This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Saint-Venant Estimates and Liouville-Type Theorems for the Stationary MHD Equation in 3\mathbb{R}^{3}

Jing Loong School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China [email protected]  and  Guoxu Yang School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China [email protected]
Abstract.

In this paper, we investigate a Liouville-type theorem for the MHD equations using Saint-Venant type estimates. We show that (u,B)(u,B) is a trivial solution if the growth of the LsL^{s} mean oscillation of the potential functions for both the velocity and magnetic fields are controlled. Our growth assumption is weaker than those previously known for similar results. The main idea is to refine the Saint-Venant type estimates using the Froullani integral.

Keywords: Liouville-type theorems; MHD system; Saint-Venant type estimates; Froullani integral

1. Introduction

Consider the following general stationary MHD system in 3\mathbb{R}^{3}:

{κΔu+uu+p=BB,νΔB+uBBu=0,divu=0,divB=0,\left\{\begin{array}[]{l}-\kappa\Delta u+u\cdot\nabla u+\nabla p=B\cdot\nabla B,\\ -\nu\Delta B+u\cdot\nabla B-B\cdot\nabla u=0,\\ \operatorname{div}u=0,\quad\operatorname{div}B=0,\end{array}\right. (1.1)

where u=(u1,u2,u3)u=(u_{1},u_{2},u_{3}) is the velocity field of the fluid flows, B=(B1,B2,B3)B=(B_{1},B_{2},B_{3}) is the magnetic field, and pp is the pressure of the flows. In addition, κ>0\kappa>0 and ν>0\nu>0 are given parameters denoting the fluid viscosity and the magnetic resistivity, respectively. Without loss of generality, let κ=ν=1\kappa=\nu=1 now on.

In this paper, we focus on the Liouville-type properties of the system (1.1), which is motivated by the development of Navier-Stokes equations. When B0B\equiv 0, (1.1) is reduced to the Navier-Stokes system in 3\mathbb{R}^{3}:

{uu+pΔu=0,u=0,\left\{\begin{array}[]{l}u\cdot\nabla u+\nabla p-\Delta u=0,\\ \nabla\cdot u=0,\end{array}\right. (1.2)

and a very challenging open question is whether there exists a nontrivial solution when the Dirichlet integral 3|u|2𝑑x\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx is finite, which dates back to Leray’s celebrated paper [L1933] and is explicitly written in Galdi’s book ([Galdi], Remark X. 9.4; see also Tsai’s book [T2018]). The Liouville type problem without any other assumptions remains widely open. Galdi proved the above Liouville type theorem by assuming uL92(3)u\in L^{\frac{9}{2}}(\mathbb{R}^{3}) in [Galdi]. Chae [Chae2014] showed the condition uL65(3)\triangle u\in L^{\frac{6}{5}}(\mathbb{R}^{3}) is sufficient for the vanishing property of uu by exploring the maximum principle of the head pressure. Chae-Wolf [ChaeWolf2016] gave an improvement of logarithmic form for Galdi’s result by assuming that 3|u|92{ln(2+1|u|)}1𝑑x<\int_{\mathbb{R}^{3}}|u|^{\frac{9}{2}}\{\ln(2+\frac{1}{|u|})\}^{-1}dx<\infty. Seregin obtained the conditional criterion uBMO1(3)u\in BMO^{-1}(\mathbb{R}^{3}) in [Seregin2016], where uBMO1(3)u\in BMO^{-1}\left(\mathbb{R}^{3}\right) means u=div𝑽u=\operatorname{div}\boldsymbol{V} for some anti-symmetric tensor 𝑽BMO(3)\boldsymbol{V}\in BMO\left(\mathbb{R}^{3}\right). The BMO1BMO^{-1} condition was later relaxed to growth conditions on a mean oscillation of 𝑽\boldsymbol{V} in [S2018, CW2019, BY2024]. For more references on conditional Liouville properties or Liouville properties on special domains, we refer to [bang2022liouville, CPZZ2020, Chae2021, KTW2021, LRZ2022, SW2019] and the references therein. Relatively speaking, the two-dimensional case is easier because the vorticity of the 2D Navier-Stokes equations satisfies a nice elliptic equation, to which the maximum principle applies. For example, Gilbarg-Weinberger [GW1978] obtained Liouville type theorem provided the Dirichlet energy is finite. As a different type of Liouville property for the 2D Navier-Stokes equations, Koch-Nadirashvili-Seregin-Sverak [KNSS2009] showed that any bounded solution is a trivial solution as a byproduct of their results on the non-stationary case (see also [BFZ2013] for the unbounded velocity).

However, for the MHD system, the situation is quite different. Due to the lack of maximum principle, there is not much progress in the study of MHD equation. For the 2D MHD equations, Liouville type theorems were proved by assuming the smallness of the norm of the magnetic field in [WW2019], and De Nitti et al. [DHS2022] removed the smallness assumption. For the 3D MHD equations, Chae-Weng [CW2016] proved that if the smooth solution satisfies D-condition (3(|u|2+|B|2)𝑑x<\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\nabla B|^{2}\right)dx<\infty) and uL3(3)u\in L^{3}(\mathbb{R}^{3}), then the solutions (u,B)(u,B) are identically zero. In [S2019], Schulz proved that if the smooth solution (u,B)(u,B) of the stationary MHD equations is in L6(3)L^{6}(\mathbb{R}^{3}) and u,BBMO1(3)u,B\in BMO^{-1}(\mathbb{R}^{3}) then it is identically zero. Chae-Wolf [CW2021] showed that L6L^{6} mean oscillations of the potential function of the velocity and magnetic field have certain linear growth by using the technique of [CW2019]. For more references, we refer to [LP2021, LLN2020, FW2021, WY2024] and the references therein.

Here are our main results.

Theorem 1.1.

Let u{u} and BB be smooth solutions of (1.1). Assume that there exists an s(3,6]s\in(3,6] and smooth anti-symmetric potentials 𝐕,𝐖C(3;3×3)\boldsymbol{V},\boldsymbol{W}\in C^{\infty}\left(\mathbb{R}^{3};\mathbb{R}^{3\times 3}\right) such that 𝐕=u\nabla\cdot\boldsymbol{V}=u, 𝐖=B\nabla\cdot\boldsymbol{W}=B, and

𝑽(𝑽)BRLs(BR)+𝑾(𝑾)BRLs(BR)Rs+63s(logR)β,\displaystyle\left\|\boldsymbol{V}-(\boldsymbol{V})_{B_{R}}\right\|_{L^{s}(B_{R})}+\left\|\boldsymbol{W}-(\boldsymbol{W})_{B_{R}}\right\|_{L^{s}(B_{R})}\lesssim R^{\frac{s+6}{3s}}(\log R)^{\beta}, (1.3)

where β=s+66s\beta=\frac{s+6}{6s}, for all R>2R>2. Then u=B0u=B\equiv 0.

Corollary 1.1.

Let u{u} be a smooth solution of (1.2). Assume that there exists an s(3,6]s\in(3,6] and smooth anti-symmetric potential 𝐕C(3;3×3)\boldsymbol{V}\in C^{\infty}\left(\mathbb{R}^{3};\mathbb{R}^{3\times 3}\right) such that 𝐕=u\nabla\cdot\boldsymbol{V}=u, and

𝑽(𝑽)BRLs(BR)Rs+63s(logR)s+66s,\displaystyle\left\|\boldsymbol{V}-(\boldsymbol{V})_{B_{R}}\right\|_{L^{s}(B_{R})}\lesssim R^{\frac{s+6}{3s}}(\log R)^{\frac{s+6}{6s}},

for all R>2R>2. Then u0u\equiv 0.

