This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


Same-Sign Dilepton Signature in the Inert Doublet Model

Fa-Xin Yang    Zhi-Long Han [email protected]    Yi Jin School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, China
Abstract

In this paper, we perform a detailed analysis on the same-sign dilepton signature in the inert doublet model. Focusing on the low dark matter mass region, we randomly scan the corresponding parameter space. Viable samples allowed by various constraints are obtained, among which twenty benchmark points are selected for further collider signature study. At hadron colliders, the same-sign dilepton signature is produced via ppW±W±jjH±H±jjpp\to W^{\pm*}W^{\pm*}jj\to H^{\pm}H^{\pm}jj with the leptonic decay mode H±HW±(l±ν)H^{\pm}\to HW^{\pm}(\to l^{\pm}\nu), where HH is the dark matter candidate. We investigate the testability of this signal at the high-luminosity LHC (HL-LHC) and the proposed 27 TeV high-energy LHC (HE-LHC). According to our simulation, the HL-LHC with =3ab1\mathcal{L}=3~{}ab^{-1} can hardly probe this signal. Meanwhile, for the HE-LHC with =15ab1\mathcal{L}=15~{}ab^{-1}, it is promising to obtain a 5σ5\sigma significance when 250GeVmH±mH300250~{}\text{GeV}\lesssim m_{H^{\pm}}-m_{H}\lesssim 300 GeV with dark matter mass mH60m_{H}\sim 60 or 71 GeV.

I Introduction

Although the discovery of Higgs boson Aad:2012tfa ; Chatrchyan:2012ufa demonstrated the viability of the Standard Model (SM), there are convincing evidences of physics beyond SM, such as the origin of dark matter (DM) and tiny neutrino masses. Recent Plank data indicates that dark matter accounts for about 85% of the total matter content in the universe Aghanim:2018eyx . Among various candidates of particle DM, the Weakly Interacting Massive Particles (WIMPs) are the most popular recipes Bertone:2004pz ; Arcadi:2017kky , due to the fact that thermally produced WIMPs with weak-scale cross section can naturally lead to the observed DM relic density.

The Inert Doublet Model (IDM) Deshpande:1977rw ; Barbieri:2006dq ; LopezHonorez:2006gr is one of the simplest extensions of SM that provides DM candidate. This model introduces an inert Higgs doublet, which is odd under the unbroken Z2Z_{2} symmetry. There are four additional scalars as in the usual two Higgs doublet models Branco:2011iw , i.e., neutral CP-even scalar (HH), neutral CP-odd scalar (AA), and charged scalar (H±H^{\pm}). The imposed unbroken Z2Z_{2} symmetry not only forbids Yukawa interactions of inert scalars with SM fermions, but also protects the lightest inert scalar being stable. In this paper, we consider the neutral CP-even scalar HH as DM candidate. If we further introduce Z2Z_{2}-odd right-hand neutrinos, the tiny neutrino masses can also be realized by the Scotogenic mechanism Ma:2006km ; Han:2019diw ; Han:2019lux ; Wang:2019byi . The phenomenology of the IDM has been extensively studied in Refs. Gustafsson:2007pc ; Cao:2007rm ; Lundstrom:2008ai ; Dolle:2009fn ; Honorez:2010re ; LopezHonorez:2010tb ; Gustafsson:2012aj ; Borah:2012pu ; Swiezewska:2012eh ; Osland:2013sla ; Goudelis:2013uca ; Modak:2015uda ; Blinov:2015vma ; Arhrib:2015hoa ; Plascencia:2015xwa ; Ilnicka:2015jba ; Diaz:2015pyv ; Kanemura:2016sos ; Hashemi:2016wup ; Belyaev:2016lok ; Borah:2017dfn ; Banerjee:2019luv ; Jueid:2020rek ; Abouabid:2020eik ; Fabian:2020hny ; Kalinowski:2020rmb ; Banerjee:2021oxc ; Banerjee:2021anv ; Banerjee:2021xdp ; Banerjee:2021hal .

It is noticeable that the current positive evidences of DM all come from cosmological observations, which are based on the gravitational effects of DM. Therefore, the nature of DM is still an open question. To verify its nature, searches have been performed along three directions: direct detection, indirect detection, and collider signature. Despite the non-observation of direct detection signal which has already put stringent constraints on the parameter space of IDM Arhrib:2013ela ; Belyaev:2016lok , it is still appealing to extract positive indirect detection or collider signatures. For instance, low mass DM in IDM is possible to explain the Galactic center excess reported by Fermi-LAT Eiteneuer:2017hoh . Meanwhile, a large parameter space of high mass DM in IDM is detectable at the Cherenkov Telescope Array Queiroz:2015utg ; Garcia-Cely:2015khw . As for collider searches, promising signatures are the dilepton Dolle:2009ft ; Belanger:2015kga , trilepton Miao:2010rg , and teralepton channelGustafsson:2012aj ; Datta:2016nfz at LHC. The vector boson fusion (VBF) channel ppHHjjpp\to HHjj is also considered in Refs. Dutta:2017lny ; Dercks:2018wch . Other promising collider signatures can be found in Refs. Aoki:2013lhm ; Arhrib:2014pva ; Hashemi:2015swh ; Belyaev:2018ext ; Kalinowski:2018ylg ; Kalinowski:2018kdn ; Guo-He:2020nok .

The same-sign pair production of charged Higgs bosons via vector boson fusion (VBF) in two Higgs doublet model was recently proposed by Ref. Aiko:2019mww to explore the nature of the Higgs potential, where two typical decay modes H±τνH^{\pm}\to\tau\nu and H±tbH^{\pm}\to tb are considered. The decay modes H±W±AH^{\pm}\to W^{\pm}A with Abb¯A\to b\bar{b} or Aτ+τA\to\tau^{+}\tau^{-} are also studied in Ref. Arhrib:2019ywg . In this paper, we consider the decay mode H±W±HH^{\pm}\to W^{\pm}H with HH being the DM candidate, which leads to the same-sign dilepton signature ppH±H±jj(W±H)(W±H)jjl±l±jj+ETpp\to H^{\pm}H^{\pm}jj\to(W^{\pm}H)(W^{\pm}H)jj\to l^{\pm}l^{\pm}jj+\cancel{E}_{T}. Notably, the well studied opposite-sign dilepton signature in IDM is only promising with compressed mass spectrum Δm=mAmH[40,80]\Delta m=m_{A}-m_{H}\in[40,80] GeV Dolle:2009ft . A distinct nature of the same-sign dilepton signature is that the production cross section will be enhanced when the mass splitting Δm\Delta m becomes larger Aiko:2019mww . Meanwhile, the SM background of the same-sign dilepton signature Sirunyan:2017ret ; Aaboud:2019nmv ; Sirunyan:2020gyx ; Sirunyan:2020gvn is much smaller than the opposite-sign dilepton. Therefore, we expect that the same-sign dilepton signature might be promising for large Δm\Delta m, which is complementary to the opposite-sign dilepton signature.

