This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robustness of optimal probabilistic storage and retrieval of unitary channels to noise

Jaroslav Pavličko and Mário Ziman RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
Abstract

We investigate robustness of probabilistic storage and retrieval device optimized for phase gates to noise. We use noisy input composed of convex combination of unitary channel with either depolarizing or dephasing channel. We find out that the resistance to dephasing noise is higher than to depolarization. Interestingly, for the depolarisation the retrieval reduces the degree of noise. We also examine the possible realizations showing that their performance is different when the noise is present.

pacs:
03.67.-a, 03.67.Ac

I Introduction

Quantum information theory and quantum computers themselves, started to draw more attention since the discovery of the first algorithms with potential quantum speed-ups such as factorization or quantum search shor ; grover , or seminal work on quantum cryptography QKD . The theory itself is bounded by no-go theorems noclon ; nobroadcast ; nohiding ; nodelete - theorems that put limitations on what the quantum processing of information can achieve. There exist two different conceptual ways how to circumvent the no-go theorems: either give up the exactness, or the determinism of the performance. In other words one is either satisfied only with approximate solutions or one keeps the requirement of exact solutions, with the caveat of only a certain probability of successfully reaching them.

At the heart of a classical computer science lies the concept of processor. Therefore, one envisions a similar device also for a quantum computer - a so-called quantum processor nielsen1 . However, due to the no-programming theorem nielsen1 , one can never construct a truly universal quantum processor capable of executing all transformations with absolute precision. One way of dealing with the no-programming theorem is to define processors that are able to implement the exact transformation however only with some probability probProc1 ; probProc2 (the other way is to use approximate processors appProc3 ; appProc4 ).

In a sense complementary problem to quantum programming is known as quantum learning. The aim is to design protocols to store and retrieve the action of an unknown quantum transformations. Informally, the goal of the storage phase is to exploit the transformation device given number of times NN and imprint its transformation into a quantum state of some memory system in a way that during the retrieval phase this state enables us (using the quantum processor) to implement the stored transformation given number of times MM. There are several variations of this problem and few of them has been already considered quantLearning ; storingQuantDyn ; STORunitary ; STORPhaseGate . In this work, we investigate the noise robustness of optimal probabilistic storage and retrieval device (PSAR) for qubit phase gates introduced in STORPhaseGate .

Following STORPhaseGate consider a one-parametric set of unitary gates Uφ=|00|+eiφ|11|U_{\varphi}=|0\rangle\langle 0|+e^{i\varphi}|1\rangle\langle 1| acting on a qubit Hilbert space 2\mathcal{H}_{2}. We assume that during the storing phase (see Figure 1)we can access the unknown unitary gate NN times and produce a state ωU\omega_{U} (memory). This state is used in the retrieval phase to restore the action of the gate with a probability of success psuccess=N/(N+1)p_{\rm success}=N/(N+1) independent of UφU_{\varphi}.

In this work we aim to analyze the performance of the PSAR devices introduced in STORPhaseGate in cases when during the storing phase the ideal unitary gates are replaced by their noisy versions. In particular, we consider two different noise models: depolarizing and phase-damping ones. The retrieved channels will be compared with the stored noisy gates, but also with the noiseless unitary gates. The paper is organized as follows: in Section II we describe the mathematical framework of quantum networks used to formulate and solve the problem. Section III provides mathematical formulation of the problem and introduces the noise models we investigate. In Section IV we discuss in details the case of 212\to 1 PSAR and Section V contains generalizations for N1N\to 1 case. The implementations are studied in Section VI and Section VII summarized the conclusions of the performed analysis.

Refer to caption
Figure 1: Schematic image of device PSAR optimized for implementation of channel 𝒰φ{\cal{U}}_{\varphi} for a general case when we have access to unitary channel NN times with the input state |ψ|\psi\rangle from equation (2). At the output of register D{\cal{H}}_{D}, we expect to retrieve the unitary channel in case of successful implementation. The state |ξ|\xi\rangle is the one we desire.

II Quantum Networks

Mathematical formalism used in this paper stems from the framework of quantum networks QN ; higherOrderQT ; architecture ; QN2 . Let us denote by (a)a{\cal{L}}(\mathcal{H}_{a})\equiv{\cal{L}}_{a} the set of linear operators on a finite-dimensional Hilbert space a\mathcal{H}_{a} and by (a,b)ab{\cal{L}}(\mathcal{H}_{a},\mathcal{H}_{b})\equiv{\cal{L}}_{ab} the set of linear operators from a\mathcal{H}_{a} to b\mathcal{H}_{b}. Quantum operation 𝒪:ab{\cal{O}}:{\cal{L}}_{a}\to{\cal{L}}_{b} is a completely positive trace non-increasing linear map. Trace-preserving quantum operation, thus mapping quantum states into quantum states, is called quantum channel.

There exists a one-to-one correspondence (Choi-Jamiolkowski isomorphism) between linear operators A(a,b)A\in{\cal{L}}(\mathcal{H}_{a},\mathcal{H}_{b}) and vectors |Aab|A\rangle\!\rangle\in\mathcal{H}_{a}\otimes\mathcal{H}_{b}:

A=Amn|mn||A=mnAmn|m|n\displaystyle A=\sum A_{mn}|m\rangle\langle n|\quad\leftrightarrow\quad|A\rangle\!\rangle=\sum_{mn}A_{mn}|m\rangle|n\rangle

where Amn=m|A|nA_{mn}=\langle m|A|n\rangle, {|m}\{|m\rangle\} and {|n}\{|n\rangle\} are orthonormal basis of a\mathcal{H}_{a} and b\mathcal{H}_{b}, respectively. Similarly, every quantum operation 𝒪{\cal{O}} is associated with a positive operator (Choi operator)

Oba=(𝒪a)(|II|),\displaystyle O_{ba}=({\cal{O}}\otimes{\cal{I}}_{a})({|I\rangle\!\rangle\langle\!\langle I|}),

where a{\cal{I}}_{a} is an identity map on (a){\cal{L}}(\mathcal{H}_{a}) and IaaI\in{\cal{L}}_{aa} is the identity operator, i.e. |I=n|n|n|I\rangle\!\rangle=\sum_{n}|n\rangle\otimes|n\rangle.

Consider a composition of two operations 𝒪:ab){\cal{O}}:{\cal{L}}_{a}\to{\cal{L}}_{b}) and 𝒪~:bc\widetilde{\cal{O}}:{\cal{L}}_{b}\to{\cal{L}}_{c}. Then, the Choi operator of the composition 𝒪~𝒪\widetilde{\cal{O}}\circ\cal{O} is expressed via link product denoted by \star and defined as follows:

[OO~]ac=trb[(𝕀cOabTb)(𝕀aO~bc)],\displaystyle[O\star\widetilde{O}]_{ac}=\operatorname{tr}_{b}\left[(\mathbb{I}_{c}\otimes O_{ab}^{T_{b}})(\mathbb{I}_{a}\otimes\widetilde{O}_{bc})\right],

where TbT_{b} denotes partial transposition on space b\mathcal{H}_{b} and 𝕀a\mathbb{I}_{a} stands for the identity operator on a\mathcal{H}_{a}.

Refer to caption
Figure 2: Depiction of a quantum network formed by a concatenation of NN quantum operations {Oi},i=1,,N\{O_{i}\},i=1,\cdots,N.

