This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sahlqvist Correspondence Theory for Sabotage Modal Logic

Zhiguang Zhao School of Mathematics and Statistics, Taishan University, Tai’an, 271000, China
Abstract

Sabotage modal logic (SML) [23] is a kind of dynamic logic. It extends static modal logic with a dynamic modality which is interpreted as “after deleting an arrow in the frame, the formula is true”. In the present paper, we are aiming at solving an open problem stated in [5], namely giving a Sahlqvist-type correspondence theorem [20] for sabotage modal logic. In this paper, we define sabotage Sahlqvist formulas and give an algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} to compute the first-order correspondents of sabotage Sahlqvist formulas. We give some remarks and future directions at the end of the paper.

Keywords: Sabotage modal logic, dynamic logic, modal logic, Sahlqvist correspondence theory, algorithmic method.

Math. Subject Class. 03B45, 03B99.

1 Introduction

Sabotage modal logic (SML) [23] belongs to the class of logics collectively called dynamic logics. It extends static modal logic with a dynamic modality \Diamondblack such that φ\Diamondblack\varphi is interpreted as “after deleting an arrow in the frame, φ\varphi is true”. There are several existing works on sabotage modal logic. In [5], a bisimulation characterization theorem as well as a tableau system were given for sabotage modal logic, [17] proved the undecidability of the satisfiability problem and gave the complexity of the model-checking problem, and [18] gave the complexity of solving sabotage game. Several similar formalisms are also investigated, such as graph modifiers logic [4], swap logic [1] and arrow update logic [15], modal logic of definable link deletion [16], modal logic of stepwise removal [24]. These logics are collectively called relation changing modal logics [2, 3]. In the present paper, we are aiming at solving an open problem stated in [5], namely giving a Sahlqvist-type correspondence theorem [20] for sabotage modal logic. We define the Sahlqvist formulas in the sabotage modal language and give the sabotage counterpart of the algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} (Ackermann Lemma Based Algorithm), which is sound over Kripke frames and is successful on sabotage Sahlqvist formulas, to show that every Sahlqvist formula in the sabotage modal language has a first-order correspondent.

The structure of the paper is as follows: in Section 2, we give a brief sketch on the preliminaries of sabotage modal logic, including its syntax, semantics as well as the standard translation. In Section 3 we define sabotage Sahlqvist formulas and the algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}}, show its soundness over Kripke frames and its success on sabotage Sahlqvist inequalities. In Section 4 we discuss the completeness and canonicity issues and give some further directions.

2 Preliminaries on sabotage modal logic

In this section, we collect some preliminaries on sabotage modal logic. For further details, see [5].

Given a set 𝖯𝗋𝗈𝗉\mathsf{Prop} of propositional variables, the set of sabotage modal formulas is recursively defined as follows:

φ::=p¬φ(φφ)φφ\varphi::=\bot\mid\top\mid p\mid\neg\varphi\mid(\varphi\land\varphi)\mid\Diamond\varphi\mid\Diamondblack\varphi

where p𝖯𝗋𝗈𝗉p\in\mathsf{Prop}, \Diamond is the alethic connective of ordinary modal logic and \Diamondblack is the sabotage connective of sabotage modal logic. We will follow the standard rules for omission of the parentheses. ,,,,\lor,\to,\leftrightarrow,\Box,\blacksquare can be defined in the standard way. We call a formula static if it does not contain \Diamondblack or \blacksquare. An occurence of pp is said to be positive (resp. negative) in φ\varphi if pp is under the scope of an even (resp. odd) number of negations in the original sabotage modal language. A formula φ\varphi is positive (resp. negative) if all occurences of propositional variables in φ\varphi are positive (resp. negative).

For the semantics of sabotage modal logic, we use Kripke frames 𝔽=(W,R)\mathbb{F}=(W,R) and Kripke models 𝕄=(𝔽,V)\mathbb{M}=(\mathbb{F},V) where V:𝖯𝗋𝗈𝗉𝒫(W)V:\mathsf{Prop}\to\mathcal{P}(W). The satisfaction relation is defined as follows:

(W,R,V),w(W,R,V),w\Vdash\bot : never;
(W,R,V),w(W,R,V),w\Vdash\top : always;
(W,R,V),wp(W,R,V),w\Vdash p iff wV(p)w\in V(p);
(W,R,V),w¬φ(W,R,V),w\Vdash\neg\varphi iff (W,R,V),wφ(W,R,V),w\nVdash\varphi;
(W,R,V),wφψ(W,R,V),w\Vdash\varphi\land\psi iff (W,R,V),wφ(W,R,V),w\Vdash\varphi and (W,R,V),wψ(W,R,V),w\Vdash\psi;
(W,R,V),wφ(W,R,V),w\Vdash\Diamond\varphi iff there exists a vWv\in W such that (w,v)R(w,v)\in R and (W,R,V),vφ(W,R,V),v\Vdash\varphi;
(W,R,V),wφ(W,R,V),w\Vdash\Diamondblack\varphi iff there exists an edge (w0,w1)R s.t. (W,R{(w0,w1)},V),wφ.(w_{0},w_{1})\in R\mbox{ s.t.\ }(W,R\setminus\{(w_{0},w_{1})\},V),w\Vdash\varphi.

Intuitively, φ\Diamondblack\varphi is true at ww iff there is an edge (w0,w1)(w_{0},w_{1}) of RR such that after deleting this edge from RR, the formula φ\varphi is still true at ww. It is easy to see that the semantic clause for \blacksquare is defined as follows:

(W,R,V),wφ iff for all edges (w0,w1)R,(W,R{(w0,w1)},V),wφ.(W,R,V),w\Vdash\blacksquare\varphi\mbox{ iff for all edges }(w_{0},w_{1})\in R,(W,R\setminus\{(w_{0},w_{1})\},V),w\Vdash\varphi.

The standard translation of sabotage modal language into first-order logic is given as follows (notice that we need to record the edges already deleted from RR so that we know what edges could still be deleted):

Definition 1.

([5, Definition 1]) Let EE be a set of pairs (y,z)(y,z) of variables standing for edges and let xx be a designated variable. The translation STxEST^{E}_{x} is recursively defined as follows:

  • STxE(p):=PxST^{E}_{x}(p):=Px;

  • STxE():=xxST^{E}_{x}(\bot):=x\neq x;

  • STxE(¬φ):=¬STxE(φ)ST^{E}_{x}(\neg\varphi):=\neg ST^{E}_{x}(\varphi);

  • STxE(φψ):=STxE(φ)STxE(ψ)ST^{E}_{x}(\varphi\land\psi):=ST^{E}_{x}(\varphi)\land ST^{E}_{x}(\psi);

  • STxE(φ):=y(Rxy((v,w)E¬(x=vy=w))STyE(φ))ST^{E}_{x}(\Diamond\varphi):=\exists y(Rxy\land(\bigwedge\limits_{(v,w)\in E}\neg(x=v\land y=w))\land ST^{E}_{y}(\varphi));

  • STxE(φ):=yz(Ryz((v,w)E¬(y=vz=w))STxE{(y,z)}(φ))ST^{E}_{x}(\Diamondblack\varphi):=\exists y\exists z(Ryz\land(\bigwedge\limits_{(v,w)\in E}\neg(y=v\land z=w))\land ST^{E\cup\{(y,z)\}}_{x}(\varphi)).

It is proved in [5, Theorem 1] that this translation is correct:

Theorem 2.1.

For any pointed model (𝕄,w)(\mathbb{M},w) and sabotage modal formula φ\varphi,

(𝕄,w)φ iff 𝕄STx(φ)[w].(\mathbb{M},w)\Vdash\varphi\mbox{ iff }\mathbb{M}\vDash ST^{\varnothing}_{x}(\varphi)[w].

3 Algorithmic correspondence for sabotage modal logic

In the present section, we will develop the correspondence algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} for sabotage modal logic, in the style of [8, 10]. The basic idea is to use an algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} to transform the modal formula φ(p)\varphi(\vec{p}) into an equivalent set of pure quasi-(universally quantified) inequalities which does not contain occurrences of propositional variables, and therefore can be translated into the first-order correspondence language via the standard translation of the expanded language of sabotage modal logic (which will be defined on page 3.1).

The key ingredients of the algorithmic correspondence proof can be listed as follows:

  • An expanded sabotage modal language as the syntax of the algorithm, as well as their interpretations in the relational semantics;

  • An algorithm 𝖠𝖫𝖡𝖠\mathsf{ALBA} which transforms a given sabotage modal formula φ(p)\varphi(\vec{p}) into equivalent pure quasi-(universally quantified) inequalities 𝖯𝗎𝗋𝖾(φ(p))\mathsf{Pure}(\varphi(\vec{p}));

  • A soundness proof of the algorithm;

  • A syntactically identified class of formulas on which the algorithm is successful;

  • A first-order correspondence language and first-order translation which transform pure quasi-(universally quantified) inequalities into their equivalent first-order correspondents.

In the remainder of the chapter, we will define an expanded sabotage modal language which the algorithm will manipulate (Section 3.1.1), define the first-order correspondence language of the expanded sabotage modal language and the standard translation (Section 3.1.2). We report on the definition of Sahlqvist inequalities (Section 3.2), define a modified version of the algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} (Section 3.3), and show its soundness (Section 3.4) and success on Sahlqvist inequalities (Section 3.5).

3.1 The expanded sabotage modal language +\mathcal{L}_{\blacksquare}^{+}, the first-order correspondence language and the standard translation

3.1.1 The expanded sabotage modal language +\mathcal{L}_{\blacksquare}^{+}

In the present subsection, we give the definition of the expanded sabotage modal language +\mathcal{L}_{\blacksquare}^{+} and its standard translations, which will be used in the execution of the algorithm:

φ::=p𝐢¬φ(φφ)(φφ)(φφ)φφφφ\varphi::=p\mid\bot\mid\top\mid\mathbf{i}\mid\neg\varphi\mid(\varphi\land\varphi)\mid(\varphi\lor\varphi)\mid(\varphi\to\varphi)\mid\Box\varphi\mid\Diamond\varphi\mid\blacksquare\varphi\mid\Diamondblack\varphi\mid
SφSφ(S)1φ(S)1φ𝖠φ𝖤φ𝐢φ𝐢φ\Box^{S}\varphi\mid\Diamond^{S}\varphi\mid(\Box^{S})^{-1}\varphi\mid(\Diamond^{S})^{-1}\varphi\mid\mathsf{A}\varphi\mid\mathsf{E}\varphi\mid\forall\mathbf{i}\varphi\mid\exists\mathbf{i}\varphi
S::=S{(𝐢k0,𝐢k1)}S::=\varnothing\mid S\cup\{(\mathbf{i}_{k0},\mathbf{i}_{k1})\}

where 𝐢\mathbf{i} is called nominal as in hybrid logic [6, Chapter 14], 𝐢k0,𝐢k1\mathbf{i}_{k0},\mathbf{i}_{k1} are fresh nominals not in SS. We use the notation φ(p)\varphi(\vec{p}) to indicate that the propositional variables occurring in φ\varphi are all in p\vec{p}. We call a formula pure if it does not contain propositional variables.

When interpreting the formulas in the expanded language, we assume that we start from a given pointed model ((W,R0,V),w)((W,R_{0},V),w), and use SS to record the edges deleted from R0R_{0}. S\Box^{S}, S\Diamond^{S} correspond to the relation R0{(V(𝐢k0),V(𝐢k1))(𝐢k0,𝐢k1)S}R_{0}\setminus\{(V(\mathbf{i}_{k0}),V(\mathbf{i}_{k1}))\mid(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S\} (denoted as R0SR_{0}\setminus S), (S)1(\Box^{S})^{-1}, (S)1(\Diamond^{S})^{-1} correspond to the relation R01{(V(𝐢k1),V(𝐢k0))(𝐢k0,𝐢k1)S}R_{0}^{-1}\setminus\{(V(\mathbf{i}_{k1}),V(\mathbf{i}_{k0}))\mid(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S\} (denoted as (R0S)1(R_{0}\setminus S)^{-1}), which intuitively means first delete the edges in S and then take the inverse relation. Unlabelled \Box and \Diamond correspond to the relation RR after certain deletions of edges. Therefore, we can say that S\Box^{S}, S\Diamond^{S}, (S)1(\Box^{S})^{-1}, (S)1(\Diamond^{S})^{-1} are “absolute connectives” whose interpretations just depend on R0R_{0} and SS, while \Box and \Diamond are “contextual connectives” whose interpretations depend on the concrete RR after certain steps of deletions. For \blacksquare and \Diamondblack, their interpretations depend on the context. 𝖠\mathsf{A} and 𝖤\mathsf{E} are global box and diamond modalities respectively, (W,R,V),w𝐢φ(W,R,V),w\Vdash\forall\mathbf{i}\varphi indicates that for all valuation variant Vv𝐢V^{\mathbf{i}}_{v} such that Vv𝐢V^{\mathbf{i}}_{v} is the same as VV except that Vv𝐢(𝐢)={v}V^{\mathbf{i}}_{v}(\mathbf{i})=\{v\}, (W,R,Vv𝐢),wφ(W,R,V^{\mathbf{i}}_{v}),w\Vdash\varphi, and (W,R,V),w𝐢φ(W,R,V),w\Vdash\exists\mathbf{i}\varphi is the corresponding existential statement.

For the semantics of the expanded sabotage modal language, the valuation is defined as V:𝖯𝗋𝗈𝗉𝖭𝗈𝗆𝒫(W)V:\mathsf{Prop}\cup\mathsf{Nom}\to\mathcal{P}(W) similar to hybrid logic, and for the modal and dynamic connectives, the additional semantic clauses can be given as follows (notice that here RR is the “actual” accessibility relation in the model (W,R,V)(W,R,V) after some (maybe none) edges have been deleted, while R0R_{0} is the “starting accessibility” relation when no edge has been deleted yet, and R0SR_{0}\setminus S is the notation for R0{(V(𝐢k0),V(𝐢k1))(𝐢k0,𝐢k1)S}R_{0}\setminus\{(V(\mathbf{i}_{k0}),V(\mathbf{i}_{k1}))\mid(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S\}):

(W,R,V),wφ(W,R,V),w\Vdash\Box\varphi iff for all vv s.t. (w,v)R(w,v)\in R, (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),wφ(W,R,V),w\Vdash\Diamond\varphi iff there exists a vv s.t. (w,v)R(w,v)\in R and (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),wφ(W,R,V),w\Vdash\blacksquare\varphi iff for all edges (w0,w1)R,(W,R{(w0,w1)},V),wφ(w_{0},w_{1})\in R,(W,R\setminus\{(w_{0},w_{1})\},V),w\Vdash\varphi
(W,R,V),wφ(W,R,V),w\Vdash\Diamondblack\varphi iff there exists an edge (w0,w1)R(w_{0},w_{1})\in R s.t. (W,R{(w0,w1)},V),wφ(W,R\setminus\{(w_{0},w_{1})\},V),w\Vdash\varphi
(W,R,V),wSφ(W,R,V),w\Vdash\Box^{S}\varphi iff for all vv s.t. (w,v)(R0S)(w,v)\in(R_{0}\setminus S), (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),wSφ(W,R,V),w\Vdash\Diamond^{S}\varphi iff there exists a vv s.t.  (w,v)(R0S)(w,v)\in(R_{0}\setminus S) and (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),w(S)1φ(W,R,V),w\Vdash(\Box^{S})^{-1}\varphi iff for all vv s.t. (v,w)(R0S)(v,w)\in(R_{0}\setminus S), (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),w(S)1φ(W,R,V),w\Vdash(\Diamond^{S})^{-1}\varphi iff there exists a vv s.t.  (v,w)(R0S)(v,w)\in(R_{0}\setminus S) and (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),w𝖠φ(W,R,V),w\Vdash\mathsf{A}\varphi iff for all vWv\in W, (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),w𝖤φ(W,R,V),w\Vdash\mathsf{E}\varphi iff there exists a vWv\in W s.t. (W,R,V),vφ(W,R,V),v\Vdash\varphi
(W,R,V),w𝐢φ(W,R,V),w\Vdash\forall\mathbf{i}\varphi iff for all vWv\in W, (W,R,Vv𝐢),wφ(W,R,V^{\mathbf{i}}_{v}),w\Vdash\varphi
(W,R,V),w𝐢φ(W,R,V),w\Vdash\exists\mathbf{i}\varphi iff there exists a vWv\in W s.t. (W,R,Vv𝐢),wφ(W,R,V^{\mathbf{i}}_{v}),w\Vdash\varphi.