The paper is organized in the following way. In section II, we briefly review the inert doublet model. Focusing on the low mass region mH<100m_{H}<100 GeV, viable parameter space is explored by considering certain constraints. A detailed study of the same-sign dilepton signature is performed in section III. Conclusion is presented in section IV

II The Model

In this paper, we consider the inert doublet model proposed in Ref. Deshpande:1977rw ; LopezHonorez:2006gr . In addition to the SM Higgs doublet H1H_{1}, an inert Higgs doublet H2H_{2} is further introduced. The inert doublet H2H_{2} is odd under an imposed Z2Z_{2} symmetry, thus H2H_{2} does not couple to SM fermions directly but to gauge bosons only. The Z2Z_{2} symmetry also ensures the stability of DM candidate. Provided the Z2Z_{2} symmetry is not broken spontaneously, then H2H_{2} will not develop a vacuum expectation value (VEV). The Higgs doublets can be denoted as

H1=(G+12(v+h+iG0)),H2=(H+12(H+iA)),\displaystyle H_{1}=\left(\begin{array}[]{c}G^{+}\\ \frac{1}{\sqrt{2}}(v+h+iG^{0})\end{array}\right),\quad H_{2}=\left(\begin{array}[]{c}H^{+}\\ \frac{1}{\sqrt{2}}(H+iA)\end{array}\right), (5)

where G±,G0G^{\pm},G^{0} is the would-be Goldstone bosons, vv is the VEV of H1H_{1}, and hh is the SM Higgs boson. The Higgs potential under the exact Z2Z_{2} symmetry is given by

V\displaystyle V =\displaystyle= μ12H1H1+μ22H2H2+λ1(H1H1)2+λ2(H2H2)2+λ3(H1H1)(H2H2)\displaystyle\mu_{1}^{2}H_{1}^{\dagger}H_{1}+\mu_{2}^{2}H_{2}^{\dagger}H_{2}+\lambda_{1}(H_{1}^{\dagger}H_{1})^{2}+\lambda_{2}(H_{2}^{\dagger}H_{2})^{2}+\lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2})
+λ4(H1H2)(H2H1)+λ52[(H1H2)2+h.c.].\displaystyle+\lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1})+\frac{\lambda_{5}}{2}\left[(H_{1}^{\dagger}H_{2})^{2}+\text{h.c.}\right].

Here, all the free parameters are taken to be real. Due to the unbroken Z2Z_{2} symmetry, term as μ122(H1H2+H2H1)\mu_{12}^{2}(H_{1}^{\dagger}H_{2}+H_{2}^{\dagger}H_{1}) is forbidden. Therefore, H1H_{1} and H2H_{2} do not mix. After electroweak symmetry breaking, masses of scalars are given by

mh2\displaystyle m_{h}^{2} =\displaystyle= 2μ12=2λ1v2\displaystyle-2\mu_{1}^{2}=2\lambda_{1}v^{2} (7)
mH2\displaystyle m_{H}^{2} =\displaystyle= μ22+12(λ3+λ4+λ5)v2\displaystyle\mu_{2}^{2}+\frac{1}{2}(\lambda_{3}+\lambda_{4}+\lambda_{5})v^{2} (8)
mA2\displaystyle m_{A}^{2} =\displaystyle= μ22+12(λ3+λ4λ5)v2\displaystyle\mu_{2}^{2}+\frac{1}{2}(\lambda_{3}+\lambda_{4}-\lambda_{5})v^{2} (9)
mH±2\displaystyle m_{H^{\pm}}^{2} =\displaystyle= μ22+12λ3v2\displaystyle\mu_{2}^{2}+\frac{1}{2}\lambda_{3}v^{2} (10)

HH is taken to be the DM candidate in the following studies, which correspond to λ5<0\lambda_{5}<0. For AA being DM candidate , one can simply make the replacement λ5λ5\lambda_{5}\leftrightarrow-\lambda_{5}. The parameters μ1\mu_{1} and λ1\lambda_{1} can be fixed by SM Higgs mass mhm_{h} and VEV vv. Then we are left with five free parameters, i.e., {μ2,λ2,λ3,λ4,λ5}\{\mu_{2},\lambda_{2},\lambda_{3},\lambda_{4},\lambda_{5}\}. A more convenient set of parameters are {mH,mA,mH±,λ2,λL}\{m_{H},m_{A},m_{H^{\pm}},\lambda_{2},\lambda_{L}\}, where λL=(λ3+λ4+λ5)/2\lambda_{L}=(\lambda_{3}+\lambda_{4}+\lambda_{5})/2 describes the Higgs-DM interaction hHHhHH.

Extensively discussed in previous studies, the above parameter set is constrained by various theoretical and experimental bounds. Benchmark points, which satisfy all constraints, have been given in Ref. Kalinowski:2018ylg . Here, we briefly discuss the relevant constraints to the low mass region we adopted. More details can be found in Refs. Belyaev:2016lok ; Kalinowski:2018ylg .

  • Perturbativity: The model is perturbative when the quartic couplings satisfy

    |λ1,λ2,λ3,λ4,λ5|4π.|\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4},\lambda_{5}|\leq 4\pi. (11)
  • Vacuum stability: The stability of the Higgs potential at tree level is guaranteed by the bounded from below conditions

    λ1>0,λ2>0,λ3+2λ1λ2>0,λ3+λ4|λ5|+2λ1λ2>0.\lambda_{1}>0,\lambda_{2}>0,\lambda_{3}+2\sqrt{\lambda_{1}\lambda_{2}}>0,\lambda_{3}+\lambda_{4}-|\lambda_{5}|+2\sqrt{\lambda_{1}\lambda_{2}}>0. (12)
  • Global minimum: In order to make sure the inert minimum being a local one, one needs Ginzburg:2010wa

    μ12λ1μ22λ2.\frac{\mu_{1}^{2}}{\sqrt{\lambda_{1}}}\leq\frac{\mu_{2}^{2}}{\sqrt{\lambda_{2}}}. (13)

    Using Eqn. (7) and (8), the above condition can be translated to

    λL2λ2mhv+2mH22v2.\lambda_{L}\leq\frac{\sqrt{2\lambda_{2}}m_{h}v+2m_{H}^{2}}{2v^{2}}. (14)
  • Unitarity: The unitarity of SS-matrix from scattering processes among scalars and gauge bosons requires that the corresponding absolute eigenvalues of the scattering matrix should be less than 8π8\pi Arhrib:2012ia . By requiring the unitarity conditions are valid up to about 10 TeV, the mass splittings are found to be in the region as Khan:2015ipa ; Datta:2016nfz

    mAmH300GeV,mH±mH300GeV.m_{A}-m_{H}\lesssim 300~{}{\rm GeV},~{}m_{H^{\pm}}-m_{H}\lesssim 300~{}{\rm GeV}. (15)
  • Electroweak precision tests: The inert Higgs doublet will contribute to the oblique SS and TT parameters. Analytic expressions can be found in Ref. Belyaev:2016lok . As for the experimental limits, we take the global fit result in Ref. Baak:2014ora

    S=0.06±0.09,T=0.01±0.07,S=0.06\pm 0.09,~{}T=0.01\pm 0.07, (16)

    with correlation coefficient +0.91.

  • Gauge boson widths: The measurement of decay widths of gauge bosons W±W^{\pm} and ZZ indicate that masses of inert scalars should satisfy the following conditions

    mA,H+mH±>mW,mA+mH>mZ,2mH±>mZ.m_{A,H}+m_{H^{\pm}}>m_{W},~{}m_{A}+m_{H}>m_{Z},~{}2m_{H^{\pm}}>m_{Z}. (17)

    Thus, decays of W±,ZW^{\pm},Z to inert scalars are not kinetically open.

  • Collider searches: Searches for supersymmetric particles at LEP via dijet or dilepton signal have excluded the following mass region Lundstrom:2008ai

    mA100GeV,mH80GeV,mAmH8GeV,m_{A}\leq 100~{}{\rm GeV},~{}m_{H}\leq 80~{}{\rm GeV},~{}m_{A}-m_{H}\geq 8~{}{\rm GeV}, (18)

    when the above conditions are satisfied simultaneously. Meanwhile, searches for chargino have set a lower limit on the charged scalar Pierce:2007ut

    mH±70GeVm_{H^{\pm}}\geq 70~{}{\rm GeV} (19)
  • SM Higgs data: The Higgs invisible decay channel gets additional contribution when DM is light enough, i.e., mH<mh/2m_{H}<m_{h}/2. The current experimental limit on the branching ratio of Higgs invisible decay is Khachatryan:2016whc

    BR(hinvisible)<0.24.\text{BR}(h\to\text{invisible})<0.24. (20)

    The charged scalar H±H^{\pm} will also impact the Higgs to diphoton channel via one loop contribution Swiezewska:2012eh . The experimental signal strength of diphoton is Khachatryan:2016vau

    μγγ=1.140.36+0.38.\mu_{\gamma\gamma}=1.14^{+0.38}_{-0.36}. (21)
  • Relic density: The DM relic density observed by the Planck experiment is Aghanim:2018eyx

    Ωh2=0.1200±0.0012.\Omega h^{2}=0.1200\pm 0.0012. (22)

    We require that the theoretical DM relic density of HH is within 3σ3\sigma range of the observed value. MicrOmegas Barducci:2016pcb is used to calculate the relic density.

