This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Saturation for Flagged Skew
Littlewood-Richardson coefficients

Siddheswar Kundu The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India [email protected] K.N. Raghavan The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India [email protected] V. Sathish Kumar The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India [email protected]  and  Sankaran Viswanath The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India [email protected]
Abstract.

We define and study a generalization of the Littlewood-Richardson (LR) coefficients, which we call the flagged skew LR coefficients. These subsume several previously studied extensions of the LR coefficients. We establish the saturation property for these coefficients, generalizing work of Knutson-Tao and Kushwaha-Raghavan-Viswanath.

Key words and phrases:
Skew Hives, Skew GT Patterns, Saturation, Flagged Littlewood-Richardson Coefficients, Crystals
Mathematics Subject Classification:
05E05 (05E16)
The authors acknowledge partial funding from a DAE Apex Project grant to the Institute of Mathematical Sciences, Chennai.

1. Introduction

The Littlewood-Richardson (LR) coefficients are among the most celebrated numbers in algebraic combinatorics. They are the multiplicities in the decomposition into irreducibles of tensor products of irreducible polynomial representations of general linear groups. As such, they are the structure constants for the multiplication of Schur polynomials (which form a basis for the ring of symmetric polynomials). These coefficients also determine the branching of irreducible representations of symmetric groups on restriction to Young subgroups. They also come up in several other places. For example, they occur as structure constants for the multiplication of Schubert cohomology classes of Grassmanians.

Several generalizations of these coefficients can be found in the literature: e.g., [Zel81], [RS95], [KRV21]. Our broader goal is to investigate, for some of these generalizations, the analogue of the saturation theorem of Knutson-Tao for the LR coefficients. In this paper, we consider a simultaneous generalization of Zelevinsky’s skew LR coefficients [Zel81] and the flagged LR coefficients of [KRV21]. We prove that these flagged skew LR coefficients exhibit the saturation property.

In order to do this, we need to lift the main key-positivity result of [RS95] to crystals; we do this using a recent result of Assaf [ADG22]. We also give a hive-like model for the flagged skew LR coefficients. Although a skew Gelfand-Tsetlin (GT) polytope need not be isomorphic to a GT polytope, it turns out that every flagged skew hive polytope is isomorphic to some flagged hive polytope.

2. Preliminaries and Statements of Main Theorems

A partition λ=(λ1,λ2,)\lambda=(\lambda_{1},\lambda_{2},\cdots) is a weakly decreasing sequence of non-negative integers with finitely many non-zero terms (or parts). The length of the partition λ\lambda is defined to be the largest integer ii such that λi\lambda_{i} is non-zero and we denote it by l(λ)l(\lambda). The weight of λ\lambda is the sum of its parts and we denote it by |λ||\lambda|. We denote by 𝒫[n]\mathcal{P}[n] the set of all partitions of length at most nn. The Young diagram of the partition λ\lambda is the left and top justified collection of boxes such that row ii contains λi\lambda_{i} boxes. We denote it again by λ\lambda. For Young diagrams λ\lambda and μ\mu such that λμ\lambda\supset\mu (i.e., λiμi i\lambda_{i}\geq\mu_{i}\text{ }\forall i), the skew diagram λ/μ\lambda/\mu is obtained by removing the boxes of μ\mu from those of λ\lambda.

44113322331122
Figure 1. A skew tableau of shape (4,3,2,1)/(2,1)(4,3,2,1)/(2,1), weight (2,2,2,1)(2,2,2,1) and reverse-row reading word 2132314.

Given partitions λμ\lambda\supset\mu, a semi-standard skew tableau of shape λ/μ\lambda/\mu is a filling of the skew diagram λ/μ\lambda/\mu that is weakly increasing along the rows (from left to right) and strictly increasing along the columns (from top to bottom). A semi-standard tableau of shape λ\lambda is just a semi-standard skew tableau of shape λ/empty\lambda/\text{empty} . We denote by Tab(λ/μ)\operatorname{Tab}(\lambda/\mu) the set of all semi-standard skew tableaux of shape λ/μ\lambda/\mu and Tab(λ/μ,n)\operatorname{Tab}(\lambda/\mu,n) the subset of Tab(λ/μ)\operatorname{Tab}(\lambda/\mu) where the fillings are all n\leq n. It will be convenient to let Tab(λ/μ)\operatorname{Tab}(\lambda/\mu) be the empty set if λ,μ\lambda,\mu are partitions with λμ\lambda\not\supset\mu. The weight of a tableau TTab(λ/μ,n)T\in\operatorname{Tab}(\lambda/\mu,n) is defined as wt(T)=(t1,t2,,tn)wt(T)=(t_{1},t_{2},\cdots,t_{n}), where tit_{i} is the number of times ii occurs in TT. A standard (skew)(\text{skew}) tableau TT is a semi-standard (skew)(\text{skew}) tableau of the same shape in which 1,2,,k1,2,\cdots,k appears exactly once, where kk is the number of boxes in TT. For TTab(λ/μ)T\in\operatorname{Tab}(\lambda/\mu), we write bTb_{T} to denote the reverse-row reading word of TT which is the word obtained by reading TT right to left and from top to bottom.

Fix nn a positive integer. A flag Φ\Phi = (Φ1,Φ2,,Φn)(\Phi_{1},\Phi_{2},\cdots,\Phi_{n}) is a weakly increasing sequence of positive integers such that111In the literature, a flag need not have Φn=n\Phi_{n}=n, but for our purposes it is sufficient to consider only such flags. Φn=n\Phi_{n}=n. For λ,μ𝒫[n]\lambda,\mu\in\mathcal{P}[n] and flag Φ\Phi = (Φ1,Φ2,,Φn)(\Phi_{1},\Phi_{2},\cdots,\Phi_{n}), Tab(λ/μ,Φ)\operatorname{Tab}(\lambda/\mu,\Phi) is the set of all elements TT in Tab(λ/μ)\operatorname{Tab}(\lambda/\mu) such that the entries in row ii of TT are at most Φi\Phi_{i} for 1in1\leq i\leq n. Following Reiner-Shimozono [RS95], we define the flagged skew Schur polynomial

sλ/μ(XΦ)=T𝐱wt(T)s_{\lambda/\mu}(X_{\Phi})=\sum_{T}\mathbf{x}^{wt(T)}

where TT varies over Tab(λ/μ,Φ)\operatorname{Tab}(\lambda/\mu,\Phi) and for t=(t1,t2,,tn)+nt=(t_{1},t_{2},\cdots,t_{n})\in\mathbb{Z}^{n}_{+}, 𝐱t\mathbf{x}^{t} denotes the monomial x1t1x2t2xntnx_{1}^{t_{1}}x_{2}^{t_{2}}\cdots x_{n}^{t_{n}}. When Φ=(n,n,,n)\Phi=(n,n,\cdots,n), these reduce to the skew Schur polynomials sλ/μ(x1,x2,,xn)s_{\lambda/\mu}(x_{1},x_{2},\cdots,x_{n}). When μ\mu is the empty partition, they become the flagged Schur polynomials sλ(XΦ)s_{\lambda}(X_{\Phi}), which coincide with key polynomials corresponding to 312312-avoiding permutations [PS09, theorem 14.1]. The flagged skew Schur polynomials sλ/μ(XΦ)s_{\lambda/\mu}(X_{\Phi}) also have a representation theoretic interpretation as characters of certain Borel modules called flagged Schur modules [RS98].

For 1in11\leq i\leq n-1, define the Demazure operator TiT_{i} on the ring of polynomials in the variables x1,x2,xnx_{1},x_{2}\cdots,x_{n} as follows:

(Tif)(x1,x2,xn)=xif(x1,x2,,xn)xi+1f(x1,,xi1,xi+1,xi,xi+2,,xn)xixi+1(T_{i}f)(x_{1},x_{2}\cdots,x_{n})=\frac{x_{i}\,f(x_{1},x_{2},\cdots,x_{n})-x_{i+1}\,f(x_{1},\cdots,x_{i-1},x_{i+1},x_{i},x_{i+2},\cdots,x_{n})}{x_{i}-x_{i+1}}

For w𝔖nw\in\mathfrak{S}_{n} (the symmetric group), we define

Tw=Ti1Ti2TikT_{w}=T_{i_{1}}T_{i_{2}}\cdots T_{i_{k}}

where si1si2siks_{i_{1}}s_{i_{2}}\cdots s_{i_{k}} is a reduced expression for ww. This is well-defined because the TiT_{i}’s satisfy the braid relations.

For α+n\alpha\in\mathbb{Z}^{n}_{+}, let α\alpha^{\dagger} be the partition obtained by sorting the parts of α\alpha in descending order and let ω𝔖n\omega\in\mathfrak{S}_{n} be any permutation such that ωα=α\omega\alpha^{\dagger}=\alpha (here, the action of ω\omega is the usual left action of 𝔖n\mathfrak{S}_{n} on nn-tuples). We recall that the key polynomial α\alpha is defined to be α=Tω(𝐱α){\alpha}=T_{\omega}(\mathbf{x}^{\alpha^{\dagger}}), and that this is independent of the choice of ω\omega. A polynomial ff is said to be key-positive if it is a sum of key polynomials. If ff is key-positive, then 𝐱λf\mathbf{x}^{\lambda}\,f and Tw(f)T_{w}(f) are also key-positive, for all λ𝒫[n]\lambda\in\mathcal{P}[n] and all w𝔖𝔫w\in\mathfrak{S_{n}}. The former follows from a theorem of Joseph [Jos03] and the latter from the fact that a composition of Demazure operators is itself a Demazure operator. Reiner-Shimozono [RS95, Theorem 20] showed that the flagged skew Schur polynomial sλ/μ(XΦ)s_{\lambda/\mu}(X_{\Phi}) is key-positive.

Now, if w0w_{0} denotes the longest element of 𝔖n\mathfrak{S}_{n}, we have

Tw0(α)=sα(x1,x2,,xn),T_{w_{0}}({\alpha})=s_{\alpha^{\dagger}}(x_{1},x_{2},\cdots,x_{n}), (1)

the Schur polynomial indexed by α{\alpha^{\dagger}}. More generally, (since the key polynomials form a \mathbb{Z}-basis of the polynomial ring in nn variables [RS95, corollary 7]) given any polynomial f=f(x1,x2,,xn)f=f(x_{1},x_{2},\cdots,x_{n}), we have that Tw0(f)T_{w_{0}}(f) is a symmetric polynomial, which can therefore be expanded in the basis of Schur polynomials. If further ff is key-positive, then equation (1) shows that Tw0(f)T_{w_{0}}(f) is Schur-positive, i.e., a sum of Schur polynomials. This leads us to the main objects of our study.

Definition 1.

For λ,μ,γ𝒫[n]\lambda,\mu,\gamma\in\mathcal{P}[n] and flag Φ=(Φ1,,Φn)\Phi=(\Phi_{1},\cdots,\Phi_{n}), let

Tw0(𝐱λsμ/γ(XΦ))=ν𝒫[n]cλ,μ/γν(Φ)sν(x1,x2,,xn)T_{w_{0}}(\mathbf{x}^{\lambda}\,s_{\mu/\gamma}(X_{\Phi}))=\sum_{\nu\in\mathcal{P}[n]}c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)\hskip 5.69046pts_{\nu}(x_{1},x_{2},\cdots,x_{n}) (2)

We call the coefficients cλ,μ/γν(Φ)c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi) as the flagged skew Littlewood-Richardson coefficients.

By the remarks preceding equation (1), it follows that the LHS of (2) is Schur positive, and thus the flagged skew Littlewood-Richardson coefficients are non-negative integers. It is clear by definition that these coefficients are zero if μγ\mu\not\supset\gamma. It will follow from Theorem 1 below that they are also zero if νλ\nu\not\supset\lambda.

These coefficients subsume many other extensions of the Littlewood-Richardson coefficients. When Φ=(n,n,,n)\Phi=(n,n,\cdots,n), these become Zelevinsky’s extension [Zel81] of the Littlewood-Richardson coefficients cλ,μ/γνc_{\lambda,\,\mu/\gamma}^{\,\nu} defined by sλ(x)sμ/γ(x)=ν𝒫[n]cλ,μ/γνsν(x)s_{\lambda}(\textbf{x})\,s_{\mu/\gamma}(\textbf{x})=\sum_{\nu\in\mathcal{P}[n]}c_{\lambda,\,\mu/\gamma}^{\,\nu}\,s_{\nu}(\textbf{x}). These in turn reduce to the usual Littlewood-Richardson coefficients when we further take γ=(0,0,,0)\gamma=(0,0,\cdots,0).

On the other hand, if we take γ=(0,0,,0)\gamma=(0,0,\cdots,0) but let Φ\Phi remain arbitrary, we get the w-refined Littlewood-Richardson coefficients of [KRV21] for 312-avoiding permutations ww.