Here we do not require that each pair of nominals in SS denote different edges in R0R_{0}.

For the convenience of the algorithm, we introduce the following definitions:

Definition 2.

  

  • An inequality is of the form φSSψ\varphi\leq^{S}_{S^{\prime}}\psi, where φ\varphi and ψ\psi are formulas, SS and SS^{\prime} record the context of φ\varphi and ψ\psi respectively, i.e. which edges have already been deleted. Its interpretation is given as follows:

    (W,R0,V)φSSψ iff (W,R_{0},V)\Vdash\varphi\leq^{S}_{S^{\prime}}\psi\mbox{ iff }
    (for all wW, if (W,R0S,V),wφ, then (W,R0S,V),wψ).(\mbox{for all }w\in W,\mbox{ if }(W,R_{0}\setminus S,V),w\Vdash\varphi,\mbox{ then }(W,R_{0}\setminus S^{\prime},V),w\Vdash\psi).

    We use φψ\varphi\leq\psi to denote φψ\varphi\leq^{\varnothing}_{\varnothing}\psi.

  • A quasi-inequality is of the form φ1S1S1ψ1&&φnSnSnψnφSSψ\varphi_{1}\leq^{S_{1}}_{S^{\prime}_{1}}\psi_{1}\ \&\ \ldots\ \&\ \varphi_{n}\leq^{S_{n}}_{S^{\prime}_{n}}\psi_{n}\ \Rightarrow\ \varphi\leq^{S}_{S^{\prime}}\psi. Its interpretation is given as follows:

    (W,R0,V)φ1S1S1ψ1&&φnSnSnψnφSSψ iff (W,R_{0},V)\Vdash\varphi_{1}\leq^{S_{1}}_{S^{\prime}_{1}}\psi_{1}\ \&\ \ldots\ \&\ \varphi_{n}\leq^{S_{n}}_{S^{\prime}_{n}}\psi_{n}\ \Rightarrow\ \varphi\leq^{S}_{S^{\prime}}\psi\mbox{ iff }
    (W,R0,V)φSSψ holds whenever (W,R0,V)φiSiSiψi for all 1in.(W,R_{0},V)\Vdash\varphi\leq^{S}_{S^{\prime}}\psi\mbox{ holds whenever }(W,R_{0},V)\Vdash\varphi_{i}\leq^{S_{i}}_{S^{\prime}_{i}}\psi_{i}\mbox{ for all }1\leq i\leq n.
  • A Mega-inequality is defined inductively as follows:

    𝖬𝖾𝗀𝖺::=𝖨𝗇𝖾𝗊𝖬𝖾𝗀𝖺&𝖬𝖾𝗀𝖺𝐢𝐣(𝐢SSS𝐣𝖬𝖾𝗀𝖺)\mathsf{Mega}::=\mathsf{Ineq}\mid\mathsf{Mega}\mathop{\mbox{\Large\&}}\mathsf{Mega}\mid\forall\mathbf{i}\forall\mathbf{j}(\mathbf{i}\leq^{S}_{S}\Diamond^{S}\mathbf{j}\Rightarrow\mathsf{Mega})

    where 𝖨𝗇𝖾𝗊\mathsf{Ineq} is an inequality, &\mathop{\mbox{\Large\&}} is the meta-conjunction and \Rightarrow is the meta-implication. Its interpretation is given as follows:

    • (W,R0,V)𝖨𝗇𝖾𝗊(W,R_{0},V)\Vdash\mathsf{Ineq} iff the inequality holds as defined in the definition above;

    • (W,R0,V)𝖬𝖾𝗀𝖺𝟣&𝖬𝖾𝗀𝖺𝟤(W,R_{0},V)\Vdash\mathsf{Mega_{1}}\mathop{\mbox{\Large\&}}\mathsf{Mega_{2}} iff (W,R0,V)𝖬𝖾𝗀𝖺𝟣(W,R_{0},V)\Vdash\mathsf{Mega_{1}} and (W,R0,V)𝖬𝖾𝗀𝖺𝟤(W,R_{0},V)\Vdash\mathsf{Mega_{2}};

    • (W,R0,V)𝐢𝐣(𝐢SSS𝐣𝖬𝖾𝗀𝖺)(W,R_{0},V)\Vdash\forall\mathbf{i}\forall\mathbf{j}(\mathbf{i}\leq^{S}_{S}\Diamond^{S}\mathbf{j}\Rightarrow\mathsf{Mega}) iff for all w,vw,v, if (w,v)(R0S)(w,v)\in(R_{0}\setminus S) then (W,R0,Vw,v𝐢,𝐣)𝖬𝖾𝗀𝖺(W,R_{0},V^{\mathbf{i},\mathbf{j}}_{w,v})\Vdash\mathsf{Mega}, where Vw,v𝐢,𝐣V^{\mathbf{i},\mathbf{j}}_{w,v} is the same as VV except that Vw,v𝐢,𝐣(𝐢)={w}V^{\mathbf{i},\mathbf{j}}_{w,v}(\mathbf{i})=\{w\}, Vw,v𝐢,𝐣(𝐣)={v}V^{\mathbf{i},\mathbf{j}}_{w,v}(\mathbf{j})=\{v\}.

  • A universally quantified inequality is defined as 𝐢1𝐢n(φSSψ)\forall\mathbf{i}_{1}\ldots\forall\mathbf{i}_{n}(\varphi\leq^{S}_{S^{\prime}}\psi), and its interpretation is given as follows:

    (W,R0,V)𝐢1𝐢n(φSSψ)(W,R_{0},V)\Vdash\forall\mathbf{i}_{1}\ldots\forall\mathbf{i}_{n}(\varphi\leq^{S}_{S^{\prime}}\psi) iff for all w1,,wnWw_{1},\ldots,w_{n}\in W, (W,R0,Vw1,,wn𝐢1,,𝐢n)φSSψ(W,R_{0},V^{\mathbf{i}_{1},\ldots,\mathbf{i}_{n}}_{w_{1},\ldots,w_{n}})\Vdash\varphi\leq^{S}_{S^{\prime}}\psi, where Vw1,,wn𝐢1,,𝐢nV^{\mathbf{i}_{1},\ldots,\mathbf{i}_{n}}_{w_{1},\ldots,w_{n}} is the same as VV except that Vw1,,wn𝐢1,,𝐢n(𝐢i)={wi}V^{\mathbf{i}_{1},\ldots,\mathbf{i}_{n}}_{w_{1},\ldots,w_{n}}(\mathbf{i}_{i})=\{w_{i}\}, i=1,,ni=1,\ldots,n.

  • A quasi-universally quantified inequality is defined as 𝖴𝖰𝖨𝗇𝖾𝗊𝟣&&𝖴𝖰𝖨𝗇𝖾𝗊𝗇𝖴𝖰𝖨𝗇𝖾𝗊\mathsf{UQIneq_{1}}\&\ldots\&\mathsf{UQIneq_{n}}\Rightarrow\mathsf{UQIneq} where 𝖴𝖰𝖨𝗇𝖾𝗊,𝖴𝖰𝖨𝗇𝖾𝗊𝗂\mathsf{UQIneq},\mathsf{UQIneq_{i}} are universally quantified inequalities. Its interpretation is given as follows:

    (W,R0,V)𝖴𝖰𝖨𝗇𝖾𝗊𝟣&&𝖴𝖰𝖨𝗇𝖾𝗊𝗇𝖴𝖰𝖨𝗇𝖾𝗊 iff (W,R_{0},V)\Vdash\mathsf{UQIneq_{1}}\&\ldots\&\mathsf{UQIneq_{n}}\Rightarrow\mathsf{UQIneq}\mbox{ iff }
    (W,R0,V)𝖴𝖰𝖨𝗇𝖾𝗊 holds whenever (W,R0,V)𝖴𝖰𝖨𝗇𝖾𝗊𝗂 for all 1in.(W,R_{0},V)\Vdash\mathsf{UQIneq}\mbox{ holds whenever }(W,R_{0},V)\Vdash\mathsf{UQIneq_{i}}\mbox{ for all }1\leq i\leq n.

It is easy to see that (W,R0,V)φψ(W,R_{0},V)\Vdash\varphi\leq^{\varnothing}_{\varnothing}\psi iff (W,R0,V)φψ(W,R_{0},V)\Vdash\varphi\to\psi. We will find it easy to work with inequalities φψ\varphi\leq\psi in place of implicative formulas φψ\varphi\to\psi in Section 3.2.

For inequalities, we have the following properties, which will be useful in the soundness proofs:

Proposition 3.
  • (W,R0,V)𝐢SSS𝐣(W,R_{0},V)\Vdash\mathbf{i}\leq^{S}_{S}\Diamond^{S}\mathbf{j} iff (V(𝐢),V(𝐣))(R0S)(V(\mathbf{i}),V(\mathbf{j}))\in(R_{0}\setminus S);

  • (W,R0,V)𝐢SSα(W,R_{0},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\alpha iff (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S^{\prime}),V),V(\mathbf{i})\Vdash\alpha, where α\alpha is a formula in the expanded sabotage modal language;

  • (W,R0,V)A(𝐢S𝐣)(W,R_{0},V)\Vdash A(\mathbf{i}\to\Diamond^{S}\mathbf{j}) iff (V(𝐢),V(𝐣))(R0S)(V(\mathbf{i}),V(\mathbf{j}))\in(R_{0}\setminus S).

3.1.2 The first-order correspondence language and the standard translation

In the first-order correspondence language, we have a binary relation symbol RR corresponding to the binary relation, a set of constant symbols ii corresponding to each nominal 𝐢\mathbf{i}, a set of unary predicate symbols PP corresponding to each propositional variable pp.

The standard translation of the expanded sabotage modal language is defined as follows:

Definition 4.

Let EE be a finite set of pairs (y,z)(y,z) of variables standing for edges and let xx be a designated variable. The translation STxEST^{E}_{x} is recursively defined as follows:

  • STxE():=xxST^{E}_{x}(\bot):=x\neq x;

  • STxE():=x=xST^{E}_{x}(\top):=x=x;

  • STxE(𝐢):=x=iST^{E}_{x}(\mathbf{i}):=x=i;

  • STxE(p):=PxST^{E}_{x}(p):=Px;

  • STxE(¬φ):=¬STxE(φ)ST^{E}_{x}(\neg\varphi):=\neg ST^{E}_{x}(\varphi);

  • STxE(φψ):=STxE(φ)STxE(ψ)ST^{E}_{x}(\varphi\land\psi):=ST^{E}_{x}(\varphi)\land ST^{E}_{x}(\psi);

  • STxE(φψ):=STxE(φ)STxE(ψ)ST^{E}_{x}(\varphi\lor\psi):=ST^{E}_{x}(\varphi)\lor ST^{E}_{x}(\psi);

  • STxE(φψ):=STxE(φ)STxE(ψ)ST^{E}_{x}(\varphi\to\psi):=ST^{E}_{x}(\varphi)\to ST^{E}_{x}(\psi);

  • STxE(φ):=y(Rxy((v,w)E¬(x=vy=w))STyE(φ))ST^{E}_{x}(\Box\varphi):=\forall y(Rxy\land(\bigwedge\limits_{(v,w)\in E}\neg(x=v\land y=w))\to ST^{E}_{y}(\varphi));

  • STxE(φ):=y(Rxy((v,w)E¬(x=vy=w))STyE(φ))ST^{E}_{x}(\Diamond\varphi):=\exists y(Rxy\land(\bigwedge\limits_{(v,w)\in E}\neg(x=v\land y=w))\land ST^{E}_{y}(\varphi));

  • STxE(φ):=yz(Ryz((v,w)E¬(y=vz=w))STxE{(y,z)}(φ))ST^{E}_{x}(\blacksquare\varphi):=\forall y\forall z(Ryz\land(\bigwedge\limits_{(v,w)\in E}\neg(y=v\land z=w))\to ST^{E\cup\{(y,z)\}}_{x}(\varphi));

  • STxE(φ):=yz(Ryz((v,w)E¬(y=vz=w))STxE{(y,z)}(φ))ST^{E}_{x}(\Diamondblack\varphi):=\exists y\exists z(Ryz\land(\bigwedge\limits_{(v,w)\in E}\neg(y=v\land z=w))\land ST^{E\cup\{(y,z)\}}_{x}(\varphi));

  • STxE(Sφ):=y(Rxy((𝐢k0,𝐢k1)S¬(x=ik0y=ik1))STyE(φ))ST^{E}_{x}(\Box^{S}\varphi):=\forall y(Rxy\land(\bigwedge\limits_{(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S}\neg(x=i_{k0}\land y=i_{k1}))\to ST^{E}_{y}(\varphi));

  • STxE(Sφ):=y(Rxy((𝐢k0,𝐢k1)S¬(x=ik0y=ik1))STyE(φ))ST^{E}_{x}(\Diamond^{S}\varphi):=\exists y(Rxy\land(\bigwedge\limits_{(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S}\neg(x=i_{k0}\land y=i_{k1}))\land ST^{E}_{y}(\varphi));

  • STxE((S)1φ):=y(Ryx((𝐢k0,𝐢k1)S¬(y=ik0x=ik1))STyE(φ))ST^{E}_{x}((\Box^{S})^{-1}\varphi):=\forall y(Ryx\land(\bigwedge\limits_{(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S}\neg(y=i_{k0}\land x=i_{k1}))\to ST^{E}_{y}(\varphi));

  • STxE((S)1φ):=y(Ryx((𝐢k0,𝐢k1)S¬(y=ik0x=ik1))STyE(φ))ST^{E}_{x}((\Diamond^{S})^{-1}\varphi):=\exists y(Ryx\land(\bigwedge\limits_{(\mathbf{i}_{k0},\mathbf{i}_{k1})\in S}\neg(y=i_{k0}\land x=i_{k1}))\land ST^{E}_{y}(\varphi)).

  • STxE(𝖠φ):=ySTyE(φ)ST^{E}_{x}(\mathsf{A}\varphi):=\forall yST^{E}_{y}(\varphi);

  • STxE(𝖤φ):=ySTyE(φ)ST^{E}_{x}(\mathsf{E}\varphi):=\exists yST^{E}_{y}(\varphi);

  • STxE(𝐢φ):=iSTxE(φ)ST^{E}_{x}(\forall\mathbf{i}\varphi):=\forall iST^{E}_{x}(\varphi);

  • STxE(𝐢φ):=iSTxE(φ)ST^{E}_{x}(\exists\mathbf{i}\varphi):=\exists iST^{E}_{x}(\varphi).