  • Direct detection: In this paper, we take the direct detection limit on the spin-independent cross section from the XENON1T experiment Aprile:2018dbl , which is the most stringent one at present.

Focus on the low mass region, we randomly scan the parameter space in the following regions

mH[50,80]GeV,λL[0.04,0.04],λ2[0,1]\displaystyle m_{H}\in[50,80]~{}{\rm GeV},~{}\lambda_{L}\in[-0.04,0.04],~{}\lambda_{2}\in[0,1] (23)
mAmH[0,300]GeV,mH±mH[0,300]GeV\displaystyle m_{A}-m_{H}\in[0,300]~{}{\rm GeV},~{}m_{H^{\pm}}-m_{H}\in[0,300]~{}{\rm GeV}
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Scanned results of the low mass region. Distribution of samples in the (mH,λL)(m_{H},\lambda_{L}) plane (panel a), (mA,mH)(m_{A},m_{H}) plane (panel b), (mH±,mA)(m_{H^{\pm}},m_{A}) plane (panel c) and (mH±mH,mAmH)(m_{H^{\pm}}-m_{H},m_{A}-m_{H}) plane (panel d). All the samples satisfy constraints from Eqn. (11) to (22). The gray points are further excluded by the XENON1T result Aprile:2018dbl . The green and red points are allowed by all constraints. The red points, which have been listed in Table 1 , are the benchmark points selected for following same-sign dilepton signature. The light blue band in panel d corresponds to the promising region of the opposite-sign dilepton signature Dolle:2009ft .

Scanned results are shown in Fig. 1. The requirement of relic density within 3σ3\sigma range together with the direct detection limit from XENON1T strictly constrain the parameter space. From Fig. 1 (a) and (b), it is clear that the allowed samples of our scan fall into three separated regions. One is the Higgs resonance region around mHmh/2m_{H}\lesssim m_{h}/2. Another one is the vector boson annihilation region around mH71.5m_{H}\sim 71.5 GeV, where the dominant annihilation channel is HHVV(V=Z,W)HH\to VV(V=Z,W). The mass region 63GeVmH7163~{}{\rm GeV}\lesssim m_{H}\lesssim 71 GeV with mA>100m_{A}>100 GeV is now excluded by XENON1T. The third one is the narrow coannihilation region mAmH8m_{A}-m_{H}\sim 8 GeV. Since degenerate mAm_{A} and mHm_{H} will lead to vanishing same-sign charged Higgs pair at LHC Aiko:2019mww , we will not consider such coannihilation region in the following. In Fig. 1 (c), results in the (mA,mH±)(m_{A},m_{H^{\pm}}) plane are also shown. All the survived points satisfy mAmH±m_{A}\lesssim m_{H^{\pm}}, mainly due to constraints from SS and TT parameters in Eqn. 16. The mass gap between 80GeVmA<10080~{}{\rm GeV}\lesssim m_{A}<100 GeV corresponds to the excluded region of LEP in Eqn. (18). Because the same-sign dilepton signature is sensitive to the mass splitting Δm=mAmH\Delta m=m_{A}-m_{H}, corresponding results are also depicted in Fig. 1 (d).

  No. mHm_{H}(GeV) mAm_{A}(GeV) mH±m_{H^{\pm}}(GeV)  λ2\lambda_{2}  λL\lambda_{L}  Ωh2\Omega h^{2} σ\sigma @14TeV (fb) σ\sigma @27TeV (fb)
BP1 71.69 107.5 139.6 0.4097 0.002203  0.1210 0.054 0.160
BP2 59.30 119.1 136.3  0.09806  -0.0004655 0.1213 0.154 0.451
BP3 71.67 152.9 167.0 0.1750  0.0001029 0.1233 0.214 0.657
BP4 71.76 177.0 190.9 0.3855 -0.0002066 0.1180 0.285 0.914
BP5 62.64 180.5 189.1 0.7473 -0.002478 0.1177 0.355 1.139
BP6 70.82 201.1 206.8 0.8602 0.002879 0.1233 0.373 1.232
BP7 60.37 199.7 208.8 0.6200 -0.0002771 0.1210 0.409 1.351
BP8 71.63 220.8 229.1 0.5264 -0.0007215 0.1193 0.399 1.362
BP9 61.12 223.2 230.3 0.4692 -0.0002002 0.1227 0.454 1.553
BP10 57.76 230.7 244.3 0.9192  0.0009435 0.1185 0.454 1.578
BP11 71.44 258.6 269.0 0.6848 -0.0007471 0.1214 0.446 1.616
BP12 71.55 272.6 277.1  0.00294 -0.001236 0.1205 0.483 1.765
BP13 56.40 261.4 273.1 0.5082 -0.001733 0.1191 0.495 1.799
BP14 71.17 290.1 301.2 0.5216  0.0006213 0.1200 0.467 1.788
BP15 70.72 299.9 317.8 0.7495  0.001944 0.1235 0.451 1.755
BP16 71.12 312.9 322.7  0.04812  0.0002456 0.1221 0.482 1.892
BP17 71.39 321.4 334.9 0.7437 -0.0001886 0.1172 0.468 1.883
BP18 71.31 329.1 350.8 0.1182 -0.0005298 0.1204 0.441 1.813
BP19 62.32 334.6 346.0 0.2196  0.0001064 0.1180 0.498 2.037
BP20 71.14 360.8 366.8 0.1079  0.0005207 0.1192 0.495 2.087
Table 1: Benchmark points (BP) for the same-sign dilepton signature. Here, σ\sigma denotes the cross section of ppH±H±jjpp\to H^{\pm}H^{\pm}jj with preselection cuts in Eqn.(24).

Based on the above scanned results, we have selected 20 BPs (red ones in Fig. 1) for the following study. Detailed information on these BP can be found in Table 1. Different from Ref. Kalinowski:2018ylg , we have selected more BPs with Δm>150\Delta m>150 GeV. For BP1 to BP10, they could also be probed at the 380 GeV CLIC with 1 ab-1 data, meanwhile the rest ten BPs are within the reach of 1.5 TeV CLIC with 2.5 ab-1 data Kalinowski:2018kdn .

III Same-Sign Dilepton Signature

Refer to caption
Refer to caption
Figure 2: Branching ratio of the charged scalar H±H^{\pm} for mH±mA=30m_{H^{\pm}}-m_{A}=30 GeV (left panel) and mH±mA=15m_{H^{\pm}}-m_{A}=15 GeV (right panel), where mHm_{H} is fixed to be 62 GeV in both cases. The package 2HDMC Eriksson:2009ws is used for calculating these branching ratios.

Before discussing the same-sign dilepton signature, we first consider the branching ratio of the charged scalar H±H^{\pm}. There are two possible decay modes of H±H^{\pm} in the IDM. One is H±W±HH^{\pm}\to W^{\pm}H, and the other is H±W±AH^{\pm}\to W^{\pm}A. For the special scenario mHmA<mH±m_{H}\sim m_{A}<m_{H^{\pm}}, one would have BR(H±W±H)BR(H±W±A)0.5\text{BR}(H^{\pm}\to W^{\pm}H)\approx\text{BR}(H^{\pm}\to W^{\pm}A)\approx 0.5. However, the precise measurement of SS and TT parameters requires mH<mAmH±m_{H}<m_{A}\lesssim m_{H^{\pm}}, which leads to a phase space suppression of the H±W±AH^{\pm}\to W^{\pm}A mode. In Fig. 2, we illustrate the branching ratio of H±H^{\pm}. For mH±mA=30(15)m_{H^{\pm}}-m_{A}=30(15) GeV, we have BR(H±W±A)<0.01\text{BR}(H^{\pm}\to W^{\pm}A)<0.01, i.e., BR(H±W±H)>0.99\text{BR}(H^{\pm}\to W^{\pm}H)>0.99 when mH±>135(100)m_{H^{\pm}}>135(100) GeV. That is to say, H±W±HH^{\pm}\to W^{\pm}H is always the dominant decay mode (approximate to one) for the BPs in Table 1.