If we set λ=(0,,0)\lambda=(0,\dots,0), we have cλ,μ/γν(Φ)=αcαμ/γ,Φc_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)=\sum_{\,\alpha}c^{\,\mu/\gamma,\Phi}_{\,\alpha} where the sum runs over all compositions α\alpha that are obtained by permuting the parts of ν\nu. The coefficients on the right are the ones which appear in the flagged Littlewood-Richardson expansion of [RS95, section 7].

Our first result provides two combinatorial models for flagged skew LR coefficients (see §3, 4 for undefined terms) that generalize those for LR coefficients:

Theorem 1.

Let Φ=(Φ1,Φ2,,Φn)\Phi=(\Phi_{1},\Phi_{2},\cdots,\Phi_{n}) be a flag and λ,μ,ν,γ𝒫[n]\lambda,\mu,\nu,\gamma\in\mathcal{P}[n]. Then,

  1. (1)

    cλ,μ/γν(Φ)c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi) is the cardinality of the set of all λ\lambda-dominant tableaux in Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi) of weight νλ\nu-\lambda.

  2. (2)

    cλ,μ/γν(Φ)c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi) is the number of the integral points of the flagged skew hive polytope SHive(λ,μ,γ,ν,Φ)\operatorname{SHive}(\lambda,\mu,\gamma,\nu,\Phi).

Our proof of Theorem 1 hinges on understanding the crystal structure on the set of flagged skew tableaux Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi). We show in particular that this set is a disjoint union of Demazure crystals; this lifts the key-positivity result of Reiner-Shimozono [RS95, Theorem 20] from the level of characters to that of crystals.

The main theorem of this paper is the following saturation property of the flagged skew LR coefficients:

Theorem 2.

Let Φ\Phi be a flag and λ,μ,ν,γ𝒫[n]\lambda,\mu,\nu,\gamma\in\mathcal{P}[n]. Then,

ckλ,kμ/kγkν(Φ)>0 for some k1cλ,μ/γν(Φ)>0c_{k\lambda,\,k\mu/k\gamma}^{\,k\nu}(\Phi)>0\text{ for some }k\geq 1\implies c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)>0

We remark that, as in the classical LR case, the stronger converse statement holds. Scaling λ,μ,γ,ν\lambda,\mu,\gamma,\nu by kk also dilates the polytope SHive(λ,μ,γ,ν,Φ)\operatorname{SHive}(\lambda,\mu,\gamma,\nu,\Phi) by the factor kk. Thus, cλ,μ/γν(Φ)>0c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)>0 implies that ckλ,kμ/kγkν(Φ)>0c_{k\lambda,\,k\mu/k\gamma}^{\,k\nu}(\Phi)>0 for every k1k\geq 1, by Theorem 1.

To prove Theorem 2, we construct an affine linear isomorphism between SHive(λ,μ,γ,ν)\operatorname{SHive}(\lambda,\mu,\gamma,\nu) and a certain hive polytope, which preserves flags and integral points. Then we deduce theorem 2 from the corresponding theorem for hive polytopes [KRV21, Theorem 1.4].

3. The crystal Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi)

The purpose of this section is to prove that the subset Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi) of the type An1A_{n-1} crystal
Tab(μ/γ,n)\operatorname{Tab}(\mu/\gamma,n) is a disjoint union of Demazure crystals. This is the key step in proving the first part of theorem 1 which we will see at the end of this section.

By a crystal of type An1A_{n-1} (see section 2.2 of [BS17]), we mean a finite and non-empty set \mathcal{B} together with maps

ei,fi:{0}e_{i},f_{i}:\mathcal{B}\rightarrow\mathcal{B}\sqcup\{0\}
wt:nwt:\mathcal{B}\rightarrow\mathbb{Z}^{n}

where i{1,2,,n1}i\in\{1,2,\cdots,n-1\} and 00\not\in\mathcal{B} is an auxiliary element, satisfying the following conditions:

  1. (1)

    If x,yx,y\in\mathcal{B} then ei(x)=ye_{i}(x)=y if and only if fi(y)=xf_{i}(y)=x. In this case it is assumed that

    wt(y)=wt(x)+(ϵiϵi+1)wt(y)=wt(x)+(\epsilon_{i}-\epsilon_{i+1})

    where ϵ1,ϵ2,,ϵn\epsilon_{1},\epsilon_{2},\cdots,\epsilon_{n} are the standard orthonormal vectors in n\mathbb{R}^{n}.

  2. (2)

    For all xx\in\mathcal{B} and i{1,2,,n1}i\in\{1,2,\cdots,n-1\} we require that

    ϕi(x)=wt(x)(ϵiϵi+1)+εi(x)\phi_{i}(x)=wt(x)\cdot(\epsilon_{i}-\epsilon_{i+1})+\varepsilon_{i}(x)

    where εi(x)\varepsilon_{i}(x) (resp. ϕi(y)\phi_{i}(y)) is the maximum number of times eie_{i} (resp. fif_{i}) can be applied to xx (resp. yy) without making it 0.

The maps eie_{i} and fif_{i} are called the raising and lowering operators respectively.

Example: The Standard type An1A_{n-1} crystal is 𝔹={1,2,,n}\mathbb{B}=\{1,2,\cdots,n\} where

fk(l)={k+1ifl=k0otherwisef_{k}(l)=\left\{\begin{array}[]{ll}k+1&\quad\text{if}\quad l=k\\ 0&\quad\text{otherwise}\end{array}\right.

Also, wt(i)=ϵinwt(i)=\epsilon_{i}\in\mathbb{Z}^{n}. This crystal can be depicted by the following “crystal graph”:

1122n1n-1nn

The crystal graph associated to a type An1A_{n-1} crystal 𝒞\mathcal{C} is an edge-coloured (the colours being 1,2,n11,2,\cdots n-1) directed graph whose vertex set is the underlying set of the crystal. An edge with colour kk originates from x𝒞x\in\mathcal{C} and terminates at y𝒞y\in\mathcal{C} if and only if fk(x)=yf_{k}(x)=y. We say a crystal is connected if its crystal graph is connected (viewed as an undirected graph).

A subset 𝒞\mathcal{C}^{\prime} of a crystal 𝒞\mathcal{C} which is a union of connected components of 𝒞\mathcal{C} inherits a crystal structure from that of 𝒞\mathcal{C}. In this case, we call 𝒞\mathcal{C}^{\prime} a full-subcrystal of 𝒞\mathcal{C}.

3.1. Tensor Product of Crystals

 If \mathcal{B} and 𝒞\mathcal{C} are type An1A_{n-1} crystals, there is a natural notion of the tensor product crystal 𝒞\mathcal{B}\otimes\mathcal{C}. As a set it is {xy:x,y𝒞}\{x\otimes y:x\in\mathcal{B},y\in\mathcal{C}\} (where xyx\otimes y is just a symbol). We define wt(xy)wt(x\otimes y) to be wt(x)+wt(y)wt(x)+wt(y). The raising and lowering operators are defined as follows:

ei(xy)={ei(x)yifεi(y)ϕi(x)xei(y)ifεi(y)>ϕi(x)e_{i}(x\otimes y)=\left\{\begin{array}[]{ll}e_{i}(x)\otimes y&\quad\text{if}\quad\varepsilon_{i}(y)\leq\phi_{i}(x)\\ x\otimes e_{i}(y)&\quad\text{if}\quad\varepsilon_{i}(y)>\phi_{i}(x)\end{array}\right. (3)

and

fi(xy)={fi(x)yifεi(y)<ϕi(x)xfi(y)ifεi(y)ϕi(x)f_{i}(x\otimes y)=\left\{\begin{array}[]{ll}f_{i}(x)\otimes y&\quad\text{if}\quad\varepsilon_{i}(y)<\phi_{i}(x)\\ x\otimes f_{i}(y)&\quad\text{if}\quad\varepsilon_{i}(y)\geq\phi_{i}(x)\end{array}\right. (4)

It is understood that x0=0y=0x\otimes 0=0\otimes y=0.

We define the character of a crystal 𝒞\mathcal{C} to be ch(𝒞):=u𝒞𝐱wt(u)ch(\mathcal{C}):=\sum_{u\in\mathcal{C}}{\mathbf{x}}^{wt(u)}. From the definition of the tensor product crystal, it is elementary to observe that the character of the tensor product is equal to the product of the characters. The tensor product is associative222The convention for tensor products in [BS17] differs from the widely-used convention (that is also employed in this paper). - see [BS17, §2.3 and remark 1.1].

The set 𝔹k\mathbb{B}^{\otimes k} is usually called the crystal of words (of length kk). An element ζ\zeta of 𝔹k\mathbb{B}^{\otimes k} is said to be a dominant word if eiζ=0e_{i}\zeta=0 for all ii.

Remark 1.

Let λ,μ𝒫[n]\lambda,\mu\in\mathcal{P}[n] such that |λ||μ|=k|\lambda|-|\mu|=k. Then Tab(λ/μ,n)\operatorname{Tab}(\lambda/\mu,n) is given the structure of a type An1A_{n-1} crystal by the following embedding into 𝔹k\mathbb{B}^{\otimes k} (where bTb_{T} is the reverse-row reading word of TT, defined in §2):

TbT=w1w2wkw1w2wkT\mapsto b_{T}=w_{1}w_{2}\cdots w_{k}\mapsto w_{1}\otimes w_{2}\otimes\cdots\otimes w_{k}

The image under this embedding is a full-subcrystal of 𝔹k\mathbb{B}^{\otimes k} (see  [BS17, Section 3.1]).

3.2. Demazure Crystals

Let λ𝒫[n]\lambda\in\mathcal{P}[n] and ω\omega a permutation in the symmetric group 𝔖n\mathfrak{S}_{n}. For any reduced expression si1si2sips_{i_{1}}s_{i_{2}}\cdots s_{i_{p}} of ω\omega, the Demazure crystal ω(λ)\mathcal{B}_{\omega}(\lambda) is defined by:

ω(λ):={fi1k1fi2k2fipkrTλ0:kj0}{0}Tab(λ,n)\mathcal{B}_{\omega}(\lambda):=\{f_{i_{1}}^{k_{1}}f_{i_{2}}^{k_{2}}\cdots f_{i_{p}}^{k_{r}}T_{\lambda}^{0}:k_{j}\geq 0\}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\setminus\{0\}}\subset\operatorname{Tab}(\lambda,n) (5)

where Tλ0T_{\lambda}^{0} is the unique dominant tableau of shape λ\lambda (i.e., with shape and weight both equal to λ\lambda).

Remark 2.

For any ω𝔖n\omega\in\mathfrak{S}_{n} and λ𝒫[n]\lambda\in\mathcal{P}[n], Tλ0T_{\lambda}^{0} is the unique element in ω(λ)\mathcal{B}_{\omega}(\lambda) such that ei(Tλ0)=0e_{i}(T_{\lambda}^{0})=0 for all ii. In (5) above, we could replace Tλ0T_{\lambda}^{0} with any other dominant word bλ𝔹|λ|b_{\lambda}\in\mathbb{B}^{\otimes|\lambda|} of weight λ\lambda. We thereby obtain a subset of 𝔹|λ|\mathbb{B}^{\otimes|\lambda|}:

ω(bλ):={fi1k1fi2k2fipkrbλ:kj0}{0}\mathcal{B}_{\omega}(b_{\lambda}):=\{f_{i_{1}}^{k_{1}}f_{i_{2}}^{k_{2}}\cdots f_{i_{p}}^{k_{r}}b_{\lambda}:k_{j}\geq 0\}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\setminus\{0\}}

which is isomorphic to ω(λ)\mathcal{B}_{\omega}(\lambda) as crystals, i.e., there is a weight-preserving bijection between these sets which intertwines the crystal raising and lowering operators (where defined). We also refer to ω(bλ)\mathcal{B}_{\omega}(b_{\lambda}) as a Demazure crystal in what follows, and write (by abuse of notation) ω(λ)\mathcal{B}_{\omega}(\lambda) in place of ω(bλ)\mathcal{B}_{\omega}(b_{\lambda}).

The following proposition is the refined Demazure character formula in [Kas93].

Proposition 1.

Let λ𝒫[n]\lambda\in\mathcal{P}[n] and ω𝔖n\omega\in\mathfrak{S}_{n}. Then, ch(ω(λ))=ωλch(\mathcal{B}_{\omega}(\lambda))={\omega\lambda}.

Examples:

  • ω0(λ)=Tab(λ,n)\mathcal{B}_{\omega_{0}}(\lambda)=\operatorname{Tab}(\lambda,n). This crystal is denoted as B(λ)B(\lambda) in the literature.