It is easy to see that this translation is correct:

Proposition 5.

For any pointed model (𝕄,w)(\mathbb{M},w) and sabotage modal formula φ\varphi,

(𝕄,w)φ iff 𝕄STx(φ)[w].(\mathbb{M},w)\Vdash\varphi\mbox{ iff }\mathbb{M}\vDash ST^{\varnothing}_{x}(\varphi)[w].

For inequalities, quasi-inequalities, mega-inequalities, universally quantified inequalities and quasi-universally quantified inequalities, the standard translation is given in a global way:

Definition 6.
  • ST(φSSψ):=x(STxS(φ)STxS(ψ))ST(\varphi\leq^{S}_{S^{\prime}}\psi):=\forall x(ST^{S}_{x}(\varphi)\to ST^{S^{\prime}}_{x}(\psi));

  • ST(φ1S1S1ψ1&&φnSnSnψnφSSψ):=ST(φ1S1S1ψ1)ST(φnSnSnψn)ST(φSSψ)ST(\varphi_{1}\leq^{S_{1}}_{S^{\prime}_{1}}\psi_{1}\&\ldots\&\varphi_{n}\leq^{S_{n}}_{S^{\prime}_{n}}\psi_{n}\Rightarrow\varphi\leq^{S}_{S^{\prime}}\psi):=ST(\varphi_{1}\leq^{S_{1}}_{S^{\prime}_{1}}\psi_{1})\land\ldots\land ST(\varphi_{n}\leq^{S_{n}}_{S^{\prime}_{n}}\psi_{n})\to ST(\varphi\leq^{S}_{S^{\prime}}\psi);

  • ST(𝖬𝖾𝗀𝖺1&𝖬𝖾𝗀𝖺2)=ST(𝖬𝖾𝗀𝖺1)ST(𝖬𝖾𝗀𝖺2)ST(\mathsf{Mega}_{1}\ \&\ \mathsf{Mega}_{2})=ST(\mathsf{Mega}_{1})\land ST(\mathsf{Mega}_{2});

  • ST(𝐢𝐣(𝐢SSS𝐣𝖬𝖾𝗀𝖺)):=ij(Rij((v,w)S¬(i=vj=w))ST(𝖬𝖾𝗀𝖺))ST(\forall\mathbf{i}\forall\mathbf{j}(\mathbf{i}\leq^{S}_{S}\Diamond^{S}\mathbf{j}\Rightarrow\mathsf{Mega})):=\forall i\forall j(Rij\land(\bigwedge\limits_{(v,w)\in S}\neg(i=v\land j=w))\to ST(\mathsf{Mega}));

  • ST(𝐢1𝐢n𝖨𝗇𝖾𝗊):=i1inST(𝖨𝗇𝖾𝗊)ST(\forall\mathbf{i}_{1}\ldots\forall\mathbf{i}_{n}\mathsf{Ineq}):=\forall i_{1}\ldots\forall i_{n}ST(\mathsf{Ineq});

  • ST(𝖴𝖰𝖨𝗇𝖾𝗊𝟣&&𝖴𝖰𝖨𝗇𝖾𝗊𝗇𝖴𝖰𝖨𝗇𝖾𝗊):=ST(𝖴𝖰𝖨𝗇𝖾𝗊𝟣)ST(𝖴𝖰𝖨𝗇𝖾𝗊𝗇)ST(𝖴𝖰𝖨𝗇𝖾𝗊)ST(\mathsf{UQIneq_{1}}\&\ldots\&\mathsf{UQIneq_{n}}\Rightarrow\mathsf{UQIneq}):=ST(\mathsf{UQIneq_{1}})\land\ldots\land ST(\mathsf{UQIneq_{n}})\to ST(\mathsf{UQIneq}).

Proposition 7.

For any model 𝕄\mathbb{M} and inequality 𝖨𝗇𝖾𝗊\mathsf{Ineq}, quasi-inequality 𝖰𝗎𝖺𝗌𝗂\mathsf{Quasi}, mega-inequality 𝖬𝖾𝗀𝖺\mathsf{Mega}, universally quantified inequality 𝖴𝖰𝖨𝗇𝖾𝗊\mathsf{UQIneq}, quasi-universally quantified inequality 𝖰𝖴𝖰𝖨𝗇𝖾𝗊\mathsf{QUQIneq},

𝕄𝖨𝗇𝖾𝗊 iff 𝕄ST(𝖨𝗇𝖾𝗊);\mathbb{M}\Vdash\mathsf{Ineq}\mbox{ iff }\mathbb{M}\vDash ST(\mathsf{Ineq});
𝕄𝖰𝗎𝖺𝗌𝗂 iff 𝕄ST(𝖰𝗎𝖺𝗌𝗂);\mathbb{M}\Vdash\mathsf{Quasi}\mbox{ iff }\mathbb{M}\vDash ST(\mathsf{Quasi});
𝕄𝖬𝖾𝗀𝖺 iff 𝕄ST(𝖬𝖾𝗀𝖺);\mathbb{M}\Vdash\mathsf{Mega}\mbox{ iff }\mathbb{M}\vDash ST(\mathsf{Mega});
𝕄𝖴𝖰𝖨𝗇𝖾𝗊 iff 𝕄ST(𝖴𝖰𝖨𝗇𝖾𝗊);\mathbb{M}\Vdash\mathsf{UQIneq}\mbox{ iff }\mathbb{M}\vDash ST(\mathsf{UQIneq});
𝕄𝖰𝖴𝖰𝖨𝗇𝖾𝗊 iff 𝕄ST(𝖰𝖴𝖰𝖨𝗇𝖾𝗊).\mathbb{M}\Vdash\mathsf{QUQIneq}\mbox{ iff }\mathbb{M}\vDash ST(\mathsf{QUQIneq}).

3.2 Sahlqvist inequalities

In the present section, since we will use the algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} which is based on the classsification of nodes in the signed generation trees of sabotage modal formulas, we will use the unified correspondence style definition (cf. [11, 12, 19]) to define Sahlqvist inequalities. We will collect all the necessary preliminaries on Sahlqvist formulas/inequalities.

Definition 8 (Order-type of propositional variables).

(cf. [10, page 346]) For an nn-tuple (p1,,pn)(p_{1},\ldots,p_{n}) of propositional variables, an order-type ε\varepsilon of (p1,,pn)(p_{1},\ldots,p_{n}) is an element in {1,}n\{1,\partial\}^{n}. In the order-type ε\varepsilon, we say that pip_{i} has order-type 1 if εi=1\varepsilon_{i}=1, and denote ε(pi)=1\varepsilon(p_{i})=1 or ε(i)=1\varepsilon(i)=1; we say that pip_{i} has order-type \partial if εi=\varepsilon_{i}=\partial, and denote ε(pi)=\varepsilon(p_{i})=\partial or ε(i)=\varepsilon(i)=\partial.

Definition 9 (Signed generation tree).

(cf. [12, Definition 4]) The positive (resp. negative) generation tree of any given formula φ\varphi is defined by first labelling the root of the generation tree of φ\varphi with ++ (resp. -) and then labelling the children nodes as follows:

  • Assign the same sign to the children nodes of any node labelled with ,,\lor,\land,\Box, \Diamond, ,,S,S,(S)1,(S)1,𝖠,𝖤,𝐢,𝐢\blacksquare,\Diamondblack,\Box^{S},\Diamond^{S},(\Box^{S})^{-1},(\Diamond^{S})^{-1},\mathsf{A},\mathsf{E},\forall\mathbf{i},\exists\mathbf{i};

  • Assign the opposite sign to the child node of any node labelled with ¬\neg;

  • Assign the opposite sign to the first child node and the same sign to the second child node of any node labelled with \to.

Nodes in signed generation trees are positive (resp. negative) if they are signed ++ (resp. -).

Signed generation trees will be used in the inequalities φψ\varphi\leq\psi, where the positive generation tree +φ+\varphi and the negative generation tree ψ-\psi will be considered. We will also say that an inequality φψ\varphi\leq\psi is uniform in a variable pip_{i} if all occurrences of pip_{i} in +φ+\varphi and ψ-\psi have the same sign, and that φψ\varphi\leq\psi is ε\varepsilon-uniform in an array p\vec{p} if φψ\varphi\leq\psi is uniform in pip_{i}, occurring with the sign indicated by ε\varepsilon (i.e., pip_{i} has the sign ++ if ε(pi)=1\varepsilon(p_{i})=1, and has the sign - if ε(pi)=\varepsilon(p_{i})=\partial), for each propositional variable pip_{i} in p\vec{p}.

For any given formula φ(p1,pn)\varphi(p_{1},\ldots p_{n}), any order-type ε\varepsilon over nn, and any 1in1\leq i\leq n, an ε\varepsilon-critical node in a signed generation tree φ\ast\varphi (where {+,}\ast\in\{+,-\}) is a leaf node +pi+p_{i} when εi=1\varepsilon_{i}=1 or pi-p_{i} when εi=\varepsilon_{i}=\partial. An ε\varepsilon-critical branch in a signed generation tree is a branch from an ε\varepsilon-critical node. The ε\varepsilon-critical occurrences are intended to be those which the algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} will solve for. We say that +φ+\varphi (resp. φ-\varphi) agrees with ε\varepsilon, and write ε(+φ)\varepsilon(+\varphi) (resp. ε(φ)\varepsilon(-\varphi)), if every leaf node in the signed generation tree of +φ+\varphi (resp. φ-\varphi) is ε\varepsilon-critical.

We will also use the notation +ψφ+\psi\prec\ast\varphi (resp. ψφ-\psi\prec\ast\varphi) to indicate that an occurence of a subformula ψ\psi inherits the positive (resp. negative) sign from the signed generation tree φ\ast\varphi, where {+,}\ast\in\{+,-\}. We will write ε(γ)φ\varepsilon(\gamma)\prec\ast\varphi (resp. ε(γ)φ\varepsilon^{\partial}(\gamma)\prec\ast\varphi) to indicate that the signed generation subtree γ\gamma, with the sign inherited from φ\ast\varphi, agrees with ε\varepsilon (resp. with ε\varepsilon^{\partial}). We say that a propositional variable pp is positive (resp. negative) in φ\varphi if +p+φ+p\prec+\varphi (resp. p+φ-p\prec+\varphi).

Definition 10.

(cf. [12, Definition 5]) Nodes in signed generation trees are called outer nodes and inner nodes, according to Table 1.

A branch in a signed generation tree is called a excellent branch if it is the concatenation of two paths P1P_{1} and P2P_{2}, one of which might be of length 0, such that P1P_{1} is a path from the leaf consisting (apart from variable nodes) of inner nodes only, and P2P_{2} consists (apart from variable nodes) of outer nodes only.

Outer Inner
++ \vee \wedge \Diamond \Diamondblack ¬\neg
- \wedge \vee \Box \blacksquare ¬\neg \to
++ \wedge \Box \blacksquare ¬\neg
- \vee \Diamond \Diamondblack ¬\neg
Table 1: Outer and Inner nodes.
Definition 11 (Sahlqvist and inequalities).

(cf. [12, Definition 6]) For any order-type ε\varepsilon, the signed generation tree φ*\varphi of a formula φ(p1,pn)\varphi(p_{1},\ldots p_{n}) is ε\varepsilon-Sahlqvist if for all 1in1\leq i\leq n, every ε\varepsilon-critical branch with leaf pip_{i} is excellent. An inequality φψ\varphi\leq\psi is ε\varepsilon-Sahlqvist if the signed generation trees +φ+\varphi and ψ-\psi are ε\varepsilon-Sahlqvist. An inequality φψ\varphi\leq\psi is Sahlqvist if it is ε\varepsilon-Sahlqvist) for some ε\varepsilon.

3.3 The algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} for the sabotage modal language

In the present section, we define the correspondence algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} for sabotage modal logic, in the style of [8, 10]. The algorithm goes in four steps.

  1. 1.

    Preprocessing and first approximation:

    In the generation tree of +φ+\varphi and ψ-\psi111The discussion below relies on the definition of signed generation tree in Section 3.2. In what follows, we identify a formula with its signed generation tree.,

    1. (a)

      Apply the distribution rules:

      1. i.

        Push down +,+,¬,+,+\Diamond,+\Diamondblack,-\neg,+\land,-\to by distributing them over nodes labelled with ++\lor which are outer nodes, and

      2. ii.

        Push down ,,+¬,,-\Box,-\blacksquare,+\neg,-\lor,-\to by distributing them over nodes labelled with -\land which are outer nodes.

    2. (b)

      Apply the splitting rules:

      αβγαβαγαβγαγβγ\alpha\leq\beta\ \ \ \alpha\leq\gamma\alpha\leq\beta\land\gamma\qquad\alpha\leq\gamma\ \ \ \beta\leq\gamma\alpha\lor\beta\leq\gamma
    3. (c)

      Apply the monotone and antitone variable-elimination rules:

      α(p)β(p)α()β()β(p)α(p)β()α()\alpha(\perp)\leq\beta(\perp)\alpha(p)\leq\beta(p)\qquad\beta(\top)\leq\alpha(\top)\beta(p)\leq\alpha(p)

      for β(p)\beta(p) positive in pp and α(p)\alpha(p) negative in pp.

    We denote by 𝖯𝗋𝖾𝗉𝗋𝗈𝖼𝖾𝗌𝗌(φψ)\mathsf{Preprocess}(\varphi\leq\psi) the finite set {φiψi}iI\{\varphi_{i}\leq\psi_{i}\}_{i\in I} of inequalities obtained after the exhaustive application of the previous rules. Then we apply the following first approximation rule to every inequality in 𝖯𝗋𝖾𝗉𝗋𝗈𝖼𝖾𝗌𝗌(φψ)\mathsf{Preprocess}(\varphi\leq\psi):

    φiψi𝐢0φiψi¬𝐢1\mathbf{i}_{0}\leq\varphi_{i}\ \ \ \psi_{i}\leq\neg\mathbf{i}_{1}\varphi_{i}\leq\psi_{i}

    Here, 𝐢0\mathbf{i}_{0} and 𝐢1\mathbf{i}_{1} are special fresh nominals. Now we get a set of inequalities {𝐢0φi,ψi¬𝐢1}iI\{\mathbf{i}_{0}\leq\varphi_{i},\psi_{i}\leq\neg\mathbf{i}_{1}\}_{i\in I}.

  2. 2.

    The reduction stage:

    In this stage, for each {𝐢0φi,ψi¬𝐢1}\{\mathbf{i}_{0}\leq\varphi_{i},\psi_{i}\leq\neg\mathbf{i}_{1}\}, we first add superscripts and subscripts \varnothing to the two \leqs, and then apply the following rules to prepare for eliminating all the proposition variables in {𝐢0φi,ψi¬𝐢1}\{\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i},\psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1}\}:

    1. (a)

      Substage 1: Decomposing the outer part

      In the current substage, the following rules are applied to decompose the outer part of the Sahlqvist signed formula:

      1. i.

        Splitting rules:

        αSSβγαSSβαSSγαβSSγαSSγβSSγ\alpha\leq^{S}_{S^{\prime}}\beta\ \ \ \alpha\leq^{S}_{S^{\prime}}\gamma\alpha\leq^{S}_{S^{\prime}}\beta\land\gamma\qquad\alpha\leq^{S}_{S^{\prime}}\gamma\ \ \ \beta\leq^{S}_{S^{\prime}}\gamma\alpha\lor\beta\leq^{S}_{S^{\prime}}\gamma
      2. ii.