Refer to caption
Refer to caption
Figure 3: Production cross section of process ppH±H±jjpp\to H^{\pm}H^{\pm}jj at the s=14\sqrt{s}=14 TeV HL-LHC (left panel) and the s=27\sqrt{s}=27 TeV HE-LHC (right panel) as a function of mH±m_{H^{\pm}} with Δm=\Delta{m}= 100GeV, 200GeV, 300GeV, respectively. Here, we also fix mH=62m_{H}=62 GeV. The cross section of the BPs listed in Table 1 are also shown. Note that the preselection cuts in Eqn.(24) are already applied.

An essential feasibility of the process ppH±H±jjpp\to H^{\pm}H^{\pm}jj is that its cross section is approximately proportional to the square of the mass splitting Δm\Delta m Arhrib:2019ywg . The dependence of the cross sections σ(ppH±H±jj)\sigma(pp\to H^{\pm}H^{\pm}jj) for different mass splitting Δm\Delta m is depicted in Fig. 3. During the calculation, Madgraph5_aMC@NLO Alwall:2014hca is employed with the preselection cuts for VBF processes at parton level

ηj1×ηj2<0,|Δηjj|>2.5.\eta_{j_{1}}\times\eta_{j_{2}}<0,~{}|\Delta\eta_{jj}|>2.5. (24)

From Fig.3, it can be seen that following the enlargement of Δm\Delta m from Δm=100\Delta m=100 GeV to Δm=300\Delta m=300 GeV, the production cross section is enlarged by about ten times for the same value of mH±m_{H^{\pm}}. In the actual model, mAmH±m_{A}\lesssim m_{H^{\pm}} should be satisfied. Thus, the results of BPs in Table 1 are further illustrated. It is obvious that at the 14 TeV HL-LHC, the cross section usually increases as mH±m_{H^{\pm}} becomes larger when mH±250m_{H^{\pm}}\lesssim 250 GeV. While for mH±250m_{H^{\pm}}\gtrsim 250 GeV, the cross section does not change so much as mH±m_{H^{\pm}} increases. At the 27 TeV HE-LHC, the cross section always tends to increase when mH±m_{H^{\pm}} increases, which is about three to four times larger than it at the 14 TeV HL-LHC.

Now we discuss the same-sign dilepton signature and its corresponding backgrounds at hadron colliders. The full process of such signature is

ppW±W±jjH±H±jj(W±H)(W±H)jj(l±ν)H(l±ν)Hjjl±l±ETjj,pp\to W^{\pm*}W^{\pm*}jj\to H^{\pm}H^{\pm}jj\to(W^{\pm}H)(W^{\pm}H)jj\to(l^{\pm}\nu)H(l^{\pm}\nu)Hjj\to l^{\pm}l^{\pm}\cancel{E}_{T}jj, (25)

in the IDM, where jj is the forward and energetic jet from the initial parton, and the leptons contain electron and muon (l=e,μl=e,\mu). In the following, we choose BP10, BP15, and BP20 in Table 1 to show the distribution of certain variables and corresponding cut flow at colliders.

The main SM backgrounds come from W±W±jjW^{\pm}W^{\pm}jj, WZjjWZjj, ZZjjZZjj, VVVjjVVVjj, and tt¯Vt\bar{t}V. Both the strong and electroweak production of the VVjjVVjj process are taken into account. According to the experimental result of ATLAS collaboration Aaboud:2019nmv , there should be additional contributions from VγV\gamma, electron charge misreconstruction, and non-prompt leptons, which are sub-dominant and thus are not taken into account in this work. After generating the parton level events for all BPs and corresponding SM backgrounds using Madgraph5_aMC@NLO Alwall:2014hca , Pythia8 Sjostrand:2007gs is used for parton showering and hadronization. Finally, the detector simulation is performed with Delphes3 deFavereau:2013fsa . In this work, all the signals and backgrounds are simulated at the leading order.

After the above simulation, several cuts are applied to highlight the signal, which are simply categorized into four parts, i.e, cuts-1 to cuts-4. First, cuts-1 aims to select the same-sign dilepton signature, where we require exactly two leptons carrying the same charge in the final states,

N(l±)=2,PTl±>20GeV,|ηl±|<2.5,N(l^{\pm})=2,P_{T}^{l^{\pm}}>20~{}\text{GeV},|\eta_{l^{\pm}}|<2.5, (26)

Then in cuts-2 for the forward jet pair, events with at least two jets and with bb-jet veto can pass the selection

N(j)2,PTj>30GeV,|ηj|<5,N(b)=0.N(j)\geq 2,P_{T}^{j}>30~{}\text{GeV},|\eta_{j}|<5,N(b)=0. (27)

Here, the bb-jet veto criteria is to suppress the tt¯Vt\bar{t}V background. As shown in Table  2, at this level of cuts, the SM background is about three orders of magnitudes larger than the signal. Therefore, additional cuts are expected to further eliminate the background.

To seek for proper cut criteria, the normalized distribution of certain parameters is shown in Fig. 4. Specifically speaking, the up-left panel shows the PTlP_{T}^{l} variable. The distributions of PTlP_{T}^{l} are not well separated for signal and background. Instead, we consider the ΔPT\Delta P_{T} parameter, defined as ΔPT=(PTl1+PTl2)(PTj1+PTj2)\Delta P_{T}=(P_{T}^{l_{1}}+P_{T}^{l_{2}})-(P_{T}^{j_{1}}+P_{T}^{j_{2}}), which is shown in the up-right panel. For the BP signals, the distributions of ΔPT\Delta P_{T} tend to be larger than those of the backgrounds. Based on this feature, we require ΔPT>0\Delta P_{T}>0. That is to say, the scalar sum of the transverse momentum of two leptons is larger than the scalar sum of the transverse momentum of leading and sub-leading jet. In the middle-left panel, we depict the distribution of Δη¯jl\overline{\Delta\eta}_{jl} variable, where Δη¯jl\overline{\Delta\eta}_{jl} is defined as

Δη¯jl=m=12n=12(ηjmηln)24.\overline{\Delta\eta}_{jl}=\sqrt{\sum_{m=1}^{2}\sum_{n=1}^{2}\frac{(\eta_{jm}-\eta_{ln})^{2}}{4}}. (28)

Here, ηjm\eta_{jm} are the pseudorapidity of leading and sub-leading jets with m=1,2m=1,2 and ηln\eta_{ln} are the pseudorapidity of leading and sub-leading leptons with n=1,2n=1,2. The Δη¯jl\overline{\Delta\eta}_{jl} variable characterizes the averaged pseudorapidity separation between jets and leptons, where Δη¯jl\overline{\Delta\eta}_{jl} variable larger than three is good enough to separate the signal and background. Another distinguishable variable used by the experimental groups is the Zeppenfeld variable zlz_{l}^{*}, which is defined as Rainwater:1996ud

zl=|ηlηj1+ηj22|/|ηj1ηj2|.z_{l}^{*}=~{}\left|\eta_{l}-\frac{\eta_{j1}+\eta_{j2}}{2}\right|/|\eta_{j1}-\eta_{j2}|. (29)

The max(zl)(z_{l}^{*}) variable is used by CMS collaboration to define the W±W±jjW^{\pm}W^{\pm}jj and WZjjWZjj signal region Sirunyan:2020gyx . Since both W±W±jjW^{\pm}W^{\pm}jj and WZjjWZjj are the backgrounds in this work, we use a more stringent cut max(zl)<0.3(z_{l}^{*})<0.3, i.e., the largest zlz_{l}^{*} variable less than 0.3. In summary, the cuts-3 we adopted are