  • sk1s2s1((1))\mathcal{B}_{s_{k-1}\cdots s_{2}s_{1}}((1)) = Tab((1),k)Tab((1),n)\operatorname{Tab}((1),k)\subset\operatorname{Tab}((1),n) for 1kn1\leq k\leq n. We will denote this Demazure crystal by 𝔹k\mathbb{B}_{k}.

A subset 𝒮\mathcal{S} of a crystal 𝒞\mathcal{C} is said to have the string property if i{1,2,,n1}\forall i\in\{1,2,\cdots,n-1\} and x𝒮\forall x\in\mathcal{S} such that ei(x)0e_{i}(x)\neq 0, we have

  1. (1)

    ei(x)𝒮,e_{i}(x)\in\mathcal{S},

  2. (2)

    fi(x)0f_{i}(x)\neq 0 implies fi(x)𝒮f_{i}(x)\in\mathcal{S}

Proposition 2.

[Kas93, Proposition 3.3.5] For any λ𝒫[n]\lambda\in\mathcal{P}[n] and ω𝔖n\omega\in\mathfrak{S}_{n}, the Demazure subcrystal ω(λ)\mathcal{B}_{\omega}(\lambda) of Tab(λ,n)\operatorname{Tab}(\lambda,n) has the string property.

Remark 3.

The converse of proposition 2 is not true in general (see  [ADG22]).

A characterization of when a tensor product of Demazure crystals decomposes into Demazure crystals was given in [Kou20]. Following [Kou20], a different characterization was obtained in [ADG22] as follows:

Theorem 3.

[ADG22, Theorem 1.2] For λ,μ𝒫[n]\lambda,\mu\in\mathcal{P}[n] and ω,τ𝔖n\omega,\tau\in\mathfrak{S}_{n}, the subset ω(λ)τ(μ)\mathcal{B}_{\omega}(\lambda)\otimes\mathcal{B}_{\tau}(\mu) of Tab(λ,n)Tab(μ,n)\operatorname{Tab}(\lambda,n)\otimes\operatorname{Tab}(\mu,n) is a disjoint union of Demazure crystals if and only if ω(λ)τ(μ)\mathcal{B}_{\omega}(\lambda)\otimes\mathcal{B}_{\tau}(\mu) has the string property.

Subsets of crystals that exhibit the string property are referred to as extremal in [ADG22]. The following proposition is a strengthening of [ADG22, Proposition 8.1].

Proposition 3.

Let X1X_{1} and X2X_{2} be subsets of crystals C1C_{1} and C2C_{2} respectively. Assume that i{1,2,,n1}\forall i\in\{1,2,\cdots,n-1\} xiX2\exists x_{i}^{\dagger}\in X_{2} such that ei(xi)=0e_{i}(x_{i}^{\dagger})=0 (i.e., for each ii, X2X_{2} contains a head of some ii-string). If X1X2X_{1}\otimes X_{2} has the string property, then X1X_{1} has the string property.

Proof.

Let i{1,2,,n1}i\in\{1,2,\cdots,n-1\} be arbitrary. Suppose uX1u\in X_{1} such that ei(u)0e_{i}(u)\neq 0. Then ei(uxi)=ei(u)xi0 since εi(xi)ϕi(u)e_{i}(u\otimes x_{i}^{\dagger})=e_{i}(u)\otimes x_{i}^{\dagger}\neq 0\text{ since }\varepsilon_{i}(x_{i}^{\dagger})\leq\phi_{i}(u). Therefore by the string property of X1X2X_{1}\otimes X_{2} we have ei(u)xiX1X2e_{i}(u)\otimes x_{i}^{\dagger}\in X_{1}\otimes X_{2}, which implies that ei(u)X1e_{i}(u)\in X_{1}.

Additionally, if fi(u)0f_{i}(u)\neq 0 then fi(uxi)=fi(u)xi0f_{i}(u\otimes x_{i}^{\dagger})=f_{i}(u)\otimes x_{i}^{\dagger}\neq 0 since εi(xi)<ϕi(u)\varepsilon_{i}(x_{i}^{\dagger})<\phi_{i}(u). Therefore by the string property of X1X2X_{1}\otimes X_{2} we have fi(u)xiX1X2f_{i}(u)\otimes x_{i}^{\dagger}\in X_{1}\otimes X_{2}, which implies that fi(u)X1f_{i}(u)\in X_{1}. ∎

Corollary 1.

Let D1,D2,,DkD_{1},D_{2},\cdots,D_{k} be Demazure crystals. If D1D2DkD_{1}\otimes D_{2}\otimes\cdots\otimes D_{k} has the string property, then it is a disjoint union of Demazure crystals.

Proof.

We prove by induction on kk. The case k=1k=1 is straight forward. Suppose k>1k>1. Then it follows from proposition 3 that D1D2Dk1D_{1}\otimes D_{2}\otimes\cdots\otimes D_{k-1} has string property since DkD_{k} has xix_{i}^{\dagger} such that ei(xi)=0e_{i}(x_{i}^{\dagger})=0 i\forall i. Therefore by induction hypothesis D1D2Dk1D_{1}\otimes D_{2}\otimes\cdots\otimes D_{k-1} is a disjoint union of Demazure crystals (say = D~\bigsqcup\tilde{D}). Now,

D1D2Dk=(D~Dk)D_{1}\otimes D_{2}\otimes\cdots\otimes D_{k}=\bigsqcup(\tilde{D}\otimes D_{k})

Observe that if i{1,2,,n1}i\in\{1,2,\cdots,n-1\} and xyD~Dkx\otimes y\in\tilde{D}\otimes D_{k} then ei(xy)(D~Dk){0}e_{i}(x\otimes y)\in(\tilde{D}\otimes D_{k})\cup\{0\} because of proposition 2.

Let xyD~Dkx\otimes y\in\tilde{D}\otimes D_{k} such that ei(xy)0e_{i}(x\otimes y)\neq 0 and fi(xy)0.f_{i}(x\otimes y)\neq 0. It follows that fi(xy)D~Dkf_{i}(x\otimes y)\in\tilde{D}\otimes D_{k} because ei(fi(xy))=xye_{i}(f_{i}(x\otimes y))=x\otimes y and the fact that the decomposition D1D2Dk1=D~D_{1}\otimes D_{2}\otimes\cdots\otimes D_{k-1}=\bigsqcup\tilde{D} is disconnected. Therefore D~Dk\tilde{D}\otimes D_{k} has string property. By theorem 3, it now follows that D~Dk\tilde{D}\otimes D_{k} is a disjoint union of Demazure crystals. ∎

Let Φ\Phi be a flag and ρ+n\rho\in\mathbb{Z}_{+}^{n} be a composition of k+k\in\mathbb{Z}_{+} (i.e., ρ1+ρ2++ρn=k\rho_{1}+\rho_{2}+\cdots+\rho_{n}=k). Define the subset of 𝔹k\mathbb{B}^{\otimes k}:

𝔹Φρ:=𝔹Φ1ρ1𝔹Φ2ρ2𝔹Φnρn\mathbb{B}_{\Phi}^{\rho}:=\mathbb{B}_{\Phi_{1}}^{\otimes\rho_{1}}\otimes\mathbb{B}_{\Phi_{2}}^{\otimes\rho_{2}}\otimes\cdots\otimes\mathbb{B}_{\Phi_{n}}^{\otimes\rho_{n}}
Lemma 1.

𝔹Φρ\mathbb{B}_{\Phi}^{\rho} is a disjoint union of Demazure crystals.

Proof.

By corollary 1, it is sufficient to show that 𝔹Φρ\mathbb{B}_{\Phi}^{\rho} has string property.

Let u=u1u2uk𝔹Φρu=u_{1}\otimes u_{2}\otimes\cdots\otimes u_{k}\in\mathbb{B}_{\Phi}^{\rho}. Suppose that ei(u)0e_{i}(u)\neq 0. Then ei(u)𝔹Φρe_{i}(u)\in\mathbb{B}_{\Phi}^{\rho}, because of proposition 2 and the fact that 𝔹Φi\mathbb{B}_{\Phi_{i}}’s are Demazure crystals.

Now suppose furthermore that fi(u)0f_{i}(u)\neq 0. Let tt be the index where eie_{i} acts in uu. i.e.,

u=u1ut1(i+1)ut+1uk\displaystyle u=u_{1}\otimes\cdots\otimes u_{t-1}\otimes(i+1)\otimes u_{t+1}\otimes\cdots\otimes u_{k}
ei(u)=u1ut1iut+1uk\displaystyle e_{i}(u)=u_{1}\otimes\cdots\otimes u_{t-1}\otimes i\otimes u_{t+1}\otimes\cdots\otimes u_{k}

Define u=u1ut1u^{\prime}=u_{1}\otimes\cdots\otimes u_{t-1} and u=(i+1)ut+1uku^{\prime\prime}=(i+1)\otimes u_{t+1}\otimes\cdots\otimes u_{k}. Then by (3) it follows that εi(u)>ϕi(u)\varepsilon_{i}(u^{\prime\prime})>\phi_{i}(u^{\prime}). Therefore, (4) implies fi(u)=ufi(u)f_{i}(u)=u^{\prime}\otimes f_{i}(u^{\prime\prime}). The action of fif_{i} on uu^{\prime\prime} amounts to changing a ut0u_{t_{0}} (t0>tt_{0}>t) which is an ii to an i+1i+1. But since Φti+1\Phi_{t}\geq i+1 (by definition of uu) and Φ\Phi is weakly increasing, it follows that fi(u)𝔹Φρf_{i}(u)\in\mathbb{B}_{\Phi}^{\rho}. ∎

Theorem 4.

Let Φ\Phi be a flag and μ,γ𝒫[n]\mu,\gamma\in\mathcal{P}[n] such that μγ\mu\subset\gamma. Then Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi) is a disjoint union of Demazure crystals.

Proof.

Define the composition ρ\rho by ρi=μiγi,1in\rho_{i}=\mu_{i}-\gamma_{i},\hskip 5.69046pt1\leq i\leq n. Let k=|ρ|=ρ1++ρnk=|\rho|=\rho_{1}+\cdots+\rho_{n}. Since Tab(μ/γ,n)\operatorname{Tab}(\mu/\gamma,n) is a full subcrystal of 𝔹k\mathbb{B}^{\otimes k}, the theorem follows from lemma 1 because

Tab(μ/γ,Φ)=Tab(μ/γ,n)𝔹Φρ\operatorname{Tab}(\mu/\gamma,\Phi)=\operatorname{Tab}(\mu/\gamma,n)\cap\mathbb{B}_{\Phi}^{\rho}

Remark 4.

[RS95] proves the above theorem at the character level (i.e., the key positivity of sμ/γ(Φ)s_{\mu/\gamma}(\Phi)). Theorem 4 is however implicit in [RS95] and allows us to compute the explicit decomposition of Tab(λ/μ,Φ)\operatorname{Tab}(\lambda/\mu,\Phi) into Demazure crystals. A short sketch is deferred to the appendix.

Remark 5.

It is important that we assume Φ\Phi to be weakly increasing. For example, if μ=(3,2)\mu=(3,2), γ=(1,0)\gamma=(1,0) and Φ=(3,2)\Phi=(3,2), then Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi) does not even have the string property.

Consider the tensor product 𝒞(λ;μ,γ,Φ)=Tab(λ,Φ0)Tab(μ/γ,Φ)\mathcal{C}(\lambda;\mu,\gamma,\Phi)=\operatorname{Tab}(\lambda,\Phi_{0})\otimes\operatorname{Tab}(\mu/\gamma,\Phi). Here Φ0=(1,2,3,)\Phi_{0}=(1,2,3,\cdots) is the standard flag. The Demazure crystal Tab(λ,Φ0)\operatorname{Tab}(\lambda,\Phi_{0}) is the singleton set containing Tλ0T_{\lambda}^{0}.

Proposition 4.

𝒞(λ;μ,γ,Φ)\mathcal{C}(\lambda;\mu,\gamma,\Phi) is a disjoint union of Demazure crystals.

Proof.

