This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ronkin/Zeta Correspondence

Takashi KOMATSU
Department of Mathematics,
Hiroshima University,
Higashihiroshima, Hiroshima 789-8526, Japan
Math. Research Institute Calc for Industry
Minami, Hiroshima, 732-0816, Japan
e-mail: [email protected]

Norio KONNO
Department of Applied Mathematics, Faculty of Engineering
Yokohama National University
Hodogaya, Yokohama, 240-8501, Japan
e-mail: [email protected]

Iwao SATO
Oyama National College of Technology
Oyama, Tochigi, 323-0806, Japan
e-mail: [email protected]

Kohei SATO
Oyama National College of Technology
Oyama, Tochigi, 323-0806, Japan
e-mail: [email protected]
Abstract

The Ronkin function was defined by Ronkin [26] in the consideration of the zeros of almost periodic function. Recently, this function has been used in various research fields in mathematics, physics and so on. Especially in mathematics, it has a closed connections with tropical geometry, amoebas, Newton polytopes and dimer models (see [4], for example).

On the other hand, we have been investigated a new class of zeta functions for various kinds of walks including quantum walks by a series of our previous work on “Zeta Correspondence”. The quantum walk is a quantum counterpart of the random walk. In this paper, we present a new relation between the Ronkin function and our zeta function for random walks and quantum walks. Firstly we consider this relation in the case of one-dimensional random walks. Afterwards we deal with higher-dimensional random walks. For comparison with the case of the quantum walk, we also treat the case of one-dimensional quantum walks. Fortunately, the Laurent polynomials were obtained through those Ronkin functions. Finally, we describe some properties about them by using the terminology of tropical geometry. Our results bridge between the Ronkin function and the zeta function via quantum walks for the first time.

Corresponding author: Kohei Sato, Oyama National College of Technology, Oyama, Tochigi, 323-0806, Japan,
e-mail: [email protected]

2020 Mathematics Subject Classification: 60F05, 05C50, 15A15, 05C25, 14T05
Keywords: Zeta function, Quantum walk, Random walk, Ronkin function, Amoeba, Newton polytope

Abbr. title: Ronkin/Zeta Correspondence

1 Introduction

We have been investigated a new class of zeta functions for many kinds of walks including the quantum walk (QW) and the random walk (RW) by a series of our previous work on “Zeta Correspondence” in [7, 8, 9, 10, 11, 12, 13, 17]. The QW can be interpreted as a quantum counterpart of RW. As for QW, see [14, 20, 25, 29] and as for RW, see [15, 23, 27], for examples.

In Walk/Zeta Correspondence [8], a walk-type zeta function was defined without use of the determinant expressions of zeta function of a graph GG, and various properties of walk-type zeta functions of RW, correlated random walk (CRW) and QW on GG were studied. Also, their limit formulas by using integral expressions were presented.

In [13], Komatsu et al. introduced the logarithmic zeta function by using the above walk-type zeta function, and presented a relation between the Mahler measure and the logarithmic zeta function for QWs and RWs on on a finite torus. So we call this relationship “Mahler/Zeta Correspondence” for short.

The Mahler measure is closely related to the Ronkin function (see [26]). Specially, in the dimer model, the the free energy with respect to its partition function is presented as the special value of the Ronkin function (see [18, 6, 28]). The Ronkin function was defined by Ronkin [26] in the consideration of the zeros of almost periodic function. It is known that the Ronkin function appears in areas of the ameba and the Newton convex hull (see [4], for example).

Our results bridge between the Ronkin function and the zeta function research fields via RWs and QWs for the first time.

The rest of this paper is organized as follows. In Section 2, we briefly review “Walk/Zeta Correspondence” investigated in [8]. Furthermore, we deal with the logarithmic zeta function for QWs and RWs on a finite torus, and state explicit formulas for the logarithmic zeta functions of one-dimensional QWs and higher-dimensional RWs on a finite torus. In Section 3, we present the relation between the Ronkin function and RW on the finite torus TNdT^{d}_{N} and the relation between the Ronkin function and QW on the one-dimensional torus TN1T^{1}_{N}. Moreover, we discuss some properties of the Laurent polynomials obtained from these Ronkin functions corresponding to RWs and QWs.

2 Zeta functions due to RWs and QWs

For the convenience of readers, we give a brief overview of “Walk/Zeta Correspondence” and the logarithmic zeta function in our previous work [8, 13]. These are the fundamental tools in this paper.

2.1 The walk-type zeta function

First we introduce the following notation: \mathbb{Z} is the set of integers, \mathbb{Z}_{\geq} is the set of non-negative integers, >\mathbb{Z}_{>} is the set of positive integers, \mathbb{R} is the set of real numbers, and \mathbb{C} is the set of complex numbers. Moreover, TNdT^{d}_{N} denotes the dd-dimensional torus with NdN^{d} vertices, where d,N>d,\ N\in\mathbb{Z}_{>}. Remark that TNd=(modN)dT^{d}_{N}=(\mathbb{Z}\ \mbox{mod}\ N)^{d}.

Following [8] in which Walk/Zeta Correspondence on TNdT^{d}_{N} was investigated, we treat our setting for 2d2d-state discrete time walk with a nearest-neighbor jump on TNdT^{d}_{N}.

The discrete time walk is defined by using a shift operator and a coin matrix which will be mentioned below. Let f:TNd2df:T^{d}_{N}\longrightarrow\mathbb{C}^{2d}. For j=1,2,,dj=1,2,\ldots,d and 𝒙TNd\bm{x}\in T^{d}_{N}, the shift operator τj\tau_{j} is defined by (τjf)(𝒙)=f(𝒙𝒆j)(\tau_{j}f)(\bm{x})=f(\bm{x}-\bm{e}_{j}), where {𝒆1,𝒆2,,𝒆d}\{\bm{e}_{1},\bm{e}_{2},\ldots,\bm{e}_{d}\} denotes the standard basis of TNdT^{d}_{N}. This means that the walks are taken along the direction {±𝒆1,±𝒆2,,±𝒆d}\{\pm\bm{e}_{1},\pm\bm{e}_{2},\ldots,\pm\bm{e}_{d}\}. Therefore, the direction polytope DPd{\rm DP}_{d} of degree dd can be defined as follows:

DPd=Conv(±𝒆1,±𝒆2,,±𝒆d),{\rm DP}_{d}={\rm Conv}(\pm\bm{e}_{1},\pm\bm{e}_{2},\ldots,\pm\bm{e}_{d}),

where the symbol Conv(S){\rm Conv}(S) means the convex hull spanned by a subset STNdS\subset T^{d}_{N}. Moreover, we define the direction graph DGd{\rm DG}_{d} of degree dd as the dual graph of DPd{\rm DP}_{d}.

The coin matrix A=[aij]i,j=1,2,,2dA=[a_{ij}]_{i,j=1,2,\ldots,2d} is a 2d×2d2d\times 2d matrix with aija_{ij}\in\mathbb{C} for i,j=1,2,,2di,j=1,2,\ldots,2d. If aij[0,1]a_{ij}\in[0,1] and i=12daij=1\sum_{i=1}^{2d}a_{ij}=1 for any j=1,2,,2dj=1,2,\ldots,2d, then the walk is a CRW. We should remark that, in particular, when ai1=ai2==ai2da_{i1}=a_{i2}=\cdots=a_{i2d} for any i=1,2,,2di=1,2,\ldots,2d, this CRW becomes a RW. If AA is unitary, then the walk is a QW. So our class of walks contains RW, CRW, and QW as special models.

To describe the evolution of the walk, we decompose the 2d×2d2d\times 2d coin matrix AA as

A=j=12dPjA,\displaystyle A=\sum_{j=1}^{2d}P_{j}A,

where PjP_{j} denotes the orthogonal projection onto the one-dimensional subspace ηj\mathbb{C}\eta_{j} in 2d\mathbb{C}^{2d}. Here {η1,η2,,η2d}\{\eta_{1},\eta_{2},\ldots,\eta_{2d}\} denotes a standard basis on 2d\mathbb{C}^{2d}.

The discrete time walk associated with the coin matrix AA on TNdT^{d}_{N} is determined by the 2dNd×2dNd2dN^{d}\times 2dN^{d} matrix

MA=j=1d(P2j1Aτj1+P2jAτj).\displaystyle M_{A}=\sum_{j=1}^{d}\Big{(}P_{2j-1}A\tau_{j}^{-1}+P_{2j}A\tau_{j}\Big{)}. (1)

The state at time nn\in\mathbb{Z}_{\geq} and location 𝒙TNd\bm{x}\in T^{d}_{N} can be expressed by a 2d2d-dimensional vector:

Ψn(𝒙)=[Ψn1(𝒙),Ψn2(𝒙),,Ψn2d(𝒙)]T2d,\displaystyle\Psi_{n}(\bm{x})={}^{T}\left[\Psi^{1}_{n}(\bm{x}),\Psi^{2}_{n}(\bm{x}),\ldots,\Psi^{2d}_{n}(\bm{x})\right]\in\mathbb{C}^{2d},

where TT is the transposed operator. For Ψn:TNd2d(n)\Psi_{n}:T^{d}_{N}\longrightarrow\mathbb{C}^{2d}\ (n\in\mathbb{Z}_{\geq}), Eq. (1) gives the evolution of the walk as follows.

Ψn+1(𝒙)(MAΨn)(𝒙)=j=1d(P2j1AΨn(𝒙+𝒆j)+P2jAΨn(𝒙𝒆j)).\displaystyle\Psi_{n+1}(\bm{x})\equiv(M_{A}\Psi_{n})(\bm{x})=\sum_{j=1}^{d}\Big{(}P_{2j-1}A\Psi_{n}(\bm{x}+\bm{e}_{j})+P_{2j}A\Psi_{n}(\bm{x}-\bm{e}_{j})\Big{)}. (2)

This equation means that the walker moves at each step one unit to the xj-x_{j}-axis direction with matrix P2j1AP_{2j-1}A or one unit to the xjx_{j}-axis direction with matrix P2jAP_{2j}A for j=1,2,,dj=1,2,\ldots,d.

Moreover, for n>n\in\mathbb{Z}_{>} and 𝒙=(x1,x2,,xd)TNd\bm{x}=(x_{1},x_{2},\ldots,x_{d})\in T^{d}_{N}, the 2d×2d2d\times 2d matrix Φn(x1,x2,,xd)\Phi_{n}(x_{1},x_{2},\ldots,x_{d}) is given by

Φn(x1,x2,,xd)=Ξn(l1,l2,,l2d1,l2d),\displaystyle\Phi_{n}(x_{1},x_{2},\ldots,x_{d})=\sum_{\ast}\Xi_{n}\left(l_{1},l_{2},\ldots,l_{2d-1},l_{2d}\right),

where the 2d×2d2d\times 2d matrix Ξn(l1,l2,,l2d1,l2d)\Xi_{n}\left(l_{1},l_{2},\ldots,l_{2d-1},l_{2d}\right) is the sum of all possible paths in the trajectory of l2j1l_{2j-1} steps xj-x_{j}-axis direction and l2jl_{2j} steps xjx_{j}-axis direction and \sum_{\ast} is the summation over (l1,l2,,l2d1,l2d)()2d\left(l_{1},l_{2},\ldots,l_{2d-1},l_{2d}\right)\in(\mathbb{Z}_{\geq})^{2d} satisfying

l1+l2++l2d1+l2d=n,xj=l2j1+l2j(j=1,2,,d).\displaystyle l_{1}+l_{2}+\cdots+l_{2d-1}+l_{2d}=n,\qquad x_{j}=-l_{2j-1}+l_{2j}\quad(j=1,2,\ldots,d).