Quantum network {\cal{R}} (also known as quantum comb) is a concatenation of quantum operations 𝒪1,,𝒪N{\cal{O}}_{1},\cdots,{\cal{O}}_{N} (see Fig. (2)), where some outputs of the preceding operation are connected with some inputs of the subsequent one. The connectivity structure is included in the definition of each particular link product in the whole sequence of compositions. As a result after linking operations some of the outputs and inputs remain open, thus, allowing the quantum network to accept quantum channels and operations of a suitable input-output type at its inputs. Overall the quantum network {\cal{R}} transforms N1N-1 operations into one quantum operation. The associated Choi operator of quantum network {\cal{R}} is an operator RN=O1O2ONR^{N}=O_{1}\star O_{2}\star\cdots\star O_{N} acting on the Hilbert space inout{\cal{H}_{\rm in}}\otimes{\cal{H}_{\rm out}}, where in=i=0N12i{\cal{H}}_{\rm in}=\otimes_{i=0}^{N-1}{\cal{H}}_{2i} represents the causally ordered input spaces and out=i=0N12i+1{\cal{H}}_{\rm out}=\otimes_{i=0}^{N-1}{\cal{H}}_{2i+1} stands for the output spaces. Choi operators of deterministic (trace-preserving) quantum networks obey the recursive normalization conditions:

tr2k1[Rk]=𝕀2k2Rk1,\displaystyle\operatorname{tr}_{2k-1}[R^{k}]=\mathbb{I}_{2k-2}\otimes R^{k-1},

for k=1,,Nk=1,\cdots,N. For probabilistic quantum network 𝒮{\cal{S}} there always exists a deterministic quantum network {\cal{R}} such that SRS\leq R. Collection of probabilistic quantum networks 𝒮1,,𝒮m{\cal{S}}_{1},\cdots,{\cal{S}}_{m} summing up to a deterministic quantum network x𝒮x=\sum_{x}{\cal{S}}_{x}={\cal{R}} form a generalized quantum instrument. Generalized quantum instrument fulfills a similar role for quantum networks as does quantum instrument for quantum channels. The index xx represents the corresponding classical outcome.

III PSAR with noise.

The optimal probabilistic storage and retrieval (PSAR) for phase gates introduced in STORPhaseGate consists of the probe state |ΨAA|\Psi\rangle_{AA^{\prime}}, where AA labels all inputs of NN phase gates and AA^{\prime} represent the ancillary part of the memory, and the retrieval operation s{\cal R}_{s} using the memory MM to implement the phase gate action on the unknown input system CC that is transformed into the system DD (see Fig. 1).

In particular, during the storing this state is transformed into

|Ψφ=UφUφIA|ΨAA,|\Psi_{\varphi}\rangle=U_{\varphi}\otimes\cdots\otimes U_{\varphi}\otimes I_{A^{\prime}}|\Psi\rangle_{AA^{\prime}}\,, (1)

where Uφ=|00|+eiφ|11|U_{\varphi}=|0\rangle\langle 0|+e^{i\varphi}|1\rangle\langle 1| is the phase gate. It was derived in STORPhaseGate that optimal probe state takes the form

|ΨAA=1N+1j|ΠjAA,|\Psi\rangle_{AA^{\prime}}=\frac{1}{\sqrt{N+1}}\bigoplus_{j}|\Pi_{j}\rangle\!\rangle_{AA^{\prime}}\,, (2)

where Πj\Pi_{j} are projectors onto Hilbert subspaces j{\cal H}_{j}. These subpsaces follows from the irreducible representations of U(1)U(1)

UφN=j=0NeijφImj,U_{\varphi}^{\otimes N}=\bigoplus_{j=0}^{N}e^{ij\varphi}\otimes I_{m_{j}}\,, (3)

where ImjI_{m_{j}} stands for identity operator in the multiplicity subspace mj{\cal H}_{m_{j}}, thus, inducing the decomposition A=jjmj{\cal H}_{A}=\sum_{j}{\cal H}_{j}\otimes{\cal H}_{m_{j}} with one-dimensional j{\cal H}_{j}. Consequently,

|Ψφ=1N+1jeijφ|Πj.|\Psi_{\varphi}\rangle=\frac{1}{\sqrt{N+1}}\bigoplus_{j}e^{ij\varphi}|\Pi_{j}\rangle\!\rangle\,. (4)

We may set Πj=|j¯j¯|\Pi_{j}=|\overline{j}\rangle\langle\overline{j}| with |j¯=|0(Nj)|1j2N|\overline{j}\rangle=|0^{\otimes(N-j)}\rangle\otimes|1^{\otimes j}\rangle\in{\cal H}_{2}^{\otimes N}. Then |ΨAA=(1/N+1)j|j¯j¯|\Psi\rangle_{AA^{\prime}}=(1/\sqrt{N+1})\sum_{j}|\overline{j}\overline{j}\rangle.

Let us denote the memory state as Ψφ=|ΨφΨφ|\Psi_{\varphi}=|\Psi_{\varphi}\rangle\langle\Psi_{\varphi}|. It was shown in STORPhaseGate that using the Choi operator

Rs=J=0N1k,k=01|J+k,J+kMJ+k,J+k||kkCDkk|R_{s}=\bigoplus_{J=0}^{N-1}\sum_{k,k^{\prime}=0}^{1}|J+k,J+k\rangle_{M}\langle J+k^{\prime},J+k^{\prime}|\otimes|kk\rangle_{CD}\langle k^{\prime}k^{\prime}|

associated with the retrieval operation s{\cal R}_{s} the action of the retrieval is evaluated as follows

RsΨφ\displaystyle R_{s}\star\Psi_{\varphi} =\displaystyle= trM[Rs(ΨφTICD)]=Ψφ|Rs|Ψφ\displaystyle{\rm tr}_{M}[R_{s}(\Psi_{\varphi}^{T}\otimes I_{CD})]=\langle\Psi_{\varphi}^{*}|R_{s}|\Psi_{\varphi}^{*}\rangle
=\displaystyle= NN+1|UφUφ|,\displaystyle\frac{N}{N+1}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|\,,

where |Ψφ=(1/N+1)jeijφ|Πj|\Psi_{\varphi}^{*}\rangle=(1/\sqrt{N+1})\oplus_{j}e^{-ij\varphi}|\Pi_{j}\rangle\!\rangle and N/(N+1)N/(N+1) is the success probability, because

RsΨφ|ξξ|=NN+1Uφ|ξξ|Uφ.R_{s}\star\Psi_{\varphi}\star|\xi\rangle\langle\xi|=\frac{N}{N+1}U_{\varphi}|\xi\rangle\langle\xi|U_{\varphi}^{\dagger}\,. (5)

There are several variations how the noise can enter the design of the storing and retrieval procedures. In what follows we will assume the performance of the black box PSAR introduced in STORPhaseGate is unchanged and only the phase gates we are aiming to store are noisy. That is, instead of 𝒰φ()=UφUφ{\cal U}_{\varphi}(\cdot)=U_{\varphi}\cdot U_{\varphi}^{\dagger} the ”phase gates” implement the following transformation φ=q𝒰φ+(1q)𝒩{\cal E}_{\varphi}=q{\cal U}_{\varphi}+(1-q){\cal N}, where 𝒩{\cal N} is the noise. We will consider two types of noise:

  • Depolarisation. In this case we set 𝒩=𝒞I/2{\cal N}={\cal C}_{I/2}, where 𝒞I/2{\cal C}_{I/2} stands for the completely depolarizing noise (also known as white noise) transforming any quantum state ϱ\varrho into the complete mixture, i.e. 𝒞I/2(ϱ)=I/2{\cal{C}}_{I/2}(\varrho)=I/2. The phase gate implements the channel

    φ=q𝒰φ+(1q)𝒞I/2,\displaystyle{\cal{E}}_{\varphi}=q{\cal{U}}_{\varphi}+(1-q){\cal{C}}_{I/2},

    being a convex combination (q[0,1]q\in[0,1]) of the desired unitary channel and a completely depolarizing noise 𝒞I/2{\cal C}_{I/2} with the Choi operator C=12(|0000|+|0101|+|1010|+|1111|)=(II)/2C=\frac{1}{2}(|00\rangle\langle 00|+|01\rangle\langle 01|+|10\rangle\langle 10|+|11\rangle\langle 11|)=(I\otimes I)/2.

