{i},D_{i},E_{i},F_{i})}{R_{4}}\Big{]}^{\frac{d}{2}-3+s}.

This equation is then written as follows:

J4(d;{pi2,s,t},{mi2})\displaystyle J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}) =\displaystyle= 12πii+idsΓ(s)Γ(d32+s)Γ(s+1)2Γ(d32)(1R4)s×\displaystyle-\dfrac{1}{2\pi i}\int\limits_{-i\infty}^{+i\infty}ds\;\dfrac{\Gamma(-s)\;\Gamma(\frac{d-3}{2}+s)\Gamma(s+1)}{2\Gamma(\frac{d-3}{2})}\left(\frac{1}{R_{4}}\right)^{s}\times
×k=14(1R4R4mk2)𝐤J4(d+2s;{pi2,s,t},{mi2}).\displaystyle\hskip 42.67912pt\times\sum\limits_{k=1}^{4}\left(\frac{1}{R_{4}}\frac{\partial R_{4}}{\partial m_{k}^{2}}\right)\;{\bf k}^{-}J_{4}(d+2s;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}).

In the case of R4=0R_{4}=0, there is no Mellin-Barnes integral for J4J_{4}. We only apply the ring operator O^4\hat{O}_{4}, the result arrives

J4(d;{pi2,s,t},{mi2})=1d5k=14(kY4G3)𝐤J4(d2;{pi2,s,t},{mi2}).\displaystyle J_{4}(d;\{p_{i}^{2},s,t\},\{m_{i}^{2}\})=\frac{1}{d-5}\sum\limits_{k=1}^{4}\left(\dfrac{\partial_{k}Y_{4}}{G_{3}}\right){\bf k^{-}}J_{4}(d-2;\{p_{i}^{2},s,t\},\{m_{i}^{2}\}). (357)