Here we put

Φ0(x1,x2,,xd)={I2dif (x1,x2,,xd)=(0,0,,0)O2dif (x1,x2,,xd)(0,0,,0),\displaystyle\Phi_{0}(x_{1},x_{2},\ldots,x_{d})=\left\{\begin{array}[]{ll}I_{2d}&\mbox{if $(x_{1},x_{2},\ldots,x_{d})=(0,0,\ldots,0)$, }\\ O_{2d}&\mbox{if $(x_{1},x_{2},\ldots,x_{d})\not=(0,0,\ldots,0)$},\end{array}\right.

where InI_{n} is the n×nn\times n identity matrix and OnO_{n} is the n×nn\times n zero matrix. Then, for the walk starting from (0,0,,0)(0,0,\ldots,0), we obtain

Ψn(x1,x2,,xd)=Φn(x1,x2,,xd)Ψ0(0,0,,0)(n).\displaystyle\Psi_{n}(x_{1},x_{2},\ldots,x_{d})=\Phi_{n}(x_{1},x_{2},\ldots,x_{d})\Psi_{0}(0,0,\ldots,0)\qquad(n\in\mathbb{Z}_{\geq}).

We call Φn(𝒙)=Φn(x1,x2,,xd)\Phi_{n}(\bm{x})=\Phi_{n}(x_{1},x_{2},\ldots,x_{d}) matrix weight at time nn\in\mathbb{Z}_{\geq} and location 𝒙TNd\bm{x}\in T^{d}_{N} starting from 𝟎=(0,0,,0){\bf 0}=(0,0,\ldots,0). When we consider the walk on not TNdT^{d}_{N} but d\mathbb{Z}^{d}, we add the superscript “()(\infty)” to the notation like Ψ()\Psi^{(\infty)} and Ξ()\Xi^{(\infty)}.

This type is moving shift model called M-type here. Another type is flip-flop shift model called F-type whose coin matrix is given by

A(f)=(Idσ)A,\displaystyle A^{(f)}=\left(I_{d}\otimes\sigma\right)A,

where \otimes is the tensor product and

σ=[0110].\displaystyle\sigma=\begin{bmatrix}0&1\\ 1&0\end{bmatrix}.

The F-type model is also important, since it has a central role in the Konno-Sato theorem [16], for example. When we distinguish AA (M-type) from A(f)A^{(f)} (F-type), we write AA by A(m)A^{(m)}.

The measure μn(𝒙)\mu_{n}(\bm{x}) at time nn\in\mathbb{Z}_{\geq} and location 𝒙TNd\bm{x}\in T^{d}_{N} is defined by

μn(𝒙)=Ψn(𝒙)2dp=j=12d|Ψnj(𝒙)|p,\displaystyle\mu_{n}(\bm{x})=\|\Psi_{n}(\bm{x})\|_{\mathbb{C}^{2d}}^{p}=\sum_{j=1}^{2d}|\Psi_{n}^{j}(\bm{x})|^{p},

where 2dp\|\cdot\|_{\mathbb{C}^{2d}}^{p} denotes the standard pp-norm on 2d\mathbb{C}^{2d}. As for RW and QW, we take p=1p=1 and p=2p=2, respectively. Then RW and QW satisfy

𝒙TNdμn(𝒙)=𝒙TNdμ0(𝒙),\displaystyle\sum_{\bm{x}\in T_{N}^{d}}\mu_{n}(\bm{x})=\sum_{\bm{x}\in T_{N}^{d}}\mu_{0}(\bm{x}),

for any time n>n\in\mathbb{Z}_{>}.

To consider the zeta function, we use the Fourier analysis. To do so, we introduce the following notation: 𝕂N={0,1,,N1}\mathbb{K}_{N}=\{0,1,\ldots,N-1\} and 𝕂~N={0,2π/N,,2π(N1)/N}\widetilde{\mathbb{K}}_{N}=\{0,2\pi/N,\ldots,2\pi(N-1)/N\}.

For f:𝕂Nd2df:\mathbb{K}_{N}^{d}\longrightarrow\mathbb{C}^{2d}, the Fourier transform of the function ff, denoted by f^\widehat{f}, is defined by the sum

f^(𝒌)=1Nd/2𝒙𝕂Nde2πi𝒙,𝒌/Nf(𝒙),\displaystyle\widehat{f}(\bm{k})=\frac{1}{N^{d/2}}\sum_{\bm{x}\in\mathbb{K}_{N}^{d}}e^{-2\pi i\langle\bm{x},\bm{k}\rangle/N}\ f(\bm{x}), (3)

where 𝒌=(k1,k2,,kd)𝕂Nd\bm{k}=(k_{1},k_{2},\ldots,k_{d})\in\mathbb{K}_{N}^{d}. Here 𝒙,𝒌\langle\bm{x},\bm{k}\rangle is the canonical inner product of d\mathbb{R}^{d}, i.e., 𝒙,𝒌=j=1dxjkj\langle\bm{x},\bm{k}\rangle=\sum_{j=1}^{d}x_{j}k_{j}. Then we see that f^:𝕂Nd2d\widehat{f}:\mathbb{K}_{N}^{d}\longrightarrow\mathbb{C}^{2d}. Moreover, we should remark that

f(𝒙)=1Nd/2𝒌𝕂Nde2πi𝒙,𝒌/Nf^(𝒌),\displaystyle f(\bm{x})=\frac{1}{N^{d/2}}\sum_{\bm{k}\in\mathbb{K}_{N}^{d}}e^{2\pi i\langle\bm{x},\bm{k}\rangle/N}\ \widehat{f}(\bm{k}), (4)

where 𝒙=(x1,x2,,xd)𝕂Nd\bm{x}=(x_{1},x_{2},\ldots,x_{d})\in\mathbb{K}_{N}^{d}. By using

k~j=2πkjN𝕂~N,𝒌~=(k~1,k~2,,k~d)𝕂~Nd,\displaystyle\widetilde{k}_{j}=\frac{2\pi k_{j}}{N}\in\widetilde{\mathbb{K}}_{N},\quad\widetilde{\bm{k}}=(\widetilde{k}_{1},\widetilde{k}_{2},\ldots,\widetilde{k}_{d})\in\widetilde{\mathbb{K}}_{N}^{d}, (5)

we can rewrite Eqs. (3) and (4) in the following way:

g^(𝒌~)=1Nd/2𝒙𝕂Ndei𝒙,𝒌~g(𝒙),g(𝒙)=1Nd/2𝒌~𝕂~Ndei𝒙,𝒌~g^(𝒌~),\displaystyle\widehat{g}(\widetilde{\bm{k}})=\frac{1}{N^{d/2}}\sum_{\bm{x}\in\mathbb{K}_{N}^{d}}e^{-i\langle\bm{x},\widetilde{\bm{k}}\rangle}\ g(\bm{x}),\qquad g(\bm{x})=\frac{1}{N^{d/2}}\sum_{\widetilde{\bm{k}}\in\widetilde{\mathbb{K}}_{N}^{d}}e^{i\langle\bm{x},\widetilde{\bm{k}}\rangle}\ \widehat{g}(\widetilde{\bm{k}}),

for g:𝕂Nd2dg:\mathbb{K}_{N}^{d}\longrightarrow\mathbb{C}^{2d} and g^:𝕂~Nd2d\widehat{g}:\widetilde{\mathbb{K}}_{N}^{d}\longrightarrow\mathbb{C}^{2d}. In order to take a limit NN\to\infty, we introduced the notation given in Eq. (5). We should note that as for the summation, we sometimes write “𝒌𝕂Nd\bm{k}\in\mathbb{K}_{N}^{d}” instead of “𝒌~𝕂~Nd\widetilde{\bm{k}}\in\widetilde{\mathbb{K}}_{N}^{d}”. From the Fourier transform and Eq. (5), we have

Ψ^n+1(𝒌)=M^A(𝒌)Ψ^n(𝒌),\displaystyle\widehat{\Psi}_{n+1}(\bm{k})=\widehat{M}_{A}(\bm{k})\widehat{\Psi}_{n}(\bm{k}),

where Ψn:TNd2d\Psi_{n}:T_{N}^{d}\longrightarrow\mathbb{C}^{2d} and 2d×2d2d\times 2d matrix M^A(𝒌)\widehat{M}_{A}(\bm{k}) is determined by

M^A(𝒌)=j=1d(e2πikj/NP2j1A+e2πikj/NP2jA).\displaystyle\widehat{M}_{A}(\bm{k})=\sum_{j=1}^{d}\Big{(}e^{2\pi ik_{j}/N}P_{2j-1}A+e^{-2\pi ik_{j}/N}P_{2j}A\Big{)}.

By using notations in Eq. (5), we get

M^A(𝒌~)=j=1d(eik~jP2j1A+eik~jP2jA).\displaystyle\widehat{M}_{A}(\widetilde{\bm{k}})=\sum_{j=1}^{d}\Big{(}e^{i\widetilde{k}_{j}}P_{2j-1}A+e^{-i\widetilde{k}_{j}}P_{2j}A\Big{)}. (6)

Next we will consider the following eigenvalue problem for 2dNd×2dNd2dN^{d}\times 2dN^{d} matrix MAM_{A}:

λΨ=MAΨ,\displaystyle\lambda\Psi=M_{A}\Psi, (7)

where λ\lambda\in\mathbb{C} is an eigenvalue and Ψ(2dNd)\Psi(\in\mathbb{C}^{2dN^{d}}) is the corresponding eigenvector. Noting that Eq. (7) is closely related to Eq. (2), we see that Eq. (7) is rewritten as

λΨ(𝒙)=(MAΨ)(𝒙)=j=1d(P2j1AΨ(𝒙+𝒆j)+P2jAΨ(𝒙𝒆j)),\displaystyle\lambda\Psi(\bm{x})=(M_{A}\Psi)(\bm{x})=\sum_{j=1}^{d}\Big{(}P_{2j-1}A\Psi(\bm{x}+\bm{e}_{j})+P_{2j}A\Psi(\bm{x}-\bm{e}_{j})\Big{)}, (8)

for any 𝒙𝕂Nd\bm{x}\in\mathbb{K}_{N}^{d}. From the Fourier transform and Eq. (7), we obtain

λΨ^(𝒌)=M^A(𝒌)Ψ^(𝒌),\displaystyle\lambda\widehat{\Psi}(\bm{k})=\widehat{M}_{A}(\bm{k})\widehat{\Psi}(\bm{k}),

for any 𝒌𝕂Nd\bm{k}\in\mathbb{K}_{N}^{d}. Then the characteristic polynomials of 2d×2d2d\times 2d matrix M^A(𝒌)\widehat{M}_{A}(\bm{k}) for fixed 𝒌(𝕂Nd)\bm{k}(\in\mathbb{K}_{N}^{d}) is

det(λI2dM^A(𝒌))=j=12d(λλj(𝒌)),\displaystyle\det\Big{(}\lambda I_{2d}-\widehat{M}_{A}(\bm{k})\Big{)}=\prod_{j=1}^{2d}\Big{(}\lambda-\lambda_{j}(\bm{k})\Big{)}, (9)

where λj(𝒌)\lambda_{j}(\bm{k}) are eigenvalues of M^A(𝒌)\widehat{M}_{A}(\bm{k}). Similarly, the characteristic polynomials of 2dNd×2dNd2dN^{d}\times 2dN^{d} matrix M^A\widehat{M}_{A} is

det(λI2dNdM^A)=j=12d𝒌𝕂Nd(λλj(𝒌)).\displaystyle\det\Big{(}\lambda I_{2dN^{d}}-\widehat{M}_{A}\Big{)}=\prod_{j=1}^{2d}\prod_{\bm{k}\in\mathbb{K}_{N}^{d}}\Big{(}\lambda-\lambda_{j}(\bm{k})\Big{)}.

