This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.

Scalable Method for Eliminating Residual ZZZZ Interaction between Superconducting Qubits

Zhongchu Ni Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China International Quantum Academy, Shenzhen 518048, China Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China    Sai Li    Libo Zhang Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China International Quantum Academy, Shenzhen 518048, China Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China    Ji Chu    Jingjing Niu    Tongxing Yan    Xiuhao Deng    Ling Hu    Jian Li    Youpeng Zhong    Song Liu    Fei Yan [email protected]    Yuan Xu [email protected] Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China International Quantum Academy, Shenzhen 518048, China Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China    Dapeng Yu Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China International Quantum Academy, Shenzhen 518048, China Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract

Unwanted ZZZZ interaction is a quantum-mechanical crosstalk phenomenon which correlates qubit dynamics and is ubiquitous in superconducting qubit systems. It adversely affects the quality of quantum operations and can be detrimental in scalable quantum information processing. Here we propose and experimentally demonstrate a practically extensible approach for complete cancellation of residual ZZZZ interaction between fixed-frequency transmon qubits, which are known for long coherence and simple control. We apply to the intermediate coupler that connects the qubits a weak microwave drive at a properly chosen frequency in order to noninvasively induce an ac Stark shift for ZZZZ cancellation. We verify the cancellation performance by measuring vanishing two-qubit entangling phases and ZZZZ correlations. In addition, we implement a randomized benchmarking experiment to extract the idling gate fidelity which shows good agreement with the coherence limit, demonstrating the effectiveness of ZZZZ cancellation. Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers, promising better compatibility with future large-scale quantum processors.


Scalable quantum information processing relies on simultaneous implementation of high-fidelity quantum operations. Unfortunately, unwanted crosstalk effects become inevitable in a quantum processor with a high degree of integration, compromising quantum operational fidelity and ultimately limiting scalability. Recent progress with superconducting qubits has shown that by leveraging a tunable-coupling architecture, various crosstalk phenomena can be efficiently reduced while fast two-qubit gates are enabled Yan et al. (2018); Arute et al. (2019). However, residual longitudinal or ZZZZ interaction – by which the frequency of a qubit depends on the state of the other – may still exist due to the fact that superconducting qubits are not so well-defined two-level systems by nature and the computational states are more or less affected by noncomputational states that are energetically close. Such unwanted ZZZZ interaction will result in spectator errors Sundaresan et al. (2020); Krinner et al. (2020); Cai et al. (2021); Zajac et al. (2021), correlated errors Postler et al. (2018); von Lüpke et al. (2020), and coherent phase errors during intermittent idling operations Barends et al. (2016); Kandala et al. (2019); Gong et al. (2019); Karamlou et al. (2021). Notably, quantum error correction usually necessitates relatively lengthy reset and feedback operations, making it extremely susceptible to these coherent errors accrued during idling Huang et al. (2020); Bultink et al. (2020); Andersen et al. (2020); Chen et al. (2021).

There are several methods for ZZZZ suppression or cancellation, such as, among the passive ones, the use of large qubit-qubit detuning DiCarlo et al. (2009); Collodo et al. (2020); Xu et al. (2020), qubits with opposite anharmonicity signs Zhao et al. (2020); Ku et al. (2020); Xu and Ansari (2021), and multiple coupling paths Mundada et al. (2019); Li et al. (2020); Kandala et al. (2021); Zhao et al. (2021); Sete et al. (2021); Stehlik et al. (2021); Xu and Ansari (2022). These methods either result in incomplete cancellation or heavily rely on design and fabrication precision which can be hard to achieve in practice. There are also a few active methods. One approach is to apply dynamical-decoupling sequences during long idling periods at the expense of additional gates Jurcevic et al. (2021); Tripathi et al. (2021). It is, however, unclear how to best implement dynamical-decoupling protocols in the context of a highly connected qubit array. Another approach, which utilizes the ac Stark effect by off-resonantly driving the qubits, has been demonstrated in recent experiments at a small scale Noguchi et al. (2020); Mitchell et al. (2021); Wei et al. (2021); Xiong et al. (2022). Although suitable for architecture with fixed-frequency qubits, the Stark method requires independent drives applied to at least one – sometimes both – of the two qubits in order to cancel the ZZZZ coupling between this particular qubit pair. In a high-connectivity qubit array such as two-dimensional grid where the number of nearest-neighbor connections is more than the number of qubits, this method becomes inextensible due to the lack of degrees of freedom in control. In addition, directly driving the qubit may induce spurious excitation and leakage to the target qubit and its surroundings, especially in a frequency-crowded system.