ΔPT>0,Δη¯jl>3,max(zl)<0.3.\Delta P_{T}>0,~{}\overline{\Delta\eta}_{jl}>3,~{}\text{max}(z_{l}^{*})<0.3. (30)
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Normalized distribution of PTlP_{T}^{l} (up-left panel), ΔPT\Delta P_{T} (up-right panel), Δη¯jl\overline{\Delta\eta}_{jl} (middle-left panel), max(zl)(z_{l}^{*}) (middle-right panel), ET\cancel{E}_{T} (down-left panel), and MT2M_{T2} (down-right panel) variable for BP10, BP15, BP20 (solid line) and corresponding SM backgrounds (dashed line) at s=14\sqrt{s}=14 TeV. The PTlP_{T}^{l}, ΔPT\Delta P_{T}, Δη¯jl\overline{\Delta\eta}_{jl}, max(zl)(z_{l}^{*}), and ET\cancel{E}_{T} variables are drawing after the cuts in Eqn.(24),(26),(27) are applied, while MT2M_{T2} variable is drawing after cuts in Eqn.(24),(26),(27) and ET>100\cancel{E}_{T}>100 GeV are applied.
Cross section (fb) BP10 BP15 BP20 W±W±jjW^{\pm}W^{\pm}jj WZjjWZjj Others
Preselection 1.88×1021.88\times 10^{-2} 1.89×1021.89\times 10^{-2} 2.04×1022.04\times 10^{-2} 1.35×1011.35\times 10^{1} 5.50×1015.50\times 10^{1} 3.05×1003.05\times 10^{0}
N(l±)=2,PTl±>20GeVN(l^{\pm})=2,P_{T}^{l^{\pm}}>20~{}\text{GeV}
|ηl±|<2.5|\eta_{l^{\pm}}|<2.5 1.01×1021.01\times 10^{-2} 1.08×1021.08\times 10^{-2} 1.19×1021.19\times 10^{-2} 5.29×1005.29\times 10^{0} 6.43×1006.43\times 10^{0} 3.66×1013.66\times 10^{-1}
N(j)2,PTj>30N(j)\geq 2,P_{T}^{j}>30 GeV
|ηj|<5,N(b)=0|\eta_{j}|<5,N(b)=0 8.62×1038.62\times 10^{-3} 9.13×1039.13\times 10^{-3} 1.21×1021.21\times 10^{-2} 4.60×1004.60\times 10^{0} 5.43×1005.43\times 10^{0} 2.05×1012.05\times 10^{-1}
ΔPT>0,Δη¯jl>3\Delta P_{T}>0,\overline{\Delta{\eta}}_{jl}>3
max(zl)<0.3(z_{l}^{*})<0.3 1.56×1031.56\times 10^{-3} 2.48×1032.48\times 10^{-3} 3.06×1033.06\times 10^{-3} 1.34×1011.34\times 10^{-1} 2.834×1022.834\times 10^{-2} 1.12×1031.12\times 10^{-3}
ET>100\cancel{E}_{T}>100 GeV
MT2>100M_{T2}>100 GeV 3.71×1043.71\times 10^{-4} 8.41×1048.41\times 10^{-4} 1.33×1031.33\times 10^{-3} 7.31×1047.31\times 10^{-4} 1.10×1041.10\times 10^{-4} 8.87×1058.87\times 10^{-5}
Significance    0.67    1.52    2.39    —    —    —
Table 2: Cut flow table for BP10, BP15, BP20 signal and various background process at s=14\sqrt{s}=14 TeV. The ZZjjZZjj, VVVjjVVVjj and tt¯Vt\bar{t}V backgrounds are classified as others for their contributions to the total backgrounds are blow 10%10\% after applying all cuts. The significance S/BS/\sqrt{B} is calculated by assuming an integrated luminosity =3ab1\mathcal{L}=3~{}\text{ab}^{-1}.

The results for both signal and background at the level of cuts-3 are shown in the fourth row of Table  2. At this level, the cross section of the ZZjjZZjj, VVVjjVVVjj and tt¯Vt\bar{t}V backgrounds are smaller than the signal. The dominant ones are W±W±jjW^{\pm}W^{\pm}jj and WZjjWZjj. From Fig. 4, it is also clear that for the W±W±jjW^{\pm}W^{\pm}jj background process, ΔPT\Delta P_{T}, Δη¯jl\overline{\Delta\eta}_{jl}, and zlz_{l}^{*} variables are not so distinguishable from signal to background. This is because the main part of W±W±jjW^{\pm}W^{\pm}jj generated from electroweak production process has a similar topological structure to signal.

In order to suppress the W±W±jjW^{\pm}W^{\pm}jj background efficiently, more advanced cuts should be applied. Despite the additional two forward jets in the same-sign dilepton signature, the decay chain of charged scalar H±W±Hl±νHH^{\pm}\to W^{\pm}H\to l^{\pm}\nu H is actually the same as the decay chain of chargino χ~1±W±χ~10l±νχ~10\tilde{\chi}_{1}^{\pm}\to W^{\pm}\tilde{\chi}_{1}^{0}\to l^{\pm}\nu\tilde{\chi}_{1}^{0}, which means we can apply similar cuts for opposite-sign dilepton signature as in Ref. Aad:2019vnb . Here, we take the variables ET\cancel{E}_{T} and MT2M_{T2} into account. The MT2M_{T2} variable is defined as Lester:1999tx ; Barr:2003rg ,

MT2=minqT,1+qT,2=ET{max[MT(PTl1,qT,1),MT(PTl2,qT,2)]},M_{T2}=\underset{\textbf{q}_{T,1}+\textbf{q}_{T,2}=~{}\cancel{\textbf{E}}_{T}}{\text{min}}\left\{\text{max}\left[M_{T}(\textbf{P}_{T}^{l_{1}},\textbf{q}_{T,1}),M_{T}(\textbf{P}_{T}^{l_{2}},\textbf{q}_{T,2})\right]\right\}, (31)

where PTl1\textbf{P}_{T}^{l_{1}} and PTl2\textbf{P}_{T}^{l_{2}} are the transverse momentum vectors of the two leptons, qT,1\textbf{q}_{T,1} and qT,2\textbf{q}_{T,2} are all possible combinations of two transverse momentum vectors that satisfy qT,1+qT,2=ET\textbf{q}_{T,1}+\textbf{q}_{T,2}=\cancel{\textbf{E}}_{T}. The MT2M_{T2} variable is calculated by applying the algorithms proposed in Ref. Lester:2014yga .

Distributions of ET\cancel{E}_{T} and MT2M_{T2} are also shown in Fig.4. For the signal process, both neutrinos ν\nu and dark matter HH contribute to the missing transverse energy ET\cancel{E}_{T}, which thus usually leads to a larger ET\cancel{E}_{T} than the backgrounds. It also can be seen that the MT2M_{T2} variable serves as the most efficient cut. Because theoretically, this variable can not exceed the mass of WW boson at mW=80.4m_{W}=80.4 GeV for the background process, while the theoretical upper limit for the signal process is the mass of mH±m_{H^{\pm}}. Therefore, when exceeding 8080 GeV, the MT2M_{T2} variable decreases severely and nearly vanishing when MT2>100M_{T_{2}}>100 GeV for all background processes. But for the signals, it still have a large part existed, especially for BP20 due to the largest MH±M_{H^{\pm}} it possessed. In short, we require that missing transverse energy ET\cancel{E}_{T} is greater than 100100 GeV and MT2M_{T2} variable is greater than 100100 GeV for cuts-4:

ET>100GeV,MT2>100GeV.\cancel{E}_{T}>100~{}\text{GeV},~{}M_{T2}>100~{}\text{GeV}. (32)

Results after applying cuts-4 are shown in the fifth row of Table  2. After applying all of the cuts, the contributions of W±W±jjW^{\pm}W^{\pm}jj process to the total backgrounds is great than 80%80\%, the contributions of WZjjWZjj process to the total backgrounds is great than 10%10\% and the part named as others are comes from the sum of tt¯Vt\bar{t}V, VVVjjVVVjj, ZZjjZZjj process, which serves less than 10%10\% contributions to the total backgrounds. For the signal process after the full cuts are applied, BP20 has the largest cross section, because it both possesses the largest Δm\Delta m and mH±m_{H^{\pm}}, the former leads to a large cross section in simulation and the latter leads to the highest efficiency when passing the cut flow. The total cross section of backgrounds is 9.30×1049.30\times 10^{-4} fb, which is larger than it of BP10 and BP15, but is smaller than it of BP20. Although a good signal-to-background ratio is achieved, the cross sections for signals after all cuts are a little bit too small to probe. For instance, assuming an integrated luminosity =3ab1\mathcal{L}=3~{}\text{ab}^{-1}, we expect about 1.1 events for BP10, 2.5 events for BP15 and 4.0 events for BP20 with 2.8 events for total backgrounds, of which the corresponding significance S/BS/\sqrt{B} is 0.67, 1.52 and 2.39, respectively. Therefore, the same-sign dilepton signature is not so promising at the HL-LHC.