  • Dephasing. In this case we set 𝒩=𝒫{\cal N}={\cal P}, where 𝒫{\cal P} stands for the completely dephasing channel for all states ϱ\varrho diminishing off-diagonal terms in the computational basis identified with eigenvectors of σz\sigma_{z} operator, i.e. 𝒫(ϱ)=12(ϱ+σzϱσz)=diag[ϱ]=0|ϱ|0|00|+1|ϱ|1|11|{\cal P}(\varrho)=\frac{1}{2}(\varrho+\sigma_{z}\varrho\sigma_{z})={\rm diag}[\varrho]=\langle 0|\varrho|0\rangle|0\rangle\langle 0|+\langle 1|\varrho|1\rangle|1\rangle\langle 1|. That is, phase gates are implementing convex combination

    φ=q𝒰φ+(1q)𝒫,\displaystyle{\cal{F}}_{\varphi}=q{\cal{U}}_{\varphi}+(1-q){\cal{P}},

    where q[0,1]q\in[0,1] and the Choi operator of the completely dephasing channel reads P=|0000|+|1111|P=|00\rangle\langle 00|+|11\rangle\langle 11|.

IV Case-study: 212\rightarrow 1 PSAR with noise.

In this section we will investigate in details the situation when the unknown noisy phase gate device is used twice in the storing phase. The situation is depicted in Fig. 3. For brevity we introduce the following notation for the involved Hilbert spaces 13=A{\cal{H}}_{13}={\cal{H}}_{A}, 24=B{\cal{H}}_{24}={\cal{H}}_{B}, 0=C{\cal{H}}_{0}={\cal{H}}_{C} and 5=D{\cal{H}}_{5}={\cal{H}}_{D}. Choi operator for two uses of the considered channel is given as follows:

Eφ,AB2=q2|Uφ2ABUφ2|+(1q2)N12N34\displaystyle E_{\varphi,AB}^{\otimes 2}=q^{2}|U_{\varphi}^{\otimes 2}\rangle\!\rangle_{AB}\langle\!\langle U^{\otimes 2}_{\varphi}|+(1-q^{2})N_{12}\otimes N_{34}
+q(1q)(|Uφ12Uφ|N34+N12|Uφ34Uφ|).\displaystyle+q(1-q)\left(|U_{\varphi}\rangle\!\rangle_{12}\langle\!\langle U_{\varphi}|\otimes N_{34}+N_{12}\otimes|U_{\varphi}\rangle\!\rangle_{34}\langle\!\langle U_{\varphi}|\right).

Unitary phase gate part can be written as follows

Uφ2\displaystyle U_{\varphi}^{\otimes 2} =|0000|+eiφ(|0101|+|1010|)+ei2φ|1111|\displaystyle=|00\rangle\langle 00|+e^{i\varphi}(|01\rangle\langle 01|+|10\rangle\langle 10|)+e^{i2\varphi}|11\rangle\langle 11|
=j=02eijφImj=k=02eikφ|k¯k¯|+eiφ|3¯3¯|\displaystyle=\bigoplus_{j=0}^{2}e^{ij\varphi}\otimes I_{m_{j}}=\sum_{k=0}^{2}e^{ik\varphi}|\overline{k}\rangle\langle\overline{k}|+e^{i\varphi}|\overline{3}\rangle\langle\overline{3}|
,\displaystyle\,,

where we introduced the vectors |0¯|00|\overline{0}\rangle\equiv|00\rangle, |1¯|01|\overline{1}\rangle\equiv|01\rangle, |2¯|11|\overline{2}\rangle\equiv|11\rangle, |3¯|10|\overline{3}\rangle\equiv|10\rangle and ImjI_{m_{j}} denotes the identity operator on multiplicity spaces. Using this notation the probe state |Ψ|\Psi\rangle reads

|ΨAA=j=0213|ΠjAA=13(|0¯0¯+|1¯1¯+|2¯2¯)AA.\displaystyle\begin{split}|\Psi\rangle_{AA^{\prime}}&=\bigoplus_{j=0}^{2}\frac{1}{\sqrt{3}}|\Pi_{j}\rangle\!\rangle_{AA^{\prime}}=\frac{1}{\sqrt{3}}(|\overline{0}\overline{0}\rangle+|\overline{1}\overline{1}\rangle+|\overline{2}\overline{2}\rangle)_{AA^{\prime}}\,.\end{split}
Refer to caption
Figure 3: Schematic image of device PSAR implementing channel φ{\cal{E}}_{\varphi} twice with the input state |ψ|\psi\rangle from equation (2). At the output of register 5{\cal{H}}_{5}, we expect to retrieve the unitary channel, possibly with some noise, in case of successful implementation.

IV.1 Depolarization noise.

For the depolarizing noisy phase gates the storing results in the state

Ψφ\displaystyle\Psi_{\varphi} =Eφ,AB2|ΨAAΨ|\displaystyle=E_{\varphi,AB}^{\otimes 2}\star|\Psi\rangle_{AA^{\prime}}\langle\Psi| (6)
=trA[(Eφ,AB2IA)(|ΨAAΨ|TAIB)]\displaystyle=\operatorname{tr}_{A}[(E_{\varphi,AB}^{\otimes 2}\otimes I_{A^{\prime}})(|\Psi\rangle_{AA^{\prime}}\langle\Psi|^{T_{A}}\otimes I_{B})]
=q2ϱU,U+q(1q)(ϱC,U+ϱU,C)+(1q)2ϱC,C,\displaystyle=q^{2}\varrho^{U,U}+q(1-q)\left(\varrho^{C,U}+\varrho^{U,C}\right)+(1-q)^{2}\varrho^{C,C}\,,

where

ϱU,U\displaystyle\varrho^{U,U} =\displaystyle= trA[(|Uφ2Uφ2|ABIA)(|ΨΨ|AATAIB)]\displaystyle\operatorname{tr}_{A}\bigg{[}\left(|U_{\varphi}^{\otimes 2}\rangle\!\rangle\langle\!\langle U_{\varphi}^{\otimes 2}|_{AB}\otimes I_{A^{\prime}}\right)\left(|\Psi\rangle\langle\Psi|_{AA^{\prime}}^{T_{A}}\otimes I_{B}\right)\bigg{]} (7)
=\displaystyle= j,k=0213ei(jk)φ|j¯j¯k¯k¯|BA,\displaystyle\bigoplus_{j,k=0}^{2}\frac{1}{3}e^{i(j-k)\varphi}|\overline{j}\overline{j}\rangle\langle\overline{k}\overline{k}|_{BA^{\prime}}\,,
ϱC,C\displaystyle\varrho^{C,C} =\displaystyle= trA[(12I1212I34IA)(|ΨAAΨ|TAIB)]\displaystyle\operatorname{tr}_{A}\Bigg{[}\left(\frac{1}{2}I_{12}\otimes\frac{1}{2}I_{34}\otimes I_{A^{\prime}}\right)(|\Psi\rangle_{AA^{\prime}}\langle\Psi|^{T_{A}}\otimes I_{B})\Bigg{]} (8)
=\displaystyle= 14×13(IBk=02|k¯k¯|A),\displaystyle\frac{1}{4}\times\frac{1}{3}\left(I_{B}\otimes\sum_{k=0}^{2}|\overline{k}\rangle\langle\overline{k}|_{A^{\prime}}\right),
ϱU,C\displaystyle\varrho^{U,C} =\displaystyle= 16(Π00¯+Π11¯+Π22¯+Π01¯+Π10¯+Π32¯)+\displaystyle\frac{1}{6}(\Pi_{\overline{00}}+\Pi_{\overline{11}}+\Pi_{\overline{22}}+\Pi_{\overline{01}}+\Pi_{\overline{10}}+\Pi_{\overline{32}})+ (9)
+16eiφ(|32¯01¯|+|22¯11¯|)+c.c.\displaystyle+\frac{1}{6}e^{i\varphi}(|\overline{32}\rangle\langle\overline{01}|+|\overline{22}\rangle\langle\overline{11}|)+c.c.
ϱC,U\displaystyle\varrho^{C,U} =\displaystyle= 16(Π00¯+Π11¯+Π22¯+Π12¯+Π21¯+Π30¯)+\displaystyle\frac{1}{6}(\Pi_{\overline{00}}+\Pi_{\overline{11}}+\Pi_{\overline{22}}+\Pi_{\overline{12}}+\Pi_{\overline{21}}+\Pi_{\overline{30}})+ (10)
+16eiφ(|11¯00¯|+|21¯30¯|)+c.c.,\displaystyle+\frac{1}{6}e^{i\varphi}(|\overline{11}\rangle\langle\overline{00}|+|\overline{21}\rangle\langle\overline{30}|)+c.c.\,,