        Approximation rules:

        𝐢SSα𝐣SSα𝐢SSS𝐣αSS¬𝐢αSS¬𝐣S¬𝐣SS¬𝐢\mathbf{j}\leq^{S^{\prime}}_{S^{\prime}}\alpha\ \ \ \mathbf{i}\leq^{S}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{j}\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond\alpha\qquad\alpha\leq^{S}_{S}\neg\mathbf{j}\ \ \ \Box^{S}\neg\mathbf{j}\leq^{S}_{S^{\prime}}\neg\mathbf{i}\Box\alpha\leq^{S}_{S^{\prime}}\neg\mathbf{i}
        𝐢SSα𝐢m0SSS𝐢m1𝐢S{(𝐢m0,𝐢m1)}SααSS¬𝐢𝐢m0SSS𝐢m1αSS{(𝐢m0,𝐢m1)}¬𝐢\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1}\ \ \ \ \ \ \ \mathbf{i}\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\alpha\mathbf{i}\leq^{S}_{S^{\prime}}\Diamondblack\alpha\qquad\mathbf{i}_{m0}\leq^{S}_{S}\Diamond^{S}\mathbf{i}_{m1}\ \ \ \ \ \ \alpha\leq^{S\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}_{S^{\prime}}\neg\mathbf{i}\blacksquare\alpha\leq^{S}_{S^{\prime}}\neg\mathbf{i}
        αβSS¬𝐢𝐣SSαβSS¬𝐤𝐣¬𝐤SS¬𝐢\mathbf{j}\leq^{S}_{S}\alpha\ \ \ \ \ \ \ \beta\leq^{S}_{S}\neg\mathbf{k}\ \ \ \ \ \ \ \mathbf{j}\rightarrow\neg\mathbf{k}\leq^{S}_{S^{\prime}}\neg\mathbf{i}\alpha\rightarrow\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i}

        The nominals introduced by the approximation rules must not occur in the system before applying the rule.

      3. iii.

        Residuation rules:

        𝐢SS¬ααSS¬𝐢¬αSS¬𝐢𝐢SSα\alpha\leq^{S^{\prime}}_{S}\neg\mathbf{i}\mathbf{i}\leq^{S}_{S^{\prime}}\neg\alpha\qquad\mathbf{i}\leq^{S^{\prime}}_{S}\alpha\neg\alpha\leq^{S}_{S^{\prime}}\neg\mathbf{i}
    2. (b)

      Substage 2: Decomposing the inner part

      In the current substage, the following rules are applied to decompose the inner part of the Sahlqvist signed formula:

      1. i.

        Splitting rules:

        αSSβγαSSβαSSγαβSSγαSSγβSSγ\alpha\leq^{S}_{S^{\prime}}\beta\ \ \ \alpha\leq^{S}_{S^{\prime}}\gamma\alpha\leq^{S}_{S^{\prime}}\beta\land\gamma\qquad\alpha\leq^{S}_{S^{\prime}}\gamma\ \ \ \beta\leq^{S}_{S^{\prime}}\gamma\alpha\lor\beta\leq^{S}_{S^{\prime}}\gamma
      2. ii.

        Residuation rules:

        αSS¬ββSS¬α¬αSSβ¬βSSααSSβαSS(S)1βαSSβ(S)1αSSβ\beta\leq^{S^{\prime}}_{S}\neg\alpha\alpha\leq^{S}_{S^{\prime}}\neg\beta\qquad\neg\beta\leq^{S^{\prime}}_{S}\alpha\neg\alpha\leq^{S}_{S^{\prime}}\beta\qquad\alpha\leq^{S}_{S^{\prime}}(\Box^{S})^{-1}\beta\Diamond\alpha\leq^{S}_{S^{\prime}}\beta\qquad(\Diamond^{S^{\prime}})^{-1}\alpha\leq^{S}_{S^{\prime}}\beta\alpha\leq^{S}_{S^{\prime}}\Box\beta
        αSSβ𝐢m0𝐢m1(𝐢m0SSS𝐢m1αS{(𝐢m0,𝐢m1)}Sβ)\forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1}\ \Rightarrow\ \alpha\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\beta)\alpha\leq^{S}_{S^{\prime}}\blacksquare\beta
        αSSβ𝐢m0𝐢m1(𝐢m0SSS𝐢m1αSS{(𝐢m0,𝐢m1)}β)\forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S}_{S}\Diamond^{S}\mathbf{i}_{m1}\ \Rightarrow\ \alpha\leq^{S\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}_{S^{\prime}}\beta)\Diamondblack\alpha\leq^{S}_{S^{\prime}}\beta

        The nominals introduced by the residuation rules must not occur in the system before applying the rule.

      3. iii.

        Second splitting rules:

        𝐢m0𝐢m1(𝐢m0SSS𝐢m1𝖬𝖾𝗀𝖺𝟣&𝖬𝖾𝗀𝖺𝟤)𝐢m0𝐢m1(𝐢m0SSS𝐢m1𝖬𝖾𝗀𝖺𝟣)𝐢m0𝐢m1(𝐢m0SSS𝐢m1𝖬𝖾𝗀𝖺𝟤)\forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S}_{S}\Diamond^{S}\mathbf{i}_{m1}\Rightarrow\mathsf{Mega_{1}})\ \ \ \forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S}_{S}\Diamond^{S}\mathbf{i}_{m1}\Rightarrow\mathsf{Mega_{2}})\forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S}_{S}\Diamond^{S}\mathbf{i}_{m1}\Rightarrow\ \mathsf{Mega_{1}}\mathop{\mbox{\Large\&}}\mathsf{Mega_{2}})

        Here 𝖬𝖾𝗀𝖺𝟣\mathsf{Mega_{1}} and 𝖬𝖾𝗀𝖺𝟤\mathsf{Mega_{2}} denote mega-inequalities.

    3. (c)

      Substage 3: Preparing for the Ackermann rules

      In this substage, we prepare for eliminating the propositional variables by the Ackermann rules, with the help of the following packing rules:

      Packing rules:

      𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1αSSp))𝐢m00𝐢m01𝐢mk0𝐢mk1(A(𝐢m00S0𝐢m01)A(𝐢mk0Sk𝐢mk1)α)p\exists\mathbf{i}_{m_{0}0}\exists\mathbf{i}_{m_{0}1}\ldots\exists\mathbf{i}_{m_{k}0}\exists\mathbf{i}_{m_{k}1}(A(\mathbf{i}_{m_{0}0}\to\Diamond^{S_{0}}\mathbf{i}_{m_{0}1})\land A(\mathbf{i}_{m_{k}0}\to\Diamond^{S_{k}}\mathbf{i}_{m_{k}1})\land\alpha)\leq^{\varnothing}_{\varnothing}p\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\ \Rightarrow\ \alpha\leq^{S}_{S^{\prime}}p)\ldots)

      where α\alpha is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack;

      𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1pSSβ))p𝐢m00𝐢m01𝐢mk0𝐢mk1(A(𝐢m00S0𝐢m01)A(𝐢mk0Sk𝐢mk1)β)p\leq^{\varnothing}_{\varnothing}\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(A(\mathbf{i}_{m_{0}0}\to\Diamond^{S_{0}}\mathbf{i}_{m_{0}1})\land A(\mathbf{i}_{m_{k}0}\to\Diamond^{S_{k}}\mathbf{i}_{m_{k}1})\to\beta)\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\ \Rightarrow\ p\leq^{S}_{S^{\prime}}\beta)\ldots)

      where β\beta is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack.

      𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1αSSγ))𝐢m00𝐢m01𝐢mk0𝐢mk1(SA(𝐢m00S0𝐢m01)A(𝐢mk0Sk𝐢mk1)αγ)\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\top\leq^{\varnothing}_{S^{\prime}}A(\mathbf{i}_{m_{0}0}\to\Diamond^{S_{0}}\mathbf{i}_{m_{0}1})\land A(\mathbf{i}_{m_{k}0}\to\Diamond^{S_{k}}\mathbf{i}_{m_{k}1})\land\alpha\to\gamma)\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\ \Rightarrow\ \alpha\leq^{S}_{S^{\prime}}\gamma)\ldots)

      where α\alpha is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack.

      𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1γSSα))𝐢m00𝐢m01𝐢mk0𝐢mk1(SA(𝐢m00S0𝐢m01)A(𝐢mk0Sk𝐢mk1)γα)\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\top\leq^{\varnothing}_{S}A(\mathbf{i}_{m_{0}0}\to\Diamond^{S_{0}}\mathbf{i}_{m_{0}1})\land A(\mathbf{i}_{m_{k}0}\to\Diamond^{S_{k}}\mathbf{i}_{m_{k}1})\land\gamma\to\alpha)\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\ \Rightarrow\ \gamma\leq^{S}_{S^{\prime}}\alpha)\ldots)

      where α\alpha is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack.

    4. (d)

      Substage 4: The Ackermann stage

      In this substage, we compute the minimal/maximal valuation for propositional variables and use the Ackermann rules to eliminate all the propositional variables. These two rules are the core of 𝖠𝖫𝖡𝖠\mathsf{ALBA}, since their application eliminates proposition variables. In fact, all the preceding steps are aimed at reaching a shape in which the rules can be applied. Notice that an important feature of these rules is that they are executed on the whole set of (universally quantified) inequalities, and not on a single inequality.

      The right-handed Ackermann rule:

      The system {α1pαnp𝐢1(β1T1T1γ1)𝐢m(βmTmTmγm)\left\{\begin{array}[]{ll}\alpha_{1}\leq^{\varnothing}_{\varnothing}p\\ \vdots\\ \alpha_{n}\leq^{\varnothing}_{\varnothing}p\\ \forall\vec{\mathbf{i}_{1}}(\beta_{1}\leq^{T_{1}}_{T^{\prime}_{1}}\gamma_{1})\\ \vdots\\ \forall\vec{\mathbf{i}_{m}}(\beta_{m}\leq^{T_{m}}_{T^{\prime}_{m}}\gamma_{m})\\ \end{array}\right.

      is replaced by {𝐢1(β1((α1αn)/p)T1T1γ1((α1αn)/p))𝐢m(βm((α1αn)/p)TmTmγm((α1αn)/p))\left\{\begin{array}[]{ll}\forall\vec{\mathbf{i}_{1}}(\beta_{1}((\alpha_{1}\lor\ldots\lor\alpha_{n})/p)\leq^{T_{1}}_{T^{\prime}_{1}}\gamma_{1}((\alpha_{1}\lor\ldots\lor\alpha_{n})/p))\\ \vdots\\ \forall\vec{\mathbf{i}_{m}}(\beta_{m}((\alpha_{1}\lor\ldots\lor\alpha_{n})/p)\leq^{T_{m}}_{T^{\prime}_{m}}\gamma_{m}((\alpha_{1}\lor\ldots\lor\alpha_{n})/p))\\ \end{array}\right.

      where:

      1. i.

        p,𝐢1,,𝐢mp,\vec{\mathbf{i}_{1}},\ldots,\vec{\mathbf{i}_{m}} do not occur in α1,,αn\alpha_{1},\ldots,\alpha_{n};

      2. ii.

        Each βi\beta_{i} is positive in pp, and each γi\gamma_{i} negative in pp, for 1im1\leq i\leq m;

      3. iii.

        Each αi\alpha_{i} is pure and contains no contextual modalities ,,,\Box,\Diamond,\blacksquare,\Diamondblack.

      The left-handed Ackermann rule:

      The system {pα1pαn𝐢1(β1T1T1γ1)𝐢m(βmTmTmγm)\left\{\begin{array}[]{ll}p\leq^{\varnothing}_{\varnothing}\alpha_{1}\\ \vdots\\ p\leq^{\varnothing}_{\varnothing}\alpha_{n}\\ \forall\vec{\mathbf{i}_{1}}(\beta_{1}\leq^{T_{1}}_{T^{\prime}_{1}}\gamma_{1})\\ \vdots\\ \forall\vec{\mathbf{i}_{m}}(\beta_{m}\leq^{T_{m}}_{T^{\prime}_{m}}\gamma_{m})\\ \end{array}\right.

      is replaced by {𝐢1(β1((α1αn)/p)T1T1γ1((α1αn)/p))𝐢m(βm((α1αn)/p)TmTmγm((α1αn)/p))\left\{\begin{array}[]{ll}\forall\vec{\mathbf{i}_{1}}(\beta_{1}((\alpha_{1}\land\ldots\land\alpha_{n})/p)\leq^{T_{1}}_{T^{\prime}_{1}}\gamma_{1}((\alpha_{1}\land\ldots\land\alpha_{n})/p))\\ \vdots\\ \forall\vec{\mathbf{i}_{m}}(\beta_{m}((\alpha_{1}\land\ldots\land\alpha_{n})/p)\leq^{T_{m}}_{T^{\prime}_{m}}\gamma_{m}((\alpha_{1}\land\ldots\land\alpha_{n})/p))\\ \end{array}\right.

      where:

      1. i.

        p,𝐢1,,𝐢mp,\vec{\mathbf{i}_{1}},\ldots,\vec{\mathbf{i}_{m}} do not occur in α1,,αn\alpha_{1},\ldots,\alpha_{n};

      2. ii.

        Each βi\beta_{i} is negative in pp, and each γi\gamma_{i} positive in pp, for 1im1\leq i\leq m.

      3. iii.

        Each αi\alpha_{i} is pure and contains no contextual modalities ,,,\Box,\Diamond,\blacksquare,\Diamondblack.

  3. 3.

    Output: If in the previous stage, for some {𝐢0φi,ψi¬𝐢1}\{\mathbf{i}_{0}\leq\varphi_{i},\psi_{i}\leq\neg\mathbf{i}_{1}\}, the algorithm gets stuck, i.e. some proposition variables cannot be eliminated by the application of the reduction rules, then the algorithm halts and output “failure”. Otherwise, each initial tuple {𝐢0φi,ψi¬𝐢1}\{\mathbf{i}_{0}\leq\varphi_{i},\psi_{i}\leq\neg\mathbf{i}_{1}\} of inequalities after the first approximation has been reduced to a set of pure (universally quantified) inequalities 𝖱𝖾𝖽𝗎𝖼𝖾(φiψi)\mathsf{Reduce}(\varphi_{i}\leq\psi_{i}), and then the output is a set of quasi-(universally quantified) inequalities {&𝖱𝖾𝖽𝗎𝖼𝖾(φiψi)𝐢0¬𝐢1:φiψi𝖯𝗋𝖾𝗉𝗋𝗈𝖼𝖾𝗌𝗌(φψ)}\{\&\mathsf{Reduce}(\varphi_{i}\leq\psi_{i})\Rightarrow\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}:\varphi_{i}\leq\psi_{i}\in\mathsf{Preprocess}(\varphi\leq\psi)\}, where &\& is the big meta-conjunction in quasi-inequalities. Then the algorithm use the standard translation to transform the quasi-(universally quantified) inequalities into first-order formulas.

3.4 Soundness of 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}}

In the present subsection, we will prove the soundness of the algorithm 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} with respect to Kripke frames. The basic proof structure is similar to [10].

Theorem 3.1 (Soundness).