Therefore, by taking λ=1/u\lambda=1/u, we get the following key result.

det(I2dNduMA)=det(I2dNduM^A)=j=12d𝒌𝕂Nd(1uλj(𝒌)).\displaystyle\det\Big{(}I_{2dN^{d}}-uM_{A}\Big{)}=\det\Big{(}I_{2dN^{d}}-u\widehat{M}_{A}\Big{)}=\prod_{j=1}^{2d}\prod_{\bm{k}\in\mathbb{K}_{N}^{d}}\Big{(}1-u\lambda_{j}(\bm{k})\Big{)}. (10)

We should note that for fixed 𝒌(𝕂Nd)\bm{k}(\in\mathbb{K}_{N}^{d}), eigenvalues of 2d×2d2d\times 2d matrix M^A(𝒌)\widehat{M}_{A}(\bm{k}) are expressed as

Spec(M^A(𝒌))={λj(𝒌)|j=1,2,,2d}.\displaystyle{\rm Spec}(\widehat{M}_{A}(\bm{k}))=\left\{\lambda_{j}(\bm{k})\ |\ j=1,2,\ldots,2d\right\}.

Moreover, eigenvalues of 2dNd×2dNd2dN^{d}\times 2dN^{d} matrix not only M^A\widehat{M}_{A} but also MAM_{A} are expressed as

Spec(M^A)=Spec(MA)={λj(𝒌)|j=1,2,,2d,𝒌𝕂Nd}.\displaystyle{\rm Spec}(\widehat{M}_{A})={\rm Spec}(M_{A})=\left\{\lambda_{j}(\bm{k})\ |\ j=1,2,\ldots,2d,\ \bm{k}\in\mathbb{K}_{N}^{d}\right\}.

By using notations in Eq. (5) and Eq. (9), we see that for fixed 𝒌(𝕂Nd)\bm{k}(\in\mathbb{K}_{N}^{d}),

det(I2duM^A(𝒌~))=j=12d(1uλj(𝒌~)).\displaystyle\det\Big{(}I_{2d}-u\widehat{M}_{A}(\widetilde{\bm{k}})\Big{)}=\prod_{j=1}^{2d}\Big{(}1-u\lambda_{j}(\widetilde{\bm{k}})\Big{)}. (11)

Furthermore, Eq. (6) gives the following important formula.

det(I2duM^A(𝒌~))=det(I2du×j=1d(eik~jP2j1A+eik~jP2jA)).\displaystyle\det\Big{(}I_{2d}-u\widehat{M}_{A}(\widetilde{\bm{k}})\Big{)}=\det\left(I_{2d}-u\times\sum_{j=1}^{d}\Big{(}e^{i\widetilde{k}_{j}}P_{2j-1}A+e^{-i\widetilde{k}_{j}}P_{2j}A\Big{)}\right).

In this setting, we define the walk-type zeta function by

ζ¯(A,TNd,u)=det(I2dNduMA)1/Nd.\displaystyle\overline{\zeta}\left(A,T^{d}_{N},u\right)=\det\Big{(}I_{2dN^{d}}-uM_{A}\Big{)}^{-1/N^{d}}. (12)

We should remark that our walk is defined on the “site” 𝒙(TNd)\bm{x}(\in T^{d}_{N}). On the other hand, the walk in [7] is defined on the “arc” (i.e., oriented edge). However, both of the walks are the same for the torus case. As for a more detailed information, see Remark 1 in [5], for instance.

By Eqs. (10), (11) and (12), we get

ζ¯(A,TNd,u)1=exp[1Nd𝒌~𝕂~Ndlog{det(I2duM^A(𝒌~))}].\displaystyle\overline{\zeta}\left(A,T^{d}_{N},u\right)^{-1}=\exp\left[\frac{1}{N^{d}}\sum_{\widetilde{\bm{k}}\in\widetilde{\mathbb{K}}_{N}^{d}}\log\left\{\det\Big{(}I_{2d}-u\widehat{M}_{A}(\widetilde{\bm{k}})\Big{)}\right\}\right].

Sometimes we write 𝒌𝕂Nd\sum_{\bm{k}\in\mathbb{K}_{N}^{d}} instead of 𝒌~𝕂~Nd\sum_{\widetilde{\bm{k}}\in\widetilde{\mathbb{K}}_{N}^{d}}. Noting kj~=2πkj/N(j=1,2,,d)\widetilde{k_{j}}=2\pi k_{j}/N\ (j=1,2,\ldots,d) and taking a limit as NN\to\infty, we show

limNζ¯(A,TNd,u)1=exp[[0,2π)dlog{det(I2duM^A(Θ(d)))}𝑑Θunif(d)],\displaystyle\lim_{N\to\infty}\overline{\zeta}\left(A,T^{d}_{N},u\right)^{-1}=\exp\left[\int_{[0,2\pi)^{d}}\log\left\{\det\Big{(}I_{2d}-u\widehat{M}_{A}\left(\Theta^{(d)}\right)\Big{)}\right\}d\Theta^{(d)}_{unif}\right],

if the limit exists for a suitable range of uu\in\mathbb{R}. We should note that when we take a limit as NN\to\infty, we assume that the limit exists throughout this paper. Here Θ(d)=(θ1,θ2,,θd)([0,2π)d)\Theta^{(d)}=(\theta_{1},\theta_{2},\ldots,\theta_{d})(\in[0,2\pi)^{d}) and dΘunif(d)d\Theta^{(d)}_{unif} denotes the uniform measure on [0,2π)d[0,2\pi)^{d}, that is,

dΘunif(d)=dθ12πdθd2π.\displaystyle d\Theta^{(d)}_{unif}=\frac{d\theta_{1}}{2\pi}\cdots\frac{d\theta_{d}}{2\pi}.

Then the following result was obtained.

Theorem 1 (Komatsu, Konno and Sato [8]).
ζ¯(A,TNd,u)1\displaystyle\overline{\zeta}\left(A,T^{d}_{N},u\right)^{-1} =exp[1Nd𝒌~𝕂~Ndlog{det(F(𝒌~,u))}],\displaystyle=\exp\left[\frac{1}{N^{d}}\sum_{\widetilde{\bm{k}}\in\widetilde{\mathbb{K}}_{N}^{d}}\log\left\{\det\Big{(}F(\widetilde{\bm{k}},u)\Big{)}\right\}\right],
limNζ¯(A,TNd,u)1\displaystyle\lim_{N\to\infty}\overline{\zeta}\left(A,T^{d}_{N},u\right)^{-1} =exp[[0,2π)dlog{det(F(Θ(d),u))}𝑑Θunif(d)],\displaystyle=\exp\left[\int_{[0,2\pi)^{d}}\log\left\{\det\Big{(}F\left(\Theta^{(d)},u\right)\Big{)}\right\}d\Theta^{(d)}_{unif}\right],

where

F(𝒘,u)=I2duM^A(𝒘),\displaystyle F\left(\bm{w},u\right)=I_{2d}-u\widehat{M}_{A}(\bm{w}),

with 𝐰=(w1,w2,,wd)d\bm{w}=(w_{1},w_{2},\ldots,w_{d})\in\mathbb{R}^{d}.

2.2 The logarithmic zeta function

We define the logarithmic zeta function on a finite torus, and state its properties. Let TNdT^{d}_{N} denotes the dd-dimensional torus with NdN^{d} vertices, and a 2d×2d2d\times 2d matrix A=[aij]i,j=1,2,,2dA=[a_{ij}]_{i,j=1,2,\ldots,2d} the coin matrix of a dicrete time walk on TNdT^{d}_{N}, where aija_{ij}\in\mathbb{C} for i,j=1,2,,2di,j=1,2,\ldots,2d.

Now, we introduce the logarithmic zeta function as follows(see [13]).

(A,Td,u)=log[limN{ζ¯(A,TNd,u)1}].\displaystyle{\cal L}\left(A,T_{\infty}^{d},u\right)=\log\left[\lim_{N\to\infty}\left\{\overline{\zeta}\left(A,T_{N}^{d},u\right)^{-1}\right\}\right]. (13)

Then, the second equation in Theorem 1 immediately gives

Theorem 2.
(A,Td,u)=[0,2π)dlog{det(I2duM^A(Θ(d)))}𝑑Θunif(d).\displaystyle{\cal L}\left(A,T_{\infty}^{d},u\right)=\int_{[0,2\pi)^{d}}\log\left\{\det\Big{(}I_{2d}-u\widehat{M}_{A}\left(\Theta^{(d)}\right)\Big{)}\right\}d\Theta^{(d)}_{unif}.

Note that throughout this paper, we assume “uu\in\mathbb{R}” for our logarithmic zeta function (A,Td,u){\cal L}\left(A,T_{\infty}^{d},u\right). The range of uu\in\mathbb{R} depends on the model determined by a coin matrix AA.

Moreover, we define Cr(A,TNd)C_{r}(A,T^{d}_{N}) by

ζ¯(A,TNd,u)=exp(r=1Cr(A,TNd)rur).\displaystyle\overline{\zeta}\left(A,T^{d}_{N},u\right)=\exp\left(\sum_{r=1}^{\infty}\frac{C_{r}(A,T^{d}_{N})}{r}u^{r}\right). (14)

Let Tr(A){\rm Tr}(A) denote the trace of a square matrix AA. Then by definition of Tr{\rm Tr}, the following result was shown in [8].