where we used the notation Πjj¯=|jj¯jj¯|\Pi_{\overline{jj}}=|\overline{jj}\rangle\langle\overline{jj}|. The evaluation of the retrieving instrument

Rs=J=01k,k=01|J+k,J+kMJ+k,J+k||kkCDkk|.R_{s}=\bigoplus_{J=0}^{1}\sum_{k,k^{\prime}=0}^{1}|J+k,J+k\rangle_{M}\langle J+k^{\prime},J+k^{\prime}|\otimes|kk\rangle_{CD}\langle k^{\prime}k^{\prime}|\,.

acting on the stored state (Eq. (6)) reduces to its evaluation for individual terms (Eqs. (7),(8),(9),(10)) gives

RsϱU,U\displaystyle R_{s}\star\varrho^{U,U} =\displaystyle= 23|UφUφ|,\displaystyle\frac{2}{3}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|\,,
RsϱU,C\displaystyle R_{s}\star\varrho^{U,C} =\displaystyle= 16[|UφUφ|+(|0000|+|1111|)],\displaystyle\frac{1}{6}[|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|+(|00\rangle\langle 00|+|11\rangle\langle 11|)]\,,
RsϱC,U\displaystyle R_{s}\star\varrho^{C,U} =\displaystyle= RsϱU,C,\displaystyle R_{s}\star\varrho^{U,C}\,,
RsϱC,C\displaystyle R_{s}\star\varrho^{C,C} =\displaystyle= 16(|0000|+|1111|).\displaystyle\frac{1}{6}(|00\rangle\langle 00|+|11\rangle\langle 11|)\,.

It follows the retrieval results in the transformation

RsΨφ=trM[Rs,MCD(ϱMTICD)]\displaystyle R_{s}\star\Psi_{\varphi}=\operatorname{tr}_{M}\left[R_{s,MCD}\left(\varrho_{M}^{T}\otimes I_{CD}\right)\right]
=23[q(1+q)2|UφUφ|+1q24(|0000|+|1111|)]\displaystyle=\frac{2}{3}\left[\frac{q(1+q)}{2}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|+\frac{1-q^{2}}{4}(|00\rangle\langle 00|+|11\rangle\langle 11|)\right]
=23(1+q)24(2q1+q|UφUφ|+1q1+qP),\displaystyle=\frac{2}{3}\frac{(1+q)^{2}}{4}\left(\frac{2q}{1+q}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|+\frac{1-q}{1+q}P\right)\,,

being a convex mixture of the desired phase gate and the phase damping channel 𝒫{\cal P}. The success probability equals (1+q)2/6(1+q)^{2}/6, thus, it depends on noise parameter qq. Let us recall that the retrieved channel possesses qualitatively different noise if compared to the originally stored channel.

IV.2 Dephasing Noise.

We will follow the same calculation as for the 212\rightarrow 1 case of depolarization. Choi operator in this case has the following form:

Fφ2\displaystyle F_{\varphi}^{\otimes 2} =q2|Uφ12Uφ||Uφ34Uφ|+(1q)2P12P34\displaystyle=q^{2}|U_{\varphi}\rangle\!\rangle_{12}\langle\!\langle U_{\varphi}|\otimes|U_{\varphi}\rangle\!\rangle_{34}\langle\!\langle U_{\varphi}|+(1-q)^{2}P_{12}\otimes P_{34}
+q(1q)(|Uφ12Uφ|P34+P12|Uφ34Uφ|),\displaystyle+q(1-q)\left(|U_{\varphi}\rangle\!\rangle_{12}\langle\!\langle U_{\varphi}|\otimes P_{34}+P_{12}\otimes|U_{\varphi}\rangle\!\rangle_{34}\langle\!\langle U_{\varphi}|\right),

where P=j=01|jjjj|P=\sum_{j=0}^{1}|jj\rangle\langle jj|. After the storage, the memory is found in the state

Ψφ\displaystyle\Psi_{\varphi} =\displaystyle= Fφ,AB2|ΨAAΨ|\displaystyle F_{\varphi,AB}^{\otimes 2}\star|\Psi\rangle_{AA^{\prime}}\langle\Psi|
=\displaystyle= q2ϱU,U+q(1q)(ϱP,U+ϱU,P)+(1q)2ϱP,P,\displaystyle q^{2}\varrho^{U,U}+q(1-q)(\varrho^{P,U}+\varrho^{U,P})+(1-q)^{2}\varrho^{P,P}\,,

where state ϱU,U\varrho^{U,U} is the same as in equation (7) and

ϱU,P\displaystyle\varrho^{U,P} =\displaystyle= 13(Π00¯+Π11¯+Π22¯+eiφ|11¯22¯|+c.c.),\displaystyle\frac{1}{3}(\Pi_{\overline{00}}+\Pi_{\overline{11}}+\Pi_{\overline{22}}+e^{-i\varphi}|\overline{11}\rangle\langle\overline{22}|+c.c.)\,,
ϱP,U\displaystyle\varrho^{P,U} =\displaystyle= 13(Π00¯+Π11¯+Π22¯+eiφ|00¯11¯|+c.c.),\displaystyle\frac{1}{3}(\Pi_{\overline{00}}+\Pi_{\overline{11}}+\Pi_{\overline{22}}+e^{-i\varphi}|\overline{00}\rangle\langle\overline{11}|+c.c.)\,,
ϱP,P\displaystyle\varrho^{P,P} =\displaystyle= 13(Π00¯+Π11¯+Π22¯).\displaystyle\frac{1}{3}(\Pi_{\overline{00}}+\Pi_{\overline{11}}+\Pi_{\overline{22}})\,.

Using the phase gate PSAR retrieving operation we obtain

RsϱU,P=RsϱP,U=13(|UφUφ|+P)CD,\displaystyle R_{s}\star\varrho^{U,P}=R_{s}\star\varrho^{P,U}=\frac{1}{3}(|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|+P)_{CD}\,,
RsϱP,P=23PCD,RsϱU,U=23|UφUφ|.\displaystyle R_{s}\star\varrho^{P,P}=\frac{2}{3}P_{CD}\,,\quad R_{s}\star\varrho^{U,U}=\frac{2}{3}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|\,.