Remark 1.1.

We emphasize that for any divergence-free vector field uu, there always exists an anti-symmetric potential 𝐕\boldsymbol{V} such that u=div𝐕u=\operatorname{div}\boldsymbol{V}. See, e.g., [Seregin2016, CW2019, CW2021].

Remark 1.2.

In Theorem 1.1, s(3,6]s\in(3,6], but it can be generalized to s(3,)s\in(3,\infty) by replacing (1.3) with

𝑽(𝑽)BRLs(BR)+𝑾(𝑾)BRLs(BR)Rmin{s+63s,s+186s}(logR)min{s+66s,13},\left\|\boldsymbol{V}-(\boldsymbol{V})_{B_{R}}\right\|_{L^{s}(B_{R})}+\left\|\boldsymbol{W}-(\boldsymbol{W})_{B_{R}}\right\|_{L^{s}(B_{R})}\lesssim R^{\min\left\{\frac{s+6}{3s},\frac{s+18}{6s}\right\}}(\log R)^{\min\left\{\frac{s+6}{6s},\frac{1}{3}\right\}},

for all R>2R>2. Indeed, if s>6s>6, by Hölder inequality,

𝑽(𝑽)BRL6(BR)+𝑾(𝑾)BRL6(BR)\displaystyle\quad\left\|\boldsymbol{V}-(\boldsymbol{V})_{B_{R}}\right\|_{L^{6}(B_{R})}+\left\|\boldsymbol{W}-(\boldsymbol{W})_{B_{R}}\right\|_{L^{6}(B_{R})}
Rs62s(𝑽(𝑽)BRLs(BR)+𝑾(𝑾)BRLs(BR))R23(logR)13,\displaystyle\lesssim R^{\frac{s-6}{2s}}\left(\left\|\boldsymbol{V}-(\boldsymbol{V})_{B_{R}}\right\|_{L^{s}(B_{R})}+\left\|\boldsymbol{W}-(\boldsymbol{W})_{B_{R}}\right\|_{L^{s}(B_{R})}\right)\lesssim R^{\frac{2}{3}}(\log R)^{\frac{1}{3}},

which implies (1.3) when s=6s=6.

Remark 1.3.

For s=3s=3, we can not control the local Dirichlet energy (see (2.20) for details). However, if we assume 3|u|2+|B|2dx<\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x<\infty, we could set s=3s=3. In fact, we only consider Case I in the proof of Theorem 1.1, and the proof by contradiction still holds due to we do not need the growth estimates for the local Dirichlet energy.

Remark 1.4.

The logR\log R factor in (1.3) and (1.1) can be relaxed to k=1mlk(R)\prod_{k=1}^{m}l^{k}(R) for any mm\in\mathbb{N}, where lkl^{k} is the composition of |log||\log| function kk times. Indeed, the analytical method of the Froullani integral remains valid for k=1mlk(R)\prod_{k=1}^{m}l^{k}(R).

Remark 1.5.

Theorem 1.1 relaxes the assumption in Theorem 1.1 of [CW2021] from Rs+63sR^{\frac{s+6}{3s}} to Rs+63s(logR)s+66sR^{\frac{s+6}{3s}}(\log R)^{\frac{s+6}{6s}}. Also, Corollary 1.1 relaxes the assumption in Theorem 1.1 of [BY2024] from Rs+63s(logR)s33sR^{\frac{s+6}{3s}}(\log R)^{\frac{s-3}{3s}} to Rs+63s(logR)s+66sR^{\frac{s+6}{3s}}(\log R)^{\frac{s+6}{6s}}. We improved the coefficient of logR\log R by refining the Saint-Venant type estimates using the Froullani integral. See (3.3)–(3.6) for more details. We also note that improving the coefficient of RR is difficult due to limitations of the method.

This paper is organized as follows: some notations and some necessary lemmas are presented in Sect.2; The Liouville type theorem on the MHD system is obtained in Sect.3, where we give the detailed proof of Theorem 1.1.

2. Preliminaries

First we introduce some notations. Denote by γ:=x1γ1x2γ2x3γ3\nabla^{\gamma}:=\partial_{x_{1}}^{\gamma_{1}}\partial_{x_{2}}^{\gamma_{2}}\partial_{x_{3}}^{\gamma_{3}}, where γ=(γ1,γ2,γ3)\gamma=\left(\gamma_{1},\gamma_{2},\gamma_{3}\right), γ1,γ2,γ3{0}\gamma_{1},\gamma_{2},\gamma_{3}\in\mathbb{N}\cup\{0\}, i=xi\partial_{i}=\frac{\partial}{\partial x_{i}} and |γ|=γ1+γ2+γ3|\gamma|=\gamma_{1}+\gamma_{2}+\gamma_{3}. We denote Lp(Ω)L^{p}(\Omega) by the usual Lebesgue space with the norm

fLp(Ω):={(Ω|f(x)|p𝑑x)1/p,1p<,esssupxΩ|f(x)|,p=,\|f\|_{L^{p}(\Omega)}:=\begin{cases}\left(\int_{\Omega}|f(x)|^{p}dx\right)^{1/p},&1\leq p<\infty,\\ \underset{x\in\Omega}{\operatorname{ess\,sup}}|f(x)|,&p=\infty,\end{cases}

where Ω3,1p\Omega\subset\mathbb{R}^{3},1\leq p\leq\infty. Wk,p(Ω)W^{k,p}(\Omega) and W˙k,p(Ω)\dot{W}^{k,p}(\Omega) are defined as follows:

fWk,p(Ω)\displaystyle\|f\|_{W^{k,p}(\Omega)} :=0|γ|kγfLp(Ω),\displaystyle:=\sum_{0\leq|\gamma|\leq k}\left\|\nabla^{\gamma}f\right\|_{L^{p}(\Omega)},
fW˙k,p(Ω)\displaystyle\|f\|_{\dot{W}^{k,p}(\Omega)} :=|γ|=kγfLp(Ω),\displaystyle:=\sum_{|\gamma|=k}\left\|\nabla^{\gamma}f\right\|_{L^{p}(\Omega)},

respectively. Let Cc(Ω)C_{c}^{\infty}(\Omega) denote the space of infinitely differentiable functions with compact support in Ω\Omega. We denote by W0k,p(Ω)W_{0}^{k,p}(\Omega) the closure of Cc(Ω)C_{c}^{\infty}(\Omega) in Wk,p(Ω)W^{k,p}(\Omega). Throughout this paper, we denote 𝑽¯:=𝑽(𝑽)BR\overline{\boldsymbol{V}}:=\boldsymbol{V}-(\boldsymbol{V})_{B_{R}}, 𝑾¯:=𝑾(𝑾)BR\overline{\boldsymbol{W}}:=\boldsymbol{W}-(\boldsymbol{W})_{B_{R}} and denote ACBA\leq CB by ABA\lesssim B for convenience. We denote that BRB_{R} is the ball in 3\mathbb{R}^{3} of radius RR centered at the origin, BR+=BR+3B_{R}^{+}=B_{R}\cap\mathbb{R}_{+}^{3}. We denote by

(f,g)L2(Ω)2:=fL2(Ω)2+gL2(Ω)2.\left\|\left(f,g\right)\right\|^{2}_{L^{2}(\Omega)}:=\left\|f\right\|^{2}_{L^{2}(\Omega)}+\left\|g\right\|^{2}_{L^{2}(\Omega)}.