In this Letter, we propose and experimentally demonstrate a practically scalable and noninvasive method for cancelling residual ZZZZ interaction between fixed-frequency superconducting qubits. In contrast to previous approaches that utilize ac Stark shift by driving the qubits, we apply a weak microwave drive to the intermediate coupler instead. On a device with two transmon qubits connected to a cavity bus coupler, we show complete removal of residual ZZZZ interaction from measurement of two-qubit entangling phases and ZZZZ correlations. We also perform simultaneous randomized benchmarking (RB) experiments with interleaved idling operations to extract idling gate fidelity which shows full-scale improvement, reaching the coherence limit.

Refer to caption
Figure 1: Coupler-assisted ZZZZ cancellation. (a) Schematic of the system consisting tof wo qubits and an intermediate coupler. The ZZZZ cancellation drive of frequency ωd\omega_{d} and amplitude Ωd\Omega_{d} is applied to the coupler. (b) Diagram of the relevant energy levels denoted by |Q1,Q2,C\left|Q_{1},Q_{2},C\right\rangle. The solid (dashed) black lines represent the corresponding energy levels without (with) externally applied drive to the coupler (dashed green line). Arrows indicate corresponding frequencies. (c) Numerical simulated net ZZZZ coupling χzz\chi_{zz} as a function of the drive frequency ωd\omega_{d} referenced to ωcgg\omega_{c}^{gg} and the drive amplitude Ωd\Omega_{d}. Dashed lines indicate the state-dependent coupler frequencies ωcmn\omega_{c}^{mn}. The star marks the optimal choice of drive parameters for complete ZZZZ cancellation.

Consider a general model described in Fig. 1(a), where two qubits Q1Q_{1} and Q2Q_{2} couple to an intermediate coupler CC with a coupling strength of g1cg_{1c} and g2cg_{2c}, respectively, as well as to each other with a coupling strength g12g_{12}. The static Hamiltonian can be written as (=1\hbar=1):

H0\displaystyle H_{0} =\displaystyle= i=1,2,cωiaiai+ηi2aiaiaiai\displaystyle\sum_{i=1,2,c}{\omega_{i}\,a_{i}^{\dagger}a_{i}+\frac{\eta_{i}}{2}\,a_{i}^{\dagger}a_{i}^{\dagger}a_{i}a_{i}} (1)
+\displaystyle+ ijgij(aiaj+aiaj),\displaystyle\sum_{i\neq j}{g_{ij}\left(a_{i}^{\dagger}a_{j}+a_{i}a_{j}^{\dagger}\right)},

where ωi\omega_{i} (i{1,2,c}i\in\{1,2,c\}) is the bare frequency of the qubits or coupler, ηi\eta_{i} is the anharmonicity of each mode, and aia_{i} (aia_{i}^{\dagger}) is the corresponding annihilation (creation) operator. In the dispersive limit, where gij|ωiωj|g_{ij}\ll\left|\omega_{i}-\omega_{j}\right|, we can conveniently diagonalize the Hamiltonian and truncate it to the relevant subspace:

H0\displaystyle H_{0} =\displaystyle= m,n=g,e|mnmn|(ωcmnacac+ηc2acacacac)\displaystyle\sum_{m,n=g,e}{\left|mn\right\rangle\left\langle mn\right|\otimes\left(\omega_{c}^{mn}a_{c}^{\dagger}a_{c}+\frac{\eta_{c}}{2}\,a_{c}^{\dagger}a_{c}^{\dagger}a_{c}a_{c}\right)} (2)
+\displaystyle+ χzzstatic|eeee||00|,\displaystyle\chi_{zz}^{\mathrm{static}}\,\left|ee\right\rangle\left\langle ee\right|\otimes\left|0\right\rangle\left\langle 0\right|,

which is expressed in the rotating frame of the qubits. For clarity, we use |g\left|g\right\rangle (|e\left|e\right\rangle) to denote the ground (excited) state of the qubits and |0\left|0\right\rangle, |1\left|1\right\rangle, |2\left|2\right\rangle… to denote the coupler state. ωcmn\omega_{c}^{mn} is the 0-1 transition frequency of the coupler with the two qubits in state |mn\left|mn\right\rangle. In general, the four values of ωcmn\omega_{c}^{mn} are different as illustrated in Fig. 1(b). We shall later exploit such inhomogeneity for ZZZZ cancellation. χzzstatic\chi_{zz}^{\mathrm{static}} is the residual ZZZZ coupling, which results from a finite effective coupling between the two qubits and causes unwanted ZZZZ interaction during idling periods. Detailed discussions about χzzstatic\chi_{zz}^{\mathrm{static}} can be found in Ref. Chu and Yan (2021).