References

  • [1] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087.
  • [2] O. V. Tarasov, Phys. Rev. D 54 (1996) 6479.
  • [3] A. I. Davydychev, J. Math. Phys.  33 (1992) 358.
  • [4] E. E. Boos and A. I. Davydychev, Theor. Math. Phys.  89 (1991) 1052 [Teor. Mat. Fiz.  89 (1991) 56].
  • [5] A. I. Davydychev and R. Delbourgo, J. Math. Phys.  39 (1998) 4299.
  • [6] A. I. Davydychev, Phys. Rev. D 61 (2000) 087701.
  • [7] A. I. Davydychev and M. Y. Kalmykov, Nucl. Phys. B 699 (2004) 3.
  • [8] A. I. Davydychev, Nucl. Instrum. Meth. A 559 (2006) 293.
  • [9] C. Anastasiou, E. W. N. Glover and C. Oleari, Nucl. Phys. B 572 (2000) 307.
  • [10] S. Abreu, R. Britto and H. Grönqvist, JHEP 1507 (2015) 111.
  • [11] S. Abreu, R. Britto, C. Duhr and E. Gardi, JHEP 1706 (2017) 114.
  • [12] S. Abreu, R. Britto, C. Duhr and E. Gardi, Phys. Rev. Lett.  119 (2017) no.5, 051601.
  • [13] S. Abreu, R. Britto, C. Duhr and E. Gardi, JHEP 1712 (2017) 090.
  • [14] O. V. Tarasov, Nucl. Phys. Proc. Suppl.  89 (2000) 237.
  • [15] K. H. Phan and D. T. Tran, PTEP 2019 (2019) no.6, 063B01.
  • [16] J. Fleischer, F. Jegerlehner and O. V. Tarasov, Nucl. Phys. B 672 (2003) 303.
  • [17] J. Blümlein, K. H. Phan and T. Riemann, Nucl. Part. Phys. Proc.  270-272 (2016) 227.
  • [18] J. Blümlein, K. H. Phan and T. Riemann, Acta Phys. Polon. B 48 (2017) 2313.
  • [19] K. H. Phan and T. Riemann, Phys. Lett. B 791 (2019) 257.
  • [20] A. Denner and S. Dittmaier, Nucl. Phys. Proc. Suppl.  160 (2006) 22.
  • [21] G. Devaraj and R. G. Stuart, Nucl. Phys. B 519 (1998) 483.
  • [22] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365.
  • [23] Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B 412 (1994) 751.
  • [24] B. C. Carlson, Special functions of applied mathematics, (New York: Academic Press 1977).
  • [25] L. J. Slater, Generalized Hypergeometric Functions, (Cambridge University Press, Cambridge, 1966).
  • [26] Bruce C. Berndt, Ramanujan’s Notebooks, Part IIII, springer Press, 19991999.
  • [27] George E. Andrews, Richard Askey, Ranjan Roy, Special Functions, Cambridge university Press, 19991999.
  • [28] E. W. Barnes, Proc. London Math. Soc. (1908) s2-6 (1): 141-177.
  • [29] E. T. Whittaker, G. N. Watson, A Course of Mordern Analysis, (Cambridge University Press, Cambridge, 1952).
  • [30] Michael J. Schlosser, arXiv:1305.1966 [math.CA].
  • [31] P. O. M. Olsson, J.  Math.  Phys.  5 (1964) 420.
  • [32] P. Appell, J. Kampé de Fériet, Fonctions Hypergeometriques et Hyperspheriques. Polynomes d Hermite, Gauthier–Villars, Paris, 1926.
  • [33] Kampé de Fériet, J. La fonction hypergéométrique. Gauthier–Villars, Paris (1937).
  • [34] B. Ananthanarayan, S. Friot and S. Ghosh, [arXiv:2003.12030 [hep-ph]].
  • [35] S.  Saran, Acta Math. 93 (1955) 293.
  • [36] I. N. Bershtein, "Modules over the ring of differential operators. A study of the fundamental solutions of differential equations with constant coefficients," Funk. Analiz, 5, No. 2, 1-16 (1971).
  • [37] Golubeva, V.A. and E´\acute{\text{E}}nol’skii, V.Z. Mathematical Notes of the Academy of Sciences of the USSR (1978) 23: 63. doi:10.1007/BF01104888.
  • [38] M. Czakon, Comput. Phys. Commun.  175 (2006) 559.
  • [39] J. Gluza, K. Kajda and T. Riemann, Comput. Phys. Commun.  177 (2007) 879.
  • [40] J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C 71 (2011) 1516.
  • [41] I. Dubovyk, J. Gluza, T. Jelinski, T. Riemann and J. Usovitsch, Acta Phys. Polon. B 48 (2017) 995.
  • [42] J. Usovitsch, I. Dubovyk and T. Riemann, PoS LL 2018 (2018) 046.
  • [43] I. Dubovyk, J. Gluza and T. Riemann, Acta Phys. Polon. B 50 (2019) 1993.
  • [44] C. Schneider, Sém. Lothar. Combin. 56 (2007) 1, article B56b; in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts and Monographs in Symbolic Computation, eds. C. Schneider and J. Blümlein (Springer, Wien, 2013) 325 arXiv:1304.4134 [cs.SC];
    J. Ablinger, J. Blümlein, S. Klein and C. Schneider, Nucl. Phys. Proc. Suppl.  205-206 (2010) 110;
    J. Blümlein, A. Hasselhuhn and C. Schneider, PoS (RADCOR 2011) 032;
    C. Schneider, J. Phys. Conf. Ser.  523 (2014) 012037;
    J. Ablinger, arXiv:1305.0687 [math-ph]; arXiv:1011.1176 [math-ph];
    J. Ablinger, J. Blümlein and C. Schneider, J. Math. Phys.  52 (2011) 102301; J. Math. Phys.  54 (2013) 082301.
  • [45] Z. W. Huang and J. Liu, Comput. Phys. Commun.  184 (2013) 1973.
  • [46] T. Huber and D. Maitre, Comput. Phys. Commun.  175 (2006) 122.
  • [47] T. Huber and D. Maitre, Comput. Phys. Commun.  178 (2008) 755.
  • [48] M. Y. Kalmykov, JHEP 0604 (2006) 056.
  • [49] M. Y. Kalmykov, B. F. L. Ward and S. Yost, JHEP 0702 (2007) 040.
  • [50] S. Moch and P. Uwer, Comput. Phys. Commun. 174 (2006), 759-770 doi:10.1016/j.cpc.2005.12.014.
  • [51] S. Friot and D. Greynat, J. Math. Phys.  53 (2012) 023508.
  • [52] D. Greynat and J. Sesma, Comput. Phys. Commun.  185 (2014) 472.
  • [53] D. Greynat, J. Sesma and G. Vulvert, arXiv:1310.7700 [math-ph].
  • [54] V. V. Bytev, M. Y. Kalmykov and B. A. Kniehl, Nucl. Phys. B 836 (2010) 129.
  • [55] V. V. Bytev, M. Y. Kalmykov and B. A. Kniehl, Comput. Phys. Commun.  184 (2013) 2332.
  • [56] V. V. Bytev and B. A. Kniehl, Comput. Phys. Commun.  189 (2015) 128.
  • [57] V. V. Bytev, M. Y. Kalmykov and S. O. Moch, Comput. Phys. Commun.  185 (2014) 3041.
  • [58] J. Fleischer and T. Riemann, Phys. Rev. D 83 (2011) 073004.
  • [59] J. Fleischer and T. Riemann, Phys. Lett. B 707 (2012), 375-380.