By Theorem 4, we have Tab(μ/γ,Φ)=pDp\operatorname{Tab}(\mu/\gamma,\Phi)=\bigsqcup_{p}D_{p} where each DpD_{p} is a Demazure crystal. Then

𝒞(λ;μ,γ,Φ)=Tab(λ,Φ0)(Dp)=Tab(λ,Φ0)Dp\mathcal{C}(\lambda;\mu,\gamma,\Phi)=\operatorname{Tab}(\lambda,\Phi_{0})\otimes(\bigsqcup D_{p})=\bigsqcup\operatorname{Tab}(\lambda,\Phi_{0})\otimes D_{p}

But Tab(λ,Φ0)Dp\operatorname{Tab}(\lambda,\Phi_{0})\otimes D_{p} is a disjoint union of Demazure crystals by Joseph’s theorem [Jos03]. This fact also follows from theorem 3 because Tab(λ,Φ0)D\operatorname{Tab}(\lambda,\Phi_{0})\otimes D has the string property as we show below:

For uvTab(λ,Φ0)Du\otimes v\in\operatorname{Tab}(\lambda,\Phi_{0})\otimes D, ei(uv)0e_{i}(u\otimes v)\neq 0 only if ei(uv)=uei(v)e_{i}(u\otimes v)=u\otimes e_{i}(v). This implies that εi(v)>ϕi(u)\varepsilon_{i}(v)>\phi_{i}(u). By the tensor product rule we therefore have fi(uv)=ufi(v)f_{i}(u\otimes v)=u\otimes f_{i}(v). By assumptions, ei(v)0e_{i}(v)\neq 0 and fi(v)0f_{i}(v)\neq 0. Since DD is a Demazure crystal, by proposition 2 it follows that fi(v)Df_{i}(v)\in D and hence fi(uv)Tab(λ,Φ0)Df_{i}(u\otimes v)\in\operatorname{Tab}(\lambda,\Phi_{0})\otimes D. ∎

Corollary 2.

([RS95, Theorem 20]) 𝐱λsμ/γ(Φ)=ch(𝒞(λ;μ,γ,Φ))\mathbf{x}^{\lambda}\,s_{\mu/\gamma}(\Phi)=ch(\mathcal{C}(\lambda;\mu,\gamma,\Phi)) is key-positive.

A skew tableau TTab(μ/γ,n)T\in Tab(\mu/\gamma,n) is λ\lambda-dominant if the concatenated word bTλ0bTb_{T_{\lambda}^{0}}*b_{T} is a dominant word. We now prove the first part of theorem 1.

Theorem 5.

cλ,μ/γν(Φ)c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi) is the cardinality of the set Tabλν(μ/γ,Φ)\operatorname{Tab}_{\lambda}^{\nu}(\mu/\gamma,\Phi) of all λ\lambda-dominant tableaux in Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi) of weight νλ\nu-\lambda.

Proof.

By Proposition 4 (and Remark 2), for all ν𝒫[n]\nu\in\mathcal{P}[n] there exists a multi-subset 𝒲(ν)𝔖n\mathcal{W}(\nu)\subseteq\mathfrak{S}_{n} such that

𝒞(λ;μ,γ,Φ)=ν𝒫[n]w𝒲(ν)w(ν)\mathcal{C}(\lambda;\mu,\gamma,\Phi)=\bigsqcup_{\nu\in\mathcal{P}[n]}\bigsqcup_{w\in\mathcal{W}(\nu)}\mathcal{B}_{w}(\nu) (6)

Taking characters, we obtain

𝐱λsμ/γ(Φ)=νw𝒲(ν)wν\mathbf{x}^{\lambda}\,s_{\mu/\gamma}(\Phi)=\sum_{\nu}\sum_{w\in\mathcal{W}(\nu)}{w\nu}

Applying Tw0T_{w_{0}} and using proposition 1 gives Tw0(𝐱λsμ/γ(Φ))=ν|𝒲(ν)|sν(𝐱)T_{w_{0}}(\mathbf{x}^{\lambda}\,s_{\mu/\gamma}(\Phi))=\sum_{\nu}|\mathcal{W}(\nu)|s_{\nu}(\mathbf{x}). Thus

cνλ,μ/γ(Φ)=|𝒲(ν)|c^{\,\nu}_{\lambda,\,\mu/\gamma}(\Phi)=|\mathcal{W}(\nu)|

Now, by definition of λ\lambda-dominance, the number of elements ζ𝒞(λ;μ,γ,Φ)\zeta\in\mathcal{C}(\lambda;\mu,\gamma,\Phi) of weight ν\nu satisfying eiζ=0e_{i}\zeta=0 for all ii is precisely |Tabνλ(μ/γ,Φ)||Tab^{\nu}_{\lambda}(\mu/\gamma,\Phi)|. On the other hand, in the RHS of equation (6), each w(ν)\mathcal{B}_{w}(\nu) has a unique element ξ\xi such that eiξ=0e_{i}\xi=0 for all ii; this element has weight ν\nu. Thus, the number of elements ζ\zeta as above is also equal to |𝒲(ν)||\mathcal{W}(\nu)|. Putting all these together establishes Theorem 5. ∎

4. A hive model for flagged skew Littlewood-Richardson coefficients

In this section we define the skew hive polytope and its faces corresponding to flags Φ\Phi. We then prove the second part of theorem 1.

4.1. Skew GT patterns

Given m,n1m,n\geq 1, a skew Gelfand-Tsetlin pattern is an array of real numbers {xij:0im,1jn}\{x_{ij}:0\leq i\leq m,\hskip 5.69046pt1\leq j\leq n\} satisfying the following inequalities:

NEij=xijx(i1)j01im;1jnNE_{ij}=x_{ij}-x_{(i-1)j}\geq 0\quad\quad\quad 1\leq i\leq m;\quad 1\leq j\leq n

SEij=x(i1)jxi(j+1)01im;1jn1SE_{ij}=x_{(i-1)j}-x_{i(j+1)}\geq 0\quad\quad\quad 1\leq i\leq m;\quad 1\leq j\leq n-1

The above inequalities simply mean that the consecutive rows interlace. Hence we arrange the rows in the shape of a parallelogram as follows (shown for m=n=4m=n=4):

x01x_{01}x02x_{02}x03x_{03}x04x_{04}x11x_{11}x12x_{12}x13x_{13}x14x_{14}x21x_{21}x22x_{22}x23x_{23}x24x_{24}x31x_{31}x32x_{32}x33x_{33}x34x_{34}x41x_{41}x42x_{42}x43x_{43}x44x_{44}

For μ,γ𝒫[n]\mu,\gamma\in\mathcal{P}[n], such that γμ\gamma\subset\mu, the skew Gelfand-Tsetlin polytope GT(μ/γ,m)\operatorname{GT}(\mu/\gamma,m) is the set of all skew Gelfand-Tsetlin patterns (xij)(x_{ij}) with 0im, 1jn0\leq i\leq m,\,1\leq j\leq n satisfying x0j=γjx_{0j}=\gamma_{j}, xmj=μjx_{mj}=\mu_{j} for all jj. Define,

GT(μ/γ,m):={X=(xij)GT(μ/γ,m):xij}\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,m):=\{X=(x_{ij})\in\operatorname{GT}(\mu/\gamma,m):x_{ij}\in\mathbb{Z}\}

In the sequel, we will only have occasion to consider the case when m=nm=n. Consider the map

Υ:GT(μ/γ,n)Tab(μ/γ,n)\Upsilon:\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,n)\rightarrow\operatorname{Tab}(\mu/\gamma,n)

where X=(xij)GT(μ/γ,n)X=(x_{ij})\in\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,n) maps to the unique tableau Υ(X)\Upsilon(X) in Tab(μ/γ)\operatorname{Tab}(\mu/\gamma) such that the number of ii that appears in the jthj^{th} row of Υ(X)\Upsilon(X) is xijx(i1)jx_{ij}-x_{(i-1)j}.

221100332200443300443322044332211
Υ\Upsilon
44333311221122
Figure 2. The skew GT pattern on the left maps to the skew tableau on the right under the map Υ\Upsilon.

The following statement is well-known - see for instance [Lou, §3] (whose pattern drawing convention differs from ours by a vertical flip).

Lemma 2.

The map Υ\Upsilon is a bijection.

4.2. Flagged skew GT patterns

We keep the notation of the previous subsection, but in addition assume that we are given a flag Φ=(Φ1,,Φn)\Phi=(\Phi_{1},\cdots,\Phi_{n}). Define the set of flagged skew GT patterns:

GT(μ/γ,Φ)={(xij)GT(μ/γ,n):xn,j=xn1,j==xΦj,j1jn}\operatorname{GT}(\mu/\gamma,\Phi)=\{(x_{ij})\in\operatorname{GT}(\mu/\gamma,n):x_{n,j}=x_{n-1,j}=\cdots=x_{\Phi_{j},j}\quad\forall 1\leq j\leq n\} (7)

and let GT(μ/γ,Φ)\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,\Phi) denote the set of integer points in this polytope. We have:

Lemma 3.

The map Υ\Upsilon restricts to a bijection between GT(μ/γ,Φ)\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,\Phi) and Tab(μ/γ,Φ)\operatorname{Tab}(\mu/\gamma,\Phi).

Proof.

Let X=(xij)GT(μ/γ,Φ)X=(x_{ij})\in\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,\Phi). If Φ=(n,n,,n)\Phi=(n,n,\cdots,n) then it is easy to see Υ(X)Tab(μ/γ,Φ)\Upsilon(X)\in\operatorname{Tab}(\mu/\gamma,\Phi). Otherwise let kk be the maximum such that Φkn\Phi_{k}\neq n. Then the number of i(Φj<in)i\,(\Phi_{j}<i\leq n) that appear in the jthj^{th} row (1jk)(1\leq j\leq k) of Υ(X)\Upsilon(X) is xijx(i1)j=0x_{ij}-x_{(i-1)j}=0. Since j>k\forall j>k, Φj=n\Phi_{j}=n so for those jj in jthj^{th} row of Υ(X)\Upsilon(X) all entries are Φj(=n)\leq\Phi_{j}(=n). Thus Υ(X)Tab(μ/γ,Φ)\Upsilon(X)\in\operatorname{Tab}(\mu/\gamma,\Phi). Also, if TTab(μ/γ,Φ)T\in\operatorname{Tab}(\mu/\gamma,\Phi) then (i,j)th(i,j)^{th} entry of Υ1(T)\Upsilon^{-1}(T) is the number of entries i\leq i that appear in the jthj^{th} row of TT. So Υ1(T)GT(μ/γ,Φ)\Upsilon^{-1}(T)\in\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,\Phi). ∎

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
Figure 3. The 4-hive parallelogram

In the next two subsections, we give a hive model for the flagged skew Littlewood-Richardson coefficients.

4.3. Skew hives

The (n+1)×(n+1)(n+1)\times(n+1) array of nodes in figure 3 is called the n-hive parallelogram. Observe that the small rhombi 333A rhombus with unit side length. in the nn-hive parallelogram are oriented in the following three different ways:

Northeast (NE):,Southeast (SE): and Vertical: .\text{Northeast (NE):}\;\;\;\leavevmode\hbox to17.47pt{\vbox to10.26pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{5.69046pt}{9.85583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{5.69046pt}{9.85583pt}\pgfsys@lineto{17.07138pt}{9.85583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{11.38092pt}{0.0pt}\pgfsys@lineto{17.07138pt}{9.85583pt}\pgfsys@stroke\pgfsys@invoke{ } \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;,\;\;\text{Southeast (SE):}\;\;\;\leavevmode\hbox to17.47pt{\vbox to10.26pt{\pgfpicture\makeatletter\hbox{\hskip 5.89046pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-5.69046pt}{9.85583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-5.69046pt}{9.85583pt}\pgfsys@lineto{5.69046pt}{9.85583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{11.38092pt}{0.0pt}\pgfsys@lineto{5.69046pt}{9.85583pt}\pgfsys@stroke\pgfsys@invoke{ } \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\text{ and }\;\text{Vertical: }\leavevmode\hbox to8.94pt{\vbox to15.18pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-7.59207pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{4.26794pt}{7.39207pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{4.26794pt}{7.39207pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{4.26794pt}{-7.39207pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{4.26794pt}{-7.39207pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Let λ𝒫[n]\lambda\in\mathcal{P}[n]. Following [KRV21], we define λ¯=(0,λ1,λ1+λ2,,|λ|)\bar{\lambda}=(0,\lambda_{1},\lambda_{1}+\lambda_{2},\cdots,|\lambda|) and λ=(λ2λ1,λ3λ2,,λnλn1)\partial\lambda=(\lambda_{2}-\lambda_{1},\lambda_{3}-\lambda_{2},\cdots,\lambda_{n}-\lambda_{n-1}). Let λ,μ,γ,ν𝒫[n]\lambda,\mu,\gamma,\nu\in\mathcal{P}[n] be such that γμ,λν\gamma\subset\mu,\,\lambda\subset\nu and |λ|+|μ|=|ν|+|γ||\lambda|+|\mu|=|\nu|+|\gamma|. We define the skew hive polytope SHive(λ,μ,γ,ν)\operatorname{SHive}(\lambda,\mu,\gamma,\nu) as the set of all \mathbb{R}-labellings of the nodes of the nn-hive parallelogram such that:

  1. (1)

    The boundary labels of the left boundary (read top to bottom); bottom boundary (read left to right); top boundary (read left to right); right boundary (read top to bottom) are λ¯,|λ|+μ¯,γ¯ and |γ|+ν¯\bar{\lambda},|\lambda|+\bar{\mu},\bar{\gamma}\text{ and }|\gamma|+\bar{\nu} respectively as in figure 4.