Refer to caption
Figure 2: Tunable ZZZZ coupling χzz\chi_{zz}. (a) Pulse sequence to measure the ZZZZ coupling. During the two idling periods of duration τ\tau, a microwave pulse with a same length (including 300 ns rise and fall) and a variable amplitude Ωd\Omega_{d} is applied to the coupler for tuning ZZZZ coupling. (b) Measured Q2Q_{2} population as a function of τ\tau and Ωd\Omega_{d}. The fringe pattern indicates the accrued ZZZZ phase. (c) Extracted χzz\chi_{zz} (dots) from fitting oscillations in (b). The sign is deduced from theory. The “OFF” signs indicate where χzz=0\chi_{zz}=0. Solid line is from numerical simulation.

To eliminate χzzstatic\chi_{zz}^{\mathrm{static}} from the system, we apply a microwave drive Ωd2(aceiωdt+aceiωdt)\frac{\Omega_{d}}{2}\left(a_{c}^{\dagger}\textrm{e}^{-\textrm{i}\omega_{d}t}+a_{c}\textrm{e}^{\textrm{i}\omega_{d}t}\right) to the coupler, where ωd\omega_{d} is the drive frequency and Ωd\Omega_{d} is the drive amplitude or equivalent Rabi frequency. Such a drive near the coupler frequency induces the ac Stark effect, which causes an energy shift of each computational state |mn0\left|mn0\right\rangle according to

|δmn|=12(Δmn2+Ωd2|Δmn|),\displaystyle|\delta_{mn}|=\frac{1}{2}\left(\sqrt{\Delta_{mn}^{2}+\Omega_{d}^{2}}-|\Delta_{mn}|\right), (3)

where Δmn=ωdωcmn\Delta_{mn}=\omega_{d}-\omega_{c}^{mn} is the respective detuning. The sign of the shift δmn\delta_{mn} is the same as the sign of Δmn\Delta_{mn}. Given the proper choice of ωd\omega_{d} and Ωd\Omega_{d}, the residual ZZZZ term χzzstatic\chi_{zz}^{\mathrm{static}} can be offset by the combined Stark shifts,

χzzdrive\displaystyle\chi_{zz}^{\mathrm{drive}} =\displaystyle= δgg+δeeδgeδeg=χzzstatic,\displaystyle\delta_{gg}+\delta_{ee}-\delta_{ge}-\delta_{eg}=-\chi_{zz}^{\mathrm{static}}, (4)

giving zero net ZZZZ coupling.

Refer to caption
Figure 3: Verification of ZZZZ cancellation. (a) Sequence for measuring the two-qubit entangling phases and ZZZZ correlations. (b) State fidelity of the reconstructed density matrices as a function of the idling duration τ\tau with and without the ZZZZ cancellation drive, where error bars are the standard deviations from 14 repeated experiments. Insets are the real parts of the density matrices at τ=4.8μ\tau=4.8~{}\mus. (c-h) Expectation values (dots) of different observables including σ1z\left\langle\sigma_{1}^{z}\right\rangle (c, d), σ2z\left\langle\sigma_{2}^{z}\right\rangle (e, f), and Czz\left\langle C_{zz}\right\rangle (g, h) without (c, e, g) and with (d, f, h) the cancellation drive, measured from a simultaneous Ramsey experiment on both qubits. Solid lines are from numerical simulations.

In our experimental device, two fixed-frequency transmon qubits (ω1/2π=5.627\omega_{1}/2\pi=5.627 GHz and ω2/2π=4.353\omega_{2}/2\pi=4.353 GHz) couple to a common 3D cavity (ωc/2π=6.363\omega_{c}/2\pi=6.363 GHz, ηc/2π=123\eta_{c}/2\pi=-123 kHz), a nontunable coupler, with coupling strengths g1c/2π=119g_{1c}/2\pi=119 MHz and g2c/2π=228g_{2c}/2\pi=228 MHz, and also directly couple to each other with a direct coupling strength g12/2π=16g_{12}/2\pi=16 MHz. The resulting static or residual ZZZZ coupling is χzzstatic/2π=103\chi_{zz}^{\mathrm{static}}/2\pi=-103 kHz, which is highly consistent with the estimated one (101.3-101.3 kHz) Sup . The state-dependent coupler frequencies are ωcgg/2π=6.363\omega_{c}^{gg}/2\pi=6.363 GHz, ωceg=ωcgg+χ1\omega_{c}^{eg}=\omega_{c}^{gg}+\chi_{1}, ωcge=ωcgg+χ2\omega_{c}^{ge}=\omega_{c}^{gg}+\chi_{2}, and ωcee=ωcgg+χ1+χ2\omega_{c}^{ee}=\omega_{c}^{gg}+\chi_{1}+\chi_{2}, where χ1/2π=6.79\chi_{1}/2\pi=-6.79 MHz and χ2/2π=4.80\chi_{2}/2\pi=-4.80 MHz are the dispersive shifts between each qubit and the coupler (see Supplemental Material Sup for more details about the device parameters and experimental setup). For such a spectral configuration, it can be easily seen from Fig. 1(b) that choosing ωd\omega_{d} between ωcee\omega_{c}^{ee} and ωceg\omega_{c}^{eg} is the most efficient way to leverage the transition frequency inhomogeneity for creating a positive χzzdrive\chi_{zz}^{\mathrm{drive}} to offset χzzstatic\chi_{zz}^{\mathrm{static}}. Figure 1(c) plots the numerically simulated net ZZZZ coupling χzz\chi_{zz} as a function of the drive frequency and amplitude, in which the optimal choice for ZZZZ cancellation is identified (starred) according to the objective of keeping the drive as weak as possible relative to the detunings, i.e., Ωd|Δmn|\Omega_{d}\ll|\Delta_{mn}|, to avoid exciting the coupler.