Let 0<ρ<R0<\rho<R, we denote η1\eta_{1} by a cut-off function such that

η1(x)=η1(|x|)={1, if |x|<R+ρ2;0, if |x|>R,\eta_{1}(x)=\eta_{1}(|x|)=\left\{\begin{array}[]{lll}1,&\text{ if }&|x|<\frac{R+\rho}{2};\\ 0,&\text{ if }&|x|>R,\end{array}\right.

and 0η1(x)10\leq\eta_{1}(x)\leq 1 for any R+ρ2|x|R\frac{R+\rho}{2}\leq|x|\leq R. We denote η2\eta_{2} by a cut-off function such that

η2(x)=η2(|x|)={1, if |x|<ρ;0, if |x|>R+ρ2,\eta_{2}(x)=\eta_{2}(|x|)=\left\{\begin{array}[]{lll}1,&\text{ if }&|x|<\rho;\\ 0,&\text{ if }&|x|>\frac{R+\rho}{2},\end{array}\right.

and 0η2(x)10\leq\eta_{2}(x)\leq 1 for any ρ|x|R+ρ2\rho\leq|x|\leq\frac{R+\rho}{2}. We denote η\eta by a cut-off function given by

η(x)={1 if x<1,x+2 if 1x2,0 if x>2,\eta(x)=\begin{cases}1&\text{ if }x<1,\\ -x+2&\text{ if }1\leq x\leq 2,\\ 0&\text{ if }x>2,\end{cases}

and denote φR(x):=η(|x|R)\varphi_{R}(x):=\eta(\frac{|x|}{R}). It obviously holds

|η1|+|η2|(Rρ)1.\displaystyle|\nabla\eta_{1}|+|\nabla\eta_{2}|\lesssim\left(R-\rho\right)^{-1}.

Next, we apply the following two lemmas to demonstrate that uη1L2(BR)\left\|u\eta_{1}\right\|_{L^{2}(B_{R})} and uη1L4ss+2(BR)\left\|u\eta_{1}\right\|_{L^{\frac{4s}{s+2}}(B_{R})} are controlled by 𝑽¯Ls(BR)\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})} and uL2(BR)\|\nabla u\|_{L^{2}(B_{R})}, with the same result holding for BB.

lemma 2.1 ([BY2024], Lemma 2.1).

Assume s2s\geq 2. It holds

uη1L2(BR)\displaystyle\left\|{u}\eta_{1}\right\|_{L^{2}(B_{R})} R3(s2)4s𝑽¯Ls(BR)12uL2(BR)12+R3(s2)2s(Rρ)1𝑽¯Ls(BR),\displaystyle\lesssim R^{\frac{3(s-2)}{4s}}\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\|\nabla{u}\|_{L^{2}(B_{R})}^{\frac{1}{2}}+R^{\frac{3(s-2)}{2s}}(R-\rho)^{-1}\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}, (2.1)
Bη1L2(BR)\displaystyle\left\|B\eta_{1}\right\|_{L^{2}(B_{R})} R3(s2)4s𝑾¯Ls(BR)12BL2(BR)12+R3(s2)2s(Rρ)1𝑾¯Ls(BR).\displaystyle\lesssim R^{\frac{3(s-2)}{4s}}\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\|\nabla B\|_{L^{2}(B_{R})}^{\frac{1}{2}}+R^{\frac{3(s-2)}{2s}}(R-\rho)^{-1}\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}.
lemma 2.2 ([BY2024], Lemma 2.2 ).

Assume s2s\geq 2. It holds

uη1L4ss+2(BR)\displaystyle\left\|{u}\eta_{1}\right\|_{L^{\frac{4s}{s+2}}(B_{R})} 𝑽¯Ls(BR)12uL2(BR)12+(Rρ)1R3s64s𝑽¯Ls(BR),\displaystyle\lesssim\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\|\nabla{u}\|_{L^{2}(B_{R})}^{\frac{1}{2}}+(R-\rho)^{-1}R^{\frac{3s-6}{4s}}\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}, (2.2)
Bη1L4ss+2(BR)\displaystyle\left\|{B}\eta_{1}\right\|_{L^{\frac{4s}{s+2}}(B_{R})} 𝑾¯Ls(BR)12BL2(BR)12+(Rρ)1R3s64s𝑾¯Ls(BR).\displaystyle\lesssim\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\|\nabla{B}\|_{L^{2}(B_{R})}^{\frac{1}{2}}+(R-\rho)^{-1}R^{\frac{3s-6}{4s}}\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}.

We recall the Bogovskii map (see [Galdi], Lemma III.3.1 and [T2018], §2.8). For a domain Ω3\Omega\subset\mathbb{R}^{3}, denote

L0q(Ω)={fLq(Ω):Ωfdx=0}.L_{0}^{q}(\Omega)=\left\{f\in L^{q}(\Omega):\int_{\Omega}f~{}\mathrm{d}x=0\right\}.

Then we use the following lemma to deal with the pressure.

lemma 2.3 ([T2021], Lemma 3).

Let R>0R>0, 1<L<1<L<\infty and A=BLR\B¯RA=B_{LR}\backslash\bar{B}_{R} or A=BLR+\B¯R+A=B_{LR}^{+}\backslash\bar{B}_{R}^{+} be an annulus or a half-annulus in 3\mathbb{R}^{3}. There is a linear Bogovskii map Bog\operatorname{Bog} that maps a scalar function fL0q(A),1<q<f\in L_{0}^{q}(A),1<q<\infty, to a vector field v=BogfW01,q(A)v=\operatorname{Bog}f\in W_{0}^{1,q}(A) and

divv=f,vLq(A)Cq(L1)L11/qfLq(A).\operatorname{div}v=f,\quad\|\nabla v\|_{L^{q}(A)}\leq\frac{C_{q}}{(L-1)L^{1-1/q}}\|f\|_{L^{q}(A)}.

The constant CqC_{q} is independent of LL and RR.

Using the above three lemmas, we obtain the following energy inequality, which is crucial for proving the main theorem.

lemma 2.4.

Assume 2<ρ<R2<\rho<R, 3s63\leq s\leq 6 and β>0\beta>0. Let 𝐕\boldsymbol{V} and 𝐖\boldsymbol{W} satisfy (1.3). Then

(u,B)η2L2(BR)2\displaystyle\left\|\left(\nabla u,\nabla B\right)\sqrt{\eta_{2}}\right\|_{L^{2}(B_{R})}^{2}
\displaystyle\lesssim R10(Rρ)10(logR)3ss+6β(u,B)L2(Bρ+R2Bρ)((u,B)L2(BR)12ss+6+1).\displaystyle R^{10}(R-\rho)^{-10}(\log R)^{\frac{3s}{s+6}\beta}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{\frac{\rho+R}{2}}\setminus B_{\rho})}\left(\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}}+1\right).
Proof.