  2. (2)

    The contents of all the small rhombi are non-negative. We recall that the content of a small rhombus is the sum of the labels on its obtuse-angled nodes minus the sum of the labels on its acute-angled nodes.

We denote the set of integer points in SHive(λ,μ,γ,ν)\operatorname{SHive}(\lambda,\mu,\gamma,\nu) by SHive(λ,μ,γ,ν)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu).

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet|λ||\lambda|i=13λi\sum_{i=1}^{3}\lambda_{i}i=12λi\sum_{i=1}^{2}\lambda_{i}λ1\lambda_{1}0γ1\gamma_{1}i=12γi\begin{subarray}{c}\sum_{i=1}^{2}\gamma_{i}\end{subarray}i=13γi\begin{subarray}{c}\sum_{i=1}^{3}\gamma_{i}\end{subarray}|γ|\begin{subarray}{c}|\gamma|\end{subarray}|γ|+ν1\begin{subarray}{c}|\gamma|+\nu_{1}\end{subarray}|γ|+i=12νi\begin{subarray}{c}|\gamma|+\sum_{i=1}^{2}\nu_{i}\end{subarray}|γ|+i=13νi\begin{subarray}{c}|\gamma|+\sum_{i=1}^{3}\nu_{i}\end{subarray}μ1+|λ|\begin{subarray}{c}\mu_{1}\\ +|\lambda|\end{subarray}i=12μi+|λ|\begin{subarray}{c}\sum_{i=1}^{2}\mu_{i}\\ +|\lambda|\end{subarray}i=13μi+|λ|\begin{subarray}{c}\sum_{i=1}^{3}\mu_{i}\\ +|\lambda|\end{subarray}|λ|+|μ|=|γ|+|ν|\begin{subarray}{c}|\lambda|+|\mu|=|\gamma|+|\nu|\end{subarray}\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
022333333337799101010104499131314141414551010141416161616551010141416161717
Figure 4. (a) The boundary labels of skew hives in SHive(λ,μ,γ,ν)\operatorname{SHive}(\lambda,\mu,\gamma,\nu). (b) A skew hive in SHive(λ,μ,γ,ν)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu) where λ=(3,1,1,0)\lambda=(3,1,1,0); γ=(2,1,0,0)\gamma=(2,1,0,0); μ=(5,4,2,1)\mu=(5,4,2,1); ν=(7,4,2,1)\nu=(7,4,2,1).

An element of SHive(λ,μ,γ,ν)\operatorname{SHive}(\lambda,\mu,\gamma,\nu) is called a skew hive with boundary (λ,μ,γ,ν)(\lambda,\mu,\gamma,\nu). The rows of a skew hive hSHive(λ,μ,γ,ν)h\in\operatorname{SHive}(\lambda,\mu,\gamma,\nu) (from top to bottom) give a sequence of vectors h0,h1,,hnn+1h_{0},h_{1},\cdots,h_{n}\in\mathbb{R}^{n+1}. Consider the parallelogram array h\partial h with (n+1)(n+1) rows (and nn nodes in each row) whose rows (from top to bottom) are h0,h1,,hn\partial h_{0},\partial h_{1},\cdots,\partial h_{n}. It follows directly (adapting the arguments of [KRV21]) that the positivity of the contents of Northeast and Southeast rhombi in hh correspond to positivity (in the skew GT setting of §4.1) of NEijNE_{ij} and SEijSE_{ij} of h\partial h respectively. Thus h\partial h is a skew GT pattern with top row γ\gamma and bottom row μ\mu. It is elementary to check that the map :SHive(λ,μ,γ,ν)GT(μ/γ,n)\partial:\operatorname{SHive}(\lambda,\mu,\gamma,\nu)\longrightarrow\operatorname{GT}(\mu/\gamma,n) is linear, injective and maps integer points to integer points.

Theorem 6.

For λ,μ,γ,ν𝒫[n]\lambda,\mu,\gamma,\nu\in\mathcal{P}[n] such that γμ,λν\gamma\subset\mu,\,\lambda\subset\nu and |λ|+|μ|=|ν|+|γ||\lambda|+|\mu|=|\nu|+|\gamma|, the map Υ\Upsilon\circ\partial is a bijection between SHive(λ,μ,γ,ν)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu) and Tabλν(μ/γ,n)={TTab(μ/γ,n):bTλ0bTTab_{\lambda}^{\nu}(\mu/\gamma,n)=\{T\in\operatorname{Tab}(\mu/\gamma,n):b_{T_{\lambda}^{0}}*b_{T} is a dominant word of weight ν\nu}.

Proof.

We follow closely the proof of Proposition 4 in [KRV22]. Let hSHive(λ,μ,γ,ν)h\in\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu). By the discussion in the previous para and lemma 2, it is clear that T=Υ(h)Tab(μ/γ,n)T=\Upsilon(\partial h)\in\operatorname{Tab}(\mu/\gamma,n).
Now we will show that TTabλν(μ/γ,n)T\in Tab_{\lambda}^{\nu}(\mu/\gamma,n). Let h=(xij). Then xij=hijhi(j1)\partial h=(x_{ij}).\text{ Then }x_{ij}=h_{ij}-h_{i(j-1)}. So the number of times ii appears in row jj of T=xijx(i1)jT=x_{ij}-x_{(i-1)j}. Now we have to prove that bTλ0bTb_{T_{\lambda}^{0}}*b_{T} is a dominant word of weight ν\nu. Let bT=bT1bT2bTnb_{T}=b_{T_{1}}*b_{T_{2}}*\cdots*b_{T_{n}} where bTkb_{T_{k}} is the reverse reading word of the kk-th row of TT. Also, let NikN_{ik} be the number of times ii appears in the word bT0bT1bTkb_{T_{0}}*b_{T_{1}}*\cdots*b_{T_{k}} (with bT0=bTλ0b_{T_{0}}=b_{T_{\lambda}^{0}}). Then by definition, bTλ0bTb_{T_{\lambda}^{0}}*b_{T} is dominant iff NikN(i+1)(k+1) for all 1in, 0knN_{ik}\geq N_{(i+1)(k+1)}\text{ for all }1\leq i\leq n,\text{ }0\leq k\leq n. We get

Nik=λi+(xi1x(i1)1)++(xikx(i1)k)=hikh(i1)k (in terms of hN_{ik}=\lambda_{i}+(x_{i1}-x_{(i-1)1})+\cdots+(x_{ik}-x_{(i-1)k})=h_{ik}-h_{(i-1)k}\text{ (in terms of $h$) }

So NikN(i+1)(k+1)=hik+hi(k+1)h(i1)kh(i+1)(k+1)0N_{ik}-N_{(i+1)(k+1)}=h_{ik}+h_{i(k+1)}-h_{(i-1)k}-h_{(i+1)(k+1)}\geq 0 by the corresponding vertical rhombus inequality in hh. Now  the number of times i occurs in bTλ0bT\text{ the number of times $i$ occurs in }b_{T_{\lambda}^{0}}*b_{T} is

λi+(xi1x(i1)1)++(xinx(i1)n)=hinh(i1)n=νi\lambda_{i}+(x_{i1}-x_{(i-1)1})+\cdots+(x_{in}-x_{(i-1)n})=h_{in}-h_{(i-1)n}=\nu_{i}

So bTλ0bTb_{T_{\lambda}^{0}}*b_{T} is a dominant word of weight ν\nu. Thus TTabλν(μ/γ,n)T\in Tab_{\lambda}^{\nu}(\mu/\gamma,n).

Now, we will show Υ\Upsilon\circ\partial is injective. It suffices to show that \partial is injective. Let h=(h0,h1,,hn),h=(h0,h1,,hn)Hive(λ,μ,γ,ν)h=(h_{0},h_{1},\cdots,h_{n}),\,h^{\prime}=(h^{\prime}_{0},h^{\prime}_{1},\cdots,h^{\prime}_{n})\in\operatorname{Hive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu) where hi,hin+1 and h=hh_{i},h^{\prime}_{i}\in\mathbb{Z}^{n+1}\text{ and }\partial h=\partial h^{\prime}. Also, let hi=(hi0,hi1,,hin) and hi=(hi0,hi1,,hin)h_{i}=(h_{i0},h_{i1},\cdots,h_{in})\text{ and }h^{\prime}_{i}=(h^{\prime}_{i0},h^{\prime}_{i1},\cdots,h^{\prime}_{in}). We will show that hik=hikh_{ik}=h^{\prime}_{ik} for all ii by induction on kk. Clearly, h00=h00=0 and hi0=j=1iλj=hi0h_{00}=h^{\prime}_{00}=0\text{ and }h_{i0}=\sum_{j=1}^{i}\lambda_{j}=h^{\prime}_{i0}. So for k=0k=0 we get hik=hikh_{ik}=h^{\prime}_{ik} for all ii. Let k1 and hi(k1)=hi(k1)k\geq 1\text{ and }h_{i(k-1)}=h^{\prime}_{i(k-1)} for all ii. Since hi=hi.\partial h_{i}=\partial h^{\prime}_{i}. So hikhi(k1)=hikhi(k1)h_{ik}-h_{i(k-1)}=h^{\prime}_{ik}-h^{\prime}_{i(k-1)}. Thus hik=hikh_{ik}=h^{\prime}_{ik} for all ii. Hence h=hh=h^{\prime}. Therefore \partial is injective.

Next we will prove Υ\Upsilon\circ\partial is surjective. Let STabλν(μ/γ,n)S\in Tab_{\lambda}^{\nu}(\mu/\gamma,n) and Υ1(S)=(sij)\Upsilon^{-1}(S)=(s_{ij}) GT(μ/γ,n)\in\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,n) where s0j=μj,sij=μj+s_{0j}=\mu_{j},\,s_{ij}=\mu_{j}+ the numbers of entries i\leq i in the jthj^{th} row of SS (1i,jn)(1\leq i,j\leq n). Define λ0=0,hi0=k=0iλk,hij=hi0+k=1jsik (0in, 1jn) and hi=(hi0,hi1,,hin)\lambda_{0}=0,h_{i0}=\sum_{k=0}^{i}\lambda_{k},h_{ij}=h_{i0}+\sum_{k=1}^{j}s_{ik}\text{ }(0\leq i\leq n,\text{ }1\leq j\leq n)\text{ and }h_{i}=(h_{i0},h_{i1},\cdots,h_{in}) for all ii. Consider the nn-hive parallelogram hh whose rows (from top to bottom) are h0,h1,,hnh_{0},h_{1},\cdots,h_{n}. We claim that hSHive(λ,μ,γ,ν)h\in\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu). The Northeast and Southeast rhombi inequalities of hh hold since STab(μ/γ,n)S\in\operatorname{Tab}(\mu/\gamma,n) and the vertical rhombi inequalities of hh hold because bTλ0bSb_{T_{\lambda}^{0}}*b_{S} is dominant. The boundary labels of hh can be easily seen to be λ¯\bar{\lambda} (left edge, top to bottom), |λ|+μ¯|\lambda|+\bar{\mu} (bottom edge, left to right), γ¯\bar{\gamma} (top edge, left to right) and |γ|+ν¯|\gamma|+\bar{\nu} (right edge, top to bottom) respectively. So hSHive(λ,μ,γ,ν)h\in\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu) and (Υ)1(S)=h(\Upsilon\circ\partial)^{-1}(S)=h. Thus Υ\Upsilon\circ\partial is surjective. ∎

4.4. Flagged skew hives

Given a flag Φ\Phi, consider the face of the skew hive polytope defined by SHive(λ,μ,γ,ν,Φ):=1(GT(μ/γ,Φ))\operatorname{SHive}(\lambda,\mu,\gamma,\nu,\Phi):=\partial^{-1}(\operatorname{GT}(\mu/\gamma,\Phi)). We call this the flagged skew hive polytope. We let SHive(λ,μ,γ,ν,Φ)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu,\Phi) denote the set of integer points in this polytope. It is elementary to observe that SHive(λ,μ,γ,ν,Φ)=1(GT(μ/γ,Φ))\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu,\Phi)=\partial^{-1}(\operatorname{GT}_{\mathbb{Z}}(\mu/\gamma,\Phi)). Lemma 3 and Theorem 6 together give us the second part of theorem 1:

Theorem 7.

The map Υ\Upsilon\circ\partial restricts to a bijection between SHive(λ,μ,γ,ν,Φ)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu,\Phi) and Tabλν(μ/γ,Φ)Tab_{\lambda}^{\nu}(\mu/\gamma,\Phi). Then cλ,μ/γν(Φ)=|SHive(λ,μ,γ,ν,Φ)|=|Tabλν(μ/γ,Φ)|c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)=|\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu,\Phi)|=|Tab_{\lambda}^{\nu}(\mu/\gamma,\Phi)|.