To calibrate the cancellation drive, we follow the simulation result to fix ωd=(ωcee+ωceg)/2\omega_{d}=(\omega_{c}^{ee}+\omega_{c}^{eg})/2 and measure χzz\chi_{zz} as a function of Ωd\Omega_{d} using the pulse sequence depicted in Fig. 2(a). For the cancellation pulse, we use a relatively slow rise and fall (300 ns for each) in order to avoid adding significant excitation upon the thermal level (\sim1%) to the cavity (see Supplemental Material Sup for more details). The sequence performs a Ramsey-like experiment on the target qubit Q2Q_{2} but with additional π\pi pulses simultaneously applied to both qubits in the middle of the sequence Chow et al. (2013); Xiong et al. (2022). In this way, the final phase of Q2Q_{2} encodes the entangling ZZZZ phase accumulated during idling while the local ZZ phase is echoed away for both qubits. Figure 2(b) shows the measured Ramsey fringes as a function of the drive amplitude Ωd\Omega_{d}. The oscillation frequency is equivalent to the net ZZZZ coupling χzz\chi_{zz}. As the drive amplitude is increased from zero (either direction), the oscillation first slows down from χzzstatic\chi_{zz}^{\mathrm{static}} to be almost invisible and then comes back again, suggesting that χzz\chi_{zz} has been tuned continuously from negative to positive. The extracted χzz\chi_{zz} from the fit is shown in Fig. 2(c) and agrees well with prediction. The identified optimal drive amplitude Ωd/2π0.66\Omega_{d}/2\pi\approx 0.66 MHz (the coupling-OFF point) is adopted in the cancellation drive for subsequent experiments. Note that the flattened curve around the “OFF” bias, on the one hand, results from the inaccurate fitting of the Ramsey oscillation frequency near the zero ZZZZ region, and on the other hand, may be due to the breakdown of the perturbation approximation beyond the dispersive regime Ku et al. (2020); Ansari (2019).

To validate the cancellation, we first measure the entangling phase accrued when idling both qubits. By preparing the system in the product state (|gg+|ge+|eg+|ee)/2\left(\left|gg\right\rangle+\left|ge\right\rangle+\left|eg\right\rangle+\left|ee\right\rangle\right)/2, we perform the two-qubit state tomography after idling for a variable time τ\tau (Fig. 3(a)). The state fidelity of the measured density matrices at different τ\tau with and without the ZZZZ cancellation drive are compared in Fig. 3(b). For τ=4.8μ\tau=4.8\,\mus, the two-qubit entangling phase is near its maximum, which is χzzstaticτπ\chi_{zz}^{\mathrm{static}}\tau\approx\pi in the case of no cancellation. With the cancellation drive, such a conditional phase-flip error is corrected. The state fidelity with cancellation shows a smooth decay with idling duration, implying that the cancellation performance is stable. One set of calibrated parameters can be used for idling operation of variable length.