We divide the proof into two steps.
Step I. Dealing with the pressure. Using Lemma 2.3 with L=R+ρ2ρL=\frac{R+\rho}{2\rho}, for any q(1,)q\in(1,\infty), there exists a constant Cq>0C_{q}>0 and a function wW01,q(B(R+ρ)/2\Bρ){w}\in W_{0}^{1,q}\left(B_{(R+\rho)/2}\backslash B_{\rho}\right) such that divw=uη2\operatorname{div}{w}={u}\cdot\nabla\eta_{2} and

B(R+ρ)/2\Bρ|w|qdxCq(ρRρ)qB(R+ρ)/2\Bρ|uη2|qdx.\displaystyle\int_{B_{(R+\rho)/2}\backslash B_{\rho}}|\nabla{w}|^{q}~{}\mathrm{d}x\leq C_{q}\left(\frac{\rho}{R-\rho}\right)^{q}\int_{B_{(R+\rho)/2}\backslash B_{\rho}}\left|{u}\cdot\nabla\eta_{2}\right|^{q}~{}\mathrm{d}x. (2.3)

We then extend w=0{w}=0 in BρB_{\rho}. Integrating by part, we find

BRp(uη2w)dx=BRpuη2dx+BRpwdx=0.\displaystyle\int_{B_{R}}\nabla p\cdot\left(u\eta_{2}-w\right)~{}\mathrm{d}x=-\int_{B_{R}}pu\cdot\nabla\eta_{2}~{}\mathrm{d}x+\int_{B_{R}}p\nabla\cdot w~{}\mathrm{d}x=0. (2.4)

Step II. L2L^{2}-estimate. Multiplying the equation (1.1)1\eqref{eq:MHD}_{1} by uη2w{u}\eta_{2}-{w}, multiplying the equation (1.1)2\eqref{eq:MHD}_{2} by Bη2B\eta_{2} and integrating by parts in BRB_{R}, we have

BR|u|2η2+|B|2η2dx=\displaystyle\int_{B_{R}}|\nabla{u}|^{2}\eta_{2}+|\nabla{B}|^{2}\eta_{2}~{}\mathrm{d}x= BRuuη2+BBη2dx+BRuwdx\displaystyle-\int_{B_{R}}u\cdot\nabla u\cdot\nabla\eta_{2}+B\cdot\nabla B\cdot\nabla\eta_{2}~{}\mathrm{d}x+\int_{B_{R}}\nabla{u}\cdot\nabla{w}~{}\mathrm{d}x (2.5)
+BRuuwBBwdxBRuuuη2+uBBη2dx\displaystyle+\int_{B_{R}}u\cdot\nabla u\cdot w-B\cdot\nabla B\cdot w~{}\mathrm{d}x-\int_{B_{R}}u\cdot\nabla u\cdot u\eta_{2}+u\cdot\nabla B\cdot B\eta_{2}~{}\mathrm{d}x
+BRBBuη2+BuBη2dx\displaystyle+\int_{B_{R}}B\cdot\nabla B\cdot u\eta_{2}+B\cdot\nabla u\cdot B\eta_{2}~{}\mathrm{d}x
=\displaystyle= :I+II+III+IV+V,\displaystyle:I+II+III+IV+V,

where the pressure vanishes due to (2.4). For I, by Hölder inequality and Lemma 2.1, it holds

|I|\displaystyle|I| (Rρ)1(uL2(B(R+ρ)/2\Bρ)uL2(B(R+ρ)/2\Bρ)+BL2(B(R+ρ)/2\Bρ)BL2(B(R+ρ)/2\Bρ))\displaystyle\lesssim(R-\rho)^{-1}\left(\|\nabla u\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|u\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}+\|\nabla B\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|B\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\right) (2.6)
(Rρ)1(uL2(B(R+ρ)/2\Bρ)uη1L2(BR)+BL2(B(R+ρ)/2\Bρ)Bη1L2(BR))\displaystyle\lesssim(R-\rho)^{-1}\left(\|\nabla u\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|u\eta_{1}\|_{L^{2}(B_{R})}+\|\nabla B\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|B\eta_{1}\|_{L^{2}(B_{R})}\right)
(Rρ)1(u,B)L2(B(R+ρ)/2\Bρ)[R3(s2)4s(u,B)L2(BR)12(𝑽¯Ls(BR)12+𝑾¯Ls(BR)12)\displaystyle\lesssim(R-\rho)^{-1}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left[R^{\frac{3(s-2)}{4s}}\|\left(\nabla{u},\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{1}{2}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\right)\right.
+R3(s2)2s(Rρ)1(𝑽¯Ls(BR)+𝑾¯Ls(BR))].\displaystyle\left.\quad+R^{\frac{3(s-2)}{2s}}(R-\rho)^{-1}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right)\right].

For II, by Hölder inequality and (2.3) with q=2q=2, we get

|II|\displaystyle|II| (Rρ)1uL2(B(R+ρ)/2\Bρ)wL2(B(R+ρ)/2\Bρ)\displaystyle\lesssim(R-\rho)^{-1}\|\nabla u\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|\nabla w\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})} (2.7)
R(Rρ)2uL2(B(R+ρ)/2\Bρ)uL2(B(R+ρ)/2\Bρ).\displaystyle\lesssim R(R-\rho)^{-2}\|\nabla u\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|u\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}.

Combining (2.6) and (2.7), we have

|I|+|II|R(Rρ)2(u,B)L2(B(R+ρ)/2\Bρ)\displaystyle|I|+|II|\lesssim R(R-\rho)^{-2}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})} (2.8)
[R3(s2)4s(u,B)L2(BR)12(𝑽¯Ls(BR)12+𝑾¯Ls(BR)12)+R3(s2)2s(Rρ)1(𝑽¯Ls(BR)+𝑾¯Ls(BR))].\displaystyle\cdot\left[R^{\frac{3(s-2)}{4s}}\|\left(\nabla{u},\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{1}{2}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\right)+R^{\frac{3(s-2)}{2s}}(R-\rho)^{-1}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right)\right].

For III, by integration by parts, it holds

III\displaystyle III =BRk𝑽¯kiiujwjk𝑾¯kiiBjwjdx\displaystyle=\int_{B_{R}}\partial_{k}\overline{\boldsymbol{V}}_{ki}\partial_{i}u_{j}w_{j}-\partial_{k}\overline{\boldsymbol{W}}_{ki}\partial_{i}B_{j}w_{j}~{}\mathrm{d}x
=BR𝑽¯kiiujkwj𝑾¯kiiBjkwjdx,\displaystyle=-\int_{B_{R}}\overline{\boldsymbol{V}}_{ki}\partial_{i}u_{j}\partial_{k}w_{j}-\overline{\boldsymbol{W}}_{ki}\partial_{i}B_{j}\partial_{k}w_{j}~{}\mathrm{d}x,

where we use the fact that V¯\overline{\boldsymbol{V}} and W¯\overline{\boldsymbol{W}} are anti-symmetric, 2(uw)\nabla^{2}(u\cdot w) and 2(Bw)\nabla^{2}(B\cdot w) are symmetric. Then by Hölder inequality and (2.3) with q=2ss2q=\frac{2s}{s-2}, we have

|III|\displaystyle|III| wL2ss2(B(R+ρ)/2\Bρ)(u,B)L2(B(R+ρ)/2\Bρ)(𝑽¯Ls(BR)+𝑾¯Ls(BR))\displaystyle\lesssim\|\nabla w\|_{L^{\frac{2s}{s-2}}(B_{(R+\rho)/2}\backslash B_{\rho})}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right) (2.9)
ρ(Rρ)2(𝑽¯Ls(BR)+𝑾¯Ls(BR))(u,B)L2(B(R+ρ)/2\Bρ)uη12L2ss2(BR).\displaystyle\lesssim\rho\left(R-\rho\right)^{-2}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\|u\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}.