The NE rhombi of the nn-hive parallelogram are labelled RijR_{ij} with 1i,jn1\leq i,j\leq n as shown in the example in Figure 5. To the flag Φ\Phi, we associate the set I=i=1n{(Φi+1,i),,(n,i)}I=\bigcup_{i=1}^{n}\{(\Phi_{i}+1,i),\cdots,(n,i)\}. Then R(Φ)=(i,j)I{Rij}R(\Phi)=\bigcup_{(i,j)\in I}\{R_{ij}\} forms a bottom-left-justified region of NE rhombi (shown in purple in Figure 5). It is easy to see from equation (7) that SHive(λ,μ,γ,ν,Φ)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu,\Phi) is obtained from SHive(λ,μ,γ,ν)\operatorname{SHive}_{\mathbb{Z}}(\lambda,\mu,\gamma,\nu) by imposing the condition that all rhombi in R(Φ)R(\Phi) are flat. For example, the hive in figure 4(b) is such that every NE oriented rhombus in R(Φ)R(\Phi) is flat where Φ\Phi = (2,2,3,4).

R41R_{41}R42R_{42}R43R_{43}R44R_{44}R31R_{31}R32R_{32}R33R_{33}R34R_{34}R21R_{21}R22R_{22}R23R_{23}R24R_{24}R11R_{11}R12R_{12}R13R_{13}R14R_{14}
Figure 5. Labelling of NE oriented rhombi in 4-hive parallegram and the shaded region is a typical configuration of R(Φ)R(\Phi) (for Φ=(1,2,2,4)\Phi=(1,2,2,4))

5. Flagged Skew LR coefficients are ww-refined LR coefficients

In this section we prove that any skew hive polytope is affinely isomorphic to some hive polytope (albeit in twice as many ambient dimensions). Moreover, this isomorphism maps the flagged skew hive polytope to a hive Kogan face corresponding to some 312312-avoiding permutation [KRV21, §2.4] and preserves the integral points.

0α1\alpha_{1}γ1{\gamma}_{1}γ1+γ2{\gamma}_{1}+\gamma_{2}\bulletα1+α2\alpha_{1}+\alpha_{2}α1+α2+α3\alpha_{1}+\alpha_{2}+\alpha_{3}\bullet\bulletγ1+γ2+γ3\gamma_{1}+\gamma_{2}+\gamma_{3}|α||\alpha||α|+β1\begin{subarray}{c}|\alpha|\\ +\beta_{1}\end{subarray}|α|+β1+β2\begin{subarray}{c}|\alpha|\\ +\beta_{1}\\ +\beta_{2}\end{subarray}|α|+β1+β2+β3\begin{subarray}{c}|\alpha|\\ +\beta_{1}\\ +\beta_{2}\\ +\beta_{3}\end{subarray}|α|+|β|=|γ||\alpha|+|\beta|=|\gamma|
R31R_{31}R32R_{32}R33R_{33}R21R_{21}R22R_{22}R11R_{11}
Figure 6. (a) A 44-hive with boundary (α,β,γ)(\alpha,\beta,\gamma) (b) Labelling of NE oriented rhombi. The shaded region is a typical configuration of R(Φ)R(\Phi), shown here for Φ=(2,3,4,4)\Phi=(2,3,4,4)

Given partitions α,β,γ𝒫[n]\alpha,\beta,\gamma\in\mathcal{P}[n] such that |α|+|β|=|γ||\alpha|+|\beta|=|\gamma|, the hive polytope Hive(α,β,γ)\operatorname{Hive}(\alpha,\beta,\gamma) is the set of all \mathbb{R}-labellings of an (n+1)(n+1)-triangular array of nodes such that

  1. (1)

    the boundary labels are given by (0,α1,α1+α2,,|α|,|α|+β1,|α|+β1+β2,,|α|+|β|,γ1++γn1,,γ1+γ2,γ1)(0,\alpha_{1},\alpha_{1}+\alpha_{2},\cdots,|\alpha|,|\alpha|+\beta_{1},|\alpha|+\beta_{1}+\beta_{2},\cdots,|\alpha|+|\beta|,\gamma_{1}+\cdots+\gamma_{n-1},\cdots,\gamma_{1}+\gamma_{2},\gamma_{1}), reading the nodes anti-clockwise beginning from the topmost node as in figure 6.

  2. (2)

    the contents of all the small rhombi are non-negative.

The horizontal strings of nodes (“rows”) of the triangular array are termed the zeroth row, first row, second row, etc starting from the top. Consider the labelling of the NE oriented small rhombi as shown in the example in figure 6. Given a flag Φ\Phi, consider the set of NE rhombi R(Φ)={Rij|n>iΦj}R(\Phi)=\{R_{ij}|\,n>i\geq\Phi_{j}\}. We define the face Hive(α,β,γ,Φ)\operatorname{Hive}(\alpha,\beta,\gamma,\Phi) of the polytope Hive(α,β,γ)\operatorname{Hive}(\alpha,\beta,\gamma) as the collection of those hives in which all the rhombi in R(Φ)R(\Phi) are flat. As we vary Φ\Phi, these run over the hive Kogan faces corresponding to 312312-avoiding permutations, in the terminology of [KRV21, §2.4]. Refer [KRV21] for more details.

Lemma 4.

Let α,β,γ+n\alpha,\beta,\gamma\in\mathbb{R}_{+}^{n} be weakly decreasing sequences such that either α\alpha or β\beta is a constant sequence. Then Hive(α,β,γ)\operatorname{Hive}(\alpha,\beta,\gamma) is either empty or a singleton set. The latter is true if and only if α+β=γ\alpha+\beta=\gamma.

Proof.

Supposing first that β=(β1,β2,,βn)\beta=(\beta_{1},\beta_{2},\cdots,\beta_{n}) is constant, i.e., βi=b\beta_{i}=b (say) for all ii. If Hive(α,β,γ)\operatorname{Hive}(\alpha,\beta,\gamma) is non-empty, let hh be an element. Define κ=γαn\kappa=\gamma-\alpha\in\mathbb{R}^{n}. The labels along the left and right edges of hh are i=1kαi\sum_{i=1}^{k}\alpha_{i} and i=1kγi\sum_{i=1}^{k}\gamma_{i} for 0kn0\leq k\leq n. Now consider the following types of trapezia formed by two overlapping unit rhombi, one NE and the other SE.

ddeeccbbaa

From the two rhombus inequalities in this picture, we conclude that if ab=bca-b=b-c, then each is also equal to ede-d. Now βi=b\beta_{i}=b for all ii implies that the successive differences of labels on the bottom (i.e., nthn^{th}) row of hh are all equal to bb. The observation above means that the successive differences of labels on the (n1)th(n-1)^{th} row are also all bb. We proceed by induction, moving up the hive triangle, to conclude that the successive differences of labels along every row of hh is equal to bb. In particular, all labels of hh are uniquely determined from those on left boundary alone. An additional compatibility condition arises from summing the differences in each row - this gives i=1kκi=kb\sum_{i=1}^{k}\kappa_{i}=kb for each kk, or equivalently that κ=β\kappa=\beta as claimed.

The proof for the case that α\alpha is constant is similar. One considers instead the trapezia of the form:

aabbeeccdd

Proposition 5.

Let λ,μ,ν,γ𝒫[n]\lambda,\mu,\nu,\gamma\in\mathcal{P}[n] be such that γμ,λν\gamma\subset\mu,\,\lambda\subset\nu and |λ|+|μ|=|ν|+|γ||\lambda|+|\mu|=|\nu|+|\gamma|. Define λ~,μ~,ν~𝒫[2n]\tilde{\lambda},\tilde{\mu},\tilde{\nu}\in\mathcal{P}[2n] by λ~=(ν1,,ν1,λ1,,λn),μ~=(μ1,μ2,,μn,0,0,,0)\tilde{\lambda}=(\nu_{1},\cdots,\nu_{1},\lambda_{1},\cdots,\lambda_{n}),\,\tilde{\mu}=(\mu_{1},\mu_{2},\cdots,\mu_{n},0,0,\cdots,0) and ν~=(ν1+γ1,,ν1+γn,ν1,,νn)\tilde{\nu}=(\nu_{1}+\gamma_{1},\cdots,\nu_{1}+\gamma_{n},\nu_{1},\cdots,\nu_{n}). Then there exists an affine linear isomorphism between SHive(λ,μ,γ,ν)\operatorname{SHive}(\lambda,\mu,\gamma,\nu) and Hive(λ~,μ~,ν~)\operatorname{Hive}(\tilde{\lambda},\tilde{\mu},\tilde{\nu}). Moreover, the isomorphism preserves integral points and maps SHive(λ,μ,γ,ν,Φ)\operatorname{SHive}(\lambda,\mu,\gamma,\nu,\Phi) onto Hive(λ~,μ~,ν~,Φ~)\operatorname{Hive}(\tilde{\lambda},\tilde{\mu},\tilde{\nu},\tilde{\Phi}), where Φ~=(Φ1+n,,Φn+n)\tilde{\Phi}=(\Phi_{1}+n,\cdots,\Phi_{n}+n).

Proof.

For hSHive(λ,μ,γ,ν)h\in\operatorname{SHive}(\lambda,\mu,\gamma,\nu) we describe ψ(h)\psi(h) as follows (see figure 7 for a representative example):

  1. (1)

    ψ(h)\psi(h) is a labelling of the (2n+1)(2n+1)- triangular array, with boundary labels coinciding with those of hives in Hive(λ~,μ~,ν~)\operatorname{Hive}(\tilde{\lambda},\tilde{\mu},\tilde{\nu}).

  2. (2)

    The bottom-left-justified (n+1)×(n+1)(n+1)\times(n+1) parallelogram in ψ(h)\psi(h) (white, with a red border in figure 7) is labelled by h+nν1h+n\cdot\nu_{1}, i.e., the labels of the nodes of hh are translated by the constant nν1n\cdot\nu_{1}.

  3. (3)

    The labels of the top nn rows of ψ(h)\psi(h) (highlighted in yellow in figure 7) are determined by the boundary conditions of Hive(λ~,μ~,ν~)\operatorname{Hive}(\tilde{\lambda},\tilde{\mu},\tilde{\nu}) and the choice of parallelogram labels in (2) above. This follows from lemma 4, using the fact that the first nn components of λ~\tilde{\lambda} are equal

  4. (4)

    Again, using (2) and the fact that the last nn components of μ~\tilde{\mu} are equal, lemma 4 implies that the labels of the bottom-right-justified (n+1)(n+1)-triangular subarray in ψ(h)\psi(h) (highlighted in blue in figure 7) are determined by the boundary conditions of Hive(λ~,μ~,ν~)\operatorname{Hive}(\tilde{\lambda},\tilde{\mu},\tilde{\nu}).

0aabbccddeeffgghhiijjkkllmmnnoo
ψ\psi
0ν1\nu_{1}ν1+γ1\nu_{1}+{\gamma}_{1}2ν1+γ1+γ22\nu_{1}+{\gamma}_{1}+\gamma_{2}qq2ν12\nu_{1}3ν13\nu_{1}aa^{\prime}bb^{\prime}cc^{\prime}dd^{\prime}ee^{\prime}ff^{\prime}gg^{\prime}gg^{\prime}hh^{\prime}ii^{\prime}jj^{\prime}kk^{\prime}kk^{\prime}kk^{\prime}ll^{\prime}mm^{\prime}nn^{\prime}oo^{\prime}oo^{\prime}oo^{\prime}oo^{\prime}
Figure 7. Here, q=2ν1+γ1q=2\nu_{1}+\gamma_{1} and for xx a label in hh we write xx^{\prime} to denote x+3ν1x+3\nu_{1}

.

By the above description, to verify the well definedness of the map ψ\psi, it suffices to check the rhombus inequalities in ψ(h)\psi(h) for the following 2n2n rhombi:

  • The nn SE rhombi each of which straddles the regions described in (2) and (4).

  • The nn vertical rhombi each of which straddles the regions described in (2) and (3).

The first nn rhombi inequalities hold because of the fact that the entries of hh increase along the rows (this follows form the Southeast rhombi inequalities and the fact that μt0t\mu_{t}\geq 0\hskip 5.69046pt\forall t). The second nn rhombi inequalities hold because the edge labels 444The edge label of the Northeast edge xxyy is defined to be xyx-y. of the Northeast edges (green edges in figure 7) originating from the (n+2)th(n+2)^{th} row is bounded above by ν1\nu_{1}, which is equal the edge label of the Northeast edges originating from the (n+1)th(n+1)^{th} row (blue in the figure). This follows from the Northeast rhombi inequalities and the boundary condition on hh. For example, in figure 7 we have eafbgc=ν1e^{\prime}-a^{\prime}\leq f^{\prime}-b^{\prime}\leq g^{\prime}-c^{\prime}=\nu_{1}. Therefore the map ψ\psi is well defined.