We also look into other relevant observables to verify the removal of two-qubit correlations by our cancellation drive. In a similar experiment as Fig. 3(a), we set a small detuning of 0.5-0.5 MHz (+0.1+0.1 MHz) to the microwave drives on qubit Q1Q_{1} (Q2Q_{2}) in order to render a fringe pattern. At a varying delay time τ\tau, we compute the ensemble average of single-qubit observables σ1z\left\langle\sigma_{1}^{z}\right\rangle and σ2z\left\langle\sigma_{2}^{z}\right\rangle, as well as their correlation Czz=σ1zσ2zσ1zσ2z\left\langle C_{zz}\right\rangle=\left\langle\sigma_{1}^{z}\sigma_{2}^{z}\right\rangle-\left\langle\sigma_{1}^{z}\right\rangle\left\langle\sigma_{2}^{z}\right\rangle. Without the cancellation drive, the Ramsey fringe exhibits a beating pattern as shown in Figs. 3(c, e), which results from the mixing of precession frequencies due to the presence of nonzero χzzstatic\chi_{zz}^{\mathrm{static}}. These beatings are, however, gone when the cancellation drive is applied (Figs. 3(d, f)), verifying complete ZZZZ removal. It can also be seen that the measured two-qubit ZZZZ correlation functions have been significantly suppressed with the cancellation drive (Figs. 3(g, h)). All data show good agreement with numerical simulation.

Finally, to benchmark the impact of residual ZZZZ interaction on the fidelity of a general quantum circuit with intermittent idling operations and the improvement we can gain from our cancellation protocol, we implement the simultaneous Clifford-based RB experiment with interleaved idling gates Barends et al. (2014). As shown in the inset of Fig. 4(a), the circuit performs simultaneous single-qubit RB with an idling gate of variable length τ\tau inserted in each Clifford cycle. Figure 4(a) shows an example of the measured sequence fidelity FF versus the number of Clifford cycles mm averaged over 80 randomizations for the case of τ=1.6μ\tau=1.6~{}\mus. Comparing the interleaved case with the reference case (τ=0\tau=0), we obtain the idling gate error rate ϵ=34(1pint/pref)\epsilon=\frac{3}{4}(1-p_{\mathrm{int}}/p_{\mathrm{ref}}), where pintp_{\mathrm{int}} and prefp_{\mathrm{ref}} are from fitting the corresponding fidelity decay curve to F=Apm+BF=Ap^{m}+B. Figure 4(b) compares the idling gate error rate with and without the cancellation drive at various idling gate durations τ\tau. It clearly shows significant error mitigation using the ZZZZ cancellation drive across the entire range of τ\tau up to 2.8μ2.8~{}\mus. In the case without cancellation, the gate error rate has a strong τ\tau-dependence, ϵ=τ/(7.6μs)\epsilon=\tau/(7.6\,\mu\mathrm{s}), which implies that, even without any active gate operation, the circuit fidelity can drop rapidly with extended idling periods. After adding the cancellation drive, the τ\tau-dependence is reduced by about 5 times to ϵ=τ/(39.7μs)\epsilon=\tau/(39.7\,\mu\mathrm{s}), which agrees with the coherence limit ϵ13(τ/T1Q1)+13(τ/T1Q2)\epsilon\approx\frac{1}{3}(\tau/T_{1}^{Q_{1}})+\frac{1}{3}(\tau/T_{1}^{Q_{2}}) O’Malley et al. (2015), with T1Q1T_{1}^{Q_{1}} and T1Q2T_{1}^{Q_{2}} the energy relaxation times of qubits Q1Q_{1} and Q2Q_{2}, respectively. Such a full-scale improvement demonstrates the effectiveness of our cancellation protocol which removes almost all errors caused by the residual ZZZZ interaction.

Refer to caption
Figure 4: Randomized benchmarking of the idling gate. (a) Sequence fidelity FF as a function of the number of Clifford cycles mm measured by the simultaneous single-qubit RB sequence with interleaved idling gates (inset). Error bars are the standard deviations from the mean estimated over 80 randomized realizations. (b) Idling gate error rate ϵ\epsilon as a function of the idling duration τ\tau, obtained from fitting the decay in (a). Error bars are the estimated 95% confidence intervals of the fitting. Linear fits to the data give the duration dependence of gate error ϵ=τ/(7.6μs)\epsilon=\tau/(7.6\,\mu\mathrm{s}) for the case without cancellation and ϵ=τ/(39.7μs)\epsilon=\tau/(39.7\,\mu\mathrm{s}) for the cases with cancellation. Dashed line is the estimated coherence limited error rate.

To summarize, we discuss the pros and cons of our method. First, our method is truly scalable given the one-to-one proportionality between the number of drives and number of connections. This is a clear advantage over previous methods based on directly driving the qubits. Second, the cancellation drive is noninvasive to the qubits because the drive frequency – near coupler frequency – is in a distinct band from the qubits. Third, the drive also causes negligible perturbation to the coupler state as it requires only a weak drive – in our demonstrated case, an equivalent Rabi frequency of 0.66 MHz – given a proper choice of drive parameters. Actually, adiabatic rising and falling edges as used in our pulse further prohibits excitation of the coupler. Fourth, our method is compatible with both nontunable and tunable couplers. Since the latter requires a local control line anyway, our method should not add any additional complexity in design. The cost of our method is the extra microwave drive that needs to be synthesized from room-temperature electronics. We believe, however, that our method will be useful in addressing unwanted ZZZZ crosstalk in scalable devices, complementing other methods such as dynamical decoupling.