If 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} runs successfully on φψ\varphi\leq\psi and outputs 𝖥𝖮(φψ)\mathsf{FO}(\varphi\leq\psi), then for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}),

𝔽φψ iff 𝔽𝖥𝖮(φψ).\mathbb{F}\Vdash\varphi\leq\psi\mbox{ iff }\mathbb{F}\models\mathsf{FO}(\varphi\leq\psi).
Proof.

The proof goes similarly to [10, Theorem 8.1]. Let φiψi\varphi_{i}\leq\psi_{i}, 1in1\leq i\leq n denote the inequalities produced by preprocessing φψ\varphi\leq\psi after Stage 1, and {𝐢0φi,ψi¬𝐢1}\{\mathbf{i}_{0}\leq\varphi_{i},\psi_{i}\leq\neg\mathbf{i}_{1}\} denote the inequalities after the first-approximation rule, 𝖱𝖾𝖽𝗎𝖼𝖾(φiψi)\mathsf{Reduce}(\varphi_{i}\leq\psi_{i}) denote the set of pure (universally quantified) inequalities after Stage 2, and 𝖥𝖮(φψ)\mathsf{FO}(\varphi\leq\psi) denote the standard translation of the quasi-(universally quantified) inequalities into first-order formulas, then we have the following chain of equivalences:

It suffices to show the equivalence from (1) to (5) given below:

𝔽φψ\displaystyle\mathbb{F}\Vdash\varphi\leq\psi (1)
𝔽φiψi, for all 1in\displaystyle\mathbb{F}\Vdash\varphi_{i}\leq\psi_{i},\mbox{ for all }1\leq i\leq n (2)
𝔽(𝐢0φi&ψi¬𝐢1)𝐢0¬𝐢1 for all 1in\displaystyle\mathbb{F}\Vdash(\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i}\ \&\ \psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1})\Rightarrow\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}\mbox{ for all }1\leq i\leq n (3)
𝔽𝖱𝖾𝖽𝗎𝖼𝖾(φiψi)𝐢0¬𝐢1 for all 1in\displaystyle\mathbb{F}\Vdash\mathsf{Reduce}(\varphi_{i}\leq\psi_{i})\Rightarrow\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}\mbox{ for all }1\leq i\leq n (4)
𝔽𝖥𝖮(φψ)\displaystyle\mathbb{F}\Vdash\mathsf{FO}(\varphi\leq\psi) (5)
  • The equivalence between (1) and (2) follows from Proposition 12;

  • the equivalence between (2) and (3) follows from Proposition 13;

  • the equivalence between (3) and (4) follows from Propositions 14, 20, 24, 25;

  • the equivalence between (4) and (5) follows from Proposition 7.

In the remainder of this subsection, we prove the soundness of the rules in Stage 1, 2 and 3.

Proposition 12 (Soundness of the rules in Stage 1).

For the distribution rules, the splitting rules and the monotone and antitone variable-elimination rules, they are sound in both directions in 𝔽\mathbb{F}, i.e., it is sound from the premise to the conclusion and the other way round.

Proof.

For the soundness of the distribution rules, it follows from the fact that the following equivalences are valid in 𝔽\mathbb{F}:

  • (αβ)αβ\Diamond(\alpha\lor\beta)\leftrightarrow\Diamond\alpha\lor\Diamond\beta;

  • (αβ)αβ\Diamondblack(\alpha\lor\beta)\leftrightarrow\Diamondblack\alpha\lor\Diamondblack\beta;

  • ¬(αβ)¬α¬β\neg(\alpha\lor\beta)\leftrightarrow\neg\alpha\land\neg\beta;

  • (αβ)γ(αγ)(βγ)(\alpha\lor\beta)\land\gamma\leftrightarrow(\alpha\land\gamma)\lor(\beta\land\gamma);

  • α(βγ)(αβ)(αγ)\alpha\land(\beta\lor\gamma)\leftrightarrow(\alpha\land\beta)\lor(\alpha\land\gamma);

  • ((αβ)γ)((αγ)(βγ))((\alpha\lor\beta)\to\gamma)\leftrightarrow((\alpha\to\gamma)\land(\beta\to\gamma));

  • (αβ)αβ\Box(\alpha\land\beta)\leftrightarrow\Box\alpha\land\Box\beta;

  • (αβ)αβ\blacksquare(\alpha\land\beta)\leftrightarrow\blacksquare\alpha\land\blacksquare\beta;

  • ¬(αβ)¬α¬β\neg(\alpha\land\beta)\leftrightarrow\neg\alpha\lor\neg\beta;

  • (αβ)γ(αγ)(βγ)(\alpha\land\beta)\lor\gamma\leftrightarrow(\alpha\lor\gamma)\land(\beta\lor\gamma);

  • α(βγ)(αβ)(αγ)\alpha\lor(\beta\land\gamma)\leftrightarrow(\alpha\lor\beta)\land(\alpha\lor\gamma);

  • (αβγ)(αβ)(αγ)(\alpha\to\beta\land\gamma)\leftrightarrow(\alpha\to\beta)\land(\alpha\to\gamma).

For the soundness of the splitting rules, it follows from the following fact:

𝔽αβγ iff (𝔽αβ and 𝔽αγ);\mathbb{F}\Vdash\alpha\leq\beta\land\gamma\mbox{ iff }(\mathbb{F}\Vdash\alpha\leq\beta\mbox{ and }\mathbb{F}\Vdash\alpha\leq\gamma);
𝔽αβγ iff (𝔽αγ and 𝔽βγ).\mathbb{F}\Vdash\alpha\lor\beta\leq\gamma\mbox{ iff }(\mathbb{F}\Vdash\alpha\leq\gamma\mbox{ and }\mathbb{F}\Vdash\beta\leq\gamma).

For the soundness of the monotone and antitone variable elimination rules, we show the soundness for the first rule. Suppose α(p)\alpha(p) is negative in pp and β\beta is positive in pp.

If 𝔽α(p)β(p)\mathbb{F}\Vdash\alpha(p)\leq\beta(p), then for all valuations VV, (𝔽,V)α(p)β(p)(\mathbb{F},V)\Vdash\alpha(p)\leq\beta(p), thus for the valuation VpV^{p}_{\varnothing} such that VpV^{p}_{\varnothing} is the same as VV except that Vp(p)=V^{p}_{\varnothing}(p)=\varnothing, (𝔽,Vp)α(p)β(p)(\mathbb{F},V^{p}_{\varnothing})\Vdash\alpha(p)\leq\beta(p), therefore (𝔽,Vp)α()β()(\mathbb{F},V^{p}_{\varnothing})\Vdash\alpha(\bot)\leq\beta(\bot), thus (𝔽,V)α()β()(\mathbb{F},V)\Vdash\alpha(\bot)\leq\beta(\bot), so 𝔽α()β()\mathbb{F}\Vdash\alpha(\bot)\leq\beta(\bot).

For the other direction, suppose 𝔽α()β()\mathbb{F}\vDash\alpha(\bot)\leq\beta(\bot), then by the fact that α(p)\alpha(p) is negative in pp and β\beta is positive in pp, we have that 𝔽α(p)α()\mathbb{F}\vDash\alpha(p)\leq\alpha(\bot) and 𝔽β()β(p)\mathbb{F}\vDash\beta(\bot)\leq\beta(p), therefore 𝔽α(p)β(p)\mathbb{F}\vDash\alpha(p)\leq\beta(p).

The soundness of the other rule is similar. ∎

Proposition 13.

(2) and (3) are equivalent, i.e. the first-approximation rule is sound in 𝔽\mathbb{F}.

Proof.

(2) \Rightarrow (3): Suppose 𝔽φiψi\mathbb{F}\Vdash\varphi_{i}\leq\psi_{i}. Then for any valuation VV on 𝔽\mathbb{F}, if (𝔽,V)𝐢0φi(\mathbb{F},V)\Vdash\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i} and (𝔽,V)ψi¬𝐢1(\mathbb{F},V)\Vdash\psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1}, then (𝔽,V),V(𝐢0)φi(\mathbb{F},V),V(\mathbf{i}_{0})\Vdash\varphi_{i} and (𝔽,V),V(𝐢1)ψi(\mathbb{F},V),V(\mathbf{i}_{1})\nVdash\psi_{i}, so by 𝔽φiψi\mathbb{F}\Vdash\varphi_{i}\leq\psi_{i} we have (𝔽,V),V(𝐢0)ψi(\mathbb{F},V),V(\mathbf{i}_{0})\Vdash\psi_{i}, so 𝐢0𝐢1\mathbf{i}_{0}\neq\mathbf{i}_{1}, so (𝔽,V)𝐢0¬𝐢1(\mathbb{F},V)\Vdash\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}.

(3) \Rightarrow (2): Suppose 𝔽(𝐢0φi&ψi¬𝐢1)𝐢0¬𝐢1\mathbb{F}\Vdash(\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i}\ \&\ \psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1})\Rightarrow\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}. Then if 𝔽φiψi\mathbb{F}\nVdash\varphi_{i}\leq\psi_{i}, then there is a valuation VV on 𝔽\mathbb{F} and a wWw\in W such that (𝔽,V),wφi(\mathbb{F},V),w\Vdash\varphi_{i} and (𝔽,V),wψi(\mathbb{F},V),w\nVdash\psi_{i}. Then by taking Vw,w𝐢0,𝐢1V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w} to be the valuation which is the same as VV except that Vw,w𝐢0,𝐢1(𝐢0)=Vw,w𝐢0,𝐢1(𝐢1)={w}V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w}(\mathbf{i}_{0})=V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w}(\mathbf{i}_{1})=\{w\}, then since 𝐢0,𝐢1\mathbf{i}_{0},\mathbf{i}_{1} do not occur in φi\varphi_{i} and ψi\psi_{i}, we have that (𝔽,Vw,w𝐢0,𝐢1),wφi(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w}),w\Vdash\varphi_{i} and (𝔽,Vw,w𝐢0,𝐢1),wψi(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w}),w\nVdash\psi_{i}, therefore (𝔽,Vw,w𝐢0,𝐢1)𝐢0φi(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w})\Vdash\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i} and (𝔽,Vw,w𝐢0,𝐢1)ψi¬𝐢1(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w})\Vdash\psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1}, by 𝔽(𝐢0φi&ψi¬𝐢1)𝐢0¬𝐢1\mathbb{F}\Vdash(\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i}\ \&\ \psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1})\Rightarrow\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}, we have that (𝔽,Vw,w𝐢0,𝐢1)𝐢0¬𝐢1(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w})\Vdash\mathbf{i}_{0}\leq\neg\mathbf{i}_{1}, so (𝔽,Vw,w𝐢0,𝐢1),w𝐢0(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w}),w\Vdash\mathbf{i}_{0} implies that (𝔽,Vw,w𝐢0,𝐢1),w¬𝐢1(\mathbb{F},V^{\mathbf{i}_{0},\mathbf{i}_{1}}_{w,w}),w\Vdash\neg\mathbf{i}_{1}, a contradiction. So 𝔽φiψi\mathbb{F}\Vdash\varphi_{i}\leq\psi_{i}. ∎

The next step is to show the soundness of Stage 2, for which it suffices to show the soundness of each rule in each substage.

Proposition 14.

The splitting rules, the approximation rules for ,,,,\Diamond,\Box,\Diamondblack,\blacksquare,\to, the residuation rules for ¬\neg in Substage 1 are sound in 𝔽\mathbb{F}.

Proof.

By Lemma 15, 16, 17, 18 and 19 below. ∎

Lemma 15.

The splitting rules in Substage 1 and Substage 2 are sound in 𝔽\mathbb{F}.

Proof.

For the soundness of the splitting rules, it follows from the fact that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F},

  • (𝔽,V)αSSβγ iff ((𝔽,V)αSSβ and (𝔽,V)αSSγ),(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\beta\land\gamma\mbox{ iff }((\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\beta\mbox{ and }(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\gamma),

  • (𝔽,V)αβSSγ iff ((𝔽,V)αSSγ and (𝔽,V)βSSγ).(\mathbb{F},V)\Vdash\alpha\lor\beta\leq^{S}_{S^{\prime}}\gamma\mbox{ iff }((\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\gamma\mbox{ and }(\mathbb{F},V)\Vdash\beta\leq^{S}_{S^{\prime}}\gamma).

Lemma 16.

The approximation rules for ,\Diamond,\Box in Substage 1 are sound in 𝔽\mathbb{F}.

Proof.

We prove for \Diamond, the case for \Box is similar. For the soundness of the approximation rule for \Diamond, it suffices to show that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F},

  1. 1.

    if (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond\alpha, then there is a valuation V𝐣V^{\mathbf{j}} such that V𝐣V^{\mathbf{j}} is the same as VV except V𝐣(𝐣)V^{\mathbf{j}}(\mathbf{j}), and (𝔽,V𝐣)𝐢SSS𝐣(\mathbb{F},V^{\mathbf{j}})\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{j} and (𝔽,V𝐣)𝐣SSα(\mathbb{F},V^{\mathbf{j}})\Vdash\mathbf{j}\leq^{S^{\prime}}_{S^{\prime}}\alpha;

  2. 2.

    if (𝔽,V)𝐢SSS𝐣(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{j} and (𝔽,V)𝐣SSα(\mathbb{F},V)\Vdash\mathbf{j}\leq^{S^{\prime}}_{S^{\prime}}\alpha, then (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond\alpha.

For item 1, if (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond\alpha, then (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S^{\prime}),V),V(\mathbf{i})\Vdash\Diamond\alpha, therefore there exists a wWw\in W such that (V(𝐢),w)(R0S)(V(\mathbf{i}),w)\in(R_{0}\setminus S^{\prime}) and (W,(R0S),V),wα(W,(R_{0}\setminus S^{\prime}),V),w\Vdash\alpha. Now take V𝐣V^{\mathbf{j}} such that V𝐣V^{\mathbf{j}} is the same as VV except that V𝐣(𝐣)={w}V^{\mathbf{j}}(\mathbf{j})=\{w\}, then (V𝐣(𝐢),V𝐣(𝐣))(R0S)(V^{\mathbf{j}}(\mathbf{i}),V^{\mathbf{j}}(\mathbf{j}))\in(R_{0}\setminus S^{\prime}), so (𝔽,V𝐣)𝐢SSS𝐣(\mathbb{F},V^{\mathbf{j}})\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{j} and (𝔽,V𝐣)𝐣SSα(\mathbb{F},V^{\mathbf{j}})\Vdash\mathbf{j}\leq^{S^{\prime}}_{S^{\prime}}\alpha.

For item 2, suppose (𝔽,V)𝐢SSS𝐣(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{j} and (𝔽,V)𝐣SSα(\mathbb{F},V)\Vdash\mathbf{j}\leq^{S^{\prime}}_{S^{\prime}}\alpha. Then (V(𝐢),V(𝐣))(R0S)(V(\mathbf{i}),V(\mathbf{j}))\in(R_{0}\setminus S^{\prime}) and (W,(R0S),V),V(𝐣)α(W,(R_{0}\setminus S^{\prime}),V),V(\mathbf{j})\Vdash\alpha, so (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S^{\prime}),V),V(\mathbf{i})\Vdash\Diamond\alpha, therefore (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamond\alpha. ∎

Lemma 17.

The approximation rules for ,\Diamondblack,\blacksquare in Substage 1 are sound in 𝔽\mathbb{F}.

Proof.