For IV, by integration by parts, it holds

IV\displaystyle IV =12BRk𝑽¯kii|u|2η2k𝑽¯kii|B|2η2dx\displaystyle=-\frac{1}{2}\int_{B_{R}}\partial_{k}\overline{\boldsymbol{V}}_{ki}\partial_{i}|u|^{2}\eta_{2}-\partial_{k}\overline{\boldsymbol{V}}_{ki}\partial_{i}|B|^{2}\eta_{2}~{}\mathrm{d}x (2.10)
=12BR𝑽¯kii|u|2kη2𝑽¯kii|B|2kη2dx,\displaystyle=\frac{1}{2}\int_{B_{R}}\overline{\boldsymbol{V}}_{ki}\partial_{i}|u|^{2}\partial_{k}\eta_{2}-\overline{\boldsymbol{V}}_{ki}\partial_{i}|B|^{2}\partial_{k}\eta_{2}~{}\mathrm{d}x,

where we use the fact that 2|u|2\nabla^{2}|u|^{2} and 2|B|2\nabla^{2}|B|^{2} are symmetric. Then by Hölder inequality, we have

|IV|(Rρ)1𝑽¯Ls(BR)(u,B)L2(B(R+ρ)/2\Bρ)(uη12L2ss2(BR)+Bη12L2ss2(BR)).\displaystyle|IV|\lesssim\left(R-\rho\right)^{-1}\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left(\|u\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}+\|B\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}\right). (2.11)

For V, by integration by parts, it holds

V\displaystyle V =BRk𝑾¯kiiBjujη2+k𝑾¯kiiujBjη2dx\displaystyle=\int_{B_{R}}\partial_{k}\overline{\boldsymbol{W}}_{ki}\partial_{i}B_{j}u_{j}\eta_{2}+\partial_{k}\overline{\boldsymbol{W}}_{ki}\partial_{i}u_{j}B_{j}\eta_{2}~{}\mathrm{d}x
=BR𝑾¯kiiBjujkη2+𝑾¯kiiujBjkη2dx,\displaystyle=-\int_{B_{R}}\overline{\boldsymbol{W}}_{ki}\partial_{i}B_{j}u_{j}\partial_{k}\eta_{2}+\overline{\boldsymbol{W}}_{ki}\partial_{i}u_{j}B_{j}\partial_{k}\eta_{2}~{}\mathrm{d}x,

where we use the fact that [iBjkuj+iujkBj]\left[\partial_{i}B_{j}\partial_{k}u_{j}+\partial_{i}u_{j}\partial_{k}B_{j}\right] is symmetric. Then by Hölder inequality, we have

|V|(Rρ)1𝑾¯Ls(BR)(u,B)L2(B(R+ρ)/2\Bρ)(uη12L2ss2(BR)+Bη12L2ss2(BR)).\displaystyle|V|\lesssim\left(R-\rho\right)^{-1}\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left(\|u\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}+\|B\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}\right). (2.12)

Combining (2.9), (2.11) and (2.12), we get

|III|+|IV|+|V|\displaystyle|III|+|IV|+|V| (2.13)
R(Rρ)2(𝑽¯Ls(BR)+𝑾¯Ls(BR))(u,B)L2(B(R+ρ)/2\Bρ)(uη12L2ss2(BR)+Bη12L2ss2(BR)).\displaystyle\lesssim R\left(R-\rho\right)^{-2}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left(\|u\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}+\|B\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}\right).

By interpolation inequality and Sobolev inequality, we get

uη12L2ss2(BR)\displaystyle\|u\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})} uη12L4ss+2(BR)4s12s+6uη12L6(BR)183ss+6\displaystyle\leq\|u\eta_{1}^{2}\|^{\frac{4s-12}{s+6}}_{L^{\frac{4s}{s+2}}(B_{R})}\|u\eta_{1}^{2}\|^{\frac{18-3s}{s+6}}_{L^{6}(B_{R})} (2.14)
uη12L4ss+2(BR)4s12s+6(uη12)L2(BR)183ss+6\displaystyle\lesssim\|u\eta_{1}^{2}\|^{\frac{4s-12}{s+6}}_{L^{\frac{4s}{s+2}}(B_{R})}\|\nabla(u\eta_{1}^{2})\|^{\frac{18-3s}{s+6}}_{L^{2}(B_{R})}
uη12L4ss+2(BR)4s12s+6(uL2(BR)183ss+6+(Rρ)183ss+6uη1L2(BR)183ss+6).\displaystyle\lesssim\|u\eta_{1}^{2}\|^{\frac{4s-12}{s+6}}_{L^{\frac{4s}{s+2}}(B_{R})}\left(\|\nabla u\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}+(R-\rho)^{-\frac{18-3s}{s+6}}\|u\eta_{1}\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}\right).

Similarly, we get

Bη12L2ss2(BR)Bη12L4ss+2(BR)4s12s+6(BL2(BR)183ss+6+(Rρ)183ss+6Bη1L2(BR)183ss+6).\displaystyle\|B\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}\lesssim\|B\eta_{1}^{2}\|^{\frac{4s-12}{s+6}}_{L^{\frac{4s}{s+2}}(B_{R})}\left(\|\nabla B\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}+(R-\rho)^{-\frac{18-3s}{s+6}}\|B\eta_{1}\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}\right). (2.15)

Combining (2.14) and (2.15), using Lemma 2.1 and Lemma 2.2, we have

uη12L2ss2(BR)+Bη12L2ss2(BR)\displaystyle\|u\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}+\|B\eta_{1}^{2}\|_{L^{\frac{2s}{s-2}}(B_{R})}
\displaystyle\lesssim (𝑽¯Ls(BR)2s6s+6+𝑾¯Ls(BR)2s6s+6)(u,B)L2(BR)12ss+6\displaystyle\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{2s-6}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{2s-6}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}}
+(Rρ)183ss+6R9(s2)(6s)4s(s+6)(𝑽¯Ls(BR)12+𝑾¯Ls(BR)12)(u,B)L2(BR)12\displaystyle+(R-\rho)^{-\frac{18-3s}{s+6}}R^{\frac{9(s-2)(6-s)}{4s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{1}{2}}
+(Rρ)6(6s)s+6R9(s2)(6s)2s(s+6)(𝑽¯Ls(BR)12ss+6+𝑾¯Ls(BR)12ss+6)(u,B)L2(BR)2s6s+6\displaystyle+(R-\rho)^{-\frac{6(6-s)}{s+6}}R^{\frac{9(s-2)(6-s)}{2s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{12-s}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{12-s}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{2s-6}{s+6}}
+(Rρ)4s12s+6R3(s2)(s3)s(s+6)(𝑽¯Ls(BR)4s12s+6+𝑾¯Ls(BR)4s12s+6)(u,B)L2(BR)183ss+6\displaystyle+(R-\rho)^{-\frac{4s-12}{s+6}}R^{\frac{3(s-2)(s-3)}{s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{4s-12}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{4s-12}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}
+(Rρ)1R3(s2)4s(𝑽¯Ls(BR)5s62(s+6)+𝑾¯Ls(BR)5s62(s+6))(u,B)L2(BR)183s2(s+6)\displaystyle+(R-\rho)^{-1}R^{\frac{3(s-2)}{4s}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{5s-6}{2(s+6)}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{5s-6}{2(s+6)}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18-3s}{2(s+6)}}
+(Rρ)2(12s)s+6R3(12s)(s2)2s(s+6)(𝑽¯Ls(BR)+𝑾¯Ls(BR)).\displaystyle+(R-\rho)^{-\frac{2(12-s)}{s+6}}R^{\frac{3(12-s)(s-2)}{2s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right).