Putting it all together we find

RsΨφ\displaystyle R_{s}\star\Psi_{\varphi} =\displaystyle= trM[Rs,MCD(Ψφ,MTMICD)]\displaystyle\operatorname{tr}_{M}\left[R_{s,MCD}\left(\Psi_{\varphi,M}^{T_{M}}\otimes I_{CD}\right)\right]
=\displaystyle= 23[q|UφCDUφ|+(1q)PCD].\displaystyle\frac{2}{3}\Bigg{[}q|U_{\varphi}\rangle\!\rangle_{CD}\langle\!\langle U_{\varphi}|+\left(1-q\right)P_{CD}\Bigg{]}\,.

The success probability equals 2/32/3 and is independent of noise parameter qq. Moreover, the retrieved channel coincides with the noisy phase gate, i.e. the dephasing noisy phase gates are optimally stored and retrieved by PSAR protocol.

V N1N\to 1 PSAR with noisy phase gates

Let us start the general N1N\to 1 analysis with the depolarization noise. Performing a direct calculation of the retrieval for PSAR derived in STORPhaseGate we find out that for arbitrary NN if we leave 1N+1\frac{1}{N+1} in front of all the parentheses then the factors next to |UφUφ||U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}| follow the pattern:

1N20qN(1q)0+NN121qN1(1q)1++N12N1q1(1q)N1+102Nq0(1q)N.\displaystyle\begin{split}&1\frac{N}{2^{0}}q^{N}(1-q)^{0}+N\frac{N-1}{2^{1}}q^{N-1}(1-q)^{1}+\\ &\dots+N\frac{1}{2^{N-1}}q^{1}(1-q)^{N-1}+1\frac{0}{2^{N}}q^{0}(1-q)^{N}\,.\end{split} (13)

Similarly the factors in front of |0000|+|1111||00\rangle\langle 00|+|11\rangle\langle 11| are of the form:

1020qN(1q)0+N121qN1(1q)1++NN12N1q1(1q)N1+1N2Nq0(1q)N.\displaystyle\begin{split}&1\frac{0}{2^{0}}q^{N}(1-q)^{0}+N\frac{1}{2^{1}}q^{N-1}(1-q)^{1}+\\ &\dots+N\frac{N-1}{2^{N-1}}q^{1}(1-q)^{N-1}+1\frac{N}{2^{N}}q^{0}(1-q)^{N}\,.\end{split} (14)

In these expressions we can identify binomial distribution and the whole action of the retrieval process results in the retrieved transformation

RsΨφ=1N+1k=0N(Nk)qNk(1q)k[Nk2k|UφUφ|+k2k(|0000|+|1111|)]=N(1+q)N2N(N+1)[2q1q|UφUφ|+1q1+q(|0000|+|1111|)].\displaystyle\begin{split}&R^{s}\star\Psi_{\varphi}=\frac{1}{N+1}\sum_{k=0}^{N}\binom{N}{k}q^{N-k}(1-q)^{k}\\ &\Bigg{[}\frac{N-k}{2^{k}}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|+\frac{k}{2^{k}}(|00\rangle\langle 00|+|11\rangle\langle 11|)\Bigg{]}\\ &=\frac{N(1+q)^{N}}{2^{N}(N+1)}\Bigg{[}\frac{2q}{1-q}|U_{\varphi}\rangle\!\rangle\langle\!\langle U_{\varphi}|\\ &\qquad+\frac{1-q}{1+q}(|00\rangle\langle 00|+|11\rangle\langle 11|)\Bigg{]}.\end{split}

Using this result we can formulate the following theorem.

Theorem 1.

Implementation of the optimal phase gate N1N\to 1 probabilistic storing and retrieval device on noisy phase gates with the depolarization noise, i.e. φ=q𝒰φ+(1q)𝒞I/2{\cal E}_{\varphi}=q{\cal U}_{\varphi}+(1-q){\cal C}_{I/2} implements the noisy channel

φ=2q1+q𝒰φ+1q1+q𝒫,{\cal E^{\prime}_{\varphi}}=\frac{2q}{1+q}{\cal U}_{\varphi}+\frac{1-q}{1+q}{\cal P}\,, (15)

where 𝒫{\cal P} denotes the complete phase damping transformation, i.e. full diagonalization in the computational basis. The probability of success is given by the formula

psuccess=NN+1(1+q2)N.p_{\rm success}=\frac{N}{N+1}\left(\frac{1+q}{2}\right)^{N}\,. (16)

We can see that with the increasing number of uses of noisy phase gates, the probability of successful retrieval is vanishing as NN goes to infinity, however, the quality of the retrieval is exactly the same.

The same analysis for the case of dephasing noise is more straighforward. The calculation gives that the retrieved channel is independent of the number of uses NN, thus, the optimal PSAR for phase gates does the same job also for their noisy version if the noise is modeled by the discussed dephasing.

Theorem 2.

Implementation of the optimal phase gate N1N\to 1 probabilistic storing and retrieval device on noisy phase gates with the dephasing noise, i.e. φ=q𝒰φ+(1q)𝒫{\cal F}_{\varphi}=q{\cal U}_{\varphi}+(1-q){\cal P} implements the noisy channel

φ=q𝒰φ+(1q)𝒫.{\cal F^{\prime}_{\varphi}}=q{\cal U}_{\varphi}+(1-q){\cal P}\,. (17)

The probability of success is given by the formula psuccess=N/(N+1)p_{\rm success}=N/(N+1).

V.1 Comparison

Fig. 4 illustrates the dependence of success probability of the retrieval on the noise parameter qq for both depolarizing (solid lines) and dephasing (dashed lines) noisy phase gates for cases N=1N=1, N=3N=3, N=7N=7, and N=15N=15. The probability of success for dephasing noise is higher. In case of depolarizing channel the success probability goes to 0 together with qq (increasing noise), but there is always some interval of high qq for which the success probability is improving if compared with one use success rate 1/21/2. Surprisingly, for larger degrees of depolarizing noise, more uses do not lead to improving the success probability.

Refer to caption
Figure 4: (Color online) The dependence of the success probability psuccp_{\rm succ} on the noise parameter qq for different number NN of uses of the channel. The solid lines represent the cases of depolarizing noise and dashed lines illustrate the cases of phase damping noise.

In Fig. 5 we compare the degree of noise of the retrieved transformation qq^{\prime} with the original degree of noise qq of phase gates for both types of noise: depolarizing channel (solid lines) and dephasing noise (dashed lines). For both cases the relation qqq\to q^{\prime} is independent on the number of uses NN. In case of dephasing q=qq^{\prime}=q, thus, the noise is the same. However, for case of depolarizing noise, q=2q/(1+q)qq^{\prime}=2q/(1+q)\geq q. Therefore, we may conclude that PSAR reduces the depolarizing noise. Unfortunately, this noise reduction does not improve with the number of uses.

Refer to caption
Figure 5: (Color online) Comparison of noise degrees qq (before the storing) and qq^{\prime} (after the retrieval) for depolarizing noise (solid line) and phase damping noise (dashed line).

VI Implementations

In this part we will study two different implementations of optimal PSAR device for phase gate: first one due to Vidal-Masanes-Cirac from Ref. storingQuantDyn limited to N=2k1N=2^{k}-1 uses and the one reported in Ref. STORPhaseGate minimizing the size of the storage register to single qudit. Both are equivalent if noiseless phase gates are considered, however, in the presence of noise they may lead to different results.

VI.1 Vidal-Masanes-Cirac

First of the implementations originally proposed by Vidal, Masanes and Cirac in Ref. storingQuantDyn is depicted in the figure 6. The N=1N=1 storage consists of the application of the noisy phase gate on the state |+=(|0+|1)/2|+\rangle=(|0\rangle+|1\rangle)/\sqrt{2} to obtain the state

Ψφ=φ(|++|)=φ(|++|)=qUφ|ξξ|Uφ+1q2I.\Psi_{\varphi}={\cal{E}}_{\varphi}(|+\rangle\langle+|)={\cal{F}}_{\varphi}(|+\rangle\langle+|)=qU_{\varphi}{|\xi\rangle\langle\xi|}U_{\varphi}^{\dagger}+\frac{1-q}{2}I\,.