We prove for \Diamondblack, the case for \blacksquare is similar. For the soundness of the approximation rule for \Diamondblack, it suffices to show that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F},

  1. 1.

    if (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamondblack\alpha, then there is a valuation V𝐢m0,𝐢m1V^{\mathbf{i}_{m0},\mathbf{i}_{m1}} such that V𝐢m0,𝐢m1V^{\mathbf{i}_{m0},\mathbf{i}_{m1}} is the same as VV except V𝐢m0,𝐢m1(𝐢m0)V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i}_{m0}) and V𝐢m0,𝐢m1(𝐢m1)V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i}_{m1}), and (𝔽,V𝐢m0,𝐢m1)𝐢m0SSS𝐢m1(\mathbb{F},V^{\mathbf{i}_{m0},\mathbf{i}_{m1}})\Vdash\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1} and (𝔽,V𝐢m0,𝐢m1)𝐢S{(𝐢m0,𝐢m1)}Sα(\mathbb{F},V^{\mathbf{i}_{m0},\mathbf{i}_{m1}})\Vdash\mathbf{i}\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\alpha;

  2. 2.

    if (𝔽,V)𝐢m0SSS𝐢m1(\mathbb{F},V)\Vdash\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1} and (𝔽,V)𝐢S{(𝐢m0,𝐢m1)}Sα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\alpha, then (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamondblack\alpha.

For item 1, if (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamondblack\alpha, then (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S^{\prime}),V),V(\mathbf{i})\Vdash\Diamondblack\alpha, therefore there are (w,v)(R0S)(w,v)\in(R_{0}\setminus S^{\prime}) such that (W,((R0S){(w,v)}),V),V(𝐢)α(W,((R_{0}\setminus S^{\prime})\setminus\{(w,v)\}),V),V(\mathbf{i})\Vdash\alpha. Now take V𝐢m0,𝐢m1V^{\mathbf{i}_{m0},\mathbf{i}_{m1}} such that V𝐢m0,𝐢m1V^{\mathbf{i}_{m0},\mathbf{i}_{m1}} is the same as VV except V𝐢m0,𝐢m1(𝐢m0)={w}V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i}_{m0})=\{w\} and V𝐢m0,𝐢m1(𝐢m1)={v}V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i}_{m1})=\{v\}, then by (w,v)(R0S)(w,v)\in(R_{0}\setminus S^{\prime}), we have that (W,R0,V𝐢m0,𝐢m1)𝐢m0SSS𝐢m1(W,R_{0},V^{\mathbf{i}_{m0},\mathbf{i}_{m1}})\Vdash\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1}, and from (W,((R0S){(w,v)}),V),V(𝐢)α(W,((R_{0}\setminus S^{\prime})\setminus\{(w,v)\}),V),V(\mathbf{i})\Vdash\alpha we have that (W,((R0S){(V𝐢m0,𝐢m1(𝐢m0),V𝐢m0,𝐢m1(𝐢m1))}),V𝐢m0,𝐢m1),V𝐢m0,𝐢m1(𝐢)α(W,((R_{0}\setminus S^{\prime})\setminus\{(V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i}_{m0}),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i}_{m1}))\}),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}(\mathbf{i})\Vdash\alpha, so (𝔽,V𝐢m0,𝐢m1)𝐢S{(𝐢m0,𝐢m1)}Sα(\mathbb{F},V^{\mathbf{i}_{m0},\mathbf{i}_{m1}})\Vdash\mathbf{i}\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\alpha.

For item 2, if (𝔽,V)𝐢m0SSS𝐢m1(\mathbb{F},V)\Vdash\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1} and (𝔽,V)𝐢S{(𝐢m0,𝐢m1)}Sα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\alpha, then (V(𝐢m0),V(𝐢m1))(R0S)(V(\mathbf{i}_{m0}),V(\mathbf{i}_{m1}))\in(R_{0}\setminus S^{\prime}), and (W,(R0(S{(𝐢m0,𝐢m1)})),V),V(𝐢)α(W,(R_{0}\setminus(S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\})),V),V(\mathbf{i})\Vdash\alpha, so (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S^{\prime}),V),V(\mathbf{i})\Vdash\Diamondblack\alpha, therefore (𝔽,V)𝐢SSα(\mathbb{F},V)\Vdash\mathbf{i}\leq^{S}_{S^{\prime}}\Diamondblack\alpha. ∎

Lemma 18.

The approximation rule for \to in Substage 1 is sound in 𝔽\mathbb{F}.

Proof.

For the soundness of the approximation rule for \to, it suffices to show that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F},

  1. 1.

    if (𝔽,V)αβSS¬𝐢(\mathbb{F},V)\Vdash\alpha\to\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i}, then there is a valuation V𝐣,𝐤V^{\mathbf{j},\mathbf{k}} such that V𝐣,𝐤V^{\mathbf{j},\mathbf{k}} is the same as VV except V𝐣,𝐤(𝐣)V^{\mathbf{j},\mathbf{k}}(\mathbf{j}) and V𝐣,𝐤(𝐤)V^{\mathbf{j},\mathbf{k}}(\mathbf{k}), and (𝔽,V𝐣,𝐤)𝐣SSα(\mathbb{F},V^{\mathbf{j},\mathbf{k}})\Vdash\mathbf{j}\leq^{S}_{S}\alpha, (𝔽,V𝐣,𝐤)βSS¬𝐤(\mathbb{F},V^{\mathbf{j},\mathbf{k}})\Vdash\beta\leq^{S}_{S}\neg\mathbf{k} and (𝔽,V𝐣,𝐤)𝐣¬𝐤SS¬𝐢(\mathbb{F},V^{\mathbf{j},\mathbf{k}})\Vdash\mathbf{j}\to\neg\mathbf{k}\leq^{S}_{S^{\prime}}\neg\mathbf{i};

  2. 2.

    if (𝔽,V)𝐣SSα(\mathbb{F},V)\Vdash\mathbf{j}\leq^{S}_{S}\alpha, (𝔽,V)βSS¬𝐤(\mathbb{F},V)\Vdash\beta\leq^{S}_{S}\neg\mathbf{k} and (𝔽,V)𝐣¬𝐤SS¬𝐢(\mathbb{F},V)\Vdash\mathbf{j}\to\neg\mathbf{k}\leq^{S}_{S^{\prime}}\neg\mathbf{i}, then (𝔽,V)αβSS¬𝐢(\mathbb{F},V)\Vdash\alpha\to\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i}.

    For item 1, if (𝔽,V)αβSS¬𝐢(\mathbb{F},V)\Vdash\alpha\to\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i}, then (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S),V),V(\mathbf{i})\Vdash\alpha and (W,(R0S),V),V(𝐢)¬β(W,(R_{0}\setminus S),V),V(\mathbf{i})\Vdash\neg\beta. Now take V𝐣,𝐤V^{\mathbf{j},\mathbf{k}} such that V𝐣,𝐤V^{\mathbf{j},\mathbf{k}} is the same as VV except that V𝐣,𝐤(𝐣)=V𝐣,𝐤(𝐤)=V(𝐢)V^{\mathbf{j},\mathbf{k}}(\mathbf{j})=V^{\mathbf{j},\mathbf{k}}(\mathbf{k})=V(\mathbf{i}), we have that (W,(R0S),V𝐣,𝐤),V𝐣,𝐤(𝐣)α(W,(R_{0}\setminus S),V^{\mathbf{j},\mathbf{k}}),V^{\mathbf{j},\mathbf{k}}(\mathbf{j})\Vdash\alpha and (W,(R0S),V𝐣,𝐤),V𝐣,𝐤(𝐤)¬β(W,(R_{0}\setminus S),V^{\mathbf{j},\mathbf{k}}),V^{\mathbf{j},\mathbf{k}}(\mathbf{k})\Vdash\neg\beta, so (𝔽,V𝐣,𝐤)𝐣SSα(\mathbb{F},V^{\mathbf{j},\mathbf{k}})\Vdash\mathbf{j}\leq^{S}_{S}\alpha, (𝔽,V𝐣,𝐤)βSS¬𝐤(\mathbb{F},V^{\mathbf{j},\mathbf{k}})\Vdash\beta\leq^{S}_{S}\neg\mathbf{k}. Since V𝐣,𝐤(𝐣)=V𝐣,𝐤(𝐤)=V𝐣,𝐤(𝐢)=V(𝐢)V^{\mathbf{j},\mathbf{k}}(\mathbf{j})=V^{\mathbf{j},\mathbf{k}}(\mathbf{k})=V^{\mathbf{j},\mathbf{k}}(\mathbf{i})=V(\mathbf{i}), it is easy to see that V𝐣,𝐤(𝐣¬𝐤)=V𝐣,𝐤(¬𝐢)V^{\mathbf{j},\mathbf{k}}(\mathbf{j}\to\neg\mathbf{k})=V^{\mathbf{j},\mathbf{k}}(\neg\mathbf{i}), so (𝔽,V𝐣,𝐤)𝐣¬𝐤SS¬𝐢(\mathbb{F},V^{\mathbf{j},\mathbf{k}})\Vdash\mathbf{j}\to\neg\mathbf{k}\leq^{S}_{S^{\prime}}\neg\mathbf{i}.

    For item 2, if (𝔽,V)𝐣SSα(\mathbb{F},V)\Vdash\mathbf{j}\leq^{S}_{S}\alpha, (𝔽,V)βSS¬𝐤(\mathbb{F},V)\Vdash\beta\leq^{S}_{S}\neg\mathbf{k} and (𝔽,V)𝐣¬𝐤SS¬𝐢(\mathbb{F},V)\Vdash\mathbf{j}\to\neg\mathbf{k}\leq^{S}_{S^{\prime}}\neg\mathbf{i}, then V(𝐣¬𝐤)V(¬𝐢)V(\mathbf{j}\to\neg\mathbf{k})\subseteq V(\neg\mathbf{i}), so V(𝐢)V(𝐣𝐤)V(\mathbf{i})\subseteq V(\mathbf{j}\land\mathbf{k}), since 𝐢,𝐣,𝐤\mathbf{i},\mathbf{j},\mathbf{k} are nominals, there interpretations are singletons, so V(𝐢)=V(𝐣)=V(𝐤)V(\mathbf{i})=V(\mathbf{j})=V(\mathbf{k}). Now from (𝔽,V)𝐣SSα(\mathbb{F},V)\Vdash\mathbf{j}\leq^{S}_{S}\alpha we have that (W,(R0S),V),V(𝐣)α(W,(R_{0}\setminus S),V),V(\mathbf{j})\Vdash\alpha, and from (𝔽,V)βSS¬𝐤(\mathbb{F},V)\Vdash\beta\leq^{S}_{S}\neg\mathbf{k} we have that (W,(R0S),V),V(𝐤)¬β(W,(R_{0}\setminus S),V),V(\mathbf{k})\Vdash\neg\beta, so (W,(R0S),V),V(𝐢)α(W,(R_{0}\setminus S),V),V(\mathbf{i})\Vdash\alpha and (W,(R0S),V),V(𝐢)¬β(W,(R_{0}\setminus S),V),V(\mathbf{i})\Vdash\neg\beta, so (𝔽,V)αβSS¬𝐢(\mathbb{F},V)\Vdash\alpha\to\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i}.

Lemma 19.

The residuation rules for ¬\neg in Substage 1 and 2 are sound in 𝔽\mathbb{F}.

Proof.

It is easy to see that the residuation rules for ¬\neg in Substage 1 are special cases of the residuation rules for ¬\neg in Substage 2 (modulo double negation elimination). Now we only prove it for the residuation rule in Substage 2 where negation symbols occur on the right-hand side of the inequalities, the other rule is similar.

For the soundness of the residuation rule for ¬\neg, it suffices to show that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F}, (𝔽,V)αSS¬β(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\neg\beta iff (𝔽,V)βSS¬α(\mathbb{F},V)\Vdash\beta\leq^{S^{\prime}}_{S}\neg\alpha. Indeed, it follows from the following equivalence:

(𝔽,V)αSS¬β(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\neg\beta
iff for all wWw\in W, if (W,(R0S),V),wα(W,(R_{0}\setminus S),V),w\Vdash\alpha, then (W,(R0S),V),wβ(W,(R_{0}\setminus S^{\prime}),V),w\nVdash\beta
iff for all wWw\in W, if (W,(R0S),V),wβ(W,(R_{0}\setminus S^{\prime}),V),w\Vdash\beta, then (W,(R0S),V),wα(W,(R_{0}\setminus S),V),w\nVdash\alpha
iff (𝔽,V)βSS¬α(\mathbb{F},V)\Vdash\beta\leq^{S^{\prime}}_{S}\neg\alpha.

Proposition 20.

The splitting rules, the residuation rules for ¬,,,,\neg,\Diamond,\Box,\Diamondblack,\blacksquare, the second splitting rule in Substage 2 are sound in 𝔽\mathbb{F}.

Proof.

By Lemma 15, 19, 21, 22 and 23. ∎

Lemma 21.

The residuation rules for ,\Diamond,\Box in Substage 2 are sound in 𝔽\mathbb{F}.

Proof.

We prove it for \Diamond, and the rule for \Box is similar.

To show the soundness of the residuation rule for \Diamond in Substage 2, it suffices to show that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F}, (𝔽,V)αSSβ(\mathbb{F},V)\Vdash\Diamond\alpha\leq^{S}_{S^{\prime}}\beta iff (𝔽,V)αSS(S)1β(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}(\Box^{S})^{-1}\beta.

\Rightarrow: if (𝔽,V)αSSβ(\mathbb{F},V)\Vdash\Diamond\alpha\leq^{S}_{S^{\prime}}\beta, then for all wWw\in W, if (W,(R0S),V),wα(W,(R_{0}\setminus S),V),w\Vdash\Diamond\alpha, then (W,(R0S),V),wβ(W,(R_{0}\setminus S^{\prime}),V),w\Vdash\beta. Our aim is to show that for all vWv\in W, if (W,(R0S),V),vα(W,(R_{0}\setminus S),V),v\Vdash\alpha, then (W,(R0S),V),v(S)1β(W,(R_{0}\setminus S^{\prime}),V),v\Vdash(\Box^{S})^{-1}\beta.

Consider any vWv\in W such that (W,(R0S),V),vα(W,(R_{0}\setminus S),V),v\Vdash\alpha. Then for any uWu\in W such that (u,v)(R0S)(u,v)\in(R_{0}\setminus S), (W,(R0S),V),uα(W,(R_{0}\setminus S),V),u\Vdash\Diamond\alpha. Since (𝔽,V)αSSβ(\mathbb{F},V)\Vdash\Diamond\alpha\leq^{S}_{S^{\prime}}\beta, we have that (W,(R0S),V),uβ(W,(R_{0}\setminus S^{\prime}),V),u\Vdash\beta, so for any uWu\in W such that (v,u)(R0S)1(v,u)\in(R_{0}\setminus S)^{-1}, (W,(R0S),V),uβ(W,(R_{0}\setminus S^{\prime}),V),u\Vdash\beta, so (W,(R0S),V),v(S)1β(W,(R_{0}\setminus S^{\prime}),V),v\Vdash(\Box^{S})^{-1}\beta.

\Leftarrow: if (𝔽,V)αSS(S)1β(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}(\Box^{S})^{-1}\beta, then for all wWw\in W, if (W,(R0S),V),wα(W,(R_{0}\setminus S),V),w\Vdash\alpha, then (W,(R0S),V),w(S)1β(W,(R_{0}\setminus S^{\prime}),V),w\Vdash(\Box^{S})^{-1}\beta. Our aim is to show that for all vWv\in W, if (W,(R0S),V),vα(W,(R_{0}\setminus S),V),v\Vdash\Diamond\alpha, then (W,(R0S),V),vβ(W,(R_{0}\setminus S^{\prime}),V),v\Vdash\beta.