Acknowledgements.
This work was supported by the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030326001), the Shenzhen Science and Technology Program (Grant No. RCYX20210706092103021), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010324), the National Natural Science Foundation of China (Grant No. 11904158), the Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grants No. JCYJ20170412152620376, No. KYTDPT20181011104202253), and Shenzhen-Hong Kong cooperation zone for technology and innovation (Contract NO. HZQB-KCZYB-2020050).

References

  • Yan et al. (2018) F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson,  and W. D. Oliver, “Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates,” Phys. Rev. Applied 10, 054062 (2018).
  • Arute et al. (2019) F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505 (2019).
  • Sundaresan et al. (2020) N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic,  and J. M. Gambetta, “Reducing Unitary and Spectator Errors in Cross Resonance with Optimized Rotary Echoes,” PRX Quantum 1, 020318 (2020).
  • Krinner et al. (2020) S. Krinner, S. Lazar, A. Remm, C. Andersen, N. Lacroix, G. Norris, C. Hellings, M. Gabureac, C. Eichler,  and A. Wallraff, “Benchmarking Coherent Errors in Controlled-Phase Gates due to Spectator Qubits,” Phys. Rev. Applied 14, 024042 (2020).
  • Cai et al. (2021) T.-Q. Cai, X.-Y. Han, Y.-K. Wu, Y.-L. Ma, J.-H. Wang, Z.-L. Wang, H.-Y. Zhang, H.-Y. Wang, Y.-P. Song,  and L.-M. Duan, “Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit,” Phys. Rev. Lett. 127, 060505 (2021).
  • Zajac et al. (2021) D. M. Zajac, J. Stehlik, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus, G. A. Keefe, A. Carniol, M. Kumph, M. Steffen,  and O. E. Dial, “Spectator Errors in Tunable Coupling Architectures,” arXiv: 2108.11221  (2021).
  • Postler et al. (2018) L. Postler, Á. Rivas, P. Schindler, A. Erhard, R. Stricker, D. Nigg, T. Monz, R. Blatt,  and M. Müller, “Experimental quantification of spatial correlations in quantum dynamics,” Quantum 2, 90 (2018).
  • von Lüpke et al. (2020) U. von Lüpke, F. Beaudoin, L. M. Norris, Y. Sung, R. Winik, J. Y. Qiu, M. Kjaergaard, D. Kim, J. Yoder, S. Gustavsson, L. Viola,  and W. D. Oliver, “Two-Qubit Spectroscopy of Spatiotemporally Correlated Quantum Noise in Superconducting Qubits,” PRX Quantum 1, 010305 (2020).
  • Barends et al. (2016) R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, et al., “Digitized adiabatic quantum computing with a superconducting circuit,” Nature 534, 222 (2016).
  • Kandala et al. (2019) A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow,  and J. M. Gambetta, “Error mitigation extends the computational reach of a noisy quantum processor,” Nature 567, 491 (2019).
  • Gong et al. (2019) M. Gong, M.-C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C.-Y. Lu, X. Zhu,  and J.-W. Pan, “Genuine 12-qubit entanglement on a superconducting quantum processor,” Phys. Rev. Lett. 122, 110501 (2019).
  • Karamlou et al. (2021) A. H. Karamlou, W. A. Simon, A. Katabarwa, T. L. Scholten, B. Peropadre,  and Y. Cao, “Analyzing the performance of variational quantum factoring on a superconducting quantum processor,” npj Quantum Inf. 7, 1 (2021).
  • Huang et al. (2020) C. Huang, X. Ni, F. Zhang, M. Newman, D. Ding, X. Gao, T. Wang, H.-H. Zhao, F. Wu, G. Zhang, C. Deng, H.-S. Ku, J. Chen,  and Y. Shi, “Alibaba Cloud Quantum Development Platform: Surface Code Simulations with Crosstalk,” arXiv: 2002.08918  (2020).
  • Bultink et al. (2020) C. C. Bultink, T. E. O’Brien, R. Vollmer, N. Muthusubramanian, M. W. Beekman, M. A. Rol, X. Fu, B. Tarasinski, V. Ostroukh, B. Varbanov, A. Bruno,  and L. DiCarlo, “Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements,” Sci. Adv. 6, eaay3050 (2020).
  • Andersen et al. (2020) C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler,  and A. Wallraff, “Repeated quantum error detection in a surface code,” Nat. Phys. 16, 875 (2020).