It is clear from the definition of the map that it is injective, affine linear and sends integral skew hives to integral hives. We now establish surjectivity. Given a hive in Hive(λ~,μ~,ν~)\operatorname{Hive}(\tilde{\lambda},\tilde{\mu},\tilde{\nu}), consider its triangular subarrays marked in yellow and blue in Figure 7. These are themselves hives, and lemma 4 implies that these hives are uniquely determined (since the corresponding hive polytopes are non-empty). In particular, the labels on the bottom row of the yellow triangle are γ¯+nν1\bar{\gamma}+n\cdot\nu_{1} where γ¯\bar{\gamma} denotes the vector of partial sums of γ\gamma as defined in §4.3. Likewise, the labels on the left edge of the blue triangle must be |γ|+ν¯+nν1|\gamma|+\bar{\nu}+n\cdot\nu_{1}. These are also edges of the the white parallelogram. The othe two edges of the parallelogram have edge labels λ¯+nν1\bar{\lambda}+n\cdot\nu_{1} and |λ|+μ¯+nν1|\lambda|+\bar{\mu}+n\cdot\nu_{1}. This proves surjectivity of ψ\psi.

Finally, since the map ψ\psi does not change rhombus contents, it does not alter any flatness conditions within the white parallelogram. Thus if the left and bottom justified region R(Φ)R(\Phi) is flat in hh, then it remains flat in ψ(h)\psi(h); however since ψ(h)\psi(h) is a triangular hive in twice as many ambient dimensions, this region would now correspond to R(Φ~)R(\tilde{\Phi}) in ψ(h)\psi(h), where Φ~=(Φ1+n,,Φn+n)\tilde{\Phi}=(\Phi_{1}+n,\cdots,\Phi_{n}+n). ∎

We remark that Hive(λ~,μ~,ν~,Φ~)Hive(\tilde{\lambda},\tilde{\mu},\tilde{\nu},\tilde{\Phi}) coincides with the hive Kogan face KHive(λ~,μ~,ν~,w(Φ~))K^{\operatorname{Hive}}(\tilde{\lambda},\tilde{\mu},\tilde{\nu},w(\tilde{\Phi})) of [KRV21], where w(Φ~)𝔖2nw(\tilde{\Phi})\in\mathfrak{S}_{2n} is the unique 312312-avoiding permutation corresponding to the flag Φ~\tilde{\Phi} [PS09, §14], [KRV21, §2.4]. Now, as a consequence of the proposition, we have:

Theorem 8.

The flagged skew Littlewood-Richardson coefficients coincide with certain ww-refined (where, ww is 312312-avoiding) Littlewood-Richardson coefficients of [KRV21]. More precisely, cλ,μ/γν(Φ)=cλ~,μ~ν~(w(Φ~))c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)=c_{\tilde{\lambda},\,\tilde{\mu}}^{\,\tilde{\nu}}(w(\tilde{\Phi})) where w(Φ~)w(\tilde{\Phi}) is the unique 312312-avoiding permutation corresponding to the flag Φ~\tilde{\Phi}.

It is elementary to check that kλ~=kλ~\widetilde{k\lambda}=k\tilde{\lambda} and kν~=kν~\widetilde{k\nu}=k\tilde{\nu}. This implies, ckλ,kμ/kγkν(Φ)=ckλ~,kμ~kν~(w(Φ~))c_{k\lambda,\,k\mu/k\gamma}^{\,k\nu}(\Phi)=c_{k\tilde{\lambda},\,k\tilde{\mu}}^{\,k\tilde{\nu}}(w(\tilde{\Phi})). But Theorem 1.4 of [KRV21] establishes the saturation property of the ww-refined LR coefficients when ww is 312312-avoiding. Together with the preceding remarks, this implies our main theorem:

Theorem 9.

The saturation property holds for the flagged LR coefficients. i.e.,

ckλ,kμ/kγkν(Φ)>0 for some k1cλ,μ/γν(Φ)>0c_{k\lambda,\,k\mu/k\gamma}^{\,k\nu}(\Phi)>0\text{ for some }k\geq 1\implies c_{\lambda,\,\mu/\gamma}^{\,\nu}(\Phi)>0

Theorem 9 can also be proved by working directly with the skew hive polytope, rather than with its isomorphic hive polytope. This involves mimicking all the arguments of [Buc00, KRV21] for skew hives. While we have chosen a shorter approach in this paper, this alternate approach naturally suggests numerous other refinements of the LR coefficients with the saturation property. These will be considered in a future publication.

6. Appendix: Decomposition of Tab(λ/μ,Φ)\operatorname{Tab}(\lambda/\mu,\Phi) into Demazure crystals

In this section, we make theorem 4 effective, describing algorithmically the Demazure crystals which occur in the decomposition. The arguments below are implicit in the character level proof of [RS95], and so we content ourselves with sketching their broad contours.

We start with a brief discussion of the Burge correspondence [Ful97]. We use the standard notation [n]={1,2,,n}[n]=\{1,2,\cdots,n\}. Consider a matrix M=(mij)M=(m_{ij}) of size r×nr\times n with non-negative integer entries. We associate a biword to MM as follows

wM=[iti2i1jtj2j1]w_{M}=\begin{bmatrix}i_{t}\hskip 5.69046pt\cdots\hskip 5.69046pti_{2}\hskip 5.69046pti_{1}\\ j_{t}\hskip 5.69046pt\cdots\hskip 5.69046ptj_{2}\hskip 5.69046ptj_{1}\\ \end{bmatrix}

such that for any pair (i,j)(i,j) that indexes an entry mijm_{ij} of MM, there are mijm_{ij} columns equal to [ij]\begin{bmatrix}i\\ j\end{bmatrix} in wMw_{M}, and the columns of wMw_{M} are ordered as follows:

  1. (1)

    iti2i11i_{t}\geq\cdots\geq i_{2}\geq i_{1}\geq 1.

  2. (2)

    ik+1>iki_{k+1}>i_{k} whenever jk+1>jkj_{k+1}>j_{k}.

In other words, form the biword wMw_{M} by reading the entries mijm_{ij} of MM from left to right within each row starting with the bottom row and proceeding upwards, recording each [ij]\begin{bmatrix}i\\ j\end{bmatrix} with multiplicity mijm_{ij}. We will often denote the row and column indices of the biword by i=i1i2it\textbf{i}=i_{1}i_{2}\cdots i_{t} and j=j1j2jt\textbf{j}=j_{1}j_{2}\cdots j_{t}. Additionally, given a flag Φ\Phi, if ikΦjki_{k}\leq\Phi_{j_{k}} for all kk (in particular, the matrix MM is block upper-triangular) then i is said to be (j,Φ)(\textbf{j},\Phi)-compatible (see [RS95]).

Theorem 10.

[Ful97, Appendix A, Proposition 2] The Burge correspondence gives a bijection between the set of all r×nr\times n matrices with non-negative integer entries Matr×n(+)Mat_{r\times n}(\mathbb{Z}_{+}) and the set of pairs (P,Q)(P,Q) of semistandard tableaux with the same shape where entries of PP are in [n][n] and entries of QQ are in [r][r]. We use the notation (wA)=(P,Q)(w_{A}\rightarrow\emptyset)=(P,Q) if A corresponds to (P,Q)(P,Q).

Theorem 11.

[Ful97, Appendix A, Symmetry Theorem ((b))] If MMatr×n(+)M\in Mat_{r\times n}(\mathbb{Z}_{+}) corresponds to (P,Q)(P,Q) then its transpose Mt{M^{t}} corresponds to (Q,P)(Q,P).

The reverse filling of the skew shape λ/μ\lambda/\mu, denoted RF(λ/μ)RF(\lambda/\mu), is defined to be the filling of the boxes of the shape λ/μ\lambda/\mu by 1,2,3,,|λ/μ|1,2,3,\cdots,|\lambda/\mu|, sequentially from right to left within each row, starting with the top row and proceeding downwards.

We say a standard (skew)(\text{skew}) tableau QQ with |shape(Q)|=|λ/μ||\text{shape$(Q)$}|=|\lambda/\mu| is λ/μ\lambda/\mu-compatible if it satisfies the following:

  1. (1)

    If i+1,ii+1,i are adjacent in a row of RF(λ/μ)RF(\lambda/\mu) then i+1i+1 appears weakly north and strictly east of ii in QQ.

  2. (2)

    If ii occurs directly above jj in a column of RF(λ/μ)RF(\lambda/\mu) then jj appears weakly west and strictly south of ii in QQ.

Remark 6.

The set of all λ/μ\lambda/\mu-compatible standard tableaux of shape ν\nu is in one-to-one correspondence with the set of Littlewood-Richardson tableaux of shape λ/μ\lambda/\mu and weight ν\nu [Ful97, Chapter 5, Proposition 4].

Fix a λ/μ\lambda/\mu-compatible standard tableau QQ. Given a composition α=(α1,α2,)\alpha=(\alpha_{1},\alpha_{2},\cdots), let b(α\alpha) be the word b(2)b(1)\cdots b^{(2)}b^{(1)} in which b(j)b^{(j)} consists of a string of αj\alpha_{j} copies of jj. Also, consider the semi-standard tableau RR whose standardization555The standardization of a tableau TT (denoted by std(T)(T)) is the tableau obtained by changing the 11’s in TT from left to right to 1,2,,α11,2,\cdots,\alpha_{1}, then the 22’s to α1+1,α1+2,,α1+α2\alpha_{1}+1,\alpha_{1}+2,\cdots,\alpha_{1}+\alpha_{2} etc, where α=\alpha=weight(T)(T). is QQ and weight is the composition ρ=λμ\rho=\lambda-\mu. If i=i1i2it\textbf{i}=i_{1}i_{2}\cdots i_{t} then by rev(i)\text{rev}(\textbf{i}) we mean the word iti2i1i_{t}\cdots i_{2}i_{1}.
Define 𝒜(Q,λ/μ,Φ)={TTab(λ/μ,Φ):([b(ρ)rev(bT)])\mathcal{A}(Q,\lambda/\mu,\Phi)=\{T\in\operatorname{Tab}(\lambda/\mu,\Phi):(\begin{bmatrix}\textbf{b}(\rho)\\ \text{rev}(b_{T})\\ \end{bmatrix}\rightarrow\emptyset) =(,R)}=(-,R)\}. Then Tab(λ/μ,Φ)=𝒜(Q,λ/μ,Φ)\operatorname{Tab}(\lambda/\mu,\Phi)=\bigsqcup\mathcal{A}(Q,\lambda/\mu,\Phi) where the union is over all λ/μ\lambda/\mu-compatible standard tableaux QQ [RS95]. We will show that 𝒜(Q,λ/μ,Φ)\mathcal{A}(Q,\lambda/\mu,\Phi) is isomorphic to some Demazure crystal as crystals, i.e., there is a weight-preserving bijection between these sets which intertwines the crystal raising and lowering operators (where defined).

For a composition α\alpha, key(α\alpha) is the semi-standard tableau of shape α\alpha^{\dagger} whose first αk\alpha_{k} columns contain the letter kk for all kk. One can see that key(α\alpha) is the unique tableau of shape α\alpha^{\dagger} and weight α\alpha. We define 𝒲(α,Φ)\mathcal{W}(\alpha,\Phi) as the set of all words u=u2u1\textbf{u}=\cdots u^{2}\cdot u^{1}, where each uiu^{i} is a maximal row word of length αi\alpha_{i} together with the properties that each letter in uiu^{i} can be atmost Φi\Phi_{i} and ([b(α)u])=(,key(α))(\begin{bmatrix}\textbf{b}(\alpha)\\ \textbf{u}\end{bmatrix}\rightarrow\emptyset)=(-,\text{key}(\alpha)).

Let Φ0=(1,2,3,,n)\Phi_{0}=(1,2,3,\cdots,n) denote the standard flag. We have:

Theorem 12.

[LS90, Proposition 5.6] Let α=ωα\alpha=\omega\alpha^{\dagger}. Then the set 𝒲(α,Φ0)\mathcal{W}(\alpha,\Phi_{0}) has a one-to-one correspondence with the set ω(α)\mathcal{B}_{\omega}(\alpha^{\dagger}) via uP(u)\textbf{u}\mapsto P(\textbf{u}) where P(u)P(\textbf{u}) is the unique tableau that is Knuth equivalent to u.