Now assume that (W,(R0S),V),vα(W,(R_{0}\setminus S),V),v\Vdash\Diamond\alpha. Then there is a uWu\in W such that (v,u)(R0S)(v,u)\in(R_{0}\setminus S) and (W,(R0S),V),uα(W,(R_{0}\setminus S),V),u\Vdash\alpha. By (𝔽,V)αSS(S)1β(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}(\Box^{S})^{-1}\beta, we have that (W,(R0S),V),u(S)1β(W,(R_{0}\setminus S^{\prime}),V),u\Vdash(\Box^{S})^{-1}\beta. Therefore, for vWv\in W, we have (u,v)(R0S)1(u,v)\in(R_{0}\setminus S)^{-1}, thus (W,(R0S),V),vβ(W,(R_{0}\setminus S^{\prime}),V),v\Vdash\beta. ∎

Lemma 22.

The residuation rules for ,\Diamondblack,\blacksquare in Substage 2 are sound in 𝔽\mathbb{F}.

Proof.

We prove it for \blacksquare, and the rule for \Diamondblack is similar.

For the residuation rule for \blacksquare, it suffices to show that for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}), any valuation VV on 𝔽\mathbb{F}, (𝔽,V)αSSβ(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\blacksquare\beta iff (𝔽,V)𝐢m0𝐢m1(𝐢m0SSS𝐢m1αS{(𝐢m0,𝐢m1)}Sβ)(\mathbb{F},V)\Vdash\forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1}\ \Rightarrow\ \alpha\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\beta). Indeed,

(𝔽,V)𝐢m0𝐢m1(𝐢m0SSS𝐢m1αS{(𝐢m0,𝐢m1)}Sβ)(\mathbb{F},V)\Vdash\forall\mathbf{i}_{m0}\forall\mathbf{i}_{m1}(\mathbf{i}_{m0}\leq^{S^{\prime}}_{S^{\prime}}\Diamond^{S^{\prime}}\mathbf{i}_{m1}\ \Rightarrow\ \alpha\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\beta),

iff for all w,vWw,v\in W, if (w,v)(R0S)(w,v)\in(R_{0}\setminus S^{\prime}) then (W,R0,Vw,v𝐢m0,𝐢m1)αS{(𝐢m0,𝐢m1)}Sβ(W,R_{0},V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v})\Vdash\alpha\leq^{S}_{S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\}}\beta, where Vw,v𝐢m0,𝐢m1V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v} is the same as VV except that Vw,v𝐢m0,𝐢m1(𝐢m0)={w}V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}(\mathbf{i}_{m0})=\{w\}, Vw,v𝐢m0,𝐢m1(𝐢m1)={v}V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}(\mathbf{i}_{m1})=\{v\},

iff for all u,v,wWu,v,w\in W, if (w,v)(R0S)(w,v)\in(R_{0}\setminus S^{\prime}) and (W,(R0S),Vw,v𝐢m0,𝐢m1),uα(W,(R_{0}\setminus S),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}),u\Vdash\alpha, then (W,(R0(S{(𝐢m0,𝐢m1)})),Vw,v𝐢m0,𝐢m1),uβ(W,(R_{0}\setminus(S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\})),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}),u\Vdash\beta,

iff for all uWu\in W, if (W,(R0S),Vw,v𝐢m0,𝐢m1),uα(W,(R_{0}\setminus S),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}),u\Vdash\alpha, then for all v,wWv,w\in W, if (w,v)(R0S)(w,v)\in(R_{0}\setminus S^{\prime}) then (W,(R0(S{(𝐢m0,𝐢m1)})),Vw,v𝐢m0,𝐢m1),uβ(W,(R_{0}\setminus(S^{\prime}\cup\{(\mathbf{i}_{m0},\mathbf{i}_{m1})\})),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}),u\Vdash\beta,

iff for all uWu\in W, if (W,(R0S),Vw,v𝐢m0,𝐢m1),uα(W,(R_{0}\setminus S),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}),u\Vdash\alpha, then (W,(R0S),Vw,v𝐢m0,𝐢m1),uβ(W,(R_{0}\setminus S^{\prime}),V^{\mathbf{i}_{m0},\mathbf{i}_{m1}}_{w,v}),u\Vdash\blacksquare\beta,

iff for all uWu\in W, if (W,(R0S),V),uα(W,(R_{0}\setminus S),V),u\Vdash\alpha, then (W,(R0S),V),uβ(W,(R_{0}\setminus S^{\prime}),V),u\Vdash\blacksquare\beta (since 𝐢m0\mathbf{i}_{m0} and 𝐢m1\mathbf{i}_{m1} do not occur in α\alpha and β\beta),

iff (𝔽,V)αSSβ(\mathbb{F},V)\Vdash\alpha\leq^{S}_{S^{\prime}}\blacksquare\beta. ∎

Lemma 23.

The second splitting rule in Substage 2 is sound in 𝔽\mathbb{F}.

Proof.

It follows immediately from the meta-equivalence that xy(αβγ)xy(αβ)xy(αγ)\forall x\forall y(\alpha\rightarrow\beta\land\gamma)\leftrightarrow\forall x\forall y(\alpha\rightarrow\beta)\land\forall x\forall y(\alpha\rightarrow\gamma). ∎

Proposition 24.

The packing rules in Substage 3 are sound in 𝔽\mathbb{F}.

Proof.

We only prove the soundness of the first packing rule, the others are similar.

It is easy to see that in the mega-inequality of the premise and in the conclusion, contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack do not occur, so we can ignore the superscripts and subscripts in the inequalities occuring in the rule.

Therefore, for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}) and any valuation VV on it,

(𝔽,V)𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1αSSp))(\mathbb{F},V)\Vdash\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\ \Rightarrow\ \alpha\leq^{S}_{S^{\prime}}p)\ldots),

iff for all wm00,wm01,,wmk0,wmk1Ww_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}\in W, if (wm00,wm01)(R0S0)(w_{m_{0}0},w_{m_{0}1})\in(R_{0}\setminus S_{0}), …, (wmk0,wmk1)(R0Sk)(w_{m_{k}0},w_{m_{k}1})\in(R_{0}\setminus S_{k}), then (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1)αSSp(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}})\Vdash\alpha\leq^{S}_{S^{\prime}}p,

iff for all wm00,wm01,,wmk0,wmk1Ww_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}\in W, if (wm00,wm01)(R0S0)(w_{m_{0}0},w_{m_{0}1})\in(R_{0}\setminus S_{0}), …, (wmk0,wmk1)(R0Sk)(w_{m_{k}0},w_{m_{k}1})\in(R_{0}\setminus S_{k}), then (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1)αp(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}})\Vdash\alpha\leq^{\varnothing}_{\varnothing}p,

iff for all wm00,wm01,,wmk0,wmk1,vWw_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1},v\in W, if (wm00,wm01)(R0S0)(w_{m_{0}0},w_{m_{0}1})\in(R_{0}\setminus S_{0}), …, (wmk0,wmk1)(R0Sk)(w_{m_{k}0},w_{m_{k}1})\in(R_{0}\setminus S_{k}), (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1),vα(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}}),v\Vdash\alpha, then (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1),vp(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}}),v\Vdash p,

iff for all wm00,wm01,,wmk0,wmk1,vWw_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1},v\in W, if (wm00,wm01)(R0S0)(w_{m_{0}0},w_{m_{0}1})\in(R_{0}\setminus S_{0}), …, (wmk0,wmk1)(R0Sk)(w_{m_{k}0},w_{m_{k}1})\in(R_{0}\setminus S_{k}), (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1),vα(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}}),v\Vdash\alpha, then (𝔽,V),vp(\mathbb{F},V),v\Vdash p,

iff for all wm00,wm01,,wmk0,wmk1,vWw_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1},v\in W, if (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1)A(𝐢m00𝐢m01),,A(𝐢mk0𝐢mk1)(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}})\Vdash A(\mathbf{i}_{m_{0}0}\to\mathbf{i}_{m_{0}1}),\ldots,A(\mathbf{i}_{m_{k}0}\to\mathbf{i}_{m_{k}1}), (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1),vα(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}}),v\Vdash\alpha, then (𝔽,V),vp(\mathbb{F},V),v\Vdash p,

iff for all wm00,wm01,,wmk0,wmk1,vWw_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1},v\in W, if (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1),vA(𝐢m00𝐢m01)A(𝐢mk0𝐢mk1)α(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}}),v\Vdash A(\mathbf{i}_{m_{0}0}\to\mathbf{i}_{m_{0}1})\land\ldots\land A(\mathbf{i}_{m_{k}0}\to\mathbf{i}_{m_{k}1})\land\alpha, then (𝔽,V),vp(\mathbb{F},V),v\Vdash p,

iff for all vWv\in W, if there exists wm00,wm01,,wmk0,wmk1Ww_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}\in W such that (𝔽,Vwm00,wm01,,wmk0,wmk1𝐢m00,𝐢m01,,𝐢mk0,𝐢mk1),vA(𝐢m00𝐢m01)A(𝐢mk0𝐢mk1)α(\mathbb{F},V^{\mathbf{i}_{m_{0}0},\mathbf{i}_{m_{0}1},\ldots,\mathbf{i}_{m_{k}0},\mathbf{i}_{m_{k}1}}_{w_{m_{0}0},w_{m_{0}1},\ldots,w_{m_{k}0},w_{m_{k}1}}),v\Vdash A(\mathbf{i}_{m_{0}0}\to\mathbf{i}_{m_{0}1})\land\ldots\land A(\mathbf{i}_{m_{k}0}\to\mathbf{i}_{m_{k}1})\land\alpha, then (𝔽,V),vp(\mathbb{F},V),v\Vdash p,

iff for all vWv\in W, if (𝔽,V),v𝐢m00𝐢m01𝐢mk0𝐢mk1(A(𝐢m00𝐢m01)A(𝐢mk0𝐢mk1)α)(\mathbb{F},V),v\Vdash\exists\mathbf{i}_{m_{0}0}\exists\mathbf{i}_{m_{0}1}\ldots\exists\mathbf{i}_{m_{k}0}\exists\mathbf{i}_{m_{k}1}(A(\mathbf{i}_{m_{0}0}\to\mathbf{i}_{m_{0}1})\land\ldots\land A(\mathbf{i}_{m_{k}0}\to\mathbf{i}_{m_{k}1})\land\alpha), then (𝔽,V),vp(\mathbb{F},V),v\Vdash p,

iff (𝔽,V)𝐢m00𝐢m01𝐢mk0𝐢mk1(A(𝐢m00S0𝐢m01)A(𝐢mk0Sk𝐢mk1)α)p(\mathbb{F},V)\Vdash\exists\mathbf{i}_{m_{0}0}\exists\mathbf{i}_{m_{0}1}\ldots\exists\mathbf{i}_{m_{k}0}\exists\mathbf{i}_{m_{k}1}(A(\mathbf{i}_{m_{0}0}\to\Diamond^{S_{0}}\mathbf{i}_{m_{0}1})\land A(\mathbf{i}_{m_{k}0}\to\Diamond^{S_{k}}\mathbf{i}_{m_{k}1})\land\alpha)\leq^{\varnothing}_{\varnothing}p. ∎

Proposition 25.

The Ackermann rules in Substage 4 are sound in 𝔽\mathbb{F}.

Proof.

We only prove it for the right-handed Ackermann rule, the other rule is similar.

Without loss of generality we assume that n=m=1n=m=1. It suffices to show the following right-handed Ackermann lemma:

Lemma 26.

Assume α\alpha is pure and contains no contextual modalities ,,,\Box,\Diamond,\blacksquare,\Diamondblack and does not contain nominals in 𝐢\vec{\mathbf{i}}, β\beta is positive in pp and γ\gamma is negative in pp, then for any Kripke frame 𝔽=(W,R0)\mathbb{F}=(W,R_{0}) and any valuation VV on it,

(𝔽,V)𝐢(β(α/p)TTγ(α/p))(\mathbb{F},V)\Vdash\forall\vec{\mathbf{i}}(\beta(\alpha/p)\leq^{T}_{T^{\prime}}\gamma(\alpha/p))    iff    there exists a valuation VpV^{p} such that (𝔽,Vp)αp(\mathbb{F},V^{p})\Vdash\alpha\leq^{\varnothing}_{\varnothing}p and (𝔽,Vp)𝐢(βTTγ)(\mathbb{F},V^{p})\Vdash\forall\vec{\mathbf{i}}(\beta\leq^{T}_{T^{\prime}}\gamma), where VpV^{p} is the same as VV except Vp(p)V^{p}(p).

Notice that α\alpha and pp do not contain contextual modalities, so their valuation do not change when the context is different.

\Rightarrow: Take VpV^{p} such that VpV^{p} is the same as VV except that Vp(p)=V(α)V^{p}(p)=V(\alpha). Since α\alpha does not contain pp, it is easy to see that Vp(α)=V(α)=Vp(p)V^{p}(\alpha)=V(\alpha)=V^{p}(p). Therefore (𝔽,Vp)αp(\mathbb{F},V^{p})\Vdash\alpha\leq^{\varnothing}_{\varnothing}p. Since the valuation of α\alpha and pp do not change when the context is different, so for any wWw\in W,

(W,(R0T),Vp),wβ(W,(R_{0}\setminus T),V^{p}),w\Vdash\beta iff (W,(R0T),V),wβ(α/p)(W,(R_{0}\setminus T),V),w\Vdash\beta(\alpha/p), and

(W,(R0T),Vp),wγ(W,(R_{0}\setminus T^{\prime}),V^{p}),w\Vdash\gamma iff (W,(R0T),V),wγ(α/p)(W,(R_{0}\setminus T^{\prime}),V),w\Vdash\gamma(\alpha/p), so

from (𝔽,V)𝐢(β(α/p)TTγ(α/p))(\mathbb{F},V)\Vdash\forall\vec{\mathbf{i}}(\beta(\alpha/p)\leq^{T}_{T^{\prime}}\gamma(\alpha/p)) one can get (𝔽,Vp)𝐢(βTTγ)(\mathbb{F},V^{p})\Vdash\forall\vec{\mathbf{i}}(\beta\leq^{T}_{T^{\prime}}\gamma).

\Leftarrow: This direction follows from the monotonicity of β\beta in pp and the antitonicity of γ\gamma in pp, and that the valuation of α\alpha and pp do not change when the context is different. ∎

3.5 Success of 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} on Sahlqvist inequalities

In the present subsection we show that 𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} succeeds on all Sahlqvist inequalities:

Theorem 3.2.

𝖠𝖫𝖡𝖠𝖲𝖬𝖫\mathsf{ALBA}^{\mathsf{SML}} succeeds on all Sahlqvist inequalities.

Definition 27 (Definite ε\varepsilon-Sahlqvist inequality).

Given an order type ε\varepsilon, {,+}*\in\{-,+\}, the signed generation tree φ*\varphi of the term φ(p1,,pn)\varphi(p_{1},\ldots,p_{n}) is definite ε\varepsilon-Sahlqvist if there is no +,+\lor,-\land occurring in the outer part on an ε\varepsilon-critical branch. An inequality φψ\varphi\leq\psi is definite ε\varepsilon-Sahlqvist if the trees +φ+\varphi and ψ-\psi are both definite ε\varepsilon-Sahlqvist.