Before ending the discussion on the 14 TeV simulation, let’s briefly summarize the searching strategy. The main backgrounds come from W±W±jjW^{\pm}W^{\pm}jj and WZjjWZjj process with the production cross section over 10 fb after preselection cuts. Due to the similar distributions of certain variables (such as PTl±,zlP_{T}^{l^{\pm}},z_{l}^{*}) from the dominant background to the signal, we can only choose the simplest cuts in cuts-1 and cuts-2. Then, we have to apply the cuts extremely in cuts-3 and cuts-4, even if this shall lead to a faint signal and low significance. The above analysis can be improved by considering more sophisticated selection criteria, such as employing a boosted decision tree, which is beyond the scope of this work. Instead, we further consider the same-sign dilepton signature at the 27 TeV HE-LHC.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Same as Fig.4, but at s=27\sqrt{s}=27 TeV

The normalized distribution of PTlP_{T}^{l}, ΔPT\Delta P_{T}, Δη¯jl\overline{\Delta\eta}_{jl}, max(zl)(z_{l}^{*}), ET\cancel{E}_{T} and MT2M_{T2} variable at 27 TeV are shown in Fig. 5, which are similar to the results of 14 TeV. Hence, we adopt the same criteria as 14 TeV for cuts-1 to cuts-3. Meanwhile, considering the fact that the final states of neutrinos ν\nu as well as dark matter HH are more energetic at 27 TeV than those at 14 TeV, we slightly tighten cuts-4 as

ET>110GeV,MT2>125GeV.\cancel{E}_{T}>110~{}\text{GeV},~{}M_{T2}>125~{}\text{GeV}. (33)

The cross section for both signal and backgrounds with the cut flow are listed in Table.3. After applying the full cuts, at s=27\sqrt{s}=27 TeV only two processes have considerable contributions to the total backgrounds. The main part of total backgrounds comes from W±W±jjW^{\pm}W^{\pm}jj process, with the contribution to the total backgrounds great than 85%85\%. The rest part of the total backgrounds comes from WZjjWZjj process. The part named as others comes from the sum of ZZjjZZjj, VVVjjVVVjj, and tt¯Vt\bar{t}V process has negligible contributions to the total backgrounds due to the more stringent cuts we have used. With larger production cross section and higher luminosity =15ab1\mathcal{L}=15~{}\text{ab}^{-1}, we find that the dilepton signature is promising for some benchmark points at the 27 TeV HE-LHC. Quantitatively speaking , we expect about 8 events for BP10, 31 events for BP15 and 56 events for BP20 with 48 events for total backgrounds, of which the corresponding significance S/BS/\sqrt{B} is 1.21, 4.54, and 8.08, respectively.

Cross section(fb) BP10 BP15 BP20 W±W±jjW^{\pm}W^{\pm}jj WZjjWZjj Others
Preselection 6.57×1026.57\times 10^{-2} 7.40×1027.40\times 10^{-2} 8.59×1028.59\times 10^{-2} 4.61×1014.61\times 10^{1} 1.95×1021.95\times 10^{2} 1.38×1011.38\times 10^{1}
N(l±)=2,PTl±>20GeVN(l^{\pm})=2,P_{T}^{l^{\pm}}>20~{}\text{GeV}
|ηl±|<2.5|\eta_{l^{\pm}}|<2.5 3.19×1023.19\times 10^{-2} 3.77×1023.77\times 10^{-2} 4.54×1024.54\times 10^{-2} 1.47×1011.47\times 10^{1} 1.95×1011.95\times 10^{1} 1.32×1001.32\times 10^{0}
N(j)2,PTj>30N(j)\geq 2,P_{T}^{j}>30 GeV
|ηj|<5,N(b)=0|\eta_{j}|<5,N(b)=0 2.49×1022.49\times 10^{-2} 3.06×1023.06\times 10^{-2} 3.74×1023.74\times 10^{-2} 1.13×1011.13\times 10^{1} 1.58×1011.58\times 10^{1} 8.67×1018.67\times 10^{-1}
ΔPT>0,Δη¯jl>3\Delta P_{T}>0,\overline{\Delta{\eta}}_{jl}>3
max(zl)<0.3(z_{l}^{*})<0.3 6.13×1036.13\times 10^{-3} 9.74×1039.74\times 10^{-3} 1.23×1021.23\times 10^{-2} 4.94×1014.94\times 10^{-1} 1.21×1011.21\times 10^{-1} 4.33×1034.33\times 10^{-3}
ET>110\cancel{E}_{T}>110 GeV
MT2>125M_{T2}>125 GeV 5.58×1045.58\times 10^{-4} 2.09×1032.09\times 10^{-3} 3.72×1033.72\times 10^{-3} 2.79×1032.79\times 10^{-3} 3.90×1043.90\times 10^{-4}    0
Significance    1.21    4.54    8.08    —    —    —
Table 3: Cut flow table for BP10, BP15, BP20 signal and various background process at s=27\sqrt{s}=27 TeV. The ZZjjZZjj, VVVjjVVVjj and tt¯Vt\bar{t}V backgrounds are classified as others for it’s contributions to the total backgrounds are negligible after applying all cuts. The significance S/BS/\sqrt{B} is calculated by assuming an integrated luminosity =15ab1\mathcal{L}=15~{}\text{ab}^{-1}.

Finally, based on the cuts adopted in the above discussion, we extend our analysis to all the twenty benchmark points listed in Table  1. The results of significance for BPs at 14 TeV HL-LHC and 27 TeV HE-LHC are shown in Fig.6. It can be seen that following the increase of mH±m_{H^{\pm}}, the significance increased, for a larger mH±m_{H^{\pm}} leading to a higher cut efficiency. At s=14\sqrt{s}=14 TeV limited by the faint signal, even for BP20 with the largest mH±m_{H^{\pm}}, the significance can only slightly excess two. At s=27\sqrt{s}=27 TeV, with a larger cross section and higher luminosity, we find that BP16 to BP20 can have a significance larger than five. That is to say the promising region of same-sign dilepton signature at s=27\sqrt{s}=27 TeV is 250GeVmH±mH300250~{}\text{GeV}\lesssim m_{H^{\pm}}-m_{H}\lesssim 300 GeV with dark matter mass mH60m_{H}\sim 60 or 71 GeV.

Refer to caption
Figure 6: Significance of all twenty BPs at s=14\sqrt{s}=14 TeV, =3ab1\mathcal{L}=3~{}\text{ab}^{-1}(red points) and s=27\sqrt{s}=27 TeV, =15ab1\mathcal{L}=15~{}\text{ab}^{-1}(green points).

IV Conclusion

The IDM is a 2HDM imposed with an exact Z2Z_{2} symmetry, which leads to a DM candidate. This model gives rise to rich phenomenology, which has been extensively studied. In this paper, we perform a detailed analysis on the same-sign dilepton signature ppW±W±jjH±H±jj(l±ν)H(l±ν)Hjjl±l±ETjjpp\to W^{\pm*}W^{\pm*}jj\to H^{\pm}H^{\pm}jj\to(l^{\pm}\nu)H(l^{\pm}\nu)Hjj\to l^{\pm}l^{\pm}\cancel{E}_{T}jj in the IDM, where HH is the DM candidate. According to our simulation, this signature is promising for large mass splitting Δm=mAmH\Delta m=m_{A}-m_{H}, which is complementary to the well studied opposite-sign dilepton signature.