Theorem 3 (Komatsu, Konno and Sato [8]).
Cr(A,TNd)\displaystyle C_{r}(A,T^{d}_{N}) =1Nd𝒌~𝕂~NdTr((M^A(𝒌~))r),\displaystyle=\frac{1}{N^{d}}\sum_{\widetilde{\bm{k}}\in\widetilde{\mathbb{K}}_{N}^{d}}{\rm Tr}\left(\left(\widehat{M}_{A}(\widetilde{\bm{k}})\right)^{r}\right),
limNCr(A,TNd)\displaystyle\lim_{N\to\infty}C_{r}(A,T^{d}_{N}) =[0,2π)dTr((M^A(Θ(d)))r)𝑑Θunif(d)=Tr(Φr()(𝟎)).\displaystyle=\int_{[0,2\pi)^{d}}{\rm Tr}\left(\left(\widehat{M}_{A}(\Theta^{(d)})\right)^{r}\right)d\Theta^{(d)}_{unif}={\rm Tr}\left(\Phi_{r}^{(\infty)}({\bf 0})\right).

An interesting point is that Φr()(𝟎)\Phi_{r}^{(\infty)}({\bf 0}) is the return “matrix weight” at time rr for the walk on not TNdT_{N}^{d} but d\mathbb{Z}^{d}. We should remark that in general Tr(Φr()(𝟎)){\rm Tr}(\Phi_{r}^{(\infty)}({\bf 0})) is not the same as the return probability at time rr for QW and CRW, but for RW.

Furthermore, we introduce

Cr(A,Td)=limNCr(A,TNd).\displaystyle C_{r}(A,T^{d}_{\infty})=\lim_{N\to\infty}C_{r}(A,T^{d}_{N}).

Therefore, by using the above equation, Theorem 2, and Eq. (14), we have

Theorem 4.
(A,Td,u)=r=1Cr(A,Td)rur.\displaystyle{\cal L}\left(A,T_{\infty}^{d},u\right)=-\sum_{r=1}^{\infty}\frac{C_{r}(A,T^{d}_{\infty})}{r}\ u^{r}.

From now on, we will present the result on only (A,Td,u){\cal L}\left(A,T_{\infty}^{d},u\right) and Cr(A,Td)C_{r}(A,T^{d}_{\infty}), since the corresponding expression for “without limN\lim_{N\to\infty}” is the essentially same (see Theorems 1 and 3, for example).

Next, we consider a relation between the logarithmic zeta function (A,Td,u){\cal L}\left(A,T_{\infty}^{d},u\right) for two-state QWs on the one-dimensional torus TN1T_{N}^{1}.

First we deal with general walks including QWs on the one-dimensional torus TN1T^{1}_{N} whose 2×22\times 2 coin matrix A(m)A^{(m)} (M-type) or A(f)A^{(f)} (F-type) as follows:

A(m)=[a11a12a21a22],A(f)=[a21a22a11a12],\displaystyle A^{(m)}=\begin{bmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix},\qquad A^{(f)}=\begin{bmatrix}a_{21}&a_{22}\\ a_{11}&a_{12}\end{bmatrix},

since

A(f)=(I1σ)A(m)=σA(m)=[0110][a11a12a21a22].\displaystyle A^{(f)}=\left(I_{1}\otimes\sigma\right)A^{(m)}=\sigma A^{(m)}=\begin{bmatrix}0&1\\ 1&0\end{bmatrix}\begin{bmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix}.

Set k=k1k=k_{1} and k~=k~1\widetilde{k}=\widetilde{k}_{1}. In this case, we take

P1=[1000],P2=[0001].\displaystyle P_{1}=\begin{bmatrix}1&0\\ 0&0\end{bmatrix},\qquad P_{2}=\begin{bmatrix}0&0\\ 0&1\end{bmatrix}.

Thus we immediately get

M^A(m)(k~)\displaystyle\widehat{M}_{A^{(m)}}(\widetilde{k}) =eik~P1A(m)+eik~P2A(m)=[eik~a11eik~a12eik~a21eik~a22],\displaystyle=e^{i\widetilde{k}}P_{1}A^{(m)}+e^{-i\widetilde{k}}P_{2}A^{(m)}=\begin{bmatrix}e^{i\widetilde{k}}a_{11}&e^{i\widetilde{k}}a_{12}\\ e^{-i\widetilde{k}}a_{21}&e^{-i\widetilde{k}}a_{22}\end{bmatrix}, (15)
M^A(f)(k~)\displaystyle\widehat{M}_{A^{(f)}}(\widetilde{k}) =eik~P1A(f)+eik~P2A(f)=[eik~a21eik~a22eik~a11eik~a12].\displaystyle=e^{i\widetilde{k}}P_{1}A^{(f)}+e^{-i\widetilde{k}}P_{2}A^{(f)}=\begin{bmatrix}e^{i\widetilde{k}}a_{21}&e^{i\widetilde{k}}a_{22}\\ e^{-i\widetilde{k}}a_{11}&e^{-i\widetilde{k}}a_{12}\end{bmatrix}. (16)

By these equations, we have

det(I2uM^A(s)(k~))=1Tr(M^A(s)(k~))u+det(M^A(s)(k~))u2(s{m,f}).\displaystyle\det\Big{(}I_{2}-u\widehat{M}_{A^{(s)}}(\widetilde{k})\Big{)}=1-{\rm Tr}\left(\widehat{M}_{A^{(s)}}(\widetilde{k})\right)u+\det\left(\widehat{M}_{A^{(s)}}(\widetilde{k})\right)u^{2}\qquad(s\in\{m,f\}).

Then the result given in [8] can be rewritten in terms of the logarithmic zeta function (A,Td,u){\cal L}\left(A,T_{\infty}^{d},u\right) as follows:

Proposition 1.
(A(s),T1,u)=02πlog{1Tr(M^A(s)(θ))u+det(M^A(s)(θ))u2}dθ2π,\displaystyle{\cal L}\left(A^{(s)},T_{\infty}^{1},u\right)=\int_{0}^{2\pi}\log\left\{1-{\rm Tr}\left(\widehat{M}_{A^{(s)}}(\theta)\right)u+\det\left(\widehat{M}_{A^{(s)}}(\theta)\right)u^{2}\right\}\frac{d\theta}{2\pi},

for s{m,f}s\in\{m,f\}.

Remark that Proposition 1 is also obtained by Theorem 1.

From now on, we focus on QWs in one dimension. One of the typical classes of QWs for 2×22\times 2 coin matrix A(m)A^{(m)} (M-type) or A(f)A^{(f)} (F-type) is as follows:

A(m)=[cosξsinξsinξcosξ],A(f)=[sinξcosξcosξsinξ](ξ[0,2π)).\displaystyle A^{(m)}=\begin{bmatrix}\cos\xi&\sin\xi\\ \sin\xi&-\cos\xi\end{bmatrix},\qquad A^{(f)}=\begin{bmatrix}\sin\xi&-\cos\xi\\ \cos\xi&\sin\xi\end{bmatrix}\qquad(\xi\in[0,2\pi)).

When ξ=π/4\xi=\pi/4, the QW becomes the so-called Hadamard walk which is one of the most well-investigated model in the study of QWs. Then the result given in [8] can also be rewritten in terms of the logarithmic zeta function like Proposition as follows:

Proposition 2.
(A(s),T1,u)=02πlog(F(s)(θ,u))dθ2π,\displaystyle{\cal L}\left(A^{(s)},T_{\infty}^{1},u\right)=\int_{0}^{2\pi}\log\left(F^{(s)}\left(\theta,u\right)\right)\frac{d\theta}{2\pi},

for s{m,f}s\in\{m,f\}, where

F(m)(w,u)\displaystyle F^{(m)}\left(w,u\right) =12icosξsinwuu2,\displaystyle=1-2i\cos\xi\sin w\cdot u-u^{2},
F(f)(w,u)\displaystyle F^{(f)}\left(w,u\right) =12sinξcoswu+u2.\displaystyle=1-2\sin\xi\cos w\cdot u+u^{2}.

Moreover,

C2l(A(m),T1)\displaystyle C_{2l}(A^{(m)},T^{1}_{\infty}) =2l(cos2ξ)lm=1l1m(l1m1)2(tan2ξ)m\displaystyle=2l\left(-\cos^{2}\xi\right)^{l}\sum_{m=1}^{l}\frac{1}{m}{l-1\choose m-1}^{2}\left(-\tan^{2}\xi\right)^{m}
=2l(cos2ξ)l1(sin2ξ)F12(1l,1l;2;tan2ξ),\displaystyle=2l\left(-\cos^{2}\xi\right)^{l-1}(\sin^{2}\xi)\ {}_{2}F_{1}\left(1-l,1-l;2;-\tan^{2}\xi\right),
C2l(A(f),T1)\displaystyle C_{2l}(A^{(f)},T^{1}_{\infty}) =2l(sinξ)2lm=1l1m(l1m1)2(cot2ξ)m\displaystyle=2l\left(\sin\xi\right)^{2l}\sum_{m=1}^{l}\frac{1}{m}{l-1\choose m-1}^{2}\left(-\cot^{2}\xi\right)^{m}
=2l(sinξ)2(l1)(cos2ξ)F12(1l,1l;2;cot2ξ),\displaystyle=2l\left(\sin\xi\right)^{2(l-1)}(-\cos^{2}\xi)\ {}_{2}F_{1}\left(1-l,1-l;2;-\cot^{2}\xi\right),
C2l1(A(s),T1)\displaystyle C_{2l-1}(A^{(s)},T^{1}_{\infty}) =0(s{m,f}),\displaystyle=0\qquad(s\in\{m,f\}),

for l=1,2,l=1,2,\ldots and ξ(0,π/2).\xi\in(0,\pi/2).

Note that the result on (A(s),T1,u){\cal L}\left(A^{(s)},T_{\infty}^{1},u\right) in Proposition 2 is also derived from Proposition 1. Here the following result holds.

Theorem 5 (Komatsu, Konno, Sato and Tamura [13]).

Let c(m)=secξ(uu1)c^{(m)}=\sec\xi\cdot\left(u-u^{-1}\right) and c(f)=cosecξ(u+u1)c^{(f)}=-\ {\rm cosec}\ \xi\cdot\left(u+u^{-1}\right). Then we have

(A(m),T1,u)=log(1u2+1+2cos(2ξ)u2+u42){\cal L}\left(A^{(m)},T_{\infty}^{1},u\right)=\log\left(\frac{1-u^{2}+\sqrt{1+2\cos(2\xi)u^{2}+u^{4}}}{2}\right)

for ξ(0,π/2)\xi\in(0,\pi/2) and u(cosξcos2ξ+1,0)u\in(\cos\xi-\sqrt{\cos^{2}\xi+1},0).

(A(f),T1,u)=log(1+u2+1+2cos(2ξ)u2+u42){\cal L}\left(A^{(f)},T_{\infty}^{1},u\right)=\log\left(\frac{1+u^{2}+\sqrt{1+2\cos(2\xi)u^{2}+u^{4}}}{2}\right)

for ξ(0,π/2)\xi\in(0,\pi/2) and u(,0)u\in(-\infty,0).