Let us stress this state is the same for both considered noises. The retrieval step is composed of the application of the controled NOT gate UCNOTU_{\rm CNOT} on the unknown state |ξ=a|0+b|1|\xi\rangle=a|0\rangle+b|1\rangle (the control system) and the stored state Ψφ\Psi_{\varphi} (the target system), i.e. the final state reads

Ξφ\displaystyle\Xi_{\varphi}^{\prime} =\displaystyle= UCNOT[|ξξ|Ψφ]\displaystyle U_{\rm CNOT}[{|\xi\rangle\langle\xi|}\otimes\Psi_{\varphi}]
=\displaystyle= 12[qUφ|ξξ|Uφ+(1q)diag(ξ)]|00|\displaystyle\frac{1}{2}[qU_{\varphi}{|\xi\rangle\langle\xi|}U_{\varphi}^{\dagger}+(1-q){\rm diag}(\xi)]\otimes{|0\rangle\langle 0|}
+12[qUφ|ξξ|Uφ+(1q)diag(ξ)]|11|,\displaystyle+\frac{1}{2}[qU_{-\varphi}{|\xi\rangle\langle\xi|}U_{-\varphi}^{\dagger}+(1-q){\rm diag}(\xi)]\otimes{|1\rangle\langle 1|}\,,

where diag(ξ)=0|ξ|0|00|+1|ξ|1|11|{\rm diag}(\xi)=\langle 0|\xi|0\rangle{|0\rangle\langle 0|}+\langle 1|\xi|1\rangle{|1\rangle\langle 1|}. Measuring the memory register in the computational basis the outcome value 0 identifies the successful realization of the noisy phase gate

|ξξ|qUφ|ξξ|Uφ+(1q)diag(ξ),|\xi\rangle\langle\xi|\mapsto qU_{\varphi}{|\xi\rangle\langle\xi|}U_{\varphi}^{\dagger}+(1-q){\rm diag}(\xi)\,,

with success probability psuccess=1/2p_{\rm success}=1/2. The case of failure can be corrected by storing and retrieving sequence of two phase gates

Ψφ(2)\displaystyle\Psi^{(2)}_{\varphi} =\displaystyle= φ(φ(|++|))=φ(φ(|++|))\displaystyle{\cal{E}}_{\varphi}({\cal{E}}_{\varphi}({|+\rangle\langle+|}))={\cal{F}}_{\varphi}({\cal{F}}_{\varphi}({|+\rangle\langle+|}))
=\displaystyle= q2U2φ|ξξ|U2φ+1q22I.\displaystyle q^{2}U_{2\varphi}{|\xi\rangle\langle\xi|}U_{2\varphi}^{\dagger}+\frac{1-q^{2}}{2}I\,.

Applying UCNOTU_{\rm CNOT} as before on the reused state ξfail(1)=qUφ|ξξ|Uφ+(1q)diag(ξ)\xi_{\rm fail}^{(1)}=qU_{-\varphi}|\xi\rangle\langle\xi|U_{-\varphi}^{\dagger}+(1-q){\rm diag}(\xi) that left after failure and Ψφ(2)\Psi^{(2)}_{\varphi} results in

Ξ(2)\displaystyle\Xi^{\prime(2)} =\displaystyle= UCNOT(ξfail(1)Ψφ(2))\displaystyle U_{\rm CNOT}(\xi_{\rm fail}^{(1)}\otimes\Psi^{(2)}_{\varphi})
=\displaystyle= 14[q2Uφ|ξξ|Uφ+(1q2)diag(ξ)]|00|\displaystyle\frac{1}{4}[q^{2}U_{\varphi}{|\xi\rangle\langle\xi|}U_{\varphi}^{\dagger}+(1-q^{2}){\rm diag}(\xi)]\otimes{|0\rangle\langle 0|}
+14[q2U3φ|ξξ|U3φ+(1q2)diag(ξ)]|11|,\displaystyle+\frac{1}{4}[q^{2}U_{-3\varphi}{|\xi\rangle\langle\xi|}U_{-3\varphi}^{\dagger}+(1-q^{2}){\rm diag}(\xi)]\otimes{|1\rangle\langle 1|}\,,

with success probability 1/41/4. We can iteratively continue to correct the failures by storing and retrieving sequence of 2k2^{k} phase gates in the kkth correction. In particular,

Ξ(k)\displaystyle\Xi^{\prime(k)} =\displaystyle= UCNOT(ξfail(k1)Ψφ(k))\displaystyle U_{\rm CNOT}(\xi_{\rm fail}^{(k-1)}\otimes\Psi^{(k)}_{\varphi})
=\displaystyle= 12k[qN𝒰φ(ξ)+(1qN)diag(ξ)]|00|\displaystyle\frac{1}{2^{k}}[q^{N}{\cal U}_{\varphi}(\xi)+(1-q^{N}){\rm diag}(\xi)]\otimes{|0\rangle\langle 0|}
+\displaystyle+ 12k[qN𝒰Nφ(ξ)+(1qN)diag(ξ)]|11|,\displaystyle\frac{1}{2^{k}}[q^{N}{\cal U}_{-N\varphi}(\xi)+(1-q^{N}){\rm diag}(\xi)]\otimes{|1\rangle\langle 1|}\,,

where N=2k1N=2^{k}-1 equals to the total number of uses of noisy phase gate. Summing up the success probabilities we obtain for the total success rate

psuccess=12+14+12k=N/(N+1)=112k,p_{\rm success}=\frac{1}{2}+\frac{1}{4}+\cdots\frac{1}{2^{k}}=N/(N+1)=1-\frac{1}{2^{k}}\,,

but let us stress that for each kk the implemented channel is different. Therefore the above success probability cannot be associated with implementation of particular noisy channel. The larger the kk the smaller the success probability and the noisier the retrieved phase gate.

Refer to caption
Figure 6: Vidal-Masanes-Cirac realization scheme for arbitrary N=2k1N=2^{k}-1 times of applying the channel φ{\cal{E}}_{\varphi} NN times with kk being the number of qubits.

VI.2 Virtual Qudit

The implementation of PSAR for arbitrary NN introduced in Ref. STORPhaseGate is removing the use of ancilla AA^{\prime}. Instead of |Ψ=1N+1j|jj¯|\Psi\rangle=\frac{1}{\sqrt{N+1}}\sum_{j}|\overline{jj}\rangle this construction uses the state |Ω=1N+1j|j¯|\Omega\rangle=\frac{1}{\sqrt{N+1}}\sum_{j}|\overline{j}\rangle, where |j¯=|0(Nj)|1j|\overline{j}\rangle=|0^{\otimes(N-j)}\rangle\otimes|1^{\otimes j}\rangle are states of NN qubits system (see Fig. 7). Each of the qubits is transformed by the phase gate to store the action in the state

Ωφ=φφ(|ΩΩ|).\Omega_{\varphi}={\cal E}_{\varphi}\otimes\cdots\otimes{\cal E}_{\varphi}(|\Omega\rangle\langle\Omega|)\,.