Lemma 28.

Let {φiψi}iI=𝖯𝗋𝖾𝗉𝗋𝗈𝖼𝖾𝗌𝗌(φψ)\{\varphi_{i}\leq\psi_{i}\}_{i\in I}=\mathsf{Preprocess}(\varphi\leq\psi) obtained by exhaustive application of the rules in Stage 1 on an input ε\varepsilon-Sahlqvist inequality φψ\varphi\leq\psi. Then each φiψi\varphi_{i}\leq\psi_{i} is a definite ε\varepsilon-Sahlqvist inequality.

Proof.

It is easy to see that by applying the distribution rules, all occurrences of ++\lor and -\land in the outer part of an ε\varepsilon-critical branch have been pushed up towards the root of the signed generation trees +φ+\varphi and ψ-\psi. Then by exhaustively applying the splitting rules, all such ++\lor and -\land are eliminated. Since by applying the distribution rules, the splitting rules and the monotone/antitone variable elimination rules do not change the ε\varepsilon-Sahlqvistness of a signed generation tree, in 𝖯𝗋𝖾𝗉𝗋𝗈𝖼𝖾𝗌𝗌(φψ)\mathsf{Preprocess}(\varphi\leq\psi), each signed generation tree +φi+\varphi_{i} and ψi-\psi_{i} are ε\varepsilon-Sahlqvist, and since they do not have ++\lor and -\land in the outer part in the ε\varepsilon-critical branches, they are definite. ∎

Definition 29 (Inner ε\varepsilon-Sahlqvist signed generation tree).

Given an order type ε\varepsilon, {,+}*\in\{-,+\}, the signed generation tree φ*\varphi of the term φ(p1,,pn)\varphi(p_{1},\ldots,p_{n}) is inner ε\varepsilon-Sahlqvist if its outer part P2P_{2} on an ε\varepsilon-critical branch is always empty, i.e. its ε\varepsilon-critical branches have inner nodes only.

Lemma 30.

Given inequalities 𝐢0φi\mathbf{i}_{0}\leq^{\varnothing}_{\varnothing}\varphi_{i} and ψi¬𝐢1\psi_{i}\leq^{\varnothing}_{\varnothing}\neg\mathbf{i}_{1}obtained from Stage 1 where +φi+\varphi_{i} and ψi-\psi_{i} are definite ε\varepsilon-Sahlqvist, by applying the rules in Substage 1 of Stage 2 exhaustively, the inequalities that we get are in one of the following forms:

  1. 1.

    pure inequalities which does not have occurrences of propositional variables;

  2. 2.

    inequalities of the form 𝐢SSα\mathbf{i}\leq^{S}_{S^{\prime}}\alpha where +α+\alpha is inner ε\varepsilon-Sahlqvist;

  3. 3.

    inequalities of the form βSS¬𝐢\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i} where β-\beta is inner ε\varepsilon-Sahlqvist.

Proof.

Indeed, the rules in the Substage 1 of Stage 2 deal with outer nodes in the signed generation trees +φi+\varphi_{i} and ψi-\psi_{i} except ++\lor,-\land. For each rule, without loss of generality assume we start with an inequality of the form 𝐢SSα\mathbf{i}\leq^{S}_{S^{\prime}}\alpha, then by applying the rules in Substage 1 of Stage 2, the inequalities we get are either a pure inequality without propositional variables, or an inequality where the left-hand side (resp. right-hand side) is 𝐢\mathbf{i} (resp. ¬𝐢\neg\mathbf{i}), and the other side is a formula α\alpha^{\prime} which is a subformula of α\alpha, such that α\alpha^{\prime} has one root connective less than α\alpha. Indeed, if α\alpha^{\prime} is on the left-hand side (resp. right-hand side) then α-\alpha^{\prime} (+α+\alpha^{\prime}) is definite ε\varepsilon-Sahlqvist.

By applying the rules in the Substage 1 of Stage 2 exhaustively, we can eliminate all the outer connectives in the critical branches, so for non-pure inequalities, they become of form 2 or form 3. ∎

Lemma 31.

Assume we have an inequality 𝐢SSα\mathbf{i}\leq^{S}_{S^{\prime}}\alpha or βSS¬𝐢\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i} where +α+\alpha and β-\beta are inner ε\varepsilon-Sahlqvist, by applying the rules in Substage 2 of Stage 2, we have (mega-)inequalities (kk can be 0 where a mega-inequality becomes an inequality) of the following form:

  1. 1.

    𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1αSSp))\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\Rightarrow\alpha\leq^{S}_{S^{\prime}}p)\ldots), where ε(p)=1\varepsilon(p)=1, α\alpha is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack;

  2. 2.

    𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1pSSβ))\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\Rightarrow p\leq^{S}_{S^{\prime}}\beta)\ldots), where ε(p)=\varepsilon(p)=\partial, β\beta is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack;

  3. 3.

    𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1αSSγ))\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\Rightarrow\alpha\leq^{S}_{S^{\prime}}\gamma)\ldots), where α\alpha is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack, and +γ+\gamma is ε\varepsilon^{\partial}-uniform;

  4. 4.

    𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1γSSβ))\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\Rightarrow\gamma\leq^{S}_{S^{\prime}}\beta)\ldots), where β\beta is pure and does not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack, and γ-\gamma is ε\varepsilon^{\partial}-uniform.

Proof.

First of all, from the rules of the Substage 2 of Stage 2, it is easy to see that from the given inequality, what we will obtain would be a set of mega-inequalities, and by the second splitting rule those mega-inequalities are built up from inequalities by 𝐢𝐣(𝐢SSS𝐣𝖬𝖾𝗀𝖺)\forall\mathbf{i}\forall\mathbf{j}(\mathbf{i}\leq^{S}_{S}\Diamond^{S}\mathbf{j}\Rightarrow\mathsf{Mega}), so we will have mega-inequalities of the form 𝐢m00𝐢m01(𝐢m00S0S0S0𝐢m01𝐢mk0𝐢mk1(𝐢mk0SkSkSk𝐢mk1γSSδ))\forall\mathbf{i}_{m_{0}0}\forall\mathbf{i}_{m_{0}1}(\mathbf{i}_{m_{0}0}\leq^{S_{0}}_{S_{0}}\Diamond^{S_{0}}\mathbf{i}_{m_{0}1}\Rightarrow\ldots\forall\mathbf{i}_{m_{k}0}\forall\mathbf{i}_{m_{k}1}(\mathbf{i}_{m_{k}0}\leq^{S_{k}}_{S_{k}}\Diamond^{S_{k}}\mathbf{i}_{m_{k}1}\Rightarrow\gamma\leq^{S}_{S^{\prime}}\delta)\ldots). Now it suffices to check the shape of γ\gamma and δ\delta. (From now on we call γSSδ\gamma\leq^{S}_{S^{\prime}}\delta the head of the mega-inequality.)

Notice that for each input inequality, it is of the form 𝐢SSα\mathbf{i}\leq^{S}_{S^{\prime}}\alpha or βSS¬𝐢\beta\leq^{S}_{S^{\prime}}\neg\mathbf{i}, where +α+\alpha and β-\beta are inner ε\varepsilon-Sahlqvist. By applying the splitting rules and the residuation rules in this substage, it is easy to see that the head of the (mega-)inequality will have one side of the inequality pure and have no contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack, and the other side still inner ε\varepsilon-Sahlqvist. By applying these rules exhaustively, one will either have pp as the non-pure side (with this pp on a critical branch), or have an inner ε\varepsilon-Sahlqvist signed generation tree with no critical branch, i.e., ε\varepsilon^{\partial}-uniform. ∎

Lemma 32.

Assume we have (megamega-)inequalities of the form as described in Lemma 31. Then we can get inequalities of the following form:

  1. 1.

    αp\alpha\leq^{\varnothing}_{\varnothing}p where ε(p)=1\varepsilon(p)=1, α\alpha is pure and do not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack;

  2. 2.

    pαp\leq^{\varnothing}_{\varnothing}\alpha where ε(p)=\varepsilon(p)=\partial, α\alpha is pure and do not contain contextual connectives ,,,\Box,\Diamond,\blacksquare,\Diamondblack;

  3. 3.

    𝐢1𝐢n(Sγ)\forall\mathbf{i}_{1}\ldots\forall\mathbf{i}_{n}(\top\leq^{\varnothing}_{S}\gamma) where +γ+\gamma is ε\varepsilon^{\partial}-uniform.

Proof.

From the shape of the mega-inequalities, we can see that for all the mega-inequalities we can apply the corresponding packing rules so that we can get the inequalities as described in the lemma. ∎

Lemma 33.

Assume we have inequalities of the form as described in Lemma 32, the Ackermann lemmas are applicable and therefore all propositional variables can be eliminated.

Proof.

Immediate observation from the requirements of the Ackermann lemmas. ∎

Proof of Theorem 3.2.

Assume we have an ε\varepsilon-Sahlqvist inequality φψ\varphi\leq\psi as input. By Lemma 28, we get a set of definite ε\varepsilon-Sahlqvist inequalities. Then by Lemma 30, we get inequalities as described in Lemma 30. By Lemma 31, we get the mega-inequalities as described. Therefore by Lemma 32, we can apply the packing rules to get inequalities and universally quantified inequalities as described in the lemma. Finally by Lemma 33, the (universally quantified) inequalities are in the right shape to apply the Ackermann rules, and thus we can eliminate all the propositional variables and the algorithm succeeds on the input. ∎

4 Discussions and further directions

4.1 Completeness and canonicity issues

One issue that is not treated in the present paper is the completeness and canonicity theory of sabotage modal logic. For completeness theory, as is discussed in [5], there is not yet natural Hilbert-style axiomatization system for the basic sabotage modal logic, and there is no canonical model for sabotage modal logic, so it is not yet ready to provide a Sahlqvist-type completeness theorem for the current state-of-art. Regarding canonicity theory, one possible approach is to reduce the canonicity problem for formulas in sabotage modal logic to canonicity problems for formulas in hybrid logic with binders, since sabotage modal logic is a fragment of hybrid logic with binders (for more details, see [3]), for which the Sahlqvist theory is still in development (see [25]). For the algebraic approach of canonicity, one needs to first define the algebraic semantics for sabotage modal logic.

4.2 Other questions

Other interesting questions include the following:

  • Extending the Sahlqvist sabotage formulas to inductive sabotage formulas as well as to the language of sabotage modal logic with fixpoint operators;

  • A Kracht-type theorem characterizing the first-order correspondents of Sahlqvist sabotage formulas;

  • A Goldblatt-Thomason-type theorem characterizing the sabotage modally definable classes of Kripke frames;

  • Extend results on sabotage modal logic to the class of relation changing modal logics [3];

  • Since sabotage modal logic can be treated as a fragment of very expressive hybrid logics (see [3]), therefore a relevant interesting question would be to have a Sahlqvist-type correspondence theory for very expressive hybrid logics. For other existing works of correspondence theory for hybrid logic, see [7, 9, 13, 14, 21, 22].

Acknowledgement

The research of the author is supported by Taishan University Starting Grant “Studies on Algebraic Sahlqvist Theory” and the Taishan Young Scholars Program of the Government of Shandong Province, China (No.tsqn201909151).

References

  • [1] C. Areces, R. Fervari, and G. Hoffmann. Swap logic. Logic Journal of IGPL, 22(2):309–332, 2014.
  • [2] C. Areces, R. Fervari, and G. Hoffmann. Relation-changing modal operators. Logic Journal of the IGPL, 23(4):601–627, 2015.
  • [3] C. Areces, R. Fervari, G. Hoffmann, and M. Martel. Relation-changing logics as fragments of hybrid logics. In D. Cantone and G. Delzanno, editors, Proceedings of the Seventh International Symposium on Games, Automata, Logics and Formal Verification, volume 226 of Electronic Proceedings in Theoretical Computer Science, pages 16–29. Open Publishing Association, 2016.
  • [4] G. Aucher, P. Balbiani, L. F. del Cerro, and A. Herzig. Global and local graph modifiers. Electronic Notes in Theoretical Computer Science, 231:293–307, 2009.
  • [5] G. Aucher, J. Van Benthem, and D. Grossi. Modal logic of sabotage revisited. Journal of Logic and Computation, 28:269–303, 2018.
  • [6] P. Blackburn, J. F. van Benthem, and F. Wolter. Handbook of modal logic, volume 3. Elsevier, 2006.
  • [7] W. Conradie. Completeness and correspondence in hybrid logic via an extension of SQEMA. Electronic Notes in Theoretical Computer Science, 231:175–190, 2009.
  • [8] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA. Logical Methods in Computer Science, 2:1–26, 2006.
  • [9] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and completeness in modal logic. II. polyadic and hybrid extensions of the algorithm SQEMA. Journal of Logic and Computation, 16(5):579–612, 2006.
  • [10] W. Conradie and A. Palmigiano. Algorithmic correspondence and canonicity for distributive modal logic. Annals of Pure and Applied Logic, 163(3):338 – 376, 2012.
  • [11] W. Conradie, A. Palmigiano, S. Sourabh, and Z. Zhao. Canonicity and relativized canonicity via pseudo-correspondence: an application of ALBA. Submitted. ArXiv preprint 1511.04271.
  • [12] W. Conradie, A. Palmigiano, and Z. Zhao. Sahlqvist via translation. Logical Methods in Computer Science, 15, 2019.
  • [13] W. Conradie and C. Robinson. On Sahlqvist theory for hybrid logic. Journal of Logic and Computation, 27(3):867–900, 2017.
  • [14] V. Goranko and D. Vakarelov. Sahlqvist formulas unleashed in polyadic modal languages. Advances in Modal Logic 3, pages 221–240, 2000.
  • [15] B. Kooi and B. Renne. Arrow update logic. The Review of Symbolic Logic, 4(04):536–559, 2011.
  • [16] D. Li. Losing connection: the modal logic of definable link deletion. Journal of Logic and Computation, 30(3):715–743, 2020.
  • [17] C. Löding and P. Rohde. Model checking and satisfiability for sabotage modal logic. In International Conference on Foundations of Software Technology and Theoretical Computer Science, pages 302–313. Springer, 2003.
  • [18] C. Löding and P. Rohde. Solving the sabotage game is pspace-hard. In International Symposium on Mathematical Foundations of Computer Science, pages 531–540. Springer, 2003.
  • [19] A. Palmigiano, S. Sourabh, and Z. Zhao. Sahlqvist theory for impossible worlds. Journal of Logic and Computation, 27(3):775–816, 2017.
  • [20] H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logic. In Studies in Logic and the Foundations of Mathematics, volume 82, pages 110–143. 1975.
  • [21] K. Tamura. Hybrid logic with pure and Sahlqvist axioms. http://www.st.nanzan-u.ac.jp/info/sasaki/2005mlg/43-45.pdf.
  • [22] B. ten Cate, M. Marx, and J. P. Viana. Hybrid logics with Sahlqvist axioms. Logic Journal of the IGPL, (3):293–300, 2006.
  • [23] J. van Benthem. An essay on sabotage and obstruction. In Mechanizing Mathematical Reasoning, pages 268–276. Springer, 2005.
  • [24] J. van Benthem, K. Mierzewski, and F. Zaffora Blando. The modal logic of stepwise removal. Reports on Symbolic Logic, 2019.
  • [25] Z. Zhao. Algorithmic correspondence for hybrid logic with binder. In preparation.