Hence, we get

|III|+|IV|+|V|\displaystyle|III|+|IV|+|V| (2.16)
\displaystyle\lesssim R(Rρ)2(u,B)L2(B(R+ρ)/2\Bρ)[(𝑽¯Ls(BR)3ss+6+𝑾¯Ls(BR)3ss+6)(u,B)L2(BR)12ss+6\displaystyle R\left(R-\rho\right)^{-2}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left[\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{3s}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{3s}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}}\right.
+(Rρ)183ss+6R9(s2)(6s)4s(s+6)(𝑽¯Ls(BR)32+𝑾¯Ls(BR)32)(u,B)L2(BR)12\displaystyle\left.+(R-\rho)^{-\frac{18-3s}{s+6}}R^{\frac{9(s-2)(6-s)}{4s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{3}{2}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{3}{2}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{1}{2}}\right.
+(Rρ)6(6s)s+6R9(s2)(6s)2s(s+6)(𝑽¯Ls(BR)18s+6+𝑾¯Ls(BR)18s+6)(u,B)L2(BR)2s6s+6\displaystyle\left.+(R-\rho)^{-\frac{6(6-s)}{s+6}}R^{\frac{9(s-2)(6-s)}{2s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{18}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{18}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{2s-6}{s+6}}\right.
+(Rρ)4s12s+6R3(s2)(s3)s(s+6)(𝑽¯Ls(BR)5s6s+6+𝑾¯Ls(BR)5s6s+6)(u,B)L2(BR)183ss+6\displaystyle\left.+(R-\rho)^{-\frac{4s-12}{s+6}}R^{\frac{3(s-2)(s-3)}{s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{5s-6}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{5s-6}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}\right.
+(Rρ)1R3(s2)4s(𝑽¯Ls(BR)7s+62(s+6)+𝑾¯Ls(BR)7s+62(s+6))(u,B)L2(BR)183s2(s+6)\displaystyle\left.+(R-\rho)^{-1}R^{\frac{3(s-2)}{4s}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{7s+6}{2(s+6)}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{7s+6}{2(s+6)}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18-3s}{2(s+6)}}\right.
+(Rρ)2(12s)s+6R3(12s)(s2)2s(s+6)(𝑽¯Ls(BR)2+𝑾¯Ls(BR)2)].\displaystyle\left.+(R-\rho)^{-\frac{2(12-s)}{s+6}}R^{\frac{3(12-s)(s-2)}{2s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{2}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{2}\right)\right].

Putting (2.5), (LABEL:eq:I+) and (2.16) together, we get

BR|u|2η2+|B|2η2dx\displaystyle\int_{B_{R}}|\nabla{u}|^{2}\eta_{2}+|\nabla{B}|^{2}\eta_{2}~{}\mathrm{d}x (2.17)
\displaystyle\lesssim R(Rρ)2(u,B)L2(B(R+ρ)/2\Bρ)[(𝑽¯Ls(BR)3ss+6+𝑾¯Ls(BR)3ss+6)(u,B)L2(BR)12ss+6\displaystyle R\left(R-\rho\right)^{-2}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\left[\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{3s}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{3s}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}}\right.
+(Rρ)183ss+6R9(s2)(6s)4s(s+6)(𝑽¯Ls(BR)32+𝑾¯Ls(BR)32)(u,B)L2(BR)12\displaystyle\left.+(R-\rho)^{-\frac{18-3s}{s+6}}R^{\frac{9(s-2)(6-s)}{4s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{3}{2}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{3}{2}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{1}{2}}\right.
+(Rρ)6(6s)s+6R9(s2)(6s)2s(s+6)(𝑽¯Ls(BR)18s+6+𝑾¯Ls(BR)18s+6)(u,B)L2(BR)2s6s+6\displaystyle\left.+(R-\rho)^{-\frac{6(6-s)}{s+6}}R^{\frac{9(s-2)(6-s)}{2s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{18}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{18}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{2s-6}{s+6}}\right.
+(Rρ)4s12s+6R3(s2)(s3)s(s+6)(𝑽¯Ls(BR)5s6s+6+𝑾¯Ls(BR)5s6s+6)(u,B)L2(BR)183ss+6\displaystyle\left.+(R-\rho)^{-\frac{4s-12}{s+6}}R^{\frac{3(s-2)(s-3)}{s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{5s-6}{s+6}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{5s-6}{s+6}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18-3s}{s+6}}\right.
+(Rρ)1R3(s2)4s(𝑽¯Ls(BR)7s+62(s+6)+𝑾¯Ls(BR)7s+62(s+6))(u,B)L2(BR)183s2(s+6)\displaystyle\left.+(R-\rho)^{-1}R^{\frac{3(s-2)}{4s}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{7s+6}{2(s+6)}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{7s+6}{2(s+6)}}\right)\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18-3s}{2(s+6)}}\right.
+(Rρ)2(12s)s+6R3(12s)(s2)2s(s+6)(𝑽¯Ls(BR)2+𝑾¯Ls(BR)2)\displaystyle\left.+(R-\rho)^{-\frac{2(12-s)}{s+6}}R^{\frac{3(12-s)(s-2)}{2s(s+6)}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{2}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{2}\right)\right.
+R3(s2)4s(u,B)L2(BR)12(𝑽¯Ls(BR)12+𝑾¯Ls(BR)12)\displaystyle\left.+R^{\frac{3(s-2)}{4s}}\|\left(\nabla{u},\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{1}{2}}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}^{\frac{1}{2}}\right)\right.
+R3(s2)2s(Rρ)1(𝑽¯Ls(BR)+𝑾¯Ls(BR))]\displaystyle\left.+R^{\frac{3(s-2)}{2s}}(R-\rho)^{-1}\left(\|\overline{\boldsymbol{V}}\|_{L^{s}(B_{R})}+\|\overline{\boldsymbol{W}}\|_{L^{s}(B_{R})}\right)\right]
:=\displaystyle:= R(Rρ)2(u,B)L2(B(R+ρ)/2\Bρ)i=18Ii.\displaystyle R\left(R-\rho\right)^{-2}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{(R+\rho)/2}\backslash B_{\rho})}\sum_{i=1}^{8}I_{i}.