Without noise the states Ωφ\Omega_{\varphi} belong to d=(N+1)d=(N+1)-dimensional subspace. Therefore, the retrieval operation is considered only on this virtual qudit subspace d2NA{\cal H}_{d}\subset{\cal H}_{2}^{\otimes N}\equiv{\cal H}_{A}. However, in our case whole Hilbert space matters. Following the original implementation from Ref. STORPhaseGate we introduce the conditional shift as follows

𝒞(|c|t¯)\displaystyle{\cal{C}}_{\ominus}(|c\rangle\otimes|\overline{t}\rangle) =\displaystyle= |c|tc¯\displaystyle|c\rangle\otimes|\overline{t\ominus c}\rangle (21)
𝒞(|c|t¯)\displaystyle{\cal{C}}_{\ominus}(|c\rangle\otimes|\overline{t}_{\perp}\rangle) =\displaystyle= |c|t¯,\displaystyle|c\rangle\otimes|\overline{t}_{\perp}\rangle\,,

for all vector states |t¯|\overline{t}_{\perp}\rangle orthogonal to all vectors |j¯|\overline{j}\rangle. In other words the conditional shift acts as identity on the subspace orthogonal to virtual qudit system.

Refer to caption
Figure 7: Implementation of noisy channel φN{\cal{E}}_{\varphi}^{\otimes N} using virtual qudit and shift-down operator 𝒞{\cal{C}}_{\ominus} defined in equation (21).

VI.2.1 Dephasing noise.

Let us start with the dephasing noise and perform the calculation explicitly for the case of N=2N=2. The memory state equals

Ωφ(2)\displaystyle\Omega_{\varphi}^{(2)} =\displaystyle= φ2(|ΩΩ|)\displaystyle{\cal{F}}_{\varphi}^{\otimes 2}({|\Omega\rangle\langle\Omega|})
=\displaystyle= q2𝒰φ2(|ΩΩ|)+(1q)2𝒫2(|ΩΩ|)\displaystyle q^{2}{\cal{U}}_{\varphi}^{\otimes 2}({|\Omega\rangle\langle\Omega|})+(1-q)^{2}{\cal{P}}^{\otimes 2}({|\Omega\rangle\langle\Omega|})
+q(1q)[(𝒰φ𝒫)+(𝒫𝒰φ)](|ΩΩ|),\displaystyle+q(1-q)\big{[}({\cal{U}}_{\varphi}\otimes{\cal{P}})+({\cal{P}}\otimes{\cal{U}}_{\varphi})\big{]}({|\Omega\rangle\langle\Omega|})\,,

where

𝒰φ2(Ω)=13[Π012¯+eiφ(X01¯+X12¯)+e2iφX02¯+cc](𝒰φ𝒫)(Ω)=13[Π012¯+eiφX12¯+eiφX21¯],(𝒫𝒰φ)(Ω)=13[Π012¯+eiφX01¯+eiφX10¯],(𝒫𝒫)(Ω)=13Π012¯,\displaystyle\begin{split}&{\cal{U}}_{\varphi}^{\otimes 2}({\Omega})=\frac{1}{3}[\Pi_{\overline{012}}+e^{-i\varphi}(X_{\overline{01}}+X_{\overline{12}})+e^{-2i\varphi}X_{\overline{02}}+cc]\\ &({\cal{U}}_{\varphi}\otimes{\cal{P}})(\Omega)=\frac{1}{3}[\Pi_{\overline{012}}+e^{-i\varphi}X_{\overline{12}}+e^{i\varphi}X_{\overline{21}}],\\ &({\cal{P}}\otimes{\cal{U}}_{\varphi})({\Omega})=\frac{1}{3}[\Pi_{\overline{012}}+e^{-i\varphi}X_{\overline{01}}+e^{i\varphi}X_{\overline{10}}],\\ &({\cal{P}}\otimes{\cal{P}})(\Omega)=\frac{1}{3}\Pi_{\overline{012}}\,,\end{split} (23)

where we used the notation Ω=|ΩΩ|\Omega={|\Omega\rangle\langle\Omega|}, Π012¯=|0¯0¯|+|1¯1¯|+|2¯2¯|\Pi_{\overline{012}}={|\overline{0}\rangle\langle\overline{0}|}+{|\overline{1}\rangle\langle\overline{1}|}+{|\overline{2}\rangle\langle\overline{2}|} and Xjk¯=|j¯k¯|X_{\overline{jk}}={|\overline{j}\rangle\langle\overline{k}|}. Retrieval then results in the state

𝒞[ξΩφ(2)]=13[q2UφξUφ+(1q2)diag(ξ)]Π01¯+\displaystyle{\cal{C}}_{\ominus}[\xi\otimes\Omega^{(2)}_{\varphi}]=\frac{1}{3}[q^{2}U_{\varphi}\xi U_{\varphi}^{\dagger}+(1-q^{2}){\rm diag}(\xi)]\otimes\Pi_{\overline{01}}+
+13[q2U2φξU2φ+(1q2)diag(ξ)]|2¯2¯|,\displaystyle+\frac{1}{3}[q^{2}U_{-2\varphi}\xi U_{-2\varphi}^{\dagger}+(1-q^{2}){\rm diag}(\xi)]\otimes{|\overline{2}\rangle\langle\overline{2}|}\,,

where Π01¯=|0¯0¯|+|1¯1¯|\Pi_{\overline{01}}={|\overline{0}\rangle\langle\overline{0}|}+{|\overline{1}\rangle\langle\overline{1}|} and diag(ξ)=0|ξ|0|00|+1|ξ|1|11|{\rm diag}(\xi)=\langle 0|\xi|0\rangle{|0\rangle\langle 0|}+\langle 1|\xi|1\rangle{|1\rangle\langle 1|}. It follows the retrieval is successful with probability psuccess=2/3p_{\rm success}=2/3, when the channel ξq2UφξUφ+(1q2)diag(ξ)\xi\rightarrow q^{2}U_{\varphi}\xi U_{\varphi}^{\dagger}+(1-q^{2}){\rm diag}(\xi) is retrieved. The noise of the retrieved channel is higher.

The calculation for more general case of N1N\to 1 storage and retrieval protocol gives

𝒞[ξΩφ(N)]=\displaystyle{\cal{C}}_{\ominus}[\xi\otimes\Omega_{\varphi}^{(N)}]=
=1N+1[qNUφξUφ+(1qN)diag(ξ)]Π01(N1)¯\displaystyle=\frac{1}{N+1}[q^{N}U_{\varphi}\xi U_{\varphi}^{\dagger}+(1-q^{N}){\rm diag}(\xi)]\otimes\Pi_{\overline{01...(N-1)}}
+1N+1[qNUNφξUNφ+(1qN)diag(ξ)]|N¯N¯|,\displaystyle+\frac{1}{N+1}[q^{N}U_{-N\varphi}\xi U_{-N\varphi}^{\dagger}+(1-q^{N}){\rm diag}(\xi)]\otimes{|\overline{N}\rangle\langle\overline{N}|}\,,

where Π01(N1)¯=j=0N1|j¯j¯|\Pi_{\overline{01...(N-1)}}=\sum_{j=0}^{N-1}{|\overline{j}\rangle\langle\overline{j}|}. As NN is increasing the probability of ”success” is increasing, however, also the noise of the retrieved channel is increasing and in the limit completely diminishes the dependence on φ\varphi and converges to purely dephasing noise 𝒫{\cal P}.

VI.2.2 Depolarizing noise.