Now, we consider a relation between the logarithmic zeta function (A,Td,u){\cal L}\left(A,T_{\infty}^{d},u\right) for RWs on the higher-dimensional torus TN1T_{N}^{1}, see [13].

From definition of the (simple symmetric) RW on TNdT^{d}_{N} (see [23, 27]), we easily see that

Spec(P(D,c))\displaystyle{\rm Spec}\left(P^{(D,c)}\right) ={1dj=1dcos(2πkjN)|k1,,kd𝕂N}\displaystyle=\left\{\frac{1}{d}\sum^{d}_{j=1}\cos\left(\frac{2\pi k_{j}}{N}\right)\bigg{|}\ k_{1},\ldots,k_{d}\in\mathbb{K}_{N}\right\}
={1de(d,cos)(𝒌~)|k1,,kd𝕂N},\displaystyle=\left\{\frac{1}{d}e^{(d,\cos)}(\widetilde{\bm{k}})\bigg{|}\ k_{1},\ldots,k_{d}\in\mathbb{K}_{N}\right\}, (17)

where P(D,c)P^{(D,c)} is the transition probability matrix of the (simple symmetric) RW on TNdT^{d}_{N}. Here the RW on TNdT^{d}_{N} jumps to each of its nearest neighbors with equal probability 1/(2d)1/(2d). Noting Eq. (17), the result given in [13] can be rewritten in terms of the logarithmic zeta function as follows:

Proposition 3.
(ARW,Td,u)=[0,2π)dlog{FRW(Θ(d),u)}𝑑Θunif(d),\displaystyle{\cal L}\left(A_{RW},T_{\infty}^{d},u\right)=\int_{[0,2\pi)^{d}}\log\Bigg{\{}F_{RW}\left(\Theta^{(d)},u\right)\Bigg{\}}d\Theta^{(d)}_{unif},

where

FRW(𝒘,u)=1e(d,cos)(𝒘)du.\displaystyle F_{RW}\left(\bm{w},u\right)=1-\frac{e^{(d,\cos)}(\bm{w})}{d}\cdot u.

Moreover, we have

Cr(ARW,Td)\displaystyle C_{r}(A_{RW},T_{\infty}^{d}) =[0,2π)dGRW(Θ(d))𝑑Θunif(d),\displaystyle=\int_{[0,2\pi)^{d}}G_{RW}\left(\Theta^{(d)}\right)d\Theta^{(d)}_{unif},

where

GRW(𝒘)=(e(d,cos)(𝒘)d)r.\displaystyle G_{RW}\left(\bm{w}\right)=\left(\frac{e^{(d,\cos)}(\bm{w})}{d}\right)^{r}.

In particular, when d=1d=1 and d=2d=2, we have

Proposition 4.
(ARW,T1,u)\displaystyle{\cal L}\left(A_{RW},T_{\infty}^{1},u\right) =log(1+1u22)=n=1B2nu2n2n,\displaystyle=\log\left(\frac{1+\sqrt{1-u^{2}}}{2}\right)=-\sum_{n=1}^{\infty}B_{2n}\frac{u^{2n}}{2n},
(ARW,T2,u)\displaystyle{\cal L}\left(A_{RW},T_{\infty}^{2},u\right) =u28F34(32,32,1,1;2,2,2;u2)=n=1(B2n)2u2n2n,\displaystyle=-\frac{u^{2}}{8}\ {}_{4}F_{3}\left(\frac{3}{2},\frac{3}{2},1,1;2,2,2;u^{2}\right)=-\sum_{n=1}^{\infty}\left(B_{2n}\right)^{2}\frac{u^{2n}}{2n},

for u(1,0)u\in(-1,0), where

B2n=(2nn)(12)2n.\displaystyle B_{2n}={2n\choose n}\left(\frac{1}{2}\right)^{2n}.

3 Ronkin/Zeta Correspondence

The Ronkin function was defined by Ronkin in [26], and is defined for a Laurent polynomial. Let

P=P(x1,,xk)=i1,,ikai1,,ikx1i1xkikP=P(x_{1},\ldots,x_{k})=\sum_{i_{1},\ldots,i_{k}\in\mathbb{Z}}a_{i_{1},\ldots,i_{k}}x^{i_{1}}_{1}\cdots x^{i_{k}}_{k}

be a Laurent polynomial with only a finite number of the ai1,,ika_{i_{1},\ldots,i_{k}}’s being non-zero. Then the Ronkin function of PP is defined as follows:

R(x1,,xk)=|z1|=1|zk|=1log|P(ex1z1,,exkzk)|dz12πiz1dzk2πizk.R(x_{1},\ldots,x_{k})=\oint_{|z_{1}|=1}\cdots\oint_{|z_{k}|=1}\log|P(e^{x_{1}}z_{1},\ldots,e^{x_{k}}z_{k})|\frac{dz_{1}}{2\pi iz_{1}}\cdots\frac{dz_{k}}{2\pi iz_{k}}.

In this section, we discuss a correspondence between the logarithmic zeta function introduced in the previous section and the Ronkin function.

3.1 Correspondence for RW

For the logarithmic zeta function of the one-dimensional RW, the following result follows.

Proposition 5.

Let

P1(exz)=112(exz+ex1z)uP_{1}(e^{x}z)=1-\frac{1}{2}\left(e^{x}z+e^{x}\frac{1}{z}\right)u

and

R(x)=|z|=1log|P1(exz)|dz2πiz.R(x)=\oint_{|z|=1}\log|P_{1}(e^{x}z)|\frac{dz}{2\pi iz}.

Then

(ARW,T1,u)=R(0).{\cal L}(A_{RW},T^{1}_{\infty},u)=R(0).

Proof. Substituting d=1d=1 in Proposition 3, we obtain

(ARW,T1,u)=02πlog(1cosθu)dθ2π.\displaystyle{\cal L}(A_{RW},T^{1}_{\infty},u)=\int^{2\pi}_{0}\log(1-\cos\theta u)\frac{d\theta}{2\pi}.

Now, let

P1(exz)=112(exz+ex1z)u.P_{1}(e^{x}z)=1-\frac{1}{2}\left(e^{x}z+e^{x}\frac{1}{z}\right)u.

If we set z=eiθz=e^{i\theta}, then we have

P1(exz)=1cosθexu.P_{1}(e^{x}z)=1-\cos\theta\cdot e^{x}u.

Thus, we obtain

R(x)=|z|=1log|P(exz)|dz2πiz=02πlog|1cosθexu|dθ2π.R(x)=\oint_{|z|=1}\log|P(e^{x}z)|\frac{dz}{2\pi iz}=\int^{2\pi}_{0}\log|1-\cos\theta\cdot e^{x}u|\frac{d\theta}{2\pi}.

If |exu|<1|e^{x}u|<1, then 1cosθexu>01-\cos\theta\cdot e^{x}u>0, and so

R(x)=02πlog(1cosθexu)dθ2π.R(x)=\int^{2\pi}_{0}\log(1-\cos\theta\cdot e^{x}u)\frac{d\theta}{2\pi}.

Thus, we have

R(0)=02πlog(1cosθu)dθ2π.R(0)=\int^{2\pi}_{0}\log(1-\cos\theta\cdot u)\frac{d\theta}{2\pi}.

Therefore, it follows that

(ARW,T1,u)=R(0).{\cal L}(A_{RW},T^{1}_{\infty},u)=R(0).

\Box

Next, the relation between the Ronkin function and the 2-dimensional RW is given as follows.

Proposition 6.

Let

P2(ex1z1,ex2z2)=114{(ex1z1+ex11z1)+(ex2z2+ex21z2)}u\displaystyle P_{2}(e^{x_{1}}z_{1},e^{x_{2}}z_{2})=1-\frac{1}{4}\left\{\left(e^{x_{1}}z_{1}+e^{x_{1}}\frac{1}{z_{1}}\right)+\left(e^{x_{2}}z_{2}+e^{x_{2}}\frac{1}{z_{2}}\right)\right\}u

and

R(x1,x2)=|z1|=1|z2|=1log|P2(ex1z1,ex2z2)|dz12πiz1dz22πiz2.R(x_{1},x_{2})=\oint_{|z_{1}|=1}\oint_{|z_{2}|=1}\log|P_{2}(e^{x_{1}}z_{1},e^{x_{2}}z_{2})|\frac{dz_{1}}{2\pi iz_{1}}\frac{dz_{2}}{2\pi iz_{2}}.

Then

(ARW,T2,u)=R(0,0).{\cal L}(A_{RW},T^{2}_{\infty},u)=R(0,0).

Proof. Substituting d=2d=2 in Proposition 3, we obtain

(ARW,T2,u)=02π02πlog(112(cosθ+1cosθ)2u)dθ12πdθ22π.{\cal L}(A_{RW},T^{2}_{\infty},u)=\int^{2\pi}_{0}\int^{2\pi}_{0}\log\left(1-\frac{1}{2}(\cos\theta{}_{1}+\cos\theta{}_{2})u\right)\frac{d\theta{}_{1}}{2\pi}\frac{d\theta{}_{2}}{2\pi}.

If 1<u<1-1<u<1, then we have

(ARW,T2,u)=02π02πlog|112(cosθ+1cosθ)2u|dθ12πdθ22π.{\cal L}(A_{RW},T^{2}_{\infty},u)=\int^{2\pi}_{0}\int^{2\pi}_{0}\log\left|1-\frac{1}{2}(\cos\theta{}_{1}+\cos\theta{}_{2})u\right|\frac{d\theta{}_{1}}{2\pi}\frac{d\theta{}_{2}}{2\pi}.

Now, let

P2(ex1z1,ex2z2)=114{(ex1z1+ex11z1)+(ex2z2+ex21z2)}u.P_{2}(e^{x_{1}}z_{1},e^{x_{2}}z_{2})=1-\frac{1}{4}\left\{\left(e^{x_{1}}z_{1}+e^{x_{1}}\frac{1}{z_{1}}\right)+\left(e^{x_{2}}z_{2}+e^{x_{2}}\frac{1}{z_{2}}\right)\right\}u.

If we set z1=eiθ1z_{1}=e^{i\theta{}_{1}} and z2=eiθ2z_{2}=e^{i\theta{}_{2}}, then we have

P2(ex1z1,ex2z2)=112(cosθ+1cosθ)2u.P_{2}(e^{x_{1}}z_{1},e^{x_{2}}z_{2})=1-\frac{1}{2}(\cos\theta{}_{1}+\cos\theta{}_{2})u.