We point out that I1I_{1} is the main term, since

I1R(logR)3ss+6β(u,B)L2(BR)12ss+6,\displaystyle I_{1}\lesssim R(\log R)^{\frac{3s}{s+6}\beta}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}}, (2.18)

by (1.3). For I2I_{2}, by (1.3), we have

I2\displaystyle I_{2} R5s64s(RRρ)183ss+6(logR)32β(u,B)2,R12\displaystyle\lesssim R^{\frac{5s-6}{4s}}\left(\frac{R}{R-\rho}\right)^{\frac{18-3s}{s+6}}(\log R)^{\frac{3}{2}\beta}\|\left(\nabla u,\nabla B\right)\|_{2,R}^{\frac{1}{2}} (2.19)
R(RRρ)8(logR)3ss+6βmax{(u,B)L2(BR)12ss+6,1}.\displaystyle\lesssim R\left(\frac{R}{R-\rho}\right)^{8}(\log R)^{\frac{3s}{s+6}\beta}\max\left\{\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}},1\right\}.

Similarly, we have

i=38IiR(RRρ)8(logR)3ss+6βmax{(u,B)L2(BR)12ss+6,1}.\displaystyle\sum_{i=3}^{8}I_{i}\lesssim R\left(\frac{R}{R-\rho}\right)^{8}(\log R)^{\frac{3s}{s+6}\beta}\max\left\{\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{12-s}{s+6}},1\right\}.

which, combined with (2.17), (2.18) and (2.19), completes the proof. ∎

With the lemma above, we obtain a growth estimate for the local Dirichlet energy via an iterative argument.

lemma 2.5 (Growth estimates of the local Dirichlet energy).

Assuming that 𝐕\boldsymbol{V} and 𝐖\boldsymbol{W} satisfy (1.3) for 3<s63<s\leq 6, it holds

BR|u|2+|B|2dx(logR)3ss3β,\int_{B_{R}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x\lesssim(\log R)^{\frac{3s}{s-3}\beta},

for all R>2R>2.

Proof.

We may assume that (u,B)L2(BR)>1\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}>1 when R>RR>R^{\prime} for some positive RR^{\prime}. Fix R<ρ<RR^{\prime}<\rho<R. By Lemma 2.4 and Young inequality, we have

(u,B)L2(Bρ)2\displaystyle\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{\rho})}^{2} R10(Rρ)10(logR)3ss+6β(u,B)L2(BR)18s+6\displaystyle\lesssim R^{10}(R-\rho)^{-10}(\log R)^{{\frac{3s}{s+6}\beta}}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{\frac{18}{s+6}} (2.20)
12(u,B)L2(BR)2+CR10(s+6)s3(Rρ)10(s+6)s3(logR)3ss3β,\displaystyle\leq\frac{1}{2}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{R})}^{2}+CR^{\frac{10(s+6)}{s-3}}(R-\rho)^{-\frac{10(s+6)}{s-3}}(\log R)^{\frac{3s}{s-3}\beta},

where we note that s>3s>3 ensures the validity of Young inequality. Denote t0=ρt_{0}=\rho, ti+1ti=2i1(Rρ)t_{i+1}-t_{i}=2^{-i-1}(R-\rho). Using above inequality with ρ,R\rho,R replaced by ti,ti+1t_{i},t_{i+1}, and iterating kk times, we have

(u,B)L2(Bt0)2\displaystyle\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{t_{0}})}^{2} 12k(u,B)L2(Btk)2+CR10(s+6)s3(Rρ)10(s+6)s3(logR)3ss3βi=0k112i.\displaystyle\leq\frac{1}{2^{k}}\|\left(\nabla u,\nabla B\right)\|_{L^{2}(B_{t_{k}})}^{2}+CR^{\frac{10(s+6)}{s-3}}(R-\rho)^{-\frac{10(s+6)}{s-3}}(\log R)^{\frac{3s}{s-3}\beta}\sum_{i=0}^{k-1}\frac{1}{2^{i}}.

Letting kk\rightarrow\infty and choosing ρ=R/2\rho=R/2, we complete the proof. ∎

3. Proof of Theorem 1.1

Proof of Theorem 1.1.

We define

g(R):=3(|u|2+|B|2)φRdx,g(R):=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\nabla B|^{2}\right)\varphi_{R}~{}\mathrm{d}x,

which implies

g(R)=B2R\BR(|u|2+|B|2)η(|x|R)(|x|R2)dxR1B2R\BR(|u|2+|B|2)dx.g^{\prime}(R)=\int_{B_{2R}\backslash B_{R}}\left(|\nabla u|^{2}+|\nabla B|^{2}\right)\eta^{\prime}\left(\frac{|x|}{R}\right)\cdot\left(-\frac{|x|}{R^{2}}\right)~{}\mathrm{d}x\gtrsim R^{-1}\int_{B_{2R}\backslash B_{R}}\left(|\nabla u|^{2}+|\nabla B|^{2}\right)~{}\mathrm{d}x.

Replacing ρ,R\rho,R by R,3RR,3R and choosing η2=φR\eta_{2}=\varphi_{R} in Lemma 2.4, we have

g(R)R12(logR)3ss+6βg(R)12(g(3R)12s2(s+6)+1).\displaystyle g(R)\lesssim R^{\frac{1}{2}}(\log R)^{\frac{3s}{s+6}\beta}g^{\prime}(R)^{\frac{1}{2}}\left(g(3R)^{\frac{12-s}{2(s+6)}}+1\right). (3.1)

Recall that

BR|u|2+|B|2dx(logR)3ss3β,\displaystyle\int_{B_{R}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x\lesssim(\log R)^{\frac{3s}{s-3}\beta},

for all R>2R>2 in Lemma 2.5. Then by the definition of g(R)g(R), we have

g(R)(logR)3ss3β,\displaystyle g(R)\lesssim(\log R)^{\frac{3s}{s-3}\beta}, (3.2)

for all R>2R>2. We then prove 3|u|2+|B|2dx=0\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x=0 by contradiction. Assuming 3|u|2+|B|2dx0\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x\neq 0, we divide the proof into two cases.

Case I. 03|u|2+|B|2dx20\neq\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x\leq 2. There exists R0>eR_{0}>e, such that g(R)>0g(R)>0 for all RR0R\geq R_{0}. Then by (3.1), choosing β=s+66s\beta=\frac{s+6}{6s}, we directly obtain

g(R)R12(logR)12g(R)12,\displaystyle g(R)\lesssim R^{\frac{1}{2}}(\log R)^{\frac{1}{2}}g^{\prime}(R)^{\frac{1}{2}},

which implies

R0+dRRlogRR0+g(R)g(R)2dR.\displaystyle\int_{R_{0}}^{+\infty}\frac{~{}\mathrm{d}R}{R\log R}\lesssim\int_{R_{0}}^{+\infty}\frac{g^{\prime}(R)}{g(R)^{2}}~{}\mathrm{d}R.

We derive a contradiction from the divergence of the left-hand side and the convergence of the right-hand side of the above inequality.