It is more involved to get the general formula for the general case of depolarizing noise. In what follows we will explicitly investigate the case of 212\to 1 PSAR of depolarized phase gates and illustrate the behavior. After applying the phase gate twice its action is stored in the state

Ωφ(2)\displaystyle\Omega_{\varphi}^{(2)} =\displaystyle= φ2(|ΩΩ|)=q2𝒰φ2(Ω)+(1q)2𝒞I/22(Ω)\displaystyle{\cal{E}}_{\varphi}^{\otimes 2}({|\Omega\rangle\langle\Omega|})=q^{2}{\cal{U}}_{\varphi}^{\otimes 2}(\Omega)+(1-q)^{2}{\cal{C}}_{I/2}^{\otimes 2}(\Omega)
+q(1q)[𝒰φ𝒞I/2+𝒞I/2𝒰φ](Ω),\displaystyle+q(1-q)[{\cal{U}}_{\varphi}\otimes{\cal{C}}_{{I}/2}+{\cal{C}}_{{I}/2}\otimes{\cal{U}}_{\varphi}](\Omega)\,,

where

𝒰φ2(Ω)=13[Π012¯+eiφ(X10¯+X21¯)+e2iφX20¯+cc],\displaystyle{\cal{U}}_{\varphi}^{\otimes 2}(\Omega)=\frac{1}{3}[\Pi_{\overline{012}}+e^{i\varphi}(X_{\overline{10}}+X_{\overline{21}})+e^{2i\varphi}X_{\overline{20}}+cc]\,,
𝒞I/22(Ω)=14[|00|+|11|+|22|+|33|],\displaystyle{\cal{C}}_{{I}/2}^{\otimes 2}(\Omega)=\frac{1}{4}[{|0\rangle\langle 0|}+{|1\rangle\langle 1|}+{|2\rangle\langle 2|}+{|3\rangle\langle 3|}]\,,
(𝒰φ𝒞I/2)(Ω)=16[2Π01¯+Π23¯+eiφ(X30¯+X21¯)+cc],\displaystyle({\cal{U}}_{\varphi}\otimes{\cal{C}}_{{I}/2})(\Omega)=\frac{1}{6}[2\Pi_{\overline{01}}+\Pi_{\overline{23}}+e^{i\varphi}(X_{\overline{30}}+X_{\overline{21}})+cc]\,,
(𝒞I/2𝒰φ)(Ω)=16[2Π12¯+Π03¯+eiφ(X10¯+X23¯)+cc],\displaystyle({\cal{C}}_{{I}/2}\otimes{\cal{U}}_{\varphi})(\Omega)=\frac{1}{6}[2\Pi_{\overline{12}}+\Pi_{\overline{03}}+e^{i\varphi}(X_{\overline{10}}+X_{\overline{23}})+cc]\,,

where we used the same notation as before. The retrieval outputs

𝒞[ξΩφ(2)]=\displaystyle{\cal{C}}_{\ominus}[\xi\otimes\Omega_{\varphi}^{(2)}]=
=16q(1q)[ξ002|00||1¯1¯|+ξ112|11||0¯0¯|]\displaystyle=\frac{1}{6}q(1-q)\left[\xi_{00}^{2}{|0\rangle\langle 0|}\otimes{|\overline{1}\rangle\langle\overline{1}|}+\xi_{11}^{2}{|1\rangle\langle 1|}\otimes{|\overline{0}\rangle\langle\overline{0}|}\right]
+[16q(q+1)UφξUφ+(14112q216q)diag(ξ)]Π01¯\displaystyle+\left[\frac{1}{6}q(q+1)U_{\varphi}\xi U_{\varphi}^{\dagger}+\left(\frac{1}{4}-\frac{1}{12}q^{2}-\frac{1}{6}q\right){\rm diag}(\xi)\right]\otimes\Pi_{\overline{01}}
+[13q2U2φξU2φ+14(1q2)diag(ξ)]|2¯2¯|\displaystyle+\left[\frac{1}{3}q^{2}U_{-2\varphi}\xi U_{-2\varphi}^{\dagger}+\frac{1}{4}(1-q^{2}){\rm diag}(\xi)\right]\otimes{|\overline{2}\rangle\langle\overline{2}|}
+[14112q216q]ξ|3¯3¯|.\displaystyle+\left[\frac{1}{4}-\frac{1}{12}q^{2}-\frac{1}{6}q\right]\xi\otimes{|\overline{3}\rangle\langle\overline{3}|}\,. (24)

Measurement associated with the projection Π01¯\Pi_{\overline{01}} corresponds to successful measurement while measuring Π23¯\Pi_{\overline{23}} corresponds to a failure. The success probability equals psuccess=(3+q)/6p_{\rm success}=(3+q)/6, thus, becomes dependent on the initial noise, and the retrieved channel is a mixture of the desired phase gate and the diagonalisation in the computational basis (complete decoherence). The retrieved channel is again more noise than the original although it must be stressed it is from different family of channels. That is for this implementation the PSAR device does no reduce the noise. Let us also note that in the case of outcome |3¯3¯|{|\overline{3}\rangle\langle\overline{3}|} the qubit state is unaffected.

VII Conclusions

We addressed the question of noise robustness of particular example of higher-order quantum information processing task for storage and retrieval (quantum learning) of quantum processes. Surprisingly we found that for the case of depolarisation noise the PSAR device can reduce the noise level both quantitatively and qualitatively. This feature is not generic, but when it happens PSAR may be used to improve the performance of noisy quantum phase gate and probabilistically “distill” the noiseless evolution. In particular, the white noise is not only reduced, but it also changes to dephasing noise. We also observed that different implementations of PSAR have different performances for noisy phase gates, because their actions on the subspace unused in the noiseless case are different.

Acknowledgements.
We acknowledge the support by the projects OPTIQUTE (APVV-18-0518), DESCOM (VEGA 2/0183/21). MZ acknowledges the support of the John Templeton Foundation under the project ID JTF-61466 (QISS). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

References

  • (1) P. Shor, SIAM J. Computing 26 (1997), 1484-1509.
  • (2) L. K. Grover, Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996, pages 212-219
  • (3) C. Bennett and G. Brassard, Theoretical Computer Science - TCS 560, 175-179 (1984)
  • (4) W.K. Wootters and W.H. Zurek, Nature 299, 802 (1982)
  • (5) H. Barnum, C. M. Carlton, C. A. Fuchs, R. Jozsa and B. Schumacher, Phys. Rev. Lett. 76, 2818-2821 (1996)
  • (6) S. L. Braunstein and A. K. Pati, Phys. Rev. Lett. 98, 080502 (2007)
  • (7) A. Pati and S. Braunstein, Nature 404, 164-165 (2000)
  • (8) M. A. Nielsen and Isaac L. Chuang, Phys. Rev. Lett. 79, 321 (1997)
  • (9) M. Hillery, V. Bužek and M. Ziman, Phys. Rev. A 65 (2001)
  • (10) V. Bužek, M. Ziman and M. Hillery, Fortschritte der Physik 52, 1056-1063 (2004)
  • (11) M. Hillery, M. Ziman and V. Bužek, Phys. Rev. A 69, 042311 (2004)
  • (12) A. M. Kubicki, C. Palazuelos, D. Perez-Garcia, Phys. Rev. Lett. 122, 080505 (2019)
  • (13) A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini and P. Perinotti, Phys. Rev. A 81, 032324 (2010)
  • (14) G. Vidal, L. Masanes and J. I. Cirac, Phys. Rev. Lett. 88, 047905 (2002)
  • (15) M. Sedlák, A. Bisio and M. Ziman, Phys. Rev. Lett. 122, 170502 (2019)
  • (16) M. Sedlák and M. Ziman, Phys. Rev. A 102, 032618 (2020)
  • (17) G. Chiribella, G. M. D’Ariano and P. Perinotti, Phys. Rev. A 80, 022339 (2009)
  • (18) G. Chiribella, G. M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 101, 060401 (2008)
  • (19) A. Bisio and P. Perinotti, Proc. R. Soc. A 475 20180706 (2019)
  • (20) A. Bisio, G. Chiribella, G. M. D’Ariano and P. Perinotti, Acta Physica Slovaca 61, 273-390 (2011)