Thus, we obtain

R(x1,x2)\displaystyle R(x_{1},x_{2}) =|z1|=1|z2|=1log|P2(ex1z1,ex2z2)|dz12πiz1dz22πiz2\displaystyle=\oint_{|z_{1}|=1}\oint_{|z_{2}|=1}\log|P_{2}(e^{x_{1}}z_{1},e^{x_{2}}z_{2})|\frac{dz_{1}}{2\pi iz_{1}}\frac{dz_{2}}{2\pi iz_{2}}
=02π02πlog|112(ex1cosθ+1ex2cosθ)2u|dθ12πdθ22π.\displaystyle=\int^{2\pi}_{0}\int^{2\pi}_{0}\log\left|1-\frac{1}{2}(e^{x_{1}}\cos\theta{}_{1}+e^{x_{2}}\cos\theta{}_{2})u\right|\frac{d\theta{}_{1}}{2\pi}\frac{d\theta{}_{2}}{2\pi}.

Therefore, it follows that

R(0,0)=02π02πlog|112(cosθ+1cosθ)2u|dθ12πdθ22π.R(0,0)=\int^{2\pi}_{0}\int^{2\pi}_{0}\log\left|1-\frac{1}{2}(\cos\theta{}_{1}+\cos\theta{}_{2})u\right|\frac{d\theta{}_{1}}{2\pi}\frac{d\theta{}_{2}}{2\pi}.

Hence,

(ARW,T2,u)=R(0,0).{\cal L}(A_{RW},T^{2}_{\infty},u)=R(0,0).

\Box

Similarly to the proofs of Propositions 5 and 6, we obtain the following result.

Theorem 6.

Let d2d\geq 2. Furthermore, let

Pd=Pd(ex1z1,,exdzd)=1u2dj=1d(exjzj+exj1zj)P_{d}=P_{d}(e^{x_{1}}z_{1},\ldots,e^{x_{d}}z_{d})=1-\frac{u}{2d}\sum^{d}_{j=1}\left(e^{x_{j}}z_{j}+e^{x_{j}}\frac{1}{z_{j}}\right)

and

R(x1,,xd)=|z1|=1|zd|=1log|112dj=1d(exjzj+exj1zj)|dz12πiz1dzd2πizd.R(x_{1},\ldots,x_{d})=\oint_{|z_{1}|=1}\cdots\oint_{|z_{d}|=1}\log\left|1-\frac{1}{2d}\sum^{d}_{j=1}\left(e^{x_{j}}z_{j}+e^{x_{j}}\frac{1}{z_{j}}\right)\right|\frac{dz_{1}}{2\pi iz_{1}}\cdots\frac{dz_{d}}{2\pi iz_{d}}.

Then

(ARW,Td,u)=R(0,,0)(1<u<1).{\cal L}(A_{RW},T^{d}_{\infty},u)=R(0,\ldots,0)\qquad(-1<u<1).

3.2 Correspondence for QW

We consider a relation betweeen the logarithmic zeta function (A,T1,u){\cal L}(A,T^{1}_{\infty},u) and the Ronkin function for two-state QWs on the one-dimensional torus Tn1T^{1}_{n}. We deal with general walks including QWs on the one-dimensional torus TN1T^{1}_{N} whose 2×22\times 2 coin matrix A(m)A^{(m)} (M-type) or A(f)A^{(f)} (F-type) as follows:

A(m)=[a11a12a21a22],A(f)=[a21a22a11a12].\displaystyle A^{(m)}=\begin{bmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix},\qquad A^{(f)}=\begin{bmatrix}a_{21}&a_{22}\\ a_{11}&a_{12}\end{bmatrix}.

We only state the case of the M-type A=A(m)A=A^{(m)}. For the case of the F-type, the result follows similarly.

Theorem 7.

Let

P(m)=P(m)(exz)=1cosξ(z1z)exuu2P^{(m)}=P^{(m)}(e^{x}z)=1-\cos\xi\cdot\left(z-\frac{1}{z}\right)\cdot e^{x}u-u^{2}

and

P(f)=P(f)(exz)=1sinξ(z+1z)exu+u2.P^{(f)}=P^{(f)}(e^{x}z)=1-\sin\xi\cdot\left(z+\frac{1}{z}\right)\cdot e^{x}u+u^{2}.

Furthermore, let

R(s)(x)=|z|=1log|P(s)(exz)|dz2πiz.R^{(s)}(x)=\oint_{|z|=1}\log|P^{(s)}(e^{x}z)|\frac{dz}{2\pi iz}.

Then

(A(s),Td,u)=R(s)(0)(s{m,f}).{\cal L}(A^{(s)},T^{d}_{\infty},u)=R^{(s)}(0)\qquad(s\in\{m,f\}).

Proof. At first, let 1<u<1-1<u<1. By Proposition 2, we have

(A(m),T1u)=02πlog(12icosξsinθuu2)dθ2π.{\cal L}(A^{(m)},T^{1}_{\infty}u)=\int^{2\pi}_{0}\log\left(1-2i\cos\xi\cdot\sin\theta\cdot u-u^{2}\right)\frac{d\theta}{2\pi}.

By Theorem 5, we get

(A(m),T1u)=log(1u21+2cos(2ξ)u2+u42).\displaystyle{\cal L}(A^{(m)},T^{1}_{\infty}u)=\log\left(\frac{1-u^{2}\sqrt{1+2\cos(2\xi)u^{2}+u^{4}}}{2}\right).

Here, we use 1<u<1-1<u<1 in the the second equality.

Next, we obtain

R(m)(0)\displaystyle R^{(m)}(0) =|z|=1log|P(s)(z)|dz2πiz\displaystyle=\oint_{|z|=1}\log|P^{(s)}(z)|\frac{dz}{2\pi iz}
=02πlog|12icosξsinθuu2|dθ2π\displaystyle=\int^{2\pi}_{0}\log|1-2i\cos\xi\cdot\sin\theta\cdot u-u^{2}|\frac{d\theta}{2\pi}
=1202πlog(|12icosξsinθuu2|2)dθ2π\displaystyle=\frac{1}{2}\int^{2\pi}_{0}\log(|1-2i\cos\xi\cdot\sin\theta\cdot u-u^{2}|^{2})\frac{d\theta}{2\pi}
=1202πlog((1u2)2+4cosξ2sinθ2u2)dθ2π\displaystyle=\frac{1}{2}\int^{2\pi}_{0}\log((1-u^{2})^{2}+4\cos{}^{2}\xi\cdot\sin{}^{2}\theta\cdot u^{2})\frac{d\theta}{2\pi}
=1202πlog(12sinξ2u2+u42cosξ2cos(2θ)u2)dθ2π\displaystyle=\frac{1}{2}\int^{2\pi}_{0}\log(1-2\sin{}^{2}\xi\cdot u^{2}+u^{4}-2\cos{}^{2}\xi\cdot\cos(2\theta)\cdot u^{2})\frac{d\theta}{2\pi}
=1202πlog(12sinξ2u2+u42cosξ2cosθu2)dθ2π\displaystyle=\frac{1}{2}\int^{2\pi}_{0}\log(1-2\sin{}^{2}\xi\cdot u^{2}+u^{4}-2\cos{}^{2}\xi\cdot\cos\theta\cdot u^{2})\frac{d\theta}{2\pi}
=1202πlog(abcosθ)dθ2π,\displaystyle=\frac{1}{2}\int^{2\pi}_{0}\log(a-b\cos\theta)\frac{d\theta}{2\pi},

where

a=12sinξ2u2+u4,b=2cosξ2u2.a=1-2\sin{}^{2}\xi\cdot u^{2}+u^{4},\quad b=2\cos{}^{2}\xi\cdot u^{2}.

If 1<u<1-1<u<1, then we have

a>0,b>0.a>0,\ b>0.

Furthermore, it holds that

|ba|=ba1.\left|\frac{-b}{a}\right|=\frac{b}{a}\leq 1.

Thus, by (29) in [13], we get

R(m)(0)\displaystyle R^{(m)}(0) =12loga+12log(1+1(ba)22)\displaystyle=\frac{1}{2}\log a+\frac{1}{2}\log\left(\frac{1+\sqrt{1-(\frac{b}{a})^{2}}}{2}\right)
=12log(a+a2b22).\displaystyle=\frac{1}{2}\log\left(\frac{a+\sqrt{a^{2}-b^{2}}}{2}\right).

Since

a2b2=(1u2)2(1+cos(2ξ)u2+u4),a^{2}-b^{2}=(1-u^{2})2(1+\cos(2\xi)u^{2}+u^{4}),

we obtain the following result:

R(0)=(A(m),T1,u).R(0)={\cal L}(A^{(m)},T^{1}_{\infty},u).

\Box

3.3 Properties of the Laurent polynomials due to RWs and QWs

In the previous sections, we introduced the Laurent polynomials:

Pd(ex1z1,,exdzd)=1u2dj=1d(exjzj+exj1zj),P_{d}(e^{x_{1}}z_{1},\ldots,e^{x_{d}}z_{d})=1-\frac{u}{2d}\sum^{d}_{j=1}\left(e^{x_{j}}z_{j}+e^{x_{j}}\frac{1}{z_{j}}\right),
P(m)(exz)=1cosξ(z1z)exuu2,P^{(m)}(e^{x}z)=1-\cos\xi\cdot\left(z-\frac{1}{z}\right)\cdot e^{x}u-u^{2},
P(f)(exz)=1sinξ(z+1z)exu+u2.P^{(f)}(e^{x}z)=1-\sin\xi\cdot\left(z+\frac{1}{z}\right)\cdot e^{x}u+u^{2}.

From now on, we treat these functions as just Laurent polynomials, and discuss “What these Laurent polynomials are?” by using the terminologies of tropical geometry.

Since we do not need to consider restrictions on integral domains and so on, we assume u=1u=1. Furthermore, since we are only concerned with the zero set of these Laurent polynomials, we can replace PdP_{d} and P(s)P^{(s)} with the following:

Pd(z1,,zd)=j=1d(zj+1zj)2d,P_{d}(z_{1},\ldots,z_{d})=\sum^{d}_{j=1}\left(z_{j}+\frac{1}{z_{j}}\right)-2d,
P(m)(z)=z1z1cosξ,P^{(m)}(z)=z-\frac{1}{z}-\frac{1}{\cos\xi},
P(f)(z)=z+1z1sinξ,P^{(f)}(z)=z+\frac{1}{z}-\frac{1}{\sin\xi},

where ξnπ2,n.\xi\neq\frac{n\pi}{2},n\in{\mathbb{Z}}.

The Newton polytope NP(Pd)d{\rm NP}(P_{d})\subset{\mathbb{R}}^{d} for the Laurent polynomial PdP_{d} is the closed convex hull spanned by {±𝒆1,±𝒆2,,±𝒆d}\{\pm\bm{e}_{1},\pm\bm{e}_{2},\ldots,\pm\bm{e}_{d}\}, where {𝒆1,𝒆2,,𝒆d}\{\bm{e}_{1},\bm{e}_{2},\ldots,\bm{e}_{d}\} is the standard basis of d{\mathbb{R}}^{d}. Especially, NP(P(m)),NP(P(f)){\rm NP}(P^{(m)}),\ {\rm NP}(P^{(f)})\subset{\mathbb{R}} are the closed section [1,1][-1,1]. Fortunately, the Newton polytope NP(Pd){\rm NP}(P_{d}) coincides with the direction polytope DPd{\rm DP}_{d} which is defined in the first part of subsection 2.1 as the following.