Case II. 3|u|2+|B|2dx>2\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x>2. There exists R1>9R_{1}>9, such that g(3R)g(R)>1g(3R)\geq g(R)>1 for all R>R1R>R_{1}. Then by (3.1), choosing β=s+66s\beta=\frac{s+6}{6s}, we obtain

g(R)R12(logR)12g(R)12g(3R)12s2(s+6),\displaystyle g(R)\lesssim R^{\frac{1}{2}}(\log R)^{\frac{1}{2}}g^{\prime}(R)^{\frac{1}{2}}g(3R)^{\frac{12-s}{2(s+6)}},

which implies

(g(R)g(3R))12ss+6RlogRg(R)g(R)3ss+6.\displaystyle\frac{\left(\frac{g(R)}{g(3R)}\right)^{\frac{12-s}{s+6}}}{R\log R}\lesssim\frac{{g}^{\prime}({R})}{{g}({R})^{\frac{3{s}}{{s}+6}}}.

Integrating both sides on (R1,r)(R_{1},r), we get

R1r(g(R)g(3R))12ss+6RlogRdRR1rg(R)g(R)3ss+6dR.\displaystyle\int_{R_{1}}^{r}\frac{\left(\frac{g(R)}{g(3R)}\right)^{\frac{12-s}{s+6}}}{R\log R}~{}\mathrm{d}R\lesssim\int_{R_{1}}^{r}\frac{g^{\prime}(R)}{{g}({R})^{\frac{3{s}}{{s}+6}}}~{}\mathrm{d}R. (3.3)

For the left side of (3.3), we note that

R1r(g(R)g(3R))12ss+6RlogRdRR1rlogg(R)g(3R)+1RlogRdR\displaystyle\quad\int_{R_{1}}^{r}\frac{\left(\frac{g(R)}{g(3R)}\right)^{\frac{12-s}{s+6}}}{R\log R}~{}\mathrm{d}R\gtrsim\int_{R_{1}}^{r}\frac{\log\frac{g(R)}{g(3R)}+1}{R\log R}~{}\mathrm{d}R (3.4)
=R1rlogg(R)RlogRdR3R13rlogg(R)R(logRlog3)dR+loglogrloglogR1\displaystyle=\int_{R_{1}}^{r}\frac{\log g(R)}{R\log R}~{}\mathrm{d}R-\int_{3R_{1}}^{3r}\frac{\log g(R)}{R\left(\log R-\log 3\right)}~{}\mathrm{d}R+\log\log r-\log\log R_{1}
=R1rlogg(R)R(1logR1logRlog3)dRr3rlogg(R)R(logRlog3)dR\displaystyle=\int_{R_{1}}^{r}\frac{\log g(R)}{R}\left(\frac{1}{\log R}-\frac{1}{\log R-\log 3}\right)~{}\mathrm{d}R-\int_{r}^{3r}\frac{\log g(R)}{R\left(\log R-\log 3\right)}~{}\mathrm{d}R
+R13R1logg(R)R(logRlog3)dRloglogR1+loglogr\displaystyle\quad+\int_{R_{1}}^{3R_{1}}\frac{\log g(R)}{R\left(\log R-\log 3\right)}~{}\mathrm{d}R-\log\log R_{1}+\log\log r
=Ia+Ib+Ic+loglogr,\displaystyle=I_{a}+I_{b}+I_{c}+\log\log r,

where

Ia:=R1rlogg(R)R(1logR1logRlog3)dR,Ib:=r3rlogg(R)R(logRlog3)dRI_{a}:=\int_{R_{1}}^{r}\frac{\log g(R)}{R}\left(\frac{1}{\log R}-\frac{1}{\log R-\log 3}\right)~{}\mathrm{d}R,\quad I_{b}:=-\int_{r}^{3r}\frac{\log g(R)}{R\left(\log R-\log 3\right)}~{}\mathrm{d}R

and

Ic:=R13R1logg(R)R(logRlog3)dRloglogR1.I_{c}:=\int_{R_{1}}^{3R_{1}}\frac{\log g(R)}{R\left(\log R-\log 3\right)}~{}\mathrm{d}R-\log\log R_{1}.

Noting R1>9R_{1}>9 implies logRlog3>12logR\log R-\log 3>\frac{1}{2}\log R for all R>R1R>R_{1} and using (3.2), we have for IaI_{a}:

|Ia|R1rlogg(R)R(logR)2dRR1rloglogRR(logR)2dR,\displaystyle|I_{a}|\lesssim\int_{R_{1}}^{r}\frac{\log g(R)}{R(\log R)^{2}}~{}\mathrm{d}R\lesssim\int_{R_{1}}^{r}\frac{\log\log R}{R(\log R)^{2}}~{}\mathrm{d}R, (3.5)

for IbI_{b}:

|Ib|\displaystyle|I_{b}| r3rloglogRRlogRdR=12(loglogR)2|r3r=12(loglog3r)212(loglogr)2\displaystyle\lesssim\int_{r}^{3r}\frac{\log\log R}{R\log R}~{}\mathrm{d}R=\left.\frac{1}{2}\left(\log\log R\right)^{2}\right|_{r}^{3r}=\frac{1}{2}\left(\log\log 3r\right)^{2}-\frac{1}{2}\left(\log\log r\right)^{2} (3.6)
=12(loglogr+log(1+log3logr))212(loglogr)2\displaystyle=\frac{1}{2}\left(\log\log r+\log\left(1+\frac{\log 3}{\log r}\right)\right)^{2}-\frac{1}{2}\left(\log\log r\right)^{2}
11logr+(log(1+log3logr))2.\displaystyle\lesssim 1-\frac{1}{\log r}+\left(\log\left(1+\frac{\log 3}{\log r}\right)\right)^{2}.

By(3.5) and (3.6), we have

limr+Ia+Ib+Ic1.\displaystyle\lim\limits_{r\rightarrow+\infty}I_{a}+I_{b}+I_{c}\gtrsim-1. (3.7)

Letting r+r\rightarrow+\infty in (3.3) and combining (LABEL:eq:leftside), (3.7), we derive a contradiction from the divergence of the left-hand side and the convergence of the right-hand side of (3.3). Hence

3|u|2+|B|2dx=0,\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|\nabla B|^{2}~{}\mathrm{d}x=0,

which implies uu0u\equiv u_{0} and BB0B\equiv B_{0} for all x3x\in\mathbb{R}^{3}, where u0{u}_{0} and B0B_{0} are two constants. By Lemma 2.1 with ρ=R2\rho=\frac{R}{2}, we have

uL2(BR2)+BL2(BR2)R5s66s(logR)s+66s,\|u\|_{L^{2}(B_{\frac{R}{2}})}+\|B\|_{L^{2}(B_{\frac{R}{2}})}\lesssim R^{\frac{5s-6}{6s}}(\log R)^{\frac{s+6}{6s}},

which implies

|u0|+|B0|R2s+33s(logR)s+66s,\displaystyle|u_{0}|+|B_{0}|\lesssim R^{-\frac{2s+3}{3s}}(\log R)^{\frac{s+6}{6s}}, (3.8)

for all R>2R>2. Therefore, u=B0u=B\equiv 0. The proof is completed. ∎

Remark 3.1.

It is evident that 0<g(R)g(3R)10<\frac{g(R)}{g(3R)}\leq 1, but this is insufficient for estimating its lower bound. However, the result of Lemma 2.5 indicates that the growth rate of g(R)g(R) is well-controlled, suggesting that its value might be increased through integration using the Froullani integral.

Acknowledgments. The authors would like to thank Professors Wendong Wang for some helpful communications and the support from the Key R&D Program Project No. 2023YFA1009200.

Declaration of competing interest. The authors state that there is no conflict of interest.

Data availability. No data was used in this paper.

References