  • Chen et al. (2021) Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A. Dunsworth, et al., “Exponential suppression of bit or phase errors with cyclic error correction,” Nature 595, 383 (2021).
  • DiCarlo et al. (2009) L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin,  and R. J. Schoelkopf, “Demonstration of two-qubit algorithms with a superconducting quantum processor,” Nature 460, 240 (2009).
  • Collodo et al. (2020) M. C. Collodo, J. Herrmann, N. Lacroix, C. K. Andersen, A. Remm, S. Lazar, J.-C. Besse, T. Walter, A. Wallraff,  and C. Eichler, “Implementation of Conditional Phase Gates Based on Tunable ZZZZ Interactions,” Phys. Rev. Lett. 125, 240502 (2020).
  • Xu et al. (2020) Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, F. Yan,  and D. Yu, “High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits,” Phys. Rev. Lett. 125, 240503 (2020).
  • Zhao et al. (2020) P. Zhao, P. Xu, D. Lan, J. Chu, X. Tan, H. Yu,  and Y. Yu, “High-Contrast ZZZZ Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity,” Phys. Rev. Lett. 125, 200503 (2020).
  • Ku et al. (2020) J. Ku, X. Xu, M. Brink, D. C. McKay, J. B. Hertzberg, M. H. Ansari,  and B. L. T. Plourde, “Suppression of Unwanted ZZZZ Interactions in a Hybrid Two-Qubit System,” Phys. Rev. Lett. 125, 200504 (2020).
  • Xu and Ansari (2021) X. Xu and M. Ansari, “zzzz freedom in two-qubit gates,” Phys. Rev. Applied 15, 064074 (2021).
  • Mundada et al. (2019) P. Mundada, G. Zhang, T. Hazard,  and A. Houck, “Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit,” Phys. Rev. Applied 12, 054023 (2019).
  • Li et al. (2020) X. Li, T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J. Han, Z. Hua, X. Han, Y. Wu, H. Zhang, H. Wang, Y. Song, L. Duan,  and L. Sun, “Tunable Coupler for Realizing a Controlled-Phase Gate with Dynamically Decoupled Regime in a Superconducting Circuit,” Phys. Rev. Applied 14, 024070 (2020).
  • Kandala et al. (2021) A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe, D. Klaus, O. Dial,  and D. C. McKay, “Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZZZ Suppression,” Phys. Rev. Lett. 127, 130501 (2021).
  • Zhao et al. (2021) P. Zhao, D. Lan, P. Xu, G. Xue, M. Blank, X. Tan, H. Yu,  and Y. Yu, “Suppression of Static ZZZZ Interaction in an All-Transmon Quantum Processor,” Phys. Rev. Applied 16, 024037 (2021).
  • Sete et al. (2021) E. A. Sete, N. Didier, A. Q. Chen, S. Kulshreshtha, R. Manenti,  and S. Poletto, “Parametric-Resonance Entangling Gates with a Tunable Coupler,” Phys. Rev. Applied 16, 024050 (2021).
  • Stehlik et al. (2021) J. Stehlik, D. M. Zajac, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus, G. A. Keefe, A. Carniol, M. Kumph, M. Steffen,  and O. E. Dial, “Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits,” Phys. Rev. Lett. 127, 080505 (2021).
  • Xu and Ansari (2022) X. Xu and M. H. Ansari, “Parasitic-free gate: A protected switch between idle and entangled states,” arXiv: 2202.05208  (2022).
  • Jurcevic et al. (2021) P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Sci. Technol. 6, 025020 (2021).
  • Tripathi et al. (2021) V. Tripathi, H. Chen, M. Khezri, K.-W. Yip, E. M. Levenson-Falk,  and D. A. Lidar, “Suppression of crosstalk in superconducting qubits using dynamical decoupling,” arXiv: 2108.04530  (2021).
  • Noguchi et al. (2020) A. Noguchi, A. Osada, S. Masuda, S. Kono, K. Heya, S. P. Wolski, H. Takahashi, T. Sugiyama, D. Lachance-Quirion,  and Y. Nakamura, “Fast parametric two-qubit gates with suppressed residual interaction using the second-order nonlinearity of a cubic transmon,” Phys. Rev. A 102, 062408 (2020).
  • Mitchell et al. (2021) B. K. Mitchell, R. K. Naik, A. Morvan, A. Hashim, J. M. Kreikebaum, B. Marinelli, W. Lavrijsen, K. Nowrouzi, D. I. Santiago,  and I. Siddiqi, “Hardware-Efficient Microwave-Activated Tunable Coupling between Superconducting Qubits,” Phys. Rev. Lett. 127, 200502 (2021).
  • Wei et al. (2021) K. X. Wei, E. Magesan, I. Lauer, S. Srinivasan, D. F. Bogorin, S. Carnevale, G. A. Keefe, Y. Kim, D. Klaus, W. Landers, N. Sundaresan, C. Wang, E. J. Zhang, M. Steffen, O. E. Dial, D. C. McKay,  and A. Kandala, “Quantum crosstalk cancellation for fast entangling gates and improved multi-qubit performance,” arXiv: 2106.00675  (2021).