Let a=a1a2at\textbf{a}=a_{1}a_{2}\cdots a_{t} be a word. Then by an ascent of the word a we mean a positive integer 1kt11\leq k\leq t-1 such that ak<ak+1a_{k}<a_{k+1}. We recursively define the essential subword essL(a)\text{ess}_{L}(\textbf{a}) of a with respect to a positive integer LL or \infty to be the following indexed subword of a:

  1. (1)

    essL(a)\text{ess}_{L}(\textbf{a}) is the empty word if t=0t=0.

  2. (2)

    essL(a)=essat(a1a2at1)at\text{ess}_{L}(\textbf{a})=\text{ess}_{a_{t}}(a_{1}a_{2}\cdots a_{t-1})\,a_{t} if at<La_{t}<L.

  3. (3)

    essL(a)=essL(a1a2at1)\text{ess}_{L}(\textbf{a})=\text{ess}_{L}(a_{1}a_{2}\cdots a_{t-1}) if atLa_{t}\geq L.

Define the essential subword of a as ess(a)=ess(a)\text{ess}(\textbf{a})=\text{ess}_{\infty}(\textbf{a}).

Lemma 5.

Let Φ\Phi be a flag and i=i1i2it\textbf{i}=i_{1}i_{2}\cdots i_{t} be a word. If a=a1a2at\textbf{a}=a_{1}a_{2}\cdots a_{t}, b=b1b2bt\textbf{b}=b_{1}b_{2}\cdots b_{t} are words in [n][n] having the same essential subword and ascents, then i is (a,Φ)(\textbf{a},\Phi)-compatible if and only if i is (b,Φ)(\textbf{b},\Phi)-compatible.

Proof.

The proof is similar to that of Lemma 8 of [RS95]. ∎

For a semi-standard tableau TT, let T|<LT|_{<L} denote the subtableau of TT consisting of the entries of TT which are less than LL, and let K_(T)K_{\_}(T) denote the left key tableau of TT. For more details on computing left and right keys, see [RS95], [Wil13] and [RS95a].

Lemma 6.

Let L1L\geq 1. Suppose that

  1. (1)

    P,PP,P^{\prime} and QQ are semi-standard tableaux of the same shape such that wt(Q)=(1,1,,1)wt(Q)=(1,1,\cdots,1) and K_(P)|<L=K_(P)|<LK_{\_}(P)|_{<L}=K_{\_}(P^{\prime})|_{<L}.

  2. (2)

    a=a1a2at,\textbf{a}=a_{1}a_{2}\cdots a_{t}, a=a1a2at are two words such that ([b(1t)rev(a)])=(P,Q)\textbf{a}^{\prime}=a^{\prime}_{1}a^{\prime}_{2}\cdots a^{\prime}_{t}\text{ are two words such that }(\begin{bmatrix}\textbf{b}(\textbf{1}_{t})\\ \textup{rev}(\textbf{a})\end{bmatrix}\rightarrow\emptyset)=(P,Q) and ([b(1t)rev(a)])=(P,Q)(\begin{bmatrix}\textbf{b}(\textbf{1}_{t})\\ \textup{rev}(\textbf{a}^{\prime})\end{bmatrix}\rightarrow\emptyset)=(P^{\prime},Q), where 1t\textbf{1}_{t} is the composition (1,1,,1)(1,1,\cdots,1) of length tt.

Then essL(a)=essL(a)\textup{ess}_{L}(\textbf{a})=\textup{ess}_{L}(\textbf{a}^{\prime}) and a,a\textbf{a},\textbf{a}^{\prime} have the same ascents.

Proof.

The proof is similar to that of Lemma 9 of [RS95]. ∎

Now we have the following proposition:

Proposition 6.

There is a bijection Ω\Omega between the sets 𝒜(Q,λ/μ,Φ)\mathcal{A}(Q,\lambda/\mu,\Phi) and 𝒲(β(R),Φ)\mathcal{W}(\beta(R),\Phi) such that if TΩ(T)T\mapsto\Omega(T) then rev(bT)\textup{rev}(b_{T}) and Ω(T)\Omega{(T)} are Knuth equivalent. Here β(R)\beta(R) denote the weight of the left key tableau K_(R)K_{\_}(R) of RR.

Proof.

Let TT Tab(λ/μ,Φ)\in\operatorname{Tab}(\lambda/\mu,\Phi) and M(T)M(T) be the matrix corresponding to [b(ρ)rev(bT)]\begin{bmatrix}\textbf{b}(\rho)\\ \text{rev}(b_{T})\\ \end{bmatrix}. Suppose that [rev(i)rev(a)]\begin{bmatrix}\text{rev}(\textbf{i})\\ \text{rev}(\textbf{a})\\ \end{bmatrix} is the biword for M(T)tM(T)^{t}. Thus i is (a,Φ)(\textbf{a},\Phi)-compatible because TTab(λ/μ,Φ)T\in\operatorname{Tab}(\lambda/\mu,\Phi).

Let rect(T)\text{rect}(T) denote the rectification of the skew tableau TT. Then ([b(ρ)rev(bT)])=(rect(T),R)(\begin{bmatrix}\textbf{b}(\rho)\\ \text{rev}(b_{T})\\ \end{bmatrix}\rightarrow\emptyset)=(\text{rect}(T),R)\implies ([rev(i)rev(a)])=(R,rect(T))(\begin{bmatrix}\text{rev}(\textbf{i})\\ \text{rev}(\textbf{a})\\ \end{bmatrix}\rightarrow\emptyset)=(R,\text{rect}(T)) (by theorem 11). Consider the unique word a\textbf{a}^{\prime} such that ([rev(i)rev(a)])=(K_(R),rect(T))(\begin{bmatrix}\text{rev}(\textbf{i})\\ \text{rev}(\textbf{a}^{\prime})\\ \end{bmatrix}\rightarrow\emptyset)=(K_{\_}(R),\text{rect}(T)). Then by Lemma 5 and Lemma 6, i is (a,Φ)(\textbf{a}^{\prime},\Phi)-compatible. Let [rev(j)rev(v)]\begin{bmatrix}\text{rev}(\textbf{j})\\ \text{rev}(\textbf{v})\\ \end{bmatrix} be the biword associated to the matrix A such that AtA^{t} corresponds to [rev(i)rev(a)]\begin{bmatrix}\text{rev}(\textbf{i})\\ \text{rev}(\textbf{a}^{\prime})\\ \end{bmatrix}. Hence ([rev(j)rev(v)])=(rect(T),K_(R))(\begin{bmatrix}\text{rev}(\textbf{j})\\ \text{rev}(\textbf{v})\\ \end{bmatrix}\rightarrow\emptyset)=(\text{rect}(T),K_{\_}(R)) (by theorem 11). So by corollary 12 of [RS95], we have rev(v)𝒲(β(R),Φ).\text{rev}(\textbf{v})\in\mathcal{W}(\beta(R),\Phi). We define Ω(T)=rev(v)\Omega(T)=\text{rev}(\textbf{v}). Then Ω\Omega is a bijection and rev(bT)\text{rev}(b_{T}) and Ω(T)\Omega(T) are Knuth equivalent. ∎

Theorem 13.

[RS95, Theorem 21] For a flag Φ\Phi and a composition β\beta, either 𝒲(β,Φ)\mathcal{W}(\beta,\Phi) is empty or there is a bijection ζ\zeta between the sets 𝒲(β,Φ)\mathcal{W}(\beta,\Phi) and 𝒲(β^,Φ0)\mathcal{W}(\hat{\beta},\Phi_{0}) for some composition β^\hat{\beta} with β=β^\beta^{\dagger}=\hat{\beta}^{\dagger} such that if uζ(u)\textbf{u}\mapsto\zeta(\textbf{u}) then u and ζ(u)\zeta(\textbf{u}) are Knuth equivalent.

Now the following proposition tells us that Tab(λ/μ,Φ)\operatorname{Tab}(\lambda/\mu,\Phi) is a disjoint union of Demazure crystals.

Proposition 7.

The rectification map rect:𝒜(Q,λ/μ,Φ)τ(β(R)^)\textup{rect}:\mathcal{A}(Q,\lambda/\mu,\Phi)\rightarrow\mathcal{B}_{\tau}(\widehat{\beta(R)}^{\dagger}) is a weight-preserving bijection which intertwines the crystal raising and lowering operators ((where defined)). Here τ\tau is any permutation such that τ.β(R)^=β(R)^\tau.\widehat{\beta(R)}^{\dagger}=\widehat{\beta(R)}.

Proof.

We know that rev(bT),Ω(T),ζ(Ω(T)),P(ζ(Ω(T)))\text{rev}(b_{T}),\Omega(T),\zeta(\Omega(T)),P(\zeta(\Omega(T))) are all Knuth equivalent. Thus we have rect(T)\text{rect}(T) =P(ζ(Ω(T)))τ(β(R)^)=P(\zeta(\Omega(T)))\in\mathcal{B}_{\tau}(\widehat{\beta(R)}^{\dagger}). So the map is well-defined. Clearly, the rectification map is a weight-preserving bijection. Commutativity of the rectification map with the crystal raising and lowering operators comes from properties of Knuth equivalence. ∎

References

  • [ADG22] Sami Assaf, Anne Dranowski and Nicolle Gonzalez “Extremal tensor products of Demazure crystals”, 2022 arXiv:2210.10236 [math.RT]
  • [BS17] Daniel Bump and Anne Schilling “Crystal bases” Representations and combinatorics World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, pp. xii+279 DOI: 10.1142/9876
  • [Buc00] Anders Skovsted Buch “The saturation conjecture (after A. Knutson and T. Tao)” With an appendix by William Fulton In Enseign. Math. (2) 46.1-2, 2000, pp. 43–60
  • [Ful97] William Fulton “Young tableaux” With applications to representation theory and geometry 35, London Mathematical Society Student Texts Cambridge University Press, Cambridge, 1997, pp. x+260
  • [Jos03] Anthony Joseph “A decomposition theorem for Demazure crystals” In J. Algebra 265.2, 2003, pp. 562–578 DOI: 10.1016/S0021-8693(03)00028-0
  • [Kas93] Masaki Kashiwara “The crystal base and Littelmann’s refined Demazure character formula” In Duke Math. J. 71.3, 1993, pp. 839–858 DOI: 10.1215/S0012-7094-93-07131-1
  • [Kou20] Takafumi Kouno “Decomposition of tensor products of Demazure crystals” In J. Algebra 546, 2020, pp. 641–678 DOI: 10.1016/j.jalgebra.2019.11.001
  • [KRV21] Mrigendra Singh Kushwaha, K. N. Raghavan and Sankaran Viswanath “The saturation problem for refined Littlewood-Richardson coefficients” In Sém. Lothar. Combin. 85B, 2021, pp. Art. 52, 12
  • [KRV22] Mrigendra Singh Kushwaha, K. N. Raghavan and Sankaran Viswanath “The saturation problem for refined Littlewood-Richardson coefficients”, 2022 arXiv:2204.03399v1 [math.RT]
  • [Lou] James D. Louck “Skew Gelfand-Tsetlin Patterns, Lattice Permutations, And Skew Pattern Polynomials” In Symmetry and Structural Properties of Condensed Matter, pp. 241–264 DOI: 10.1142/9789812704474˙0019
  • [LS90] Alain Lascoux and Marcel-Paul Schützenberger “Keys & standard bases” In Invariant theory and tableaux (Minneapolis, MN, 1988) 19, IMA Vol. Math. Appl. Springer, New York, 1990, pp. 125–144
  • [PS09] Alexander Postnikov and Richard P. Stanley “Chains in the Bruhat order” In J. Algebraic Combin. 29.2, 2009, pp. 133–174 DOI: 10.1007/s10801-008-0125-4
  • [RS95] Victor Reiner and Mark Shimozono “Key polynomials and a flagged Littlewood-Richardson rule” In J. Combin. Theory Ser. A 70.1, 1995, pp. 107–143 DOI: 10.1016/0097-3165(95)90083-7
  • [RS95a] Victor Reiner and Mark Shimozono “Plactification” In J. Algebraic Combin. 4.4, 1995, pp. 331–351 DOI: 10.1023/A:1022434000967
  • [RS98] Victor Reiner and Mark Shimozono “Percentage-avoiding, northwest shapes and peelable tableaux” In J. Combin. Theory Ser. A 82.1, 1998, pp. 1–73 DOI: 10.1006/jcta.1997.2841
  • [Wil13] Matthew J. Willis “A direct way to find the right key of a semistandard Young tableau” In Ann. Comb. 17.2, 2013, pp. 393–400 DOI: 10.1007/s00026-013-0187-4
  • [Zel81] A. V. Zelevinsky “A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence” In J. Algebra 69.1, 1981, pp. 82–94 DOI: 10.1016/0021-8693(81)90128-9