We first perform a random scan over the low mass region of IDM with various constraints taken into account. By requiring the relic density within 3σ3\sigma range of the Planck observation value Ωh2=0.1200±0.0012\Omega h^{2}=0.1200\pm 0.0012, we find three viable parameter space. One is the Higgs resonance region around mHmh/2m_{H}\lesssim m_{h}/2. Another one is the vector boson annihilation region around mH71.5m_{H}\sim 71.5 GeV. The third one is the coannihilation region with mAmH8m_{A}-m_{H}\sim 8 GeV and mH65m_{H}\sim 65 GeV. Since the coannihilation region gives a vanishing cross section of same-sign dilepton signature, we select twenty benchmark points from the Higgs resonance and vector boson annihilation region, which are listed in Table 1.

We then simulate the same-sign dilepton signature for the BPs as well as SM backgrounds both at s=14\sqrt{s}=14 TeV HL-LHC and s=27\sqrt{s}=27 TeV HE-LHC. With similar decay topological structure to signal, the dominant background comes from W±W±jjW^{\pm}W^{\pm}jj. The most efficient cut to suppress background is MT2M_{T2} variable. According to our simulation, at s=14\sqrt{s}=14 TeV with luminosity =3ab1\mathcal{L}=3\text{ab}^{-1}, at best four signal events can survived after applying the full cuts. Limited by the number of signal events, the BPs can only achieve a significance slightly larger than two. At s=27\sqrt{s}=27 TeV with luminosity =15ab1\mathcal{L}=15\text{ab}^{-1}, we can probe benchmark points with large mass Δm\Delta m. For example, BP16 to BP20 can have a significance larger than five.

In a nut shell, the same-sign dilepton signature is not promising at s=14\sqrt{s}=14 TeV HL-LHC, but is promising at s=27\sqrt{s}=27 TeV with the viable region of 250GeVmH±mH300250~{}\text{GeV}\lesssim m_{H^{\pm}}-m_{H}\lesssim 300 GeV and dark matter mass mH60m_{H}\sim 60 or 71 GeV.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11805081, Natural Science Foundation of Shandong Province under Grant No. ZR2019QA021 and ZR2018MA047.