  • Xiong et al. (2022) H. Xiong, Q. Ficheux, A. Somoroff, L. B. Nguyen, E. Dogan, D. Rosenstock, C. Wang, K. N. Nesterov, M. G. Vavilov,  and V. E. Manucharyan, “Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts,” Phys. Rev. Research 4, 023040 (2022).
  • Chu and Yan (2021) J. Chu and F. Yan, “Coupler-assisted controlled-phase gate with enhanced adiabaticity,” Phys. Rev. Applied 16, 054020 (2021).
  • (37) See Supplemental Material [url] for a detailed description of the experimental devices and setup, theoretical calculation of the ZZZZ cancellation, measurement of the ZZZZ coupling, entangling phases, and ZZZZ correlations, randomized benchmarking, error analysis, and scalability of the ZZZZ cancellation method, which includes Refs. Xu et al. (2020); Li et al. (2021); Paik et al. (2011); Rigetti et al. (2012); Nigg et al. (2012); Koch et al. (2007); Chu and Yan (2021); Paik et al. (2016); Ma et al. (2020); Nielsen and Chuang (2000); James et al. (2001); McKay et al. (2017); O’Malley et al. (2015)  .
  • Xu et al. (2020) Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. P. Song, Z.-B. Yang, S.-B. Zheng,  and L. Sun, “Demonstration of controlled-phase gates between two error-correctable photonic qubits,” Phys. Rev. Lett. 124, 120501 (2020).
  • Li et al. (2021) S. Li, B.-J. Liu, Z. Ni, L. Zhang, Z.-Y. Xue, J. Li, F. Yan, Y. Chen, S. Liu, M.-H. Yung, Y. Xu,  and D. Yu, “Superrobust geometric control of a superconducting circuit,” Phys. Rev. Applied 16, 064003 (2021).
  • Paik et al. (2011) H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, et al., “Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture,” Phys. Rev. Lett. 107, 240501 (2011).
  • Rigetti et al. (2012) C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D. Córcoles, J. A. Smolin, S. T. Merkel, J. R. Rozen, G. A. Keefe, et al., “Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms,” Phys. Rev. B 86, 100506 (2012).
  • Nigg et al. (2012) S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H. Devoret, R. J. Schoelkopf,  and S. M. Girvin, “Black-box superconducting circuit quantization,” Phys. Rev. Lett. 108, 240502 (2012).
  • Koch et al. (2007) J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,  and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76, 042319 (2007).
  • Paik et al. (2016) H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, et al., “Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System,” Phys. Rev. Lett. 117, 250502 (2016).
  • Ma et al. (2020) Y. Ma, Y. Xu, X. Mu, W. Cai, L. Hu, W. Wang, X. Pan, H. Wang, Y. P. Song, C.-L. Zou,  and L. Sun, “Error-transparent operations on a logical qubit protected by quantum error correction,” Nat. Phys. 16, 827 (2020).
  • Nielsen and Chuang (2000) M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  • James et al. (2001) D. F. V. James, P. G. Kwiat, W. J. Munro,  and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
  • McKay et al. (2017) D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow,  and J. M. Gambetta, “Efficient ZZ gates for quantum computing,” Phys. Rev. A 96, 022330 (2017).
  • O’Malley et al. (2015) P. J. J. O’Malley, J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jeffrey, A. Megrant, J. Mutus, C. Neill, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Korotkov, A. N. Cleland,  and J. M. Martinis, “Qubit Metrology of Ultralow Phase Noise Using Randomized Benchmarking,” Phys. Rev. Applied 3, 044009 (2015).
  • Chow et al. (2013) J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C. Rigetti,  and M. Steffen, “Microwave-activated conditional-phase gate for superconducting qubits,” New J. Phys. 15, 115012 (2013).
  • Ansari (2019) M. H. Ansari, “Superconducting qubits beyond the dispersive regime,” Phys. Rev. B 100, 024509 (2019).
  • Barends et al. (2014) R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al., “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508, 500 (2014).