Theorem 8.

Let PP be one of the Laurent polynomials Pd,P(m)P_{d},P^{(m)} or P(f)P^{(f)}. Then, the Newton polytope NP(P){\rm NP}(P) coincides with the direction polytope DPd{\rm DP}_{d} of its walk.

Proof. If PP is P(m)P^{(m)} or P(f)P^{(f)}, then the degree of the direction graph is one, and the following equation holds:

DPd=DP1=Conv(𝒆1,𝒆1)=[1,1]=NP(P(m))=NP(P(f)).{\rm DP}_{d}={\rm DP}_{1}={\rm Conv}(\bm{e}_{1},-\bm{e}_{1})=[-1,1]={\rm NP}(P^{(m)})={\rm NP}(P^{(f)}).

In the case that PP is PdP_{d}, the Newton polytope is Conv{±𝒆1,±𝒆2,,±𝒆d}{\rm Conv}\{\pm\bm{e}_{1},\pm\bm{e}_{2},\ldots,\pm\bm{e}_{d}\}. Therefore,

DPd=Conv{±𝒆1,±𝒆2,,±𝒆d}=NP(Pd).{\rm DP}_{d}={\rm Conv}\{\pm\bm{e}_{1},\pm\bm{e}_{2},\ldots,\pm\bm{e}_{d}\}={\rm NP}(P_{d}).

\Box

Therefore, the Laurent polynomial PP contains the information concerning the direction of the walk. However, we conjecture that PP doesn’t have any other infomation. In the following, we discuss the amoebas and tropical hypersurfaces of PP which contain more topological information compared with the Newton polytopes.

For the Laurent polynomials P(m)P^{(m)} and P(f)P^{(f)}, the discussion is omitted in the following because it is just a one-dimensional case and same with the case of PdP_{d} for d=1d=1.

The amoeba was first defined by Gelfand, Kapranov and Zelevinsky [4] as the image of the logarithmic map Log{\rm Log} from the zero set V(P)(×)dV(P)\subset(\mathbb{C}^{\times})^{d} of a Laurent polynomial PP to d\mathbb{R}^{d},

Log:(z1,,zd)(log|z1|,,log|zd|).{\rm Log}:(z_{1},\ldots,z_{d})\to(\log|z_{1}|,\ldots,\log|z_{d}|).

By Passare and Rullgård [24], the following assertions were shown.

Proposition 7 (Passare and Rullgård, [24]).

The Ronkin function R:dR:\mathbb{R}^{d}\to\mathbb{R} is convex. Especially, it is strongly convex on the amoeba 𝒜\mathcal{A}, and it is linear on each complement set n𝒜\mathbb{R}^{n}\setminus\mathcal{A}.

Forsberg, Passare and Tsikh [3] have shown some relations between the structure of the amoeba 𝒜P{\mathcal{A}}_{P} of V(P)V(P) and the Newton polytope NP(P){\rm NP}(P) by using the Ronkin function.

Theorem 9 (Forsberg, Passare and Tsikh, [3]).

The number of connected components of the amoeba complement 𝒜Pc{}^{c}\mathcal{A}_{P} is at least equal to the number of vertices of the Newton polytope NP(P){\rm NP}(P) and at most equal to the total number of integer points in NP(P)d{\rm NP}(P)\cap{\mathbb{Z}}^{d}.

For example, the amoeba 𝒜P2{\mathcal{A}}_{P_{2}} can be constructed as follows.

P2(z1,z2)=z1+1z1+z2+1z24.P_{2}(z_{1},z_{2})=z_{1}+\frac{1}{z_{1}}+z_{2}+\frac{1}{z_{2}}-4.

The Newton polytope NP(P2)=Conv(±𝒆1,±𝒆2){\rm NP}(P_{2})={\rm Conv}(\pm\bm{e}_{1},\pm\bm{e}_{2}) is as Fig. 1.

Refer to caption
Fig. 1: The Newton polytope NP(P2){\rm NP}(P_{2})

By Proposition 7 and Theorem 9, it is shown that the number of the complement components in the amoeba 𝒜P2\mathcal{A}_{P_{2}} is equal to or less than the number of the lattice points in Int(NP(P2)){\rm Int}({\rm NP}(P_{2})), the amoeba 𝒜P2\mathcal{A}_{P_{2}} can be seen to be one of the figures in Fig. 2. In fact, the right figure is the amoeba of P2P_{2} because the origin (z1,z2)=(0,0)(z_{1},z_{2})=(0,0) is a pole of P2P_{2}. This area is sometimes called the “bubble”.

Refer to caption
Refer to caption
Fig. 2: The amoeba 𝒜P2\mathcal{A}_{P_{2}}

By the results of Mikhalkin [22] and Rullgård, it is known that the ultra-discrete limit of an amoeba converges in the Hausdorff metric to the non-archimedean amoeba. Moreover, it is proved that the non-archimedean amoeba coincides with the tropical hypersurface by Einsiedler, Kapranov and Lind [2, Theorem 2.1.1]. For a Laurent polynomial PP, the tropical polynomial Trop(P){\rm Trop}(P) is given (see (19)), and the tropical hypersurface 𝒯P{\mathcal{T}}_{P} of Trop(P){\rm Trop}(P) is defined as the set

{𝒗d| the maximal inTrop(P)(𝒗) is achieved at least twice}.\{\bm{v}\in{\mathbb{R}}^{d}|\ \text{ the maximal in}\ {\rm Trop}(P)(\bm{v})\text{ is achieved at least twice}\}.
Theorem 10 (Einsiedler, Kapranov and Lind, [2]).

Let P0P\neq 0 be a Laurent polynomial. The non-archimedean amoeba 𝒩𝒜P\mathcal{NA}_{P} coincides with the tropical hypersurface 𝒯P{\mathcal{T}}_{P} for PP.

In the following, we introduce non-archimedean amoeba, and give the tropical hypersurface for the Laurent polynomials PdP_{d}.

Let 𝕂=n1((t1/n)){\mathbb{K}}=\bigcup_{n\geq 1}{\mathbb{C}}((t^{1/n})) be the field of Puiseux series over {\mathbb{C}}, where ((t1/n)){\mathbb{C}}((t^{1/n})) is the field of Laurent polynomials in the formal variable t1/nt^{1/n}. For a Puiseux series:

f=f(t)=pIaptp,f=f(t)=\sum_{p\in I}a_{p}t^{p},

where II\subset{\mathbb{Q}} and ap0a_{p}\neq 0, the index set II of ff is called the support of ff, and denoted by IfI_{f}. This is a well-orderd set. A valuation on 𝕂{\mathbb{K}}, val:𝕂{}val:{\mathbb{K}}\rightarrow{\mathbb{Q}}\cup\{\infty\} can be defined as follows:

val(f):=minIf(f0),val(0)=.val(f):={\rm min}\ I_{f}\ (f\neq 0),\quad val(0)=\infty.

For instance, if ff\in{\mathbb{C}}, then ffcan be represent as f=fs0f=f\cdot s^{0}, and If={0}I_{f}=\{0\}. Therefore, we have val(f)=0val(f)=0.

Definition 1.

A map ||||:||*||:{\mathbb{C}}\rightarrow{\mathbb{R}} which satisfies the conditions

  • a=0a=0||a||=0\ \Leftrightarrow\ a=0,

  • ab=ab||a\cdot b||=||a||\cdot||b||,

  • a+bmax{a,b}||a+b||\leq{\rm max}\{||a||,\ ||b||\}

for any a,ba,\ b\in{\mathbb{C}} is called a non-archimedean norm on {\mathbb{C}}.

The map ||||:||*||:{\mathbb{C}}\rightarrow{\mathbb{R}} given as following is a non-archimedean norm:

a:=eval(a),0=0.||a||:=e^{-val(a)},\quad||0||=0.

The image of the zero set V(Pd)V(P_{d}) of PdP_{d} by the map Log{\rm Log} using this norm is called the non-archimedean amoeba of PdP_{d}.

Log:(×)dd,(a1,a2,,ad)(loga1,loga2,,logad).{\rm Log}:({\mathbb{C}^{\times}})^{d}\rightarrow{\mathbb{R}}^{d},\quad(a_{1},a_{2},\ldots,a_{d})\mapsto(\log||a_{1}||,\log||a_{2}||,\ldots,\log||a_{d}||). (18)

We note that logai=val(ai)\log||a_{i}||=-val(a_{i}) for 1id1\leq i\leq d.

(loga1,loga2,,logad)=(val(a1),val(a2),,val(ad)).(\log||a_{1}||,\log||a_{2}||,\ldots,\log||a_{d}||)=(-val(a_{1}),-val(a_{2}),\ldots,-val(a_{d})).

By the logarithmic map in (18), a Laurent polynomial P=i,jai,j(zj)iP=\sum_{i,j}a_{i,j}(z_{j})^{i} corresponds to the tropical polynomial of PP which is given as

Trop(P)=i,j(ixjval(ai,j)),{\rm Trop}(P)=\bigoplus_{i,j}(i\cdot x_{j}-val(a_{i,j})), (19)

where xj=val(zj)x_{j}=val(z_{j}) for 1jd1\leq j\leq d is a variable over {\mathbb{R}}, and \oplus means the max-plus (i.e., the additional operator ab=max{a,b}a\oplus b={\rm max}\{a,b\}). This tropical polynomial is also called “the tropicalization of PP” or “the ultra-discretization of PP”.

As an example, the tropical curve given by P2P_{2} is coincides with the non-archimedean amoeba of P2P_{2} by Theorem 10. The tropical polynomial corresponding to P2P_{2} is as follows:

Trop(P2)=x1(x1)x2(x2)0x1(x1)x2(x2){\rm Trop}(P_{2})=x_{1}\oplus(-x_{1})\oplus x_{2}\oplus(-x_{2})\oplus 0\equiv x_{1}\oplus(-x_{1})\oplus x_{2}\oplus(-x_{2})

where the symbol \equiv means equality as functions. Then, the tropical curve given by Trop(P2){\rm Trop}(P_{2}) is as in Fig. 3.

Refer to caption
Fig. 3: The tropical curve 𝒯P2\mathcal{T}_{P_{2}}

This tropical curve 𝒯P2\mathcal{T}_{P_{2}} is the ultra-discrete limit of 𝒜P2\mathcal{A}_{P_{2}}. The bubble at the origin in the amoeba is deleted. This means that the topological information is lost by the ultra-discretization.

In the general case, for the Laurent polynomial

Pd(z1,,zk)=j=1d(zj+1zj)2d,P_{d}(z_{1},\ldots,z_{k})=\sum^{d}_{j=1}\left(z_{j}+\frac{1}{z_{j}}\right)-2d,

and the Newton polytope NP(Pd){\rm NP}(P_{d}) is

NP(Pd)=Conv(±𝒆1,,±𝒆d).{\rm NP}(P_{d})={\rm Conv}(\pm\bm{e}_{1},\ldots,\pm\bm{e}_{d}).