References

  • (1) G. Aad et al. [ATLAS], Phys. Lett. B 716, 1-29 (2012) [arXiv:1207.7214 [hep-ex]].
  • (2) S. Chatrchyan et al. [CMS], Phys. Lett. B 716, 30-61 (2012) [arXiv:1207.7235 [hep-ex]].
  • (3) N. Aghanim et al. [Planck], [arXiv:1807.06209 [astro-ph.CO]].
  • (4) G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279-390 (2005) [arXiv:hep-ph/0404175 [hep-ph]].
  • (5) G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and F. S. Queiroz, Eur. Phys. J. C 78, no.3, 203 (2018) [arXiv:1703.07364 [hep-ph]].
  • (6) N. G. Deshpande and E. Ma, Phys. Rev. D 18, 2574 (1978)
  • (7) R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D 74, 015007 (2006) [arXiv:hep-ph/0603188 [hep-ph]].
  • (8) L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, JCAP 02, 028 (2007) [arXiv:hep-ph/0612275 [hep-ph]].
  • (9) G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys. Rept. 516, 1-102 (2012) [arXiv:1106.0034 [hep-ph]].
  • (10) E. Ma, Phys. Rev. D 73, 077301 (2006) [arXiv:hep-ph/0601225 [hep-ph]].
  • (11) Z. L. Han and W. Wang, Eur. Phys. J. C 79, no.6, 522 (2019) [arXiv:1901.07798 [hep-ph]].
  • (12) Z. L. Han, R. Ding, S. J. Lin and B. Zhu, Eur. Phys. J. C 79, no.12, 1007 (2019) [arXiv:1908.07192 [hep-ph]].
  • (13) W. Wang and Z. L. Han, Phys. Rev. D 101, no.11, 115040 (2020) [arXiv:1911.00819 [hep-ph]].
  • (14) M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Phys. Rev. Lett. 99, 041301 (2007) [arXiv:astro-ph/0703512 [astro-ph]].
  • (15) Q. H. Cao, E. Ma and G. Rajasekaran, Phys. Rev. D 76, 095011 (2007) [arXiv:0708.2939 [hep-ph]].
  • (16) E. Lundstrom, M. Gustafsson and J. Edsjo, Phys. Rev. D 79, 035013 (2009) [arXiv:0810.3924 [hep-ph]].
  • (17) E. M. Dolle and S. Su, [arXiv:0906.1609 [hep-ph]].
  • (18) L. Lopez Honorez and C. E. Yaguna, JHEP 09, 046 (2010) [arXiv:1003.3125 [hep-ph]].
  • (19) L. Lopez Honorez and C. E. Yaguna, JCAP 01, 002 (2011) [arXiv:1011.1411 [hep-ph]].
  • (20) D. Borah and J. M. Cline, Phys. Rev. D 86, 055001 (2012) [arXiv:1204.4722 [hep-ph]].
  • (21) M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Phys. Rev. D 86, 075019 (2012) [arXiv:1206.6316 [hep-ph]].
  • (22) B. Swiezewska and M. Krawczyk, Phys. Rev. D 88, no.3, 035019 (2013) [arXiv:1212.4100 [hep-ph]].
  • (23) P. Osland, A. Pukhov, G. M. Pruna and M. Purmohammadi, JHEP 04, 040 (2013) [arXiv:1302.3713 [hep-ph]].
  • (24) A. Goudelis, B. Herrmann and O. Stål, JHEP 09, 106 (2013) [arXiv:1303.3010 [hep-ph]].
  • (25) K. P. Modak and D. Majumdar, Astrophys. J. Suppl. 219, no.2, 37 (2015) [arXiv:1502.05682 [hep-ph]].
  • (26) N. Blinov, S. Profumo and T. Stefaniak, JCAP 07, 028 (2015) [arXiv:1504.05949 [hep-ph]].
  • (27) A. Arhrib, R. Benbrik, J. El Falaki and A. Jueid, JHEP 12, 007 (2015) [arXiv:1507.03630 [hep-ph]].
  • (28) A. D. Plascencia, JHEP 09, 026 (2015) [arXiv:1507.04996 [hep-ph]].
  • (29) A. Ilnicka, M. Krawczyk and T. Robens, Phys. Rev. D 93, no.5, 055026 (2016) [arXiv:1508.01671 [hep-ph]].
  • (30) M. A. Díaz, B. Koch and S. Urrutia-Quiroga, Adv. High Energy Phys. 2016, 8278375 (2016) [arXiv:1511.04429 [hep-ph]].
  • (31) S. Kanemura, M. Kikuchi and K. Sakurai, Phys. Rev. D 94, no.11, 115011 (2016) [arXiv:1605.08520 [hep-ph]].
  • (32) M. Hashemi and S. Najjari, Eur. Phys. J. C 77, no.9, 592 (2017) [arXiv:1611.07827 [hep-ph]].
  • (33) A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas, Phys. Rev. D 97, no.3, 035011 (2018) [arXiv:1612.00511 [hep-ph]].
  • (34) D. Borah and A. Gupta, Phys. Rev. D 96, no.11, 115012 (2017) [arXiv:1706.05034 [hep-ph]].
  • (35) S. Banerjee, F. Boudjema, N. Chakrabarty, G. Chalons and H. Sun, Phys. Rev. D 100, no.9, 095024 (2019) [arXiv:1906.11269 [hep-ph]].
  • (36) A. Jueid, J. Kim, S. Lee, S. Y. Shim and J. Song, Phys. Rev. D 102, no.7, 075011 (2020) [arXiv:2006.10263 [hep-ph]].
  • (37) H. Abouabid, A. Arhrib, R. Benbrik, J. E. Falaki, B. Gong, W. Xie and Q. S. Yan, [arXiv:2009.03250 [hep-ph]].
  • (38) S. Fabian, F. Goertz and Y. Jiang, [arXiv:2012.12847 [hep-ph]].
  • (39) J. Kalinowski, T. Robens, D. Sokolowska and A. F. Zarnecki, [arXiv:2012.14818 [hep-ph]].
  • (40) S. Banerjee, F. Boudjema, N. Chakrabarty and H. Sun, [arXiv:2101.02165 [hep-ph]].
  • (41) S. Banerjee, F. Boudjema, N. Chakrabarty and H. Sun, [arXiv:2101.02166 [hep-ph]].
  • (42) S. Banerjee, F. Boudjema, N. Chakrabarty and H. Sun, [arXiv:2101.02167 [hep-ph]].
  • (43) S. Banerjee, F. Boudjema, N. Chakrabarty and H. Sun, [arXiv:2101.02170 [hep-ph]].
  • (44) A. Arhrib, Y. L. S. Tsai, Q. Yuan and T. C. Yuan, JCAP 06, 030 (2014) [arXiv:1310.0358 [hep-ph]].
  • (45) B. Eiteneuer, A. Goudelis and J. Heisig, Eur. Phys. J. C 77, no.9, 624 (2017) [arXiv:1705.01458 [hep-ph]].
  • (46) F. S. Queiroz and C. E. Yaguna, JCAP 02, 038 (2016) [arXiv:1511.05967 [hep-ph]].
  • (47) C. Garcia-Cely, M. Gustafsson and A. Ibarra, JCAP 02, 043 (2016) [arXiv:1512.02801 [hep-ph]].
  • (48) E. Dolle, X. Miao, S. Su and B. Thomas, Phys. Rev. D 81, 035003 (2010) [arXiv:0909.3094 [hep-ph]].
  • (49) G. Belanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Phys. Rev. D 91, no.11, 115011 (2015) [arXiv:1503.07367 [hep-ph]].
  • (50) X. Miao, S. Su and B. Thomas, Phys. Rev. D 82, 035009 (2010) [arXiv:1005.0090 [hep-ph]].
  • (51) A. Datta, N. Ganguly, N. Khan and S. Rakshit, Phys. Rev. D 95, no.1, 015017 (2017) [arXiv:1610.00648 [hep-ph]].
  • (52) B. Dutta, G. Palacio, J. D. Ruiz-Alvarez and D. Restrepo, Phys. Rev. D 97, no.5, 055045 (2018) [arXiv:1709.09796 [hep-ph]].
  • (53) D. Dercks and T. Robens, Eur. Phys. J. C 79, no.11, 924 (2019) [arXiv:1812.07913 [hep-ph]].
  • (54) M. Aoki, S. Kanemura and H. Yokoya, Phys. Lett. B 725, 302-309 (2013) [arXiv:1303.6191 [hep-ph]].
  • (55) A. Arhrib, R. Benbrik and T. C. Yuan, Eur. Phys. J. C 74, 2892 (2014) [arXiv:1401.6698 [hep-ph]].
  • (56) M. Hashemi, M. Krawczyk, S. Najjari and A. F. Zarnecki, JHEP 02, 187 (2016) [arXiv:1512.01175 [hep-ph]].
  • (57) A. Belyaev, T. R. Fernandez Perez Tomei, P. G. Mercadante, C. S. Moon, S. Moretti, S. F. Novaes, L. Panizzi, F. Rojas and M. Thomas, Phys. Rev. D 99, no.1, 015011 (2019) [arXiv:1809.00933 [hep-ph]].
  • (58) J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki, JHEP 12, 081 (2018) [arXiv:1809.07712 [hep-ph]].
  • (59) J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki, JHEP 07, 053 (2019) [arXiv:1811.06952 [hep-ph]].
  • (60) Y. Guo-He, S. Mao, L. Gang, Z. Yu and G. Jian-You, [arXiv:2006.06216 [hep-ph]].
  • (61) M. Aiko, S. Kanemura and K. Mawatari, Phys. Lett. B 797, 134854 (2019) [arXiv:1906.09101 [hep-ph]].
  • (62) A. Arhrib, K. Cheung and C. T. Lu, Phys. Rev. D 102, no.9, 095026 (2020) [arXiv:1910.02571 [hep-ph]].
  • (63) A. M. Sirunyan et al. [CMS], Phys. Rev. Lett. 120, no.8, 081801 (2018) [arXiv:1709.05822 [hep-ex]].
  • (64) M. Aaboud et al. [ATLAS], Phys. Rev. Lett. 123, no.16, 161801 (2019) [arXiv:1906.03203 [hep-ex]].
  • (65) A. M. Sirunyan et al. [CMS], Phys. Lett. B 809, 135710 (2020) [arXiv:2005.01173 [hep-ex]].
  • (66) A. M. Sirunyan et al. [CMS], Phys. Lett. B 812, 136018 (2021) [arXiv:2009.09429 [hep-ex]].
  • (67) I. F. Ginzburg, K. A. Kanishev, M. Krawczyk and D. Sokolowska, Phys. Rev. D 82, 123533 (2010) [arXiv:1009.4593 [hep-ph]].
  • (68) A. Arhrib, R. Benbrik and N. Gaur, Phys. Rev. D 85, 095021 (2012) [arXiv:1201.2644 [hep-ph]].
  • (69) N. Khan and S. Rakshit, Phys. Rev. D 92, 055006 (2015) [arXiv:1503.03085 [hep-ph]].
  • (70) M. Baak et al. [Gfitter Group], Eur. Phys. J. C 74, 3046 (2014) [arXiv:1407.3792 [hep-ph]].
  • (71) A. Pierce and J. Thaler, JHEP 08, 026 (2007) [arXiv:hep-ph/0703056 [hep-ph]].
  • (72) V. Khachatryan et al. [CMS], JHEP 02, 135 (2017) [arXiv:1610.09218 [hep-ex]].
  • (73) G. Aad et al. [ATLAS and CMS], JHEP 08, 045 (2016) [arXiv:1606.02266 [hep-ex]].
  • (74) D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml, U. Laa and A. Pukhov, Comput. Phys. Commun. 222, 327-338 (2018) [arXiv:1606.03834 [hep-ph]].
  • (75) E. Aprile et al. [XENON], Phys. Rev. Lett. 121, no.11, 111302 (2018) [arXiv:1805.12562 [astro-ph.CO]].
  • (76) D. Eriksson, J. Rathsman and O. Stal, Comput. Phys. Commun. 181, 189-205 (2010) [arXiv:0902.0851 [hep-ph]].
  • (77) J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli and M. Zaro, JHEP 07, 079 (2014) [arXiv:1405.0301 [hep-ph]].
  • (78) T. Sjostrand, S. Mrenna and P. Z. Skands, Comput. Phys. Commun. 178, 852-867 (2008) [arXiv:0710.3820 [hep-ph]].
  • (79) J. de Favereau et al. [DELPHES 3], JHEP 02, 057 (2014) [arXiv:1307.6346 [hep-ex]].
  • (80) D. L. Rainwater, R. Szalapski and D. Zeppenfeld, Phys. Rev. D 54, 6680-6689 (1996) [arXiv:hep-ph/9605444 [hep-ph]].
  • (81) G. Aad et al. [ATLAS], Eur. Phys. J. C 80, no.2, 123 (2020) [arXiv:1908.08215 [hep-ex]].
  • (82) C. G. Lester and D. J. Summers, Phys. Lett. B 463, 99-103 (1999) [arXiv:hep-ph/9906349 [hep-ph]].
  • (83) A. Barr, C. Lester and P. Stephens, J. Phys. G 29, 2343-2363 (2003) [arXiv:hep-ph/0304226 [hep-ph]].
  • (84) C. G. Lester and B. Nachman, JHEP 03, 100 (2015) [arXiv:1411.4312 [hep-ph]].