Furthermore, the tropical polynomial is

Trop(Pd)=i=1d(xi(xi))0.{\rm Trop}(P_{d})=\bigoplus_{i=1}^{d}(x_{i}\oplus(-x_{i}))\oplus 0.

Let S{xi,xi| 1id}S\subset\{x_{i},\ -x_{i}|\ 1\leq i\leq d\} be a set of the coordinates and them multiplied by 1-1, where SS does not contain xix_{i} and xi-x_{i} simultaneously. We set #S=r\#S=r (rd)(r\leq d) and

S={s1,s2,,sr}.S=\{s_{1},\ s_{2},\ \ldots,\ s_{r}\}.

The tropical hypersuface 𝒯Pd\mathcal{T}_{P_{d}} consists of the (dr+1)(d-r+1)-dimensional strongly convex polyhedral cones:

CS:=xjS0((i=1rsi)±xj).C_{S}:=\sum_{x_{j}\notin S}{\mathbb{R}}_{\geq 0}\left(\left(\sum_{i=1}^{r}s_{i}\right)\pm x_{j}\right).

This closed cone is the area such that the elements in SS are maximal in Trop(Pd){\rm Trop}(P_{d}), and corresponds to the (r1)(r-1)-dimansional face in NP(Pd){\rm NP}(P_{d}):

FS:=i=1rtisi wherei=1rti=1.F_{S}:=\sum_{i=1}^{r}t_{i}s_{i}\text{ where}\sum_{i=1}^{r}t_{i}=1.

Moreover, the defining equation of the (dr+1)(d-r+1)-dimensional hyperplane HH which contain the cone CSC_{S} is given as

s1=s2==sr,s_{1}=s_{2}=\ldots=s_{r},

where the operator in this equation is the ordinary one (i.e., not tropical).

Lemma 1.

CSC_{S} is perpendicular to FSF_{S}.

Proof. In this proof, we identifies the coordinates xix_{i} with the standard basis 𝒆i\bm{e}_{i} for 1id1\leq i\leq d. The barycenter of the face FSF_{S} is 1ri=1rsi\frac{1}{r}\sum_{i=1}^{r}s_{i}. Therefore, a point in FSF_{S} can be represent as

(i=1rti(s1si)+1ri=1rsi)\left(\sum_{i=1}^{r}t_{i}(s_{1}-s_{i})+\dfrac{1}{r}\sum_{i=1}^{r}s_{i}\right)

for integers (t1,t2,,tr)r(t_{1},\ t_{2},\ \ldots,\ t_{r})\in{\mathbb{R}}^{r}. The direction vectors of FSF_{S} are

𝒖i:=s1si,(1ir).\bm{u}_{i}:=s_{1}-s_{i},\ (1\leq i\leq r).

On the other hand, the vector in CSC_{S} can be written as

𝒗:=xjSaj((i=1rsi)+xj)+xjSa¯j((i=1rsi)xj).\bm{v}:=\sum_{x_{j}\notin S}a_{j}\left(\left(\sum_{i=1}^{r}s_{i}\right)+x_{j}\right)+\sum_{x_{j}\notin S}\bar{a}_{j}\left(\left(\sum_{i=1}^{r}s_{i}\right)-x_{j}\right).

for non-negative integers aj,aj¯a_{j},\bar{a_{j}}. We note that the inner product sisjs_{i}\cdot s_{j} and sixjs_{i}\cdot x_{j} satisfy that

sisj={1(i=j)0(ij)andsixj={±1(i=j)0(ij).s_{i}\cdot s_{j}=\left\{\begin{array}[]{l}1\ (i=j)\\ 0\ (i\neq j)\end{array}\right.\quad\text{and}\quad s_{i}\cdot x_{j}=\left\{\begin{array}[]{l}\pm 1\ (i=j)\\ 0\ (i\neq j)\end{array}\right..

Therefore, we have

𝒖i𝒗=xjSaj((i=1rsi)(s1si))+xjSa¯j((i=1rsi)(s1si))\bm{u}_{i}\cdot\bm{v}=\sum_{x_{j}\notin S}a_{j}\left(\left(\sum_{i=1}^{r}s_{i}\right)\cdot(s_{1}-s_{i})\right)+\sum_{x_{j}\notin S}\bar{a}_{j}\left(\left(\sum_{i=1}^{r}s_{i}\right)\cdot(s_{1}-s_{i})\right)
=xjSaj(s1s1)xjSaj(sisi)+xjSaj¯(s1s1)xjSaj¯(sisi)=0.=\sum_{x_{j}\notin S}a_{j}(s_{1}\cdot s_{1})-\sum_{x_{j}\notin S}a_{j}(s_{i}\cdot s_{i})+\sum_{x_{j}\notin S}\bar{a_{j}}(s_{1}\cdot s_{1})-\sum_{x_{j}\notin S}\bar{a_{j}}(s_{i}\cdot s_{i})=0.

\Box

By the definition of the cone CSC_{S} and Lemma 1, the relation between NP(Pd){\rm NP}(P_{d}) and 𝒯Pd{\mathcal{T}}_{P_{d}} can be described as follows.

Theorem 11.

For the Laurent polynomial PdP_{d}, the tropical hypersurface 𝒯Pd{\mathcal{T}}_{P_{d}} is given as the dual graph of the Newton polytope NP(Pd){\rm NP}(P_{d}).

By Theorem 11 and the definition of the “direction graph” in the first part of subsection 2.1, we have the following conclusion.

Corollary 1.

Let PP be one of the laurent polynomials Pd,P(m)P_{d},P^{(m)} or P(f)P^{(f)}. Then, the tropical hypersurface 𝒯Pd{\mathcal{T}}_{P_{d}} coincides with the direction graph DGd{\rm DG}_{d} of its walk.

Proof. Let GG^{*} be the dual graph of a graph GG. By Theorem 8 and Lemma 11,

𝒯Pd=NP(Pd)=DP(Pd)=DGd.{\mathcal{T}}_{P_{d}}={\rm NP}^{*}(P_{d})={\rm DP}^{*}(P_{d})={\rm DG}_{d}.

\Box

In this case, the the tropical hypersurface 𝒯Pd{\mathcal{T}}_{P_{d}} is determined by the Newton polytope NP(Pd){\rm NP}(P_{d}) completely, and it is clear that both of them have the same information of the walk. However, the amoeba 𝒜Pd{\mathcal{A}}_{P_{d}} is a little different from them because the amoeba contains a bubble at the origin. The Laurent polynomial PdP_{d} has a pole at the origin. This bubble does not seem to make much sense for the walk, the characterization of this bubble by the language of RW or QW is a topic for future work. In summary, it turns out that the Laurent polynomial PdP_{d} has almost only directional information of RW or QW.

Acknowledgments

The first author is supported by the JSPS Grant-in-aid for young scientisits No. 22K13959.

References

  • [1] Brunault, F., Zudilin, W.,: Many Variations of Mahler Measures: A Lasting Symphony (Australian Mathematical Society Lecture Series, Series Number 28). Cambridge University Press (2020)
  • [2] Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601, 139–157 (2006)
  • [3] Forsberg, M., Passare, M., Tsikh, A.: Laurent determinants and arangements of hyperplane amoebas. Advances in Math. 151, 45–70 (2000)
  • [4] Gelfant, I. M., Kapranov, M. M. and Zelevinsky, A. V.: Discriminants, resultants, and multidimensional determinants. Mathematics: Theory &\& Applications, Birkhäuser Boston, Inc., Boston, MA (1994)
  • [5] Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)
  • [6] Kenyon, R., Okounkov, A. and Sheffield, S.: Dimers and amoebae. Annals of Mathematics 163, 1019–1056 (2006)
  • [7] Komatsu, T., Konno, N., Sato, I.: Grover/Zeta Correspondence based on the Konno-Sato theorem. Quantum Inf. Process. 20, 268 (2021)
  • [8] Komatsu, T., Konno, N., Sato, I.: Walk/Zeta Correspondence. J. Stat. Phys. 190, 36, (2023)
  • [9] Komatsu, T., Konno, N., Sato, I.: IPS/Zeta Correspondence. Quantum Inf. Comput. 22, 251–269 (2022)
  • [10] Komatsu, T., Konno, N., Sato, I.: Vertex-Face/Zeta Correspondence. J. Algebraic Combin. 56, 527–545 (2022)
  • [11] Komatsu, T., Konno, N., Sato, I.: CTM/Zeta Correspondence. Quantum Stud.: Math. Found. 9, 165–173 (2022)
  • [12] Komatsu, T., Konno, N., Sato, I., Tamura, S.: A Generalized Grover/Zeta Correspondence. arXiv: 2201.03973 (2022)
  • [13] Komatsu, T., Konno, N., Sato, I., Tamura, S.: Mahler/Zeta Correspondence. Quantum Information Processing 21, 298 (2022)
  • [14] Konno, N.: Quantum Walks. In: Quantum Potential Theory, Franz, U., and Schurmann, M., Eds., Lecture Notes in Mathematics: Vol. 1954, 309–452, Springer-Verlag, Heidelberg (2008)
  • [15] Konno, N.: Limit theorems and absorption problems for one-dimensional correlated random walks. Stochastic Models 25, 28–49 (2009)
  • [16] Konno, N., Sato, I.: On the relation between quantum walks and zeta functions. Quantum Inf. Process. 11, 341-349 (2012)
  • [17] Konno, N., Tamura, S.: Walk/Zeta Correspondence for quantum and correlated random walks. Yokohama Math. J. 67, 125–152 (2021)
  • [18] Lundqvist, J.: An explicit calculation of the Ronkin function. Annales de la Faculté des Sciences de Toulouse Mathématiques 24, no. 2, 227–250 (2015)
  • [19] Mahler, K.: On some inequalities for polynomials in several variables. J. London Math. Soc. 37, 341–344 (1962)
  • [20] Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, New York (2014)
  • [21] McKee, J., Smyth, C.: Around the Unit Circle: Mahler Measure, Integer Matrices and Roots of Unity. Springer (2021).
  • [22] Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. Topology 43(5), 1035–1065 (2004)
  • [23] Norris, J. R.: Markov Chains. Cambridge University Press, Cambridge (1997)
  • [24] Passare, M., Rullgård, H.: Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope. Duke Math. J. 121, no. 3, 481–507 (2004)
  • [25] Portugal, R.: Quantum Walks and Search Algorithms, 2nd edition. Springer, New York (2018)
  • [26] Ronkin, L. I.: On zeros of almost periodic functions generated by functions holomorphic in a multicircular domain (Russian). Complex analysis in modern mathematics (Russian), 239–251, FAZIS, Moscow (2001)
  • [27] Spitzer, F.: Principles of Random Walk, 2nd edition. Springer, New York (1976)
  • [28] Takasaki, K.: Dimer model and its related topics (Japanese). Prospects of theories of integrable systems, RIMS Kokyuroku, 2007, 1541: 23–46
  • [29] Venegas-Andraca, S. E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)